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Abstract

These notes are an extended transcript of two lectures given at the University of Ottawa
during the workshop “Group actions, generalized cohomology theories, and affine algebraic
geometry." The first lecture was a general introduction to A'-homotopy theory focusing
on motivating the choice of definitions in the construction, together with a definition of
Al-contractible spaces. The second lecture attempted to understand A'-connectedness in
greater detail, and to use this to understand better the relationship between A!-contractibility
and topological contractibility. I have taken the liberty of including some material in these
notes that I hoped to (but was unable) to discuss in the lectures. In particular, I have in-
cluded some problems which I felt might be interesting to different groups of participants.
Disclaimer: these notes were not carefully proofread; please e-mail me with any comments,
corrections or questions.
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1 Lecturel

We began by stating a slogan, loosely paraphrasing the first section of [MV99]:

there should be a homotopy theory for algebraic varieties over a base where the
affine line plays the role assigned to the unit interval in topology.
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2 1.1 Brief topological motivation

The path to motivate the construction of the A'-homotopy category that I have followed is loosely
based on the work of Dugger [Dug01]. The original constructions of the A'-homotopy category
rely on [Jar87] and are to be found in [MV99]. A general overview of Al-homotopy theory can
be found in [Voe98], and [Mor04] provides a more recent introductory text. Summaries of some
more recent developments can be found in [Mor06].

1.1 Brief topological motivation

The jumping off point for the discussion was the classical Brown-representability theorem in un-
stable homotopy theory. First, recall that the ordinary homotopy category, denoted here #, has
as objects “sufficiently nice" topological spaces Zop (including, for example, all CW complexes),
and morphisms given by homotopy classes of continuous maps between spaces.

We consider contravariant functors & on Zop that satisfy the following properties:

i) (Homotopy invariance axiom) If X is a topological space, and I = [0, 1] is the unit interval,
then the map & (X) — (X x I) is a bijection.

ii) (Mayer-Vietoris axiom) If X is a CW complex, and U and V are subcomplexes with inter-
section U NV, then we have a diagram of the form

FX)-FU)xFV)=FUNV),

and given u € & (U) and v € & (V), such that the images of # and v under the right hand
map coincide, then there is an element of % (X) whose image under the first map is the
pair (u, v).

iii) (Wedge axiom) The functor & takes sums to products.

The first condition on a functor & as above implies that the functor gives rise to a functor on the
homotopy category. The Brown representability theorem says that the second and third condi-
tions imply that this functor is of the form [, Y] for some CW complex Y.

Note: the category of CW complexes is not “categorically good" there are various construc-
tions one wants to perform in topology (quotients, loop spaces, mapping spaces, suspensions)
that do not stay in the category of CW complexes (they only stay in the category up to homotopy).

Remark 1.1.1. In general, “cohomology theories" satisfy more properties than just those men-
tioned. The second condition will eventually imply the “usual" Mayer-Vietoris property for co-
homology theories on a topological space.

Remark 1.1.2. If a “cohomology theory" is represented on CW complexes by a space Z, and the
cohomology theory is geometrically defined (e.g., topological K-theory with Z the infinite grass-
mannian), then the “representable" cohomology theory extended to all topological spaces need
not coincide with the geometric definition for spaces that are not CW complexes.

1.2 Homotopy functors in algebraic geometry

We would like to guess what properties the “homotopy category” will have based on the known
invariance properties of cohomology theories in algebraic geometry. To this end, we must think
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of some actual “cohomology theories." The examples we want to use are the theory of Chow
groups [Ful98] and (higher) algebraic K-theory [Qui73]. Defining these quickly seems insensi-
ble, so let me just pick a concrete example: the Picard group, which is an example of a Chow
(cohomology) group for sufficiently nice varieties.

