Algebraic geometry from an
Al-homotopic viewpoint

Aravind Asok

May 3, 2021






Contents

1 Schemes and varieties

2 Projective modules, gluing and vector bundles

3 Picard groups, normality and A'-invariance

4 Sheaf cohomology

5 Grothendieck groups, regularity and A'-invariance
6 Vector bundles and A'-invariance

A Sets, Categories and Functors

B Some algebraic facts

47

79

125

151

183

201

211



CONTENTS 4

Outline/Motivation

The goal of these notes is to provide a “modern” introduction to the theory of vector bundles on alge-
braic varieties. Officially, this course has a few prerequisites. I’ll assume that you know something
about

1. algebraic topology (as in our introductory algebraic topology course), i.e., that you know

something about homology, homotopy equivalences, covering spaces, fundamental groups
and
2. a little bit about differential geometry (as in our introductory differential geometry course),
i.e., you know what a manifold is, you know something about Sard’s theorem and degree and
perhaps something about de Rham cohomology and
3. you have some familiarity with algebraic geometry (as in our introductory algebra sequence,
in conjunction with the algebraic geometry class run last term), i.e., you know what a scheme
is, some basic things about quasi-coherent sheaves and are at least familiar with the basic
morphisms of schemes.
All that being said, the true prerequisite is willingness to learn on the fly. Given that background,
the goal of this course is to teach you about vector bundles in algebraic geometry and algebraic
topology, with the spectre of A'-homotopy theory lurking in the backgroung.

The theory of projective modules is by now a very classical subject: the formal notion of projec-
tive module goes back to the work of Cartan—Eilenberg in the foundations of homological algebra
[?2, Chapter 1.2], but examples of projective modules arose much earlier (e.g., the theory of invert-
ible fractional ideals in number theory). The notion of projective module becomes indispensible in
cohomology, e.g., group cohomology may be computed using projective resolutions. One may look
at the collection of projective modules over a ring as a certain invariant of the ring itself (“represen-
tations” of the ring).

The results of Serre showed that the language of algebraic geometry might provide a good lan-
guage to study projective modules over commutative unital rings [?, §50 p. 242]. More precisely,
Serre showed that finitely generated projective modules over commutative unital rings are precisely
the same things as finite rank algebraic vector bundles over affine algebraic varieties. Serre further-
more showed that this dictionary was useful for providing a better understanding about projective
modules because it allowed one to exploit an analogy between algebraic geometry and algebraic
topology: projective modules over rings are analogous to vector bundles over topological spaces.

From this point of view, projective modules take on additional significance. For example, in
differential topology, one may turn a non-linear problem (e.g., existence of an immersion of one
manifold into another) into a linear problem by looking at associated bundles (a corresponding
injection of tangent bundles in the case of immersions). In good situations, a solution to the linear
problem can actually be promoted to a solution of the non-linear problem (in our parenthetical
exmaple, this is an incarnation of the Hirsch-Smale theory of immersions).

Based on this analogy, Serre observed that if R is a Noetherian ring of dimension d, one could
“simplify” projective modules P of rank r > d greater than the dimension: any such module could
be written as a sum of a projective module of rank 7’ < d and a free module of rank ' —r [?]. After
the work of Bass [?], which furthermore amalgamated Grothendieck’s ideas regarding K-theory
with Serre’s results, J.F. Adams wrote:

“This leads to the following programme: take definitions, constructions and theorems
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from bundle-theory; express them as particular cases of definitions, constructions and
statements about finitely-generated projective modules over a general ring; and finally,
try to prove the statements under suitable assumptions”.

My point of view in this class is that the Morel-Voevodsy A'-homotopy theory provides arguably
the ultimate realization of this program.

Pontryagin and Steenrod observed that one could use techniques of homotopy theory to study
vector bundles on spaces having the homotopy type of CW complexes. Indeed, the basic goal of
the class will be to establish the analog in algebraic geometry of this result, at least for sufficiently
nice (i.e., non-singular) affine varieties. Looking beyond this, just as the Weil conjectures provides
a beautiful link between the arithmetic problem of counting the number of solutions of a system
of equations over a finite field and a “topologically inspired” étale cohomology theory of algebraic
varieties, A !-homotopy theory allows one to construct a link between the algebraic theory of projec-
tive modules over commutative rings, and an “algebro-geometric” analog of the homotopy groups
of spheres!

After very quickly recalling some of the topological constructions that provide sources of in-
spiration (and which we will attempt to mirror), I will begin a brief study of the theory of affine
algebraic varieties. While this will not suffice for our eventual applications, affine varieties are,
arguably, intuitively appealing, and it seemed better not to require too much algebro-geometric so-
phistication at first.

Then, I will introduce a “naive” version of homotopy for algebraic varieties and, following the
topological story, describe various “homotopy invariants” in algebraic geometry. Along the way, I
will introduce a number of important invariants of algebraic varieties: projective modules, Picard
groups, and K-theory. The ultimate goal is to prove Lindel’s theorem that shows that the functor
“isomorphism classes of projective modules” is homotopy invariant, in a suitable algebro-geometric
sense, on suitably nice (i.e., non-singular, affine) algebraic varieties. Along the way, I will try to
build things up in a way that motivates some of the tools used in the study of A'-homotopy theory
over a field.

There are many texts that talk about cohomology theories in algebraic geometry and these notes
are not intended to be another such text. Rather, there is a hope, supported by recent results, that
A'-homotopy theory can give us information not just about cohomology of algebraic varieties, but
actually about their geometry. We have attempted to illustrate this by focusing on projective modules
and vector bundles on algebraic varieties.

What’s next?

To proceed from the “naive” theory to the “true” theory, requires more sophistication: one needs to
know some homotopy theory of simplicial sets, Grothendieck topologies, model categories etc. The
syllabus listed the following plan, which I would argue is the “next step” beyond what I now want
to cover in the class. The subsequent background is written with this plan in mind.

* Week 1. Some abstract algebraic geometry: the Nisnevich topology and basic properties.
* Week 2. Simplicial sets and simplicial (pre)sheaves.

+ Week 3. Model categories in brief; the simplicial and A'-homotopy categories

» Week 4. Basic properties of the A!'-homotopy category (e.g., homotopy purity)
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Week 5. Fibrancy, cd-structures and descent

Week 6. Classifying spaces: simplicial homotopy classification of torsors
Week 7. A'-homotopy classification results

Week 8. Eilenberg-MacLane spaces and strong and strict A '-invariance
Week 9. Postnikov towers

Week 10. Homotopy sheaves and A!-connectivity

Week 11. The unstable A'-connectivity property and applications

Week 12. Loop spaces and relative connectivity

Week 13. Gersten resolutions and strong/strict A!-invariance

Week 14. A'-homology and A'-homotopy sheaves

Week 15. Al-quasifibrations and some computations of homotopy sheaves

Background. While there isn’t a specific textbook for the class, I will use a number of different
sources for some of the background material. There is formally quite a lot of background for the
subject of the class and I don’t expect anyone to have digested all the prerequisites in any sort of
linear fashion. Instead, there will be a lot of “on-the-fly” learning and going backwards to fill in
details as necessary.

To get started, I will expect that people know some basic things about commutative ring
theory. A good introductory textbook is [?], but [?] is more comprehensive. For a discussion
that is more algebro-geometric, you can look at [?]. We will also need more detailed results
about modules, for which you consule [?].

We will study affine varieties and eventually discuss sheaf cohomology on topological spaces.
Beyond what I mention in the class, useful references for the theory of algebraic varieties will
include [?, Chapters 1-2]. Useful background for the notions of sheaf cohomology we will
need on topological spaces in general, and on schemes in particular, can be found in [?] or [?,
Chapter 3]. Implicit here is a basic understanding of some ideas from homological algebra
[?]. Furthermore, from the standpoint of references, I think there is now no better definitive
source than Johan de Jong’s Stacks Project [?].

I will also expect some familiarity with basic concepts of algebraic and differential topology,
e.g., topological spaces, smooth manifolds and maps, CW complexes, singular homology,
covering spaces, vector bundles, and homotopy groups as can be found in [?] or [?]. The
point of view exposed in [?] will also be useful.

Finally, the course will, from the beginning, use category-theoretic terminology. Beyond the
usual notions of categories, functors, and natural transformations, I will expect some familiar-
ity with various kinds of universal properties, limits (and colimits) and adjoint functors and
their properties, as can be picked up in [?] or [?]. As time goes on, we will need a bit of
familiarity with “size” issues in category theory, so [?] is also a good reference.

One theme throughout the course will be connections with the theory of projective modules
and K-theory. For the topological story, [?] is a good reference, while [?] is a suitable ref-
erence for the theory of fiber bundles. In the algebraic setting, [?] is a good reference for
K-theory, while [?] will provide excellent motivation.

As we progress, it will also be useful to know some things about the theory of quadratic forms.
The theory over fields is discussed in [?]; the theory over more general rings is developed in
[?], and [?] has a nice discussion from a point of view that will be closely related with ours.
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Other references. The following is simply a list of references regarding topics that will appear in
the class; it is by no means complete.

* Grothendieck topologies, especially the Nisnevich topology: [?], [?], [?]

» Simplicial sets: [?], [?] or the original sources [?, ?]

* Model Categories: [?], [?] for a survey, or [?], [?] for more detailed treatments.

* Sheaf theoretic homotopy theory: [?] or [?, ?] for original sources.

. Al—homotopy theory: [?] for an overview, and [?] or [?] for (different) more detailed treat-

ments

As is likely clear from this quick list of references, A!-algebraic topology has a number of

prerequisites and a large collection of sources of inspiration.

Notation

We use the following standard categories. All the categories under consideration are essentially
small, i.e., equivalent to small categories (see A.1 for more details about category theory as we will
need it). As a consequence we will frequently abuse notation and use the same notation for a choice
of an essentially small skeletal subcategory.
* Set - objects are sets and morphisms are functions
* Grp - objects are groups and morphisms are group homomorphisms
* Ab = the full subcategory of Grp with objects consisting of abelian groups
* Modp, - objects are (left) R-modules, and morphisms are R-module homomorphisms
* Top - objects are topological spaces and morphisms are continuous maps
* A - objects are non-empty finite totally ordered sets and morphisms are order-preserving
functions
* sSet - objects are functors Fun(A®, Set) and morphisms are natural transformations.
o Affy - objects are finitely generated, commutative, unital k-algebras, morphisms are k-algebra
homomorphisms.
» Cat - the category of small categories.

Warning/Disclaimer: These notes are constantly being modified (especially while the class is go-
ing on). Moreover, all the material is in very rough form, especially that which appears in later
sections. I will frequently be adding/revising material in earlier sections. Thus, in the off chance
that you happen to be reading along and are not taking the class, use at your own risk! Furthermore,
not everything that is discussed in the notes was mentioned in class. If you do see mistakes, or find
things about which you are confused (and they aren’t fixed in a later version), please do not hesitate
to write me for clarification!
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Our goal in this class is to study algebraic varieties. Classically, one studied algebraic subsets
of affine or projective space (i.e., subsets defined by the vanishing of finitely many polynomial
functions); this is analogous to studying manifolds as embedded subsets of Euclidean space. One
problem with this definition is that it was hard to define and study algebraic maps between algebraic
varieties. One goal of studying schemes was to streamline the definition of morphisms of algebraic
varieties. Ever since Grothendieck, it has been standard to introduce the more general category of
schemes. Since I assume some familiarity with algebraic varieties, what is written below is written
with the goal of a) fixing notation, and b) introducing some important examples. I first define affine

9
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schemes without any mention of sheaves, which will allow us to get off the ground quickly.

1.1 Affine schemes

We begin by analyzing a special class of varieties: affine varieties. Loosely speaking, these are
the varieties defined by finitely many polynomial equations in a polynomial ring of some number
of variables. When the base k is an algebraically closed field, one can use intuition from usual
calculus/analytic geometry to study such objects. We will augment this intuition by studying what
happens when the base & is not an algebraically closed field. More strongly: every commutative
unital ring is an algebra over the ring of integers Z, and it will sometimes be convenient for us to
take the base k = Z sometimes.

1.1.1 Affine varieties

We begin by studying affine varieties over a base k. Intuitively speaking affine varieties are very
familiar objects: they are simultaneous vanishing loci of a finite collection of polynomials in finitely
many variables. While this should always serve as important inspiration, this definition is only
correct when one works over an algebraically closed base field. The basic premise of affine algebraic
geometry is that an affine variety is equivalent to its ring of functions. We begin with a definition of
affine schemes in general that takes this point of view seriously. You can think of our definition as
adding several layers of complexity to the intuitive idea of affine variety above:

* the topological space underlying an affine variety can have points that are not closed;

* the ring of coordinate functions can have nilpotent elements; and

* the base k£ may not be a field.

The Zariski topology

If R is any commutative ring, we can associate with R a topological space called its spectrum as
follows; the correspondence implicit in the construction is called the ideal-variety correspondence
and is one justification for the choice of notation.

Definition 1.1.1.1. Suppose R is a commutative unital ring,
1. Spec R := the set of prime ideals in R;
2. for a subset T' of R (not necessarily an ideal!) V7 := prime ideals containing 77;
3. given an element f € R, D; := prime ideals not containing f.

In the above definition, we allowed ourselves to consider varieties attached to subsets that are
not ideals for convenience.

Exercise 1.1.1.2. Suppose R is a commutative unital ring. Show that
1. Every non-zero ring has a maximal ideal.
2. The set Spec R is empty if and only if R is the zero ring.

The following result elucidates key properties of the ideal/variety correspondence.

Exercise 1.1.1.3. If I and J are ideals in a commutative unital ring R, then show that
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1. if T is a subset of R, and (T) is the ideal generated by T\, then Vi = V(1y;
2. Vi is empty if and only if I is the unit ideal;
3. ViUV =V
4. if I is an ideal and VT is its radical, then Vi=V Nig
5. for any set of ideals {1n}aca, NacaAV (In) = V(Uaealn);
6. if f € R, then D(f) [[V; = Spec R;
7. if f,9 € R then D(fg) = D(f) N D(g);
8. if{fi}ier is a set of elements in R, then U;c1 D(f;) is the complement in Spec R of Vizy,_,;
9. if f = uf’ for some unit u € R, then D(f) = D(f’);
10. if f € Rand Dy = Spec R, then f is a unit.

Remark 1.1.1.4. Given aring R and an element f € R, the sets D are called the basic (or principal)
open sets of R.

Exercise 1.1.1.5. If R is a commutative unital ring, defining closed sets to be sets of the form Vp
equips Spec R with the structure of a topological space. The sets Dy for a basis for this topology.

If ¢ : R — S is any ring homomorphism, then for any prime ideal p C S, ¢ ~!(p) is prime, so
there is an induced function Spec S — Spec R.

Exercise 1.1.1.6. If ¢ : R — S is a ring homomorphism, then the induced function Spec S —
Spec R is continuous. Moreover, Spec is a contravariant functor from the category of commutative
unital rings to Top.

Remark 1.1.1.7. We think of R as the ring of “regular functions” on the topological space Spec R.

Suppose R is a commutative ring. The following two exercise provide a dictionary between
certain open subsets of Spec R and localizations of R, and closed subsets of Spec R and ideals.

Exercise 1.1.1.8. Let R be a commutative unital ring.
1. Suppose S C R a multiplicative set. Show that the ring homomorphism R — R[S™1] induces
a homeomorphism

Spec R[S~ — {p € Spec R|S Np = 0},

where the topology on the right hand side is the subspace topology induced from the Zariski
topology on Spec R.
2. If f € R, then the map R — Ry induces a homeomorphism Spec Ry — Dy C Spec R.

Example 1.1.1.9. If R is a commutative unital ring and I C R is an ideal, then the map R — R/I
induces a homeomorphism
Spec R/I — Vi C Spec R.

Indeed, this is a restatement of the correspondence theorem: the quotient homomorphism identifies
ideals in R/I with ideals in R that contain /. By definition, V7 is the set of prime ideals that contain
1, and so inverse image under the quotient homomorphism is bijective. It follows immediately
that Spec R/I — Spec R is a continuous bijection onto V7. To conclude, it suffices to check that
Spec R/I — Spec R is closed (since a closed continuous bijection is a homeomorphism). The
closed subsets of Spec R/I are precisely the sets of the form V where T is a subset of R/I; since
Vr = V(T) as subsets, we may restrict our attention to ideals in R/I. In that case, the closedness of
the map again follows from the correspondence theorem.



1.1 Affine schemes 12

Important examples of spectra

Example 1.1.1.10. If k is a field, then Speck is, as a topological space, a single point with the
discrete topology.

Example 1.1.1.11. Suppose R is a domain that is not a field. In this case (0) is a prime ideal and
therefore is a point of Spec R. On the other hand, since (0) is contained in every ideal, it follows
that this point is not closed and, in fact, contains every point of Spec R in its closure. The point (0)
is the generic point of Spec R.

Example 1.1.1.12. Suppose R is a commutative ring and p C R is a prime ideal. In that case, p
is a point  of Spec R. There is an induced ring homomorphism R — R/p and thus a morphism
Spec R/p — Spec R. By the correspondence theorem, the ideals of Spec R/p are precisely the
ideals of R that contain p. In particular, the prime ideals of Spec R/p are the prime ideals of R
containing p. Since p is prime, we know that R/p is a domain, and it follows that (0) is a prime
ideal of R/p; this corresponds to the ideal p in R. Thus, the point z in Spec R can be thought of as
the generic point of Spec R/p. The points in the closure of = correspond to the prime ideals in R /p.

Example 1.1.1.13. Suppose R is a commutative ring. A point = € Spec R is closed if and only if it
is not properly contained in any prime ideal. In other words, closed points of Spec R correspond to
maximal ideals m C R.

Example 1.1.1.14. Take R = k[e]/€%. In this case, R has ideals () and (0). The ideal () is
prime and determines a closed point of Spec R. Note that (0) is not a prime ideal since € ¢ (0)
but €2 € (0). The inclusion k& C kl[e]/(¢?) is split by the projection R — R/(€). Thus, the
homomoprhism Spec R — Spec k has a splitting. One evocative image for Spec R in this case is a
closed point together with “nilpotent fuzz”. If R = k[x], then (z?) is an ideal of k[x], and k[z]/(2?)
is a quotient of k[x]. In particular, we can view Spec k[x]/(x?) as a subscheme of Spec k[z].

Exercise 1.1.1.15. Draw a picture of Speck[x]. In particular, observe that Spec k[z] is not a
Hausdorff topological space.

Example 1.1.1.16. More generally, a polynomial ring in n-variables k[z1,...,zy] is a reduced,
integral k-algebra and Spec k[z1, ..., x,] is denoted A} (affine k-space).

Example 1.1.1.17. Suppose R is a commutative ring and p C R is a prime ideal corresponding to a
point in Spec R. In that case, 7, is a local ring with maximal ideal m := pR,. The homomorphism
R — Ry induces an identification of Spec R, with an open subset of Spec R. Since R, is a local ring
with maximal ideal m, it follows that Spec R, has one closed point. We write (p) for field R, /m;
we call this the residue field at the maximal ideal m. Note that the homomorphism R — R, induces
a function R/p — R,/m = k(p). The former ring is an integral domain and this homomorphism
identfies x(p) with the field of fractions of R/p.

If ¢ : R — S is a ring homomorphism, then we have the continuous map Spec.S — Spec R.
We can ask when p lies in the image of this map. To this end, suppose ¢ C S is a prime ideal and
p := ¢ !(q). In that case, the image of R\ p in S under ¢ is again a multiplicative set and we write
Sy, for the localization of S at (R \ p). Then, there is an induced homomorphism R, — S, (though
the latter need not be a local ring!) and thus an induced homomorphism k(p) = R, /pRy, — Sp/pSp.
This homomorphism identifies S, /p.S, with the tensor product x(p) @g S. The ring x(p) ®r S is
a k(p)-algebra that we will call the scheme-theoretic fiber of ¢ : R — S over p.
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There is also an induced homomorphism S, — S;. This induces a homomorphism S, /p.S, —
Sq/95q = K(q), i.e., we get a homomorphism k(p) ®r S — £(q). Therefore, we conclude that p
lies in the image of Spec ¢ if and only if xk(p) ® g S is non-zero.

Example 1.1.1.18. Consider the ring map k[z] — k[z] given by = + x2. Assume first that k is
algebraically closed. In that case, maximal ideals in k[x] are of the form (z — a), a € k, and these
ideals exhaust all non-zero prime ideals. Let us look at the scheme-theoretic fibers of the induced
ring map. First, let us look at fibers over closed points. In that case, the residue field at the point
corresponding to a is simply k itself. The scheme-theoretic fiber is k[z]/(z — a) @) k[z]. Since
the map in the tensor product is induced by the ring homomorphism z + 2, you can check that
this may be identified as the k-algebra k[x]/(z? — a). If a # 0, then since k is algebraically closed,
(x2 — a) splits as (x — v/a)(z + /a). Then, k[z]/(x — /a)(x + \/a) is a reduced k-algebra and
its spectrum is simply two points. If a = 0, then the scheme-theoretic fiber is k[x]/(2?). This is
2-dimensional as a k-vector space, just like the scheme-theoretic fibers corresponding to a # 0, in
contrast to the topological picture where the preimage consists of a single point. If we look at the
generic point, then the corresponding residue field is the field of Laurent polynomials k(z) (i.e.,
invert all irreducible polynomials in k[z]). In that case, we are forming k[z] ®,) F'rac(k[z](g)). In
this case, the fiber identifies with k(x)[t]/(x? — t). It’s a good exercise to work out what happens
over k = R, say.

Affine schemes

We now proceed to give the general definition of an affine k-scheme.

Definition 1.1.1.19. Fix a base k (e.g., Z or a field). The category of (finite type) affine k-schemes
is the opposite of the category of (finitely generated) commutative, unital k-algebras. If k is a field,
a finite type k-algebra will be called an affine k-algebra. We write Affy, for the category of affine
k-schemes and ring homomorphisms.

We first begin with some statements about the general topology of spectra.

Lemma 1.1.1.20. If R is a commutative ring, then Spec R is quasi-compact and quasi-separated
as a topological space, i.e., every open cover has a finite subcover and the intersection of two
quasi-compact opens is again quasi-compact.

Proof. First, we establish quasi-compactness. Since we know what the open sets of the form Dy
form a basis for the topology on Spec R, it suffices to prove that any cover of Spec R by basic open
sets can be refined to a finite open cover. In other words, suppose Spec R = U; Dy,. By definition,
this means that N;V (f;) = 0. Since N;V'(f;) = V({fi}), we conclude that {f;},c; generates the
unit ideal in /. In other words, 1 = ZZ a; f; for some finite subset J C I. The finitely many
elements { f; } jc provide the required refinement.
For quasi-separatedness assertion, first observe that by means of the identification Dy = Spec Ry,

it follows that Spec R has a basis consisting of quasi-compact open subsets. Now, suppose U and V'
are quasi-compact open subsets of Spec R. We may write U = U; Dy, and V' = U; D, In that case,
since DyNDy = Dy, we conclude that UNV = U; ; Dy, ;. and is thus evidently quasi-compact. [
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Since the definitions we’re using have not made any assumptions about the structure of the ring
R (e.g., about existence of zero-divisors or nilpotent elements in R), we will now analyze those
things a bit.

Definition 1.1.1.21. If R is a commutative unital ring, then say that
1. Ris reduced if R has no nilpotent elements;
2. Risintegral if R is an integral domain.

Example 1.1.1.22. If R is a commutative unital ring, then the nilpotent elements form an ideal N (R)
called the nilradical of R. As a consequence, we obtain a ring homomorphism R — R/N(R) and
thus a continuous map Spec R/N (R) — Spec R, which identifies the former as a closed subset of
Spec R. The quotient R/N(R) is a reduced ring by construction. The nilradical is known to be
equal to the intersection of all prime ideals in R and in fact the map Spec R/N(R) — Spec Ris a
homeomorphism. Since it is already a continuous closed map, it suffices to check that it is bijective,
but this follows from the correspondence theorem. If p is a prime ideal of R, then N(R) C p, and
thus there is a bijection between prime ideals of R and prime ideals of R/N(R). If X = Spec R,
then we will write X,..4 for Spec R/N(R).

Next, we discuss the implications of R being a domain.

Definition 1.1.1.23. A topological space X is reducible if it can be written as the union of two
non-empty proper closed subsets (and irreducible if it is not reducible).

Proposition 1.1.1.24. Suppose R is a commutative unital ring.

1. Foraprimep C R, the closure of {p} in the Zariski topology is V (p).

2. The irreducible closed subsets of Spec R are precisely those of the form V (p) for p a prime
ideal.

3. Under the correspondence described in Point (2), the irreducible components of Spec R cor-
respond precisely with the minimal prime ideals.

Proof. Exercise. ]

Example 1.1.1.25. If R is an integral domain, then Spec R is irreducible.
Exercise 1.1.1.26. Show that Spec R is irreducible if and only if \/(0) is a prime ideal.

Definition 1.1.1.27. If k is a field, by an affine k-algebra we will mean a finitely generated reduced
k-algebra. The category of affine k-varieties is the opposite of the category of reduced, affine k-
algebras; we write Varzf T for the category of affine k-varieties.

Remark 1.1.1.28. According to our definition, affine varieties can be reducible.

Examples

There are a number of affine schemes we will routinely consider, in addition to affine space A} :=
Specklzi, ..., xy).
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Example 1.1.1.29. Fix a base ring k that we will suppress from the notation. Let X be a symbolic
n X n-matrix with elements x;;. The determinant det X is a polynomial in z;; (e.g., by any cofactor

expansion). Define
1

GL,, :=Specklxi1,...,Tnn, ——
, and

SL,, :=Speck[zi1,...,%nn]/(det X — 1).

In this case, the formula for matrix multiplication is also evidently polynomial in the entries, and the
multiplicativity of the determinant then implies that matrix multiplication determines a morphism
GL, x GL, — GL,. Likewise, if X is an invertible n x m-matrix, then the fact that X ! :=
ﬁade implies that the assignment X — X ! determines a morphism of varieties GL,, —
GL,. The identity n X n-matrix determines a distinguished homomorphism Spec k — GL,,. The
variety GL,, thus has the structure of an algebraic group. Similar statements hold for SL,,. One can
define orthogonal and symplectic groups in an analogous fashion.

Dimension

Definition 1.1.1.30. If R is a commutative ring, recall that a chain of prime ideals of length n in R
is a sequence pg C p; C - -+ C P, where each inclusion is proper. The Krull dimension of R is the
supremum of the lengths of chains of prime ideals. We will say that an affine scheme X = Spec R
has dimension d if R has Krull dimension d.

Remark 1.1.1.31. For an arbitrary ring, this number need not be finite. The Krull dimension of
Spec R coincides with the dimension of Spec R as a topological space (the topological definition is
involves the lengths of chains of irreducible subspaces).

