Algebraic vs. topological vector bundles joint with Jean Fasel and Mike Hopkins

Aravind Asok (USC)

October 27, 2020

Notation and the basic question

Notation and the basic question

Throughout: k a commutative ring, usually a field, frequently \mathbb{C}. X is a smooth k-algebraic variety (Zariski top); Sm_{k} - category of such objects

Notation and the basic question

Throughout: k a commutative ring, usually a field, frequently \mathbb{C}.
X is a smooth k-algebraic variety (Zariski top); Sm_{k} - category of such objects
if $k=\mathbb{C}, X^{\text {an }}$ is $X(\mathbb{C})$ as a \mathbb{C}-manifold (usual top);

Notation and the basic question

Throughout: k a commutative ring, usually a field, frequently \mathbb{C}.
X is a smooth k-algebraic variety (Zariski top); Sm_{k} - category of such objects
if $k=\mathbb{C}, X^{a n}$ is $X(\mathbb{C})$ as a \mathbb{C}-manifold (usual top);
$\mathscr{V}_{r}^{\text {alg }}(X)-\cong$-classes of algebraic vb of rank r;

Notation and the basic question

Throughout: k a commutative ring, usually a field, frequently \mathbb{C}.
X is a smooth k-algebraic variety (Zariski top); Sm_{k} - category of such objects
if $k=\mathbb{C}, X^{a n}$ is $X(\mathbb{C})$ as a \mathbb{C}-manifold (usual top);
$\mathscr{V}_{r}^{\text {alg }}(X)-\cong$-classes of algebraic vb of rank r;
$\mathscr{V}_{r}^{\text {top }}(X)-\cong$-classes of \mathbb{C}-vb of rank r on $X^{\text {an }}$

Notation and the basic question

Throughout: k a commutative ring, usually a field, frequently \mathbb{C}.
X is a smooth k-algebraic variety (Zariski top); Sm_{k} - category of such objects
if $k=\mathbb{C}, X^{\text {an }}$ is $X(\mathbb{C})$ as a \mathbb{C}-manifold (usual top);
$\mathscr{V}_{r}^{\text {alg }}(X)-\cong$-classes of algebraic vb of rank r;
$\mathscr{V}_{r}^{\text {top }}(X)-\cong$-classes of \mathbb{C}-vb of rank r on $X^{\text {an }}$
If $k \subset \mathbb{C}$, set:

$$
\Phi_{r}: \mathscr{V}_{r}^{\text {alg }}(X) \longrightarrow \mathscr{V}_{r}^{\text {top }}(X)
$$

Notation and the basic question

Throughout: k a commutative ring, usually a field, frequently \mathbb{C}.
X is a smooth k-algebraic variety (Zariski top); Sm_{k} - category of such objects
if $k=\mathbb{C}, X^{a n}$ is $X(\mathbb{C})$ as a \mathbb{C}-manifold (usual top);
$\mathscr{V}_{r}^{\text {alg }}(X)-\cong$-classes of algebraic vb of rank r;
$\mathscr{V}_{r}^{\text {top }}(X)$ - \cong-classes of \mathbb{C}-vb of rank r on $X^{\text {an }}$
If $k \subset \mathbb{C}$, set:

$$
\Phi_{r}: \mathscr{V}_{r}^{\text {alg }}(X) \longrightarrow \mathscr{V}_{r}^{\text {top }}(X)
$$

Question

Can we characterize the image of Φ_{r} ?

Warm-up: topology of smooth algebraic varieties

Assume X a smooth \mathbb{C}-algebraic variety of dimension d :

Theorem

The space $X^{a n}$ has the homotopy type of a finite CW complex.

Warm-up: topology of smooth algebraic varieties

Assume X a smooth \mathbb{C}-algebraic variety of dimension d :

Theorem

The space $X^{a n}$ has the homotopy type of a finite CW complex.

Proof.

Case. If X is affine, i.e., $X \subset \mathbb{C}^{n}$ a closed subset; Morse theory (Andreotti-Frankel);
in fact, X is a $\leq d$-dim'l cell complex

Warm-up: topology of smooth algebraic varieties

Assume X a smooth \mathbb{C}-algebraic variety of dimension d :

Theorem

The space $X^{a n}$ has the homotopy type of a finite CW complex.

Proof.

Case. If X is affine, i.e., $X \subset \mathbb{C}^{n}$ a closed subset; Morse theory (Andreotti-Frankel);
in fact, X is a $\leq d$-dim'l cell complex
Case. If X not affine: \exists a smooth affine \mathbb{C}-variety \tilde{X} and a morphism $\pi: \tilde{X} \rightarrow X$ that is Zariski locally trivial with fibers isomorphic to \mathbb{C}^{m} (Jouanolou-Thomason);

Warm-up: topology of smooth algebraic varieties

Assume X a smooth \mathbb{C}-algebraic variety of dimension d :

Theorem

The space $X^{a n}$ has the homotopy type of a finite CW complex.

Proof.

Case. If X is affine, i.e., $X \subset \mathbb{C}^{n}$ a closed subset; Morse theory (Andreotti-Frankel);
in fact, X is a $\leq d$-dim'l cell complex
Case. If X not affine: \exists a smooth affine \mathbb{C}-variety \tilde{X} and a morphism $\pi: \tilde{X} \rightarrow X$ that is Zariski locally trivial with fibers isomorphic to \mathbb{C}^{m} (Jouanolou-Thomason);
the morphism π is not a vector bundle projection; is topologically trivial.

Projective varieties

Example (Projective space)

When $X=\mathbb{P}(V)$, set $\widetilde{\mathbb{P}(V):=\mathbb{P}(V) \times \mathbb{P}\left(V^{\vee}\right) \backslash I}$

Projective varieties

Example (Projective space)

When $X=\mathbb{P}(V)$, set $\widetilde{\mathbb{P}(V)}:=\mathbb{P}(V) \times \mathbb{P}\left(V^{\vee}\right) \backslash I$
$I=$ incidence variety of hyperplanes vanishing on a line;

Projective varieties

Example (Projective space)

When $X=\mathbb{P}(V)$, set $\mathbb{P}(V):=\mathbb{P}(V) \times \mathbb{P}\left(V^{\vee}\right) \backslash I$
$I=$ incidence variety of hyperplanes vanishing on a line; $\pi: \mathbb{P}(V) \rightarrow \mathbb{P}(V)$ is induced by projection (fibers are affine spaces)

Projective varieties

Example (Projective space)

When $X=\mathbb{P}(V)$, set $\widetilde{\mathbb{P}(V)}:=\mathbb{P}(V) \times \mathbb{P}\left(V^{\vee}\right) \backslash I$
$I=$ incidence variety of hyperplanes vanishing on a line;
$\pi: \widetilde{\mathbb{P}(V)} \rightarrow \mathbb{P}(V)$ is induced by projection (fibers are affine spaces)

Definition

If X is smooth k-algebraic variety, a Jouanolou device for X is (\tilde{X}, π) with $\pi: \tilde{X} \rightarrow X$ Zariski locally trivial with affine space fibers, and \tilde{X} smooth affine.

Projective varieties

Example (Projective space)

When $X=\mathbb{P}(V)$, set $\widetilde{\mathbb{P}(V)}:=\mathbb{P}(V) \times \mathbb{P}\left(V^{\vee}\right) \backslash I$
$I=$ incidence variety of hyperplanes vanishing on a line;
$\pi: \widetilde{\mathbb{P}(V)} \rightarrow \mathbb{P}(V)$ is induced by projection (fibers are affine spaces)

Definition

If X is smooth k-algebraic variety, a Jouanolou device for X is (\tilde{X}, π) with $\pi: \tilde{X} \rightarrow X$ Zariski locally trivial with affine space fibers, and \tilde{X} smooth affine.

Example

We call $\widetilde{\mathbb{P}(V)}$ the standard Jouanolou device of projective space.

Projective varieties

Example (Projective space)

When $X=\mathbb{P}(V)$, set $\widetilde{\mathbb{P}(V)}:=\mathbb{P}(V) \times \mathbb{P}\left(V^{\vee}\right) \backslash I$
$I=$ incidence variety of hyperplanes vanishing on a line;
$\pi: \widetilde{\mathbb{P}(V)} \rightarrow \mathbb{P}(V)$ is induced by projection (fibers are affine spaces)

Definition

If X is smooth k-algebraic variety, a Jouanolou device for X is (\tilde{X}, π) with $\pi: \tilde{X} \rightarrow X$ Zariski locally trivial with affine space fibers, and \tilde{X} smooth affine.

Example

We call $\widetilde{\mathbb{P}(V)}$ the standard Jouanolou device of projective space. If $X \hookrightarrow \mathbb{P}^{n}$ is a closed subvariety, then we get a Jouanolou device for X by restricting the standard Jounolou device for \mathbb{P}^{n}.

The set $\mathscr{V}_{r}^{\text {top }}(X)$

Representability:

Theorem (Pontryagin-Steenrod)
There is a canonical bijection $\mathscr{V}_{r}^{\text {top }}(X) \cong\left[X, G r_{r}\right]$.

