Connectedness in the homotopy theory of algebraic varieties

Aravind Asok (USC)

March 31, 2011

Aravind Asok (USC) Connectedness in the homotopy theory of algebraic varieties

A (B) > A (B) > A (B)

Outline

1 Conventions, definitions and basic examples

イロン イヨン イヨン イヨン

Outline

1 Conventions, definitions and basic examples

2 Invariants and classification in topology

Outline

1 Conventions, definitions and basic examples

- 2 Invariants and classification in topology
- **3** The \mathbb{A}^1 -homotopy category

Outline

- **1** Conventions, definitions and basic examples
- 2 Invariants and classification in topology
- **3** The \mathbb{A}^1 -homotopy category
- 4 Geometric aspects of \mathbb{A}^1 -homotopy theory

Invariants and classification in topology The \mathbb{A}^1 -homotopy category Geometric aspects of \mathbb{A}^1 -homotopy theory

Definitions

An *n*-dimensional manifold *M*

イロン イヨン イヨン イヨン

æ

Invariants and classification in topology The \mathbb{A}^1 -homotopy category Geometric aspects of \mathbb{A}^1 -homotopy theory

Definitions

An *n*-dimensional manifold *M*

■ is constructed by *gluing*

Invariants and classification in topology The \mathbb{A}^1 -homotopy category Geometric aspects of \mathbb{A}^1 -homotopy theory

Definitions

An *n*-dimensional manifold *M*

- is constructed by *gluing*
- locally looks an open subset of \mathbb{R}^n

- 4 回 ト 4 ヨ ト 4 ヨ ト

Invariants and classification in topology The \mathbb{A}^1 -homotopy category Geometric aspects of \mathbb{A}^1 -homotopy theory

Definitions

An *n*-dimensional manifold *M*

- is constructed by *gluing*
- locally looks an open subset of \mathbb{R}^n
- global conditions, i.e., Hausdorff (separation), and paracompactness (finiteness)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Invariants and classification in topology The $\mathbb{A}^1\text{-}homotopy$ category Geometric aspects of $\mathbb{A}^1\text{-}homotopy$ theory

Definitions

An *n*-dimensional manifold *M*

- is constructed by *gluing*
- locally looks an open subset of \mathbb{R}^n
- global conditions, i.e., Hausdorff (separation), and paracompactness (finiteness)
- considered up to appropriate notion of isomorphism (diffeomorphism, homeomorphism)

Invariants and classification in topology The \mathbb{A}^1 -homotopy category Geometric aspects of \mathbb{A}^1 -homotopy theory

Definitions

An *n*-dimensional manifold *M*

- is constructed by *gluing*
- locally looks an open subset of \mathbb{R}^n
- global conditions, i.e., Hausdorff (separation), and paracompactness (finiteness)
- considered up to appropriate notion of isomorphism (diffeomorphism, homeomorphism)
- The term open manifold means non-compact manifold without boundary.

Invariants and classification in topology The \mathbb{A}^1 -homotopy category Geometric aspects of \mathbb{A}^1 -homotopy theory

Definitions

An *n*-dimensional manifold *M*

- is constructed by *gluing*
- locally looks an open subset of \mathbb{R}^n
- global conditions, i.e., Hausdorff (separation), and paracompactness (finiteness)
- considered up to appropriate notion of isomorphism (diffeomorphism, homeomorphism)
- The term open manifold means non-compact manifold without boundary.
- The term *closed manifold* means compact manifold without boundary.

- 4 同 6 4 日 6 4 日 6

Invariants and classification in topology The $\mathbb{A}^1\text{-}homotopy$ category Geometric aspects of $\mathbb{A}^1\text{-}homotopy$ theory

Definitions

An *n*-dimensional manifold *M*

- is constructed by *gluing*
- locally looks an open subset of \mathbb{R}^n
- global conditions, i.e., Hausdorff (separation), and paracompactness (finiteness)
- considered up to appropriate notion of isomorphism (diffeomorphism, homeomorphism)
- The term open manifold means non-compact manifold without boundary.
- The term *closed manifold* means compact manifold without boundary.
- We'll write *I* for the unit interval [0, 1].

- 4 同 6 4 日 6 4 日 6

Invariants and classification in topology The \mathbb{A}^1 -homotopy category Geometric aspects of \mathbb{A}^1 -homotopy theory

More definitions

An algebraic variety X over a field k

Conventions, definitions and basic examples Invariants and classification in topology

The \mathbb{A}^1 -homotopy category Geometric aspects of \mathbb{A}^1 -homotopy theory

More definitions

An algebraic variety X over a field k
is constructed by gluing

Conventions, definitions and basic examples Invariants and classification in topology The \mathbb{A}^1 -homotopy category

Geometric aspects of \mathbb{A}^1 -homotopy theory

More definitions

- An algebraic variety X over a field k
 - is constructed by *gluing*
 - *locally* simultaneous vanishing locus of finitely many polynomials with coefficients in k.

