Algebraic vs. topological vector bundles joint with Jean Fasel and Mike Hopkins

Aravind Asok (USC)

October 27, 2020

Throughout: k a commutative ring, usually a field, frequently \mathbb{C} . X is a smooth k-algebraic variety (Zariski top); Sm_k - category of such objects Throughout: *k* a commutative ring, usually a field, frequently \mathbb{C} . *X* is a smooth *k*-algebraic variety (Zariski top); Sm_k - category of such objects if $k = \mathbb{C}$, X^{an} is $X(\mathbb{C})$ as a \mathbb{C} -manifold (usual top);

X is a smooth k-algebraic variety (Zariski top); Sm_k - category of such objects

if $k = \mathbb{C}$, X^{an} is $X(\mathbb{C})$ as a \mathbb{C} -manifold (usual top);

 $\mathscr{V}_r^{alg}(X)$ - \cong -classes of *algebraic* vb of rank *r*;

X is a smooth k-algebraic variety (Zariski top); Sm_k - category of such objects

if $k = \mathbb{C}$, X^{an} is $X(\mathbb{C})$ as a \mathbb{C} -manifold (usual top);

 $\mathscr{V}_r^{alg}(X)$ - \cong -classes of *algebraic* vb of rank *r*;

 $\mathscr{V}_r^{top}(X)$ - \cong -classes of \mathbb{C} -vb of rank r on X^{an}

X is a smooth k-algebraic variety (Zariski top); Sm_k - category of such objects

if $k = \mathbb{C}$, X^{an} is $X(\mathbb{C})$ as a \mathbb{C} -manifold (usual top); $\mathscr{V}_r^{alg}(X) - \cong$ -classes of *algebraic* vb of rank *r*; $\mathscr{V}_r^{top}(X) - \cong$ -classes of \mathbb{C} -vb of rank *r* on X^{an}

If $k \subset \mathbb{C}$, set:

$$\Phi_r: \mathscr{V}_r^{alg}(X) \longrightarrow \mathscr{V}_r^{top}(X).$$

X is a smooth *k*-algebraic variety (Zariski top); Sm_k - category of such objects if $k = \mathbb{C}$, X^{an} is $X(\mathbb{C})$ as a \mathbb{C} -manifold (usual top);

 $\mathcal{V}_r^{alg}(X) - \cong$ -classes of *algebraic* vb of rank *r*; $\mathcal{V}_r^{top}(X) - \cong$ -classes of \mathbb{C} -vb of rank *r* on X^{an}

If $k \subset \mathbb{C}$, set:

$$\Phi_r: \mathscr{V}_r^{alg}(X) \longrightarrow \mathscr{V}_r^{top}(X).$$

Question

Can we characterize the image of Φ_r *?*

Assume *X* a smooth \mathbb{C} -algebraic variety of dimension *d*:

Theorem

The space X^{an} has the homotopy type of a finite CW complex.

Assume *X* a smooth \mathbb{C} -algebraic variety of dimension *d*:

Theorem

The space X^{an} has the homotopy type of a finite CW complex.

Proof.

Case. If X is affine, i.e., $X \subset \mathbb{C}^n$ a closed subset; Morse theory (Andreotti–Frankel);

in fact, *X* is a $\leq d$ -dim'l cell complex

Assume *X* a smooth \mathbb{C} -algebraic variety of dimension *d*:

Theorem

The space X^{an} has the homotopy type of a finite CW complex.

Proof.

Case. If *X* is affine, i.e., $X \subset \mathbb{C}^n$ a closed subset; Morse theory (Andreotti–Frankel);

in fact, *X* is a $\leq d$ -dim'l cell complex

Case. If *X* not affine: \exists a smooth *affine* \mathbb{C} -variety \tilde{X} and a morphism $\pi : \tilde{X} \to X$ that is Zariski locally trivial with fibers isomorphic to \mathbb{C}^m (Jouanolou–Thomason);

Assume *X* a smooth \mathbb{C} -algebraic variety of dimension *d*:

Theorem

The space X^{an} has the homotopy type of a finite CW complex.

Proof.

Case. If *X* is affine, i.e., $X \subset \mathbb{C}^n$ a closed subset; Morse theory (Andreotti–Frankel);

in fact, *X* is a $\leq d$ -dim'l cell complex

Case. If *X* not affine: \exists a smooth *affine* \mathbb{C} -variety \tilde{X} and a morphism $\pi : \tilde{X} \to X$ that is Zariski locally trivial with fibers isomorphic to \mathbb{C}^m (Jouanolou–Thomason);

the morphism π is *not* a vector bundle projection; *is* topologically trivial.

Projective varieties

Example (Projective space)

When
$$X = \mathbb{P}(V)$$
, set $\widetilde{\mathbb{P}(V)} := \mathbb{P}(V) \times \mathbb{P}(V^{\vee}) \setminus I$

Projective varieties

Example (Projective space)

When $X = \mathbb{P}(V)$, set $\widetilde{\mathbb{P}(V)} := \mathbb{P}(V) \times \mathbb{P}(V^{\vee}) \setminus I$

I = incidence variety of hyperplanes vanishing on a line;

Projective varieties

Example (Projective space)

When
$$X = \mathbb{P}(V)$$
, set $\widetilde{\mathbb{P}(V)} := \mathbb{P}(V) \times \mathbb{P}(V^{\vee}) \setminus I$

- *I* = incidence variety of hyperplanes vanishing on a line;
- $\pi: \mathbb{P}(V) \to \mathbb{P}(V)$ is induced by projection (fibers are affine spaces)

Example (Projective space)

When
$$X = \mathbb{P}(V)$$
, set $\widetilde{\mathbb{P}(V)} := \mathbb{P}(V) \times \mathbb{P}(V^{\vee}) \setminus I$

I = incidence variety of hyperplanes vanishing on a line;

 $\pi: \mathbb{P}(V) \to \mathbb{P}(V)$ is induced by projection (fibers are affine spaces)

Definition

If X is smooth k-algebraic variety, a **Jouanolou device** for X is (\tilde{X}, π) with $\pi : \tilde{X} \to X$ Zariski locally trivial with affine space fibers, and \tilde{X} smooth affine.

Example (Projective space)

When
$$X = \mathbb{P}(V)$$
, set $\widetilde{\mathbb{P}(V)} := \mathbb{P}(V) \times \mathbb{P}(V^{\vee}) \setminus I$

I = incidence variety of hyperplanes vanishing on a line;

 $\pi: \mathbb{P}(V) \to \mathbb{P}(V)$ is induced by projection (fibers are affine spaces)

Definition

If *X* is smooth *k*-algebraic variety, a **Jouanolou device** for *X* is (\tilde{X}, π) with $\pi : \tilde{X} \to X$ Zariski locally trivial with affine space fibers, and \tilde{X} smooth affine.

Example

We call $\widetilde{\mathbb{P}(V)}$ the standard Jouanolou device of projective space.

Example (Projective space)

When
$$X = \mathbb{P}(V)$$
, set $\widetilde{\mathbb{P}(V)} := \mathbb{P}(V) \times \mathbb{P}(V^{\vee}) \setminus I$

I = incidence variety of hyperplanes vanishing on a line;

 $\pi: \widetilde{\mathbb{P}(V)} \to \mathbb{P}(V)$ is induced by projection (fibers are affine spaces)

Definition

If *X* is smooth *k*-algebraic variety, a **Jouanolou device** for *X* is (\tilde{X}, π) with $\pi : \tilde{X} \to X$ Zariski locally trivial with affine space fibers, and \tilde{X} smooth affine.

