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Definitions

An n-dimensional manifold M

is constructed by gluing
locally looks an open subset of Rn

global conditions, i.e., Hausdorff (separation), and
paracompactness (finiteness)
considered up to appropriate notion of isomorphism
(diffeomorphism, homeomorphism)

The term open manifold means non-compact manifold
without boundary.

The term closed manifold means compact manifold without
boundary.

We’ll write I for the unit interval [0, 1].
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More definitions

An algebraic variety X over a field k

is constructed by gluing
locally simultaneous vanishing locus of finitely many
polynomials with coefficients in k.
global conditions (separation and finiteness).
Zariski topology
considered up to isomorphism (locally polynomial with
polynomial inverse)

If K/k is an extension, we’ll write X (K ) for the set of
K -valued solutions to the (local) equations defining X .
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Manifolds vs. varieties

An - affine space over k ;

Pn - projective space over k

Depends on the field in question, e.g., consider x2 + y2 = −1
and x2 + y2 = 1 over R, and over C.

We consider solutions over field extensions that aren’t
necessarily finite, e.g., R(t) (think of a parameterized family
of solutions).

If k = R or C, the set of real or complex solutions is a
manifold.

If k = Q, or a finite field, then the set of solutions looks like a
discrete set of points.
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Invariants

A homotopy between two continuous maps f , g : M −→ M ′ is
a continuous map H : M × I −→ M ′ such that H(x , 0) = f
and H(x , 1) = g .
(Think: continuous deformation)

A cts. map f : M −→ M ′ is a homotopy equivalence if there
exists cts. g : M ′ −→ M s.t. g ◦ f ∼ IdM and f ◦ g ∼ IdM′ .

The homotopy category is the category whose objects are
(nice) topological spaces and whose morphisms are homotopy
classes of continuous maps.
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Basic homotopy invariants

A functor from the category of manifolds to some category of
algebraic data (groups, rings, etc.)

Set of path connected components π0(M): maps ∗ → M up
to homotopy equivalence.

Homotopy groups πi (M, ∗) (i ≥ 1) are cts. maps Sn → M
(preserving a chosen base-point) up to homotopy. (Easy to
define, hard to compute)

Homology groups Hi (M,Z), start w/ free abelian group on
the cts. maps ∆n → M, define boundary operator, take cycles
modulo boundaries.. (Harder to define, easier to compute)
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Classification Part I

Basic problem: classify manifolds up to homeomorphism,
diffeomorphism or homotopy equivalence

In (very) low dimensions classification is possible using only
invariants (in fact π1 is enough):

Dimension 1. Only connected closed manifold is S1.
Dimension 2. Connected closed manifolds are either S2,
connected sums of S1 × S1, connected sums of RP2.
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Classification Part II

Dimension 3. Diffeomorphism classification is in principle
possible but differs from homotopy classification

lens spaces provide homotopy equivalent non-diffeomorphic
manifolds.

Dimensions ≥ 4. Homotopy classification is not possible:
there are “too many” invariants

Any finitely presented group can appear as the fundamental
group of a manifold of dimension ≥ 4.

Dimensions ≥ 5. Better problem: classify all manifolds having
a fixed homotopy type.
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Invariants in algebraic geometry

First idea: work over R or C and use topological invariants of the
associated manifold.

Problem: (Over C) There can be many different algebraic
varieties with the same underlying topological space (e.g., all
smooth cubic curves in P2 are topologically tori)

Problem: The invariants, e.g., homology or fundamental
group, of an algebraic variety are restricted and we do not
know which ones arise...

Problem: (Over R) Might be the empty manifold, e.g.,
x2 + y2 = −1. More generally, we lose arithmetic information
about solutions over the ground field.

Problem: Even if the field k can be embedded into C, the
topological invariants can depend on the choice of embedding
k ↪→ C (Serre).
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Properties of good invariants

Second idea: Try to imitate topological constructions in
algebraic geometry.