Conventions, definitions and basic examples Invariants and classification in topology The \mathbb{A}^1 -homotopy category

Geometric aspects of A¹-homotopy theory

More definitions

- An algebraic variety X over a field k
 - is constructed by *gluing*
 - *locally* simultaneous vanishing locus of finitely many polynomials with coefficients in k.
 - global conditions (separation and finiteness).

(4月) (4日) (4日)

Conventions, definitions and basic examples Invariants and classification in topology The A¹-homotopy category

Geometric aspects of \mathbb{A}^1 -homotopy theory

More definitions

An algebraic variety X over a field k

- is constructed by *gluing*
- *locally* simultaneous vanishing locus of finitely many polynomials with coefficients in k.
- global conditions (separation and finiteness).
- Zariski topology

Conventions, definitions and basic examples Invariants and classification in topology

The \mathbb{A}^1 -homotopy category Geometric aspects of \mathbb{A}^1 -homotopy theory

More definitions

An algebraic variety X over a field k

- is constructed by *gluing*
- *locally* simultaneous vanishing locus of finitely many polynomials with coefficients in k.
- global conditions (separation and finiteness).
- Zariski topology
- considered up to isomorphism (locally polynomial with polynomial inverse)

Conventions, definitions and basic examples Invariants and classification in topology

The \mathbb{A}^1 -homotopy category Geometric aspects of \mathbb{A}^1 -homotopy theory

More definitions

- An algebraic variety X over a field k
 - is constructed by *gluing*
 - *locally* simultaneous vanishing locus of finitely many polynomials with coefficients in k.
 - global conditions (separation and finiteness).
 - Zariski topology
 - considered up to isomorphism (locally polynomial with polynomial inverse)
- If K/k is an extension, we'll write X(K) for the set of K-valued solutions to the (local) equations defining X.

(D) (A) (A) (A) (A)

Invariants and classification in topology The \mathbb{A}^1 -homotopy category Geometric aspects of \mathbb{A}^1 -homotopy theory

Manifolds vs. varieties

• \mathbb{A}^n - affine space over k;

Conventions, definitions and basic examples Invariants and classification in topology

The \mathbb{A}^1 -homotopy category Geometric aspects of \mathbb{A}^1 -homotopy theory

Manifolds vs. varieties

• \mathbb{A}^n - affine space over k; \mathbb{P}^n - projective space over k

Manifolds vs. varieties

- \mathbb{A}^n affine space over k; \mathbb{P}^n projective space over k
- Depends on the field in question, e.g., consider x² + y² = -1 and x² + y² = 1 over ℝ, and over ℂ.

Manifolds vs. varieties

- \mathbb{A}^n affine space over k; \mathbb{P}^n projective space over k
- Depends on the field in question, e.g., consider x² + y² = -1 and x² + y² = 1 over ℝ, and over ℂ.
- We consider solutions over field extensions that aren't necessarily finite, e.g., ℝ(t) (think of a parameterized family of solutions).

Manifolds vs. varieties

- \mathbb{A}^n affine space over k; \mathbb{P}^n projective space over k
- Depends on the field in question, e.g., consider x² + y² = -1 and x² + y² = 1 over ℝ, and over ℂ.
- We consider solutions over field extensions that aren't necessarily finite, e.g., ℝ(t) (think of a parameterized family of solutions).
- If k = ℝ or ℂ, the set of real or complex solutions is a manifold.

소리가 소문가 소문가 소문가

Manifolds vs. varieties

- \mathbb{A}^n affine space over k; \mathbb{P}^n projective space over k
- Depends on the field in question, e.g., consider x² + y² = -1 and x² + y² = 1 over ℝ, and over ℂ.
- We consider solutions over field extensions that aren't necessarily finite, e.g., ℝ(t) (think of a parameterized family of solutions).
- If k = ℝ or ℂ, the set of real or complex solutions is a manifold.
- If k = Q, or a finite field, then the set of solutions looks like a discrete set of points.

(日) (同) (E) (E) (E)

Invariants

 A homotopy between two continuous maps f, g : M → M' is a continuous map H : M × I → M' such that H(x,0) = f and H(x,1) = g. (Think: continuous deformation)

Invariants

- A homotopy between two continuous maps f, g : M → M' is a continuous map H : M × I → M' such that H(x,0) = f and H(x,1) = g. (Think: continuous deformation)
- A cts. map $f: M \longrightarrow M'$ is a homotopy equivalence if there exists cts. $g: M' \longrightarrow M$ s.t. $g \circ f \sim Id_M$ and $f \circ g \sim Id_{M'}$.

