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Notation and the basic question

Throughout: k a commutative ring, usually a field, frequently C.
X is a smooth k-algebraic variety (Zariski top); Smk - category of such
objects
if k = C, Xan is X(C) as a C-manifold (usual top);
V alg

r (X) - ∼=-classes of algebraic vb of rank r;
V top

r (X) - ∼=-classes of C-vb of rank r on Xan

If k ⊂ C, set:
Φr : V alg

r (X) −→ V top
r (X).

Question
Can we characterize the image of Φr?
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Warm-up: topology of smooth algebraic varieties

Assume X a smooth C-algebraic variety of dimension d:

Theorem
The space Xan has the homotopy type of a finite CW complex.

Proof.
Case. If X is affine, i.e., X ⊂ Cn a closed subset; Morse theory
(Andreotti–Frankel);

in fact, X is a ≤ d-dim’l cell complex

Case. If X not affine: ∃ a smooth affine C-variety X̃ and a morphism
π : X̃ → X that is Zariski locally trivial with fibers isomorphic to Cm

(Jouanolou–Thomason);

the morphism π is not a vector bundle projection; is topologically trivial.
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Projective varieties

Example (Projective space)

When X = P(V), set P̃(V) := P(V)× P(V∨) \ I

I = incidence variety of hyperplanes vanishing on a line;

π : P̃(V)→ P(V) is induced by projection (fibers are affine spaces)

Definition
If X is smooth k-algebraic variety, a Jouanolou device for X is (X̃, π) with
π : X̃ → X Zariski locally trivial with affine space fibers, and X̃ smooth affine.

Example

We call P̃(V) the standard Jouanolou device of projective space. If X ↪→ Pn is
a closed subvariety, then we get a Jouanolou device for X by restricting the
standard Jounolou device for Pn.
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The set V top
r (X)

Representability:

Theorem (Pontryagin–Steenrod)

There is a canonical bijection V top
r (X) ∼= [X,Grr].

Basic cohomological invariants:

H∗(Grr,Z) ∼= Z[ctop
1 , . . . , ctop

r ], deg(ctop
i ) = 2i yields

Chern classes: if f : X → Grr represents E, then ctop
i (E) := f ∗ctop

i ;

defines a function V top
r (X)→

∏r
i=1 H2i(X;Z)

Sub-question: are there restrictions on the possible Chern classes of algebraic
vector bundles?
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The set V top
r (X) ctd.

Further cohomological invariants:

Theorem
If we fix a rank r and classes ci ∈ H2i(X,Z), i = 1, . . . , r, then the subset of
V top

r (X) consisting of bundles with these Chern classes is finite.

Proof.
the map c : Grr →

∏r
i=1 K(Z, 2i) is a weak equivalence for r = 1, and a

Q-weak equivalence for r > 1;

the homotopy fiber of c has finite homotopy groups

use obstruction theory via the Moore–Postnikov factorization of c

Sub question: are there restrictions on these “further” cohomological
invariants for algebraic vector bundles?
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The set V alg
r (X) I: non-abelian sheaf cohomology

Vector bundles are naturally described in terms of sheaf cohomology:

Proposition

H1(X,GLr) ∼= V alg
r (X).

Open cover u : U → X, yields C̆(U)→ X
Bar construction for BGLr

Cocycles correspond to morphisms C̆(u)→ BGLr

Build a homotopy theory Halg(k) for varieties: maps C̆(u)→ X are weak
equivalences.

Proposition

V alg
r (X) = [X,BGLr]Halg(k).

Criticism: BGLr is not equivalent to Grr in Halg(k).
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The set V alg
r (X) II: homotopy invariance

Homotopy invariance: replace unit interval I by the affine line A1

Definition
A (contravariant) functor F (valued in some category C) on Smk is homotopy
invariant if the pullback map

F (U)→ F (U × A1)

is an isomorphism for all U ∈ Smk.

Proposition

The functor U 7→ V alg
1 (U) = Pic(U) on Smk is homotopy invariant.