Example 1.1.1.32 (Hyperbolic quadrics). Fix a base field k. Consider the subvariety of A?", with
coordinates 1, ..., Zn, Y1, - - -, Y defined by the equation ZZ x;y; = 1. The expression ZZ ;1 18
called the hyperbolic quadratic form and Q2,1 := Speck[z1, ..., Tn, Y1, ..., Yn)/(O_; Tiyi — 1);
the subscript labels the Krull dimension 2n — 1 of the coordinate ring. Likewise, in A2"*! (with
additional coordinate z), we set Qap, 1= Speck[z1, ..., Tn, Y1, .-, Yn, 2]/ Oy ivi — 2(z + 1)).
One obtains an isomorphic variety by replacing z(1 + z) by z(1 — z). Once again, the subscript 2n
is the Krull dimension of coordinate ring.

Exercise 1.1.1.33. Show that if 2 is a unit in k, then the ring k[x1, ..., Tn, Y1, .- Yn, 2}/ O oiey Tili—
22 — 1) is isomorphic to k[x1, ..., Tn, Y1, -+, Yn, 2]/ (g Tiyi — 2(2 + 1)).

Exercise 1.1.1.34. Show that if —1 is a square in k and 2 is invertible in k, then QQo,,—1 is isomorphic
to the “usual” sphere defined by 2?21_1 wl-z — 1 and Qo,, is isomorphic to the variety defined by the

equation 2?21 w? — 1.

Abstract vs. embedded varieties

To connect the above definitions more closely with geometric intuition, fix an affine k-algebra A.
Just as in topology, there are an “abstract” and “embedded” point of view on affine k-varieties. By
assumption A is finitely generated as a k-algebra, so we can choose a surjection k[z1, . .., Z,]. Such
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a surjection corresponds to a map Spec A — A}; this map identifies Spec A as a closed subset of
A}, Now, since k[z1,...,x,] is a Noetherian k-algebra, any ideal I C k[x1,...,x,] is finitely
generated. Thus the kernel of k[z1,...,x,] — A is a finitely generated ideal I C k[z1,...,x,).
By picking generators f1, ..., f, of I, we see that Spec A can be identified as the closed subset of
A" defined by the equations fi,..., f.. Thus, we conclude that every affine k-variety is a closed
subset of affine space. Here are some basic questions that one might ask, in parallel with questions
from topology.

Question 1.1.1.35. If A is an affine k-algebra, what is the minimal dimension of an affine space Ay,
into which Spec A embeds? In other words, what is it the smallest n for which there is a surjection
klxy,...,xy) — A?

If A is an affine k-algebra, then we can look at the group Auty(A) of k-algebra automorphisms
of A. The group Auty(k[z1,...,x,]) of automorphisms of a polynomial ring is quite large in
general. There are two subgroups that are straightforward to write down: the subgroup k™ acting by
translations, and the subgroup G L,, (k) acting by (1, ..., 2,)" to M (x1, ..., z,)" and substitution.
For n = 1, these two subgroups exhaust the automorphism group: Auty(k[z]) is a semidirect
product of k* = G L1 (k) and k acting by translations. For n > 2, the evident semi-direct product is
quite far from Auty(k[z1,...,xy]). For example, Auty(k[z1,...,x,]) contains the so-called tame
subgroup generated, i.e., the subgroup generated by automorphisms of the form

T 2 + fi(Tig1, -5 Tn)-
For n = 2, it is known that all automorphisms of k[z1, x3] are tame, but for n > 3, this is false.

Question 1.1.1.36. If A is an affine k-algebra, and we have two surjections 1, p2 : k[x1, ..., xp] —
A, then when can we find an element of 1 € Auty(k[x1,...,x,]) such that p1 = g 0 .

Remark 1.1.1.37. There are analogs of the (weak) Whitney embedding theorem in the algebro-
geometric setting [?], which we’ll return to later.

General topology of spectra

It is possible to characterize those topological spaces that are homeomorphic to prime ideal spectra
of rings, but to do so requires a bit of general topology. We mention this here for the sake of
curiosity, but also to explain how far the topological spaces that are spectra of rings are from the
“standard” topological spaces one studies in algebraic topology (e.g., Hausdorff). This discussion
is not something that we will have use for, but it’s interesting in its own right.

Definition 1.1.1.38. A topological space X is called:
1. Ty if given any two points x, 2’ € X, there exists an open neighborhood U of x not containing
;s
2. quasi-compact if every open cover of X admits a finite open subcover;
3. quasi-separated if the intersection of two quasi-compact subsets is again quasi-compact;

Exercise 1.1.1.39. If R is a commutative unital ring, characterize the quasi-compact open subsets
of Spec R as finite unions of basic open sets. Conclude that Spec R is both quasi-compact and
quasi-separated. Show that Spec R is Tj.
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An irreducible component of a topological space X is a maximal irreducible subset of X. A
point x € X is a generic point if the closure z = X. We saw above that integral affine k-schemes
have unique generic points (corresponding to the zero ideal (0)) and are therefore irreducible. In
fact, Hochster characterized topological spaces that can appear as Spec R for some ring R; for more
details, we refer the reader to [?, Tag O8YF].

Theorem 1.1.1.40 ([?, p. 43]). A topological space X is Spec R for a commutative ring R if and
only if X is quasi-compact, Ty, the quasi-compact open subsets of X form a basis for the open
subsets of X, are closed under finite intersections, and every non-empty irreducible component of
X has a unique generic point.

1.1.2 The functor of points

We would like to think of the variety Spec A = klz1,...,z,]/(f1,..., fr) as the simultaneous
“vanishing locus” of fi,..., f,, but we have to take care in doing this. Indeed, if we look at the ring
Rz, y]/(x? +y* — 1), then the “vanishing locus” of 22 + %2 — 1 over R is simply a circle. However,
there are other maximal ideals besides those corresponding to points on the graph. Indeed, there are
maximal ideals corresponding to complex solutions of the equations.

To explain this more clearly, suppose we are given another k-algebra 7' (for test). A homomor-
phism A — T corresponds, using the description above, to specifying elements x1,...,x, in T
such that fi(z1,...,2n),..., fr(1,...,2,) = 0in T In other words, a map SpecT — Spec A
corresponds to a “solution of the equations defining A with coefficients in 7'.” The variety Spec A
is not “determined” by its vanishing locus over k, but it is determined by looking at solutions in all
possible ring extensions. Here is a precise statement.

Lemma 1.1.2.1. The functor A — Homag, (A, —) from the category of affine k-algebras to the
category of set-valued functors on the category of affine k-algebras is fully-faithful and we can
identify Affy as the full-subcategory consisting of (co-)representable functors.

Proof. This is a special case of the Yoneda lemma. O

Example 1.1.2.2. Suppose given a morphism ¢ : A — B of k-algebras and suppose we fix pre-
sentations A = k[xy,...,zn]/(f1,...,fr) and B = k[y1,...,yn]/(91,...,9s). We claim that
a morphism as above is essentially the restriction of a polynomial map. Indeed, the composite
morphism k[x1, ..., z,;,] — B corresponds to specifying polynomials ¢(x1), ..., o(z,,) in B sat-
isfying the equations fi,. .., f.. Moreover, because there is a surjection kly,...,y,| — B, these
elements can all be lifted to k[y1, . .., yn). A choice of such lifts then determines a homomorphism
klx1,...,zm] — Ekly1,-..,yn], which is precisely a morphism between affine spaces.

Example 1.1.2.3. It is even useful to consider “solutions” in non-reduced rings. E.g., suppose
T = kle]/€?. Take A = k[z,y]/(zy — 1). Suppose we would like to construct a homomorphism
k[z,y]/(xy — 1) — k[e] /€. First, we need to specify two elements z and y of k[e] /€2; any element
can be written as a + be. So suppose we have two elements x = a + be and y = a’ + V'e. Now,
the equation zy — 1 imposes the relation (a + be)(a’ + b'e) — 1 = 0 in k[e]/€%. In other words,
(aa’ + (ab' + ba')e) — 1 = 0. This means aa’ = 1 and ab’ + ba’ = 0 or equivalently, ab’ = —ba’.
The first condition, corresponds simply to a solution of xy = 1 in k, i.e., a k-point on the graph.
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The second condition can be interpreted as picking out the tangent space at (a, a’), i.e., we can think
of a k[e] /e?-valued point as a k-point together with a tangent vector at that point.

Given two k-algbras A and B, we can form their tensor product A ®; B. The k-algebras A
and B are k-modules, and as a k-module, the tensor product is the usual tensor product. We give
A®y, B a k-algebra structure by defining (a1 ®b;)(a2 ®by) = ajaz @by by then extending to ARy B
by linearity. Note that k[z1, ..., Ty @k k[y1, ..., yn] = klx1, .., Zm, Y1, .-, Yn]. More gener-
ally, given presentations A = k[z1,...,Zm|/(f1,..., fr) and B = k[y1, ..., yn]/(91,- -, 9s), the
tensor product A ®;, B can be identified with k[x1, ..., Zm, Y1, -, Ynl/(f1s oy fra 91y -3 gs)-

Remark 1.1.2.4. Note that A ®j, B is a coproduct in the category of rings. More precisely, there are
maps A — A®y B and B — A®y, B such that if C'is any k-algebra equipped with homomorphisms
A — C and B — C, then there exists a unique map A ®; B — C making the relevant diagrams
commute. Since Spec is a contravariant functor, it follows that Spec A ®. B is a product in the
category of affine k-schemes: i.e., it is the product of Spec A and Spec B in the category of k-
schemes. Note that the topology on Spec A ®y, B is not the product topology in general. This can be
seen already with A = k[z] and B = k[y]! Nevertheless, we will still write Spec A Xgpecr Spec B
for the product variety. If it is clear from context, we will drop the subscript Spec & in the product.
Thus, the functor Spec does not preserve products.

Fibers of a map

If p : A — B is aring homomorphism, then ¢ corresponds to a morphism f : Spec B — Spec A.
Given a point of Spec A, we may therefore consider the fiber of f over that point. There are several
things we could mean by this idea. Generally, a T-point of A corresponds to a ring homomorphism
A — T. In that case we can form the tensor product B ® 4 T'; this comes equipped with a morphism
B — B®4 T. A useful case to consider is when T is reduction modulo a maximal ideal m C A.
In that case, mB is an ideal in B, which no longer needs to be maximal. The scheme-theoretic fiber
of f over the closed point corresponding to m coincides with the ring B/mB. Observe that A/m is
a field x by assumption, and thus B/mB is automatically a x-algebra.

1.2 Presheaves and sheaves

Just as manifolds have local models that are open subsets of Euclidean space, general schemes
are obtained by gluing together affine schemes. The gluing process is mediated by the theory of
sheaves. We quickly review some facts about sheaves on topological spaces.

1.2.1 Sheaves on topological spaces

The notion of a sheaf on a topological space is useful for studying locally defined properties. Here
is a motivating problem. Suppose X is a topological space, and {U; };cr is an open cover of X.
Given continuous functions f; : U; — C*, can we find a function f : X — C* whose restriction
to U; coincides with f;? Some compatibility amongst the f; is necessary: if U; and U; are open
sets that intersect, then we can restrict f; and f; to U; N U; = U;; and they must coincide there.
On the other hand, if fi[y,; = fj|u,;, then we can define a function f on U; U U; whose values at
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x € X are given by f;(x) if z € U; and f;(z) if © € U;. This extended function is continuous and
by induction, assuming compatibility we can build a function f. Note that the function f that we
have built is necessarily unique. The notion of a sheaf abstracts this gluing procedure, which has
appeared repeatedly in previous sections.

Presheaves on a topological space

Definition 1.2.1.1. If X is a topological space, then define a category Op(X) as follows: objects are
open sets of X for the given topology and given two open sets U and V/, there is a unique morphism
U—-VitUu cCV.

Remark 1.2.1.2. Note that Op(X) has an initial object, corresponding to the empty set, and a final
object, given by X itself.

A presheaf on X is a rule that assigns some structure to each open set, together with suitable
“restriction” maps connecting the structures associated to different open sets. As before, it will be
convenient to think of “algebraic structures” as simply the objects of a category C. In practice, the
category will be taken to be Set, Ab, Grp, or something similar; and until further notice, we will
assume that C is a category of algebraic structures in this sense.

Definition 1.2.1.3. Suppose C is a category and X is a topological space. A C-valued presheaf on
X is a functor
ZF :0Op(X)° — C.

A morphism of C-valued presheaves on X is a natural transformation of functors. Write PShv(X, C)
for the category of C-valued presheaves on X.

Remark 1.2.1.4. While having a definition this general affords us considerable flexibility, it does
come with some drawbacks. For example, we need to be a bit careful with terminology: if U is
an open subset of a topological space X, then .%(U) is just an object of the category C and need
not have any “internal” structure: in particular, it does not make any sense to speak of elements
of Z(U). Often we will take C = Set or Ab. In either of these cases, elements of .7 (U) are
themselves sets or abelian groups and it makes sense to talk about their elements (more generally,
this makes sense in any “concrete category”, i.e., a category equipped with a faithful functor to the
category of sets). In that case, elements of .% (U) will be called sections of .# over U. While it
may not be immediately apparent, we will later want to work with categories that are not necessarily
concrete, so the flexibility of the definition will become essential. Freyd showed that the homotopy
category of pointed topological spaces .77, cannot be equipped with a faithful functor to Set and is
therefore not concrete [?], so even “down to earth” categories may fail to be concrete.

Remark 1.2.1.5. Furthermore, note that we have imposed no restriction on the functor .%. Hartshorne
restricts attention to C = Ab and requires that .% ((}) = 0 (the final object of Ab). Since a general
category C as above need not have a final object, Hartshorne’s definition does not even make sense
in this generality.

Example 1.2.1.6. If C is a category and A € C is an object, the constant presheaf on a topological
space X is the presheaf assigning to each U € Op(X) the object A and to each morphism the
identity morphism.
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Sheaves of sets on a topological space

We now define sheaves of sets by imposing the condition that sections are “locally” determined.
More precisely, suppose U is an open subset of a topological space X and {U; };c; is a open cover
of U. In this case, if .# is a presheaf on X, there are restriction maps .# (U) — .% (U;) and we can
take the product of these to obtain a function

F(U) — [[ 7).
el

If s € .#(U) is a section, this function sends s to {s;}icr, where s; is, intuitively speaking, the
restriction of s to U;. Similarly, there are a pair of restriction maps of the form:

[Lier Z(Ui) == 11,y s,erx1 Z Uiy xv Usy).

Now, the locality condition can be phrased in two steps: (i) any section s € % (U) is determined
by its restriction to Uj, i.e., the first map above is injective, and (ii), given a family of sections
{si }icr Whose restrictions to two-fold intersections agree, there exists a (necessarily unique) section
s € Z(U) whose restriction to U; coincides with s;. These two conditions can be phrased more
categorically as follows.

Definition 1.2.1.7. If X is a topological space, .%# is a Set-valued presheaf on X, then say .% is a
Set-valued sheaf on X if for any open set U and any open cover {U; };c; of U, the sequence

FU) —=lier FUi) —= 11, iyerxs & Uiy xv Usy)
is an equalizer diagram.

Remark 1.2.1.8. As observed above, the empty set is the initial object of Op(X). The emtpy set
also has a distinguished cover given by the empty cover. The indexing set for the empty cover of
the empty set is the empty set as well. The empty product in a category is simply the final object.
Therefore, implicit in our definition of a sheaf is the condition that .%(()) = * (where * is the
singleton set).

Remark 1.2.1.9. If .# is a presheaf of abelian groups, then the sheaf condition can be stated in terms
that might be more familiar. Indeed, in that case, the injectivity condition is the condition that the
map .7 (U) — [[;c; # (U;) has trivial kernel. Likewise, the locality condition can be rephrased as
follows. Write U;; := U; Xy Uj. Given a family of sections s; € .% (U;), the condition that the
restriction to 2-fold intersections .7 (U; Xy Uj) is equivalent to requiring that s;|y,; — s;|u,; = 0.
In other words, the sheaf condition is equivalent to exactness of the sequence of abelian groups

0— Z(U) — [[ZW) — [[Z W),

1 ,J

n
1=
where the first homomorphism is simply the sum of the restriction maps, and the second homo-
morphism sends (s1,...,5) to (..., silu;; — sjlu,;,- - ). We will frequently use this translation to
check the sheaf condition.
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Exercise 1.2.1.10. Show that if X is a topological space and ¥ is a Set-valued sheaf on X, and U
and V' are disjoint open subsets of X, then (U U V) = % (U) x .Z (V).

Example 1.2.1.11. The fundamental example of a presheaf (of sets) that is not a sheaf (of sets) is
the constant presheaf assigning to U € X a non-singleton set S. Indeed, .% () = S, rather than .

Example 1.2.1.12. Suppose S is a set and view .S as a topological space with the discrete topology.
If X is a topological space, define the constant sheaf Sx to be the sheaf Hom,,(U, S) (i.e., con-
tinuous maps from U to S). If U is connected, such functions are constant, but if U is disconnected,
then Hom(U, S) is only constant on connected components. Thus, Sy consists of “locally constant
functions.” We will refer to Sx as the constant sheaf associated with S.

Example 1.2.1.13. One standard class of sheaves arises by considering functions of various sorts.
For example if U C R™ is an open subset, and we assign to an open subset V' C U the ring C'(V,R)
or C*°(V,R) of continuous or smooth real-valued functions V' — R, then this assignment defines a
sheaf on U; we will write 677 or 67 for the resulting sheaf.

Sheaves valued in a general category

Now that we have a reasonable notion of sheaves of sets, there are several ways we can talk about C-
valued sheaves where C is a more general category. A fundamental problem is that if C is a general
category, then the constructions being used to define “restriction” need not even make sense. For
example, if [[,.; % (U;) may not exist, and even if it does, equalizers may not exist in the given
category. Rather than necessitating the existence of all such products and equalizers in C, we use
the Yoneda embedding to allow us “reduce our problem” to only considering Set-valued sheaves.
Indeed, we can identify C as the full subcategory of Set-valued contravariant functors on C of the
form Homc(—, Y') for Y an object in C.

Exercise 1.2.1.14. Show that, given an object A € C, the assignment % 4(U) := Homc (A, #(U))
defines a presheaf of sets F 4 on X.

Definition 1.2.1.15. Suppose X is a topological space, C is a category and .% is a C-valued
presheaf on X. We will say that .% is a C-valued sheaf on X if for every object A € C, Z4 is a
Set-valued sheaf on X. A morphism of sheaves is simply a morphism of the underlying presheaves,
i.e., a natural transformation of functors. Write Shv (X, C) for the category of C-valued sheaves on
X.

Exercise 1.2.1.16. Show that if all necessary products and equalizers exist in C, the definition above
is equivalent to requiring that the diagram from the definition of a sheaf is an equalizer diagram in
C.

Example 1.2.1.17. If X is any topological space, then X determines a Set-valued presheaf on X,
i.e., Homgpx)(—, X). This presheaf is a sheaf. More generally, if Y is any topological space, then
we can consider the presheaf that assigns to U C X the set of continuous maps U — Y. You can
check that this presheaf is necessarily a sheaf as well. In particular, taking ¥ = R or C equipped
with its usual topology, one can speak of the sheaf of real or complex valued continuous functions
on X. We write Cx for this sheaf. If X happens to be a differentiable manifold, then we may also
speak of the sheaf of smooth functions on X.
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Example 1.2.1.18. If X is a topological space, and 7 : & — X is a vector bundle on X, then as-
signing to U C X the set of sections of &'|¢y defines a sheaf of modules over the sheaf of continuous
functions on X.

Example 1.2.1.19. If X is a topological space, x € X and S is a set, then the skyscraper sheaf
associated with x is defined as follows: z,S(U) = Sifx € Uand if x ¢ U.

Example 1.2.1.20. Assume X is a topological space, and suppose we have a family of sets A, pa-
rameterized by the points x € X. We define a pre-sheaf .7 on X by the assignment U > [, oy Az
the restriction maps attached to V' C U are given by the projection maps [[, .y Ae — [ ey Az
(project away from the points in U \ V). Of course, this construction works more generally in any
category C that has arbitrary products (e.g., groups, abelian groups, rings, etc.). It is straightforward
to check that the < is sheaf on X.

1.2.2 Isomorphism, epimorphism and monomorphisms of sheaves

Since morphisms in PShv (X, C) are simply natural transformations of functors, it follows immedi-
ately that monomorphisms, epimorphims and isomorphisms are determined sectionwise. Detecting
epimorphisms and isomorphisms of sheaves is more subtle as we now discuss.

Lemma 1.2.2.1. If %1, %5 are C-valued presheaves on X, then a morphism ¢ : F1, — Faisa
monomorphism if and only if the induced maps 1 (U) — F2(U) are monomorphisms for every
U € Ob(X).

Proof. Unwind the definitions. O

Detecting epimorphicity of sheaf maps is more complicated because of the “local” nature of the
definition of sheaves. If X is a topological space and x € X is a point, then a neighborhood of z in
X isanopen set x € U C X. Note that every point € X has a neighborhood, namely X itself.
If U; and U, are neighborhoods of U, then U; N Us is also a neighborhood of U. It follows that
the subcategory of Op(X) consisting of neighborhoods of z is a partially ordered set, viewed as a
category.

Definition 1.2.2.2. If .7 is a presheaf on a topological space and x € X is a point, then the stalk of
Z at x, denoted .7, is defined by the colimit

Fy = colimzeycx Z (U),
assuming this colimit exists in C.

Remark 1.2.2.3. Because the category indexing the colimit is filtered, we can give a very direct
definition of the colimit for a presheaf of sets. Namely, .%, consists of pairs (U, s) where x € U
and s € .7 (U) modulo the equivalence relation given by (U, s) ~ (U’, s') if the sections s and s’
coincide after a suitable refinement, i.e., there exists an open set U” C U N U’ such that s and s’
coincide upon restriction to .% (U”). The same thing holds for presheaves of (abelian) groups.

Remark 1.2.2.4. The construction of the stalk is functorial in the input presheaf. More precisely, if
f % — ¢ is amorphism of presheaves on a topological space, and x € X is a point, then there is
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an induced function f, : %, — ¥, of stalks. If the presheaves have additional structure, i.e., they
are presheaves of groups or rings, then f, respects that structure as well, i.e., f, will be a group or
ring homomorphism.

Example 1.2.2.5. The object .%, is a generalization of the the notion of a “germ of a function” at a
point. More precisely, let X = R™ and consider the sheaf .% of real valued continuous functions on
X. The stalk of .# at x consists precisely of germs of continuous functions at .

Proposition 1.2.2.6. If ¢ : % — ¥ is a morphism of sheaves, then @ is an epimorphism (resp.
isomorphism) if and only if the induced map on stalks is an epimorphism (resp. isomorphism).

Proof. By the Yoneda lemma, we reduce attention to set valued presheaves.
In that case, if  is an epimorphism, then ¢ is surjective on stalks by unwinding the definitions.
Conversely, suppose @ : F#, — ¥, is an epimorphism for each x € X. Let ¢); : 4 — 2,
1 = 1, 2 be two further morphisms of sheaves and assume ; o ¢ = 13 o . We want to show that
11 = 9. Since taking stalks is functorial, it follows that

(¢1)x O Pr = (¢1 © ‘P)x = (1/)2 © @)x = (1112):;: © Pg-

By assumption, the induced maps on stalks are epimorphisms, and therefore (1), = (1)2), for
every x € X.

Now, suppose s € ¢ (U) and consider (11)y(s) and (¢2)y(s). At each point z € U, we can
find a neighborhood V' of z such that (¢)1)¢/(s) and (2)17(s) coincide upon restriction to V. Doing
this for every point € U, we obtain a cover of U on which the two sections agree after restriction
and therefore, they must agree. Thus ¢; = 5. 0

Exercise 1.2.2.7. Describe the stalks of a skyscraper sheaf.

Example 1.2.2.8. A surjective map of sheaves need not be surjective on sections. Here is a rather
small example. Take X = P, Q), R with open sets X, 0, { P, R}, {Q, R} and { R}. Consider first the
constant sheaf Zx on X. Define another sheaf on X by taking the sum of the skyscraper sheaves
P.Z & Q.Z. Restriction defines a map Zx — P.Z & Q.Z, but this morphism is not surjective
on sections. Indeed, the map on sections sends Z to the diagonal in Z & Z, which is evidently not
surjective. However, this map is an epimorphism of sheaves.

1.2.3 Sheafification

If % is a C-valued sheaf on a topological space X, then by simply forgetting that the sheaf condition
holds one obtains a forgetful functor

Sh(X, C) —s PSh(X, C).

This morphism is fully-faithful by definition (sheaves form a subcategory of presheaves). One can
then ask: given a presheaf on X, is there a “best-approximation” of X by a sheaf? We can give the
notion of “best-approximation” a precise meaning using universal properties, but for example, we
would like that if .# is already a sheaf, then the best-approximation is .# itself. In order to motivate
the construction of sheafification, we begin with the following example.
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Example 1.2.3.1. Suppose .7 is a sheaf of sets on X. If U € X is an open set, then restriction of
sections induces a map .7 (U) — .%,, for any x € U. Therefore, there is an induced map

F(U) — [] %=

The uniqueness statement in the sheaf condition guarantees that this map is injective. Of course, the
image of the above map consists of {s, },cx for which there exists a section s € .% (U) such that
Sy = $|a.

In conjunction with Example 1.2.1.20 we will use preceding example to build sheafification. If
% is a presheaf on a topological space, then set

N7 W) = [ F
reX

this is a sheaf by the conclusion of Example 1.2.1.20. By construction, restriction of sections defines
a map

F - (F);

thus, we see that .# maps to a sheaf. However, this map is not an isomorphism even if . is a sheaf
since the sections of II(.#) correspond to elements in .%, where the elements at nearby points need
not be related. Following Example 1.2.3.1, we define a sub pre-sheaf of II(.#)(U) as follows. For
any open U C X, define

FHU) C I(F)(U)

to be the subset consisting of sections
{Hsz}zev|Vu € U3V C U open, and s € .# (V)s.t.s, = s|y}.

The condition in the statement is compatible with restriction maps, so we conclude that .# T is
actually a sub-presheaf of II(.#). Note also that the map .# — II(.%) has image in .7 T, so there
is a factorization

F — FT — U(F).

Theorem 1.2.3.2 (Sheafification). If .F is a presheaf of sets on a topological space X, then the
pre-sheaf F is a sheaf that we will call the sheaf associated with F ; if F is already a sheaf. then
the map F — F 7 is an isomorphism. The assignment F — F 7T is functorial. If 4 is any sheaf,
and ¢ : .F — 9 is a morphism of pre-sheaves, then o factors uniquely through a morphism of
sheaves F+ — 4, in other words there is a functorial bijection

HomPSh(X) (#,9) — HomSh(X)(nga 9),

i.e., the functor of associated sheaf is left adjoint to the forgetful functor.
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1.2.4 Building sheaves from a basis

Suppose X is a topological space and B is a basis of open sets for the topology on X. (Recall
this means that we provide a set of open sets of X such that the elements cover X and given any
two open sets in the base, the intersection can be covered by elements of the base). Often, it is
convenient to specify some construction on the basis and show that it extends to all of X. We will
do this now for sheaves on X. We abuse notation and write B for the full subcategory of Op(X)
spanned by elements of the basis.

Example 1.2.4.1. The example to keep in mind for our later use is the case where X = Spec R for R
a commutative unital ring. In this case, we have a good handle on a basis for the Zariski topology on
Spec R (arising from principal open sets). The subset B3 defines a subcategory of Op(X) consisting
of those open sets that are contained in B.