Invariants

- A homotopy between two continuous maps f, g : M → M' is a continuous map H : M × I → M' such that H(x,0) = f and H(x,1) = g. (Think: continuous deformation)
- A cts. map $f: M \longrightarrow M'$ is a homotopy equivalence if there exists cts. $g: M' \longrightarrow M$ s.t. $g \circ f \sim Id_M$ and $f \circ g \sim Id_{M'}$.
- The homotopy category is the category whose objects are (nice) topological spaces and whose morphisms are homotopy classes of continuous maps.

Basic homotopy invariants

 A functor from the category of manifolds to some category of algebraic data (groups, rings, etc.)

・ 同・ ・ ヨ・

Basic homotopy invariants

- A functor from the category of manifolds to some category of algebraic data (groups, rings, etc.)
- Set of path connected components π₀(M): maps * → M up to homotopy equivalence.

Basic homotopy invariants

- A functor from the category of manifolds to some category of algebraic data (groups, rings, etc.)
- Set of path connected components π₀(M): maps * → M up to homotopy equivalence.
- Homotopy groups $\pi_i(M, *)$ $(i \ge 1)$ are cts. maps $S^n \to M$ (preserving a chosen base-point) up to homotopy. (Easy to define, hard to compute)

Basic homotopy invariants

- A functor from the category of manifolds to some category of algebraic data (groups, rings, etc.)
- Set of path connected components π₀(M): maps * → M up to homotopy equivalence.
- Homotopy groups π_i(M, *) (i ≥ 1) are cts. maps Sⁿ → M (preserving a chosen base-point) up to homotopy. (Easy to define, hard to compute)
- Homology groups H_i(M, Z), start w/ free abelian group on the cts. maps Δⁿ → M, define boundary operator, take cycles modulo boundaries.. (Harder to define, easier to compute)

・ロト ・回ト ・ヨト ・ヨト

Classification Part I

 Basic problem: classify manifolds up to homeomorphism, diffeomorphism or homotopy equivalence

- 4 同 ト 4 ヨ ト 4 ヨ ト

Classification Part I

- Basic problem: classify manifolds up to homeomorphism, diffeomorphism or homotopy equivalence
- In (very) low dimensions classification is possible using only invariants (in fact π₁ is enough):

- A 同 ト - A 三 ト - A 三 ト

Classification Part I

- Basic problem: classify manifolds up to homeomorphism, diffeomorphism or homotopy equivalence
- In (very) low dimensions classification is possible using only invariants (in fact π₁ is enough):
 - Dimension 1. Only connected closed manifold is S^1 .
Conventions, definitions and basic examples Invariants and classification in topology The Å¹-homotopy category Geometric aspects of Å¹-homotopy theory

Classification Part I

- Basic problem: classify manifolds up to homeomorphism, diffeomorphism or homotopy equivalence
- In (very) low dimensions classification is possible using only invariants (in fact π₁ is enough):
 - Dimension 1. Only connected closed manifold is S^1 .
 - Dimension 2. Connected closed manifolds are either S², connected sums of S¹ × S¹, connected sums of ℝP².

(D) (A) (A) (A) (A)

Classification Part II

 Dimension 3. Diffeomorphism classification is in principle possible but differs from homotopy classification

Classification Part II

- Dimension 3. Diffeomorphism classification is in principle possible but differs from homotopy classification
 - lens spaces provide homotopy equivalent non-diffeomorphic manifolds.

Classification Part II

- Dimension 3. Diffeomorphism classification is in principle possible but differs from homotopy classification
 - lens spaces provide homotopy equivalent non-diffeomorphic manifolds.
- Dimensions ≥ 4. Homotopy classification is not possible: there are "too many" invariants

Classification Part II

- Dimension 3. Diffeomorphism classification is in principle possible but differs from homotopy classification
 - lens spaces provide homotopy equivalent non-diffeomorphic manifolds.
- Dimensions ≥ 4. Homotopy classification is not possible: there are "too many" invariants
 - Any finitely presented group can appear as the fundamental group of a manifold of dimension ≥ 4.

Conventions, definitions and basic examples Invariants and classification in topology The Å¹-homotopy category Geometric aspects of Å¹-homotopy theory

Classification Part II

- Dimension 3. Diffeomorphism classification is in principle possible but differs from homotopy classification
 - lens spaces provide homotopy equivalent non-diffeomorphic manifolds.
- Dimensions ≥ 4. Homotopy classification is not possible: there are "too many" invariants
 - Any finitely presented group can appear as the fundamental group of a manifold of dimension ≥ 4.
- Dimensions ≥ 5. Better problem: classify all manifolds having a fixed homotopy type.

・ロン ・回と ・ヨン・

Invariants in algebraic geometry

First idea: work over $\mathbb R$ or $\mathbb C$ and use topological invariants of the associated manifold.