The set $\mathscr{V}_{r}^{t o p}(X)$

Representability:

Theorem (Pontryagin-Steenrod)
There is a canonical bijection $\mathscr{V}_{r}^{\text {top }}(X) \cong\left[X, G r_{r}\right]$.

Basic cohomological invariants:

The set $\mathscr{V}_{r}^{t o p}(X)$

Representability:

Theorem (Pontryagin-Steenrod)

There is a canonical bijection $\mathscr{V}_{r}^{\text {top }}(X) \cong\left[X, G r_{r}\right]$.

Basic cohomological invariants:

$$
H^{*}\left(G r_{r}, \mathbb{Z}\right) \cong \mathbb{Z}\left[c_{1}^{\text {top }}, \ldots, c_{r}^{\text {top }}\right], \operatorname{deg}\left(c_{i}^{\text {top }}\right)=2 i \text { yields }
$$

The set $\mathscr{V}_{r}^{\text {top }}(X)$

Representability:

Theorem (Pontryagin-Steenrod)

There is a canonical bijection $\mathscr{V}_{r}^{\text {top }}(X) \cong\left[X, G r_{r}\right]$.

Basic cohomological invariants:

$H^{*}\left(G r_{r}, \mathbb{Z}\right) \cong \mathbb{Z}\left[c_{1}^{\text {top }}, \ldots, c_{r}^{\text {top }}\right], \operatorname{deg}\left(c_{i}^{\text {top }}\right)=2 i$ yields
Chern classes: if $f: X \rightarrow G r_{r}$ represents \mathcal{E}, then $c_{i}^{\text {top }}(\mathcal{E}):=f^{*} c_{i}^{\text {top }}$;

The set $\mathscr{V}_{r}^{\text {top }}(X)$

Representability:

Theorem (Pontryagin-Steenrod)

There is a canonical bijection $\mathscr{V}_{r}^{\text {top }}(X) \cong\left[X, G r_{r}\right]$.

Basic cohomological invariants:

$H^{*}\left(G r_{r}, \mathbb{Z}\right) \cong \mathbb{Z}\left[c_{1}^{\text {top }}, \ldots, c_{r}^{\text {top }}\right], \operatorname{deg}\left(c_{i}^{\text {top }}\right)=2 i$ yields
Chern classes: if $f: X \rightarrow G r_{r}$ represents \mathcal{E}, then $c_{i}^{\text {top }}(\mathcal{E}):=f^{*} c_{i}^{\text {top }}$; defines a function $\mathscr{V}_{r}^{\text {top }}(X) \rightarrow \prod_{i=1}^{r} H^{2 i}(X ; \mathbb{Z})$

The set $\mathscr{V}_{r}^{10 p}(X)$

Representability:

Theorem (Pontryagin-Steenrod)

There is a canonical bijection $\mathscr{V}_{r}^{\text {top }}(X) \cong\left[X, G r_{r}\right]$.

Basic cohomological invariants:

$H^{*}\left(G r_{r}, \mathbb{Z}\right) \cong \mathbb{Z}\left[c_{1}^{\text {top }}, \ldots, c_{r}^{\text {top }}\right], \operatorname{deg}\left(c_{i}^{\text {top }}\right)=2 i$ yields
Chern classes: if $f: X \rightarrow G r_{r}$ represents \mathcal{E}, then $c_{i}^{\text {top }}(\mathcal{E}):=f^{*} c_{i}^{\text {top }}$; defines a function $\mathscr{V}_{r}^{\text {top }}(X) \rightarrow \prod_{i=1}^{r} H^{2 i}(X ; \mathbb{Z})$
Sub-question: are there restrictions on the possible Chern classes of algebraic vector bundles?

The set $\mathscr{V}_{r}^{\text {top }}(X) \operatorname{ctd}$.

Further cohomological invariants:

The set $\mathscr{V}_{r}^{\text {top }}(X) \operatorname{ctd}$.

Further cohomological invariants:

Theorem

If we fix a rank r and classes $c_{i} \in H^{2 i}(X, \mathbb{Z}), i=1, \ldots, r$, then the subset of $\mathscr{V}_{r}^{\text {top }}(X)$ consisting of bundles with these Chern classes is finite.

The set $\mathscr{V}_{r}^{\text {top }}(X) \operatorname{ctd}$.

Further cohomological invariants:

Theorem

If we fix a rank r and classes $c_{i} \in H^{2 i}(X, \mathbb{Z}), i=1, \ldots, r$, then the subset of $\mathscr{V}_{r}^{\text {top }}(X)$ consisting of bundles with these Chern classes is finite.

Proof.

the map $c: G r_{r} \rightarrow \prod_{i=1}^{r} K(\mathbb{Z}, 2 i)$ is a weak equivalence for $r=1$, and a \mathbb{Q}-weak equivalence for $r>1$;

The set $\mathscr{V}_{r}^{\text {top }}(X) \operatorname{ctd}$.

Further cohomological invariants:

Theorem

If we fix a rank r and classes $c_{i} \in H^{2 i}(X, \mathbb{Z}), i=1, \ldots, r$, then the subset of $\mathscr{V}_{r}^{\text {top }}(X)$ consisting of bundles with these Chern classes is finite.

Proof.

the map $c: G r_{r} \rightarrow \prod_{i=1}^{r} K(\mathbb{Z}, 2 i)$ is a weak equivalence for $r=1$, and a \mathbb{Q}-weak equivalence for $r>1$;
the homotopy fiber of c has finite homotopy groups

The set $\mathscr{V}_{r}^{\text {top }}(X) \operatorname{ctd}$.

Further cohomological invariants:

Theorem

If we fix a rank r and classes $c_{i} \in H^{2 i}(X, \mathbb{Z}), i=1, \ldots, r$, then the subset of $\mathscr{V}_{r}^{\text {top }}(X)$ consisting of bundles with these Chern classes is finite.

Proof.

the map $c: G r_{r} \rightarrow \prod_{i=1}^{r} K(\mathbb{Z}, 2 i)$ is a weak equivalence for $r=1$, and a \mathbb{Q}-weak equivalence for $r>1$;
the homotopy fiber of c has finite homotopy groups
use obstruction theory via the Moore-Postnikov factorization of c

The set $\mathscr{V}_{r}^{\text {top }}(X)$ ctd.

Further cohomological invariants:

Theorem

If we fix a rank r and classes $c_{i} \in H^{2 i}(X, \mathbb{Z}), i=1, \ldots, r$, then the subset of $\mathscr{V}_{r}^{\text {top }}(X)$ consisting of bundles with these Chern classes is finite.

Proof.

the map $c: G r_{r} \rightarrow \prod_{i=1}^{r} K(\mathbb{Z}, 2 i)$ is a weak equivalence for $r=1$, and a \mathbb{Q}-weak equivalence for $r>1$;
the homotopy fiber of c has finite homotopy groups
use obstruction theory via the Moore-Postnikov factorization of c

Sub question: are there restrictions on these "further" cohomological invariants for algebraic vector bundles?

The set $\mathscr{W}_{r}^{\text {alg }}(X)$ I: non-abelian sheaf cohomology

Vector bundles are naturally described in terms of sheaf cohomology:

The set $\mathscr{W}_{r}^{\text {alg }}(X)$ I: non-abelian sheaf cohomology

Vector bundles are naturally described in terms of sheaf cohomology:
Proposition

$$
H^{1}\left(X, G L_{r}\right) \cong \mathscr{V}_{r}^{\text {alg }}(X)
$$

The set $\mathscr{W}_{r}^{\text {alg }}(X)$ I: non-abelian sheaf cohomology

Vector bundles are naturally described in terms of sheaf cohomology:

Proposition

$$
H^{1}\left(X, G L_{r}\right) \cong \mathscr{V}_{r}^{\text {alg }}(X) .
$$

Open cover $u: U \rightarrow X$, yields $\breve{C}(U) \rightarrow X$

The set $\mathscr{W}_{r}^{\text {alg }}(X)$ I: non-abelian sheaf cohomology

Vector bundles are naturally described in terms of sheaf cohomology:

Proposition

$$
H^{1}\left(X, G L_{r}\right) \cong \mathscr{V}_{r}^{\text {alg }}(X)
$$

Open cover $u: U \rightarrow X$, yields $\breve{C}(U) \rightarrow X$
Bar construction for $B G L_{r}$

The set $\mathscr{W}_{r}^{\text {alg }}(X)$ I: non-abelian sheaf cohomology

Vector bundles are naturally described in terms of sheaf cohomology:

Proposition

$$
H^{1}\left(X, G L_{r}\right) \cong \mathscr{V}_{r}^{\text {alg }}(X) .
$$

Open cover $u: U \rightarrow X$, yields $\breve{C}(U) \rightarrow X$
Bar construction for $B G L_{r}$ Cocycles correspond to morphisms $\breve{C}(u) \rightarrow B G L_{r}$

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ I: non-abelian sheaf cohomology

Vector bundles are naturally described in terms of sheaf cohomology:

Proposition

$$
H^{1}\left(X, G L_{r}\right) \cong \mathscr{V}_{r}^{\text {alg }}(X) .
$$

Open cover $u: U \rightarrow X$, yields $\breve{C}(U) \rightarrow X$
Bar construction for $B G L_{r}$ Cocycles correspond to morphisms $\breve{C}(u) \rightarrow B G L_{r}$ Build a homotopy theory $\mathscr{H}_{\text {alg }}(k)$ for varieties: maps $\breve{C}(u) \rightarrow X$ are weak equivalences.