It is known that the functor Pic(X) is not homotopy invariant on schemes with singularities
that are sufficiently bad [Tra70]. On the other hand, Quillen established a homotopy invariance
property for algebraic K-theory of regular schemes (this is one of the fundamental properties of
higher algebraic K-theory proven in [Qui73]). Thus, in order to speak of homotopy invariance,
we first restrict to considering the category Sm . of schemes that are separated, smooth and have
finite type over k (we use smooth schemes rather than regular schemes since smoothness is
more functorially well-behaved than regularity; if we assume k is perfect, then there is no need
to distinguish between the two notions). Our restriction to smooth schemes will be analogous to
the restriction to (finite) CW complexes performed above.

Definition 1.2.1. A (set-valued) contravariant functor % on Sm; is A!-homotopy invariantif the
morphism % (U) — % (U x A!) is a bijection.

The classical cohomology theories one studies (Bloch’s higher Chow groups [Blo86), [Blo94]
and algebraic K-theory) satisfy “localization." In the world of Chow groups, if X is a smooth
variety, and U < X is an open subvariety with closed complement Z (say equi-dimensional of
codimension d), there is an exact sequence of the form

cH*%27) — CH*(X) — CH* (U) — 0;

to extend this sequence further to the left, one needs to introduce Bloch higher Chow groups;
but I will not do this here. From this sequence one can formally deduce that Chow groups have
a Mayer-Vietoris property for Zariski open covers by two open sets. However, they actually have
a more refined Mayer-Vietoris property.

One often considers the étale topology in algebraic geometry, and one might ask whether
there is an appropriate Mayer-Vietoris sequence for étale covers. In this direction, consider the
following situation. Suppose given an open immersion j : U — X and an étale morphism ¢ : V —
X such that the pair (j, ¢) are jointly surjective and such that the induced map (p‘l (X\U) - X\U
is an isomorphism, diagrammatically this is a picture of the form:

UxxV2—sv .
o
j

We will refer to such diagrams as Nisnevich distinguished squares. One can show that X is the
colimitin the category of smooth schemes of the diagram U «— U xx V — V.

For the purposes of our discussion, it is useful to know that, by chasing diagrams, one can
show that the sequence

CH*(X)—» CH*"(U)yeCH*(V)— CH*(U xx V)

is exact: given an element (u, v) in CH* (U) @ CH* (V), if the restriction of (u, v) to CH* (U xx V)
is zero, then there is an element x in C H* (X) whose restriction to CH*(U)® CH* (V) is (u, v).
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Example 1.2.2. Suppose k is a field of characteristic unequal to 2. Consider the diagram where
X =Al U=A"{1}, V = A\ {0,~1}. Let j be the usual open immersion of A' \ {1} into A!, and
let ¢ be the étale map given by the composite A! \ {0,~1} — G, — G, — Al, where the map
G, — Gy, is z— z2. It is easily checked that this diagram provides a square as above.

This version of “covering” will inform our definition of Mayer-Vietoris in the sought-for ho-
motopy category. Roughly speaking, we want to consider the universal category where A'-homotopy
invariance and Mayer-Vietoris in the Nisnevich sense hold. In order to impose Mayer-Vietoris
universally, we go back to topology again. Suppose u: U — X with U = []; U; is an open cover
of a topological space X. We can form the simplicial topological space C(u) whose n-simplices
correspond to the n + 1-fold fiber product U xx --- xx U. Such a simplicial topological space
has a geometric realization, and the geometric realization is a topological space that is weakly
equivalent to X itself. In a sense, this fact is a “universal” form of the Mayer-Vietoris sequence.

In the algebro-geometric context, we will impose Mayer-Vietoris “universally" in two stages.
First, we want to enlarge our category of smooth schemes to a slightly larger category so that
many constructions necessary in homotopy theory can be performed. E.g., we would like to talk
about mapping spaces, quotients by subspaces, etc., and not all of these constructions can be
performed in the category of smooth schemes. More precisely, we would like to embed S in a
category that contains all small limits and colimits (i.e., is complete and cocomplete). There is a
universal procedure to do this, but we would like to perform this enlargement in a fashion that
respects certain colimits that already exist in smooth schemes (e.g., the Nisnevich distinguished
squares).