Example

We call $\widetilde{\mathbb{P}(V)}$ the standard Jouanolou device of projective space. If $X \hookrightarrow \mathbb{P}^n$ is a closed subvariety, then we get a Jouanolou device for X by restricting the standard Jounolou device for \mathbb{P}^n .

Theorem (Pontryagin-Steenrod)

There is a canonical bijection $\mathscr{V}_r^{top}(X) \cong [X, Gr_r].$

Theorem (Pontryagin-Steenrod)

There is a canonical bijection $\mathscr{V}_r^{top}(X) \cong [X, Gr_r].$

Basic cohomological invariants:

Theorem (Pontryagin-Steenrod)

There is a canonical bijection $\mathscr{V}_r^{top}(X) \cong [X, Gr_r].$

Basic cohomological invariants:

$$H^*(Gr_r, \mathbb{Z}) \cong \mathbb{Z}[c_1^{top}, \dots, c_r^{top}], \deg(c_i^{top}) = 2i$$
 yields

Theorem (Pontryagin-Steenrod)

There is a canonical bijection $\mathscr{V}_r^{top}(X) \cong [X, Gr_r].$

Basic cohomological invariants:

 $H^*(Gr_r, \mathbb{Z}) \cong \mathbb{Z}[c_1^{top}, \dots, c_r^{top}], \deg(c_i^{top}) = 2i \text{ yields}$ Chern classes: if $f: X \to Gr_r$ represents \mathcal{E} , then $c_i^{top}(\mathcal{E}) := f^*c_i^{top}$;

Theorem (Pontryagin–Steenrod)

There is a canonical bijection $\mathscr{V}_r^{top}(X) \cong [X, Gr_r].$

Basic cohomological invariants:

 $H^*(Gr_r, \mathbb{Z}) \cong \mathbb{Z}[c_1^{top}, \dots, c_r^{top}], \deg(c_i^{top}) = 2i \text{ yields}$ Chern classes: if $f: X \to Gr_r$ represents \mathcal{E} , then $c_i^{top}(\mathcal{E}) := f^* c_i^{top};$ defines a function $\mathscr{V}_r^{top}(X) \to \prod_{i=1}^r H^{2i}(X; \mathbb{Z})$

Theorem (Pontryagin–Steenrod)

There is a canonical bijection $\mathscr{V}_r^{top}(X) \cong [X, Gr_r].$

Basic cohomological invariants:

 $H^*(Gr_r, \mathbb{Z}) \cong \mathbb{Z}[c_1^{top}, \dots, c_r^{top}], \deg(c_i^{top}) = 2i \text{ yields}$ Chern classes: if $f: X \to Gr_r$ represents \mathcal{E} , then $c_i^{top}(\mathcal{E}) := f^* c_i^{top};$ defines a function $\mathscr{V}_r^{top}(X) \to \prod_{i=1}^r H^{2i}(X; \mathbb{Z})$

Sub-question: are there restrictions on the possible Chern classes of algebraic vector bundles?

Theorem

If we fix a rank r and classes $c_i \in H^{2i}(X, \mathbb{Z})$, i = 1, ..., r, then the subset of $\mathscr{V}_r^{top}(X)$ consisting of bundles with these Chern classes is finite.

Theorem

If we fix a rank r and classes $c_i \in H^{2i}(X, \mathbb{Z})$, i = 1, ..., r, then the subset of $\mathscr{V}_r^{top}(X)$ consisting of bundles with these Chern classes is finite.

Proof.

the map $c: Gr_r \to \prod_{i=1}^r K(\mathbb{Z}, 2i)$ is a weak equivalence for r = 1, and a \mathbb{Q} -weak equivalence for r > 1;

Theorem

If we fix a rank r and classes $c_i \in H^{2i}(X, \mathbb{Z})$, i = 1, ..., r, then the subset of $\mathscr{V}_r^{top}(X)$ consisting of bundles with these Chern classes is finite.

Proof.

the map $c: Gr_r \to \prod_{i=1}^r K(\mathbb{Z}, 2i)$ is a weak equivalence for r = 1, and a \mathbb{Q} -weak equivalence for r > 1;

the homotopy fiber of c has *finite* homotopy groups

Theorem

If we fix a rank r and classes $c_i \in H^{2i}(X, \mathbb{Z})$, i = 1, ..., r, then the subset of $\mathscr{V}_r^{top}(X)$ consisting of bundles with these Chern classes is finite.

Proof.

the map $c: Gr_r \to \prod_{i=1}^r K(\mathbb{Z}, 2i)$ is a weak equivalence for r = 1, and a \mathbb{Q} -weak equivalence for r > 1;

the homotopy fiber of *c* has *finite* homotopy groups

use obstruction theory via the Moore–Postnikov factorization of c

Theorem

If we fix a rank r and classes $c_i \in H^{2i}(X, \mathbb{Z})$, i = 1, ..., r, then the subset of $\mathscr{V}_r^{top}(X)$ consisting of bundles with these Chern classes is finite.

Proof.

the map $c: Gr_r \to \prod_{i=1}^r K(\mathbb{Z}, 2i)$ is a weak equivalence for r = 1, and a \mathbb{Q} -weak equivalence for r > 1;

the homotopy fiber of *c* has *finite* homotopy groups

use obstruction theory via the Moore–Postnikov factorization of c

Sub question: are there restrictions on these "further" cohomological invariants for algebraic vector bundles?

Vector bundles are naturally described in terms of sheaf cohomology:

Vector bundles are naturally described in terms of sheaf cohomology:

Proposition

$$H^1(X, GL_r) \cong \mathscr{V}_r^{alg}(X).$$

Vector bundles are naturally described in terms of sheaf cohomology:

Proposition

$$H^1(X, GL_r) \cong \mathscr{V}_r^{alg}(X).$$

Open cover $u: U \to X$, yields $\check{C}(U) \to X$

Vector bundles are naturally described in terms of sheaf cohomology:

Proposition

$$H^1(X, GL_r) \cong \mathscr{V}_r^{alg}(X).$$

Open cover $u: U \to X$, yields $\check{C}(U) \to X$ Bar construction for BGL_r

Vector bundles are naturally described in terms of sheaf cohomology:

Proposition

$$H^1(X, GL_r) \cong \mathscr{V}_r^{alg}(X).$$

Open cover $u : U \to X$, yields $\check{C}(U) \to X$ Bar construction for BGL_r Cocycles correspond to morphisms $\check{C}(u) \to BGL_r$

Vector bundles are naturally described in terms of sheaf cohomology:

Proposition

 $H^1(X, GL_r) \cong \mathscr{V}_r^{alg}(X).$

Open cover $u: U \to X$, yields $\check{C}(U) \to X$

Bar construction for BGL_r

Cocycles correspond to morphisms $\check{C}(u) \rightarrow BGL_r$

Build a homotopy theory $\mathscr{H}_{alg}(k)$ for varieties: maps $\check{C}(u) \to X$ are weak equivalences.

The set $\mathscr{V}_r^{alg}(X)$ I: non-abelian sheaf cohomology

Vector bundles are naturally described in terms of sheaf cohomology:

Proposition

$$H^1(X, GL_r) \cong \mathscr{V}_r^{alg}(X).$$

Open cover $u : U \to X$, yields $\check{C}(U) \to X$ Bar construction for BGL_r Cocycles correspond to morphisms $\check{C}(u) \to BGL_r$ Build a homotopy theory $\mathscr{H}_{alg}(k)$ for varieties: maps $\check{C}(u) \to X$ are weak equivalences.