Invariants in algebraic geometry

First idea: work over \mathbb{R} or \mathbb{C} and use topological invariants of the associated manifold.

■ Problem: (Over C) There can be many different algebraic varieties with the same underlying topological space (e.g., all smooth cubic curves in P² are topologically tori)

- 4 周 ト - 4 日 ト - 4 日 ト

Invariants in algebraic geometry

First idea: work over $\mathbb R$ or $\mathbb C$ and use topological invariants of the associated manifold.

- Problem: (Over C) There can be many different algebraic varieties with the same underlying topological space (e.g., all smooth cubic curves in P² are topologically tori)
- Problem: The invariants, e.g., homology or fundamental group, of an algebraic variety are restricted and we do not know which ones arise...

Invariants in algebraic geometry

First idea: work over \mathbb{R} or \mathbb{C} and use topological invariants of the associated manifold.

- Problem: (Over C) There can be many different algebraic varieties with the same underlying topological space (e.g., all smooth cubic curves in P² are topologically tori)
- Problem: The invariants, e.g., homology or fundamental group, of an algebraic variety are restricted and we do not know which ones arise...
- Problem: (Over \mathbb{R}) Might be the empty manifold, e.g., $x^2 + y^2 = -1$.

Invariants in algebraic geometry

First idea: work over $\mathbb R$ or $\mathbb C$ and use topological invariants of the associated manifold.

- Problem: (Over C) There can be many different algebraic varieties with the same underlying topological space (e.g., all smooth cubic curves in P² are topologically tori)
- Problem: The invariants, e.g., homology or fundamental group, of an algebraic variety are restricted and we do not know which ones arise...
- Problem: (Over ℝ) Might be the empty manifold, e.g.,
 x² + y² = −1. More generally, we lose arithmetic information about solutions over the ground field.

Invariants in algebraic geometry

First idea: work over $\mathbb R$ or $\mathbb C$ and use topological invariants of the associated manifold.

- Problem: (Over C) There can be many different algebraic varieties with the same underlying topological space (e.g., all smooth cubic curves in P² are topologically tori)
- Problem: The invariants, e.g., homology or fundamental group, of an algebraic variety are restricted and we do not know which ones arise...
- Problem: (Over ℝ) Might be the empty manifold, e.g.,
 x² + y² = −1. More generally, we lose arithmetic information about solutions over the ground field.
- Problem: Even if the field k can be embedded into C, the topological invariants can depend on the choice of embedding k ⇔ C (Serre).

Properties of good invariants

 Second idea: Try to imitate topological constructions in algebraic geometry.

Properties of good invariants

- Second idea: Try to imitate topological constructions in algebraic geometry.
- In topology, essentially all invariants one needs for the classification problem are homotopy invariants, and two properties are distinguished: "gluing" and "homotopy invariance."

Properties of good invariants

- Second idea: Try to imitate topological constructions in algebraic geometry.
- In topology, essentially all invariants one needs for the classification problem are homotopy invariants, and two properties are distinguished: "gluing" and "homotopy invariance."
 - Gluing means invariants can be computed locally and then glued together (e.g., Mayer-Vietoris sequence for homology or van Kampen theorem for fundamental group).

Properties of good invariants

- Second idea: Try to imitate topological constructions in algebraic geometry.
- In topology, essentially all invariants one needs for the classification problem are homotopy invariants, and two properties are distinguished: "gluing" and "homotopy invariance."
 - Gluing means invariants can be computed locally and then glued together (e.g., Mayer-Vietoris sequence for homology or van Kampen theorem for fundamental group).
 - Homotopy invariance means invariant takes the same value on M and $M \times I$.

\mathbb{A}^{1} -homotopy invariants

 An invariant is a functor from the category of algebraic varieties to some category of algebraic data (groups, rings, etc.)

- 4 同 ト 4 ヨ ト 4 ヨ ト

\mathbb{A}^1 -homotopy invariants

- An invariant is a functor from the category of algebraic varieties to some category of algebraic data (groups, rings, etc.)
- While *I* is not an algebraic variety, there is an algebro-geometric notion of homotopy invariance for an invariant *F* i.e., the map *F*(*X*) agrees with *F*(*X* × A¹).

- 4 同 ト 4 ヨ ト 4 ヨ ト

\mathbb{A}^1 -homotopy invariants

- An invariant is a functor from the category of algebraic varieties to some category of algebraic data (groups, rings, etc.)
- While *I* is not an algebraic variety, there is an algebro-geometric notion of homotopy invariance for an invariant *F* i.e., the map *F*(*X*) agrees with *F*(*X* × A¹).
- Gluing makes sense if we use Zariski open sets.