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ I: non-abelian sheaf cohomology

Vector bundles are naturally described in terms of sheaf cohomology:
Proposition

$$
H^{1}\left(X, G L_{r}\right) \cong \mathscr{V}_{r}^{\text {alg }}(X) .
$$

Open cover $u: U \rightarrow X$, yields $\breve{C}(U) \rightarrow X$
Bar construction for $B G L_{r}$
Cocycles correspond to morphisms $\breve{C}(u) \rightarrow B G L_{r}$
Build a homotopy theory $\mathscr{H}_{\text {alg }}(k)$ for varieties: maps $\breve{C}(u) \rightarrow X$ are weak equivalences.

Proposition

$$
\mathscr{V}_{r}^{a l g}(X)=\left[X, B G L_{r}\right]_{\mathscr{H}_{a l g}(k)} .
$$

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ I: non-abelian sheaf cohomology

Vector bundles are naturally described in terms of sheaf cohomology:
Proposition

$$
H^{1}\left(X, G L_{r}\right) \cong \mathscr{V}_{r}^{\text {alg }}(X) .
$$

Open cover $u: U \rightarrow X$, yields $\breve{C}(U) \rightarrow X$
Bar construction for $B G L_{r}$
Cocycles correspond to morphisms $\breve{C}(u) \rightarrow B G L_{r}$
Build a homotopy theory $\mathscr{H}_{\text {alg }}(k)$ for varieties: maps $\breve{C}(u) \rightarrow X$ are weak equivalences.

Proposition

$$
\mathscr{V}_{r}^{\text {alg }}(X)=\left[X, B G L_{r}\right]_{\mathscr{H}_{a l g}(k)} .
$$

Criticism: $B G L_{r}$ is not equivalent to $G r_{r}$ in $\mathscr{H}_{a l g}(k)$.

The set $\mathscr{V}_{r}^{a l g}(X)$ II: homotopy invariance

Homotopy invariance: replace unit interval I by the affine line \mathbb{A}^{1}

The set $\mathscr{V}_{r}^{a l g}(X)$ II: homotopy invariance

Homotopy invariance: replace unit interval I by the affine line \mathbb{A}^{1}

Definition

A (contravariant) functor \mathscr{F} (valued in some category \mathbf{C}) on Sm_{k} is homotopy invariant

The set $\mathscr{V}_{r}^{a l g}(X)$ II: homotopy invariance

Homotopy invariance: replace unit interval I by the affine line \mathbb{A}^{1}

Definition

A (contravariant) functor \mathscr{F} (valued in some category \mathbf{C}) on Sm_{k} is homotopy invariant if the pullback map

$$
\mathscr{F}(U) \rightarrow \mathscr{F}\left(U \times \mathbb{A}^{1}\right)
$$

is an isomorphism for all $U \in \operatorname{Sm}_{k}$.

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ II: homotopy invariance

Homotopy invariance: replace unit interval I by the affine line \mathbb{A}^{1}

Definition

A (contravariant) functor \mathscr{F} (valued in some category \mathbf{C}) on Sm_{k} is homotopy invariant if the pullback map

$$
\mathscr{F}(U) \rightarrow \mathscr{F}\left(U \times \mathbb{A}^{1}\right)
$$

is an isomorphism for all $U \in \operatorname{Sm}_{k}$.

Proposition

The functor $U \mapsto \mathscr{V}_{1}^{\text {alg }}(U)=\operatorname{Pic}(U)$ on Sm_{k} is homotopy invariant.

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ II: homotopy invariance

Homotopy invariance: replace unit interval I by the affine line \mathbb{A}^{1}

Definition

A (contravariant) functor \mathscr{F} (valued in some category \mathbf{C}) on Sm_{k} is homotopy invariant if the pullback map

$$
\mathscr{F}(U) \rightarrow \mathscr{F}\left(U \times \mathbb{A}^{1}\right)
$$

is an isomorphism for all $U \in \operatorname{Sm}_{k}$.

Proposition

The functor $U \mapsto \mathscr{V}_{1}^{\text {alg }}(U)=\operatorname{Pic}(U)$ on Sm_{k} is homotopy invariant.
Warning: if we enlarge Sm_{k} by including sufficiently singular varieties, then the functor $U \mapsto \operatorname{Pic}(U)$ fails to be homotopy invariant.

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Question (Serre '55)

If $X=\mathbb{A}_{k}^{n}$, then are all vector bundles trivial?

The set $V_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Question (Serre '55)
 If $X=\mathbb{A}_{k}^{n}$, then are all vector bundles trivial?

$n=1$: yes, structure theorem for f.g. modules over a PID

The set $V_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Question (Serre '55)
 If $X=\mathbb{A}_{k}^{n}$, then are all vector bundles trivial?

$n=1$: yes, structure theorem for f.g. modules over a PID
$n=2$: yes, Seshadri '58

The set $V_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Question (Serre '55)
 If $X=\mathbb{A}_{k}^{n}$, then are all vector bundles trivial?

$n=1$: yes, structure theorem for f.g. modules over a PID
$n=2$: yes, Seshadri '58
yes if $r>n$, Bass '64

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Question (Serre '55)

If $X=\mathbb{A}_{k}^{n}$, then are all vector bundles trivial?
$n=1$: yes, structure theorem for f.g. modules over a PID
$n=2$: yes, Seshadri '58
yes if $r>n$, Bass '64
$n=3$: yes if k algebraically closed, Murthy-Towber '74

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Question (Serre '55)

If $X=\mathbb{A}_{k}^{n}$, then are all vector bundles trivial?
$n=1$: yes, structure theorem for f.g. modules over a PID
$n=2$: yes, Seshadri ' 58
yes if $r>n$, Bass '64
$n=3$: yes if k algebraically closed, Murthy-Towber '74
$n=3,4$, 5: yes, Suslin-Vaserstein '73/' 74

The set $V_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Question (Serre '55)

If $X=\mathbb{A}_{k}^{n}$, then are all vector bundles trivial?
$n=1$: yes, structure theorem for f.g. modules over a PID
$n=2$: yes, Seshadri ' 58
yes if $r>n$, Bass '64
$n=3$: yes if k algebraically closed, Murthy-Towber '74
$n=3,4$, 5: yes, Suslin-Vaserstein '73/' 74

Theorem (Quillen-Suslin '76)

If k is a PID, then every vector bundle on \mathbb{A}_{k}^{n} is trivial.

Conjecture (Bass-Quillen '72)

If k is a regular ring of finite Krull dimension, then for any $r \geq 0$

$$
\mathscr{V}_{r}(\operatorname{Spec} k) \longrightarrow \mathscr{V}_{r}\left(\mathbb{A}_{k}^{1}\right)
$$

is a bijection.

Conjecture (Bass-Quillen '72)

If k is a regular ring of finite Krull dimension, then for any $r \geq 0$

$$
\mathscr{V}_{r}(\operatorname{Spec} k) \longrightarrow \mathscr{V}_{r}\left(\mathbb{A}_{k}^{1}\right)
$$

is a bijection.
Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for k a polynomial ring over a Dedekind domain.

Conjecture (Bass-Quillen '72)

If k is a regular ring of finite Krull dimension, then for any $r \geq 0$

$$
\mathscr{V}_{r}(\operatorname{Spec} k) \longrightarrow \mathscr{V}_{r}\left(\mathbb{A}_{k}^{1}\right)
$$

is a bijection.
Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for k a polynomial ring over a Dedekind domain.

Theorem (Lindel '81)

The Bass-Quillen conjecture is true if k contains a field.

Conjecture (Bass-Quillen '72)

If k is a regular ring of finite Krull dimension, then for any $r \geq 0$

$$
\mathscr{V}_{r}(\operatorname{Spec} k) \longrightarrow \mathscr{V}_{r}\left(\mathbb{A}_{k}^{1}\right)
$$

is a bijection.
Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for k a polynomial ring over a Dedekind domain.

Theorem (Lindel '81)

The Bass-Quillen conjecture is true if k contains a field.
Popescu '89 extended the Lindel's theorem to some arithmetic situations (e.g., k is regular over a Dedekind domain with perfect residue fields)

Conjecture (Bass-Quillen '72)

If k is a regular ring of finite Krull dimension, then for any $r \geq 0$

$$
\mathscr{V}_{r}(\operatorname{Spec} k) \longrightarrow \mathscr{V}_{r}\left(\mathbb{A}_{k}^{1}\right)
$$

is a bijection.
Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for k a polynomial ring over a Dedekind domain.

Theorem (Lindel '81)

The Bass-Quillen conjecture is true if k contains a field.
Popescu '89 extended the Lindel's theorem to some arithmetic situations (e.g., k is regular over a Dedekind domain with perfect residue fields)
Still open in completely generality!