Warning: if we enlarge Smk by including sufficiently singular varieties, then
the functor U 7→ Pic(U) fails to be homotopy invariant.
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Warning: if we enlarge Smk by including sufficiently singular varieties, then
the functor U 7→ Pic(U) fails to be homotopy invariant.
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The set V alg
r (X) II: homotopy invariance (ctd.)

Question (Serre ’55)
If X = An

k , then are all vector bundles trivial?

n = 1: yes, structure theorem for f.g. modules over a PID

n = 2: yes, Seshadri ’58

yes if r > n, Bass ’64

n = 3: yes if k algebraically closed, Murthy–Towber ’74

n = 3, 4, 5: yes, Suslin–Vaserstein ’73/’74

Theorem (Quillen–Suslin ’76)
If k is a PID, then every vector bundle on An

k is trivial.
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Conjecture (Bass–Quillen ’72)
If k is a regular ring of finite Krull dimension, then for any r ≥ 0

Vr(Spec k) −→ Vr(A1
k)

is a bijection.

Quillen’s solution to Serre’s problem actually shows that the Bass-Quillen conjecture
holds for k a polynomial ring over a Dedekind domain.

Theorem (Lindel ’81)
The Bass–Quillen conjecture is true if k contains a field.

Popescu ’89 extended the Lindel’s theorem to some arithmetic situations (e.g., k is
regular over a Dedekind domain with perfect residue fields)

Still open in completely generality!
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The set V alg
r (X) II: homotopy invariance (ctd.)

Unfortunately V alg
r (−) fails to be homotopy invariant for r ≥ 2.

Example (A., B. Doran ’08)
Set Q4 = Spec k[x1, x2, x3, x4, z]/〈x1x2 − x3x4 = z(z + 1)〉

E2 ⊂ Q4 defined by x1 = x3 = z + 1 = 0 is isomorphic to A2

If k = C, X4 = Q4 \ E2 is contractible: in fact, there is an explicit
morphism A5 → X4 that is Zariski locally trivial with fibers A1

Q4 carries an explicit non-trivial rank 2 bundle (the Hopf bundle);

this bundle restricts non-trivially to X4, i.e., contractible varieties may
carry non-trivial vector bundles!

Moral: homotopy invariance fails badly for non-affine varieties (even P1)!
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The motivic homotopy category

• Naive homotopy (homotopies parameterized by A1) is not an
equivalence relation

• Grr has naturally the structure of a colimit of algebraic varieties
• Smk is not “big enough” to do homotopy theory (e.g., Grr is not in this

category, cannot form all quotients, etc.)
• Spck - “spaces”; simplicial presheaves on Smk
• We now force two kinds of maps to be “weak-equivalences”:

• Nisnevich local weak equivalences (roughly, u : U → X as Nisnevich covering,
build C̆(u)→ X, and force C̆(u)→ X to be an iso)

• A1-weak equivalences: X × A1 → X

• Halg(k) - invert Nisnevich local weak equivalences and
• Hmot(k) - inverting both Nisnevich local and A1-weak equivalences (this

is the Morel–Voevodsky A1-homotopy category)
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The motivic homotopy category ctd.

Isomorphisms in Hmot(k) are called A1-weak equivalences.

Example
If π : Y → X is Zariski locally trivial with affine space fibers, then π is an
A1-weak equivalence (e.g., if π is a vector bundle):
• SL2 → A2 \ 0 (project a matrix onto its first column) is an A1-weak

equivalence;
• if X is a smooth k-variety and π : X̃ → X is a Jouanolou device for X,

then π is an A1-weak equivalence (thus: every smooth variety has the
A1-homotopy type of a smooth affine variety)

Example

• A∞ \ 0 is A1-contractible: the “shift map” is naively homotopic to the
identity =⇒ Gr1 = P∞ → BGL1 is an A1-weak equivalence
• More generally, Grn → BGLn classifying the tautological vector bundle

is an A1-weak equivalence
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A1-homotopy type of a smooth affine variety)

Example

• A∞ \ 0 is A1-contractible: the “shift map” is naively homotopic to the
identity =⇒ Gr1 = P∞ → BGL1 is an A1-weak equivalence

• More generally, Grn → BGLn classifying the tautological vector bundle
is an A1-weak equivalence
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The set V alg
r (X) III: homotopy invariance (ctd.)