Proposition

$$\mathscr{V}_r^{alg}(X) = [X, BGL_r]_{\mathscr{H}_{alg}(k)}.$$

The set $\mathscr{V}_r^{alg}(X)$ I: non-abelian sheaf cohomology

Vector bundles are naturally described in terms of sheaf cohomology:

Proposition

 $H^1(X, GL_r) \cong \mathscr{V}_r^{alg}(X).$

Open cover $u : U \to X$, yields $\check{C}(U) \to X$ Bar construction for BGL_r Cocycles correspond to morphisms $\check{C}(u) \to BGL_r$ Build a homotopy theory $\mathscr{H}_{alg}(k)$ for varieties: maps $\check{C}(u) \to X$ are weak equivalences.

Proposition

$$\mathscr{V}_r^{alg}(X) = [X, BGL_r]_{\mathscr{H}_{alg}(k)}.$$

Criticism: BGL_r is not equivalent to Gr_r in $\mathcal{H}_{alg}(k)$.

Homotopy invariance: replace unit interval *I* by the affine line \mathbb{A}^1

Homotopy invariance: replace unit interval *I* by the affine line \mathbb{A}^1

Definition

A (contravariant) functor \mathscr{F} (valued in some category **C**) on Sm_k is *homotopy invariant*

Homotopy invariance: replace unit interval *I* by the affine line \mathbb{A}^1

Definition

A (contravariant) functor \mathscr{F} (valued in some category **C**) on Sm_k is *homotopy invariant* if the pullback map

$$\mathscr{F}(U) \to \mathscr{F}(U \times \mathbb{A}^1)$$

is an isomorphism for all $U \in Sm_k$.

Homotopy invariance: replace unit interval *I* by the affine line \mathbb{A}^1

Definition

A (contravariant) functor \mathscr{F} (valued in some category **C**) on Sm_k is *homotopy invariant* if the pullback map

$$\mathscr{F}(U) \to \mathscr{F}(U \times \mathbb{A}^1)$$

is an isomorphism for all $U \in Sm_k$.

Proposition

The functor $U \mapsto \mathscr{V}_1^{alg}(U) = Pic(U)$ on Sm_k is homotopy invariant.

Homotopy invariance: replace unit interval *I* by the affine line \mathbb{A}^1

Definition

A (contravariant) functor \mathscr{F} (valued in some category **C**) on Sm_k is *homotopy invariant* if the pullback map

$$\mathscr{F}(U) \to \mathscr{F}(U \times \mathbb{A}^1)$$

is an isomorphism for all $U \in Sm_k$.

Proposition

The functor $U \mapsto \mathscr{V}_1^{alg}(U) = Pic(U)$ on Sm_k is homotopy invariant.

Warning: if we enlarge Sm_k by including sufficiently singular varieties, then the functor $U \mapsto Pic(U)$ fails to be homotopy invariant.

Question (Serre '55)

If $X = \mathbb{A}_k^n$, then are all vector bundles trivial?

Question (Serre '55)

If $X = \mathbb{A}_k^n$, then are all vector bundles trivial?

n = 1: yes, structure theorem for f.g. modules over a PID

Question (Serre '55)

If $X = \mathbb{A}_k^n$, then are all vector bundles trivial?

n = 1: yes, structure theorem for f.g. modules over a PID

n = 2: yes, Seshadri '58

Question (Serre '55)

If $X = \mathbb{A}_k^n$, then are all vector bundles trivial?

n = 1: yes, structure theorem for f.g. modules over a PID n = 2: yes, Seshadri '58 yes if r > n, Bass '64

Question (Serre '55)

If $X = \mathbb{A}_k^n$, then are all vector bundles trivial?

- n = 1: yes, structure theorem for f.g. modules over a PID
- n = 2: yes, Seshadri '58
- yes if r > n, Bass '64
- n = 3: yes if k algebraically closed, Murthy–Towber '74

Question (Serre '55)

If $X = \mathbb{A}_k^n$, then are all vector bundles trivial?

- n = 1: yes, structure theorem for f.g. modules over a PID
- n = 2: yes, Seshadri '58

yes if r > n, Bass '64

- n = 3: yes if k algebraically closed, Murthy–Towber '74
- n = 3, 4, 5: yes, Suslin–Vaserstein '73/'74

Question (Serre '55)

If $X = \mathbb{A}_k^n$, then are all vector bundles trivial?

- n = 1: yes, structure theorem for f.g. modules over a PID
- n = 2: yes, Seshadri '58

yes if r > n, Bass '64

n = 3: yes if k algebraically closed, Murthy–Towber '74

n = 3, 4, 5: yes, Suslin–Vaserstein '73/'74

Theorem (Quillen-Suslin '76)

If k is a PID, then every vector bundle on \mathbb{A}_k^n is trivial.

If k is a regular ring of finite Krull dimension, then for any $r \ge 0$

 $\mathscr{V}_r(\operatorname{Spec} k) \longrightarrow \mathscr{V}_r(\mathbb{A}^1_k)$

is a bijection.

If k is a regular ring of finite Krull dimension, then for any $r \ge 0$

$$\mathscr{V}_r(\operatorname{Spec} k) \longrightarrow \mathscr{V}_r(\mathbb{A}^1_k)$$

is a bijection.

Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for k a polynomial ring over a Dedekind domain.

If k is a regular ring of finite Krull dimension, then for any $r \ge 0$

$$\mathscr{V}_r(\operatorname{Spec} k) \longrightarrow \mathscr{V}_r(\mathbb{A}^1_k)$$

is a bijection.

Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for k a polynomial ring over a Dedekind domain.

Theorem (Lindel '81)

The Bass–Quillen conjecture is true if k contains a field.

If k is a regular ring of finite Krull dimension, then for any $r \ge 0$

$$\mathscr{V}_r(\operatorname{Spec} k) \longrightarrow \mathscr{V}_r(\mathbb{A}^1_k)$$

is a bijection.

Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for k a polynomial ring over a Dedekind domain.

Theorem (Lindel '81)

The Bass–Quillen conjecture is true if k contains a field.

Popescu '89 extended the Lindel's theorem to some arithmetic situations (e.g., k is regular over a Dedekind domain with perfect residue fields)

If k is a regular ring of finite Krull dimension, then for any $r \ge 0$

$$\mathscr{V}_r(\operatorname{Spec} k) \longrightarrow \mathscr{V}_r(\mathbb{A}^1_k)$$

is a bijection.

Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for k a polynomial ring over a Dedekind domain.

Theorem (Lindel '81)

The Bass–Quillen conjecture is true if k contains a field.

Popescu '89 extended the Lindel's theorem to some arithmetic situations (e.g., k is regular over a Dedekind domain with perfect residue fields)

Still open in completely generality!

Unfortunately $\mathscr{V}_r^{alg}(-)$ fails to be homotopy invariant for $r \ge 2$.

Example (A., B. Doran '08)

Set $Q_4 = \operatorname{Spec} k[x_1, x_2, x_3, x_4, z] / \langle x_1 x_2 - x_3 x_4 = z(z+1) \rangle$

Unfortunately $\mathscr{V}_r^{alg}(-)$ fails to be homotopy invariant for $r \geq 2$.

Example (A., B. Doran '08)

Set
$$Q_4 = \operatorname{Spec} k[x_1, x_2, x_3, x_4, z] / \langle x_1 x_2 - x_3 x_4 = z(z+1) \rangle$$

 $E_2 \subset Q_4$ defined by $x_1 = x_3 = z + 1 = 0$ is isomorphic to \mathbb{A}^2

Unfortunately $\mathscr{V}_r^{alg}(-)$ fails to be homotopy invariant for $r \geq 2$.

