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The topological story

Notation/Definitions

• Mn will denote an n-dimensional manifold, which
we take to mean either topological or smooth (we’ll
specify).

• The term open manifold means non-compact man-
ifold, without boundary.

• We’ll write I for the unit interval [0,1].

A homotopy between two continuous maps f, g : X −→
Y is a continuous map H : X × I −→ Y such that
H(x,0) = f and H(x,1) = g.

A continuous map f : X −→ Y is called a homotopy
equivalence if there exists a map g : Y −→ X such that
g ◦ f ∼ IdX and f ◦ g ∼ IdY .

The homotopy category is the category whose objects
are (nice) topological spaces and whose morphisms are
continuous maps up to homotopy equivalence.

A topological space X is contractible if f : X −→ pt is a
homotopy equivalence, i.e., if X is equivalent to a point
in the homotopy category. Note that Euclidean space
Rn is an open contractible manifold: radially contract to
the origin.



The Poincaré conjecture asks whether every manifold
Mn homotopy equivalent to Sn is actually homeomorphic
to Sn.

History

• 1934 - Whitehead - Purported proof of 3-D Poincaré
conjecture
A lesson in how not to prove the Poincaré conjecture: start

with a homotopy equivalence f : M3 −→ S3. Removing a point

produces an open contractible manifold M3\pt and continuous

map f : M3 \ pt −→ R3. Whitehead claimed: All open con-

tractible 3-manifolds are homeomorphic to R3...such a homeo.

extends to a homeo. M3 → S3....but...

• 1935 - Whitehead produced an example of an open
contractible 3-manifold not homeomorphic to R3.
We call this space the Whitehead manifold and de-
note it by W 3. The construction is very “topological”

and uses the Whitehead link. Here’s a picture:



The Whitehead Manifold

Lun-Yi Tsai



How do we distinguish this manifold from R3? White-
head had a “geometric” argument. We will use another
approach: try to use properties “at infinity.”

Homotopy at infinity

Definition 1. An open manifold Mn is connected at ∞ or
has one end if given any compact subset C ⊂ Mn, there
is a larger compact subset C ⊂ D ⊂ Mn such that Mn\D

is connected (i.e., any two points can be connected by
the image of path I −→ Mn \ D).

A neighborhood of ∞ in an open manifold M is a sub-
set N such that the closure of X \ N is compact. The
manifold M is said to be simply connected at infinity, if
for any neighborhood U of ∞, there is a smaller neigh-
borhood of ∞, call it V , such that any continuous map
of the circle into V is contractible in U .

The following condition (C) has been considered by many authors:

given any compact subset C ⊂ Mn, there is a larger compact subset

C ⊂ D ⊂ Mn such Mn \D is simply connected (i.e., any map S1 −→

Mn \ D is homotopy equivalent to a trivial map). This condition

implies simple-connectivity at infinity in the above sense, but fails

to be a proper homotopy invariant.

• Simple-connectivity at infinity is a topological prop-
erty.

• R is not connected at infinity, R2 is connected at
infinity, but is not simply connected at infinity.



• Rn, n ≥ 3 is simply connected at infinity.

• The Whitehead manifold is not simply connected
at infinity and thus not homeomorphic to R3.

Stability property

• 1960 - Glimm and Shapiro showed that (i) W 3 × R

is homeomorphic to R4, and (ii) W 3 × W 3 is home-
omorphic to R6.



Key problems:

• (Existence) Are there other open contractible man-
ifolds? (or “is the Whitehead manifold an isolated pathol-

ogy?”)

• (Characterization) If there do exist such, can one
characterize Rn among open contractible manifolds.

• (Structure) What structural results, analogous to
the above stability property, exist for open con-
tractible manifolds.

The 1960s saw most of these problems solved and a
beautiful framework emerge. The techniques developed
in their solution was very important for the so-called
“surgery” classification of manifolds. We’ll just sum-
marize the results as they stand today.



Theorem 2 (Existence results: 1934-1967)).

• Every open contractible topological n-manifold, n ≤ 2
is homeomorphic to Rn.

• For every n ≥ 3, there exist uncountably many pair-
wise non-homeomorphic open contractible topological
n-manifolds

Dimension ≤ 2, follows from classification theory. Dimension 3,

McMillan generalized Whitehead’s construction (1961). Dimension

≥ 5 proved by Curtis-Kwun (1965) using tricky group theoretical

arguments. Dimension 4 Glaser (1967).

Theorem 3 (Characterization/Structure results: 1960-2005!).

• Euclidean space Rn (n ≥ 3) is the unique open con-
tractible topological n-manifold that is simply connected
at infinity.

• For any open contractible n-manifold Mn, the product
Mn × R is homeomorphic to Rn+1.

A smooth (/PL) version for n ≥ 5 was given by Stallings (1962),
though dimension ≥ 6 can be deduced from work of Smale.