- 4 回 ト 4 ヨ ト 4 ヨ ト

\mathbb{A}^1 -homotopy invariants

- An invariant is a functor from the category of algebraic varieties to some category of algebraic data (groups, rings, etc.)
- While *I* is not an algebraic variety, there is an algebro-geometric notion of homotopy invariance for an invariant *F* i.e., the map *F*(*X*) agrees with *F*(*X* × A¹).
- Gluing makes sense if we use Zariski open sets.
- Even better than trying to define invariants, why not try to define a good "homotopy category"?

(D) (A) (A) (A) (A)

\mathbb{A}^1 -homotopy theory

• Start with Sm_k (smooth algebraic varieties).

▲ □ ► ▲ □ ►

-

\mathbb{A}^1 -homotopy theory

- Start with Sm_k (smooth algebraic varieties).
- Enlarge to a category Spck of spaces where one can form quotients of varieties, or increasing unions of such things (+ some other categorical properties)

\mathbb{A}^1 -homotopy theory

- Start with Sm_k (smooth algebraic varieties).
- Enlarge to a category Spck of spaces where one can form quotients of varieties, or increasing unions of such things (+ some other categorical properties)
- Force Mayer-Vietoris "gluing" and A¹-homotopy invariance by localizing the category of spaces by formally inverting an appropriate class of morphisms. Very roughly speaking: invert homotopies parameterized by the affine line.

\mathbb{A}^1 -homotopy theory

- Start with Sm_k (smooth algebraic varieties).
- Enlarge to a category Spck of spaces where one can form quotients of varieties, or increasing unions of such things (+ some other categorical properties)
- Force Mayer-Vietoris "gluing" and A¹-homotopy invariance by localizing the category of spaces by formally inverting an appropriate class of morphisms. Very roughly speaking: invert homotopies parameterized by the affine line.
- The resulting A¹-homotopy category was first constructed by F. Morel and V. Voevodsky.

소리가 소문가 소문가 소문가

\mathbb{A}^1 -homotopy theory

- Start with Sm_k (smooth algebraic varieties).
- Enlarge to a category Spck of spaces where one can form quotients of varieties, or increasing unions of such things (+ some other categorical properties)
- Force Mayer-Vietoris "gluing" and A¹-homotopy invariance by localizing the category of spaces by formally inverting an appropriate class of morphisms. Very roughly speaking: invert homotopies parameterized by the affine line.
- The resulting A¹-homotopy category was first constructed by F. Morel and V. Voevodsky.
- Show this gives a good theory (e.g., recovers old invariants, proves old conjectures).

・ロト ・回ト ・ヨト ・ヨト

Applications

 Most famously, it was a tool in Voevodsky's proof of the Milnor conjecture (which implies a classical conjecture due to Milnor regarding classification of quadratic forms over a field)

Applications

- Most famously, it was a tool in Voevodsky's proof of the Milnor conjecture (which implies a classical conjecture due to Milnor regarding classification of quadratic forms over a field)
- More recently, used by Morel to make progress toward a longstanding question in the cohomology of certain discrete groups (Friedlander's generalized isomorphism conjecture)

Applications

- Most famously, it was a tool in Voevodsky's proof of the Milnor conjecture (which implies a classical conjecture due to Milnor regarding classification of quadratic forms over a field)
- More recently, used by Morel to make progress toward a longstanding question in the cohomology of certain discrete groups (Friedlander's generalized isomorphism conjecture)
- Algebraic K-theory appears naturally in this category, in the same fashion that topological K-theory appears in topology.

Applications

- Most famously, it was a tool in Voevodsky's proof of the Milnor conjecture (which implies a classical conjecture due to Milnor regarding classification of quadratic forms over a field)
- More recently, used by Morel to make progress toward a longstanding question in the cohomology of certain discrete groups (Friedlander's generalized isomorphism conjecture)
- Algebraic K-theory appears naturally in this category, in the same fashion that topological K-theory appears in topology.
- Detects much arithmetic information, including information regarding rational points.

New constructions

 Isomorphisms in the A¹-homotopy category will be called A¹-weak equivalences.

- 4 回 ト 4 ヨ ト 4 ヨ ト

New constructions

- Isomorphisms in the A¹-homotopy category will be called A¹-weak equivalences.
- Simplicial sphere $\mathbb{A}^1/\{0,1\}$ (think $I/\partial I$).