Definition 1.2.4.2. If X is a topological space and B is a basis for the topology on X, then a
C-valued presheaf on B is a contravariant functor from B to C.

Remark 1.2.4.3. Every presheaf on X determines a presheaf on 5, but there is no reason that a
presheaf on B should determine a presheaf on X. Nevertheless, we will see now that sheaves on X
are determined by their restriction to B.

Definition 1.2.4.4. If X is a topological space and B is a basis for the topology of X, then a a
presheaf of sets .# on B is a sheaf on B if it satisfies the following additional property: for any
U € B and any covering U = U;¢;U; with U; € B and any coverings U; N U; = Uker,; Uijr with
Uijr, € B the sheaf condition holds, i.e., for any collection of sections s; € .#(U;), 4 € I such that
forall 4,7 € I and for all k € I;j, silu,;,, = sjlu,,,» there exists a unique section s € 7 (U) such
that s; = s|y, for all 4.

Remark 1.2.4.5. If % is a sheaf of sets on X, then .% determines a sheaf on the basis by restriction
to Z. We now show that, conversely, there exists a unique extension of a sheaf on a basis to a sheaf
on X. Given a sheaf on a basis, we begin by explaining how to describe sections of the extended
sheaf over an arbitrary open set.

Lemma 1.2.4.6. Suppose X is a topological space and B is a basis for the topology of X. Let F
be a sheaf of sets on B. Given U € B, the map (see Example 1.2.3.1)

FU) — [[ %

zelU

identifies 7 (U) with the elements (s;)zcy with the property that for any x € U there exists a
V e Bwithx € V and a section o € F (V') such that for all y € V the equality s, = (V,0) € Z,.

Proof. As observed in Example 1.2.3.1 the map .7 (U) — [],cy #= is injective. To establish sur-
jectivity, take any element (s, ),cp on the right hand side satisfying the condition of the statement.
We can find an open cover {U;},c; of U with U; € B such that (s;)zey, comes from a section
s; € Z(U;). For every y € U; N Uj, the sections s; and s; agree in .%,. Therefore, we can find an
open sety € V;j, € B such that s; and s; restricted to this open set agree. The sheaf condition then
guarantees that the sections s; can be patched to obtain a section of .# (U). O
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Using this observation, one may extend sheaves defined on a base of open sets for the topology
on X to sheaves on all of X.

Theorem 1.2.4.7. Suppose X is a topological space and B is a base for the topology of X.
1. If Z is a sheaf of sets on B, then there exists a unique sheaf F* on X such that #*(U) =
F(U) for all U € B compatibly with restriction mappings.
2. The assignment % — F° provides a quasi-inverse to the restriction functor from sheaves
on X to sheaves on B, i.e., restriction determines an equivalence between the category of
sheaves on X and the category of sheaves on B.

Proof. For an open subset U of X, define .#“*(U) to be the subset of [] ., %, consisting of
sections such that for any = € U, there exists a V' € B3 containing x and a section o € . (V) such
that forally € V, s, = (V,0) in .%,. Restriction equips this assignment with the structure of a
presheaf of sets on X. By Lemma 1.2.4.6, we conclude that . “*(U) coincides with .% (U) for any
UebkB.

To see that .7 " is a sheaf on X is a direct check. Suppose U is an open set and {U; };cs is an
open cover of U. It is immediate from the definitions that 7 *(U) — [[,c; .7 “*(U;) is injective.
Suppose we are given sections s; € .#*(U;). By definition, each s; consists of (s;),,x € U;. If
these sections agree upon restriction to .%“*(U; N U;), we claim they patch together as required.
We leave this as an exercise. O

Example 1.2.4.8. Take X = C". We know how to speak about holomorphic functions on X. An
open disc in C, centered at x is an open subset of the form D, (z) consisting of all points of distance
at most € from z. A polydisc in C" centered a point x = (x1,...,2,) is a subset isomorphic to
D¢, (z1) X - -+ D, (xy,). Polydiscs provide a basis for the topology on X. Moreover, it makes sense
to speak of holomorphic functions on a polydisc. Using the procedure above, one can define a sheaf
ﬁg%l of holomorphic functions on X. More generally, the same procedure works for any complex
manifold X to produce a sheaf & ;L(Ol of holomorphic functions on X.

1.2.5 Basic functoriality

Suppose f : X — Y is a continuous map of topological spaces. In that case, the definition of
continuity implies that f induces a functor f~! : Op(Y) — Op(X). In particular, if .% is a C-
valued pre-sheaf on X, then there is an induced C-valued presheaf f..# on X. In other words,
there is an induced functor

f«: PSh(X,C) — PSh(Y,C).
Explicitly, if U C Y is a subset, then f,.#(U) := Z(f~1(U)). The functor f, is called the

push-forward functor.

Lemma 1.2.5.1. If f : X — Y is a continuous map, and .% is a C-valued sheaf on X, then f..F
is a C-valued presheafon Y .

Example 1.2.5.2. If X is a topological space, x € X is a point, ¢ :  — X is the inclusion, and .%
is a C-valued presheaf on z, then i,.# is the skyscraper sheaf we described above. More generally,
if 2 : Z — X is the inclusion of a closed subset, then ¢, allows one to extend sheaves from Z to X.
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Henceforth, we will assume that C is a category of algebraic structures. If X is a topological
space, # is a (pre)sheaf on X, and U C X is an open subset, then we may always restrict .# to a
sheaf on U, for which we will write .%|¢;. However, if Z C X is a subset that is not necessarily
open, then restricting (pre)-sheaves on X to (pre-sheaves) on X is more complicated since open
subsets of Z are typically not open subsets of X. Instead, suppose f : X — Y is a continuous
map of topological spaces, and .% is a pre-sheaf on Y. If U is an open set in X, then the collection
of open subsets of Y containing f(U) is partially ordered by inclusion and filtered because the
intersection of any two open subsets of Y that contain f(U) again contains f(U). We then define
the “pullback” presheaf f~1.% on X by defining sections over an open U C X via the formula:

[~ F(U) = colimy~ )y F (V).

If .# is a sheaf, there is, in general, no reason to expect that f~.% is again a sheaf, we define f -1z
on sheaves by sheafifying the above f~1.% = f~.F .

Assume f : X — Y is a continuous map as above and suppose .% is a sheaf on Y and ¢ is a
sheaf on X. In that case, suppose we have a morphism of sheaves .# — f.¥. In that case, for any
open U in Y, we have .7 (U) — £.4(U) = 4(f~1U). In particular, if we fix an open W C X and
consider opens U in Y that contain f(W) we get such a map. It follows that there is an induced
map

colimy~ ¢y F(U) — 4 (W),

that is functorial in T in the sense that there is an induced morphism of presheaves f~.% — 4.
By the universal propety of sheafification, this morphism of presheaves factors uniquely through a
morphism of sheaves f~!.% — &. The assignment just described defines a function

Homgyy(v,c)(Z, f+¥) — Homgyy(x,0)(f ' Z,9).

In fact, unwinding the definitions, one can construct an explicit inverse function. The following
exercise summarizes the properties of the above function.

Exercise 1.2.5.3. If f : X — Y is a continuous map, % is a C-valued sheaf on Y and 94 is a
C-valued sheaf on X, then the function

Homg,(v,c)(Z, f+¥) — Homgp(x,0)(f 7' F,9).
is a bijection, functorial in both input sheaves.

There are many natural questions to ask here. Suppose f : X — Y andg : Y — Z are
continuous maps. In that case we obtain functors f,, g. and (g o f).. The composite g, o f, has the
same source and target as (g o f)., and comparing definitions, one sees that if .7 is a sheaf on X,
then for any open U in Z, the identity map defines a bijection

(g« 0 f)F(U) = (g0 [)«F (U),

i.e., there is an equality of functors g, o f, = (g o f)«. You can analyze pullbacks similarly.
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1.3 Schemes in general

Our goal is to specify a formalism for gluing sheaves. There are several ways to do this, each
with its own benefits and complications. Previously, given a commutative ring R, we defined a
topological space Spec R, and we defined the category of affine schemes as the opposite category
of the category of commutative rings. We’d now like to think of R as “functions” on Spec R and
define a sheaf of rings on Spec R whose global sections are R itself.

1.3.1 The structure sheaf of an affine scheme

Since the basic open set Dy C Spec I corresponds to the ring 12y under the ideal variety correspon-
dence, the sheaf we would like to build should have sections over D equal to R for consistency
with the principle just described. Since the opens D form a basis for the topological space Spec R,
any sheaf we would like to build on Spec R is uniquely specified by its values on D . Thus, to build
a sheaf on Spec R, it suffices to show that the assignment Dy — Ry is a presheaf on the basis Dy
and then to check the sheaf condition. We begin by checking the presheaf condition: for this, we
need to show that an inclusion of basic open sets Dy, C Dy corresponds to a ring homomorphism
Ry — R,. The following lemma establishes this in slightly greater generality.

Lemma 1.3.1.1. Suppose R is a commutative ring, and f € R.
1. If g € R is such that Dy, C Dy, then f is invertible in Ry, there exists an integer e > 1
and a € R such that g¢ = af, there is a unique ring map Ry — R inducing the inclusion
Dy C Dy, and for any R-module M, there is an induced morphism My — M.
2. Any open covering of Dy can be refined to a finite open covering of the form Dy = U; Dg,.
3. Ifg1,...,gn € Rthen Dy C U; Dy, if and only if g1, . . ., gn generate the unit ideal in Ry.

Proof. Suppose g € R and D, C Dy. We know that D, = Spec I?4. Now, Spec R, corresponds
to those prime ideals that do not contain g, so it follows that f is not contained in any prime ideal
containing g; this means that f is invertible in R,. In that case, we may write the inverse of f in
R, as % for some integer d > 1. Then, g% — af is annihilated by some power of ¢, and we may
write g° = af as claimed. The morphism Ry — R, is that arising by the universal property of
localization; explicitly, an element of the form fin is sent to Z%f. Likewise, if M is an R-module,
then My — M, is induced by the same formula.

The second assertion follows from the fact that Dy is quasi-compact and the basic open sets

form a basis for the Zariski topology. The final statement is an exercise. 0

Corollary 1.3.1.2. If R is a commutative ring and M is an R-module, then the assignment M >
My determines a presheaf M on the basis Dy of Spec R. If x € Spec R corresponds to the prime
ideal p, then the stalk M, coincides with the localization M.

Proof. The first statement is a consequence of Lemma 1.3.1.1. For the second statement, it suffices
to observe that the stalk can be computed by restricting attention to basic open sets containing a
given point. Now, if f; and f> are basic open sets, then Dy, ¢, = Dy, U Dy,. Now, let us order the
collection of elements f € R, f ¢ p as follows: we will say that f > ¢ if Dy C D,. With respect
to this ordering, we see that

M, := colimycprep Ry
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Note also that f;fo > f; with respect to this ordering. Now, one just has to observe that if .S
is a multiplicative set in a ring R, then the localization M[S™1] can be realized as the colimit
colim¢cg My where the ordering on f € S'isthat f > f"if f = f'f” for some f” € R. O

Now, we check that M is actually a sheaf on the basis of open sets of Spec R. By what we
learned above, suppose we have an open cover of Dy by U; Dy, for some g1, ..., g,. In that case,
the intersections are the open sets of the form D(g;g;), and we thus want to check exactness of the
sequence

n n
My — @Mgi — @ Mg,g;-
i=1 ij=1
Since Dy = U; Dy,, we saw above that g1, ..., g, generate the unit ideal in ;. Mqreover, without
loss of generality, we may replace g; by fg; and g;g; by fgig;. Thus, to establish M is a sheaf, we
need the following result.

Lemma 1.3.1.3. Assume R is a commutative ring, and g1, . .., gy are elements in R that generate
the unit ideal and M is an R-module. The sequence

0— M — éMgi — P My,
i=1 ij

where the first map sends m € M to (m, ..., m) and the second map sends (*+, ..., Z)to the

g g
difference of the restrictions.

Proof. 1t suffices to show that the localization of the sequence at any maximal ideal m C R is exact
(see Appendix). Since g1, ..., g, generate the unit ideal in R, there is an integer ¢ such that g; ¢ m.
Renumbering the g; if necessary, we may assume ¢ = 1. Since localizations commute, we see that
(Mg, )m = (Mpn)y, and likewise that (My,g.)m = (Mun)g,q;- In particular, (M, ) = My and
(Mg, g;)m = (M), because g; is a unit. Note that the maps in the sequence are the canonical
ones coming from Lemma 10.9.7 and the identity map on M. Having said all of this, after replacing
R by Ry, M by My, and g; by their image in Ry, and g; by 1 € R,,,, we reduce to the case where
g1 =1L

Assume g; = 1. Injectivity of the first map is now immediate. Let m = (my,...,m,) lie in
the kernel of the second map. Then m, € M, = M. The assertion that m is sent to zero by the
second map implies that m; = m; for< = 1,...,n. In that case, the image of m; under the first
map is m and we’re done. O

If R is a commutative ring, then we will write Ospe. r for the sheaf on Spec R whose existence
is established by the preceding results. We now summarize what we know about this sheaf of rings.

Theorem 1.3.1.4. Let R be a ring. Let M be an R-module. Let M be the sheaf of Ospec R-modules
attached to M. The following statements hold:

1. I'(Spec R, Ospec R = R, and

2. T(Spec R, M) = M as an R-module.

3. Forevery f € R, I'(Dy, Ospec r) = Ry.

4. Forevery f € R, I'(Dy, M) = My as an Ry-module.
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5. Whenever D, C Dy the restriction mappings on Ospec R and M are the maps Ry — Ry and
My — Mgy above.
6. If p C Ris a prime ideal and = € Spec R is the corresponding point, then Ospec g = Rp.
7. Ifp C R is a prime ideal and x € Spec R is the corresponding point, then M, = M.
Moreover; all these identifications are functorial in the R module M. In particular, the assignment
M —s M is an exact functor from the category of R-modules to the category of Ospec g-modules.

1.3.2 Ringed and locally ringed spaces

We now want to build more general schemes by gluing together affine schemes. Here is a simple
example that shows that in performing gluing constructions we cannot expect to stay within the
category of affine schemes. In topology, one defines S? as glued from two copies of C over the
intersection, C*. The maps defining the gluing are algebraic functions: if z is a coordinate on the
first copy of C and 2~ is a coordinate on the other, then the gluing map is defined on the intersection
by z + 2~1. We can try to perform this construction in the category of rings, but to do so we reverse
all the arrows. Namely, we want to obtain the coproduct of rings k[z] and k[z~!] over k[z, z71].
However, the collection of functions (f1, f2) such that f1(2) = f2(z~!) consists only of elements
of k. Thus, the “gluing” in the category of affine schemes is Spec k, which is evidently not what we
have in mind when we think of P'. The “problem” is that we are only thinking about functions that
are globally defined and in complex analysis one learns that a polynomial function on the Riemann
sphere is constant. Thus, we must expand our view beyond the world of rings to obtain a reasonable
notion of quotient.

Definition 1.3.2.1. A ringed space is a pair (X, Ox) consisting of a topological space and a sheaf
of commutative rings on X.

Example 1.3.2.2. The examples to keep in mind are: M a topological manifold and 4}, the sheaf
of (say, real-valued) continuous functions on M, M a smooth manifold and &} the sheaf of (say,
real-valued) smooth functions on M.

A map of manifolds induces a corresponding pullback of functions; this corresponds to a suit-
able map of sheaves, albeit on different topological spaces. We now introduce a notion to compare
sheaves on different topological spaces. The following notion is a formalization of what happens to
functions under pullback along a morphism of smooth or topological manifolds.

Definition 1.3.2.3. Suppose f : X — Y is a continuous map of topological spaces. If . is a sheaf
on X and ¥ is a sheaf on ¢, then an f-map £ : 4 — % is a collection of maps &y : 4(V) —
Z(f~1(V)) indexed by open sets V' C Y that commutes with restriction in a suitable sense.

Definition 1.3.2.4. If (X, Ox) and (Y, Oy) are ringed spaces, a morphism of ringed spaces is a
continuous map f : X — Y and an f-map of sheaves of rings 0y — Ox.

In all the geometric situations we consider (e.g., topological and smooth manifolds, schemes),
the sheaves of function rings on our topological spaces have stalks that are local rings. E.g., the stalk
of € atapoint x € M is the ring of germs of continuous functions at x; this ring is a local ring with
maximal ideal those continuous functions vanishing at . Moreover, a map of smooth manifolds
sends points to points and therefore induces corresponding maps of stalks (by functoriality of stalks);
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the resulting maps of stalks are local homomorphisms of local rings. Generalizing this observation,
one makes the following definition.

Definition 1.3.2.5. A ringed space (X, Ox) is locally ringed if for each point x € X, the stalks
Ox , are local rings. A morphism f : (X, 0x) — (Y, Oy) of locally ringed spaces is a morphism
of ringed spaces such that, for any = € X, the map Oy f(,) — Ox is a local homomorphism of
local rings.

Example 1.3.2.6. If R is a commutative unital ring, then (Spec R, Ospec r) is a locally ringed space.
Indeed, if x € Spec R is a point corresponding to a prime ideal p, we saw that Ospec Rz = Ry,
which is a local ring.

1.3.3 Schemes

Earlier, we defined the category of affine schemes over a base ring k to be the opposite of the
category of commutative k-algebras. Above, we showed how to associate a locally ringed space
with any commutative unital k-algebra. We now show that this assignment identifies the category
of affine k-schemes with its image.

Proposition 1.3.3.1. Sending a commutative unital k-algebra R to the locally ringed space (Spec R, Ospec R)
extends to a fully-faithful functor from the category of affine schemes to the category of locally ringed
spaces.

Proof. See [?, Lemma 25.6.4]. ]

Definition 1.3.3.2. We write Aff for the full subcategory of locally ringed spaces spanned by affine
schemes. If k is a commutative unital ring, we write Aff;, for comma category of Aff consisting of
affine schemes equipped with a morphism to (Spec k, Ogpec ) (in particular, Aff = Affz).

Given our identification of affine schemes above, we may now give the general definition of a
scheme: a scheme is a locally ringed space obtained by gluing together ringed spaces of the form
(Spec R, Ugpec r) for a commutative unital ring R. We formalize this in two steps.

Definition 1.3.3.3. A scheme is a locally ringed space (X, Ox) that is locally isomorphic to an
affine scheme, i.e., given any point z € X there is an open neighborhood U of € X such that
(U, Ox|y) is an affine scheme. We write Sch for the full subcategory of the category of locally
ringed spaces consisting of schemes (i.e., a morphism of schemes is morphism of locally ringed
spaces). If S is a base-scheme, we write Schg for the full subcategory of Sch consisting of schemes
admitting a morphism to S.

Example 1.3.3.4. If (X, Ox) is a scheme, and U C X is an open subset of the topological space
X, then U carries the structure of scheme by defining &y = Ox|y. We refer to this as the induced
open subscheme structure on U. A morphism of schemes f : X — Y is called an open immersion
if it induces an isomorphism of X with an open subscheme of Y.

Example 1.3.3.5 (Reduced schemes). We defined affine k-varieties by restricting attention to re-
duced, finite-type k-algebras. We can globalize the notion of reducedness in the following way:
a scheme (X, Ox) is reduced if Oy , is reduced for each x € X. One checks immediately that
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(X, Ox) is reduced if and only if for each open U C X, the ring Ox (U) is reduced. Indeed, the
map Ox(U) — [[,cp Ox.« is injective since O is a sheaf. Thus, if f € Ox(U) is an element
such that f = 0. In that case, the image of f in Ox, is zero for every x € X by the assump-
tion that X is reduced, and thus f must be zero to begin with. Conversely, if &x (U) is reduced
for all U C X, then any non-zero element f € Ox , can be represented by a section over some
open neighborhood of z. Since that element is non-zero, it is necessarily not nilpotent either. From
this one checks that an affine scheme (Spec R, Ogpec r) is reduced if and only if R is a reduced
k-algebra.

Just as in differential geometry, we may construct schemes by gluing.

Example 1.3.3.6. Suppose (X, Ox) and (Y, Oy ) are schemes and U C X and V' C Y are open
subsets. The subset U inherits the structure of a locally ringed space by setting Oy = Ox|u.
Suppose we are given an isomorphism of locally ringed spaces ¢ : (U, Oy) = (V, Oy ). In that case,
we define a new scheme with underlying topological space W := X [[Y/(z ~ ¢(x)) (equipped
with the quotient topology). Note that there are continuous mapsix : X — Wandiy : Y — W by
the definition of W. Using these maps, we can define a structure sheaf Oy by gluing: for Z C W,
define Oy (Z) to consist of pairs (s1, s2) such that s; € Ox (i (Z)) and s € Oy (iy(Z)) such
that ‘P(51|i;(1(2)mU) = 52|z‘;1(2)mv- The pair (W, Oy ) is still a scheme because every point in W
has a neighborhood isomorphic to an affine scheme.

Example 1.3.3.7. In an analogous fashion, we may glue morphisms of schemes.

Example 1.3.3.8. The category Sch has a terminal object, namely (Spec Z, Ospecz). Indeed, this
is clear if X is an affine scheme and we may glue morphisms to obtain the morphism for a general
scheme from this one.

If X and Y are topological spaces, then we can equip X x Y with the structure of a topological
space making it a product in the category of topological spaces. We would like to have a similar
construction in the category of schemes, but this requires more work. Since the the category of
affine schemes is the opposite of the category of commutative rings, the universal property of the
product is dualized in the category of rings. Recall the universal property of a (fibered) product in
a category: if X and Y are objects, equipped with morphisms ¢ : X — Z andv¢ : Y — Z, thena
fibered product consists of an object X Xz Y in C together with morphisms py : X Xz YV — X
and py : X Xz Y — Y such that given any other object 7" and morphisms " — X and T' — Y
whose composites to Z via ¢ and v agree, there exists a unique morphism 7' — X Xz Y whose
composites with the projections px and py agree with ¢ and 1) respectively.

Using the fact that the category of affine schemes is the opposite of the category of commutative
rings, if we restrict attention to affine schemes, then the above universal property of a fibered product
becomes the universal property of a coproduct. In particular, if A and B are C'-algebras, then the
pushout A®¢ B exists in the category of rings. Thus, we claim that Spec A®¢ B realizes the fibered
product Spec A ®specc Spec B. Using gluing, one then can build fibered products of arbitrary
schemes as sketched in the following exercise.

Exercise 1.3.3.9. Show that the category of schemes has finite products.
1. Show that the tensor product of rings equips the the category of affine schemes with a product.
2. Assuming X and Y are schemes, show that X XY can be equipped with a natural scheme
structure by gluing (first, assume Y is affine, and inductively use the gluing construction
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for a suitable open cover of X by affine schemes, then use gluing again to obtain a scheme
structure on X xY).
3. Show that the scheme structure you obtained on X XY in the previous part makes it a product.

Example 1.3.3.10 (Punctured affine space). Suppose n is an integer > 1. We define a scheme A"\ 0
inductively as follows. For n = 1, we set A! \ 0 to be Spec Z[t,t 1], Ospeczjt,-1]- Forn = 2,
we glue the affine schemes A' x A'\ 0and A'\ 0 x Al along A\ 0 x A!\ 0 via the identity
map. More generally we may define A2\ 0 x A™ for any m > 0 by gluing A’ x A\ 0 x A™ and
AT\ 0 x Al x A™ along A'\ 0 x A\ 0. Inductively we define A™ \ 0 by gluing A"~1\ 0 x Al
and A"~ x A1\ 0over A"71\ 0 x AL\ 0.

Example 1.3.3.11 (The diagonal morphism). One important example of fiber products and gluing
morphisms can be realized as follows. Suppose f : X — Y is a morphism of schemes. In that case,
we may form the fiber product X xy X. The universal property of the fibered product applied to the
identity map X — X then yields a unique morphism Ay /y : X — X Xy X that we will call the
relative diagonal. By the exercise above, the general case is reduced to the case where X and Y are
affine by means of gluing, so let’s assume that f is obtained from a ring homomorphism B — A. In
that case, the fibered product is obtained by taking the spectrum of A ® g A. The universal property
of the coproduct applied to the identity map A — A thus corresponds to a ring homomorphism
A®p A — A. Since the restriction of this map to each factor is the identity, one checks that the
product map sending a; ® as — ajas is the required ring homomorphism. Thus, for affine schemes,
the diagonal morphism corresponds at the level of rings to the product homomorphism.

1.3.4 Properties of morphisms

In general, we are not interested in arbitrary topological spaces, but certain classes thereof. For
the purposes of this course, we will be interested in schemes that are closely related to manifolds.
As such, we will begin by introducing various “finiteness” properties of schemes. Recall that we
established above that affine schemes were quasi-compact and quasi-separated. Let us begin by
rephrasing those definitions more generally. Quasi-compactness is a statement about the underlying
topological space of a scheme, so the definition is perhaps easiest to understand, however we will
make a relative version of this statement.

Definition 1.3.4.1. A scheme X is quasi-compact if the underlying topological space of X is quasi-
compact, i.e., every open cover has a finite subcover. A morphism f : X — S of schemes is
quasi-compact if the pre-image of every quasi-compact open in .S is quasi-compact in X.

Quasi-separatedness was the condition that intersections of any pair of quasi-compact opens
was again a quasi-compact open. We can rephrase this condition in terms of quasi-compactness of
the diagonal, and as with quasi-compactness we will also make a relative definition.

Definition 1.3.4.2. If f : X — S is a morphism of schemes, then we will say that f is quasi-
separated if the diagonal morphism A x /g is quasi-compact.

Exercise 1.3.4.3. Check that if X is an affine scheme, then the structure morphism f : X — Spec Z
is quasi-separated in this sense.
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Now, a manifold is typically a paracompact Hausdorff topological space that is locally Eu-
clidean. So far, our schemes are simply spaces that are “locally affine”” and we have introduced nei-
ther finiteness nor separation properties. As a first step towards isolating a “nice” class of schemes
we begin by introducing various finiteness properties. The first two generalize the natural finiteness
properties we analyzed in the context of affine schemes.

Definition 1.3.4.4. A morphism of schemes f : X — S has finite type at z € X, if there exists an
affine open neighborhood Spec A of x and an affine open neighborhood Spec R of f(z) such that
f maps A a finite type R-algebra. A morphism of schemes has locally finite type if it has finite type
at every point € X and has finite type if f has locally finite type and f is quasi-compact.

Definition 1.3.4.5. A morphism of schemes f : X — S is finitely presented at x € X, if there
exists an affine open neighborhood Spec A of x and an affine open neighborhood Spec R of f(x)
such that f maps Spec A to Spec R and makes A into a finitely presented R-algebra. A morphism
of schemes is locally of finite presentation, if it is finitely presented at x € X for every point x € X.
A morphism of schemes is finitely presented if it is locally of finite presentation, quasi-compact and
quasi-separated.