The stated topological version has a more interesting history. Di-
mension ≥ 5 is due to Siebenmann (1968) following work of M.H.A.
Newman, though proofs were claimed slightly earlier (Luft).

In any dimension the result is a consequence of the Poincaré conjec-

ture. Thus, dimension ≥ 4 follows from Freedman’s work (1980s)

and dimension 3 is now known due to Perelman’s recent results

(2005?). The smooth version in dimension 4 is “very false” by

work of Freedman, Donaldson, etc. on fake R4s.



Moral of the story: There exist many open contractible
n-manifolds, n ≥ 3, all of which can be constructed
as quotients of Euclidean space by free “translation”
actions of R. We can recognize Euclidean space among
these by checking simple connectivity at infinity.

Standard homotopy invariants such as singular homol-
ogy, homotopy groups, vector bundles, etc. on such
manifolds are all trivial! It is difficult to distinguish open
contractible manifolds. In some sense these manifolds
“measure” the difference between homotopy theory and
homeomorphism.

Now to a new thread...



Some algebro-geometric problems

Notation/Conventions:

• We’ll work only with smooth algebraic varieties that,
for simplicity, are assumed defined over algebraically
closed fields (take C for example).

• Smooth complex algebraic varieties X, while topol-
ogized with the Zariski topology, can also be viewed
as smooth manifolds. We write X(C) for this asso-
ciated manifold.

• We’ll work mainly with affine algebraic varieties or
quasi-affine algebraic varieties, the latter are just
Zariski open subsets of affine algebraic varieties.

• We write An for n-dimensional affine space; over C

one has An(C) = Cn with its usual structure of a
complex manifold.

With definitions analogous to topology, we can consider
vector bundles (or more general fiber bundles) though
now we assume that local trivializations exist in the
Zariski topology, i.e., the variety in question can be cov-
ered by Zariski open sets over which the restricted bun-
dle is isomorphic to a product U × An, and transition
functions are algebraic.



Serre Problem (1955): Are all algebraic vector bundles
on affine space trivial? (Presumably this problem was mo-

tivated by the corresponding topological result...Serre was first a

topologist.)

Cancellation Problem: Suppose X ×A1 ∼= Y ×A1, are X
and Y necessarily isomorphic?

The first problem has a positive solution due to the celebrated work

of Quillen and Suslin (1976). The second problem however, has a

negative solution due to the existence of stably trivial but non-trivial

vector bundles, thus further restrictions were added.

Zariski cancellation problem (∼1970): Suppose X ×
A1 ∼= An+1, is X isomorphic to An?

In this form, the problem is not actually due to Zariski (in 1949 he

asked a different, but related, question about fields). We’ll say that

Zariski cancellation holds in dimension n if a positive answer to the

question holds for algebraic varieties X of dimension n. Note that

over C, any variety X satisfying the hypotheses of the Zariski can-

cellation has the property that X(C) is contractible. It was quickly

shown that Zariski cancellation holds in dimension 1, and Fujita,

Miyanishi and Sugie (1980s) proved Zariski cancellation holds in

dimension 2. For later use, we make the following definition.

Definition 4. A complex algebraic variety is topologi-
cally contractible if X(C) is contractible in the sense
defined previously.

All the previous constructions of topological manifolds
were very “topological” so it’s not even clear that topo-
logically contractible smooth complex algebraic varieties
different from affine space exist! However, the following
groundbreaking result appeared:



Theorem 5 (Ramanujam ’74). There exists a topolog-
ically contractible smooth complex algebraic surface X
such that X(C) is not homeomorphic to R4. A smooth
contractible complex algebraic surface X is algebraically
isomorphic to A2 if and only if X(C) is simply connected
at infinity.

Constructed by removing a certain curve from a Hirzebruch sur-

face. Recently this example has been used by Seidel and Smith in

symplectic topology!

This did not solve the Zariski cancellation problem in di-
mension 2, though it did suggest the following problem.

Characterization problem: Characterize An among all
n-dimensional algebraic varieties.

Unfortunately, purely topological invariants are probably
not enough to solve this problem for n > 2 because of
the following result.

Theorem 6 (Dimca, Ramanujam). Any topologically
contractible n-dimensional smooth complex affine va-
riety X, n ≥ 3, has X(C) diffeomorphic to R2n.

Later attempts at studying Zariski cancellation proceeded by con-

structing other examples of topologically contractible smooth alge-

braic varieties–many examples of the latter are now known; Zaiden-

berg has a nice survey of these results. Furthermore, there was

some interest in a generalization of Serre’s problem.

Generalized Serre problem: Are all algebraic vector
bundles on topologically contractible complex varieties
trivial?



Problems with this picture:

• There is no coherent structure theory for contractible
smooth complex algebraic varieties (of higher di-
mension).