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Unfortunately $\mathscr{V}_{r}^{\text {alg }}(-)$ fails to be homotopy invariant for $r \geq 2$.
Example (A., B. Doran '08)
$\operatorname{Set} Q_{4}=\operatorname{Spec} k\left[x_{1}, x_{2}, x_{3}, x_{4}, z\right] /\left\langle x_{1} x_{2}-x_{3} x_{4}=z(z+1)\right\rangle$

The set $V_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Unfortunately $\mathscr{V}_{r}^{\text {alg }}(-)$ fails to be homotopy invariant for $r \geq 2$.
Example (A., B. Doran '08)
$\operatorname{Set} Q_{4}=\operatorname{Spec} k\left[x_{1}, x_{2}, x_{3}, x_{4}, z\right] /\left\langle x_{1} x_{2}-x_{3} x_{4}=z(z+1)\right\rangle$
$E_{2} \subset Q_{4}$ defined by $x_{1}=x_{3}=z+1=0$ is isomorphic to \mathbb{A}^{2}

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Unfortunately $\mathscr{V}_{r}^{\text {alg }}(-)$ fails to be homotopy invariant for $r \geq 2$.

Example (A., B. Doran '08)

Set $Q_{4}=\operatorname{Spec} k\left[x_{1}, x_{2}, x_{3}, x_{4}, z\right] /\left\langle x_{1} x_{2}-x_{3} x_{4}=z(z+1)\right\rangle$ $E_{2} \subset Q_{4}$ defined by $x_{1}=x_{3}=z+1=0$ is isomorphic to \mathbb{A}^{2} If $k=\mathbb{C}, X_{4}=Q_{4} \backslash E_{2}$ is contractible: in fact, there is an explicit morphism $\mathbb{A}^{5} \rightarrow X_{4}$ that is Zariski locally trivial with fibers \mathbb{A}^{1}

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Unfortunately $\mathscr{V}_{r}^{\text {alg }}(-)$ fails to be homotopy invariant for $r \geq 2$.

Example (A., B. Doran '08)

Set $Q_{4}=\operatorname{Spec} k\left[x_{1}, x_{2}, x_{3}, x_{4}, z\right] /\left\langle x_{1} x_{2}-x_{3} x_{4}=z(z+1)\right\rangle$
$E_{2} \subset Q_{4}$ defined by $x_{1}=x_{3}=z+1=0$ is isomorphic to \mathbb{A}^{2}
If $k=\mathbb{C}, X_{4}=Q_{4} \backslash E_{2}$ is contractible: in fact, there is an explicit morphism $\mathbb{A}^{5} \rightarrow X_{4}$ that is Zariski locally trivial with fibers \mathbb{A}^{1}
Q_{4} carries an explicit non-trivial rank 2 bundle (the Hopf bundle);

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Unfortunately $\mathscr{V}_{r}^{\text {alg }}(-)$ fails to be homotopy invariant for $r \geq 2$.

Example (A., B. Doran '08)

$\operatorname{Set} Q_{4}=\operatorname{Spec} k\left[x_{1}, x_{2}, x_{3}, x_{4}, z\right] /\left\langle x_{1} x_{2}-x_{3} x_{4}=z(z+1)\right\rangle$
$E_{2} \subset Q_{4}$ defined by $x_{1}=x_{3}=z+1=0$ is isomorphic to \mathbb{A}^{2}
If $k=\mathbb{C}$, $X_{4}=Q_{4} \backslash E_{2}$ is contractible: in fact, there is an explicit morphism $\mathbb{A}^{5} \rightarrow X_{4}$ that is Zariski locally trivial with fibers \mathbb{A}^{1}
Q_{4} carries an explicit non-trivial rank 2 bundle (the Hopf bundle);
this bundle restricts non-trivially to X_{4}, i.e., contractible varieties may carry non-trivial vector bundles!

The set $V_{r}^{\text {alg }}(X)$ II: homotopy invariance (ctd.)

Unfortunately $\mathscr{V}_{r}^{\text {alg }}(-)$ fails to be homotopy invariant for $r \geq 2$.

Example (A., B. Doran '08)

$\operatorname{Set} Q_{4}=\operatorname{Spec} k\left[x_{1}, x_{2}, x_{3}, x_{4}, z\right] /\left\langle x_{1} x_{2}-x_{3} x_{4}=z(z+1)\right\rangle$ $E_{2} \subset Q_{4}$ defined by $x_{1}=x_{3}=z+1=0$ is isomorphic to \mathbb{A}^{2} If $k=\mathbb{C}, X_{4}=Q_{4} \backslash E_{2}$ is contractible: in fact, there is an explicit morphism $\mathbb{A}^{5} \rightarrow X_{4}$ that is Zariski locally trivial with fibers \mathbb{A}^{1} Q_{4} carries an explicit non-trivial rank 2 bundle (the Hopf bundle); this bundle restricts non-trivially to X_{4}, i.e., contractible varieties may carry non-trivial vector bundles!

Moral: homotopy invariance fails badly for non-affine varieties (even \mathbb{P}^{1})!

The motivic homotopy category

- Naive homotopy (homotopies parameterized by \mathbb{A}^{1}) is not an equivalence relation

The motivic homotopy category

- Naive homotopy (homotopies parameterized by \mathbb{A}^{1}) is not an equivalence relation
- $G r_{r}$ has naturally the structure of a colimit of algebraic varieties

The motivic homotopy category

- Naive homotopy (homotopies parameterized by \mathbb{A}^{1}) is not an equivalence relation
- $G r_{r}$ has naturally the structure of a colimit of algebraic varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)

The motivic homotopy category

- Naive homotopy (homotopies parameterized by \mathbb{A}^{1}) is not an equivalence relation
- $G r_{r}$ has naturally the structure of a colimit of algebraic varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- Spc_{k} - "spaces"; simplicial presheaves on Sm_{k}

The motivic homotopy category

- Naive homotopy (homotopies parameterized by \mathbb{A}^{1}) is not an equivalence relation
- $G r_{r}$ has naturally the structure of a colimit of algebraic varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- Spc_{k} - "spaces"; simplicial presheaves on Sm_{k}
- We now force two kinds of maps to be "weak-equivalences":

The motivic homotopy category

- Naive homotopy (homotopies parameterized by \mathbb{A}^{1}) is not an equivalence relation
- $G r_{r}$ has naturally the structure of a colimit of algebraic varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- Spc_{k} - "spaces"; simplicial presheaves on Sm_{k}
- We now force two kinds of maps to be "weak-equivalences":
- Nisnevich local weak equivalences (roughly, $u: U \rightarrow X$ as Nisnevich covering, build $\breve{C}(u) \rightarrow X$, and force $\breve{C}(u) \rightarrow X$ to be an iso)

The motivic homotopy category

- Naive homotopy (homotopies parameterized by \mathbb{A}^{1}) is not an equivalence relation
- $G r_{r}$ has naturally the structure of a colimit of algebraic varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- Spc_{k} - "spaces"; simplicial presheaves on Sm_{k}
- We now force two kinds of maps to be "weak-equivalences":
- Nisnevich local weak equivalences (roughly, $u: U \rightarrow X$ as Nisnevich covering, build $\breve{C}(u) \rightarrow X$, and force $\breve{C}(u) \rightarrow X$ to be an iso)
- \mathbb{A}^{1}-weak equivalences: $X \times \mathbb{A}^{1} \rightarrow X$

The motivic homotopy category

- Naive homotopy (homotopies parameterized by \mathbb{A}^{1}) is not an equivalence relation
- $G r_{r}$ has naturally the structure of a colimit of algebraic varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- Spc_{k} - "spaces"; simplicial presheaves on Sm_{k}
- We now force two kinds of maps to be "weak-equivalences":
- Nisnevich local weak equivalences (roughly, $u: U \rightarrow X$ as Nisnevich covering, build $\breve{C}(u) \rightarrow X$, and force $\breve{C}(u) \rightarrow X$ to be an iso)
- \mathbb{A}^{1}-weak equivalences: $X \times \mathbb{A}^{1} \rightarrow X$
- $\mathscr{H}_{\text {alg }}(k)$ - invert Nisnevich local weak equivalences

The motivic homotopy category

- Naive homotopy (homotopies parameterized by \mathbb{A}^{1}) is not an equivalence relation
- $G r_{r}$ has naturally the structure of a colimit of algebraic varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- Spc_{k} - "spaces"; simplicial presheaves on Sm_{k}
- We now force two kinds of maps to be "weak-equivalences":
- Nisnevich local weak equivalences (roughly, $u: U \rightarrow X$ as Nisnevich covering, build $\breve{C}(u) \rightarrow X$, and force $\breve{C}(u) \rightarrow X$ to be an iso)
- \mathbb{A}^{1}-weak equivalences: $X \times \mathbb{A}^{1} \rightarrow X$
- $\mathscr{H}_{\text {alg }}(k)$ - invert Nisnevich local weak equivalences and
- $\mathscr{H}_{\text {mot }}(k)$ - inverting both Nisnevich local and \mathbb{A}^{1}-weak equivalences (this is the Morel-Voevodsky \mathbb{A}^{1}-homotopy category)

The motivic homotopy category ctd.

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences.