New constructions

- Isomorphisms in the A¹-homotopy category will be called A¹-weak equivalences.
- Simplicial sphere $\mathbb{A}^1/\{0,1\}$ (think $I/\partial I$).
- Tate sphere: \mathbb{G}_m , e.g., $\mathbb{G}_m(\mathbb{C}) = \mathbb{C}^*$ (pointed by 1)

New constructions

- Isomorphisms in the A¹-homotopy category will be called A¹-weak equivalences.
- Simplicial sphere $\mathbb{A}^1/\{0,1\}$ (think $I/\partial I$).
- Tate sphere: \mathbb{G}_m , e.g., $\mathbb{G}_m(\mathbb{C}) = \mathbb{C}^*$ (pointed by 1)
- We can form wedge sums of pointed spaces (one point unions)

Conventions, definitions and basic examples Invariants and classification in topology The Å¹-homotopy category Geometric aspects of Å¹-homotopy theory

New constructions

- Isomorphisms in the A¹-homotopy category will be called A¹-weak equivalences.
- Simplicial sphere $\mathbb{A}^1/\{0,1\}$ (think $I/\partial I$).
- Tate sphere: \mathbb{G}_m , e.g., $\mathbb{G}_m(\mathbb{C}) = \mathbb{C}^*$ (pointed by 1)
- We can form wedge sums of pointed spaces (one point unions)
- We can form smash products of pointed spaces (take Cartesian product and collapse one point union).

Conventions, definitions and basic examples Invariants and classification in topology The Å¹-homotopy category Geometric aspects of Å¹-homotopy theory

New constructions

- Isomorphisms in the A¹-homotopy category will be called A¹-weak equivalences.
- Simplicial sphere $\mathbb{A}^1/\{0,1\}$ (think $I/\partial I$).
- Tate sphere: \mathbb{G}_m , e.g., $\mathbb{G}_m(\mathbb{C}) = \mathbb{C}^*$ (pointed by 1)
- We can form wedge sums of pointed spaces (one point unions)
- We can form smash products of pointed spaces (take Cartesian product and collapse one point union).
- We define $S_s^i \wedge \mathbb{G}_m^{\wedge j}$, and call this a motivic sphere.

New invariants

We define connected components: π₀^{A¹}(X) = [Spec k, X]_{A¹} (homotopy classes computed in new category)

- 4 同 2 4 日 2 4 日 2
New invariants

- We define connected components: π₀^{A¹}(X) = [Spec k, X]_{A¹} (homotopy classes computed in new category)
- We define homotopy groups of a space: $\pi_i^{\mathbb{A}^1}(X, x) = [S_s^i, (X, x)]_{\mathbb{A}^1}.$

New invariants

- We define connected components: π₀^{A¹}(X) = [Spec k, X]_{A¹} (homotopy classes computed in new category)
- We define homotopy groups of a space: $\pi_i^{\mathbb{A}^1}(X, x) = [S_s^i, (X, x)]_{\mathbb{A}^1}.$
- Can also define homology H^{A¹}_i(X), though definition is more involved (again, more techniques for computation than homotopy).

New invariants

- We define connected components: π₀^{A¹}(X) = [Spec k, X]_{A¹} (homotopy classes computed in new category)
- We define homotopy groups of a space: $\pi_i^{\mathbb{A}^1}(X, x) = [S_s^i, (X, x)]_{\mathbb{A}^1}.$
- Can also define homology H^{A¹}_i(X), though definition is more involved (again, more techniques for computation than homotopy).
- We have many of the same computational tools

Geometric flexibility

 Contractible manifolds provide one measure of the difference between homotopy theory and homeomorphism.

(4月) (4日) (4日)

Geometric flexibility

 Contractible manifolds provide one measure of the difference between homotopy theory and homeomorphism.

Theorem (Whitehead '34, Mazur '61, McMillan '62, Curtis-Kwun '65, Glaser '67)

There exist uncountably many open contractible manifolds M^n of every dimension $n \ge 3$.

- A 同 ト - A 三 ト - A 三 ト

Geometric flexibility

 Contractible manifolds provide one measure of the difference between homotopy theory and homeomorphism.

Theorem (Whitehead '34, Mazur '61, McMillan '62, Curtis-Kwun '65, Glaser '67)

There exist uncountably many open contractible manifolds M^n of every dimension $n \ge 3$.

■ The space Aⁿ is contractible in A¹-homotopy theory, i.e., A¹-weakly equivalent to a point.

Geometric flexibility

 Contractible manifolds provide one measure of the difference between homotopy theory and homeomorphism.

Theorem (Whitehead '34, Mazur '61, McMillan '62, Curtis-Kwun '65, Glaser '67)

There exist uncountably many open contractible manifolds M^n of every dimension $n \ge 3$.

■ The space Aⁿ is contractible in A¹-homotopy theory, i.e., A¹-weakly equivalent to a point.

Are there other (non-isomorphic) spaces like this?

\mathbb{A}^1 -contractible varieties

Theorem (A., Doran '07)

There exist arbitrary dimensional families of (smooth) \mathbb{A}^1 -contractible smooth varieties (over any field) of dimension ≥ 6 . Infinitely many in each dimension ≥ 4 .