Definition 1.2.3. A Nisnevich sheaf of sets on Sm; is a contravariant functor % from the cate-
gory Sm to the category Sets such that given any Nisnevich distinguished square (as above) the
induced diagram

F(X) F(U)

I

FV)—=FUxxV)

is cartesian. We write SAv for the category of Nisnevich sheaves on S (morphisms are natural
transformations of functors).

Remark 1.2.4. Of course, Nisnevich sheaves are sheaves for a Grothendieck topology (the Nis-
nevich topology) on Smy. As a consequence, we will be able to speak of sheafification. A mor-
phism f: U — X is a Nisnevich cover if it is an étale cover and for every point x of X, there exists
a point u in U such that the induced map on residue fields « (1) — x (x) is an isomorphism.

If X is asmooth k-scheme, one can check that the contravariant representable functor Hom Sy (5 X)
is a Nisnevich sheaf in the sense just defined. The Yoneda embedding lemma says that the in-
duced functor Sm; — Shvy is fully-faithful. On the other hand, in order for the “universal"
Mayer-Vietoris, we would like to work with simplicial sheaves, and therefore we define Spc,
to be the category of simplicial Nisnevich sheaves on Sm;. To distinguish general spaces from
schemes, we will use calligraphic letters for spaces, and roman letters for schemes.
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The A'-homotopy category can be defined by means of a universal property. The A'-homotopy
category is the universal category constructed from Spc, in which the following two classes of
maps are formally inverted:

i) if u: U — X is a Nisnevich cover, then we consider the morphism C(u) — X, and
ii) if & is a space, then we consider the projection morphism & x A! — %,

Showing that such a category exists is difficult, but there are numerous constructions now (the
“universal" point-of-view espoused here is due to Dan Dugger; see [Dug01] for more details).

Notation 1.2.5. We write (k) for the category obtained from Spc, by formally inverting all

of the above classes of morphisms. An isomorphism in .#°(k) will be called an A'-weak equiva-
lence. To emphasize the analogy with topology, we write [Z',%/] 41 for the morphisms Hom z ) (¥, %);
we will read this as the set of A'-homotopy classes of maps between & and %

Just like in topology, there is a Brown representability theorem characterizing homotopy
functors in algebraic geometry. In addition to homotopy invariance, one wants functors that
turn Nisnevich distinguished squares into “homotopy" fiber products; for more details, see the
work of Jardine [Jarl1].

1.3 Basic constructions

There are a number of basic constructions that one imports from topology. First, a pointed k-
space is a pair (&, x) consisting of a space & together with a morphism Speck — %. We will
often denote Spec k simply by *. Using the fact that Spc, has all small limits and colimits, the
following definitions make sense. It is important to emphasize that these constructions are being
made in the category of spaces and NOT in the category of schemes. However, moving outside of
the category of spaces has a number of tangible benefits.

If (%, x) and (%, y) are pointed k-spaces, then the wedge sum & v % is the pushout (col-
imit) of the diagram & «— = Loy,

If (%, x) and (%, y) are pointed k-spaces, then the smash product Z A% is the quotient of
XxYIX VY.

e We write S! := A1/{0,1) (remember: we are not thinking of this as a scheme!).
» Weset Si:=S!A---AS! (i-times).

Having given a definition of sphere, we can define homotopy groups. Because our category
of spaces already consists of sheaves, it will be necessary for us to consider homotopy sheaves.

Definition 1.3.1. Given a space &, the sheaf of Al-connected components, denoted 71'8\1 (@xX),is
the Nisnevich sheaf on S associated with the presheaf U — [U, X151 (Where U € Sm1y).

It makes sense to talk about pointed A!-homotopy classes of maps between pointed spaces.
Using this observation, we can make the following definition.
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Definition 1.3.2. Given a pointed space (2, x), the i-th Al-homotopy sheaf, denoted Jl'/i\l (&, x),
is the Nisnevich sheaf on Smj associated with the presheaf U — [S. A Uy, (%, x)]a1. Here, we
write U, for U]]Spec k pointed by Spec k.