The motivic homotopy category ctd.

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences.

Example

If $\pi: Y \rightarrow X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^{1}-weak equivalence (e.g., if π is a vector bundle):

The motivic homotopy category ctd.

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences.

Example

If $\pi: Y \rightarrow X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^{1}-weak equivalence (e.g., if π is a vector bundle):

- $S L_{2} \rightarrow \mathbb{A}^{2} \backslash 0$ (project a matrix onto its first column) is an \mathbb{A}^{1}-weak equivalence;

The motivic homotopy category ctd.

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences.

Example

If $\pi: Y \rightarrow X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^{1}-weak equivalence (e.g., if π is a vector bundle):

- $S L_{2} \rightarrow \mathbb{A}^{2} \backslash 0$ (project a matrix onto its first column) is an \mathbb{A}^{1}-weak equivalence;
- if X is a smooth k-variety and $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X, then π is an \mathbb{A}^{1}-weak equivalence (thus: every smooth variety has the \mathbb{A}^{1}-homotopy type of a smooth affine variety)

The motivic homotopy category ctd.

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences.

Example

If $\pi: Y \rightarrow X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^{1}-weak equivalence (e.g., if π is a vector bundle):

- $S L_{2} \rightarrow \mathbb{A}^{2} \backslash 0$ (project a matrix onto its first column) is an \mathbb{A}^{1}-weak equivalence;
- if X is a smooth k-variety and $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X, then π is an \mathbb{A}^{1}-weak equivalence (thus: every smooth variety has the \mathbb{A}^{1}-homotopy type of a smooth affine variety)

Example

- $\mathbb{A}^{\infty} \backslash 0$ is \mathbb{A}^{1}-contractible: the "shift map" is naively homotopic to the identity $\Longrightarrow G r_{1}=\mathbb{P}^{\infty} \rightarrow B G L_{1}$ is an \mathbb{A}^{1}-weak equivalence

The motivic homotopy category ctd.

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences.

Example

If $\pi: Y \rightarrow X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^{1}-weak equivalence (e.g., if π is a vector bundle):

- $S L_{2} \rightarrow \mathbb{A}^{2} \backslash 0$ (project a matrix onto its first column) is an \mathbb{A}^{1}-weak equivalence;
- if X is a smooth k-variety and $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X, then π is an \mathbb{A}^{1}-weak equivalence (thus: every smooth variety has the \mathbb{A}^{1}-homotopy type of a smooth affine variety)

Example

- $\mathbb{A}^{\infty} \backslash 0$ is \mathbb{A}^{1}-contractible: the "shift map" is naively homotopic to the identity $\Longrightarrow G r_{1}=\mathbb{P}^{\infty} \rightarrow B G L_{1}$ is an \mathbb{A}^{1}-weak equivalence
- More generally, $G r_{n} \rightarrow B G L_{n}$ classifying the tautological vector bundle is an \mathbb{A}^{1}-weak equivalence

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ III: homotopy invariance (ctd.)

Cannot expect representability of $\mathscr{V}_{r}^{\text {alg }}(X)$ in $\mathscr{H}_{\text {mot }}(k)$ for all smooth X, however:

Theorem

If k is a field or \mathbb{Z}, then for any smooth affine k-scheme X,

$$
\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \xrightarrow{\sim} \mathscr{V}_{r}^{\text {alg }}(X)\left(=\left[X, G r_{r}\right]_{\text {naive }}\right) .
$$

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ III: homotopy invariance (ctd.)

Cannot expect representability of $\mathscr{V}_{r}^{\text {alg }}(X)$ in $\mathscr{H}_{\text {mot }}(k)$ for all smooth X, however:

Theorem

If k is a field or \mathbb{Z}, then for any smooth affine k-scheme X,

$$
\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \xrightarrow{\sim} \mathscr{V}_{r}^{\text {alg }}(X)\left(=\left[X, G r_{r}\right]_{\text {naive }}\right) .
$$

Morel '06 if $r \neq 2$ and k a perfect field

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ III: homotopy invariance (ctd.)

Cannot expect representability of $\mathscr{V}_{r}^{\text {alg }}(X)$ in $\mathscr{H}_{\text {mot }}(k)$ for all smooth X, however:

Theorem

If k is a field or \mathbb{Z}, then for any smooth affine k-scheme X,

$$
\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \xrightarrow{\sim} \mathscr{V}_{r}^{\text {alg }}(X)\left(=\left[X, G r_{r}\right]_{\text {naive }}\right) .
$$

Morel '06 if $r \neq 2$ and k a perfect field
Schlichting ' 15 arbitrary r, k perfect; simplifies part of Morel's argument

The set $\mathscr{V}_{r}^{\text {alg }}(X)$ III: homotopy invariance (ctd.)

Cannot expect representability of $\mathscr{V}_{r}^{\text {alg }}(X)$ in $\mathscr{H}_{\text {mot }}(k)$ for all smooth X, however:

Theorem

If k is a field or \mathbb{Z}, then for any smooth affine k-scheme X,

$$
\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \xrightarrow{\sim} \mathscr{V}_{r}^{\text {alg }}(X)\left(=\left[X, G r_{r}\right]_{\text {naive }}\right) .
$$

Morel '06 if $r \neq 2$ and k a perfect field
Schlichting ' 15 arbitrary r, k perfect; simplifies part of Morel's argument A.-M. Hoyois-M. Wendt '15 (essentially self-contained: in essence, representability is equivalent to the Bass-Quillen conjecture for all smooth k-algebras)

Comparing algebraic and topological vb

If X a smooth k-variety, then Φ_{r} factors:

$$
\mathscr{V}_{r}^{\text {alg }}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \longrightarrow\left[X, G r_{r}\right]=: \mathscr{V}_{r}^{t o p}(X) .
$$

Motivic vector bundles are elements of $\left[X, G r_{r}\right]_{\mathbb{A}^{1}}$.

Comparing algebraic and topological vb

If X a smooth k-variety, then Φ_{r} factors:

$$
\mathscr{V}_{r}^{a l g}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \longrightarrow\left[X, G r_{r}\right]=: \mathscr{V}_{r}^{t o p}(X) .
$$

Motivic vector bundles are elements of $\left[X, G r_{r}\right]_{\mathbb{A}^{1}}$.
Thus, determining the image of Φ_{r} breaks into two stages:

Comparing algebraic and topological vb

If X a smooth k-variety, then Φ_{r} factors:

$$
\mathscr{V}_{r}^{a l g}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \longrightarrow\left[X, G r_{r}\right]=: \mathscr{V}_{r}^{t o p}(X) .
$$

Motivic vector bundles are elements of $\left[X, G r_{r}\right]_{\mathbb{A}^{1}}$.
Thus, determining the image of Φ_{r} breaks into two stages:

- characterize the image of $\mathscr{V}_{r}^{\text {alg }}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}}$, and

Comparing algebraic and topological vb

If X a smooth k-variety, then Φ_{r} factors:

$$
\mathscr{V}_{r}^{a l g}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \longrightarrow\left[X, G r_{r}\right]=: \mathscr{V}_{r}^{t o p}(X) .
$$

Motivic vector bundles are elements of $\left[X, G r_{r}\right]_{\mathbb{A}^{1}}$.
Thus, determining the image of Φ_{r} breaks into two stages:

- characterize the image of $\mathscr{V}_{r}^{\text {alg }}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}}$, and
- characterize the image of $\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \rightarrow\left[X, G r_{r}\right]_{\text {top }}$.

Comparing algebraic and topological vb

If X a smooth k-variety, then Φ_{r} factors:

$$
\mathscr{V}_{r}^{a l g}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \longrightarrow\left[X, G r_{r}\right]=: \mathscr{V}_{r}^{t o p}(X) .
$$

Motivic vector bundles are elements of $\left[X, G r_{r}\right]_{\mathbb{A}^{1}}$.
Thus, determining the image of Φ_{r} breaks into two stages:

- characterize the image of $\mathscr{V}_{r}^{\text {alg }}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}}$, and
- characterize the image of $\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \rightarrow\left[X, G r_{r}\right]_{t o p}$.

Can we give a concrete description of motivic vector bundles?

Comparing algebraic and topological vb

If X a smooth k-variety, then Φ_{r} factors:

$$
\mathscr{V}_{r}^{a l g}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \longrightarrow\left[X, G r_{r}\right]=: \mathscr{V}_{r}^{t o p}(X)
$$

Motivic vector bundles are elements of $\left[X, G r_{r}\right]_{\mathbb{A}^{1}}$.
Thus, determining the image of Φ_{r} breaks into two stages:

- characterize the image of $\mathscr{V}_{r}^{\text {alg }}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}}$, and
- characterize the image of $\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \rightarrow\left[X, G r_{r}\right]_{\text {top }}$.

Can we give a concrete description of motivic vector bundles?
Does this factorization get us anything new?