Example (A., B. Doran '08)

Set
$$Q_4 = \operatorname{Spec} k[x_1, x_2, x_3, x_4, z]/\langle x_1x_2 - x_3x_4 = z(z+1)\rangle$$

 $E_2 \subset Q_4$ defined by $x_1 = x_3 = z+1 = 0$ is isomorphic to \mathbb{A}^2
If $k = \mathbb{C}$, $X_4 = Q_4 \setminus E_2$ is contractible: in fact, there is an explicit
morphism $\mathbb{A}^5 \to X_4$ that is Zariski locally trivial with fibers \mathbb{A}^1

Unfortunately $\mathscr{V}_r^{alg}(-)$ fails to be homotopy invariant for $r \geq 2$.

Example (A., B. Doran '08)

Set $Q_4 = \operatorname{Spec} k[x_1, x_2, x_3, x_4, z]/\langle x_1x_2 - x_3x_4 = z(z+1)\rangle$ $E_2 \subset Q_4$ defined by $x_1 = x_3 = z+1 = 0$ is isomorphic to \mathbb{A}^2 If $k = \mathbb{C}$, $X_4 = Q_4 \setminus E_2$ is contractible: in fact, there is an explicit morphism $\mathbb{A}^5 \to X_4$ that is Zariski locally trivial with fibers \mathbb{A}^1 Q_4 carries an explicit non-trivial rank 2 bundle (the Hopf bundle);

Unfortunately $\mathscr{V}_r^{alg}(-)$ fails to be homotopy invariant for $r \ge 2$.

Example (A., B. Doran '08)

Set $Q_4 = \operatorname{Spec} k[x_1, x_2, x_3, x_4, z]/\langle x_1x_2 - x_3x_4 = z(z+1)\rangle$ $E_2 \subset Q_4$ defined by $x_1 = x_3 = z+1 = 0$ is isomorphic to \mathbb{A}^2 If $k = \mathbb{C}$, $X_4 = Q_4 \setminus E_2$ is contractible: in fact, there is an explicit morphism $\mathbb{A}^5 \to X_4$ that is Zariski locally trivial with fibers \mathbb{A}^1 Q_4 carries an explicit non-trivial rank 2 bundle (the Hopf bundle); this bundle restricts non-trivially to X_4 , i.e., contractible varieties may carry non-trivial vector bundles!

Unfortunately $\mathscr{V}_r^{alg}(-)$ fails to be homotopy invariant for $r \ge 2$.

Example (A., B. Doran '08)

Set $Q_4 = \operatorname{Spec} k[x_1, x_2, x_3, x_4, z]/\langle x_1x_2 - x_3x_4 = z(z+1)\rangle$ $E_2 \subset Q_4$ defined by $x_1 = x_3 = z + 1 = 0$ is isomorphic to \mathbb{A}^2 If $k = \mathbb{C}$, $X_4 = Q_4 \setminus E_2$ is contractible: in fact, there is an explicit morphism $\mathbb{A}^5 \to X_4$ that is Zariski locally trivial with fibers \mathbb{A}^1 Q_4 carries an explicit non-trivial rank 2 bundle (the Hopf bundle); this bundle restricts non-trivially to X_4 , i.e., contractible varieties may carry non-trivial vector bundles!

Moral: homotopy invariance fails badly for non-affine varieties (even \mathbb{P}^1)!

The motivic homotopy category

• Naive homotopy (homotopies parameterized by \mathbb{A}^1) is not an equivalence relation

- Naive homotopy (homotopies parameterized by \mathbb{A}^1) is not an equivalence relation
- Gr_r has naturally the structure of a colimit of algebraic varieties

- Naive homotopy (homotopies parameterized by \mathbb{A}^1) is not an equivalence relation
- Gr_r has naturally the structure of a colimit of algebraic varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., Gr_r is not in this category, cannot form all quotients, etc.)

- Naive homotopy (homotopies parameterized by \mathbb{A}^1) is not an equivalence relation
- Gr_r has naturally the structure of a colimit of algebraic varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., Gr_r is not in this category, cannot form all quotients, etc.)
- Spc_k "spaces"; simplicial presheaves on Sm_k

- Naive homotopy (homotopies parameterized by \mathbb{A}^1) is not an equivalence relation
- Gr_r has naturally the structure of a colimit of algebraic varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., Gr_r is not in this category, cannot form all quotients, etc.)
- Spc_k "spaces"; simplicial presheaves on Sm_k
- We now force two kinds of maps to be "weak-equivalences":

- Naive homotopy (homotopies parameterized by \mathbb{A}^1) is not an equivalence relation
- Gr_r has naturally the structure of a colimit of algebraic varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., Gr_r is not in this category, cannot form all quotients, etc.)
- Spc_k "spaces"; simplicial presheaves on Sm_k
- We now force two kinds of maps to be "weak-equivalences":
 - Nisnevich local weak equivalences (roughly, *u* : *U* → *X* as Nisnevich covering, build *Č*(*u*) → *X*, and force *Č*(*u*) → *X* to be an iso)

- Naive homotopy (homotopies parameterized by \mathbb{A}^1) is not an equivalence relation
- Gr_r has naturally the structure of a colimit of algebraic varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., Gr_r is not in this category, cannot form all quotients, etc.)
- Spc_k "spaces"; simplicial presheaves on Sm_k
- We now force two kinds of maps to be "weak-equivalences":
 - Nisnevich local weak equivalences (roughly, *u* : *U* → *X* as Nisnevich covering, build *Č*(*u*) → *X*, and force *Č*(*u*) → *X* to be an iso)
 - \mathbb{A}^1 -weak equivalences: $X \times \mathbb{A}^1 \to X$

- Naive homotopy (homotopies parameterized by A¹) is not an equivalence relation
- Gr_r has naturally the structure of a colimit of algebraic varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., Gr_r is not in this category, cannot form all quotients, etc.)
- Spc_k "spaces"; simplicial presheaves on Sm_k
- We now force two kinds of maps to be "weak-equivalences":
 - Nisnevich local weak equivalences (roughly, *u* : *U* → *X* as Nisnevich covering, build *Č*(*u*) → *X*, and force *Č*(*u*) → *X* to be an iso)
 - \mathbb{A}^1 -weak equivalences: $X \times \mathbb{A}^1 \to X$
- $\mathscr{H}_{alg}(k)$ invert Nisnevich local weak equivalences

- Naive homotopy (homotopies parameterized by \mathbb{A}^1) is not an equivalence relation
- Gr_r has naturally the structure of a colimit of algebraic varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., Gr_r is not in this category, cannot form all quotients, etc.)
- Spc_k "spaces"; simplicial presheaves on Sm_k
- We now force two kinds of maps to be "weak-equivalences":
 - Nisnevich local weak equivalences (roughly, *u* : *U* → *X* as Nisnevich covering, build *Č*(*u*) → *X*, and force *Č*(*u*) → *X* to be an iso)
 - \mathbb{A}^1 -weak equivalences: $X \times \mathbb{A}^1 \to X$
- $\mathscr{H}_{alg}(k)$ invert Nisnevich local weak equivalences and
- $\mathscr{H}_{mot}(k)$ inverting both Nisnevich local and \mathbb{A}^1 -weak equivalences (this is the Morel–Voevodsky \mathbb{A}^1 -homotopy category)

The motivic homotopy category ctd.

Isomorphisms in $\mathscr{H}_{mot}(k)$ are called \mathbb{A}^1 -weak equivalences.

The motivic homotopy category ctd.

Isomorphisms in $\mathscr{H}_{mot}(k)$ are called \mathbb{A}^1 -weak equivalences.

Example

If $\pi : Y \to X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^1 -weak equivalence (e.g., if π is a vector bundle):

Isomorphisms in $\mathscr{H}_{mot}(k)$ are called \mathbb{A}^1 -weak equivalences.

Example

If $\pi : Y \to X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^1 -weak equivalence (e.g., if π is a vector bundle):

• $SL_2 \to \mathbb{A}^2 \setminus 0$ (project a matrix onto its first column) is an \mathbb{A}^1 -weak equivalence;

Isomorphisms in $\mathscr{H}_{mot}(k)$ are called \mathbb{A}^1 -weak equivalences.