In topology, essentially all invariants one needs for the
classification problem are homotopy invariants, and two
properties are distinguished: “gluing” and “homotopy
invariance.”

Gluing means invariants can be computed locally and then
glued together (e.g., Mayer-Vietoris sequence for homology or
van Kampen theorem for fundamental group).
Homotopy invariance means invariant takes the same value on
M and M × I .
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A1-homotopy invariants

An invariant is a functor from the category of algebraic
varieties to some category of algebraic data (groups, rings,
etc.)

While I is not an algebraic variety, there is an
algebro-geometric notion of homotopy invariance for an
invariant F i.e., the map F(X ) agrees with F(X × A1).

Gluing makes sense if we use Zariski open sets.

Even better than trying to define invariants, why not try to
define a good “homotopy category”?
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A1-homotopy theory

Start with Smk (smooth algebraic varieties).

Enlarge to a category Spck of spaces where one can form
quotients of varieties, or increasing unions of such things (+
some other categorical properties)

Force Mayer-Vietoris “gluing” and A1-homotopy invariance by
localizing the category of spaces by formally inverting an
appropriate class of morphisms. Very roughly speaking: invert
homotopies parameterized by the affine line.

The resulting A1-homotopy category was first constructed by
F. Morel and V. Voevodsky.

Show this gives a good theory (e.g., recovers old invariants,
proves old conjectures).
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Applications

Most famously, it was a tool in Voevodsky’s proof of the
Milnor conjecture (which implies a classical conjecture due to
Milnor regarding classification of quadratic forms over a field)

More recently, used by Morel to make progress toward a
longstanding question in the cohomology of certain discrete
groups (Friedlander’s generalized isomorphism conjecture)

Algebraic K-theory appears naturally in this category, in the
same fashion that topological K-theory appears in topology.

Detects much arithmetic information, including information
regarding rational points.
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New constructions

Isomorphisms in the A1-homotopy category will be called
A1-weak equivalences.

Simplicial sphere A1/{0, 1} (think I/∂I ).

Tate sphere: Gm, e.g., Gm(C) = C∗ (pointed by 1)

We can form wedge sums of pointed spaces (one point unions)

We can form smash products of pointed spaces (take
Cartesian product and collapse one point union).

We define S i
s ∧G∧jm , and call this a motivic sphere.
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New invariants

We define connected components: πA
1

0 (X ) = [Spec k ,X ]A1

(homotopy classes computed in new category)

We define homotopy groups of a space:
πA

1

i (X , x) = [S i
s , (X , x)]A1 .

Can also define homology HA1

i (X ), though definition is more
involved (again, more techniques for computation than
homotopy).

We have many of the same computational tools

Aravind Asok (USC) Connectedness in the homotopy theory of algebraic varieties



Conventions, definitions and basic examples
Invariants and classification in topology

The A1-homotopy category
Geometric aspects of A1-homotopy theory

New invariants

We define connected components: πA
1

0 (X ) = [Spec k ,X ]A1

(homotopy classes computed in new category)

We define homotopy groups of a space:
πA

1

i (X , x) = [S i
s , (X , x)]A1 .

Can also define homology HA1

i (X ), though definition is more
involved (again, more techniques for computation than
homotopy).

We have many of the same computational tools

Aravind Asok (USC) Connectedness in the homotopy theory of algebraic varieties



Conventions, definitions and basic examples
Invariants and classification in topology

The A1-homotopy category
Geometric aspects of A1-homotopy theory

New invariants

We define connected components: πA
1

0 (X ) = [Spec k ,X ]A1

(homotopy classes computed in new category)

We define homotopy groups of a space:
πA

1

i (X , x) = [S i
s , (X , x)]A1 .

Can also define homology HA1

i (X ), though definition is more
involved (again, more techniques for computation than
homotopy).