Basic cohomological invariants

If k a field, integral cohomology is replaced with motivic cohomology

Basic cohomological invariants

If k a field, integral cohomology is replaced with motivic cohomology

$$
H^{*, *}\left(G r_{r}, \mathbb{Z}\right) \cong H^{*, *}(\operatorname{Spec} k, \mathbb{Z})\left[c_{1}, \ldots, c_{r}\right], \operatorname{deg}\left(c_{i}\right)=(2 i, i) \text { yields }
$$

Basic cohomological invariants

If k a field, integral cohomology is replaced with motivic cohomology $H^{*, *}\left(G r_{r}, \mathbb{Z}\right) \cong H^{*, *}(\operatorname{Spec} k, \mathbb{Z})\left[c_{1}, \ldots, c_{r}\right], \operatorname{deg}\left(c_{i}\right)=(2 i, i)$ yields Chern classes: if $f: X \rightarrow G r_{r}$ corresponds to \mathscr{E}, then $c_{i}(\mathcal{E}):=f^{*} c_{i}$;

Basic cohomological invariants

If k a field, integral cohomology is replaced with motivic cohomology $H^{*, *}\left(G r_{r}, \mathbb{Z}\right) \cong H^{*, *}(\operatorname{Spec} k, \mathbb{Z})\left[c_{1}, \ldots, c_{r}\right], \operatorname{deg}\left(c_{i}\right)=(2 i, i)$ yields Chern classes: if $f: X \rightarrow G r_{r}$ corresponds to \mathscr{E}, then $c_{i}(\mathcal{E}):=f^{*} c_{i}$; defines a function $\mathscr{V}_{r}^{a l g}(X) \rightarrow \prod_{i=1}^{r} H^{2 i, i}(X ; \mathbb{Z})$

Basic cohomological invariants

If k a field, integral cohomology is replaced with motivic cohomology $H^{*, *}\left(G r_{r}, \mathbb{Z}\right) \cong H^{*, *}(\operatorname{Spec} k, \mathbb{Z})\left[c_{1}, \ldots, c_{r}\right], \operatorname{deg}\left(c_{i}\right)=(2 i, i)$ yields Chern classes: if $f: X \rightarrow G r_{r}$ corresponds to \mathscr{E}, then $c_{i}(\mathcal{E}):=f^{*} c_{i}$; defines a function $\mathscr{V}_{r}^{a l g}(X) \rightarrow \prod_{i=1}^{r} H^{2 i, i}(X ; \mathbb{Z})$ if $k=\mathbb{C}$, cycle class map $c l: H^{2 i, i}(X, \mathbb{Z}) \rightarrow H^{2 i}(X, \mathbb{Z})$ sends c_{i} to $c_{i}^{\text {top }}$

Basic cohomological invariants

If k a field, integral cohomology is replaced with motivic cohomology $H^{*, *}\left(G r_{r}, \mathbb{Z}\right) \cong H^{*, *}(\operatorname{Spec} k, \mathbb{Z})\left[c_{1}, \ldots, c_{r}\right], \operatorname{deg}\left(c_{i}\right)=(2 i, i)$ yields Chern classes: if $f: X \rightarrow G r_{r}$ corresponds to \mathscr{E}, then $c_{i}(\mathcal{E}):=f^{*} c_{i}$; defines a function $\mathscr{V}_{r}^{a l g}(X) \rightarrow \prod_{i=1}^{r} H^{2 i, i}(X ; \mathbb{Z})$ if $k=\mathbb{C}$, cycle class map $c l: H^{2 i, i}(X, \mathbb{Z}) \rightarrow H^{2 i}(X, \mathbb{Z})$ sends c_{i} to $c_{i}^{\text {top }}$
Fundamental difference: $H^{2 i, i}(X, \mathbb{Z})$ more complicated than $H^{2 i}(X, \mathbb{Z})$ (e.g., X affine, $H^{2 i}(X, \mathbb{Z})$ vanishes for $2 i>\operatorname{dim} X$; false for motivic cohomology!)

Further cohomological invariants

Just like in topology, further invariants are torsion:
Theorem (A., J. Fasel, M. Hopkins)
If k a field and -1 is a sum of squares in k, then

$$
G r_{r} \longrightarrow \prod_{i=1}^{r} K(\mathbb{Z}(i), 2 i)
$$

is a rational \mathbb{A}^{1}-weak equivalence.

Motivic vector bundles and algebraicity

Theorem (A., J. Fasel, M. Hopkins)

Suppose X is a smooth complex affine variety of dimension 4, and $\mathcal{E}^{a n} \rightarrow X^{a n}$ is a rank 2 complex analytic vector bundle with Chern classes $c_{i}^{\text {top }} \in H^{2 i}\left(X^{a n}, \mathbb{Z}\right)$. Assume the Chern classes $c_{i}^{\text {top }}$ of $\mathcal{E}^{a n}$ are algebraic, i.e., lie in the image of the cycle class map cl. The bundle $\mathcal{E}^{a n}$ is algebraizable if and only if we may find $\left(c_{1}, c_{2}\right) \in H^{2,1}(X) \times H^{4,2}(X)$ with $\left(c l\left(c_{1}\right), c l\left(c_{2}\right)\right)=\left(c_{1}^{\text {top }}, c_{2}^{\text {top }}\right)$ such that $S q^{2} c_{2}+c_{1} \cup c_{2}=0 \in H^{6,3}(X, \mathbb{Z} / 2)$.

Motivic vector bundles and algebraicity

Theorem (A., J. Fasel, M. Hopkins)

Suppose X is a smooth complex affine variety of dimension 4, and $\mathcal{E}^{a n} \rightarrow X^{a n}$ is a rank 2 complex analytic vector bundle with Chern classes $c_{i}^{\text {top }} \in H^{2 i}\left(X^{a n}, \mathbb{Z}\right)$. Assume the Chern classes $c_{i}^{\text {top }}$ of $\mathcal{E}^{a n}$ are algebraic, i.e., lie in the image of the cycle class map cl. The bundle $\mathcal{E}^{a n}$ is algebraizable if and only if we may find $\left(c_{1}, c_{2}\right) \in H^{2,1}(X) \times H^{4,2}(X)$ with $\left(c l\left(c_{1}\right), \operatorname{cl}\left(c_{2}\right)\right)=\left(c_{1}^{\text {top }}, c_{2}^{\text {top }}\right)$ such that $S q^{2} c_{2}+c_{1} \cup c_{2}=0 \in H^{6,3}(X, \mathbb{Z} / 2)$.

Conjecture (A., J. Fasel, M. Hopkins)

For "cellular" smooth \mathbb{C}-varieties $X,\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \rightarrow\left[X, G r_{r}\right]$ is a bijection.

Motivic vector bundles, concretely

Assume X a smooth k-variety and $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X;

Motivic vector bundles, concretely

Assume X a smooth k-variety and $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X;

$$
\begin{aligned}
& \mathscr{V}_{r}^{\text {alg }}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \\
& \downarrow \pi^{*} \quad \downarrow \cong \\
& \mathscr{V}_{r}^{\text {alg }}(\tilde{X}) \xrightarrow{\cong}\left[\tilde{X}, G r_{r}\right]_{\mathbb{A}^{1}}
\end{aligned}
$$

commutes,

Motivic vector bundles, concretely

Assume X a smooth k-variety and $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X;

$$
\begin{gathered}
\mathscr{V}_{r}^{\text {alg }}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \\
\left.\left\lvert\, \begin{array}{l}
\pi^{*} \\
\downarrow \\
\mathscr{V}_{r}^{\text {alg }}(\tilde{X}) \\
\cong
\end{array} \xrightarrow{\cong}\right., G r_{r}\right]_{\mathbb{A}^{1}}
\end{gathered}
$$

commutes, i.e., motivic vector bundles represented by actual vector bundles on a Jouanolou device.

Motivic vector bundles, concretely

Assume X a smooth k-variety and $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X;

$$
\begin{aligned}
& \mathscr{V}_{r}^{a l g}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \\
& \downarrow \pi^{*} \downarrow \cong \\
& \mathscr{V}_{r}^{\text {alg }}(\tilde{X}) \xrightarrow{\cong}\left[\tilde{X}, G r_{r}\right]_{\mathbb{A}^{1}}
\end{aligned}
$$

commutes, i.e., motivic vector bundles represented by actual vector bundles on a Jouanolou device.
Thus, to understand image of top horizontal map, suffices to:

- characterize the image of π^{*},

Motivic vector bundles, concretely

Assume X a smooth k-variety and $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X;

$$
\begin{gathered}
\mathscr{V}_{r}^{\text {alg }}(X) \longrightarrow\left[X, G r_{r}\right]_{\mathbb{A}^{1}} \\
\mid{ }^{\pi^{*}} \\
\downarrow \\
\mathscr{V}_{r}^{\text {alg }}(\tilde{X}) \xrightarrow{\cong}\left[\tilde{X}, G r_{r}\right]_{\mathbb{A}^{1}}
\end{gathered}
$$

commutes, i.e., motivic vector bundles represented by actual vector bundles on a Jouanolou device.
Thus, to understand image of top horizontal map, suffices to:

- characterize the image of π^{*},
which is the problem of descent for vector bundles.

Jouanolou descent I

Suppose $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X.

Jouanolou descent I

Suppose $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X.