1.4 Constructions of schemes

1.4.1 Projective space

Example 1.4.1.1 (The projective line). We can define projective space by gluing as well by mim-
icking the construction in topology: to obtain P! simply glue two copies of the affine line over G,
by means of the isomorphism z ~ z~!. More precisely, consider the affine scheme associated with
Z[t] and with Z[t~!]. Consider the isomorphism of affine schemes Z[t,t~1] — Z[t,t~!] given by
t — t~1. To say this a bit more systematically, with the goal of generalizing the construction to
higher dimensional projective spaces, let us think instead of presenting P! in terms of lines through
the origin in a 2-dimensional space. If we choose coordinates zg, z; in 2-dimensions, then a line is
specified by a vector up to rescaling. In that case, x¢ # 0 (i.e., the line is not “vertical”), the line is
uniquely determined by its slope % Likewise, if z; # 0 (i.e., the line is not “horizontal”), the line
is uniquely determined by %1) We can think of ﬁ—é as a coordinate on one copy of A% and i—‘; as a
coordinate on another copy of Aé. On the intersection where both x¢ and x; are non-zero, the two
descriptions of the slope are related by the formula (32)~" = 2. Thus, if we write z = L and 2~
for %(1)’ we recover the gluing description above.

Example 1.4.1.2 (Projective spaces by gluing). More generally, we can define P" inductively by
gluing n + 1 copies of A”. We can keep track of the gluing as we did for P!. Consider coordinates

xg,-..,ZTn on an (n + 1)-dimensional affine space. As above, a line is determined up to scaling.
If z; # 0, then we consider the affine space with coordinates Z[%, cee x;fl yones o If 2y and

are simultaneously non-zero, then we can write down gluing maps in a fashion analogous to those
above and inductively realize P7; by gluing.

Example 1.4.1.3. A slight modification of the construction of the projective line produces an exam-
ple that strays from our geometric intuition: glue two copies of the affine line over the identity map
A\ 0 — A'\ 0. The result is a scheme that one usually draws as an affine line with “doubled”
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origin. From one point of view, this kind of example is pathological (and in gluing manifolds, one
usually eliminates this kind of example!), but from another point of view it gives us flexibility in the
constructions we can make.

Another useful way to think about the construction above is as follows. Recall that the classical
way to construct projective space over a field k is via lines through the origin in an n+1-dimensional
k-vector space V. If we fix a basis of the line, then we simply get a non-zero vector in V. Two
non-zero vectors determine the same line if one can be obtained from the other up to scaling. Thus,
alternatively, we can think in terms of elements of V' \ 0 invariant under scaling: the scaling action
determines an action on functions via pullback. If x; is a coordinate functionon V,7 = 0,...,n,
then x;(v) is the i-th coordinate of the vector v in terms of the standard basis ey, ..., e,. Thus,
x;(Av) = Az;(v). This action induces a grading on k[zo, . . ., Zy].

If f is a homogeneous degree d polynomial, then f determines a graded ideal in the graded ring
klxo, ..., zy,]. By homogeneity, the vanishing locus of f determines a scaling invariant subset of V'
and therefore passes to a corresponding subset of projective space. More generally, if we have an
ideal defined by homogeneous polynomials, then its vanishing locus is again a subset of V' that is
invariant under scaling and therefore passes to a subset of projective space.

1.4.2 The Proj construction

We now formalize the discussion just made by attaching a scheme to any graded ring. Following the
analysis of Spec, we first attach a topological space to a graded ring, and then define an associated
structure sheaf. For the most part, when we write “graded ring” we will mean positively graded (i.e.,
graded by the natural numbers). At a few points, we will need to consider Z-graded rings, in which
case we will make that clear by explicitly saying Z-graded ring. We fix the following notation: if .S
is a graded ring, we write S for the subset of positively graded elements.

Definition 1.4.2.1. If S is a graded ring, define Proj S to be the set of homogeneous prime ideals p
of S such that S ¢ p. We view Proj S C Spec S and equip it with the structure of a topological
space via the induced topology.

Remark 1.4.2.2. The assignment S — Proj.S is not as “well-behaved” as the assignment S —
Spec S in a number of ways. First, Proj does not yield a functor from graded rings. Indeed, if
we think classically, and consider a vector space map V' — W, then there is no induced map
P(V) — P(W) in general. Indeed if ¢ : V' — W is a surjective map, then any line L contained in
the kernel of ¢ is sent to 0 C W, which does not correspond to a point in P(WW). In ring-theoretic
terms, given a graded ring map ¢ : A — B, the inverse image ¢~ !(q) of a homogeneous prime
q C B may still contain A . On the other hand, if V' — W is an injective ring map, then there is
an induced ring map P(V') — P(W). See Remark 1.4.2.9 below for more details.

In another direction, while Spec R is always a quasi-compact topological space, there are graded
rings S for which Proj S is not a quasi-compact topological space.

If S is concentrated in degree 0, then Proj S coincides with Spec S. If S is a graded ring, write
So for the subring of elements of degree 0. In this case, the inclusion map induces a continuous map
Proj S — Spec Sp. In some instances, this map is not very interesting (e.g., if S = Z[xo, ..., Zy]
as above).
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However, in projective space as described above, if we look at the complement of the vanishing
locus of a homogeneous polynomial of positive degree, then we obtain a set that has many functions.
To make this precise, let S = @ ;- Sq be a positively graded ring. If f € S; is a homogeneous
degree d element, then set S ) to be the subring of the localization S + consisting of elements of the
form an with » homogeneous and where the degree of r is nd. Likewise, if M is a graded module,
we define an S(y)-module M) as the submodule of M consisting of elements of the form f% with
x homogeneous of degree nd.

Example 1.4.2.3. Consider the complement of the vanishing locus of x;; this corresponds to looking

at Z[xo, - - ., Tn)(a,) as just described. The elements %, j # i are degree 0. Geometrically, the
complement of x; = 0 is an affine space with precisely the coordinates described via projection.

The following result generalizes this observation to the situation where we invert a homogeneous
element f of positive degree.

Lemma 1.4.2.4. If S is a Z-graded ring containing a homogeneous invertible element of positive
degree, then the set G C Spec S of Z-graded primes of S (with the induced topology) maps home-
omorphically to Spec Sy.

Proof. We show that the map is a bijection by constructing an inverse: given a prime pg of Sp, we
want to associate with it a Z-graded prime of S. By assumption, we can find an invertible f € Sy,
d > 0. If pg is a prime of Sy, then po.S is a Z-graded ideal of S such that po SN .Sy = po, [f ab € poS
with a, b homogeneous, then % € po. Therefore, either fg% € po or fg—jqb € o, i.e.,
either a? € poS or b € pyS. Therefore, v/poS is a Z-graded prime ideal of S whose intersection
with Sy is Po. ]

Given this observation, we now define principal open sets in Proj S.

Definition 1.4.2.5. If f € S is a homogeneous element of degree > 0, define D, (f) = {p €
ProjS|f ¢ p}. If I C S is a homogeneous ideal, define Vi (I) = {p € ProjS|I C p}. More
generally, if ' is any set of homogeneous elements, then we define V. (F) = {p € Proj S|E C p}.

Proposition 1.4.2.6. Suppose S = @ ;- Sq, is a graded ring and f € S is a homogeneous element
of positive degree. -
1. The sets D (f) are open subsets of Proj S.
2. The equality Dy (ff) = Dy (f) N Dy(f") holds.
3. The sets D (f) form a basis for the topology on Proj S.
4. The localized ring Sy has a natural Z-grading.
The ring maps S — Sy < S(y) induce homeomorphisms

D (f) +— {Z — graded primes of Sy} — Spec(S(y))-

5. The sets Vi (I) for I a homogeneous ideal are closed subsets of Proj S and any closed subset
of Proj S is of the form V. (I) for some homogeneous ideal I C S.

We can define a structure sheaf on Proj .S using the sets D (f) by assigning to D (f) the ring
S(r)- Likewise, if M is a graded S-module, then we will define a sheaf of modules M by assigning
to D4 (f) the module M) defined in a fashion exactly analogous to S ) as the degree 0 part of the
localization M thought of as a graded ring in the same way as we did with S;.
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Proposition 1.4.2.7. Suppose S is a graded ring and M is a graded S-module.

1. The assignment D (f) — Sy determines a sheaf of rings on the basis D (f) of ProjS
and therefore extends uniquely to a sheaf of rings Op.j 5 on Proj S.

2. The assignment D (f) — My determines a sheaf of on Proj S that is a sheaf of Opoj s-
modules.

3. The ringed space (Proj S, Up,.js) is a scheme.
Definition 1.4.2.8. We define P} = Proj Z[x, . .., x|, where x; has degree +1.

Remark 1.4.2.9. If ¢ : A — B is a homomorphism of graded rings, then we can define an open
subscheme of Proj B that maps to Proj A as follows: take U () to be the union of D(¢(f)) as
f ranges over the homogeneous elements of Ay. There is a canonical map of schemes U(yp) —
Proj A.

1.5 Interlude: naive Al-invariants

We now attempt to transpose some of the ideas about homotopies between maps of topological
spaces to the category of affine schemes. First, we need an analog of the unit interval and to do this,
we isolate some of the formal properties of I. The properties we use are as follows: (i) there are
two distinguished points 0,1 € I, (ii) there is a multiplication map I x I — I that makes [ into a
topological monoid.

1.5.1 A'-invariants

We claim that A! is an analog of I in topology. We could work with the affine line over the inte-
gers, but since the only changes that occur working relative to a fixed commutative base ring k are
notational, we will work more generally in that context and suppress & from the notation.

There are two maps 0,1 : Speck — Spec kx|, which at the level rings are given by the
evaluation maps evg, ev; : k[x] — k. The k-algebra structure map k — k[z] splits either of the
above ring homomorphisms.

The monoid operation Spec k[z] Xgpeck Spec kz] — Speck[z] corresponds to a ring map
klx] — k[x1,x2]. At the level of coordinate functions, the product map sends (x1,x2) — x122,
and the map we want is © — x1x9. The element 1 is the identity for multiplication. If we evaluation
f(x129) ateither 21 = 1 or z9 = 1, then we get the identity function. Thus the multiplication map
just described can be thought of a providing a homotopy parameterized by A! between the identity
map A — A! and the map induced by the constant map to 0 followed by inclusion. With this
notation, we can now formally introduce the notion of an A!-homotopy invariant.

Definition 1.5.1.1. Suppose %’ is some category of abstract algebraic structures (e.g., groups, rings,
etc.). Suppose . C Schy, is some sub-category of k-schemes (we will assume this subcategory is
closed under formation of fiber product with AY). A €-valued invariant on .%, is a contravariant
functor .7 : ., — €. A €-valued invariant .# on .%}, is called A'-invariant if, for any X € .7},
the pullback along the projection px : X x Al — X induces a ¢-isomorphism .7 (X) — 7 (X x
Al).
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If £ = R or C, then one way to produce invariants as above is to use invariants from topol-
ogy. For concreteness, fix & = R and take .7 = Affg. If X € Affg, then the set X(R) :=
Hom(SpecR, X) can be equipped with the structure of a topological space in the usual sense. In-
deed, if X = Spec A, and we fix a presentation A = k[z1,...,zn]/(f1,..., fr) for A then we
realize X (R) as a closed subset of A”(R) = R™ and we can view it as a topological space with the
induced topology.

If we fix a different presentation A = k[x1,...,z,]/(g1,...,9s) then we get an a priori dif-
ferent topological space X'(R) — A™(R). However, since the two coordinate rings are abstractly
isomorphic, we can fix an isomorphism k[z1, ..., 2]/ (fi,. .., fr) Z k[z1, ..., 20]/(91,- -, gs)-

By Example 1.1.2.2, this isomorphism corresponds to a pair of polynomial maps that restrict to real
solutions of the respective systems of equations that are mutually inverse. Since polynomial maps
are continuous, we conclude that X (R) and X'(R) are actually homeomorphic. In a similar vein,
if f: X — Y is a morphism of affine algebraic varieties, then we conclude that the induced maps
X(R) — Y(R) are continuous. Therefore, we conclude that the assignment X — X (R) yields a
functor Var]‘fgf I — Top.

Remark 1.5.1.2. The category of affine algebraic varieties over the real numbers is very rich. There
is a famous theorem of Nash-Tognoli: given a compact differentiable manifold M, there exists an
integral X € Var;{f and a diffeomorphism M and X (R) [?] (such an X is called an algebraic
model of M. In fact, the situation is even more interesting: such representations are very far from
unique. Since X is integral, it has a well-defined fraction field k(X ): this field is a finitely generated
extension of k. Say that two integral affine schemes X and X are birationally equivalent if k(X)) =
k(X') as fields. One can even show that there are infinitely many birationally inequivalent models
of M. In dimension 1 this is a fun exercise: if n > 0, the equation 22" + y?" = 1 has real points
diffeomorphic to S* for every n, but the function fields of each of these varieties differs as n varies.
More generally, any dimension 1 manifold is a disjoint union of circles. For every n > 0, the variety
given by the equation %" = —(2? — 1)(2% — 2)--- (22 — m) has graph consisting of m disjoint
circles and the resulting varieties can be shown to be birationally inequivalent for different values
of n.

Exercise 1.5.1.3. Show that X — X (C) determines a functor Affc — Top.

With this in mind, one way to produce A!-invariants is simply to take a homotopy invariant on
Top and compose with the “realization” functors just described.

Example 1.5.1.4. Suppose k is a field, and assume we have an embedding ¢ : £ — R (or similarly
with R replaced by C). For example, we could take k = Q. The choice of ¢ defines a functor
Affi, — Top that we will call a realization functor. If .% is any %-valued invariant of Top, one
obtains a corresponding %-valued invariant of Vary. If .# is a ¢’-valued homotopy invariant, then
since A!(RR) is a contractible topological space, it follows that the composite functor Vary — € is
Al-invariant. Note that, in contrast to the situation explained above, inequivalent embeddings ¢ can
yield varieties that are not just topologically inequivalent, but in fact homotopy inequivalent! The
first example of this goes back to J.P.-Serre.

Remark 1.5.1.5. Take k = C and X an affine C-variety. One natural question to ask is: what can
you say about the homotopy type of X (C)? For example, when does X (C) have the homotopy type
of a finite CW complex. A classical result of Andreotti-Frankel [?], generalized independently by
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Karchyauskas [?] and Hamm [?] shows that this is always the case. Moreover, they show that if
X is a dimension d complex affine variety, then X (C) has the homotopy type of a CW complex of
dimension < d.

While the above examples are restricted to work over subfields of the real or complex numbers,
it is also possible to produce A'-invariants that are purely algebraic. We now describe an example
that arises in elementary algebra.

Homotopy invariance of units

Set G,, = Speckl[t,t~!]. Suppose X = Spec A € Aff and suppose we are given a map X —
G,,,. Such an element corresponds to a homomorphism ¢ : k[t,¢~1] — A. Such a homomorphism
corresponds to an element () € A such that ¢(t)~! € A as well. In other words, () is a
unit. Conversely, given a unit v € A, define a homomorphism k[t,t~!] — A by sending t > u
and extending by linearity. We write A* for the set of units in A. This description of units shows
that the assignment A — A* is actually a functor. As a consequence there is always a group
homomorphism A* — Afz]*. On the other hand, the evaluation at 0 homomophism provides a
section of A — A[x], i.e., a homomorphism A[z] — A such that the composite A — A[z] — A is
the identity. It follows that the map A* — A[z|* is injective.

We can analyze surjectivity of this map. Indeed, if f € A[z] is a unit, then we can write
f = ap + a1x + -+ + apx and what we just said shows that ag must be a unit. In that case,
we write aglf =14 aix+ - + apxr where o = aalai. This takes the form 1 + z where
z = a1z + - - - + apx. In that case, an inverse is given by ﬁ = > _j>0(—1)"2". In order for this
element to lie in A[z], we require that 2" = 0 for all n sufficiently large, i.e., 2" is nilpotent. The
following result characterizes the units in A|x].

Proposition 1.5.1.6. An element f = ag + a1z + - - - apa™ € Alx] is a unit if and only if ag € A*
and a; is nilpotent for i > 0. In particular, the functor X + G, (X) is Al-invariant on Varsz (in

particular; there are no non-constant morphisms A — G,,).

m

Exercise 1.5.1.7. Prove Proposition 1.5.1.6.
1. Show that if A is a ring, and x is a nilpotent element of A then 1 + x is a unit in A.
2. Show that if o, . . ., o, are nilpotent elements of A, theny ;" a; 2" is a nilpotent element of
Alz).
3. If fis a unit in Alx] and g = Y%, biz® is an inverse of f, prove by induction on r that
a’;flbm,r = 0 and conclude that a,, is nilpotent.

Remark 1.5.1.8. In fact, the results stated above globalize via gluing, and we conclude that Homgep, (—, G,,,)
is actually A'-invariant on the category of all reduced k-schemes.

Definition 1.5.1.9. If X is a reduced k-scheme, we set
HYY(X,Z) := Homga,, (X, G,,).

Remark 1.5.1.10. This group can be thought of as analogous to the group [M, S'] of homotopy
classes of maps from a CW-complex to S', which is naturally isomorphic to H'(X,Z). The above
notation is that used in motivic cohomology.
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Remark 1.5.1.11. It is important to note that, in the above, homotopy invariance did not hold for
the functor G,,, on all k-schemes, only for reduced k-schemes. Indeed, this is a phenomenon of
which we must be aware: even for “natural” functors, homotopy invariance need not hold for all
k-schemes.

Remark 1.5.1.12. The proposition above highlights one difference between the algebraic and the
continuous category. Indeed, A'(C) = C, while G,,,(C) = C*. While there are no non-trivial
algebraic maps A — G, by evaluation on C, observe that there are continuous maps C — C*,
e.g., the exponential map.

Algebraic singular homology

We now produce a “purely algebraic” version of singular homology for an arbitrary affine scheme.
We begin by recalling a construction of “simplices” in algebraic geometry by naively transplanting
the definitions from topology.

Example 1.5.1.13. If k is a field, then define A} = Speck[xzo, ..., zn]/ (X igxi —1). If n =0,
then A is isomorphic to Spec k. If n = 1, then A} is the line 2o + z1 = 1 in A7. More generally,
A7 is isomorphic to A} (though the isomorphism with a polynomial ring depends on a choice).
As in the topological setting, there are face morphisms A} — AZ‘I and degeneracy morphisms
Azfl — AJ. These morphisms are defined by projection away from x; and the inclusion of x; = 0.

Definition 1.5.1.14. If X is an affine scheme over a base k, then the algebraic singular simplicial
1

set attached to X, denoted Sing® X (k), is the simplicial set whose n-simplices are the k-morphisms

Hom(AZ, X') and where the face and degeneracy maps are induced by the structures just defined.

Remark 1.5.1.15. The affine n-simplex described above seems to have originally been considered
by D. Rector in the 1970s [?, Remark 2.5].

For another purely algebraic A!-invariant, we can appeal to constructions involving SingAlX
for X a smooth affine k-variety.

Exercise 1.5.1.16. Show that there is an isomorphism SingAlX XY = SingAlX X SingAlY.

Indeed, mimicking the definition of ordinary singular homology, we observed that we define a
chain complex as follows.

Definition 1.5.1.17. The algebraic singular chaz;n complex of an affine scheme X is the chain com-
plex C2¥(X,7) with C2¥9(X,Z) := Z(Sing”",X) and with differential d; := Soio(—1)'ss .

The algebraic singular homology of X is the homology of the chain complex Hf g (X,Z) =
H;(C2(X, 7).

Lemma 1.5.1.18. The functor X Hflg(X, 7) is Al-invariant.

Example 1.5.1.19. These groups are often not that interesting. For example, if X = G,,, is consid-
ered over a base ring k, then SingAlnGm = G,,, (k) for every integer n. In particular, one computes
directly that H"(G,,,,Z) = Z(G,,(k)), while the higher groups H*Y(G,,,,Z) are all trivial. A
similar statement holds for any (non-empty) proper open subset of A'. This kind of example that
suggests the construction of “interesting” A!-invariants will require real work.
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Remark 1.5.1.20. Just as in the topological situation, the functor sending X to its ring of functions
is not Al-invariant. This functor also has a nice description. Indeed if X = Spec A, then an
element @ € A determines a homomorphism k[t] — A by sending ¢ to a. Conversely, given
a homomorphism k[t] — A the homomorphism is uniquely specified by the image of ¢, i.e., an
element of A. Therefore, Homvarz (=, Al) represents the functor “functions on X

1.5.2 Naive A'-homotopies

We now transport the definitions from classical homotopy theory to the algebro-geometric setting.

Definition 1.5.2.1. If f,g : X — Y are two morphisms of affine k-schemes, then a naive A'-
homotopy between f and g is a morphism H : X x A! — Y such that H(x,0) = f and H(z,1) =
g; in this case we will say that f and g are connected by a naive A'-homotopy.

Lemma 1.5.2.2. If F : X x A' = Y is a naive A'-homotopy between morphisms f and f', and if
G :Y x A" = Z is a naive A'-homotopy between g and ¢, then g o f and g' o f' are connected by
a naive A'-homotopy.

Proof. If X and Y are affine k-schemes, and F' : X x A! — Y is a naive A'-homotopy between f
and f'and G : Y x A' — Z is a naive A'-homotopy between g and ¢/, then we can define a naive
A'-homotopy between g o f and ¢’ o f’ by taking H (x,t) := G(F(z,1),1). O

Notice that f is always connected to f by a naive A'-homotopy (namely the composite of the
projection map X x A — X and the map f : X — Y). Likewise, if f and ¢ are connected by
a naive A'-homotopy, then g and f are connected by a naive A!-homotopy. Indeed, consider the
map A' — Al given by ¢(x) = 1 — x: this map is an isomorphism that sends 0 to 1 and 1 to 0.
Therefore given H : X x A! — Y, we can pre-compose with id x ¢ : X x A' — X x A! to obtain
anewmap H' : X x A! = Y with H'(2,0) = gand H'(z,1) = f.

In topology, the fact that homotopy equivalence is transitive stems from the fact that setting
copies of the unit interval “end-to-end”, i.e., taking I [ [ I where we identity 1 in the first factor
with O in the second factor, is homeomorphic to [ itself. An explicit homeomorphism is gotten by
identifying the first copy of I with [0, 3] and then the second copy of I with [}, 1]. Unfortunately,
the rigidity inherent in algebraic varieties manifests itself in the fact that the relation that two maps
are naively A'-homotopic is not an equivalence relation. Even though the relation f is connected to
g by a naive A'-homotopy is reflexive and symmetric, the following example shows that it need not
be transitive in general.

Example 1.5.2.3. Take X to be the affine scheme Spec k[z, y]/(xy). Geometrically, this scheme
consists of two copies of the affine line glued at the origin; as usual, refer to the line y = 0 as
the z-axis and the line z = 0 as the y-axis. Consider the points (1,0), (0,0) and (0,1). While
each consecutive pair of points are naively A'-homotopic, there is no morphism A' — X that
connects (1,0) and (0,1). We claim any non-constant morphism A! — X factors through one of
the components. Indeed, given a non-constant morphism k[x,y]/(xy) — k[t], the relation zy = 0
shows that at most one of  and y is sent to a non-constant element of k|[t].

The essential point of this example is that X is a reducible algebraic variety and one can envision
more complicated examples. One can also envision situations in which naive A!-homotopy is well-
behaved: for example, if we consider a target variety Y, and any morphism from X to Y is naively
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A'-homotopic to a morphism A' to Y, then we can sequentially replace “chains” of maps from A'
to a single morphism from A!. For example, we can identify X with a closed subscheme of A? and
then identify A! with the closed subvariety of A2 given by the equation = 4+ y = 1. In that case, A?
itself can be thought of as a deformation of X to A'. Then, given a morphism f : X — Y, we can
extend f to a morphism A? — Y, then we will obtain a suitable condition.

As a consequence of the example, we have to consider the equivalence relation generated by
“f is connected to g by a naive A'-homotopy” (his seemingly innocuous distinction between the
algebro-geometric and the topological categories is the source of many of the complications that
will arise in our setting). We make the following definition.

Definition 1.5.2.4. Suppose f,g : X — Y are two morphisms of affine k-schemes. We will say
that f and g are naively A'-homotopic if they are equivalent for the equivalence relation generated
by naive A'-homotopy. Likewise, two affine k-schemes X and Y are naively A'-weakly equivalent
if there exist morphisms f : X — Y and g : Y — X such that the two composites are naively
A'-homotopic to the respective identity maps. We write [X, Y]y for the set of naive A!-homotopy
classes of maps from X to Y.

Exercise 1.5.2.5. If . is a €-valued A'-homotopy invariant, and if f and g are naively A'-
homotopic maps, then F (f) = .7 (g).

Example 1.5.2.6. If X is an affine k-scheme, then X and A™ x X are naively A'-weakly equivalent
for any X. The composite X — A" x X — X is equal to the identity. To see that the other
composite is naively A'-homotopic to the identity, we use the map Al x A" — A" given by
(t,z) — tx.

1.5.3 The naive A'-homotopy category

We can try to formally define a “universal” A'-homotopy invariant by constructing a new category
whose objects are objects in Varif 7 and whose morphisms are naive A'-homotopy classes of mor-
phisms between k-varieties. The following definition makes sense because composites of naively
A'-homotopic maps are naively A'-homotopic.

Definition 1.5.3.1 (Naive A'-homotopy category). The naive A'-homotopy category over a field k
is the category .4 (k) whose objects are those of Varzf 7 and whose morphisms are the sets of naive
A'-homotopy classes of maps between affine sk-varieties.

Lemma 1.5.3.2. If X,Y € Varzf !, then the projection map [X,Y]n — [X x Al Y]y is a bijec-
tion.

Proof. The map in question is evidently split (via any inclusion X < X x A') and therefore
injective. Thus, it suffices to demonstrate surjectivity. Suppose f : X x A! — Y is a morphism.
We want to show that f is A'-homotopic to f(z,0). To this end, consider the product map p :
A x A — A!. Note that pu(t,0) = 0, while u(¢,1) = 1. Then, define a naive A'-homotopy
between f and f(x,0) by considering the map X x Al x Al — Y given by f(z, u(t, s)). O

Example 1.5.3.3. The functor sending X to G,,,(X) is representable on Var%f Toy -, G, ]N-
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1.5.4 Naive A'-homotopy calculations

We now give some examples to show that naive A'-homotopy classes of maps can sometimes be
determined in practice; we begin with a few exercises.

Exercise 1.5.4.1. Suppose Z C Al is a closed subset defined by a polynomial f. Let U C A' be
the complement of Z, with coordinate ring k[U| = k[z, %]

1. Show that [Spec k,U|n = U(k).

2. More generally, show that if X is any smooth affine scheme, then U(X) = [X, U|n.

Example 1.5.4.2. Consider the variety A\ 0 x A!; this can be identified as the spectrum of the ring
k[z, !, y]. Even though there is a copy of the affine line passing through every point, there are no
morphisms A% — A1\ 0 x AL,

Exercise 1.5.4.3. Suppose G is an affine algebraic k-group (i.e., a group object in the category
Varzf f ). Show that for any X € Varzf !, the set [X, G)n inherits a group structure making the map
G(X) — [X, G]n a homomorphism. Moreover, this group structure is functorial in both X and G.