• Furthermore, we have only defined a notion of con-
tractibility for smooth complex algebraic varieties,
what about varieties defined over other fields?

To rectify these problems one might try to introduce
some ideas from homotopy theory into algebraic geom-
etry to parallel the topological story.



Homotopy theory for varieties (a black box)

Basic idea: the affine line is analogous to the unit in-
terval. Introduce a homotopy theory for algebraic va-
rieties where homotopies are “parameterized” by the
affine line.

Unfortunately this naive idea runs into various technical
complications and one has to work harder. Morel and
Voevodsky considered a slightly less naive notion that
leads to a theory with good technical properties. We
will avoid a technical discussion and consider instead
the following (rough) dictionary.

Topology Algebraic Geometry
Unit interval Affine line A1

(finite) CW complex Smooth algebraic variety
category of topological spaces category of k-spaces Spck

homotopy equivalence A1-weak equivalence
homotopy category A1-homotopy category

singular homology Voevodsky’s “motivic” homology
singular chain complex

of Dold-Thom construction Voevodsky motive

The precise definition of an A1-weak equivalence is tech-
nical, but it will suffice for us to consider an example.

Example 7. If X and Y are smooth varieties and f :
X −→ Y is a Zariski locally trivial fiber bundle with fibers
isomorphic to affine spaces, then f is an A1-weak equiv-
alence.



Remark 8. It is non-obvious that there exist pairwise non-isomorphic
smooth proper (compact) varieties that are A1-weakly equivalent.

A1-contractibility

Definition 9. A smooth variety X is A1-contractible if
the structure morphism X −→ pt is an A1-weak equiva-
lence.

• The smooth variety An is A1-contractible (radial
scaling again!).

• Any variety that is A1-weakly equivalent to affine
space is A1-contractible.

• Any variety that satisfies the hypotheses of Zariski
cancellation is A1-contractible.

• Any A1-contractible smooth complex variety is topo-
logically contractible.

...but why is making this definition a good thing?

Naive question: do there even exist A1-contractible smooth

varieties that are not isomorphic to affine space?



A homotopic view of affine lines

Example 10. Take the smooth quadric hypersurface Q4

defined by x1x4 − x2x3 = x5(x5 + 1) in A5, and remove
the subvariety E2 (isomorphic to a 2-dimensional affine
space) defined by x1 = x2 = 0, x5 = −1; set

Q4 \ E2 := X4

How? Construct an explicit fiber bundle A5 −→ X4 that
is Zariski locally trivial with A1-fibers. Can this be gen-
eralized? Yes (in two ways!).

“Existence results” for A1-contractibles

Theorem 11 (A., B. Doran). For every integer n ≥ 4,
there exist infinitely many pairwise non-isomorphic A1-
contractible smooth varieties of dimension n. For every
pair of integers n ≥ 6, m > 0, there exist m-dimensional
families of A1-contractible smooth varieties of dimension
n, all of whose fibers are pairwise non-isomorphic.

Idea of proof: Construct A1-contractible smooth varieties by using

a version of geometric invariant theory to construct quotients of

affine spaces by unipotent (“translation”) group actions. We study

the particular case of Ga-actions on affine space, motivated by the

topological constructions! Can give explicit defining equations and

the theory is computationally effective (implemented in Singular).

Note: The A1-contractible varieties appearing in our
construction that are affine cannot provably be distin-
guished from affine space. Thus, potential counter-
examples to Zariski cancellation may exist here! We’ll
return to this...



Theorem 12 (A.). Every A1-contractible smooth com-
plex variety of dimension d ≤ 2 is isomorphic to A2.

Corollary 13 (A.). There exist arbitrary dimensional fam-
ilies of topologically contractible, not A1-contractible
complex varieties of every dimension d ≥ 2.

Dimension 1 is easy, so we only need to consider dimension 2.
Idea of proof: as with topological proof, start with the beautiful
classification of topologically contractible smooth varieties of di-
mension 2 due to Gurjar, Shastri, Miyanishi, Kaliman, Zaidenberg,
Makar-Limanov, etc. However, two important “topological” ideas
appear. Basically, we study connectedness from the standpoint of
A1-homotopy theory.

• Recall that a variety is path connected if any two points can
be joined by a map from the unit interval. Similarly, one can
hope that a variety is connected from the standpoint of A1-
homotopy theory if every pair of points can be connected by
a morphism from A1.

• Prove an “excision” result stating that if X is A1-contractible
any open subvariety whose complement has codimension d ≥ 2
is A1-connected; this uses recent work of Morel quite signifi-
cantly.

• Observe that every topologically contractible smooth complex
surface not isomorphic to A2 has an open subset U whose
complement that is of codimension 2 that is not A1-connected.

• We hope that A2 is the only A1-connected topologically con-
tractible smooth complex surface!