- π^{*} fails to be injective (very general phenomenon!), even for $X=\mathbb{P}^{1}$ (e.g., because \tilde{X} is affine, π^{*} splits extensions)

Jouanolou descent I

Suppose $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X.

- π^{*} fails to be injective (very general phenomenon!), even for $X=\mathbb{P}^{1}$ (e.g., because \tilde{X} is affine, π^{*} splits extensions)
- Can π^{*} be surjective?

Jouanolou descent I

Suppose $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X.

- π^{*} fails to be injective (very general phenomenon!), even for $X=\mathbb{P}^{1}$ (e.g., because \tilde{X} is affine, π^{*} splits extensions)
- Can π^{*} be surjective?

Long-standing conjectures in algebraic geometry (e.g., the ' 77
Grauert-Schneider conjecture) imply that π^{*} fails to be surjective for \mathbb{P}^{n} when $n \geq 5$.

Jouanolou descent I

Suppose $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X.

- π^{*} fails to be injective (very general phenomenon!), even for $X=\mathbb{P}^{1}$ (e.g., because \tilde{X} is affine, π^{*} splits extensions)
- Can π^{*} be surjective?

Long-standing conjectures in algebraic geometry (e.g., the ' 77
Grauert-Schneider conjecture) imply that π^{*} fails to be surjective for \mathbb{P}^{n} when
$n \geq 5$.
If π^{*} does fail to be surjective, can we find a counter-example?

Jouanolou descent I

Suppose $\pi: \tilde{X} \rightarrow X$ is a Jouanolou device for X.

- π^{*} fails to be injective (very general phenomenon!), even for $X=\mathbb{P}^{1}$ (e.g., because \tilde{X} is affine, π^{*} splits extensions)
- Can π^{*} be surjective?

Long-standing conjectures in algebraic geometry (e.g., the ' 77
Grauert-Schneider conjecture) imply that π^{*} fails to be surjective for \mathbb{P}^{n} when
$n \geq 5$.
If π^{*} does fail to be surjective, can we find a counter-example?
What happens in low dimensions?

Jouanolou descent II

Theorem (A., J. Fasel, M. Hopkins)

If X is a smooth projective variety of dimension ≤ 2 over \mathbb{C}, and (\tilde{X}, π) is a Jouanolou device for X, then $\pi^{*}: \mathscr{V}_{r}^{\text {alg }}(X) \rightarrow \mathscr{V}_{r}^{\text {alg }}(\tilde{X})$ is surjective.

Jouanolou descent II

Theorem (A., J. Fasel, M. Hopkins)

If X is a smooth projective variety of dimension ≤ 2 over \mathbb{C}, and (\tilde{X}, π) is a Jouanolou device for X, then $\pi^{*}: \mathscr{V}_{r}^{\text {alg }}(X) \rightarrow \mathscr{V}_{r}^{\text {alg }}(\tilde{X})$ is surjective.

Proof.

- Idea: Describe the target of π^{*} and construct enough vector bundles on X.

Jouanolou descent II

Theorem (A., J. Fasel, M. Hopkins)

If X is a smooth projective variety of dimension ≤ 2 over \mathbb{C}, and (\tilde{X}, π) is a Jouanolou device for X, then $\pi^{*}: \mathscr{V}_{r}^{\text {alg }}(X) \rightarrow \mathscr{V}_{r}^{\text {alg }}(\tilde{X})$ is surjective.

Proof.

- Idea: Describe the target of π^{*} and construct enough vector bundles on X.
- Use obstruction theory to do describe $\left[X, G r_{r}\right]_{\mathbb{A}^{1}}$ in cohomological terms;

Jouanolou descent II

Theorem (A., J. Fasel, M. Hopkins)

If X is a smooth projective variety of dimension $\leq 2 \operatorname{over} \mathbb{C}$, and (\tilde{X}, π) is a Jouanolou device for X, then $\pi^{*}: \mathscr{V}_{r}^{\text {alg }}(X) \rightarrow \mathscr{V}_{r}^{\text {alg }}(\tilde{X})$ is surjective.

Proof.

- Idea: Describe the target of π^{*} and construct enough vector bundles on X.
- Use obstruction theory to do describe $\left[X, G r_{r}\right]_{\mathbb{A}^{1}}$ in cohomological terms;
- Use the Hartshorne-Serre correspondence (between codimension 2 lci schemes and rank 2 vector bundles) to construct the required vb on X.

Obstruction theory in \mathbb{A}^{1}-homotopy

Classical homotopy theory gives techniques for providing a "cohomological" description of homotopy classes: one factors a space into homotopically simple spaces (Eilenberg-Mac Lane spaces). F. Morel developed these ideas in algebraic geometry.

Obstruction theory in \mathbb{A}^{1}-homotopy

Classical homotopy theory gives techniques for providing a "cohomological" description of homotopy classes: one factors a space into homotopically simple spaces (Eilenberg-Mac Lane spaces). F. Morel developed these ideas in algebraic geometry.

If (\mathscr{X}, x) is a pointed space, we may define \mathbb{A}^{1}-homotopy sheaves $\boldsymbol{\pi}_{i}^{\mathbb{A}^{1}}(\mathscr{X}, x)$.

Obstruction theory in \mathbb{A}^{1}-homotopy

Classical homotopy theory gives techniques for providing a "cohomological" description of homotopy classes: one factors a space into homotopically simple spaces (Eilenberg-Mac Lane spaces). F. Morel developed these ideas in algebraic geometry.

If (\mathscr{X}, x) is a pointed space, we may define \mathbb{A}^{1}-homotopy sheaves $\boldsymbol{\pi}_{i}^{\mathbb{A}^{1}}(\mathscr{X}, x)$.
\mathbb{A}^{1}-Postnikov tower: given a pointed \mathbb{A}^{1}-connected space, we can build \mathscr{X} inductively out of Eilenberg-Mac Lane spaces $K(\boldsymbol{\pi}, n)$; these have exactly 1 non-trivial \mathbb{A}^{1}-homotopy sheaf in degree n

Obstruction theory in \mathbb{A}^{1}-homotopy

Classical homotopy theory gives techniques for providing a "cohomological" description of homotopy classes: one factors a space into homotopically simple spaces (Eilenberg-Mac Lane spaces). F. Morel developed these ideas in algebraic geometry.

If (\mathscr{X}, x) is a pointed space, we may define \mathbb{A}^{1}-homotopy sheaves $\boldsymbol{\pi}_{i}^{\mathbb{A}^{1}}(\mathscr{X}, x)$.
\mathbb{A}^{1}-Postnikov tower: given a pointed \mathbb{A}^{1}-connected space, we can build \mathscr{X} inductively out of Eilenberg-Mac Lane spaces $K(\boldsymbol{\pi}, n)$; these have exactly 1 non-trivial \mathbb{A}^{1}-homotopy sheaf in degree n
We can inductively describe the set of maps $[U, \mathscr{X}]_{\mathbb{A}^{1}}$ using sheaf cohomology with coefficients in \mathbb{A}^{1}-homotopy sheaves

Intuition: a space should be \mathbb{A}^{1}-connected if points can be connected by chains of affine lines

Intuition: a space should be \mathbb{A}^{1}-connected if points can be connected by chains of affine lines

Example
For any integer $n \geq 1, \pi_{0}^{\mathbb{A}^{1}}\left(S L_{n}\right)=1$

Intuition: a space should be \mathbb{A}^{1}-connected if points can be connected by chains of affine lines

Example
For any integer $n \geq 1, \pi_{0}^{\mathbb{A}^{1}}\left(S L_{n}\right)=1$
Turns out it suffices to check this on sections over fields

Intuition: a space should be \mathbb{A}^{1}-connected if points can be connected by chains of affine lines

Example

For any integer $n \geq 1, \pi_{0}^{\mathbb{A}^{1}}\left(S L_{n}\right)=1$
Turns out it suffices to check this on sections over fields
For any field F, any matrix in $S L_{n}(F)$ may be factored as a product of elementary (shearing) matrices

Intuition: a space should be \mathbb{A}^{1}-connected if points can be connected by chains of affine lines

Example

For any integer $n \geq 1, \pi_{0}^{\mathbb{A}^{1}}\left(S L_{n}\right)=1$
Turns out it suffices to check this on sections over fields
For any field F, any matrix in $S L_{n}(F)$ may be factored as a product of elementary (shearing) matrices
Any elementary shearing matrix is \mathbb{A}^{1}-homotopic: if $a \in F$ then use

$$
\left(\begin{array}{cc}
1 & a t \\
0 & 1
\end{array}\right)
$$

Intuition: a space should be \mathbb{A}^{1}-connected if points can be connected by chains of affine lines

Example

For any integer $n \geq 1, \pi_{0}^{\mathbb{A}^{1}}\left(S L_{n}\right)=1$
Turns out it suffices to check this on sections over fields
For any field F, any matrix in $S L_{n}(F)$ may be factored as a product of elementary (shearing) matrices
Any elementary shearing matrix is \mathbb{A}^{1}-homotopic: if $a \in F$ then use

$$
\left(\begin{array}{cc}
1 & a t \\
0 & 1
\end{array}\right)
$$

Any matrix in $S L_{n}(F)$ is naively \mathbb{A}^{1}-homotopic to the identity.