Remark 1.3.3. One can formally show that JtiAl (&, x) is a Nisnevich sheaf of groups, and JI'IAI (&, x)
is a Nisnevich sheaf of abelian groups for i > 1. In fact, results of Morel show that, just like in
topology, these sheaves of groups are “discrete” in an appropriate sense; see [Mor06] for an in-
troduction to these ideas and [Mor11] for details.

The following result, called the A'-Whitehead theorem for its formal similarity to the ordi-
nary Whitehead theorem for CW complexes, is a formal consequence of the definitions.

Proposition 1.3.4 ([MV99, §3 Proposition 2.14]). A morphism f:%¥ — % of Al-connected spaces
is an A' -weak equivalence if and only if for any choice of base-point x for &, setting y = f(x) the
induced morphism

Jl'?l (X,x)— ﬂ?l(@/,y)

is an isomorphism.

1.4 Examples of A'-weak equivalences

We now return to concrete geometry. By the very definitions, the morphism A! — Speck is an
Al-weak equivalence. Similarly, one shows that A” — Speck is an A!-weak equivalence. Com-
bining this with the “universal" Mayer-Vietoris property, one can produce the following general
example of an A!-weak equivalence.

Example 1.4.1. If f: X — Y is a Zariski locally trivial morphism of smooth schemes with fibers
isomorphic to A”, then f is an Al-weak equivalence. In particular, if ¢ : E — X is a (geometric)
vector bundle, then ¢ is an A'-weak equivalence.

We also make the following definition.
Definition 1.4.2. A space % is Al-contractible if the structure morphism & — Speck is an A!-
weak equivalence.

Combining the example above with the definition, we have the following.

Example 1.4.3. If X is a smooth scheme, and f : AV — X is a Zariski locally trivial morphism
with affine space fibers, then X is A!-contractible. In particular, if X is any smooth scheme that
is stably isomorphic to A", then X is A!-contractible.

For the purposes of the next lecture, we note that the Whitehead theorem shows that a space
Z is Al-contractible if and only if it is A'-connected and " (2, x) is trivial.

2 Lecture?2

2.1 Abriefreview of Lecture 1 and some complements

Last time, we introduced A'-homotopy theory. We fix a field k (no restrictions were imposed
on the characteristic of k), and we consider the category S of schemes that were separated,



7 2.2 Al-connectedness and geometry

smooth and had finite type over k. We enlarged this category to a category Spc, ; in other words,
we described a category Spc, together with a fully-faithful functor Smy — Spc, such that Spc,
had all small limits and colimits and such that the inclusion preserved the so-called Nisnevich
distinguished squares. In practice, Spc, can be taken either to be the category of Nisnevich
sheaves of topological spaces, or the category of Nisnevich sheaves of simplicial sets, but there
are other “reasonable” choices of the category of spaces.

The Morel-Voevodsky A!-homotopy category has as objects the objects of Spc ;» but the mor-
phisms in Spc,_are “Al-homotopy classes of maps;" providing a precise definition of the latter
required the theory of model categories, but we swept this under the rug.

Remark2.1.1. The main difficulty in computing the set of A'-homotopy classes of maps between
two spaces is analogous to a fundamental problem in homological algebra: one has to take some-
thing like an “injective resolution of %" (a fibrant replacement for the chosen model structure).
While we know that such “resolutions" exist, and we can even provide an explicit model, in prac-
tice the model is not sufficiently explicit that one can actually perform computations. Instead,
one usually finds a convenient work-around.

2.2 Al-connectedness and geometry

Last time, given a space &, we defined a sheaf JTOAI (&); this was the sheaf associated with the
presheaf U — [U, % ]a1.

Definition 2.2.1. Say & is A!-connected if the canonical morphism Jré\l (%) — Speck is an iso-
morphism (and A!-disconnected otherwise).

Any Al-contractible space is Al-connected, by the very definition, but it would be nice to
have a “geometric" definition. For this, we recall how connectedness is studied in topology: a
topological space is path connected if any two points can be connected by a map from the unit
interval. Replacing the unit interval by the affine line, we could define a notion of A!-path con-
nectedness. For flexibility, we will use a slightly more general definition.