We have many of the same computational tools

Aravind Asok (USC) Connectedness in the homotopy theory of algebraic varieties



Conventions, definitions and basic examples
Invariants and classification in topology

The A1-homotopy category
Geometric aspects of A1-homotopy theory

New invariants

We define connected components: πA
1

0 (X ) = [Spec k ,X ]A1

(homotopy classes computed in new category)

We define homotopy groups of a space:
πA

1

i (X , x) = [S i
s , (X , x)]A1 .

Can also define homology HA1

i (X ), though definition is more
involved (again, more techniques for computation than
homotopy).

We have many of the same computational tools

Aravind Asok (USC) Connectedness in the homotopy theory of algebraic varieties



Conventions, definitions and basic examples
Invariants and classification in topology

The A1-homotopy category
Geometric aspects of A1-homotopy theory

Geometric flexibility

Contractible manifolds provide one measure of the difference
between homotopy theory and homeomorphism.

Theorem (Whitehead ’34, Mazur ’61, McMillan ’62, Curtis-Kwun
’65, Glaser ’67)

There exist uncountably many open contractible manifolds Mn of
every dimension n ≥ 3.

The space An is contractible in A1-homotopy theory, i.e.,
A1-weakly equivalent to a point.

Are there other (non-isomorphic) spaces like this?

Aravind Asok (USC) Connectedness in the homotopy theory of algebraic varieties
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A1-contractible varieties

Theorem (A., Doran ’07)

There exist arbitrary dimensional families of (smooth)
A1-contractible smooth varieties (over any field) of dimension ≥ 6.
Infinitely many in each dimension ≥ 4.

Example

Take the variety Q4 defined by the equation
x1x3 + x2x4 = x5(x5 + 1) and remove the locus of points where
x1 = x2 = 0, x5 = −1; this is A1-contractible.

Idea of proof.

Take An, equip it with a translation action of Ga (additive group
of the affine line) and construct a quotient.
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A1-connectedness

A1-connected components behave like path connected
components in topology:

Theorem (A., Morel, ’09)

If X is a smooth proper variety over a field k, then
πA

1

0 (X ) = X (k)/ ∼A1 where ∼A1 is the equivalence relation on
k-points generated by connecting points by the images of a map
from A1.

This theorem provides a homotopical characterization of
separably rationally connected varieties.

Aravind Asok (USC) Connectedness in the homotopy theory of algebraic varieties



Conventions, definitions and basic examples
Invariants and classification in topology

The A1-homotopy category
Geometric aspects of A1-homotopy theory

A1-connectedness

A1-connected components behave like path connected
components in topology:

Theorem (A., Morel, ’09)

If X is a smooth proper variety over a field k, then
πA

1

0 (X ) = X (k)/ ∼A1 where ∼A1 is the equivalence relation on
k-points generated by connecting points by the images of a map
from A1.

This theorem provides a homotopical characterization of
separably rationally connected varieties.

Aravind Asok (USC) Connectedness in the homotopy theory of algebraic varieties



Conventions, definitions and basic examples
Invariants and classification in topology

The A1-homotopy category
Geometric aspects of A1-homotopy theory

A1-connectedness

A1-connected components behave like path connected
components in topology:

Theorem (A., Morel, ’09)

If X is a smooth proper variety over a field k, then
πA

1

0 (X ) = X (k)/ ∼A1 where ∼A1 is the equivalence relation on
k-points generated by connecting points by the images of a map
from A1.

This theorem provides a homotopical characterization of
separably rationally connected varieties.

Aravind Asok (USC) Connectedness in the homotopy theory of algebraic varieties



Conventions, definitions and basic examples
Invariants and classification in topology

The A1-homotopy category
Geometric aspects of A1-homotopy theory

Rational points can be detected by homological means

There is a “degree” map HA1

0 (X ,Q)→ Q.

Theorem (A., Haesemeyer ’11)

A smooth proper variety X over a field k has a k-rational point if
and only if the “degree” map is surjective.