Example

If $\pi : Y \to X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^1 -weak equivalence (e.g., if π is a vector bundle):

- $SL_2 \rightarrow \mathbb{A}^2 \setminus 0$ (project a matrix onto its first column) is an \mathbb{A}^1 -weak equivalence;
- *if X is a smooth k-variety and* $\pi : \tilde{X} \to X$ *is a Jouanolou device for X, then* π *is an* \mathbb{A}^1 *-weak equivalence (thus: every smooth variety has the* \mathbb{A}^1 *-homotopy type of a smooth affine variety)*

Isomorphisms in $\mathscr{H}_{mot}(k)$ are called \mathbb{A}^1 -weak equivalences.

Example

If $\pi : Y \to X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^1 -weak equivalence (e.g., if π is a vector bundle):

- $SL_2 \rightarrow \mathbb{A}^2 \setminus 0$ (project a matrix onto its first column) is an \mathbb{A}^1 -weak equivalence;
- *if X is a smooth k-variety and* $\pi : \tilde{X} \to X$ *is a Jouanolou device for X, then* π *is an* \mathbb{A}^1 *-weak equivalence (thus: every smooth variety has the* \mathbb{A}^1 *-homotopy type of a smooth affine variety)*

Example

• $\mathbb{A}^{\infty} \setminus 0$ is \mathbb{A}^1 -contractible: the "shift map" is naively homotopic to the identity \Longrightarrow $Gr_1 = \mathbb{P}^{\infty} \rightarrow BGL_1$ is an \mathbb{A}^1 -weak equivalence

Isomorphisms in $\mathscr{H}_{mot}(k)$ are called \mathbb{A}^1 -weak equivalences.

Example

If $\pi : Y \to X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^1 -weak equivalence (e.g., if π is a vector bundle):

- $SL_2 \rightarrow \mathbb{A}^2 \setminus 0$ (project a matrix onto its first column) is an \mathbb{A}^1 -weak equivalence;
- *if X is a smooth k-variety and* $\pi : \tilde{X} \to X$ *is a Jouanolou device for X, then* π *is an* \mathbb{A}^1 *-weak equivalence (thus: every smooth variety has the* \mathbb{A}^1 *-homotopy type of a smooth affine variety)*

Example

- $\mathbb{A}^{\infty} \setminus 0$ is \mathbb{A}^1 -contractible: the "shift map" is naively homotopic to the identity \Longrightarrow $Gr_1 = \mathbb{P}^{\infty} \rightarrow BGL_1$ is an \mathbb{A}^1 -weak equivalence
- More generally, $Gr_n \rightarrow BGL_n$ classifying the tautological vector bundle is an \mathbb{A}^1 -weak equivalence

Cannot expect representability of $\mathscr{V}_r^{alg}(X)$ in $\mathscr{H}_{mot}(k)$ for all smooth *X*, however:

Theorem

If k is a field or \mathbb{Z} , then for any smooth affine k-scheme X,

$$[X, Gr_r]_{\mathbb{A}^1} \xrightarrow{\sim} \mathscr{V}_r^{alg}(X) (= [X, Gr_r]_{naive}).$$

Cannot expect representability of $\mathscr{V}_r^{alg}(X)$ in $\mathscr{H}_{mot}(k)$ for all smooth *X*, however:

Theorem

If k is a field or \mathbb{Z} , then for any smooth affine k-scheme X,

$$[X, Gr_r]_{\mathbb{A}^1} \xrightarrow{\sim} \mathscr{V}_r^{alg}(X) (= [X, Gr_r]_{naive}).$$

Morel '06 if $r \neq 2$ and k a perfect field

Cannot expect representability of $\mathscr{V}_r^{alg}(X)$ in $\mathscr{H}_{mot}(k)$ for all smooth *X*, however:

Theorem

If k is a field or \mathbb{Z} , then for any smooth affine k-scheme X,

$$[X, Gr_r]_{\mathbb{A}^1} \xrightarrow{\sim} \mathscr{V}_r^{alg}(X) (= [X, Gr_r]_{naive}).$$

Morel '06 if $r \neq 2$ and k a perfect field Schlichting '15 arbitrary r, k perfect; simplifies part of Morel's argument

Cannot expect representability of $\mathscr{V}_r^{alg}(X)$ in $\mathscr{H}_{mot}(k)$ for all smooth *X*, however:

Theorem

If k is a field or \mathbb{Z} , then for any smooth affine k-scheme X,

$$[X, Gr_r]_{\mathbb{A}^1} \xrightarrow{\sim} \mathscr{V}_r^{alg}(X) (= [X, Gr_r]_{naive}).$$

Morel '06 if $r \neq 2$ and k a perfect field Schlichting '15 arbitrary r, k perfect; simplifies part of Morel's argument A.–M. Hoyois–M. Wendt '15 (essentially self-contained: in essence, representability is equivalent to the Bass–Quillen conjecture for all smooth k-algebras)

$$\mathscr{V}_r^{alg}(X) \longrightarrow [X, Gr_r]_{\mathbb{A}^1} \longrightarrow [X, Gr_r] =: \mathscr{V}_r^{top}(X).$$

Motivic vector bundles are elements of $[X, Gr_r]_{\mathbb{A}^1}$.

$$\mathscr{V}_r^{alg}(X) \longrightarrow [X, Gr_r]_{\mathbb{A}^1} \longrightarrow [X, Gr_r] =: \mathscr{V}_r^{top}(X).$$

Motivic vector bundles are elements of $[X, Gr_r]_{\mathbb{A}^1}$.

Thus, determining the image of Φ_r breaks into two stages:

$$\mathscr{V}_r^{alg}(X) \longrightarrow [X, Gr_r]_{\mathbb{A}^1} \longrightarrow [X, Gr_r] =: \mathscr{V}_r^{top}(X).$$

Motivic vector bundles are elements of $[X, Gr_r]_{\mathbb{A}^1}$.

Thus, determining the image of Φ_r breaks into two stages:

• characterize the image of $\mathscr{V}_r^{alg}(X) \longrightarrow [X, Gr_r]_{\mathbb{A}^1}$, and

$$\mathscr{V}_r^{alg}(X) \longrightarrow [X, Gr_r]_{\mathbb{A}^1} \longrightarrow [X, Gr_r] =: \mathscr{V}_r^{top}(X).$$

Motivic vector bundles are elements of $[X, Gr_r]_{\mathbb{A}^1}$.

Thus, determining the image of Φ_r breaks into two stages:

- characterize the image of $\mathscr{V}_r^{alg}(X) \longrightarrow [X, Gr_r]_{\mathbb{A}^1}$, and
- characterize the image of $[X, Gr_r]_{\mathbb{A}^1} \to [X, Gr_r]_{top}$.

$$\mathscr{V}_r^{alg}(X) \longrightarrow [X, Gr_r]_{\mathbb{A}^1} \longrightarrow [X, Gr_r] =: \mathscr{V}_r^{top}(X).$$

Motivic vector bundles are elements of $[X, Gr_r]_{\mathbb{A}^1}$.

Thus, determining the image of Φ_r breaks into two stages:

- characterize the image of $\mathscr{V}_r^{alg}(X) \longrightarrow [X, Gr_r]_{\mathbb{A}^1}$, and
- characterize the image of $[X, Gr_r]_{\mathbb{A}^1} \to [X, Gr_r]_{top}$.