Definition 2.2.2. If X is a smooth k-scheme, say that X is Al -chain connected if for every separa-
ble, finitely generated extension K/k, X (K) is non-empty, and for any pair x, y € X (K), there exist
an integer N and a sequence x = Xp, X1,..., Xy = ¥ € X(K) together with morphisms fi,..., fx :
A}( — X with the property that f;(0) = x;—; and f;(1) = x;; loosely speaking: any two points can
be connected by the images of a chain of maps from the affine line.

Remark 2.2.3. Note: K is not necessarily a finite extension, so this definition is non-trivial even
when k = C. Indeed, in that case, we ask, e.g., that C(t)-points, C(f1, 2)-points, etc. can all be
connected by the images of chains of affine lines. If k has characteristic 0, and X is a smooth
proper k-scheme, then stably k-rational varieties are A!-chain connected by this definition (one
way to see this is to check that the property is stable under blow-ups and to use weak factoriza-
tion, but it can also be seen directly with an application of Hironaka’s resolution theorem). On
the other hand, there are rationally connected varieties over C that do NOT satisfy this property
(this can be tested indirectly, e.g., by studying cohomological consequences of this definition).
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From the definitions given, it is not clear that either A!-connectedness implies A!-chain con-
nectedness or vice versa. In one direction, the problem is that A!-chain connectedness only im-
poses conditions over fields: while fields are examples of stalks in the Nisnevich topology, they
do not exhaust all examples of stalks.

Proposition 2.2.4 ([Mor04, Lemma 3.3.6] and [Mor05, Lemma 6.1.3]). If X is an A'-chain con-
nected smooth variety, then X is Al -connected.

Idea of proof. The proof uses the fact that we are working with the Nisnevich topology in a fairly
crucial way. To check triviality of all stalks, it suffices to show that Jté\1 (X)(S) is trivial for S a
henselian local scheme. Chain connectedness implies that the sections over the generic point
of S are trivial and also that the sections over the closed point are trivial. We can then try to
use a sandwiching argument to establish that sections over S are also trivial: we use the Thom
isomorphism theorem! O

Conversely, it is not clear that Al-connectedness implies Al-chain connectedness. However,
we prove the following result.

Theorem 2.2.5 ([AM11} Theorem 6.2.1]). If X is a smooth proper k-variety, and K|k is any sep-
arable finitely generated extension, then JIQI (X)(K) = X(K)/ ~. In particular, if X is A'-chain
connected, then X is Al -connected.

Remarks on the proof. The proof uses properness (via the valuative criterion) in an essential way.
. . 1 . .
Again, we sandwich Jté\ (X)(K) between two sets that are easier to describe. O

Proposition 2.2.6. IfU is an A -connected smooth variety and X is any smooth proper compact-
ification of U, then X is also A' -connected.

The basic problem with A!-connectedness for non-proper varieties U is that it is not clear
that a rational curve connecting two points can always be moved to a chain of affine lines lying
wholly in U. Nevertheless, these results give a fairly good handle on A!-connectedness, but to
finish the story it would be nice to answer the following question.

Question 2.2.7. Is it true that for an arbitrary smooth k-scheme X that A" -connectedness is equiv-
alent to A -chain connectedness?

2.3 Al-contractibility and topological contractibility

Recall from the last lecture that the basic example of an A!-contractible variety is provided by the
following fact: if there exists a Zariski locally trivial morphism f : AY — X with fibers isomorphic
to affine spaces, then X is A!-contractible. In particular, if X is a quotient of AN by a scheme-
theoretically free action of a (split) unipotent group, then X is A!-contractible. This point of view
is explored in great detail in [ADOQ7].

Remark 2.3.1. Here is another upshot of working in our category of spaces: we don’t actually
care whether the quotient exists as a scheme! Indeed, in the situation above, the algebraic space
quotient of AN by the free action of U exists by a result of Artin, but since U-torsors are Zariski
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locally trivial by vanishing of coherent cohomology, this “algebraic space" quotient admits a ra-
tional section and coincides with the categorical quotient of the U-action in our category of
spaces (repeat the definition of algebraic space with the Nisnevich topology to get a notion of
“Nisnevich algebraic spaces"). If fact, there exist examples of Nisnevich algebraic spaces of this
form that are not actually schemes, and likely this phenomenon is quite common.