New obstructions to existence of rational points?

More generally, the zeroth homology controls a number of
important invariants, e.g., the Brauer group.
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Classification in dimension 1

Theorem

The only A1-connected smooth proper algebraic curve (up to
isomorphism) is P1.

Theorem (Morel ’06)

The group πA
1

1 (P1) = πA
1

1 (§1s ∧Gm) is an explicitly computable
non-abelian group (the free group on 1 Tate generator).

The elements of πA
1

1 (P1) admit an interpretation in terms of
the theory of quadratic forms.

We do not have a “geometric” interpretation of elements of
elements of the A1-fundamental group in general, but they are
large.
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Classification in dimension 2

Theorem (A., Morel ’09)

Suppose k is an algebraically closed field. Every A1-connected
smooth proper algebraic surface is A1-weakly equivalent to either
P1 × P1 or the blow-up of P2 at a fixed (possibly empty) finite set
of distinct points.

Isomorphism and A1-homotopy classifications do not coincide:
while there are families of non-isomorphic A1-connected
varieties of dimension 2, there set of A1-homotopy types is
discretely parameterized

The A1-fundamental group distinguishes A1-homotopy types
of A1-connected surfaces; in fact, X \ ∗ is A1-weakly
equivalent to a wedge of copies of P1.
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Classification in dimension ≥ 3

Theorem (A. ’11)

In every dimension d ≥ 3, there exist A1-connected smooth proper
varieties X and X ′ such that the all A1-homotopy groups of X and
X ′ are abstractly isomorphic, yet which are not A1-weakly
equivalent

The A1-connected varieties of dimension ≥ 3 can fail to be
“cellular”

We do not know whether A1-homotopy classification is
impossible in higher dimensions (though we strongly suspect
this is true).

Aravind Asok (USC) Connectedness in the homotopy theory of algebraic varieties



Conventions, definitions and basic examples
Invariants and classification in topology

The A1-homotopy category
Geometric aspects of A1-homotopy theory

Classification in dimension ≥ 3

Theorem (A. ’11)

In every dimension d ≥ 3, there exist A1-connected smooth proper
varieties X and X ′ such that the all A1-homotopy groups of X and
X ′ are abstractly isomorphic, yet which are not A1-weakly
equivalent

The A1-connected varieties of dimension ≥ 3 can fail to be
“cellular”

We do not know whether A1-homotopy classification is
impossible in higher dimensions (though we strongly suspect
this is true).

Aravind Asok (USC) Connectedness in the homotopy theory of algebraic varieties



Conventions, definitions and basic examples
Invariants and classification in topology

The A1-homotopy category
Geometric aspects of A1-homotopy theory

Classification in dimension ≥ 3

Theorem (A. ’11)

In every dimension d ≥ 3, there exist A1-connected smooth proper
varieties X and X ′ such that the all A1-homotopy groups of X and
X ′ are abstractly isomorphic, yet which are not A1-weakly
equivalent

The A1-connected varieties of dimension ≥ 3 can fail to be
“cellular”

We do not know whether A1-homotopy classification is
impossible in higher dimensions (though we strongly suspect
this is true).

Aravind Asok (USC) Connectedness in the homotopy theory of algebraic varieties



Conventions, definitions and basic examples
Invariants and classification in topology

The A1-homotopy category
Geometric aspects of A1-homotopy theory

A surgical approach to classification

In dimensions > 4, one attempts to identify the
diffeomorphism classes of manifolds having a fixed homotopy
type; this was first accomplished for spheres by Kervaire and
Milnor and for certain highly connected manifolds by Wall.

However, smooth proper A1-connected varieties always have
non-trivial A1-fundamental group.

Many other invariants of surgery theory can be defined, but we
do not know if they have reasonable geometric interpretations.
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Thank you!

See http://www-bcf.usc.edu/~asok for more information
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