Can we give a concrete description of motivic vector bundles?

$$\mathscr{V}_r^{alg}(X) \longrightarrow [X, Gr_r]_{\mathbb{A}^1} \longrightarrow [X, Gr_r] =: \mathscr{V}_r^{top}(X).$$

Motivic vector bundles are elements of $[X, Gr_r]_{\mathbb{A}^1}$.

Thus, determining the image of Φ_r breaks into two stages:

- characterize the image of $\mathscr{V}_r^{alg}(X) \longrightarrow [X, Gr_r]_{\mathbb{A}^1}$, and
- characterize the image of $[X, Gr_r]_{\mathbb{A}^1} \to [X, Gr_r]_{top}$.

Can we give a concrete description of motivic vector bundles? Does this factorization get us anything new?

If k a field, integral cohomology is replaced with motivic cohomology

If k a field, integral cohomology is replaced with motivic cohomology $H^{*,*}(Gr_r, \mathbb{Z}) \cong H^{*,*}(\operatorname{Spec} k, \mathbb{Z})[c_1, \ldots, c_r], \deg(c_i) = (2i, i)$ yields

If *k* a field, integral cohomology is replaced with motivic cohomology $H^{*,*}(Gr_r, \mathbb{Z}) \cong H^{*,*}(\operatorname{Spec} k, \mathbb{Z})[c_1, \ldots, c_r], \deg(c_i) = (2i, i)$ yields Chern classes: if $f: X \to Gr_r$ corresponds to \mathscr{E} , then $c_i(\mathcal{E}) := f^*c_i$; If *k* a field, integral cohomology is replaced with motivic cohomology $H^{*,*}(Gr_r, \mathbb{Z}) \cong H^{*,*}(\operatorname{Spec} k, \mathbb{Z})[c_1, \ldots, c_r], \operatorname{deg}(c_i) = (2i, i)$ yields Chern classes: if $f: X \to Gr_r$ corresponds to \mathscr{E} , then $c_i(\mathcal{E}) := f^*c_i$; defines a function $\mathscr{V}_r^{alg}(X) \to \prod_{i=1}^r H^{2i,i}(X; \mathbb{Z})$ If k a field, integral cohomology is replaced with motivic cohomology $H^{*,*}(Gr_r, \mathbb{Z}) \cong H^{*,*}(\operatorname{Spec} k, \mathbb{Z})[c_1, \dots, c_r], \operatorname{deg}(c_i) = (2i, i)$ yields Chern classes: if $f: X \to Gr_r$ corresponds to \mathscr{E} , then $c_i(\mathcal{E}) := f^*c_i$; defines a function $\mathscr{V}_r^{alg}(X) \to \prod_{i=1}^r H^{2i,i}(X; \mathbb{Z})$ if $k = \mathbb{C}$, cycle class map $cl: H^{2i,i}(X, \mathbb{Z}) \to H^{2i}(X, \mathbb{Z})$ sends c_i to c_i^{top} If *k* a field, integral cohomology is replaced with motivic cohomology $H^{*,*}(Gr_r, \mathbb{Z}) \cong H^{*,*}(\operatorname{Spec} k, \mathbb{Z})[c_1, \ldots, c_r], \operatorname{deg}(c_i) = (2i, i)$ yields Chern classes: if $f: X \to Gr_r$ corresponds to \mathscr{E} , then $c_i(\mathcal{E}) := f^*c_i$; defines a function $\mathscr{V}_r^{alg}(X) \to \prod_{i=1}^r H^{2i,i}(X; \mathbb{Z})$ if $k = \mathbb{C}$, cycle class map $cl: H^{2i,i}(X, \mathbb{Z}) \to H^{2i}(X, \mathbb{Z})$ sends c_i to c_i^{top} Fundamental difference: $H^{2i,i}(X, \mathbb{Z})$ more complicated than $H^{2i}(X, \mathbb{Z})$ (e.g., Xaffine, $H^{2i}(X, \mathbb{Z})$ vanishes for $2i > \dim X$; false for motivic cohomology!) Just like in topology, further invariants are torsion:

Theorem (A., J. Fasel, M. Hopkins) If k a field and -1 is a sum of squares in k, then

$$Gr_r \longrightarrow \prod_{i=1}^r K(\mathbb{Z}(i), 2i)$$

is a rational \mathbb{A}^1 -weak equivalence.

Theorem (A., J. Fasel, M. Hopkins)

Suppose X is a smooth complex affine variety of dimension 4, and $\mathcal{E}^{an} \to X^{an}$ is a rank 2 complex analytic vector bundle with Chern classes $c_i^{top} \in H^{2i}(X^{an}, \mathbb{Z})$. Assume the Chern classes c_i^{top} of \mathcal{E}^{an} are algebraic, i.e., lie in the image of the cycle class map cl. The bundle \mathcal{E}^{an} is algebraizable if and only if we may find $(c_1, c_2) \in H^{2,1}(X) \times H^{4,2}(X)$ with $(cl(c_1), cl(c_2)) = (c_1^{top}, c_2^{top})$ such that $Sq^2c_2 + c_1 \cup c_2 = 0 \in H^{6,3}(X, \mathbb{Z}/2)$.

Theorem (A., J. Fasel, M. Hopkins)

Suppose X is a smooth complex affine variety of dimension 4, and $\mathcal{E}^{an} \to X^{an}$ is a rank 2 complex analytic vector bundle with Chern classes $c_i^{top} \in H^{2i}(X^{an}, \mathbb{Z})$. Assume the Chern classes c_i^{top} of \mathcal{E}^{an} are algebraic, i.e., lie in the image of the cycle class map cl. The bundle \mathcal{E}^{an} is algebraizable if and only if we may find $(c_1, c_2) \in H^{2,1}(X) \times H^{4,2}(X)$ with $(cl(c_1), cl(c_2)) = (c_1^{top}, c_2^{top})$ such that $Sq^2c_2 + c_1 \cup c_2 = 0 \in H^{6,3}(X, \mathbb{Z}/2)$.

Conjecture (A., J. Fasel, M. Hopkins)

For "cellular" smooth \mathbb{C} -varieties X, $[X, Gr_r]_{\mathbb{A}^1} \to [X, Gr_r]$ is a bijection.

$$\begin{split} \mathscr{V}_{r}^{alg}(X) & \longrightarrow [X,Gr_{r}]_{\mathbb{A}^{1}} \\ & \downarrow^{\pi^{*}} & \downarrow^{\cong} \\ \mathscr{V}_{r}^{alg}(\tilde{X}) & \stackrel{\cong}{\longrightarrow} [\tilde{X},Gr_{r}]_{\mathbb{A}^{1}} \end{split}$$

commutes,

$$\begin{split} \mathscr{V}_{r}^{alg}(X) & \longrightarrow [X,Gr_{r}]_{\mathbb{A}^{1}} \\ & \downarrow^{\pi^{*}} & \downarrow^{\cong} \\ \mathscr{V}_{r}^{alg}(\tilde{X}) & \stackrel{\cong}{\longrightarrow} [\tilde{X},Gr_{r}]_{\mathbb{A}^{1}} \end{split}$$

commutes, i.e., motivic vector bundles represented by actual vector bundles on a Jouanolou device.

$$\begin{split} \mathscr{V}_{r}^{alg}(X) & \longrightarrow [X,Gr_{r}]_{\mathbb{A}^{1}} \\ & \downarrow^{\pi^{*}} & \downarrow^{\cong} \\ \mathscr{V}_{r}^{alg}(\tilde{X}) & \stackrel{\cong}{\longrightarrow} [\tilde{X},Gr_{r}]_{\mathbb{A}^{1}} \end{split}$$

commutes, i.e., motivic vector bundles represented by actual vector bundles on a Jouanolou device.