Remark 2.3.2. We do not know whether all A!-contractible schemes arise in this fashion. For ex-
ample, the axioms of model categories allow one to conclude that any retract of an A'-contractible
space is itself A'-contractible. However, if X is a retract of affine space, it is by no means clear
that X is stably isomorphic to affine space.

Using the results established above, the following arithmetic/geometric result is established
in a “purely homotopic" way by means of the proposition we stated above.

Corollary 2.3.3. If X is an A' -contractible smooth variety, then X (K)/R is trivial for every finitely
generated separable K/ k. Thus, if k admits resolution of singularities, then any compactification
X of X is Al -connected and thus “nearly rational."

To get a better idea of the strength of the condition of A'-contractibility, it is useful to com-
pare our purely algebraic definition of contractibility with the classical notion of contractibility
of a topological space. To this end, suppose k is a field that can be embedded in C. The choice of
embedding gives rise to a functor from the category S to the category of complex manifolds:
take a smooth k-scheme X, extend scalars to C by means of the chosen embedding, take the re-
sulting set of complex points with its usual analytic topology. Morel and Voevodsky [MV99, §3.3]
show how to extend this functor to a functor

JO(k) — F

which we refer to as a (topological) realization functor; see [DI04] for more discussion of topo-
logical realization functors.

Remark 2.3.4. The choice of embedding of k into C is important: Serre showed that it is possible
to find smooth algebraic varieties over a number field together with two embeddings of k into
C such that the resulting complex manifolds are homotopy inequivalent. In fact, more recently
examples were provided by E Charles of two smooth algebraic varieties over a number field k
together with two embeddings of k into C such that the real cohomology algebras of the resulting
complex manifolds are not isomorphic [Cha09]. Said differently, the real homotopy type of a
smooth k-scheme depends on the choice of embedding of k into C.

Because of the caveat mentioned in the previous remark, we make the following definition

(we restrict ourselves to considering only smooth schemes).

Definition 2.3.5. A smooth k-scheme X is topologically contractible if for some embedding k —
C, the space X(C) is contractible in the usual homotopy category.

Problem 2.3.6. Prove or give a counterexample demonstrating that topological contractibility is
independent of the choice of embedding of a field into C.
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Remark 2.3.7. Recall that a connected topological space X is Z-acyclic if H'(X,Z) = 0 for all
i > 0. Of course, contractible topological spaces are Z-acyclic. One can show that the prop-
erty of being Z-acyclic is independent of the choice of embedding using étale cohomology. By
the Artin-Grothendieck comparison theorem, the cohomology of X (C) with Z/n-coefficients is
isomorphic to the étale cohomology of X with Z/n-coefficients, and étale cohomology of X is
independent of the choice of embedding of k into C. Furthermore, the Betti numbers of X (C) are
determined by the étale cohomology of X.

To my knowledge, all the examples where homotopy types change with the embedding in-
volve a non-trivial fundamental group. If X is a topologically contractible smooth k-scheme,
then its étale fundamental group is independent of the choice of embedding. Furthermore, the
étale fundamental group of X is the profinite completion of the topological fundamental group
of X(C). Thus, if X is topologically contractible, then any of the manifolds X (C) has a fundamen-
tal group with trivial profinite completion. If one could prove that X (C) has trivial fundamental
group for any choice of embedding, the above problem would have a positive solution as a con-
sequence of the usual Whitehead theorem. Let me also note that, working with étale homotopy
types, one can deduce restrictions on the profinite completions of the other homotopy groups of
X(©.

On the other hand, A!-contractibility is a completely intrinsic notion. The following result is
essentially a consequence of the existence of the realization functor mentioned above.

Lemma 2.3.8. IfX is Al -contractible, then X is topologically contractible.