- 4 同 6 4 日 6 4 日 6

\mathbb{A}^1 -contractible varieties

Theorem (A., Doran '07)

There exist arbitrary dimensional families of (smooth) \mathbb{A}^1 -contractible smooth varieties (over any field) of dimension ≥ 6 . Infinitely many in each dimension ≥ 4 .

Example

Take the variety Q_4 defined by the equation $x_1x_3 + x_2x_4 = x_5(x_5 + 1)$ and remove the locus of points where $x_1 = x_2 = 0, x_5 = -1$; this is \mathbb{A}^1 -contractible.

\mathbb{A}^1 -contractible varieties

Theorem (A., Doran '07)

There exist arbitrary dimensional families of (smooth) \mathbb{A}^1 -contractible smooth varieties (over any field) of dimension ≥ 6 . Infinitely many in each dimension ≥ 4 .

Example

Take the variety Q_4 defined by the equation $x_1x_3 + x_2x_4 = x_5(x_5 + 1)$ and remove the locus of points where $x_1 = x_2 = 0, x_5 = -1$; this is \mathbb{A}^1 -contractible.

Idea of proof.

Take \mathbb{A}^n , equip it with a translation action of \mathbb{G}_a (additive group of the affine line) and construct a quotient.

\mathbb{A}^1 -connectedness

 A¹-connected components behave like path connected components in topology:

\mathbb{A}^1 -connectedness

 A¹-connected components behave like path connected components in topology:

Theorem (A., Morel, '09)

If X is a smooth proper variety over a field k, then $\pi_0^{\mathbb{A}^1}(X) = X(k) / \sim_{\mathbb{A}^1}$ where $\sim_{\mathbb{A}^1}$ is the equivalence relation on k-points generated by connecting points by the images of a map from \mathbb{A}^1 .

\mathbb{A}^1 -connectedness

 A¹-connected components behave like path connected components in topology:

Theorem (A., Morel, '09)

If X is a smooth proper variety over a field k, then $\pi_0^{\mathbb{A}^1}(X) = X(k) / \sim_{\mathbb{A}^1}$ where $\sim_{\mathbb{A}^1}$ is the equivalence relation on k-points generated by connecting points by the images of a map from \mathbb{A}^1 .

 This theorem provides a homotopical characterization of separably rationally connected varieties.

Rational points can be detected by homological means

• There is a "degree" map $H_0^{\mathbb{A}^1}(X,\mathbb{Q}) \to \mathbb{Q}$.

Rational points can be detected by homological means

• There is a "degree" map $H_0^{\mathbb{A}^1}(X,\mathbb{Q}) \to \mathbb{Q}$.

Theorem (A., Haesemeyer '11)

A smooth proper variety X over a field k has a k-rational point if and only if the "degree" map is surjective.

▲ □ ► ▲ □ ►

Rational points can be detected by homological means

• There is a "degree" map $H_0^{\mathbb{A}^1}(X,\mathbb{Q}) \to \mathbb{Q}$.

Theorem (A., Haesemeyer '11)

A smooth proper variety X over a field k has a k-rational point if and only if the "degree" map is surjective.

New obstructions to existence of rational points?

Rational points can be detected by homological means

• There is a "degree" map $H_0^{\mathbb{A}^1}(X,\mathbb{Q}) \to \mathbb{Q}$.

Theorem (A., Haesemeyer '11)

A smooth proper variety X over a field k has a k-rational point if and only if the "degree" map is surjective.

- New obstructions to existence of rational points?
- More generally, the zeroth homology controls a number of important invariants, e.g., the Brauer group.

Classification in dimension 1

Theorem

The only \mathbb{A}^1 -connected smooth proper algebraic curve (up to isomorphism) is \mathbb{P}^1 .

Classification in dimension 1

Theorem

The only \mathbb{A}^1 -connected smooth proper algebraic curve (up to isomorphism) is \mathbb{P}^1 .

Theorem (Morel '06)

The group $\pi_1^{\mathbb{A}^1}(\mathbb{P}^1) = \pi_1^{\mathbb{A}^1}(\S_s^1 \wedge \mathbb{G}_m)$ is an explicitly computable non-abelian group (the free group on 1 Tate generator).

Classification in dimension 1

Theorem

The only \mathbb{A}^1 -connected smooth proper algebraic curve (up to isomorphism) is \mathbb{P}^1 .

Theorem (Morel '06)

The group $\pi_1^{\mathbb{A}^1}(\mathbb{P}^1) = \pi_1^{\mathbb{A}^1}(\S_s^1 \wedge \mathbb{G}_m)$ is an explicitly computable non-abelian group (the free group on 1 Tate generator).

■ The elements of π₁^{A1}(P¹) admit an interpretation in terms of the theory of quadratic forms.