Cannot expect representability of V alg
r (X) in Hmot(k) for all smooth X,

however:

Theorem
If k is a field or Z, then for any smooth affine k-scheme X,

[X,Grr]A1
∼−→V alg

r (X)(= [X,Grr]naive).

Morel ’06 if r 6= 2 and k a perfect field
Schlichting ’15 arbitrary r, k perfect; simplifies part of Morel’s argument
A.–M. Hoyois–M. Wendt ’15 (essentially self-contained: in essence,
representability is equivalent to the Bass–Quillen conjecture for all
smooth k-algebras)
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Comparing algebraic and topological vb

If X a smooth k-variety, then Φr factors:

V alg
r (X) −→ [X,Grr]A1 −→ [X,Grr] =: V top

r (X).

Motivic vector bundles are elements of [X,Grr]A1 .

Thus, determining the image of Φr breaks into two stages:
• characterize the image of V alg

r (X) −→ [X,Grr]A1 , and
• characterize the image of [X,Grr]A1 → [X,Grr]top.

Can we give a concrete description of motivic vector bundles?
Does this factorization get us anything new?
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Basic cohomological invariants

If k a field, integral cohomology is replaced with motivic cohomology

H∗,∗(Grr,Z) ∼= H∗,∗(Spec k,Z)[c1, . . . , cr], deg(ci) = (2i, i) yields

Chern classes: if f : X → Grr corresponds to E , then ci(E) := f ∗ci;

defines a function V alg
r (X)→

∏r
i=1 H2i,i(X;Z)

if k = C, cycle class map cl : H2i,i(X,Z)→ H2i(X,Z) sends ci to ctop
i

Fundamental difference: H2i,i(X,Z) more complicated than H2i(X,Z) (e.g., X
affine, H2i(X,Z) vanishes for 2i > dim X; false for motivic cohomology!)
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Further cohomological invariants

Just like in topology, further invariants are torsion:

Theorem (A., J. Fasel, M. Hopkins)
If k a field and −1 is a sum of squares in k, then

Grr −→
r∏

i=1

K(Z(i), 2i)

is a rational A1-weak equivalence.
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Motivic vector bundles and algebraicity

Theorem (A., J. Fasel, M. Hopkins)
Suppose X is a smooth complex affine variety of dimension 4, and Ean → Xan

is a rank 2 complex analytic vector bundle with Chern classes
ctop

i ∈ H2i(Xan,Z). Assume the Chern classes ctop
i of Ean are algebraic, i.e.,

lie in the image of the cycle class map cl. The bundle Ean is algebraizable if
and only if we may find (c1, c2) ∈ H2,1(X)× H4,2(X) with
(cl(c1), cl(c2)) = (ctop

1 , ctop
2 ) such that Sq2c2 + c1 ∪ c2 = 0 ∈ H6,3(X,Z/2).

Conjecture (A., J. Fasel, M. Hopkins)
For “cellular” smooth C-varieties X, [X,Grr]A1 → [X,Grr] is a bijection.
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Motivic vector bundles, concretely

Assume X a smooth k-variety and π : X̃ → X is a Jouanolou device for X;

V alg
r (X) //

π∗

��

[X,Grr]A1

∼=
��

V alg
r (X̃)

∼= // [X̃,Grr]A1

commutes, i.e., motivic vector bundles represented by actual vector bundles
on a Jouanolou device.
Thus, to understand image of top horizontal map, suffices to:
• characterize the image of π∗,

which is the problem of descent for vector bundles.
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Jouanolou descent I

Suppose π : X̃ → X is a Jouanolou device for X.

• π∗ fails to be injective (very general phenomenon!), even for X = P1

(e.g., because X̃ is affine, π∗ splits extensions)
• Can π∗ be surjective?

Long-standing conjectures in algebraic geometry (e.g., the ’77
Grauert–Schneider conjecture) imply that π∗ fails to be surjective for Pn when
n ≥ 5.
If π∗ does fail to be surjective, can we find a counter-example?
What happens in low dimensions?
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Jouanolou descent II

Theorem (A., J. Fasel, M. Hopkins)

If X is a smooth projective variety of dimension ≤ 2 over C, and (X̃, π) is a
Jouanolou device for X, then π∗ : V alg

r (X)→ V alg
r (X̃) is surjective.