To compare the two notions in greater detail, it would be nice to know if the converse to the
lemma is true. The best we can do at the moment is to proceed dimension by dimension. The
only topologically contractible smooth curve is Al. However, already in dimension 2 problems
appear to arise. With the exception of A%, most topologically contractible surfaces have very few
affine lines. Thus, it seems reasonable to expect that they are disconnected from the standpoint
of Al-homotopy theory. This leads us to suggest the following conjecture.

Conjecture 2.3.9. A smooth topologically contractible surface X is A -contractible if and only if
it is isomorphic to A%

Remark 2.3.10. Based on the classification results (see [Zai99] and the references therein for
more details), it suffices to treat the case of surfaces of logarithmic Kodaira dimensions 1 and
2 (there are no contractible surfaces of logarithmic Kodaira dimension 0). The topologically con-
tractible surfaces of logarithmic Kodaira dimension 2 contain no contractible curves by work of
Zaidenberg [Zai87, [Zai91] and Miyanishi-Tsunoda [MT92]; what can one say about morphisms
from the affine line to such a surface? For example, are such surfaces algebraically hyperbolic
in the sense that there are no non-constant morphisms from the affine line? The surfaces of
logarithmic Kodaira dimension 1 are all obtained from some special surfaces (the so-called tom
Dieck-Petrie surfaces) by repeated application of a procedure called an affine modification (an
affine variant of a blow-up). How does A!-chain connectedness behave with respect to affine
modifications (we understand well how A!-chain connectedness behaves with respect to blow-
ups of projective schemes with smooth centers). One could also try to use the rationality results
of Gurjar-Shastri, i.e., that any smooth compactification of a topologically contractible surface is
rational [GS89a, (GS89b].



11 2.4 Cancelation problems and the Russell cubic

Note also: it is an open question whether all topologically contractible varieties are rational.
For Al-contractible varieties, by “soft” methods, one can establish “near rationality" as we ob-
served above. The upshot of this discussion is that A!-contractibility is a significantly stronger
restriction on a space than topological contractibility.

2.4 Cancelation problems and the Russell cubic

One important problem in affine algebraic geometry is the cancelation problem: if X x Al =
A", then is X isomorphic to A”"12 (The emphasis was cribbed from Peter Russell’s talk at the
workshop). Here are some observations regarding this question.

* Any counterexample to the cancelation problem is an affine A'-contractible smooth vari-
ety (as we saw above this is a much stronger restriction than the assertion that X be topo-
logically contractible).

* The corresponding question in topology has a negative answer. Namely, if M is an open
contractible manifold, and M x R is homeomorphic to R”*!, then M need not be homeo-
morphic to R" if n = 3.

» Topologists have much stronger statements (Perelman, Freedman, Siebenmann-Stallings)

- For every n = 3, there exist infinitely many pairwise non-homemorphic open con-
tractible manifolds of dimension .

— If M is an open contractible manifold of dimension n = 3, then M x R is homeomor-
phic to R**1,

— If M is an open contractible manifold of dimension n = 3, then M is homeomorphic
to R" if and only if M is simply connected at infinity.

¢ [thinkitis expected that counterexamples to the cancelation problem exist in dimensions
= 4 (maybe 37?).

At the moment, A!-contractibility is not a very well developed notion if X is affine. As a first
step, it is useful to know that A!-contractibility can be established by computing only finitely
many homotopy groups. For example, one has the following result.

Theorem 2.4.1 ([ADOQ7]). In every dimension d = 4, there exist infinitely many pairwise non-
isomorphic smooth quasi-affine (but not affine) A' -contractible varieties of dimension d.

Lemma 2.4.2. If X is a smooth variety, then X is A -contractible if and only if X is Al -connected
and n?l (X, x) is trivial for1 <i < n.