Thus, to understand image of top horizontal map, suffices to:

• characterize the image of π^* ,

$$\begin{split} \mathscr{V}_{r}^{alg}(X) & \longrightarrow [X,Gr_{r}]_{\mathbb{A}^{1}} \\ & \downarrow^{\pi^{*}} & \downarrow^{\cong} \\ \mathscr{V}_{r}^{alg}(\tilde{X}) & \stackrel{\cong}{\longrightarrow} [\tilde{X},Gr_{r}]_{\mathbb{A}^{1}} \end{split}$$

commutes, i.e., motivic vector bundles represented by actual vector bundles on a Jouanolou device.

Thus, to understand image of top horizontal map, suffices to:

• characterize the image of π^* ,

which is the problem of *descent* for vector bundles.

 π* fails to be injective (very general phenomenon!), even for X = P¹ (e.g., because X̃ is affine, π* splits extensions)

- π* fails to be injective (very general phenomenon!), even for X = P¹ (e.g., because X̃ is affine, π* splits extensions)
- Can π^* be surjective?

- π^{*} fails to be injective (very general phenomenon!), even for X = P¹ (e.g., because X̃ is affine, π^{*} splits extensions)
- Can π^* be surjective?

Long-standing conjectures in algebraic geometry (e.g., the '77 Grauert–Schneider conjecture) imply that π^* fails to be surjective for \mathbb{P}^n when $n \ge 5$.

- π^{*} fails to be injective (very general phenomenon!), even for X = P¹ (e.g., because X̃ is affine, π^{*} splits extensions)
- Can π^* be surjective?

Long-standing conjectures in algebraic geometry (e.g., the '77 Grauert–Schneider conjecture) imply that π^* fails to be surjective for \mathbb{P}^n when

 $n \ge 5$.

If π^* does fail to be surjective, can we find a counter-example?

- π* fails to be injective (very general phenomenon!), even for X = P¹ (e.g., because X̃ is affine, π* splits extensions)
- Can π^* be surjective?

Long-standing conjectures in algebraic geometry (e.g., the '77

Grauert–Schneider conjecture) imply that π^* fails to be surjective for \mathbb{P}^n when $n \ge 5$.

If π^* does fail to be surjective, can we find a counter-example?

What happens in low dimensions?

Theorem (A., J. Fasel, M. Hopkins)

If X is a smooth projective variety of dimension ≤ 2 over \mathbb{C} , and (\tilde{X}, π) is a Jouanolou device for X, then $\pi^* : \mathscr{V}_r^{alg}(X) \to \mathscr{V}_r^{alg}(\tilde{X})$ is surjective.

Theorem (A., J. Fasel, M. Hopkins)

If X is a smooth projective variety of dimension ≤ 2 over \mathbb{C} , and (\tilde{X}, π) is a Jouanolou device for X, then $\pi^* : \mathscr{V}_r^{alg}(X) \to \mathscr{V}_r^{alg}(\tilde{X})$ is surjective.

Proof.

• Idea: Describe the target of π^* and construct enough vector bundles on *X*.

Theorem (A., J. Fasel, M. Hopkins)

If X is a smooth projective variety of dimension ≤ 2 over \mathbb{C} , and (\tilde{X}, π) is a Jouanolou device for X, then $\pi^* : \mathscr{V}_r^{alg}(X) \to \mathscr{V}_r^{alg}(\tilde{X})$ is surjective.

Proof.

- Idea: Describe the target of π^* and construct enough vector bundles on X.
- Use obstruction theory to do describe $[X, Gr_r]_{\mathbb{A}^1}$ in cohomological terms;

Theorem (A., J. Fasel, M. Hopkins)

If X is a smooth projective variety of dimension ≤ 2 over \mathbb{C} , and (\tilde{X}, π) is a Jouanolou device for X, then $\pi^* : \mathscr{V}_r^{alg}(X) \to \mathscr{V}_r^{alg}(\tilde{X})$ is surjective.

Proof.

- Idea: Describe the target of π^* and construct enough vector bundles on X.
- Use obstruction theory to do describe $[X, Gr_r]_{\mathbb{A}^1}$ in cohomological terms;
- Use the Hartshorne–Serre correspondence (between codimension 2 lci schemes and rank 2 vector bundles) to construct the required vb on *X*.

If (\mathscr{X}, x) is a pointed space, we may define \mathbb{A}^1 -homotopy sheaves $\pi_i^{\mathbb{A}^1}(\mathscr{X}, x)$.

If (\mathscr{X}, x) is a pointed space, we may define \mathbb{A}^1 -homotopy sheaves $\pi_i^{\mathbb{A}^1}(\mathscr{X}, x)$.

 \mathbb{A}^1 -Postnikov tower: given a pointed \mathbb{A}^1 -connected space, we can build \mathscr{X} inductively out of Eilenberg-Mac Lane spaces $K(\pi, n)$; these have exactly 1 non-trivial \mathbb{A}^1 -homotopy sheaf in degree *n*

If (\mathscr{X}, x) is a pointed space, we may define \mathbb{A}^1 -homotopy sheaves $\pi_i^{\mathbb{A}^1}(\mathscr{X}, x)$.

 \mathbb{A}^1 -Postnikov tower: given a pointed \mathbb{A}^1 -connected space, we can build \mathscr{X} inductively out of Eilenberg-Mac Lane spaces $K(\pi, n)$; these have exactly 1 non-trivial \mathbb{A}^1 -homotopy sheaf in degree n

We can inductively describe the set of maps $[U, \mathscr{X}]_{\mathbb{A}^1}$ using sheaf cohomology with coefficients in \mathbb{A}^1 -homotopy sheaves

Example

For any integer $n \ge 1$, $\pi_0^{\mathbb{A}^1}(SL_n) = 1$

Example

For any integer $n \ge 1$, $\pi_0^{\mathbb{A}^1}(SL_n) = 1$

Turns out it suffices to check this on sections over fields

Example

For any integer $n \ge 1$, $\pi_0^{\mathbb{A}^1}(SL_n) = 1$

Turns out it suffices to check this on sections over fields For any field F, any matrix in $SL_n(F)$ may be factored as a product of elementary (shearing) matrices

Example

For any integer $n \ge 1$, $\pi_0^{\mathbb{A}^1}(SL_n) = 1$

Turns out it suffices to check this on sections over fields For any field F, any matrix in $SL_n(F)$ may be factored as a product of elementary (shearing) matrices

Any elementary shearing matrix is \mathbb{A}^1 -homotopic: if $a \in F$ then use

$$\begin{pmatrix} 1 & at \\ 0 & 1 \end{pmatrix}$$

Example

For any integer $n \ge 1$, $\pi_0^{\mathbb{A}^1}(SL_n) = 1$

Turns out it suffices to check this on sections over fields For any field F, any matrix in $SL_n(F)$ may be factored as a product of elementary (shearing) matrices

Any elementary shearing matrix is \mathbb{A}^1 -homotopic: if $a \in F$ then use

$$\begin{pmatrix} 1 & at \\ 0 & 1 \end{pmatrix}$$

Any matrix in $SL_n(F)$ is naively \mathbb{A}^1 -homotopic to the identity.

$$\pi_1^{\mathbb{A}^1}(BGL_1) = GL_1$$

 $\pi_1^{\mathbb{A}^1}(BGL_1) = GL_1$

 GL_1 is discrete, i.e., $\pi_0^{\mathbb{A}^1}(GL_1) = GL_1$: there are no non-constant algebraic maps $\mathbb{A}^1 \to GL_1$

 $\pi_1^{\mathbb{A}^1}(BGL_1) = GL_1$

 GL_1 is discrete, i.e., $\pi_0^{\mathbb{A}^1}(GL_1) = GL_1$: there are no non-constant algebraic maps $\mathbb{A}^1 \to GL_1$

the map $\mathbb{A}^{\infty} \setminus 0 \to BGL_1$ is a principal GL_1 -bundle and this yields an \mathbb{A}^1 -fiber sequence