Pick coordinates x;; on the n?-dimensional affine space M,, of n x n-matrices. With this
choice, if X € M,, is an n x n-matrix, then det X is a polynomial of degree n in the variables z;;.
In particular, we can define GL,, = Spec k[z;;,det X~!] and SL,, = Spec k[z;;]/(det X = 1).
The explicit formulas for matrix multiplication and matrix inversion show that GL,, and SL,, are
affine algebraic groups (the identity is given by the n x n-identity matrix). A T-point of GL,,, for
some test k-algebra T, is precisely an invertible n x n-matrix with coefficients in T". Likewise, a
T-point of SL,, is an invertible n x n-matrix with coefficients in 7" and whose determinant is equal
to 1.

Proposition 1.5.4.4. If k is any field, then [Speck, SL,|n = Id,.

Proof. Any “elementary matrix” gives rise to a matrix naively A'-homotopic to the identity. Indeed,
let e;; be a matrix unit (i.e., an n X n-matrix such that (e;;),; = 1if i = kand j = [ and 0 otherwise).
If i # j, then consider the matrix Ej;(«) := Id,, + «e;;; this matrix is called an elementary matrix
(or an elementary shearing matrix). Observe that E;;(ta) provides a naive homotopy between
E;j(c) and Id,. The statement follows from the following observation: any element of SL, (k)
can be written as a product of elementary matrices.

To begin, recall that any element of G'L,,(k) can be written as a product of an elementary matrix
as in the previous paragraph, matrices of the form Id, + (o — 1)e;; for 1 < 1 < n,a € k*, and
permutation matrices. We claim that every permutation matrix is a product of elementary matrices
and matrices of the form Id,, + (o — 1)e;;. Indeed, any element of the symmetric group can be
written as a product of transpositions. For G Lo (k), we simply perform row operations to transform

01'nt h a matrix:

1Olosucaax.
01_)11_>11_>11_>10
1 0 1 0 0 -1 0 1 0 1/°

Now, by fixing different embeddings GLa(k) — G L, (k), we conclude that similar formulas hold
for arbitrary elements. As a consequence, we see that every matrix X € GL, (k) can be written
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as a product Hl E; where each E; is either elementary or of the form Id,, + (o — 1)e;; for 1 <
i < n,a € k*. We now study the possible commutators of elements. Since elementary matrices
act as row operations, and matrices of the form Id,, + (o — 1)e;; act by multiplying a row by «,
we conclude that the commutator of an elementary matrix and one of the form Id,, + (o — 1)ey; is
the identity unless ¢ is one of the rows being acted upon by the elementary matrix. In the remaining
case, one immediately verifies the following identities

GED-EI6) 665656 )

By taking transposes, we obtain similar formulas for lower triangular matrices. Using these obser-
vations, we conclude that we can write any element of G L,, (k) as a product of a diagonal matrix D
and a product of elementary matrices.

Now, suppose X € SL,(k) and write X = DE} --- E,. Observe that det D = 1 (though
we cannot necessarily assume that D is the identity matrix based on the way in which we for-
mulated our algorithm above). However, if D = diag(aq,..., ), then we can write D =
diag(ay, ozfl, 1,...,1)(1, 19, a3, . . ., ), i.€., any diagonal matrix with determinant 1 can be
written as the product of a diagonal matrix in SLs(k) embedded in SL, (k) and a diagonal matrix
in SL,_1(k) embedded in SL, (k). Thus, proceeding recursively, we see that any diagonal matrix
of determinant 1 can be written as a product of diagonal matrices that are in the image of SLs(k).
Now, it is straightforward to show that a diagonal matrix in S Ly (k) can be written as a product of
elementary matrices. For example, one can write:

G at)=6 )66 )

Taken together, we conclude that every element of SL, (k) can be written as a product of elemen-
tary matrices. Since every element elementary matrix is naively A'-homotopic to the identity, we
conclude that [Spec k, SL,|ny = {Id,} (i.e., as a group it is the trivial group). O

Exercise 1.5.4.5. Show that the determinant homomorphism det : GL,, = G,,, induces an isomor-
phism [Spec k, GL,| — k*.

Remark 1.5.4.6. One possible generalization of the units functor is the functor sending a ring R to
the group G L, (R) of invertible n x n-matrices over R and we can investigate the A!-homotopy
invariance of this functor. As before since G L,,(—) is a functor, there is an evident map GL,,(R) —
GL,(R[z]) and evaluation at zero shows that this map is injective. Note that, if n > 2, this map is
never surjective. Indeed, take any element f of R[z] that is not in R and consider the elementary
matrix Id, + fe;; (with i # j): this is an element of G L,,(R[z]) that does not lie in the image of
GL,(R).

Example 1.5.4.7. Suppose X € GL,(R[z]). The matrix X (0) is in GL,(R[z]). Setting Y :=
X(0)71X produces a matrix such that evo(X (0)~1X) = Id,. Now, we can also consider the
evaluation map M, (R[z]) — M,(R) and note that evy(X(0)"*X — Id,) = 0. Consider the
matrix Y (¢z). For t = 0, this matrix is Y (0) = Id,,, while for t = 1 it is simply Y (x). Therefore,
the matrix Y is naively A'-homotopic to the identity. It follows that the matrix X is naively A!-
homotopic to X (0).
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Further generalizations of these computations

Closely related naive A'-homotopy classes to those studied above can be very interesting. Fix
an integer n, and work over a field whose characteristic does not divide n. The center of SL,,
is a affine algebraic group s, := Speckl[t,t~!]/(t" — 1); this affine algebraic group is also a
subgroup of G,,. Now, the group scheme p,, acts by left multiplication on SL,,, i.e., there is a
morphism p, x SL, — SL,. We can form the quotient by this group action. More precisely,
define PGL,, := Spec k[SL,]"", i.e., the spectrum of the ring of invariant functions. The elements
of PGL, (k) are precisely the invertible n x n-matrices over k up to scaling.

Exercise 1.5.4.8. Show that [Spec k, PGL,|n = k*/(k™)", i.e., the quotient of the group k* by the
subgroup of n-th powers.
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Chapter 2

Projective modules, gluing and vector
bundles
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The goal of this section is to introduce a dictionary between algebraic geometry/commutative
ring theory and topology. Here, we will introduce and analyze projective modules over rings and
relate these notions with vector bundles. We will begin by introducing modules over a ring As
mentioned in the introduction, by following parallels with topology, it is natural to study vector
bundles on affine varieties. We develop in this chapter the basic properties of such objects, i.e.,

projective modules over a ring.
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2.1 Modules over a ring

2.1.1 Finiteness properties

We begin by developing the basic ideas in a slightly more general context than we studied before.
Suppose R is an arbitrary commutative unital ring and write Modp for the category of all R-
modules.

Definition 2.1.1.1. If R is a commutative ring, an R-module M is called

1. finitely generated if there is an epimorphism R®" — M;

2. finitely presented if M is the cokernel of a map R®" — RP™ (equivalently, M is finitely
generated, and for some surjection ¢ : R®™ — M, the kernel ker ¢ is finitely generated as
well).

3. coherent if M is finitely generated and any finitely generated (not necessarily proper) sub-
module is itself finitely presented.

It follows from the definitions that for any ring R that M coherent implies M finitely presented,
and M finitely presented implies M finitely generated. For general rings R, the reverse implications
need not hold. We write Modég , Modﬁp and MochOh for the full subcategories of Mod g consisting
of finitely generated, finitely presented or coherent Z-modules.

Example 2.1.1.2. Beware: over “big” rings strange things can happen. For example: a submodule of
a finitely generated R-module need not be finitely generated. For instance, take R = k[x1, z2, .. ]
be a polynomial ring in infinitely many variables. You can check that the ideal (x;,xo,...) is an
R-submodule of a free R-module of rank 1, yet fails to be finitely generated.

Lemma 2.1.1.3. Let R be a commutative unital ring and suppose
0— M —M-—M"—0

is a short exact sequence of R-modules. The following statements hold:

1. Any extension of finitely generated R-modules is finitely generated, i.e., if M' and M" are
finitely generated, then so is M.

2. Any extension of finitely presented R-modules is finitely presented, i.e., if M' and M" are
finitely presented, so is M.

3. Any quotient of a finitely generated module is finite, i.e., if M is finitely generated, so is M".

4. Any quotient of a finitely presented module by a finitely generated submodule is finitely pre-
sented, i.e., if M is a finitely presented R-module, and M’ is finitely generated, then M" is
finitely presented as well.

5. If M" is finitely presented, and M is finitely generated, then M’ is finitely generated as well.

Proof. Exercise [

Remark 2.1.1.4. Our desire to work with arbitrary commutative rings is not generality for its own
sake. If M is a compact manifold, then the rings C (M) or C*°(M) of complex-valued continuous
functions on M or complex valued smooth functions on M need not be Noetherian rings.

The following fact is fundamental.
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Theorem 2.1.1.5. The category Modp, equipped with the usual structures of direct sum and tensor
product is abelian and symmetric monoidal (see Appendices A.3.1 and A.2.3).

Remark 2.1.1.6. In general, the categories Modﬁg and Modgp need not be abelian categories (the
example above shows what can go wrong for finitely generated R-modules), but ModCROh turns out to
be an abelian category [?, Tag 05CU]. When R is a Noetherian ring, all three notions are equivalent

(reference?).

Remark 2.1.1.7. A ring R is coherent if it is coherent as a module over itself (i.e., all finitely
generated ideals in R are finitely presented). Rings appearing in topology are rarely coherent. For
example a result due to Neville [?] characterizes those topological spaces for which the ring of
continuous functions is coherent: such spaces are called basically disconnected. More precisely,
this means that for any continuous function f, the closure of the open set {z € X|f(x) # 0} is
again open.

One of our eventual goal is the problem of classification of modules over a ring. The model
for classification results is provided by the structure theorem for finitely generated modules over a
PID: every finitely generated module can be written as a direct sum of a free module and a torsion
module, and we can give a nice classification of the torsion modules in terms of the (non-zero)
prime ideals of the ring. There is a straightforward generalization of torsion modules to arbitrary
commutative rings.

Definition 2.1.1.8. A module M over a commutative unital ring R is called a forsion R-module, if
there exists a regular element » € R (i.e., a non-zero divisor) such that rM = 0. An R-module M
that is not a torsion R-module is called torsion-free.

As the “classification” of prime ideals for rings that are not PIDs is more complicated (the
spectrum of the ring is a precise measure of the complexity), the structure of torsion modules for
more general rings becomes more complicated. Moreover, even the “easy” part of the structure
theorem is more complicated: if R is not a principal ideal domain, it is not necessarily the case that
torsion free Z-modules are themselves free.

Functoriality

If o : R — S is aring homomorphism, then there are two functors that we will frequently consider
on categories of modules. If M is an S-module, then the ring homomorphism R — S equips M
with the structure of an R-module as well thus defining a functor

Y« : Modg — Modg.

Our choice of notation here reflects the fact that ¢ induces a morphism of affine schemes Spec S —
Spec R, and if M is the sheaf of @ispec s-modules corresponding to M, then ¢, M coincides with
the global sections of the sheaf ¢, M by construction.

Remark 2.1.1.9. Note that this functor can easily fail to preserve finiteness properties studied above.
E.g., take R to be a field and .S to be a polynomial ring in 1 variable over a k. If M is the free S-
module of rank 1, which is even coherent as an S-module, viewing M as a k-vector space yields a
countably generated k-module.
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The other functor we consider is the “extension of scalars” functor. If ¢ is as above, and M is
an R-module, then we may consider the S-module M ®p S. Functoriality of tensor product then
yields a functor

(—)®gr S : Modg — Modg.

Note that, by construction, this functor does preserve finite generation, finite presentation and co-
herence of modules. Unlike the case of the functor ¢, described above, this functor is less straight-
forward to relate to the functor ! at the level of sheaves for a simple reason: the sheaf 1M on
Spec S does not have the structure of an S-module.

2.1.2 Sheaves of modules over sheaves of rings

Suppose (X, Ox) is a ringed space. The discussion of modules we just gave can be globalized to
talk about sheaves of &'x-modules. We write Mod('x ) for the category of sheaves of &'x-modules.
We’d like to analyze the structures described on the ordinary categories of modules above in this
context as well.

First, let us observe that Mod(€'x ) can be equipped with the structure of an additive category.
First, we need to equip the set of homomorphisms between two objecs with an abelian group struc-
ture. For this, if f,g : % — ¢ are two morphisms of sheaves of &'x-modules, then we may define
f+g:.F — G sectionwise, i.e., for any open U C X, .#(U) and 4(U) are 2Zx (U)-modules, and
f+gonU is the sum defined sectionwise. Analogously, we define the trivial sheaf of &'x-modules
0, which is the constant sheaf with value 0 for every open U C X. A morphism f : % — ¥ is
trivial if and only if it factors through the zero morphism if and only if it is the zero map on sections.
The fact that these structures equip Homyyoq(4,) (F,%) with a structure of abelian group can then
be checked section wise.

We define direct sum of &'x-modules sectionwise, i.e., if % and ¢ are two sheaves of O'x-
modules, then for any open U C X, we set

(Za9)(U):=ZU)a9U).

The section-wise canonical inclusions .# — .# ©% and ¢ — ¥ &% equip the direct sum with the
structure of a coproduct in the category of &'x-modules. This formula works for finite direct sums
of Ox-modules. If we want to define infinite direct sums, then the sectionwise definition can fail to
be a sheaf, so we must sheafify.

If ¢ : % — ¢ is amorphism of O'x-modules, we may define ker () sectionwise; a priori this is
a presheaf, but you may check immediately that it is in fact a sheaf. The situation with the cokernel
is slightly different for exactly the same reason that surjectivity of a morphism of sheaves needs to
be checked stalkwise. Indeed, if ¢ : .# — ¢ is a morphism of sheaves of ¢'x-modules, then the
assignment

U +— coker(Z(U) — 94 (U))

is not a priori a sheaf. Nevertheless, if we define coker(p) to be the sheafification of the above
presheaf, then this is a cokernel in the usual sense. Since taking stalks commutes with sheafification
we conclude that coker(y), = coker(y; ), and thus a morphism of sheaves is surjective if and only
if the cokernel sheaf is trivial. Equipped with these definitions, the category Mod(x) has the
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structure of an abelian category. A sequence of sheaves of &'x-modules is exact if and only if it is
exact stalkwise.

We can also equip the category Mod(€x) with a symmetric monoidal structure. If .% and ¢
are sheaves of &’x-modules, then we may consider the presheaf

U F(U) @) 9WU).

Unfortunately, this presheaf may fail to be a sheaf. In order to have the correct universal property
for sheaves of O'x-modules, we must therefore sheafify the above presheaf. We will write # @4, ¢
for the sheaf associated with the presheaf displayed above. One may check that tensor product of
O'x-modules is again right exact in either variable, and distributes over direct sum. The sheaf Ox
provides a unit for ®. The following result generalizes the corresponding statement for modules
(since one may take X = x and 'y = R for some ring R).

Theorem 2.1.2.1. If (X, Ox) is a ringed space, then Mod(Ox) equipped with the direct sum and
tensor product just mentioned has the structure of an abelian symmetric monoidal category.

Finiteness conditions on sheaves of modules

If M is a module over a ring R, then M is finitely generated if there is a surjection R®" — M. We
make corresponding definitions in categories of sheaves of modules, except now we only impose
finiteness locally. Now, any module over a ring has some presentation (i.e., it can be written as the
cokernel of a map of free R-modules), but in defining infinite direct sums of sheaves, sheafification
was necessary.

Definition 2.1.2.2. If (X, Ox) is a ringed space, then a sheaf of &x-modules .# is said to have
finite type if for every z € X if there exists a neighborhood U of z, an integer n and a surjection
ﬁ%n — Z|y. Likewise, .# is said to have finite presentation if for every x € X there exists a
neighborhood U of z, and a morphism ¢ : 5™ — 03" such that .7 | is isomorphic to coker(¢).

Definition 2.1.2.3. If (X, Ox) is a ringed space, then a sheaf .7 of &'x-modules is said to be quasi-
coherent if for every point x € X, there exists a neighborhood U of x such that . s is the cokernel
of amorphism ¢ : P,.; Ov — €D ; Ov. The sheaf .7 is said to be coherent if 7 has finite type,

and for every open U C X, and any morphism ¢ : 05" — .7

U, ker(¢p) has finite type.

Note that taking X = pt and Ox = R for a commutative ring R, the definition of coherence
coincides with the notion of coherence for modules described above.
2.1.3 Projective and flat modules

Of course free modules are torsion-free. We now introduce some other properties that measure
“torsion-freeness” of modules.

Definition 2.1.3.1. Suppose R is a commutative unital ring. An R-module M is called:
1. flatif — ® g M is an exact functor on Modgp, i.e., preserves exact sequences;
2. projective if Homp (M, —) is an exact functor on Modp,
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3. invertible if — ®r M is an auto-equivalence of Modp.

Remark 2.1.3.2. Note that —® g M is an exact functor if and only if M ® g — is exact since included
in the statement that Modp is symmetric monoidal is a natural isomorphism between these two
functors.

Definition 2.1.3.3. If f : R — S is a homomorphism of commutative rings, then we say that f is a
flat ring homomorphism if S is a flat R-module.

Example 2.1.3.4. Any free R-module is projective (or flat). A free R-module of rank 1 is invert-
ible. Any finitely generated projective (or flat) module over a principal ideal domain is necessarily
free (this follows from the structure theorem). In particular, if % is a field, any finitely generated
projective k[t]-module is free.

Remark 2.1.3.5. In 1955, Serre asked whether finitely generated projective k[t1, ..., t,]-modules
(k a field) are free [?]. This question stimulated much work in the theory of projective modules and
was answered by Quillen and Suslin (independently) in 1976.

Example 2.1.3.6. If R is a ring, then we can consider I? x 0 as an R X R-module. This module is
evidently a direct summand of a free module (namely R X R), but is not itself free. Thus, there exist
examples of projective modules that are not free.

Lemma 2.1.3.7. An arbitrarily indexed direct sum of R-modules is flat (resp. projective) if and only
if each summand is flat (resp. projective).

Proof. Since arbitrary direct sums commute with tensor products in the category of R-modules,
there is an isomorphism of functors (,.; M;) ®r — = @, ;(M; ®r —). Thus, the first functor
is exact if and only if the second functor is exact. Likewise, there is an isomorphism of functors
Homp (P, P, —) = [, Hompg(P, —) and the left-hand-side is exact if and only if the right hand
side is exact. U

Lemma 2.1.3.8. An R-module L is invertible if and only if there exists an R-module L' such that
LorL = R

Proof. If L @ — is an auto-equivalence, then the existence of L’ is an immediate consequence
of the fact that equivalences of categories are essentially surjective. In the other direction, if L/
exists as in the statement, then — @ L' is a quasi-inverse to — ®p L since (— ®r L) @r L' =
—®p (L®gr L") = — ®p R, which is the identity functor. d

Injective modules

There is a notion of injective module that is dual to that of projective module. More precisely, one
makes the following definition.

Definition 2.1.3.9. If R is a commutative unital ring, then an R-module M is injective if Homp(—, M)
is exact.

Concretely, an R-module M is injective if given any R-module map 7 : N — M and an
injective R-module map N — N, there exists an R-module map j' : N’ — M extending j, i.e.,
such that the composite N — N’ — M concides with j.
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Exercise 2.1.3.10. Show that any product of modules is injective if and only if each factor is injec-
tive.

Localizations are flat ring homomorphisms

The following elementary fact about localization will be used repeatedly in what follows.

Theorem 2.1.3.11. Suppose R is a commutative unital ring, and S C R is a multiplicative subset.
1. If M is an R-module, then M[S™'] = M ®r R[S™1].
2. The assignment M — M[S™'] is an exact functor Mod g — Mod gig-1y.
3. In particular, R — R[S™'] is a flat ring homomorphism.

Proof. For Point (1). Consider the map M x R[S™'] — M[S~!] given by (m, %) — ™™, This
map is R-bilinear by construction, and therefore there exists a map M ® R[S™!] — M[S~!] such
thatrm®~ — ™. Define amap M[S~!] — M®R[S~!] by the formula 2 = m®2; we claim this is
well-defined. Indeed, if 7;‘—// presents the same element of M[S~!], then we can find t and ¢’ € S such

— o/ 1 _ Ity st ol 1
_m8t®ss’t_m®ss’t_m®s"

1
] . ss't ss't
It is straightforward to check these two maps are inverses.

For Point (2), since tensoring is always right exact, it suffices to prove that if M — M’ is an
injective R-module map, M [S~!] — M’[S~1] remains injective. If we view M as a sub-module of
M’, an element £ € M'[S ~1] is zero if and only if there exists ¢ € S such that tx = 0. However,
the latter happens if and only if £ = 0in M itself.

The third statement is a consequence of the first two. O

that ms't = m’st’. In that case, n®*: = m® St — ms't®

2.2 Projective modules and their properties

In this lecture we analyze further the basic properties of projective modules.

2.2.1 Properties of projective modules

Lemma 2.2.1.1. Suppose R is a commutative unital ring. If P is an R-module, the following
conditions on P are equivalent:

1. P is projective;

2. Any R-module epimorphism M — P is split.

3. P is adirect summand of a free R-module;

Proof. (1) = (2). Suppose we are given a surjection ¢ : A — P; we can complete this into an
exact sequence 0 — ker(p) — A — P — 0. Now, since P is projective, Homp (P, —) is an exact
functor, and applying it to the previous short exact sequence yields a short exact sequence of the
form

0 — Homp(P, ker(¢)) — Homp(P, A) — Hompg(P, P) — 0.

In particular, we may lift the identity 1 € Hompg(P, P) to a morphism P — A that, by construction,
splits the given epimorphism.
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(2) = (3). By choosing generators of P, we may build an epimorphism from a free module
¢ : F — P. By (2), such an epimorphism is split, and we obtain a morphism P — F'. Then, we
conclude that F' = P @ ker(y).

(3) = (1). Suppose P & Q = F, where F'is a free module. Example 2.1.3.4 shows that F
is projective, and then appeal to Lemma 2.1.3.7 allows us to conclude that any summand of a free
R-module is also projective. 0

Remark 2.2.1.2. Recall that a projection operator on a k-vector space V' is an endomorphism P such
that P? = P. Upon choice of a basis of I, such an endomorphism amounts to an idempotent matrix.
The projection onto a summand is an example of a projection operator. Given a finitely generated
projective module M over a ring R, we may always fix a direct sum decomposition R¥" = P ¢ Q.
In that case, the composite map R®" — P < R®" is represented by an idempotent matrix on
R®"_i.e., finitely generated projective modules correspond to projection operators.

Example 2.2.1.3. Lemma 2.2.1.1 shows that any module M such that M @& R®" = RSN js
projective; such modules are called stably free. We now explain how to construct stably free R-
modules. Suppose R is a ring and ay, ..., a, is a sequence of elements in k. We will say that a
sequence (a1, ..., ay) is a unimodular row (of length n) if there exist elements by, . .., b, such that
>, aib; = 1. In other words, the row (a1, ..., ay), viewed as a 1 X n-matrix, has a right inverse.
Given unimodular row of length n, we can define an epimorphism R®" — R via multiplication by
a:= (ai,...,a,)t. Unimodularity ensures that this homomorphism is surjective. In that case, the
kernel P, := ker a is a projective R-module.

In general, P, need not be a free R-module, though it is sometimes difficult to prove this alge-
braically. One easy source of unimodular rows of length n is as follows. If A is an n x n-invertible
matrix of determinant 1, then its first row is a unimodular row of length n; this follows from the
formula for det A by expansion along the first row. A unimodular row that is the first row of an
invertible matrix will be called completable. If A is completeable, then we may pick a new basis of
R®™ consisting of the rows of A. It follows immediately that the projective module P, correspond-
ing to a completeable unimodular row of length n is automatically free of rank n — 1. The following
exercise shows that the converse also holds.

Exercise 2.2.1.4. Show that the projective module P, associated with a unimodular row (ay, . . ., ay)
is free if and only if (a1, ..., ay) is the first row of an invertible n X n-matrix with determinant 1.

Example 2.2.1.5. Unimodular rows of length 2 are unfortunately not so interesting. In that case,
in the previous construction, one obtains a module P such that P & R = R®2. However, any
unimodular sequence of length 2 is completable, so P = R. Indeed, if (a1, a2) is our unimodular
row, then by definition we can find (b1, b2) such that a1b; + a2be = 1. In that case, the matrix

al a
—by b
has determinant a1b; + asby = 1.

Example 2.2.1.6. If M is any R-module, then we can consider the R-module dual MV := Homp (M, R);
this has a natural R-module structure. Note that, if M is finitely generated free module, then so is
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Hompg(M, R). If P is a finitely generated projective module, then we claim Hompg (P, R) is pro-
jective. Indeed, if P @ Q = R®", then Homg(P @ @, R) = Homp(R®™F) = R®", Since finite
direct products of modules are also direct sums, it follows that Hompg (P, R) is a summand of R®"
as well.

Remark 2.2.1.77. For n > 3, it is more difficult to determine whether a given unimodular row of
length n is completable. On the other hand, with the technology developed so far, it is also not clear
whether there are any non-trivial examples.

Corollary 2.2.1.8. If R is a commutative unital ring, and M is an R-module, then following impli-
cations hold:
Mis invertible =—> M s projective =—> M is flat.

Proof. We leave the first implication as an exercise. For the second implication, since free R-
modules are flat, direct summands of flat R-modules are flat, and since any projective R-module is
a direct summand of a free R-module, it is necessarily flat as well. O

Lemma 2.2.1.9. Assume R is a commutative unital ring.
1. Any finitely generated projective R-module is finitely presented.
2. Any invertible R-module is finitely presented.

Proof. Since projective modules are summands of free modules, it suffices to observe that any
summand of a finitely generated free R-module is finitely presented. Indeed, suppose R¥" = PHQ
for two R-modules P and . In that case, we can view () as the kernel of a surjection R®" — P
and R®" surjects onto () as well.

For the second point, it suffices after the first point to show that invertible R-modules are finitely
generated; this second statement is essentially a consequence of the definition of a tensor product
in terms of finite sums of “pure” tensors. More precisely, suppose L is an invertible [2-module and
we are given an isomorphism ¢ : L ® M — R. In that case, o~ '(1) = Y_;_; z; ® y; for elements
x; € Land y; € M. Now, let L' C L be the sub-module generated by z1, . .., xs. By construction
L’ is finitely generated and we will show that L' — L is an isomorphism.