Proof.
• Idea: Describe the target of π∗ and construct enough vector bundles on X.

• Use obstruction theory to do describe [X,Grr]A1 in cohomological terms;

• Use the Hartshorne–Serre correspondence (between codimension 2 lci
schemes and rank 2 vector bundles) to construct the required vb on X.
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Obstruction theory in A1-homotopy

Classical homotopy theory gives techniques for providing a “cohomological”
description of homotopy classes: one factors a space into homotopically
simple spaces (Eilenberg–Mac Lane spaces). F. Morel developed these ideas
in algebraic geometry.

If (X , x) is a pointed space, we may define A1-homotopy sheaves
πA1

i (X , x).

A1-Postnikov tower: given a pointed A1-connected space, we can build
X inductively out of Eilenberg-Mac Lane spaces K(π, n); these have
exactly 1 non-trivial A1-homotopy sheaf in degree n

We can inductively describe the set of maps [U,X ]A1 using sheaf
cohomology with coefficients in A1-homotopy sheaves
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Intuition: a space should be A1-connected if points can be connected by
chains of affine lines

Example

For any integer n ≥ 1, πA1

0 (SLn) = 1

Turns out it suffices to check this on sections over fields

For any field F, any matrix in SLn(F) may be factored as a product of
elementary (shearing) matrices

Any elementary shearing matrix is A1-homotopic: if a ∈ F then use(
1 at
0 1

)

Any matrix in SLn(F) is naively A1-homotopic to the identity.
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Example

πA1

1 (BGL1) = GL1

GL1 is discrete, i.e., πA
1

0 (GL1) = GL1: there are no non-constant
algebraic maps A1 → GL1

the map A∞ \ 0→ BGL1 is a principal GL1-bundle and this yields an
A1-fiber sequence

since A∞ \ 0 is A1-contractible, the result follows from the long exact
sequence in homotopy

Example

For any n ≥ 2, πA1

1 (BSLn) = 1; one identifies πA1

1 (BSLn) = π0(SLn) using a
fiber sequence.

Example
For any n ≥ 2, the map BGLn → BGL1 coming from det : GLn → GL1
induces an isomorphism πA1

1 (BGLn) = GL1.
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Example (F. Morel)
There are isomorphisms

πA1

2 (BSLn)
∼−→

{
KMW

2 if n = 2
KM

2 if n ≥ 3.

KM
2 is the second Milnor K-theory sheaf

the map BSLn → BGL∞ induces an isomorphism on πA1

2 (−) for n ≥ 3 and the
latter represents Quillen’s algebraic K-theory
KM

2 = πA1

1 (SLn), n ≥ 3 and can be thought of as “non-trivial relations among
elementary matrices” (classic presentation of Milnor K2)

KMW
2 is the second Milnor–Witt K-theory sheaf

SL2 = Sp2 and the map BSL2 → BSp∞ is an isomorphism on πA1

2 (−)
the latter represents symplectic K-theory and includes information about
symplectic forms over our base

the map BSp∞ → BGL∞ yields a map KMW
2 → KM

2 ; this map is an
epimorphism of sheaves and its kernel may be described via the
“fundamental ideal” in the Witt ring (A. Suslin)
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Motivic vector bundles on algebraic surfaces

Theorem
If k is algebraically closed, and X̃ is the Jouanolou device of a smooth
projective surface X, then for r ≥ 2 the map

(c1, c2) : V alg
r (X̃) −→ Pic(X̃)× H4,2(X̃,Z)

is an isomorphism.

Proof.
Obstruction theory! Case of trivial determinant: there is a canonical “Euler
class” map

BSL2 −→ K(KMW
2 , 2);

if X̃ is as in the statement, then H2(X̃,KMW
2 )→ H2(X̃,KM

2 ) ∼= H4,2(X̃,Z) is
an isomorphism; any class in H2(X̃,KMW

2 ) lifts uniquely to [X̃,BSL2]A1 .
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Thank you!
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