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Suppose k is a field, and X is a smooth variety over k. Let H(k) denote the A1-
homotopy category of smooth schemes over k [MV99]; abusing notation, we write X for
the isomorphism class of a smooth scheme in H(k). Let SH(k) denote the stable A1-
homotopy category of smooth schemes over k, i.e., the category of P1-spectra over k [Mor05].
The suspension spectrum Σ∞P1 Spec k+, denoted S0 for notational convenience, is called the
motivic sphere spectrum.

If U is another smooth variety, write [U,X]A1 for the set HomH(k)(U,X) and write
[U,X]st for the abelian group HomSH(k)(Σ∞P1U+,Σ∞P1X+). Define πA1

0 (X) to be the Nisnevich
sheaf on Smk associated with the presheaf U 7→ [U,X]A1 and πs

0(X) to be the Nisnevich
sheaf on Smk associated with the presheaf U 7→ [U,X]st. Each of these sheaves determines
“by restriction” a functor on the category of finitely generated separable extensions L/k.

Stable homotopy theory and rational points

If πA1

0 (X)(k) is non-empty, we say that X has a rational point up to unstable A1-homotopy.
It is known that if X has a rational point up to unstable A1-homotopy, then X has a rational
point [MV99]. Thus, existence of a rational point is an unstable A1-homotopy invariant.

Similarly, say that X has a rational point up to stable A1-homotopy if the canonical map
πs

0(X) → πs
0(S0) is a split epimorphism; a choice of a splitting will be called a rational point

up to stable A1-homotopy. Any rational point up to unstable A1-homotopy determines a
rational point up to stable A1-homotopy by taking iterated P1-suspensions. If X is smooth
and proper, there is a group homomorphism from πs

0(X)(k) to the group of 0-cycles of
degree 1; a priori it is not clear that this map is either surjective or injective.

Theorem 1. Assume k is a field having characteristic 0. If X is a smooth proper k-
variety, then X has a 0-cycle of degree 1 if and only if X has a rational point up to stable
A1-homotopy.

Sheaves of connected components

We deduce the above result from a description of the sheaf πs
0(X) for any smooth proper

variety. The description is motivated by foundational work of Morel describing the sheaf
πs

0(S0) in terms of the Grothendieck-Witt ring [Mor04]. There is a “Hurewicz” functor
from the stable A1-homotopy category to Voevodsky’s derived category of motives. The
analog of the stable π0 computed in Voevodsky’s derived category of motives is the 0-th
Suslin homology sheaf. For a smooth proper variety X, the sections of this sheaf over fields
coincide with the Chow group of 0-cycles on XL (cf. [Dég08, §3.4]).
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We use the theory of oriented Chow groups, or Chow-Witt groups, as invented by
J. Barge and F. Morel [BM00], and developed in detail by J. Fasel [Fas08, Fas07]. For
any n-dimensional smooth proper k-scheme X, one can define the oriented Chow group
C̃H0(X) by means of a certain “oriented Chow cohomology group” C̃H

n
(X,ωX) (see [Fas08,

Definition 10.2.17] for details). This latter group is defined by means of an explicit Gersten
resolution, and has functorial pushforwards for proper morphisms.

Theorem 2. If X is a smooth proper k-variety over a field k having characteristic 0, then
there is an isomorphism (natural with respect to X) between the functor L 7→ πs

0(X)(L) and
the functor L 7→ C̃H0(XL).

Sketch of proof of Theorem 2. One first reduces to the case where X is projective, and
deals with an associated “abelianized” problem using a version of A1-homology that has
been stabilized with respect to Gm. When X is projective, the idea of the proof is to use
Spanier-Whitehead duality: the Spanier-Whitehead dual of a smooth scheme X is the Thom
space of the negative tangent bundle (see, e.g., [Hu05, Theorem A.1] or [Rio05, Théorème
2.2]).

When X has trivial tangent bundle, one can prove the result by proving a P1-bundle
formula for the oriented Chow group of 0-cycles—this involves some facts about contractions
of the sheaf KMW

n as discussed at the end of [Mor06, §2.3]. In the general case, one
has to show that the twist arising from non-triviality of the negative tangent bundle only
appears through the canonical bundle ωX of X. Locally the tangent bundle is trivial, and
a careful patching argument (using the fact that any element of GLn is A1-homotopic to
its determinant) can be used to finish the proof; this involves an “unstable” construction of
the map inducing duality as given by Voevodsky in [Voe03].

Sketch of proof of Theorem 1. The “only if” direction is straightforward. For the “if” direc-
tion, it suffices to show that the “forgetful” morphism C̃H0(XL) → CH0(XL)—functorial
in L and X—is always a surjection. For any field F , the canonical map GW (F ) → Z given
by the rank homomorphism is always surjective. Each of these groups is computed by means
of a Gersten resolution. One then just uses the fact that X has Nisnevich cohomological
dimension n.

Remark 3. In fact, we prove a more precise result. The sheaf πs
0(X) is a strictly A1-invariant

sheaf of groups by [Mor05, Theorem 6.2.7] and therefore “unramified” in an appropriate
sense; one can then describe the sections of the sheaf πs

0(X) over a smooth scheme U in terms
of sections over k(U) together with information coming from discrete valuations associated
with codimension 1 points of U .
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