To this end, note that the morphism L' ® M — L ® M = R is still surjective since p~1(1) €
L’ ® M by construction. Since L' — L is injective, we just want to show that the quotient L' /L
is trivial. Consider the exact sequence 0 — L' — L — L/L” — 0. Since M is invertible, we
conclude that there is a short exact sequence of the form:

0—L &M —LorM — L/L' g M — 0

Since the first map in this exact sequence is surjective by what we asserted before, we conclude that
L" @ M = 0. However, by associativity (and commutativity) of tensor product, (L/L' ® g M) ®@p
L2L/L'®r (M ®rL)=L/L'®r R~ L/L'. Thus, L/L’' = 0, and we conclude. O

Remark 2.2.1.10. Since finitely generated projective modules are automatically finitely presented,
a necessary condition that a finitely generated flat module be projective is that it is also finitely
presented. In fact, we will show later that finitely presented flat modules are exactly the finitely
generated projective modules.
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Over Noetherian rings, the link between projectivity and flatness is even more close: every
finitely generated flat module is projective; this follows essentially from the equational criterion of
flatness; see [?, Theorem 4.38]. Over non-Noetherian rings, there may be finitely generated flat
modules that are not projective. Indeed, if R = C°°(R) the ring of real valued smooth functions on
the real line, and m is the ideal of smooth functions vanishing at 0, then Ry, is the ring of germs of
smooth functions at the origin. This module is flat because it is a localization. Set I to be the ideal
of functions f € C°°(R) such that there exists ¢ > 0 and f(x) = 0 for all || < €. One can check
that, Ry = R/I, so Ry, is finitely generated as well. If R/I were projective, then the surjection
R — R/I would split, and we could write R = R/I © I. However, one can check that I is not
even finitely generated.

Interlude: compact objects

In this interlude, we give a categorical interpretation of finitely presented modules and in doing so
we give a simple proof of the fact that invertible R-modules are finitely presented.

Definition 2.2.1.11. If ¥ is a category that admits filtered colimits, then an object X € % is called
compact if the functor Homg (X, —) : € — Set preserves filtered colimits.

The category Modp admits filtered colimits (inherited from the category of sets), so it makes
sense to speak of compact objects in Modg. In Lemma 2.2.1.9 we observed that direct summands
of finitely generated R-modules are necessarily finitely presented; we use this observation together
with the following exercise to better understand compact objects in Mod .

Exercise 2.2.1.12. Show that any R-module M can be written as a filtered colimit of finitely pre-
sented modules.

Lemma 2.2.1.13. Any compact object in Modp, is finitely presented.

Proof. Suppose M is compact. We can write M as a filtered colimit of finitely presented R-modules
M = colim; M;. Then, there are, by definition of compactness, a sequence of isomorphisms

Homp (M, M) = Hompg (M, colim; M;) = colim; Hompg (M, M;).

In particular, the identity map M — M factors through a map M — M; for some ¢ sufficiently
large. It follows that the inclusion map M; — M can be split, so M is a direct summand of the
finitely presented module M;. To conclude, we appeal to the fact that direct summands of finitely
presented R-modules are finitely presented. O

In fact, the converse to the above lemma holds. To see this, we will need some further informa-
tion about filtered colimits in the category of R-modules. The following result is sometimes phrased
as the assertion that “filtered colimits are exact in the category of R-modules.”

Lemma 2.2.1.14. Assume R is a commutative ring, I is a partially ordered set, viewed as a category.
Assume given functors M', M, M" : I — Modg, and natural transformations of functors ¢ :
M — M, : M — M" (we will write M; for the value of M on i € I and ju;j : M; — M; for
the corresponding morphism). Assume that for each © € 1, the sequence of R-modules

VAN Y AN Vi
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is a complex of R-modules (i.e., the composite 1; o p; = 0) with homology H;. In that case, there is
an induced functor H : I — Modg sending i € I to H;, and the sequence

colimy M' — colim; M — colimj M"
is again a complex whose homology agrees with colimy H.

Proof. By naturality, there are induced maps ker(v;) — ker(psi;) whenever ¢ < j and likewise,
there are maps im(¢;) — im(¢;) whenever ¢ < j. Since im(y;) C ker(1);) for all by assumption,
there are also induced maps H; — H; whenever ¢ < j, which yields the functor I — Modp.

Next, let us construct the map comparing the homology of the colimit with the colimit of the
homology. There is a map H; — ker(colimy 1) /im(colims ¢) for each i that simply sends a rep-
resentative element in ker(1);) to its image in the colimit. These morphism thus induce a morphism

colim; H — ker(colimy ) /im(colimy ).

We claim that this morphism is both injective and surjective, and this amounts to a careful analysis
of the explicit construction of colim; M as a suitable quotient of the coproduct of the M; modulo
some equivalence relation.

Take h € ker(colimy 1)) /im(colims ). Choose a representative [m] € ker(colimy ¢;). Such
an element comes from m; € M, for some i. The assumption that [m] lies in ker(colim 1);) means
that the image of v¥;(m;) in M ]’-’ is zero for some j > i. After replacing ¢ by j, it follows that h
comes from H;, which yields surjectivity.

For injectivity, suppose h; € H; has image zero in ker(colim; v) /im(colimy ¢). We may repre-
sent h; by an element m; € ker(v;) C M;. Since the image of h; is zero in ker(colimy v) /im(colimy ¢),
it follows that the image of m; in colim; M lies in im(colims ¢). In other words, there exists
m’; € M; for some j > i such that ¢;(m/) coincides with the image of m; in M;. It follows that
the image of h; in H; is necessarily zero, which yields the required injectivity. O

Proposition 2.2.1.15. The compact objects in Mod g are precisely the finitely presented R-modules.

Proof. We already saw that compact objects are finitely presented in Lemma 2.2.1.13, so it remains
to establish that finitely presented R-modules are compact objects. To see this, we use a series of
reductions. First, suppose N = colim; NV;. Since Hompg(R, —) is the identity functor on Modp,
we conclude that Hompg (R, colim; N;) = colim; Hompg(R, V;). Next, we can observe that both
the functors colim; Hompg(—, N;) and Homp(—, V) commute with finite direct sums. Since fil-
tered colimits are exact in the category of R-modules by Lemma 2.2.1.14, both of the functors just
mentioned are actually right exact. Now, if we pick a presentation R®™ — R®™ — M — 0 for a
finitely presented R-module, then combining the observations just made with the 5-lemma allows
us to conclude that finitely presented R-modules are compact. O

If € is any monoidal category, then we can speak of invertible objects in € :

Definition 2.2.1.16. If % is any monoidal category, then an object X € % is invertible if tensoring
with X is an auto-equivalence of %.

Remark 2.2.1.17. Invertible objects in Mod i (with respect to ®) are precisely invertible R-modules.
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Exercise 2.2.1.18. An object X in a monoidal category € is invertible if and only if there exists an
object X* € € such that X ® X* is isomorphic to the unit object in €.

Lemma 2.2.1.19. If ¥ is a monoidal category that admits filtered direct limits, then invertible
objects are compact.

Proof. Auto-equivalences of categories preserve filtered direct limits. 0

2.2.2 Tensor products and extension of scalars

We now study the behavior of these various kinds of modules under tensor product.

Lemma 2.2.2.1. If R is a commutative unital ring, and M and M, are R-modules then the follow-
ing statement hold.

1. If My and M, are flat, then My ®r Ms is flat;

2. if My and My are projective, then My Q@ M, is projective; and

3. if My and Ms are invertible, then My, ® g My is invertible.

Proof. Exercise. O

The above lemma implies that there is a natural binary operation on the set of isomorphism
classes of invertible R-modules for a commutative ring R induced by tensor product. This binary
operation is naturally associative because of associativity of tensor product, has a unit, given by the
free R-module of rank 1, and has an inversion with respect to this choice of unit. Moreover, tensor
product is symmetric monoidal, it follows that these structures equip the set of isomorphism classes
of invertible R-modules with the structure of a commutative group.

Definition 2.2.2.2. If R is a commutative ring, then Pic(R) is the commutative group of isomor-
phism classes of invertible R-modules (with the group structure described above).

Lemma 2.2.2.3. If f : R — S is any ring homomorphism, then “extension of scalars”, i.e., sending
M — M ®pg S determines a functor Modr — Modg. Extension of scalars sends
1. flat R-modules to flat S-modules,
2. (finitely generated) projective R-modules to (finitely generated) projective R-modules, and
3. invertible R-modules to invertible R-modules.

Proof. For the first statement, observe that there is always an isomorphism of functors (M ®p
S)®s — = M ®p (S ®s —). Since S ®g — is the identity functor, we conclude that if M is a flat
R-module, then M ®pg S is a flat S-module.

For the second statement, if P is a (finitely generated) projective R-module, then P& (Q = F for
F a (finitely generated) free R-module. Then, (P®Q)®rS 2 PRrSO®Q®rS = F®pS. Since
F ®p S is a (finitely generated) free .S-module, we conclude that P ®p S is (finitely generated)
projective.

The third statement amounts to associativity of tensor product and is left as an exercise. O

Corollary 2.2.24. If ¢ : R — S is a ring homomorphism, then there is an induced homomorphism
©* : Pic(R) — Pic(S).
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Proof. We already saw that extension of scalars sends invertible modules to invertible modules.
Granting that, observe that if L; and Lo are invertible R-modules, then there are isomorphisms of
the form

(L1 ®p L) ®r S = L1 ®r (L2 ®g S) = (L1 ®r S) ®s (L2 ®r 5),

which yield the statement. O

2.2.3 Projective and locally free modules

Recall that if R is a commutative unital ring, then the Jacobson radical J(R) is equal to the inter-
section of all maximal ideals of R (the intersection of the annihilators of simple R-modules).

Lemma 2.2.3.1 (Nakayama). If M is a finitely generated R-module and M /J(R) - M = 0, then
M = 0.

Example 2.2.3.2. We will essentially always apply Nakayama’s lemma in the situation where R is
a local ring with maximal ideal m. In that case, J(R) = m.

Projective modules over local rings

Using Nakayama’s lemma, we can analyze finitely generated projective R-modules over local rings.
Proposition 2.2.3.3. If R is a local ring, then every finitely generated projective R-module is free.

Proof. Supppose m is the maximal ideal of R and x := R/m is the residue field. Assume P is a
projective R-module. In that case, P/m = P ® R/m is a finitely generated x-module and thus a
finite dimensional x-vector space.

Take any R-module M and a morphism ¢ : M — P. Set ¢ : M ® g R/m — P/m. Right
exactness of tensoring shows that the coker(¢) ®r R/m = coker(@). In particular, if ¢ is an
epimorphism, then Nakayama’s lemma shows that ¢ is an epimorphism as well.

Now, fix a basis €, . .., &, for P/m. We may pick elements ¢; lifting ¢;. In that case, we get a
homomorphism v : R®" — P whose reduction modulo m is surjective. By the discussion of the
preceding paragraph, 1 is itself an epimorphism. In that case, ker(v)) is a direct summand of R®"
and therefore also itself finitely generated and projective. Since ker () is trivial when reduced mod
m, again by Nakayama’s lemma we conclude that ker(v)) is trivial. Therefore, we conclude that 1)
is an isomorphism and thus P is free. O

Remark 2.2.3.4. Kaplansky showed [?] that projective modules over local rings are always free
(without finite generation hypotheses). Along the way, Kaplansky established a remarkable structure
theorem for projective modules: every projective module is a direct sum of countably generated
projective modules.

Local trivializations of projective modules

The next result is a key consequence of the fact that finitely generated projective modules are finitely
presented, combined with the results above about freeness of finitely generated projective modules
over local rings.
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Proposition 2.2.3.5. Assume R is a commutative unital ring, p is a prime ideal in R and P is a
finitely generated projective R-module.
1. The localization P, is a free Ry-module of some finite rank n.
2. There exists an element s € R\ p such that the localization of P away from s is free, i.e.,
P[] is a free R[1]-module of rank n.
3. Ifp’ is any prime ideal not containing s, Py is a free Ry -module of rank n.
In particular, if L is an invertible R-module, then Ly is free of rank 1.

Proof. Regarding point (1): since Ry, is a local ring, and F, is a finitely generated projective R-
module it is necessarily free of some finite rank n.

For Point (2): we begin by observing that since P is finitely generated, it is finitely presented,
and we can write P as the cokernel of a matrix M with coefficients in 2. Now, to say that P, is free,
is to say that we can find an invertible matrix with coefficients in R, such that the product of this
invertible matrix (the matrix expressing the change from the standard basis of P, that is obatined
from writing it as a quotient of a free module to the basis in which it is a direct summand) and the
matrix M. By the definition of localization, each element of M can be written in the form f;;/h;
where f;; € R and h;; € R\ p. Taking s to be the product of the h;;, we see that M € R[%] but
this is what we wanted to show.

Point (3) is a special case of point (2). For the final statement, since invertible R-modules are
always finitely presented, and invertible R-modules over local rings are all free of rank 1, the final
assertion is a consequence of the previous ones. O

Definition 2.2.3.6. If R is a commutative unital ring, then an R-module M is said to be locally free
if we can cover Spec R by basic open sets Dy, such that each localization My, is a free 12 ¢,-module.
We will say that M is finite locally free if M is locally free and we may choose the f; so that My, is
a finite rank free R y,-module.

Remark 2.2.3.77. By Exercise 1.1.1.39 if the f; generate the unit ideal, then by quasi-compactness
of Spec R, we can pick a finite subset I’ C I that generates the unit ideal.

Proposition 2.2.3.8. If R is a commutative unital ring and P is a finitely generated projective R-
module, then there is a integer r and finitely many elements fi,..., fr € R such that the family
f1,--., fr generate the unit ideal in R and such that P[%] is a free R[%]-module of finite rank for
each 1. In other words, finitely generated projective R-modules are finite locally free R-modules.

Proof. This follows by combining the finite presentation of P and the fact that Spec R is a quasi-
compact topological space (see Exercise 1.1.1.39). In more detail, fix a prime ideal p in R. By
appeal to Proposition 2.2.3.5 we may find an element f; such that P [%] is a free R[%]—module.
Now, pick a prime ideal in R/(f1) and consider the associated prime ideal in R and repeat the
procedure. Altogether we obtain a sequence of elements fi, fo, ... such that P [%] is a free R[%]—
module. By construction, the open sets Dy, cover Spec R and thus the family f; generate the unit
ideal. Since Spec R is quasi-compact, it follows that a finite number of these modules already
generate the unit ideal, and restricting our attention to these yields the result. O

Remark 2.2.3.9. It is not the case that projective modules that are not finitely generated are locally
free. In fact, this latter statement fails even for for countably generated projective modules. Indeed,
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there exists a countably generated ring 12 and a projective module M that is a direct sum of countably
many locally free rank 1 modules such that M is not locally free [?, Lemma 88.26.5 Tag 05SWG].
For this reason (and due to many other pathologies that appear), we will typically avoid speaking
about infinitely generated projective modules.

Finitely presented flat modules

A variation on the above proof can be used to show that finitely presented flat modules are also finite
locally free. We give this proof here for the sake of completeness. Before doing this, we record a
useful lemma.

Lemma 2.2.3.10. If R is a commutative ring, and 0 — M' — M — M" — 0 is a short exact
sequence of R-modules with M" flat, then for any R-module N, the sequence

0 —=NIrRM — NrM — NrM'" =0
is exact as well.

Proof. We may choose a surjection R/ — N with kernel K. Tensoring the short exact sequence of
the statement with this one, we obtain the following diagram

KpM — KQrM — K Qg M" ——=0

where we have used the flatness of R’ and M. The result follows from the snake lemma applied to
the terms in the top two rows: indeed, this result implies that the kernel of the map K @z M" —
M maps surjectively onto the kernel of the map N ®r M’ — N ® g M and the former is zero. [

Lemma 2.2.3.11. Finitely presented flat modules are finite locally free.

Proof. Suppose M is finitely presented and flat. Choose a prime ideal p. In that case, M ®p k(p)
is a finitely presented flat x(p)-module, i.e., a k(p)-vector space. Pick elements ey,...,e, € M
that lift a <(p)-module basis of M ®p k(p). By Nakayama’s lemma, these elements generate the
localization M ®pr Ry, as well, i.e., there is a surjection ¢ : R;B" — M. In fact, since M is finitely
presented, there exists an element f € R, f ¢ P suchthatey,...,e, generate M - Now, the kernel
of o : Rj‘?" — M is necessarily also finitely generated.
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Since M is a flat R-module, it follows that M} is a flat 2 z-module since localizations are flat.
The lemma above applied to the exact sequence 0 — ker(¢) — R??” — My — 0 and tensoring
with x(p) implies that ker(¢) ®pg x(p) = 0. Thus, it follows again from Nakayama’s lemma that
ker(¢) = 0. Arguing as above, we get the requisite open cover of Spec R and the result follows. [

2.3 Locally free modules are projective

Proposition 2.2.3.8 demonstrated that finite projective modules are finite locally free. We would
like to know whether the converse holds: is a finite locally free module over a commutative ring
R always finite projective? Our analysis of this question amounts to analyzing whether various
conditions can be “glued together”. Recall that if R is a commutative unital ring, and f1, ..., f. is
a sequence of elements that generated the unit ideal, then in the constructions of the structure sheaf
of Spec R, we showed that the sequence

T
00— R— @Rfi — @Rfifj
i=1 i,j
was exact (recall the first map is the diagonal map arising from the various localization homomor-
phism R — Ry, while the second map sent a sequence aq, . . ., a, to the differences ..., a; —aj;, ...
in the relevant localizations). Moreover, we also shows that if M is any R-module, then the se-
quence
00— M — @Mfi — @Mfifj

(2 2,7
is exact. These observations can be used to help reconstruct the module M from information about
its various localizations.

2.3.1 Zariski descent I: patching modules and homomorphisms

In the above, we considered the ring homomorphism R — Ry, & - - - Ry, . For notational simplicity,
we will write R = Ry, @---@® Ry, . The data of the localizations My, for eachi = 1, ..., amounts
to specifying an R’-module. To understand thsi better, let us describe the category of R’-modules
more explicitly. There are ring homomorphism Ry, — R’ for each 4, and these are furthermore
split by ring homomorphism R’ — Ry,. Given a sequence Mj, ..., M, of Ry, modules, we may
therefore build an R’-module as follows: take the direct sum of the modules obtained by extension
of scalars along the ring homomorphism Ry, — R’; we will write My B - - - B M, for the resulting
R'-module. In fact, using extension of scalars along the ring homomorphism R’ — Ry, given an
R'-module M we obtain a sequence M; of Ry,-modules. These constructions are mutually inverse
and give an explicit description of the category Mod g in terms of the categories Modg;. .

Remark 2.3.1.1. We could define the product category Modg X Modp,, as the category whose
objects consist of sequences M; of Rf,-modules and where morphisms are sequences as well. The
construction we just described gives an equivalence between the category Mod g/ and this category.

Extension of scalars along the ring homomorphism R — R’ corresponds to a functor:

Modrp — Modgp:.
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Notice that R — R’ is a flat ring homomorphism as localizations are flat ring homomorphism and
since direct sums of flat modules are flat. It follows that extension of scalars is actually an exact
functor Modg — Modgs. Of course, not every R’-module is an extension of scalars. Indeed, an
arbitrary object of the form M; H --- H M, does not arise from an R-module unless each M; is
the localization of a fixed R-module. We can phrase the compatibility evident in this observation
in a different way. If Ry, and Ry, are two different localizations of R, then given an R-module
M, we get My, and My,. There is a canonical identification (Ry,)s, with (Ry,)y,: both of these
are equal to the ring Ry, r,. In particular, associativity of tensor product then yields a distinguished
isomorphism

0ij : (M ®r sz‘) @Ry, Rfifj =M®er Rfifj = (M ®r Rfj) ®Rfj Rfifj'

In particular, in order for an R’-module M, H- - - B M, to arise from an R-module, we must specify
isomorphisms
Hji : M; ®Rf¢ Rfif]. — Mj ®Rfj Rfifj?

for each pair 7, j. Geometrically this is just the gluing isomorphism on 2-fold intersections. Note
that we have such an isomorphism even when ¢ = j: in that case, both the source and target are the
same and the map is simply the identity map, so we have the normalization that 6;; = id for each .

We can repackage this collection of isomorphisms in the following way. The ring @z iRt
can be identified as R’ ®p R’ using the distributivity of tensor product over direct sum. From the
tensor product description, there are two different extensions of scalars R — R’ ® g R’ correspond-
ing to the universal map for the left or right-hand factors. Given an R’-module, we thus get two
different R’ ® p R’-modules by extension of scalars along the left or right-hand factors. The family
of isomorphisms {6};}; ;, then amounts to an isomorphism ¢ between these two different pullbacks.
Given an R’-module M’, let us write M, for R’ ® g R’-module obtained by extension of scalars
along the right factor and M for the extension of scalars along the left factor. Our isomorphisms
6, then amount to specifying an isomorphism 6 : M/ — M.

If there are more than two f;, then there is a natural further condition. Given a third f, the
isomorphism 6;; yields an isomorphism of M; ®g Ry, 5, with M; ®gr Ry, 5. Likewise, Oy;
yields an isomorphism of M; ®g Ry, i with My, ®@r Ry, Fifo and 6, yields an isomorphism of
My ®g Ry, 5, with M; ®R Ry, ¢, 7, 1t thus makes sense to consider the composite 0;5, o 0 o 0;;
as an endomorphism of M; ®g Ry, £ f- If each M; arises as the localization of an R-module, then
it is easy to see that this composite is the identity self-map of M;M; ®g Ry,y, 5, for every triple of
indices 1, j, k. Equivalently, 0 o 6;; and 0}, have the same source and target and the compatibility
condition can also be phrased as saying these two composites are equal for every triple of indices.

The compatibility condition we just wrote can also be repackaged as follows. The ring @Z ik Ry 1 £
can be identified with R’ ®p R’ ®r R'. There are now three different extensions of scalars
R @r R — R ®r R’ ®@r R’ corresponding to the first and second factors, the first and third
factors and the second and third factors. We thus obtain three further extension of scalars maps
corresponding to these ring maps. Let us write pj,0, pi30 and p330 for three R’ ®r R’ @ R'-
module isomorphisms we obtain by extending scalars for 8. In that case, our condition amounts to
the equality pi,0 o pis0 = pis0.

Given the ring homomorphism R — R’ above, define a new category Modgr( f1,. .., fr) whose
objects consist of pairs (M’, 6) where M’ is an R’-module, and 6 : M; — M] is an isomorphism
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such that pi,0, pi30 = pis0 on R' @ p R'@r R”. A morphism in Modg(f1, ..., fr) is an R'-module
map ¢ : M’ — N’ that is compatible with the isomorphism 6. The category Modg(f1,. .., fr)
admits a functor to Modgs (forget the isomorphism ). The discussion above shows that extension
of scalars deifnes a functor

MOdR — MOdR(f1, ey fr)

Since extension of scalars along a flat homomorphism is exact, it follows that the above functor is
actually exact. We claim that this functor is actually an equivalence of categories. To this end, we
will construct an explicit quasi-inverse functor.

To construct the quasi-inverse, recall that given an R-module M, there is an exact sequence of
R-modules

00— M — @Mfi — @Mfifj7
iel ij

where the right hand morphism sends (1, ..., m,) to the differences m; — m;. In particular, M
can be recovered either as a kernel or, as the collection of sequences of elements in My, such that
(-++,mi, -+ ,my,- ) such that m; and m; have the same restrction in My, ;. We can phrase this
abstractly using the isomorphism 6 as follows. If we give ourselves an R’-module M’, then we can
use the ring homomorphism R — R’ to view M’ as an R-module. We get two R’ ® g R’-modules
Ml and M/ as above, which are identified via an isomorphism 6. An element m’ of M’ gives rise
to an element of A/ and M| by just taking its image under the relevant extension of scalars; we
write m/. and m; for the relevant elements. In that case, #(m;) and m/. both lie in M and we can
ask whether they are equal. Equivalently, we may view 6§ as giving an R-module homomorphism
M’ — M, and we can consider the homomorphism id — 6 : M’ — Mp,. When M is an R-module,
we recover M from M’ as the kernel of id — 6.

Given an object of Modg(f1, ..., fr), the construction just described defines an R-module by
sending the pair (M, 6) to the R-submodule of M’ defined by ker(id — #). This construction is
functorial as well: the restriction of a morphism in Modg(fi,..., f.) to ker(id — @) defines an
R-module map. In other words, we’ve constructed a functor

MOdR(fl, ey fr) — MOdR.

We now summarize some properties of these functors in the following statement.

We already know that the composite of the above functor with extension of scalars Modr —
Modg(fi,..., fr) is the identity by the exactness statement above and the fact that the other com-
posite is the identity is a straightforward exercise.

Theorem 2.3.1.2 (Zariski patching I). Assume R is a commutative ring, and f1, . . ., f. are elements
of R that generate the unit ideal. The functors

MOdR — MOdR(flv R 7f7“)
given by extension of scalars, and
MOdR(fl, ceey fr) — MOdR

induced by sending a pair (M, 0) to ker(id — 0) define mutually inverse equivalences of categories.
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Proof. First, we show that the composite Modr — Modg(f1,..., fr) — Modpg is the identity
functor. That this composite is the identity on objects follows immediately from Lemma 1.3.1.3.
That it is the identity on morphisms is a diagram chase.

Next, consider the composite Modg(f1, ..., fr) = Modr — Modgr(f1,..., fr). Let (M', )
be an object of Modg(f1, ..., fr) and let M = ker(id — ) viewed as an R-module. Write M’ =
(M, ..., M,), where each M; is an Ry,-module. The map M — M; factors through My, by the
universal property of localization. Therefore, there is an induced R'-module map M, 8- - -BMy, —
M’. We claim this morphism of R’-modules is an isomorphism. We leave the check that this induced
morphism is injective and surjective as an exercise. O

Example 2.3.1.3 (Characteristic polynomials of endomorphisms). The results above show that el-
ements of a module are “locally determined”. Here is an application of this fact. Suppose P is a
finitely generated projective module over a commutative unital ring R of fixed rank n. Given «
an endomorphism of P, we describe how to attach a characteristic polynomial to . Suppose we
take a sequence of elements fi,..., f. € R such that each Py, is a free R,-module. In that case,
choosing a basis of Py, as an I7y,-module, we can define the characteristic polynomial of oy, in the
usual way as det(ay, — Ald,) = P(ay,, ) € Ry, [A] (and, as usual, the expression is independent
of the choice of basis). Now, taking determinants of matrices commutes with extension of scalars.
Since the modules (Pf,), and (P, )y, are isomorphic, the elements P(ay;, A) and P(ay;, A) nec-
essarily coincide when viewed as elements of Ry, s, [A]. Therefore, there we deduce that there is an
element P(cr, \) € R[] that restricts to P(crs,, A). One can establish the existence of characteristic
polynomials in general using an inductive argument and the fact that projective modules are locally
free. Moreover, one can show by refining covers that the characteristic polynomial so defined is
independent of the choice of cover. The characteristic polynomial defined in this fashion has all the
usual properties of the characteristic polynomial, e.g., the Cayley—Hamilton theorem holds, i.e., o
satisfies P(a, \).

Example 2.3.1.4. If o is an endomorphism of a rank n projective module over a ring I?, then we
can define ¢tr(«), det(«r) and similar expressions. In particular, if P is a projective module of rank
n, then there is a homomorphism Autr(P) — R* sending « to its determinant.

2.3.2 Zariski descent II: properties of modules

Now that we know how to reconstruct a module from suitable information at localizations, we can
ask whether properties of modules can also be patched together. Given a property P of modules
that is stable by localization, we can ask the following: if (M’, ) € Modg(f1,. .., fr) is such that
M’ has property P, does the object M € Modp obtained by the equivalence of Theorem 2.3.1.2,
have property P as well?