Classification in dimension 1

Theorem

The only \mathbb{A}^1 -connected smooth proper algebraic curve (up to isomorphism) is \mathbb{P}^1 .

Theorem (Morel '06)

The group $\pi_1^{\mathbb{A}^1}(\mathbb{P}^1) = \pi_1^{\mathbb{A}^1}(\S_s^1 \wedge \mathbb{G}_m)$ is an explicitly computable non-abelian group (the free group on 1 Tate generator).

- The elements of π₁^{A1}(P¹) admit an interpretation in terms of the theory of quadratic forms.
- We do not have a "geometric" interpretation of elements of elements of the A¹-fundamental group in general, but they are large.

Classification in dimension 2

Theorem (A., Morel '09)

Suppose k is an algebraically closed field. Every \mathbb{A}^1 -connected smooth proper algebraic surface is \mathbb{A}^1 -weakly equivalent to either $\mathbb{P}^1 \times \mathbb{P}^1$ or the blow-up of \mathbb{P}^2 at a fixed (possibly empty) finite set of distinct points.

Classification in dimension 2

Theorem (A., Morel '09)

Suppose k is an algebraically closed field. Every \mathbb{A}^1 -connected smooth proper algebraic surface is \mathbb{A}^1 -weakly equivalent to either $\mathbb{P}^1 \times \mathbb{P}^1$ or the blow-up of \mathbb{P}^2 at a fixed (possibly empty) finite set of distinct points.

Isomorphism and A¹-homotopy classifications do not coincide: while there are families of non-isomorphic A¹-connected varieties of dimension 2, there set of A¹-homotopy types is discretely parameterized

Classification in dimension 2

Theorem (A., Morel '09)

Suppose k is an algebraically closed field. Every \mathbb{A}^1 -connected smooth proper algebraic surface is \mathbb{A}^1 -weakly equivalent to either $\mathbb{P}^1 \times \mathbb{P}^1$ or the blow-up of \mathbb{P}^2 at a fixed (possibly empty) finite set of distinct points.

- Isomorphism and A¹-homotopy classifications do not coincide: while there are families of non-isomorphic A¹-connected varieties of dimension 2, there set of A¹-homotopy types is discretely parameterized
- The A¹-fundamental group distinguishes A¹-homotopy types of A¹-connected surfaces; in fact, X \ * is A¹-weakly equivalent to a wedge of copies of P¹.

コト イポト イヨト イヨト

Classification in dimension \geq 3

Theorem (A. '11)

In every dimension $d \ge 3$, there exist \mathbb{A}^1 -connected smooth proper varieties X and X' such that the all \mathbb{A}^1 -homotopy groups of X and X' are abstractly isomorphic, yet which are not \mathbb{A}^1 -weakly equivalent

Classification in dimension \geq 3

Theorem (A. '11)

In every dimension $d \ge 3$, there exist \mathbb{A}^1 -connected smooth proper varieties X and X' such that the all \mathbb{A}^1 -homotopy groups of X and X' are abstractly isomorphic, yet which are not \mathbb{A}^1 -weakly equivalent

■ The A¹-connected varieties of dimension ≥ 3 can fail to be "cellular"

Classification in dimension \geq 3

Theorem (A. '11)

In every dimension $d \ge 3$, there exist \mathbb{A}^1 -connected smooth proper varieties X and X' such that the all \mathbb{A}^1 -homotopy groups of X and X' are abstractly isomorphic, yet which are not \mathbb{A}^1 -weakly equivalent

- The A¹-connected varieties of dimension ≥ 3 can fail to be "cellular"
- We do not know whether A¹-homotopy classification is impossible in higher dimensions (though we strongly suspect this is true).

イロン イヨン イヨン イヨン

A surgical approach to classification

In dimensions > 4, one attempts to identify the diffeomorphism classes of manifolds having a fixed homotopy type; this was first accomplished for spheres by Kervaire and Milnor and for certain highly connected manifolds by Wall.

- 4 回 ト 4 ヨ ト 4 ヨ ト

A surgical approach to classification

- In dimensions > 4, one attempts to identify the diffeomorphism classes of manifolds having a fixed homotopy type; this was first accomplished for spheres by Kervaire and Milnor and for certain highly connected manifolds by Wall.
- However, smooth proper A¹-connected varieties always have non-trivial A¹-fundamental group.

A surgical approach to classification

- In dimensions > 4, one attempts to identify the diffeomorphism classes of manifolds having a fixed homotopy type; this was first accomplished for spheres by Kervaire and Milnor and for certain highly connected manifolds by Wall.
- However, smooth proper A¹-connected varieties always have non-trivial A¹-fundamental group.
- Many other invariants of surgery theory can be defined, but we do not know if they have reasonable geometric interpretations.

Thank you!

See http://www-bcf.usc.edu/~asok for more information

・ 同・ ・ ヨ・