Idea of proof. Schemes over a field have Nisnevich cohomological dimension equal to their Krull
dimension. One can prove the result using obstruction theory via the Postnikov tower in A!-
homotopy theory. O
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At the moment it seems unreasonable to test A!-contractibility by computing A!-homotopy
groups, it does have some other nice “geometric consequences." The following result is a con-
sequence of a much more general A!-homotopy classification of vector bundles of rank n > 3
on a smooth affine variety due to E Morel [Morl11, §7]. The results that (I believe) L.-E Moser
will discuss tomorrow imply that this result can be extended to give a homotopy classification of
vector bundles of rank 2 as well [Mos11].

Theorem 2.4.3. If X is an affine A! -contractible variety, then all vector bundles on X are trivial.

Remark 2.4.4. The affineness assertion in the statement is definitely necessary. This point is
discussed in great detail in [AD08].

For concreteness, it’s useful to focus on one particular case, which has already been men-
tioned a few times. Let X be the so-called Russell cubic, i.e., the smooth variety in A% defined by
the equation:

x+x2y+zz+ =0

As mentioned yesterday, X is not isomorphic to A3, but it is presently unknown whether X is
stably isomorphic to A3. Furthermore, M.P. Murthy showed that all vector bundles on X are
trivial [Mur02] (it is also known that the chow groups of X are trivial). However, X admits a
G,,-action with an isolated fixed point. If X is not stably isomorphic to A3, there might be an
Al-homotopic obstruction to stable isomorphism.

Question 2.4.5. Is the Russell cubic A' -contractible?

First, one might try to compute the A!-homotopy groups; for this even to be sensible, we
should make sure that the first obstruction to A!-contractibility vanishes.

Proposition 2.4.6 (B. Antieau (unpublished)). The Russell cubic is A -chain connected.

2.4.7 (Approach 1). Can one detect non-triviality of any of the higher A!-homotopy groups of X?
One approach to this problem is to think “naively" of, e.g., the A!-fundamental group. Think of
chains of maps from A! that start and end at a fixed point up to “naive" homotopy equivalence
(this naturally forms a monoid rather than a group). The resulting object maps to the actual
Al-fundamental group, but what can one say about its image?

2.4.8 (Approach 2). Since to disprove A!-contractiblity, we only need one cohomology theory
that is A!-representable that detects non-triviality, it is useful to look at invariants that are not as
“universal" as A'-homotopy groups. For another approach, using group actions, let me mention
that J. Bell showed that rational G,;-equivariant Ky of X is actually non-trivial [Bel01]. Unfor-
tunately, his computations together with the Atiyah-Segal completion theorem in equivariant
algebraic K-theory also show that the “Borel style" equivariant K is isomorphic to the Borel style
equivariant K; of a point [AS69]. Nevertheless, A!-homotopy theory gives a wealth of new co-
homology theories with which to study the Russell cubic. For example, it would be interested
to know if one of the more “refined" Borel style equivariant theories is refined enough to detect
failure of A!-contractibility.

If u, < Gy, is a sufficiently “large" subgroup then the pj,-equivariant Ky of X is also non-
trivial. Moreover, the fixed-point loci for the u,-actions are all affine spaces (indeed, if n is prime,
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then the only non-trivial subgroup is the trivial subgroup which has the total space as fixed point
locus). Thus, for many purposes, one might simply look at i, -equivariant geometry.

In equivariant topology, a map is a “fine" equivariant weak equivalence if it induces a weak
equivalence on fixed point loci for all subgroups. Transplanting this to A'-homotopy theory: if
we knew that equivariant algebraic K-theory was representable on an appropriate equivariant
Al-homotopy category (such categories have been constructed for finite groups by Voevodsky
[Del09] and Hu-Kriz-Ormsby [HKO]), and we knew enough about the weak equivalences in the
theory, Bell’s result might formally imply that X is not A!-contractible. (It is not at present known
whether equivariant K-theory is representable in Voevodsky’s equivariant category.)

Establishing A!-connectedness is a first step towards understanding A'-homotopy type.

Problem 2.4.9. Which classes of topologically contractible varieties are known to be Al -chain
connected?

Question 2.4.10. Looking further forward: can one characterize affine space among affine A' -
contractible varieties (e.g., by defining some notion of A' -fundamental group at infinity)?
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