Definition 2.3.2.1. A property P for R-modules that is stable by localization will be called local
for the Zariski topology on Spec R if an R-module M has property P if and only if for any family
{fi}ier in R that generates the unit ideal, the modules M, have property P.
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Faithfully flat ring maps detect exactness

If fi,..., fr is a family of elements in a ring R, then we know that setting R’ = @;_, Ry,, that
R — R’ is a flat ring homomorphism. As such, we know that @ p R’ preserves exactness. We now
argue that, in fact, R — R’ detects exactness.

Lemma 2.3.2.2. If fi,..., fr is a family of elements in a ring R, then set R' = @;_, Ry,. A
sequence My — My — Ms is exact if and only if M1 @ g R’ — My ®@gr R’ — M3 ®pr R’ is exact.

Proof. The “only if” direction is immediate. Therefore we focus on the “if” direction. Since
Spec R — Spec R is an open cover, it follows that for any maximal ideal m of R, R'/mR’ is
non-zero: indeed, since fi, ..., f, generate the unit ideal, there exists some f; such that f; ¢ m.

Take an arbitrary sequence My — Ms — Ms such that My @g R’ — Mo®@gp R — M3®gr R is
exact. Consider the R-module H = ker(My — M3)/im(M; — Ms), which measures the failure
of exactness of M. By assumption

H®pg R = ker(MQ KRR R — M3 ®pg R/)/im(Ml RRr R — My ®p R/) =0.

Now, take an element © € H. There is an induced R-module map R — H. If [ = {r € Rjra =
0} (i.e., the annihilator ideal of x), then this map factors through an injection R/I C H. Now,
R/I®r R = R'/IR' C H®r R' = 0 again by flatness of R — R'. If I # R, then there is a
maximal ideal m containing I, which yields a contradiction. O

Definition 2.3.2.3. A ring homomorphism ¢ : R — S is called faithfully flat if a sequence M; —
My — Mj3 of R-modules is exact if and only if the sequence S ®p M1 — S ®p My — S ®p M3
is exact.

Remark 2.3.2.4. The argument above proves that if R" = Ry @ --- Ry, for fi,..., f, generating
the unit ideal in R, then R — R’ is faithfully flat. In fact, more generally, that argument implies the
following.

Proposition 2.3.2.5. If R — S is a flat ring homomorphism such that the map Spec S — Spec R
is surjective on closed points, then R — S is faithfully flat.

Proof. As before, take an arbitrary sequence, My — My — Ms such that My @ g R' — Ms ®p
R’ — M3 ®pr R’ is exact and let H be the homology module of the first sequence. By assumption
H ®pr S = 0. Take an element z € H and consider the induced R-module map R — H, and let
I be the annihilator ideal of z. As above, the R-module map R — H factors through R/I — H.
In that case, S/IS C H ®g S. If # R, then there exists a maximal ideal m containing I, i.e.,
S/mS = 0. However, the condition that S/mS = 0 is equivalent to the assertion that m does not
lie in the image of Spec.S — Spec R, which contradicts the assumption that Spec ¢ was surjective
on closed points. 0

Finite generation and finite presentation

If R is a ring, then the properties of finite generation, finite presentation of an [2-module are stable
under localization. Indeed, if R — R’ is a localization, then suppose M is a finitely generated
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R-module. This means that there is a surjection R®™ — M since extension of scalars along R’ is
exact, it follows that R'®" — M ®p R’ is again surjective. The same statement holds for finite
presentation and also for coherence of R-modules (exercise!).

Proposition 2.3.2.6. Assume R is a commutative ring and M is an R-module, finite generation,
finite presentation and coherence of M are properties local for the Zariski topology.

Proof. Suppose we have f1,..., f, that generate the unit ideal in R and all the localizations M,
of M are finitely generated. We want to check that M is finitely generated. Choose generators
R;Bimi — My, for each 7. Without loss of generality, we may assume these generators are in the
image of the localization map, i.e., we may find elements z;(j) € M, j = 1,...m; whose images
in My, yield the m;-chosen generators of Ry,. In that case, these elements determine an R-module
morphism R®N — M. This morphism is surjective after localization at any maximal ideal m since
for any given m C R some f; ¢ m. It follows from Corollary B.1.0.6 that the R® — M must be
surjective.

Next, suppose we know that My, is finitely presented for each 7. By the first part, we have a
surjection R®™ — M. Let K be its kernel. Since M/, is finitely presented, we know that K, is
finitely generated for each 7 since localization is an exact functor. It follows from the preceding
paragraph that K must again be finitely generated, which is what we wanted to show.

For the final statement, suppose M is an R-module, and suppose My, is coherent for each
i. Take a finitely generated submodule M’ C M. By assumption (M), is a finitely generated
submodule of My,. Since My, is coherent, it follows that M }1 is again finitely presented, but then
we conclude by appeal to the conclusion of the preceding paragraph. O

The property that an R-module P is finitely generated projective is stable under localization.
Indeed, this follows from the characterization of P as a summand of a free module since localization
is exact. Thus, it makes sense to ask whether the property of being finitely generated projective is
local for the Zariski topology. Thus, assume that P is an R-module such that Py, is projective.
Since P, is finitely generated projective, after further localizing, we may even assume that P, is
a finite rank free R-module. Thus, it suffices to show that if Py, is a finite rank free module for each
i, then P is a finitely generated projective R-module. To check this latter statement, we will check
that Homp (P, —) is actually an exact functor. Before analyzing this question, we will need some
preliminary results about the relationship between localization and Hompg(—, —).

Given a ring homomorphism R — S, functoriality of extension of scalars yields a natural map
Homp(M,N) — Homg(M ®p S, N ®p S); this factors through a map

HOIHR(M,N) Rpr S — HomS(M RrS,N ®pr S)

If S is a flat R-module, then ®p.S is an exact functor. First, let us analyze the situation with
localizations.

Proposition 2.3.2.7. Let R be aring, and S C S a multiplicative subset. If M and N are R-modules
with M finitely presented, then the canonical maps given by localization induced identifications of
the form:

Homp(M,N)[S™'] = Homps-(M[S™'], N[S™']) = Homz(M[S™'], N[S™"]).
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Proof. First, observe that the statement is true if M is a finite rank free module. Indeed, in that case,
Homp(R®,N) = N¥,
since Homp (R, —) is the identity functor. Then,
Homp(R®, N)[S™1] = N¥[S™!] = N[S™H¥ = Hompg[S™'| (R[S, N[S1)).
For the general case, simply choose a presentation R®" — R®™ — M. Applying the functor
Hompg(—, N) to this sequence yields
0 — Homp(M, N) — Hompg(R®™ N) — Hompg(R%", N).
Since Homp (R, —) is the identity functor, it follows that Homz(R®, N) = N®: Using this
identification and localizing, we get an exact sequence of the form
0 — Hompg(M, N)[S™] — N[S~H®™ — N[S—1%".

and the result follows from the corresponding statement when M is a finite-rank free module. [

In fact, the above proof actually establishes the following fact.

Proposition 2.3.2.8. If o : R — R/ is a flat ring homomorphism, and if M and N are R-modules
with M finitely presented (resp. finitely generated), then the map

HOHIR(M, N) ®r S — HomS(M Qr S, N ®p S)
is an isomorphism (resp. monomorphism).

Proposition 2.3.2.9. Assume R is a commutative ring and P is an R-module. The property that P
is finitely generated projective is local for the Zariski topology.

Proof. As before, we may assume that P is an R-module, and that P, is actually a finite rank free
R ,-module for each 4. In that case, we will check that Hompg(P, —) is an exact functor. Since P is
finitely presented, it follows from our preceding analysis that

HOmR(P, N)fi = HOmel_(Pfi, Nfi)

If we are given an exact sequence 0 — N1 — No — N3 — 0 of R-modules, then we conclude that
the induced sequence of R-modules:

0— HOHIR(P, Nl) — HomR(P, Ng) — HOHIR(P, Ng)

is exact, and we want to check exactness on the right. Upon localizing at each f;, this follows from
the assertion that P, is a finite rank free module by appeal to Proposition 2.3.2.8. It follows that the
result holds upon localization at an arbitrary maximal ideal m of R, and we conclude. O

Corollary 2.3.2.10. Assume R is a commutative ring. If M is an R-module, then the following
statements are equivalent

1. M is finitely generated and projective;

2. M is finitely presented and flat;

3. M is finite locally free;

Proof. The first statement clearly implies the second. That the second statement implies the third
is the conclusion of Lemma 2.2.3.11. The assertion that the third statement implies the first follows
from Proposition 2.3.2.9. O
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2.3.3 Rank

If R is aring and P is a projective R-module, then for any prime ideal p C R, we see that P, =
R?”. By Proposition 2.2.3.5, if P is furthermore finitely generated, then there is a Zariski open set
contained in Spec R \ Spec R/p on which the rank is constant. Using this observation, one deduces
that sending a projective module to the integer n described above yields a continuous function from
rk : Spec R — N (the latter viewed as a discrete topological space). Note, in particular, that 7k of
a projective module is bounded, and locally constant. Thus, if R is a connected ring, then the rank
of a projective module is simply an integer.

Exercise 2.3.3.1. If R is a commutative unital ring, show that Spec R is connected if and only if R
has no non-trivial idempotents.

Remark 2.3.3.2. Because of the conclusion of the previous exercise, we will call a commutative
unital ring R connected if it has no non-trivial idempotents. In general, we can attempt to form a
decomposition of R using commuting idempotents. However, without some finiteness hypothesis
on R, it is possible that Spec R has infinitely many connected components: e.g., take any (say con-
nected) ring R and form the ring €,y R. Nevertheless, if we focus attention on finitely generated
projective modules, then the rank of any projective module takes only finitely many values. While
we focus on connected rings for simplicity, the observation just mentioned will allow us to make
statements about general disconnected rings as well.

Example 2.3.3.3. As we observed above, invertible modules always have constant rank 1.

When L is an invertible R-module, Homp (L, R) is again an invertible R-module. There is
a canonical evaluation map M ®r MY — R. Moreover, in this case, the evaluation map
L ® Hompg(L,R) — R is an isomorphism: the identity map Hompz(Hom(L, R), Hom(L, R))
corresponds under the hom-®-adjunction to the evaluation map Homp (Hom(L, R) ® L, R). Alter-
natively, the evaluation map is evidently locally an isomorphism and therefore must be an isomor-
phism in general. Thus, L is an invertible module, there is a distinguished choice for a module L’
such that L ® L' = R, namely Hompg(L, R).

Exercise 2.3.3.4. If P and Q) are projective R-modules of rank m and n, then rk(P® Q) = m-+n
and rk(P ® Q) = mn.

Faithfully flat descent

The proof that we gave for the fact that finite projective modules are local for the Zariski topology
can actually be generalized quite a bit. Suppose ¢ : R — S is a flat ring homomorphism. It follows
from the direct sum characterization of projective modules that if P is a projective R-module, then
P ®p S is again a projective R-module. We would like to ask about when the converse is true. By
what we saw above, that P is a finite projective R-module is equivalent to P being finitely presented
and flat. As such, it suffices to inquire about these two conditions.

Proposition 2.3.3.5. Assume R is a commutative ring and ¢ : R — S is a faithfully flat ring
homomorphism. If M is an R-module, and M ®p S is finitely generated (resp. finitely presented,
resp. coherent), then so is M.
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Proof. Assume M ®pg S is finitely generated and pick generators yi,...,y, of M ®r S. Each
1; can be written as a finite sum m; ® s; for suitable elements m; of M. These elements define a
homomorphism R®"™ — M that upon extension of scalars by S has image containing the generators
Y1, ...,y Since ¢ : R — S is faithfully flat, it follows that the original map R®™ — M must also
be surjective, which is what we wanted to show.

The statements about finite presentation and coherence are reduced to the preceding statement.
If M ®p S is finitely presented, then we may choose a surjection R®"™ — M after the conclusion
of the preceding paragraph. Let K be the kernel of this surjection. By flatness, we conclude that
K ®p S coincides with the kernel of S®" — M ®p S, which is itself finitely generated. Another
appeal to the conclusion of the preceding paragraph guarantees that K is finitely generated as well.

Finally, suppose M is an R-module and M ®p S is coherent. We conclude that M is finitely
presented by appeal the conclusion of the preceding paragraph. Take a finitely generated submodule
M’ of M. In that case, M’ ®pg S is again a finitely generated submodule of M ®z S. However,
since the later is coherent, M’ ®r S must actually be finitely presented. Again appealing to the
conclusion of the preceding paragraph, we conclude that M’ is finitely presented as well. O

Proposition 2.3.3.6. Assume R is a commutative ring and ¢ : R — S is a faithfully flat ring
homomorphism. If M is an R-module such that M Qg S is flat projective, then M is also flat.

Proof. Suppose N1 — Ny — N3 is an exact sequence of R-modules. We want to show that this
sequence remains exact after tensoring with R. Consider the sequence of R-modules

N1 ®r M — No®r M — N3 ®@pr M.
Tensoring this sequence with .S we get the sequence
N QQr MRS — NoQ@r M Xr S — N3 RQr M Qr S.

Since the module M ®p S is a flat R-module by assumption, the above sequence is flat. However,
since R — S is a faithfully flat ring map, it follows that our initial sequence was exact as well. [

Corollary 2.3.3.7. If ¢ : R — S is a faithfully flat ring homomorphism, and P is an R-module,
then P is finite projective if and only if P @ S is finite projective.

Proof. Since finite projective modules are finitely presented and flat, this follows from the preceed-
ing propositions. O

2.4 Vector bundles

Above, we saw that projective modules are automatically locally free.

2.4.1 Vector bundles on manifolds

Suppose M is a (smooth) closed manifold, and let C'(M ) (resp. C°°(M)) be the ring of continuous
(resp. smooth) functions on M. Let 7 : £ — M be a (smooth) vector bundle on E. The set
of global (smooth) sections C'(7) (resp. C°°(w)) has a natural C'(M) (resp. C°°(M))-module
structure arising from the fact that E is fiberwise a vector space.



71 2.4 Vector bundles

Corollary 2.4.1.1. If 7 : E — M is a (smooth) vector bundle, then C(m) (resp. C*(m)) is a
projective C (M )-module.

Proof. If p3 : R" x M — M is a trivial vector bundle, then the module of sections of ps is a free
C(M)-module (resp. C'*° (M ))-module of finite rank. Now, since M is a (smooth) closed manifold,
we can find a finite open cover of M on which the vector bundle trivializes. Indeed, (smooth) closed
manifolds have the homotopy type of CW complexes (for smooth manifolds, this follows, e.g., from
Morse theory, but that result is also true for metrizable absolute neighborhood retracts by different
methods; see Milnor’s paper). For a CW complex we leave it as an exercise to build the necessary
cover. O

Remark 2.4.1.2. The same proof works for vector bundles on any space having the homotopy type
of a finite CW complex. In fact, with a small change in definitions, we can characterize the vector
bundles that arise from projective modules. Assume X is a topological space. A finite partition of
1 on X is a sequence f1,..., f, of non-negative continuous functions such that . f; = 1. We
will say that a vector bundle £ on X has finite type if there is a finite partition of 1 on X such
that E| ¢, is trivial. With this definition, it follows that finite type vector bundles correspond pre-
cisely to projective C'(X)-modules by the results above. In fact, this bijection of sets can be turned
into a suitable categorical statement; this result is known as “Vaserstein’s Serre-Swan theorem”
[reference].

2.4.2 Vector bundles on ringed spaces (e.g., schemes)

Assume (X, Ox) is a ringed space. We will say that an €'x-module & is locally free if there exists
an open cover U; of X together with isomorphisms &'|y, = ﬁl[ﬁ- forsuitable index sets I;. An Ox-
module is finite locally free if the I; can be chosen to be finite. Based on what we observed above,
we will think of finite locally free modules as vector bundles. In particular, this gives a definition of
a vector bundle on a scheme. Note that this definition is not particularly geometric, but at least the
following result is immediate from the definitions.

Lemma 2.4.2.1. Any locally free O'x-module is quasi-coherent.
Before moving on, let’s make sure this definition really does generalize projective modules.

Proposition 2.4.2.2. Assume R is a commutative ring, 7 is a rank n locally free sheaf of Ospec r-
modules and set P :=I'(Spec R, .%). In that case:

1. P isa projective R-module; and

2. there is and induced isomorphism % — P of Ospec R-modules.

Proof. The statement is evidently true for free R-modules of rank n, so we will reduce to this
case. To this end, choose an open cover U; of Spec R on which .7 |y, = ﬁfi”. Refining our
open cover if necessary, we may assume that U; = Dy,. In other words, fix isomorphisms ¢; :

Flu, = Rj'?i”. The restriction ;|y,, (pj_l |v, is an automorphism of Rj‘?ﬁj. Taking global sections,
we obtain an isomorphism 6;; of Ry, r.. These isomorphisms are necessarily compatible on threefold
intersections since they come from a sheaf .7 on Ogpec g, s0 by appeal to Theorem 2.3.1.2, they
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define an R-module P. Corollary 2.3.2.10 shows that P is projective, which establishes the first
point.

Theorem 2.3.1.2 also gives a morphism I'(Spec R,.%) — P, since in the preceding paragraph
we constructed such a morphism locally over Dy,. Since the maps on each Dy, are isomorphisms,
it follows that the morphism I'(Spec R,.#) — P is again an isomorphism. There is an induced
morphism .# — P. Once again, this morphism is an isomorphism upon restriction to each Dy, by
construction, and therefore is an isomorphism of sheaves as well. O

Remark 2.4.2.3. We will use this proposition without mention in the future to identify rank n locally
free sheaves of Ogpec g-modules with rank n projective R-modules.

Example 2.4.2.4. Assume k is a field. Let us write A/%; = Spec k[z]. By the preceding proposition,
rank n locally free sheaves of & Al -modules correspond to rank n projective k[z]-modules. By the
structure theorem for finitely generated modules over a PID, such sheaves are free k[z]-modules of
rank n.

Definition 2.4.2.5. If (X, Ox) is a ringed space, we will write ¥;,(X) for the set of isomorphism
classes of rank n locally free &'x-modules. If X = (Spec R, Ospec r), then we write ¥, (R) for
¥, (Spec R); the former is identified with the set of isomorphism classes of rank n projective R-
modules.

2.4.3 Vector bundles on P,

In this section, assume k is a field, and take (X, Ox) = (P4, ﬁp}g). We study the classification
of rank n locally free ﬁp}c -modules. We use the description of I[”/,lC as glued together from a copy
of Al = Speck[t] with a copy of Al = Speck[t]~! along the subscheme G,,,, = Spec k[t,t!].
Suppose .Z is a rank n locally free sheaf of ﬁ]pi -modules. In that case, by the discussion of Ex-
ample 2.4.2.4, it follows that % |gpec k[ corresponds to a free k[t]-module. Fix an isomorphism
@1 Py = T(Speck[t], Zlspecki)) — E[t]®", i.e., pick a k[t]-module basis of P, . Likewise, we
may fix an isomorphism ¢_ P_ := I'(Spec k[t~}], F|speckit-1)) — E[t~11®". Now, since .7 is a
sheaf on ﬁpi, we know that

Py @y k[t t71] = P @pyq bt 7]

since both of these modules coincide with T'(Spec k[t, t 1], Fgpec klt,t-1])- 1f we use the basis of
P; to fix an isomorphism P} ®yy klt, t=1] = k[t,t~1]®", then the matrix expressing change of
basis to the basis coming from P_ yields an element of G'L,,(k[t,t]). Thus, we have shown that
ZF gives rise to an element of G L,,(k[t,t!]). However, the relevant matrix depended on the choice
of isomorphisms ¢ and ¢_]. In other words, if we “rigidify” .Z by, in addition, fixing ¢ and ¢_,
then we have built a function:

(F,p4,0-) — GLn(k[t,t7']).

We will refer to the element of G L, (k[t,t!]) obtained in this way as a clutching function for 7.
We can then formulate the following result.



73 2.4 Vector bundles

Theorem 2.4.3.1. The assignment (F, ¢, ¢_) — GLy(k[t,t~]) just described factors through
a bijection between the set of isomorphism classes of rank n locally free ﬁpi -modules and elements
of the double coset space

G Ly (k[ D\CLy (K[, t7Y) /G Ln(K[H]).

Proof. It remains to analyze the dependence of the clutching function construction on the choice
of ¢ and ¢_. If we change the isomorphism ¢, that amounts to changing the k[t]-module basis
of P, i.e., right multiplying by an element of GL,,(k[t]). Likewise, changing the isomorphism
¢_ amounts to changing the k[t~!]-module basis of P_, i.e., left multiplying by an element of
GLy(k[t™1]). O

Our next goal is to understand whether the double cosets have “good representatives”, i.e.,
whether there are normal forms for matrices in G Ly, (k[t,t~1]).

Example 2.4.3.2 (Line bundles). Let us first analyze the case n = 1. In that case, GL1 (k[t,t7!]) =
k* x Z: every unit in k[t,t~!] may be written uniquely as at™ for o € k* and some integer n.
We also know that GL;(k[t]) = k* (e.g., by homotopy invariance of units). Thus, up to left or
right multiplying by o, every element of G L1 (k[t~!])\GL1(k[t,t~'])/GL1(k[t]) is represented
uniquely by an element of the form ¢". In other words, isomorphism classes of line bundles on
IP’,lC are determined uniquely by an integer n. We will write Op1(n) for the line bundle determined
by the transition function ¢". We will frequently write &'(n) for this bundle, suppressing the P,lﬂ in
subscript.

One source of vector bundles of higher rank on P}C is direct sums &' (ay)®- - - O(ay). Of course,
we may permute the a; at will to obtain isomorphic bundles. Thus, without loss of generality, we
may assume that a; > as > ---ay, i1.e., the sequence of a; is decreasing. There are two basic
questions that arise. First, can we have two different decreasing sequences of n integers that give
rise to isomorphic rank n bundles? Second, are there any other rank n vector bundles on P,lc? We
now answer these questions.

Theorem 2.4.3.3. If k is a field, then every rank n locally free sheaf % of ﬁp]lg -modules is isomor-

phic to exactly 1 vector bundle of the form O'(a1) @& O(ay,) for a decreasing sequence aq > ag >
S 2 Q.

By means of Theorem 2.4.3.1 we will analyze normal forms for double cosets of G L, (k[t,t~1]).
We begin by normalizing clutching functions slightly. Indeed, suppose we fix a clutching function
X (t,t~1) for arank n vector bundle. The determinant of X (¢,¢~1) is an element of G Ly (k[t,t1]) =

k> xt* for some integer s. By changing X (¢,¢~!) by an element of GL,, (k) of the form diag(a~!, 1, . ..

we may thus assume without loss of generality that X (¢,¢#~') has determinant ¢* for some integer
s. Theorem 2.4.3.3 then follows from the following more precise result.

Proposition 2.4.3.4. Let X (t,t') be an element of G Ly, (k[t,t™']) whose determinant is t° for
some integer s. There exist matrices U(t) € GLy (k[t]) and V (t~1) € GL,(k[t™]) (with constant
non-zero determinant) such that
' ... 0
VX (U () =

1)
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withry > -+ > 1y, 1; € Z. Moreover, the r; are uniquely determined by X and if X € G L, (k[t]),
then r; > 0, while if X € GLy(k[t™!]) thenr; < 0.

Proof. We prove the proposition by induction on n, the case n = 1 having been treated in the dis-
cussion of line bundles before the theorem statement. Assume inductively that the result holds for
n — 1. We now make a series of reductions.

Reduction 1. (Positive powers of ¢) The entries of X are a priori in k[t, ], i.e., polynomials
in t and ¢—!. However, by multiplying by a suitable power of ¢, we may obtain a new element of
GL,(k[t,t71]), call it Y, whose entries all lie in k[t]. In other words, we may write "X = Y
where the entries of Y lie in k[t]. We claim it suffices to find U and V" as in the theorem statement
for Y. Indeed, if there exists a matrix D = diag(t*!,...,t%") such that UY'V = D, then note that
tmUYV =Utm™YV = UXV, while t"" D is again a diagonal matrix. In other words, if we find U
and V for Y, then the same matrices U and V will put X in the required diagonal form. Thus, we
work with Y in what follows.

Reduction 2. (Clearing the first row) Consider the matrix Y and look at the entries y11,. .., y1, in
the first row. Let v}, = gcd(yi1, ... ,y1n). We claim that we can right multiply Y by an element
of GL,(k[t]) to obtain a new matrix Y’ whose (1, 1)-entry is y}; and such that all other in the first
row are zero. Before describing the general case, let’s treat the 2 x 2 case.

We may find a Bézout relation: y}; = z1y11 + 22y12 where z; € k[t]. Since detY = y11y22 —
Y12901, it follows that y;,|det Y = ¢/V. In other words, y}; = t*' for some k1 > 0. If we set
w1 = y11/y}; and wa = y12/y4; (both in k[t]), then the 2 x 2-matrix given by

Z1 —we

Z9 w1
has determinant 1 and entries in k[¢] and is invertible (use the explicit formula for the inverse of a
2 x 2-matrix). In that case, we compute:

Y11 Y12 21 Tw2) Y —wayi1 + wiyi2
% * z0 Wi 0 0 ’

Observe that since y;|y11 and y9, it also follows that —way11 + wiyie € k[t] is divisible by
y11. Therefore, subtracting a suitable k[t]-multiple of the first column from the second (which is
achieved by right multiplying by an element of G L,,(k[t]) of determinant 1), we may eliminate y;2.
Finally, since the determinant of the new matrix is unchanged, we conclude that y{,| det Y = %,
s0 y;; = t*1. In other words, we have built a matrix Uy € G L, (k[t]) such that Y’ := YU, takes

the form
thr 0
(0

The general case reduces to this one. For any j = 2,...,n, let g; = ged(y11,y1;) and pick a
Bézout relation between y11 and y1;, say z1y11 + 2;y15. Let wi = y11/g; and wj = y1;/g; so that
we have ziwy + zjw; = 1. In that case, build an n x n-matrix that differs from the n x n-identity
matrix in only the first and j-th rows: the first row is (z1,..., —wj,...), where w; appears in the
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j-th slot and all other entries are 0, while the j-th row is (2, ..., ws,...) where w; appears in the
7-th place and all other entries are zero. Once again, this n X n-matrix has determinant 1. Right
multiplying Y by this matrix changes Y to an n X n-matrix whose first entry is g; and then a column
operation can be used to eliminate the j-th entry of the resulting matrix. Repeating this procedure
for the new matrix as j varies through 2, ..., n, we can sequentially eliminate all the entries in the
first row, and furthermore make the first entry of the resulting matrix v}, = ged(yi1, ..., y1n). The
formula for the determinant by expansion along the first row shows that y{,|det Y, i.e., y}; = th1
for some k1 > 0. Note: if we wanted, we could continue with this procedure on subsequent rows
beyond the first to put our matrix in lower-triangular form with diagonal entries of the form ¥ by
multiplication of a suitable element of G'L,,(k[t]).

Reduction 3. (Applying the IH) Now, we appeal to the induction hypothesis: we may find matrices
Ui (t) and V3 (¢~1) such that

tkr 0 ... 0
1 Co tk2 e 0
Vit )Y ($)Uo(H) U (t) =
Cn  eee e thn
where ¢y, . . ., ¢, lie in k[t, t71]; let us call this product Y.