Moral: Checking that a variety is A1-connected is a
non-trivial condition; it should mean that the variety is
covered by affine lines! This should fail for “most” topo-
logically contractible smooth complex varieties! Thus,
A1-contractibility of a variety is a significantly stronger
restriction than topological contractibility on possible
counter-examples to Zariski cancellation.



Generalized Serre problems

Related to “bundle theory” for algebraic varieties, which
doesn’t work in the manner suggested by topology. The
answer to the generalized Serre problem is a resounding
no. An interesting dichotomy appears.

Theorem 14 (A., B. Doran).

(Essentially) Every known A1-contractible smooth va-
riety that is quasi-affine yet not affine has non-trivial
vector bundles.

In fact, one can construct A1-contractible smooth va-
rieties with arbitrary dimensional moduli of vector bun-
dles.

However, A1-contractible smooth affine varieties all have
trivial vector bundles (of rank 6= 2).

The last statement follows from recent work of Morel.
The first two statements are proven by explicit construc-
tions.



Generalized Hodge conjecture

Classically, the Hodge conjecture asks whether certain
cohomology classes can be represented by algebraic cy-
cles. However, for varieties over C, there is a formulation
due to A. Huber that can be viewed as a comparison be-
tween singular cohomology (enhanced in an appropriate
way) and Voevodsky’s motivic cohomology for arbitrary
(not necessarily compact) smooth varieties. Applied to
topologically contractible smooth varieties this general
conjecture produces:

Conjecture 15. The motive (recall the dictionary) with
rational coefficients of a topologically contractible smooth
complex variety is necessarily isomorphic to the motive
with rational coefficients of a point.

We can prove some portion of this conjecture. Note that the con-

clusion of the conjecture is essentially automatic for A1-contractible

smooth varieties. Thus, the conjecture suggests that any topologi-

cally contractible smooth complex variety that is not A1-contractible

is a potential counter-example to this general formulation of the

Hodge conjecture.

Theorem 16 (A.). If X is a topologically contractible
smooth complex variety of dimension ≤ 2, then the mo-
tive with integral coefficients of X is isomorphic to that
of a point.



Conjectures, Problems in affine geometry,

and a little wild speculation...

A comparison of contractibles

Topology Algebraic geometry
Exist. Only Rn in dim. n ≤ 2 Only An in dim. n ≤ 2

∞ of dim. 3 ???

∞ of dim. 4-5 countably many of dim. 4-5

∞ of dim ≥ 6 ∞ of dim ≥ 6

Charact. Rn, n ≥ 3 is unique s.c at ∞ ???

Struct. Mn × R ∼= Rn+1 See below...

How do we fill in the table? Given our constructions of
A1-contractibles, a first question to ask is:

Question 17. Can every A1-contractible smooth variety
be realized as a quotient of affine space by the free
action of a unipotent group?

Unfortunately, the answer to this question is (almost certainly) no.

We believe that we can construct explicit counterexamples using

generalizations of the variety X4 studied above involving higher

even dimensional quadrics. A less-likely-to-be-wrong generalization

would be:

Conjecture 18. Is every A1-contractible smooth variety
the base of a Zariski (really Nisnevich!) locally trivial
fibration with total space and fibers isomorphic to affine
spaces?



Also, we didn’t say anything about A1-contractibles in
dimension 3. However, recent “topological” evidence
suggests that smooth (strictly) quasi-affine A1-contractibles
of dimension 3 do not exist.

Conjecture 19. There exist no strictly quasi-affine smooth
A1-contractible varieties of dimension 3.

Furthermore, we have yet to construct a single affine
A1-contractible smooth variety.

What about x + x2y + z2 + t3 = 0 (Russell cubic)?

Nevertheless, we make the following (optimistic) con-
jecture.

Conjecture 20. Zariski cancellation is false in every di-
mension ≥ 4.

How about the problem of characterizing affine space?
The topological results suggest trying to define an ap-
propriate notion of A1-homotopy “at infinity.” We have
a tentative definition (at least “stably”) of such a no-
tion. Under this definition, affine space of dimension
n ≥ 3 is A1-simply connected at infinity. The follow-
ing conjecture, which might be called an A1-Poincaré
conjecture, is thus wild speculation at the moment.

Conjecture 21. Affine n-space, n ≥ 3, is the unique
smooth n-dimensional variety that is A1-contractible,
and A1-simply connected at infinity.



Moral: Why is the Zariski cancellation problem so hard?

1) There are very few computable invariants available to

distinguish non-isomorphic (A1-)contractible affine vari-

eties (the A1-homotopy type at infinity would be such

an invariant). 2) There are very few (computable) tech-

niques to construct possible counterexamples (though

various reductions of the problem exist, our methods

give potential counter-examples).



For more information (e.g., preprint versions

of papers) visit

http://www.math.washington.edu/˜asok
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