 $\begin{aligned} \pi_1^{\mathbb{A}^1}(BGL_1) &= GL_1 \\ GL_1 \text{ is discrete, i.e., } \pi_0^{\mathbb{A}^1}(GL_1) &= GL_1: \text{ there are no non-constant} \\ algebraic maps \mathbb{A}^1 \to GL_1 \\ \text{ the map } \mathbb{A}^\infty \setminus 0 \to BGL_1 \text{ is a principal } GL_1\text{-bundle and this yields an} \\ \mathbb{A}^1\text{-fiber sequence} \\ \text{ since } \mathbb{A}^\infty \setminus 0 \text{ is } \mathbb{A}^1\text{-contractible, the result follows from the long exact} \\ \text{ sequence in homotopy} \end{aligned}$

 $\begin{aligned} \pi_1^{\mathbb{A}^1}(BGL_1) &= GL_1 \\ GL_1 \text{ is discrete, i.e., } \pi_0^{\mathbb{A}^1}(GL_1) &= GL_1: \text{ there are no non-constant} \\ algebraic maps \mathbb{A}^1 \to GL_1 \\ \text{ the map } \mathbb{A}^\infty \setminus 0 \to BGL_1 \text{ is a principal } GL_1\text{-bundle and this yields an} \\ \mathbb{A}^1\text{-fiber sequence} \\ \text{ since } \mathbb{A}^\infty \setminus 0 \text{ is } \mathbb{A}^1\text{-contractible, the result follows from the long exact} \\ \text{ sequence in homotopy} \end{aligned}$

Example

For any $n \ge 2$, $\pi_1^{\mathbb{A}^1}(BSL_n) = 1$; one identifies $\pi_1^{\mathbb{A}^1}(BSL_n) = \pi_0(SL_n)$ using a fiber sequence.

 $\begin{aligned} \pi_1^{\mathbb{A}^1}(BGL_1) &= GL_1 \\ GL_1 \text{ is discrete, i.e., } \pi_0^{\mathbb{A}^1}(GL_1) &= GL_1: \text{ there are no non-constant} \\ algebraic maps \mathbb{A}^1 \to GL_1 \\ \text{ the map } \mathbb{A}^\infty \setminus 0 \to BGL_1 \text{ is a principal } GL_1\text{-bundle and this yields an} \\ \mathbb{A}^1\text{-fiber sequence} \\ \text{ since } \mathbb{A}^\infty \setminus 0 \text{ is } \mathbb{A}^1\text{-contractible, the result follows from the long exact} \\ \text{ sequence in homotopy} \end{aligned}$

Example

For any $n \ge 2$, $\pi_1^{\mathbb{A}^1}(BSL_n) = 1$; one identifies $\pi_1^{\mathbb{A}^1}(BSL_n) = \pi_0(SL_n)$ using a fiber sequence.

Example

For any $n \ge 2$, the map $BGL_n \to BGL_1$ coming from det : $GL_n \to GL_1$ induces an isomorphism $\pi_1^{\mathbb{A}^1}(BGL_n) = GL_1$.

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \geq 3. \end{cases}$$

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \ge 3. \end{cases}$$

 \mathbf{K}_2^M is the second Milnor K-theory sheaf

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \ge 3. \end{cases}$$

 \mathbf{K}_2^M is the second Milnor K-theory sheaf

the map $BSL_n \to BGL_\infty$ induces an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$ for $n \ge 3$ and the latter represents Quillen's algebraic K-theory

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \ge 3. \end{cases}$$

 \mathbf{K}_2^M is the second Milnor K-theory sheaf

the map $BSL_n \to BGL_\infty$ induces an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$ for $n \ge 3$ and the latter represents Quillen's algebraic K-theory

 $\mathbf{K}_2^M = \pi_1^{\mathbb{A}^1}(SL_n), n \ge 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_2)

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \ge 3. \end{cases}$$

 \mathbf{K}_2^M is the second Milnor K-theory sheaf

the map $BSL_n \to BGL_\infty$ induces an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$ for $n \ge 3$ and the latter represents Quillen's algebraic K-theory

 $\mathbf{K}_2^M = \boldsymbol{\pi}_1^{\mathbb{A}^1}(SL_n), n \ge 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_2)

 \mathbf{K}_{2}^{MW} is the second Milnor–Witt K-theory sheaf

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \ge 3. \end{cases}$$

 \mathbf{K}_2^M is the second Milnor K-theory sheaf

the map $BSL_n \to BGL_\infty$ induces an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$ for $n \ge 3$ and the latter represents Quillen's algebraic K-theory

 $\mathbf{K}_2^M = \pi_1^{\mathbb{A}^1}(SL_n), n \ge 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_2)

 \mathbf{K}_{2}^{MW} is the second Milnor–Witt K-theory sheaf

 $SL_2 = Sp_2$ and the map $BSL_2 \rightarrow BSp_{\infty}$ is an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \geq 3. \end{cases}$$

 \mathbf{K}_2^M is the second Milnor K-theory sheaf

the map $BSL_n \to BGL_\infty$ induces an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$ for $n \ge 3$ and the latter represents Quillen's algebraic K-theory

 $\mathbf{K}_{2}^{M} = \boldsymbol{\pi}_{1}^{\mathbb{A}^{1}}(SL_{n}), n \geq 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_{2})

 \mathbf{K}_{2}^{MW} is the second Milnor–Witt K-theory sheaf

 $SL_2 = Sp_2$ and the map $BSL_2 \rightarrow BSp_{\infty}$ is an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$ the latter represents symplectic K-theory and includes information about symplectic forms over our base

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \ge 3. \end{cases}$$

 \mathbf{K}_2^M is the second Milnor K-theory sheaf

the map $BSL_n \to BGL_\infty$ induces an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$ for $n \ge 3$ and the latter represents Quillen's algebraic K-theory

 $\mathbf{K}_2^M = \boldsymbol{\pi}_1^{\mathbb{A}^1}(SL_n), n \ge 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_2)

 \mathbf{K}_{2}^{MW} is the second Milnor–Witt K-theory sheaf

 $SL_2 = Sp_2$ and the map $BSL_2 \rightarrow BSp_{\infty}$ is an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$ the latter represents symplectic K-theory and includes information about symplectic forms over our base

the map $BSp_{\infty} \to BGL_{\infty}$ yields a map $\mathbf{K}_{2}^{MW} \to \mathbf{K}_{2}^{M}$; this map is an epimorphism of sheaves and its kernel may be described via the "fundamental ideal" in the Witt ring (A. Suslin)

Theorem

If k is algebraically closed, and \tilde{X} is the Jouanolou device of a smooth projective surface X, then for $r \ge 2$ the map

$$(c_1, c_2): \mathscr{V}_r^{alg}(\tilde{X}) \longrightarrow Pic(\tilde{X}) \times H^{4,2}(\tilde{X}, \mathbb{Z})$$

is an isomorphism.

Proof.

Obstruction theory! Case of trivial determinant: there is a canonical "Euler class" map

$$BSL_2 \longrightarrow K(\mathbf{K}_2^{MW}, 2);$$

if \tilde{X} is as in the statement, then $H^2(\tilde{X}, \mathbf{K}_2^{MW}) \to H^2(\tilde{X}, \mathbf{K}_2^M) \cong H^{4,2}(\tilde{X}, \mathbb{Z})$ is an isomorphism; any class in $H^2(\tilde{X}, \mathbf{K}_2^{MW})$ lifts uniquely to $[\tilde{X}, BSL_2]_{\mathbb{A}^1}$.

Thank you!