Example

$\pi_{1}^{\mathbb{A}^{1}}\left(B G L_{1}\right)=G L_{1}$

Example

$\pi_{1}^{\mathbb{A}^{1}}\left(B G L_{1}\right)=G L_{1}$

$G L_{1}$ is discrete, i.e., $\pi_{0}^{\mathbb{A}^{1}}\left(G L_{1}\right)=G L_{1}$: there are no non-constant algebraic maps $\mathbb{A}^{1} \rightarrow G L_{1}$

Example

$\pi_{1}^{\mathbb{A}^{1}}\left(B G L_{1}\right)=G L_{1}$

$G L_{1}$ is discrete, i.e., $\pi_{0}^{\mathbb{A}^{1}}\left(G L_{1}\right)=G L_{1}$: there are no non-constant algebraic maps $\mathbb{A}^{1} \rightarrow G L_{1}$
the map $\mathbb{A}^{\infty} \backslash 0 \rightarrow B G L_{1}$ is a principal $G L_{1}$-bundle and this yields an \mathbb{A}^{1}-fiber sequence

Example

$\pi_{1}^{\mathbb{A}^{1}}\left(B G L_{1}\right)=G L_{1}$
$G L_{1}$ is discrete, i.e., $\pi_{0}^{\mathbb{A}^{1}}\left(G L_{1}\right)=G L_{1}$: there are no non-constant algebraic maps $\mathbb{A}^{1} \rightarrow G L_{1}$
the map $\mathbb{A}^{\infty} \backslash 0 \rightarrow B G L_{1}$ is a principal $G L_{1}$-bundle and this yields an \mathbb{A}^{1}-fiber sequence
since $\mathbb{A}^{\infty} \backslash 0$ is \mathbb{A}^{1}-contractible, the result follows from the long exact sequence in homotopy

Example

$$
\boldsymbol{\pi}_{1}^{\mathbb{A}^{1}}\left(B G L_{1}\right)=G L_{1}
$$

$G L_{1}$ is discrete, i.e., $\pi_{0}^{\mathbb{A}^{1}}\left(G L_{1}\right)=G L_{1}$: there are no non-constant algebraic maps $\mathbb{A}^{1} \rightarrow G L_{1}$
the map $\mathbb{A}^{\infty} \backslash 0 \rightarrow B G L_{1}$ is a principal $G L_{1}$-bundle and this yields an \mathbb{A}^{1}-fiber sequence
since $\mathbb{A}^{\infty} \backslash 0$ is \mathbb{A}^{1}-contractible, the result follows from the long exact sequence in homotopy

Example

For any $n \geq 2, \pi_{1}^{\mathbb{A}_{1}^{1}}\left(B S L_{n}\right)=1$; one identifies $\pi_{1}^{\mathbb{A}^{1}}\left(B S L_{n}\right)=\pi_{0}\left(S L_{n}\right)$ using a fiber sequence.

Example

$$
\boldsymbol{\pi}_{1}^{\mathbb{A}^{1}}\left(B G L_{1}\right)=G L_{1}
$$

$G L_{1}$ is discrete, i.e., $\pi_{0}^{\mathbb{A}^{1}}\left(G L_{1}\right)=G L_{1}$: there are no non-constant algebraic maps $\mathbb{A}^{1} \rightarrow G L_{1}$
the map $\mathbb{A}^{\infty} \backslash 0 \rightarrow B G L_{1}$ is a principal $G L_{1}-$-bundle and this yields an \mathbb{A}^{1}-fiber sequence
since $\mathbb{A}^{\infty} \backslash 0$ is \mathbb{A}^{1}-contractible, the result follows from the long exact sequence in homotopy

Example

For any $n \geq 2, \pi_{1}^{\mathbb{A}^{1}}\left(B S L_{n}\right)=1$; one identifies $\pi_{1}^{\mathbb{A}^{1}}\left(B S L_{n}\right)=\pi_{0}\left(S L_{n}\right)$ using a fiber sequence.

Example

For any $n \geq 2$, the map $B G L_{n} \rightarrow B G L_{1}$ coming from det : $G L_{n} \rightarrow G L_{1}$ induces an isomorphism $\pi_{1}^{\mathbb{A}^{1}}\left(B G L_{n}\right)=G L_{1}$.

Example (F. Morel)

There are isomorphisms

$$
\boldsymbol{\pi}_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

Example (F. Morel)

There are isomorphisms

$$
\boldsymbol{\pi}_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

\mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf

Example (F. Morel)

There are isomorphisms

$$
\boldsymbol{\pi}_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

\mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf
the map $B S L_{n} \rightarrow B G L_{\infty}$ induces an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ for $n \geq 3$ and the latter represents Quillen's algebraic K-theory

Example (F. Morel)

There are isomorphisms

$$
\pi_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

\mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf
the map $B S L_{n} \rightarrow B G L_{\infty}$ induces an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ for $n \geq 3$ and the latter represents Quillen's algebraic K-theory $\mathbf{K}_{2}^{M}=\pi_{1}^{\mathbb{A}^{1}}\left(S L_{n}\right), n \geq 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_{2})

Example (F. Morel)

There are isomorphisms

$$
\pi_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

\mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf
the map $B S L_{n} \rightarrow B G L_{\infty}$ induces an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ for $n \geq 3$ and the latter represents Quillen's algebraic K-theory $\mathbf{K}_{2}^{M}=\pi_{1}^{\mathbb{A}^{1}}\left(S L_{n}\right), n \geq 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_{2})
$\mathbf{K}_{2}^{M W}$ is the second Milnor-Witt K-theory sheaf

Example (F. Morel)

There are isomorphisms

$$
\boldsymbol{\pi}_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

\mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf
the map $B S L_{n} \rightarrow B G L_{\infty}$ induces an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ for $n \geq 3$ and the latter represents Quillen's algebraic K-theory
$\mathbf{K}_{2}^{M}=\pi_{1}^{\mathbb{A}^{1}}\left(S L_{n}\right), n \geq 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_{2})
$\mathbf{K}_{2}^{M W}$ is the second Milnor-Witt K-theory sheaf
$S L_{2}=S p_{2}$ and the map $B S L_{2} \rightarrow B S p_{\infty}$ is an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$

Example (F. Morel)

There are isomorphisms

$$
\pi_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

\mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf
the map $B S L_{n} \rightarrow B G L_{\infty}$ induces an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ for $n \geq 3$ and the latter represents Quillen's algebraic K-theory
$\mathbf{K}_{2}^{M}=\pi_{1}^{\mathbb{A}^{1}}\left(S L_{n}\right), n \geq 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_{2})
$\mathbf{K}_{2}^{M W}$ is the second Milnor-Witt K-theory sheaf
$S L_{2}=S p_{2}$ and the map $B S L_{2} \rightarrow B S p_{\infty}$ is an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ the latter represents symplectic K-theory and includes information about symplectic forms over our base

Example (F. Morel)

There are isomorphisms

$$
\pi_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

\mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf
the map $B S L_{n} \rightarrow B G L_{\infty}$ induces an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ for $n \geq 3$ and the latter represents Quillen's algebraic K-theory
$\mathbf{K}_{2}^{M}=\pi_{1}^{\mathbb{A}^{1}}\left(S L_{n}\right), n \geq 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_{2})
$\mathbf{K}_{2}^{M W}$ is the second Milnor-Witt K-theory sheaf
$S L_{2}=S p_{2}$ and the map $B S L_{2} \rightarrow B S p_{\infty}$ is an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ the latter represents symplectic K-theory and includes information about symplectic forms over our base
the map $B S p_{\infty} \rightarrow B G L_{\infty}$ yields a map $\mathbf{K}_{2}^{M W} \rightarrow \mathbf{K}_{2}^{M}$; this map is an epimorphism of sheaves and its kernel may be described via the "fundamental ideal" in the Witt ring (A. Suslin)

Motivic vector bundles on algebraic surfaces

Theorem

If k is algebraically closed, and \tilde{X} is the Jouanolou device of a smooth projective surface X, then for $r \geq 2$ the map

$$
\left(c_{1}, c_{2}\right): \mathscr{V}_{r}^{\text {alg }}(\tilde{X}) \longrightarrow \operatorname{Pic}(\tilde{X}) \times H^{4,2}(\tilde{X}, \mathbb{Z})
$$

is an isomorphism.

Proof.

Obstruction theory! Case of trivial determinant: there is a canonical "Euler class" map

$$
B S L_{2} \longrightarrow K\left(\mathbf{K}_{2}^{M W}, 2\right)
$$

if \tilde{X} is as in the statement, then $H^{2}\left(\tilde{X}, \mathbf{K}_{2}^{M W}\right) \rightarrow H^{2}\left(\tilde{X}, \mathbf{K}_{2}^{M}\right) \cong H^{4,2}(\tilde{X}, \mathbb{Z})$ is an isomorphism; any class in $H^{2}\left(\tilde{X}, \mathbf{K}_{2}^{M W}\right)$ lifts uniquely to $\left[\tilde{X}, B S L_{2}\right]_{\mathbb{A}^{1}}$.

Thank you!