Reduction 4. (Bounding the degrees of ¢;) Since the first row Y has t** with k; > 0, by means of
row operations between the first and ¢-th rows we may eliminate all terms in ¢; of negative degree.
Likewise, since in the i-th row we have ¢; in the first spot and t* in the i-th spot, by means of col-
umn operations, we can eliminate all terms in ¢; of degree > k;, i.e., we may furthermore assume
¢; has degree < k;. Thus, ¢; € k[t] of degree < k;.

Maximality. We claim it suffices to show that k; > k; for all <. Indeed, in that case, we could
eliminate c; by a suitable row operations involving the first and ¢-th rows. To see this, choose
among all matrices lying in the same double coset as Y"(¢,t~1) one of the same form as Y with
k1 maximal. First, observe that such a matrix necessarily exists since k; is necessarily bounded
above by deg degY" since all the other k; are positive. Take this representative with maximal k1 and
suppose to the contrary that k1 < k; for some 4. In that case, by subtracting suitable k[t~!]-multiples
of the first row, from the i-th row, we may obtain a matrix of the same form with ¢; = sk1+lcg. Now,
exchange the first and i-th row. Repeating the procedure we used to construct Y for the matrix just
mentioned, would yield a matrix whose first entry is ¥ with k’1 > k1, which contradicts maximality
of k1. In other words, k1 > k; for all 7 and we conclude.

Add proof of uniqueness. O

2.4.4 Vector bundles on P; revisited

Having studied vector bundles on IP’}C in the case where k was a field. Our analysis relied in a key
way on two ingredients: (i) the structure theorem for finitely generated modules over a principal
ideal domain in the proof of Theorem 2.4.3.1, and (ii) the fact that k[t] was a Euclidean domain in
the proof of Theorem 2.4.3.3. We can ask what happens if & is more general than a field.
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Let us analyze what happens with Theorem 2.4.3.1. The basic problem is that if R is not a

field, then it is no longer clear whether projective R[t]-modules are free. There are two sources of
projective R[t]-modules.
Example 2.4.4.1. If R is a commutative ring that has non-trivial rank n projective R-modules, then
R[t] also has such modules. Indeed, consider the ring homomorphism R — R[t]. If P is a non-free
projective R-module, then P ® g R[t] is again a projective R-module. We claim that it is also not
free. To see this, simply observe that R — R|[t] is split by (say) the evaluation map evg : R[t] — R.
Indeed, if P ®@p R[t] were free, then its extension of scalars along evy would again be a free R-
module, but the composite map R — R[t] — R is the identity, so this only can happen if P was
free to begin with.

Furthermore, even if projective R-modules are all free, it is not obvious that projective R|[t]-
modules are free! The argument of the preceding example shows that the map:

Vn(R) — Vn(R[t])

induced by extension of scalars is split injective, with splitting induced by extension of scalars along
evp. This leads to the following important question.

Question 2.4.4.2. For which rings R is it the case that projective R[t|-modules are free?

So what can be salvaged from Theorem 2.4.3.1? As usual, Pépec r may be glued together
from Spec R[t] and Spec R[t~!] along Spec R[t,t!]. Now, we may always glue rank n free R|[t]
modules with rank n free R[t~!]-modules by specifying an element of G'L,,(R[t,t]). The proof
of Theorem 2.4.3.1 then implies the following more general result.

Theorem 2.4.4.3. If R is a ring, then there is a function
GLy(R[tTD\GLn(R[t, 1)) /GLn(R[t]) — Yu(PR).
If every projective R|t]-module is free, then the above function is a bijection.

Example 2.4.4.4. Let us analyze this theorem in arguably the simplest non-trivial case R = Z. Let
us write down some interesting transition functions. Consider the element of G L, (Z[t,t!]) given

by the matrix
t 2
0 t1)°

The element 2 is, of course, not a unit in Z. However, if we pass to ring Z[%], then 2 is a unit.
In this ring, we may analyze the double coset containing the above transition function: explicit
computation shows that the identity

(o D6 A0 )6 3)

holds. As the last matrix we wrote down is an element of G Ly(Z[1]) it is, in particular, contained
in GLy(Z[3][t]), i-e., the resulting double coset is the same as that of the identity matrix. In other
words, in the ring Z[%] the coset containing the transition function above is the trivial bundle &' @ &
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on P1. On the other hand, if we localize at the prime ideal (2), then we claim the resulting bundle is
non-trivial. Indeed, consider the local ring Z); the fraction field of this local ring is the finite field
Fy. Now, if the bundle corresponding to the transition function above were trivial in IP’%@, then
it would give a transition function when we extend scalars along the map Z) — F2. However,
setting 2 = 0 in the above transition function, gives the transition function

(o )

for a bundle in Py, , i.e., &(1) ® €(—1). However, by the classification of vector bundles on P! over
a field, this bundle is non-trivial. In particular, it follows that the classification of vector bundles on
IP’,lC for k a field, does not extend to Z!

Note that Spec Z[%] and Spec Z ) are Zariski open subsets of Spec Z as localizations. More-
over, these two open sets form a Zariski open cover of Spec Z: their intersection is Spec Q. Thus,
we could view the bundle we’ve just constructed as gluing a trivial bundle on ]P’Z[ 1 with a non-trivial

bundle over IP’%(Q) along an isomorphism on their intersection IP’}@.

Example 2.4.4.5. The example above can be generalized significantly. If R is any principal ideal
domain, then take any non-zero element f and consider the transition function

(5.

Replace Z[%] with Ry and Z ) with Ry (since f is non-zero, and any non-zero prime ideal is
principal since R is a PID, this ring is local). Replacing 2 by f in the matrices above gives a non-
trivial vector bundle on P}, that is not of the form &'(a) & &(b). For example, take R = k[z] and
f = x. In that case, we see that the assignment X + 7,.(X) is not a naive A'-homotopy invariant,
e.g., for X = ]P’}C: there are vector bundles on P} x A}C that are not obtained by extension of scalars
from vector bundles on IP’}V
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We introduced the Picard group of a commutative ring earlier. We begin by globalizing this
definition for an arbitrary scheme, and analyzing notions related to extension of scalars.

3.1 Functoriality for sheaves of modules

Suppose (X, Ox) and (Y, Oy ) are ringed spaces and (f, f*) is a morphism of ringed spaces. We
now want to study functors between the categories of &'x-modules and &y -modules. Unwinding
the defintions, we may view f* as a morphism of sheaves f* : 0y — f.0x.

3.1.1 Pushfoward

If .7 is a sheaf of Ox-modules, then f,.Z is a sheaf of f,Ox-modules, by construction and f*
precomposition of this module structure with f# gives f,.7 the structure of a sheaf of &y-modules.
In other words, the functor f, from sheaves on X to sheaves on Y induces a functor

f*MOd(ﬁx) — Mod(ﬁy).

Simple examples show that this functor does not usually preserve finiteness properties.

Example 3.1.1.1. If o : R — S is a ring homomorphism, then we get a morphism f := Specy :
Spec S — Spec R. In that case, the morphism It OspecR — [+Ospec s induces at the level
of global sections the morphism ¢ : R — S. If . is the sheaf M for an S-module M, then by
definition, f,M (Spec X) = M. Thus, f..# is simply M on Spec R, where we view M as an
R-module via ¢.

3.1.2 Pullback

If f: X — Y is a continuous map of topological spaces, then the functor f~! was constructed as
a suitable directed colimit. Suppose f : X — Y is a continuous map of topological spaces and we
have a sheaf of rings @y on Y. In that case, we may consider the sheaf f~!@y-. By definition, the
sections of f~'&y over an open set U C X is the colimit of the sections of &y over opens in Y
that contain f(U). If .7 is a sheaf of &y -modules, then it follows from this observation that f ~1.7
has naturally the structure of an f~! &y -module.

Suppose (f, f*) is a morphism of ringed spaces (X, Ox) — (Y, Oy). In that case, f* : Oy —
f«Ox. This corresponds as well to a morphism of sheaves f~10y — Ox. Indeed, for an open
U C X, consider the open set f(U) C Y. Take an open neighborhood V of f(U) in Y then f*
gives upon evaluation at V a morphism Oy (V) — f.0x (V) = Ox(f~1(V)). Now, if U C X ,and
V is a neighborhood of f(U) in Y, then it follows that U C f~1f(U) C f~1(V). In particular,
there is a restriction map Ox (f~1(V)) — €x(U) for any such V. Thus, for any open set U and
any neighborhood V' of f(U), we get a ring homomorphism Oy (V) — Ox(U) by composition.
Taking colimits yields a morphism of presheaves f~ 0y — Ox and sheafifying yields a morphism
of sheaves f~'0y — Ox.
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If .7 is a sheaf of €y-modules, then since f~1.% is a sheaf of f~!'¢y-modules, if we extend
scalars along the morphism f~'&y — Oy we get a sheaf of &'x-modules; we set:

f*y = f_lﬁ ®f‘1ﬁy ﬁX,

and refer to f* as the pullback of .% along f.

Example 3.1.2.1. Consider the special case where ¢ : R — S is a ring homomorphism and
f := Spec . In that case, unwinding the constructions above, if M is an R-module, and .% = M,
then f*M = M/Eg\);S . Note that, because of this identification, it follows that the functor f*
respects various module theoretic constructions. For example, if M and N are R-modules, then

—_——

ffMe&N=ZM®grS®N Qg S since extension of scalars commutes with direct sums as tensor

products distribute over direct sums. Likewise, there is an isomorphism f*M Qr N 2 M ®Qr S ®

N ®p S arising from the associativity of tensor products. The next result generalizes this observa-
tion.

Proposition 3.1.2.2. Assume (f, %) : (X, Ox) — (Y, Oy) is a morphism of ringed spaces. The
functor f* preserves direct sums and tensor products of modules, i.e., the functor f* respects sym-
metric monoidal structures.

Proof. Exercise. O

Proposition 3.1.2.3. Assume (f, f*) : (X, Ox) — (Y, Oy) is a morphism of ringed spaces. The
Sfunctor f* sends locally free Oy-modules to locally free Ox-modules. Moreover, if % is finite
locally free (resp. locally free of rank n), then so is f*.%.

Remark 3.1.2.4. Pullbacks of invertible modules are again invertible. Indeed, if .Z is an invertible
Oy -module, then there exists £’ such that £ ® g, £’ = Oy . Note that f* 0y = Ox by definition.

Since pullback preserves tensor products, the result follows.

Definition 3.1.2.5. If (X, Ox) is a ringed space, then we define Pic(X) to be the set of isomor-
phism classes of invertible &’x-modules.

The next lemma follows from the definition and the preceding remark.
Lemma 3.1.2.6. If (X, Ox) is a ringed space, then (Pic(X),®,Ox) has the structure of an
abelian group; this structure is functorial for pullbacks along morphisms of ringed spaces.
3.2 Line bundles and divisors

Let us now assume that (X, Ox) is a scheme. We’d like to investigate the Picard group of X from
several different points of view: geometric and cohomological.
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3.2.1 Line bundles and Cech cohomology

Suppose we give an invertible &'x-module .Z. The restriction of .Z to any affine open U; = Spec R;
subscheme gives an invertible R;-module L;. We saw that invertible 2-modules were precisely the
locally free R-modules of rank 1, i.e., line bundles. By patching, we thus see that invertible &'x-
modules are precisely the same thing as line bundles. We can therefore describe the Picard group of
a scheme X as the group of isomorphism classes of line bundles with respect to the tensor product
operation and the unit is the trivial line bundle.

Example 3.2.1.1. 1f k is a field, then Pic(A}) = 0. Indeed, we know that locally free &’y -modules
of rank 1 on A} are trivial.

Example 3.2.1.2. 1f k is a field, then Pic(P}) = Z. By Theorem 2.4.3.3, we see that every line
bundle on P! is isomorphic to one of the form &'(n). We claim the assignment &'(n) ~ n, which is
bijective, is a group homomorphism and thus an isomorphism. To see this, it suffices to understand
how clutching functions change by taking tensor products. In the proof of Theorem 2.4.3.1, the
description of line bundles in terms of transition functions comes by fixing a basis of &'(n)|gpec k[t]
and O'(n)|gpec k[t-1]- Choose such a basis for &'(m) as well. A basis for the tensor product of the
modules &' (n)[gpec k[ @ O(M)|spec k[ 18 then given by a pure tensor of the basis vectors we chose.
It follows immediately that the transition function is simply given by the product of functions.

From line bundles to cohomology classes

Let us abstract this “patching” description of line bundles on IP’,IC to more general spaces. Start with
a scheme X and a line bundle £ on X. Now, we may always choose an open cover {U; };er of
X along which .Z trivializes: for example, if {U;};c; form an open cover of X by affine open
sets, then by refining each U; we can find the necessary open cover. Now, fix isomorphisms ¢; :
ZLlu, = Oy, ie., we rigidify £ with respect to the open cover. On two-fold intersections Ujj,
the map ¢;|y,; o gp;l]Ui]. defines a morphism Oy,; — Oy, of rank 1 free Oy, ,-modules. Such
an element is specified uniquely by a unit o;; in ﬁtx,ij. Note that on U, we have a;; = 1 by
construction. One then checks that o, = oy, on threefold intersections for all triples 4, j, k €
I3; in particular, note that ajjo; = 1 as well. In other words, by specifying a trivializing open
cover for . and an explicit trivialization of .’ on this open cover, we get a collection of units;
these units are the analog of the clutching function we wrote down for line bundles on ]P’}g. Since
our groups are commutative, we will typically use additive notation and the formula above relating
the Q4 1S

aij + g — g = 0;

the o;; form what we will momentarily call a Cech 1-cocycle valued in the sheaf of units.

Next, we ask: how does the description of . change if we modify either the trivializing open
cover or the chosen trivialization? Let us deal with the latter modification first If we choose different
trivializations ¢} : £ |y, = Oy,, then ; o 802—1 is an automorphism of 0y, i.e., specified by a unit
fi. If a;j are the units attached to the cover U;; for the trivialization {gog}ie I, then we may write
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down a commutative diagram summarizing all the relevant choices:

The top horizontal composite is given by multiplication by «;; while the bottom horizontal com-
posite is given by multiplication by o/, ;- Unwinding the definition of fi, we see that the rightmost
vertical map is given by multiplication by f; while the leftmost vertical map is given by multipli-
cation by f;. In other words, oy, f; = fiij, or equivalently, a;; = aij% f;~!. Note that the
expressions ¢;; = f;/ f; automatically satisfy the condition ¢;; + ¢ — ¢sr = 0.

Cech cohomology

Let us formalize all of this as follows. Suppose .% is any sheaf of abelian groups on a topological
space X . Fix an open cover {U, };c of X. Set

C"X AUbier, ) =[]  TWiir-in, F),

10,.enyin €I L

where Ui, ....,, = Ui, N -+ U;,. In other words, an element o € C"(X, {Ui }ier,-#) consists of
sections e, i, € -F (Uigiy i )-
Define a map

dy : C*(X, {Ui}icr, F) — C"H (X, {Ui}ier, %)™

by the formula:
n+1

k
d”(a)io""’in“ = Z(_l) ai07~~7ik7~~~7in+1|Uio ,,,,, int1”
k=0

The usual combinatorial check shows that d,,41 o d, = 0, i.e., this is a complex of abelian groups.
We define

Hn({Ui}zE[, 9) = ker(dn)/im(dn_l).
Note that Cech cohomology is evidently functorial in the sheaf .. An element of ker(d,,) will be
called a Cech n-cocycle, while an element of im(d,,—1) will be called a Cech n-coboundary.

Example 3.2.1.3. If .% is any sheaf of abelian groups on a topological space X, then by construction
H°(U,.F) coincides with the group .7 (X) = I'(X,.7) of global sections of .7 over X.

The next lemma describes line bundles trivializing over a given open cover in terms of Cech
cohomology.

Lemma 3.2.1.4. Assume (X, Ox) is a scheme and U = {U, }ic1 is an open cover of X. There is a
group of isomorphism classes of line bundles on X that trivialize onU and the group H' ({U; }ic1, O%).
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Proof. If % is a line bundle on a scheme X, and .Z trivializes on an open cover {U; };cr, then the
units «;;; we described above form a Cech 1-cocyle valued in the sheaf of abelian groups £'5. If we
change the trivialization, then elements % we described give rise to a Cech 1-coboundary valued in

the sheaf of abelian groups €'5. The fact that the two sets are in bijection is simply the discussion
above. To see that it is an isomorphism of groups simply amounts to the observation we made before
that tensor products of line bundles correspond to Kronecker products of clutching functions. [

Non-abelian Cech cohomology

If X is a topological space, and ¥ is a sheaf of non-abelian groups on X, then we may still define
Cech cohomology of ¢ with respect to an open cover U; of X in small degrees. Define an action
morphism

[Tewyx I 9wy — ][] ¢y

el 10,81 €IXT 10,81 €I X1

as follows. If g; € ¢ (U;) is a collection of sections and «;; € ¢(U;;) is a collection of sections,
then we set
1
a: (H 9is HOéz'j) — H(gi‘Uijaijgj Uy )-
i 4,J ,J

This action defines an orbit map do = a(][; g, ]]; ; 1), which is evidently a pointed map (i.e.,
takes the identity to the identity). This function fails to be a group homomorphism in general (since
inversion is typically not a group homomorphism). By the kernel of dy, we will simply mean the
pre-image of the identity element. Of course, the kernel of dj coincides with the global sections
¢ (X) as above.

Likewise, we may define a pointed function

dl : H g(UZ]) — H

i0,01€I X1 ig,i1,i0 €13

— . —1 i
by (di@)igiric = igir |Usyiy iy Qiria|Usgiyin Qigin [Uigiyip - The kernel of dy will be the set of non-

abelian Cech 1-cocycles; we will write Z' (14, %) for the set of non-abelian Cech 1-cocycles. The

set Z'(U,9) is stable under the action map a by construction; in particular, the condition that two

non-abelian Cech 1-cocycles lie in the same orbit for the action map a is an equivalence relation.
We define the non-abelian Cech cohomology by means of the following formulas

H(U,94) = ker(d°),

and
HYU,9)=2Z"U,9)] ~,

where ~ is the equivalence relation defined by requiring that two non-abelian 1-cocycles lie in the
same orbit for . While H? is a group, note that H' is only a pointed set (pointed by the image of
the identity element). These constructions become much more transparent in an example.

If (X, Ox) is a ringed space, then we may form the sheaf G L, (0x) whose sections over an
open set U C X consist of the groups GL,(Ox(U)). One can check that this is again a sheaf on
X. The following result generalizes Theorem 2.4.4.3 to describe locally free sheaves of rank n on
an arbitrary ringed space.
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Lemma 3.2.1.5. Suppose (X, Ox) is a ringed space and U is an open cover of X. There is a
bijection between locally free Ox-modules that trivialize on the open cover % and elements of
H'(U,GL,(0Ox)).

Proof Let .% be a locally free &'x-module of rank n that trivalizes on U/, and fix isomorphisms

D Flu, = O ©" The composites @; o y ! are given by elements aij € GLy(Oy,;), and one
checks that the cocycle condition above is satisfied. If we change the 1somorphlsm ©; to ¢, then
the composite ; o ¢} is given by an element of GL,,(€(U;)). In that case, o, ;= O

Refining open covers

Finally, we need a way to compare line bundles that trivialize on different open covers. Given two
line bundles . and .’ on a scheme X, if U is a cover on which .Z trivializes and Us is a cover
on which &’ trivializes, then we can always refine ; to a cover on which both trivialize. Thus,
after Lemma 3.2.1.4 it suffices to analyze what happens to Cech cohomology as we refine open
covers. Thus, let us assume U/ is an open cover and V is a refinement of /. More precisely, suppose
U = {Uiticr and V = {V}},c;. Since V is a refinement of I, each open set V; is contained in
some U;, so we can choose a function ¢ : J — I such that V; C U,;). The function ¢ induces a
map:
v:C"U,F) — C"(V,.F)

by sending a,....i, € C"(U, F) 10 ®jy, . j, = Ccjo),....c(in)Vig.... ;- 118 straightforward to check
that this formula is compatible with the differential and thus deﬁnes a morphism of complexes.
Once again, our construction of this map depended on an auxiliary choice: the choice of the
function c. However, the choice of c is not unique since a given open in the refinement could be
contained in many different opens in the original cover. Suppose we choose a different function
/. J — I as above. In that case, we get a different function ' : C*(U, F) — C*(V, F).
We claim that the difference v — 7/ is null homotopic, i.e., there exists a chain homotopy A :
CH U, F) — C*(V,.F) such that v — 4" = dh + hd. Indeed, one may define the map h by
means of the formula

.]07 Jn : :CB ]07 ) ]Ll (jﬂ«)7"'7c(jn)

We leave it as an exercise to check that thls formula has the stated property.
Granted this, the map on cohomology induced by ¢ and ¢’ is the same, and we get well-defined
maps
H' U, F)— H(V,.F)

for any refinement. The collection of all refinements forms a partially ordered set with respect to
refinement, and we define ‘ A
H'(X,.Z) = colimy H' (U, F)
to get a definition independent of the choice of an open cover.
Theorem 3.2.1.6. If (X, Ox) is a scheme, then there is a canonical isomorphism.:

HY(X,0%) = Pic(X).

This isomorphism is functorial with respect to pullbacks along morphisms of schemes.
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Proof. Since (X, Ox) is a scheme, every line bundle trivializes on some open cover of X. The
result then follows from Lemma 3.2.1.4. O

In fact, the above results admit a non-abelian generalization as well. If V is a refinement of an
open cover U of a topological space X, then for any sheaf of groups ¢, a choice of function c as
above defines a morphism

H'U,9) — H'(V,9).

In fact, one checks directly that a different choice of c yields the same function above, and one
defines

HY(X,%) = colimy H (U, 9).
The non-abelian analog of Theorem 3.2.1.6 is the following result.

Theorem 3.2.1.7. If (X, Ox) is a scheme, then there is a canonical isomorphism

HY(X,GLa(Ox)) > #1(X).

3.2.2 The units-Picard sequence

Suppose now that R is an integral domain. In that case, R has a fraction field K. We would like
to analyze Pic(R) in a slightly different way now. Suppose L is an invertible R-module. In that
case, L ®p K is an invertible K -modules, i.e., a 1-dimensional K -vector space. If we fix a basis for
this 1-dimensional K -vector space, that is equivalent to fixing an isomorphism ¢ : L @ g K = K.
If L' is another invertible R-module, and we fix an isomorphism ¢’ : L ®r K — K, then we
also get an isomorphism (L ®p L") ®p K = K from ¢ ® ¢’ via the canonical isomorphism
(LRrL")@pr K 2 Lor K® L"®p K arising from the associativity and symmetry isomorphisms
for tensor product.

Definition 3.2.2.1. If R is an integral domain with fraction field K, then write Clart(R) for group
consisting of pairs (L, ) where L is an invertible R-module and ¢ : L @ g K = K.

Since we may always choose ¢, it follows that there is a surjective group homomorphism
Cart(R) — Pic(R) that corresponds to forgetting ¢. What is the kernel of this homomor-
phism? Note that two different lifts of a given L in Pic(R) to Cart(R) give trivializations ¢; :
Lor K5 Kand g : L®p K = K. The composite 1 o o, * is thus an isomorphism K — K,
i.e., an element of K *. In other words, there is a surjection

K> — ker(Cart(R) — Pic(R)).

Note that this map is not injective. Indeed, the identity element of Cart(R) corresponds to the
inclusion R < K. Multiplying this inclusion by a unit in R* yields the same inclusion. In other
words, the action of K* on Cart(R) just described has stabilizer isomophic to R*. Putting these
observations together, and observing that all of the statements we’ve made are compatible with
extension of scalars along a homomorphism of integral domains, we obtain the following result.
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Theorem 3.2.2.2. If R is any integral domain with fraction field K, then there is an exact sequence
of the form
0 — R — K* — Cart(R) — Pic(R) — 0.

This exact sequence is functorial with respect to extension of scalars along homomorphisms of
integral domains.

Here is another interpretation of this theorem: for any integral domain R, we have built a 2-term
complex
K* — Cart(R)

whose cohomology computes the cohomology of ﬁsxpec - This complex bears no a priori relation-

ship to the Cech complex we studied earlier, but it still computes the same cohomology groups.

A non-abelian variation

Note that the construction above works more generally for rank n projective R-modules over an
integral domain R with fraction field K. If P is a rank n projective R-module, then P ®p K is
an n-dimensional K-vector space for which we may fix a basis. Note that & — K is an injective
R-module map, so we also see that P — P ®p K is injective since tensoring with P is exact. By
a matrix divisor, we will mean a pair (P, ) consisting of a rank n projective R-module, and an
isomorphism P @ K = K%, Let us write M Cart,,(R) for the set of such pairs; this is a pointed
set, with base-point the free rank n projective R-module R®" together with the induced basis of
K®". Note that two different isomorphisms ¢ and ¢’ of P ®p K with K®" differ by a unique
element of GL,,(K). In other words, there is an action of GL,,(K) on MCart,(R). Thus, if we
consider the action map

GL,(K) x MCart,(R) — MCart,(R)

then the set of orbits for this action is #;,(R). On the other hand, the stabilizer of the identity is
GL,(R). Once, again, the action just described incarnates the degree 0 and 1 cohomology of the
sheaf GL,,(Ox) on X = Spec R.

From Cartier divisor to Cech cohomology classes

A priori, we have no clear link between the Cech cohomology description of line bundles and the
picture we just described in terms of Cartier divisors. First, let us restrict attention to the case
where X = Spec R with R an integral domain with fraction field K. Suppose L is an invertible
R-module. We know that we can choose finitely many elements fi, ..., f, that generate the unit
ideal in R together with isomorphisms ¢; : Ly, — Ry, as Ry-modules. Note that since R is
an integral domain, so are all of its localizations, and K is again the fraction field of Ry,. Now,
suppose we simultaneously fix an isomorphism L ® r K — K. How does this choice interact with
the trivialization above?

Localizing, we see that L ® g K — K also yields isomorphisms Ly, ®g £ K — K. The chosen
trivialization ¢; : Ly, = Ry,, then give rise to a sequence of elements o; € K (take the image
of 1in Ry, in K under the evident composite of the above isomorphisms.) The resulting elements
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of K are necessarily non-zero. Now, our choice of trivialization gives rise to a unit c;; on Ry,
this unit is the element one gets by tracing the isomorphism Ry, s, = Ly, = Ry, s, where the first
isomorphism is the inverse of ¢, localized at f; and the second map is ¢; localized at f;. These
units are related to the elements o; as follows: tracing the isomorphisms g—; = «;j. In other words,
if we fix a trivialization of L together with a trivialization of L @ K, then we get an open cover
U; = Dy, of X, together with elements o; € K such that g—; differ by an element of RE_ £ Since all
of the above choices are compatible with taking tensor products, tensor product induces an evident
group structure on the collection of such data: i.e., Cartier divisors equipped with a trivialization on
some open cover.

Now, let us analyze what happens if we change the trivialization: suppose ¢ : Ly, = Ry, of L
(with respect to the same open cover). In this case, we get new elements o, € K* following the
procedure above such that o;/0} = aj; € R} 4, Since the composite Ry, = Ly, = Ry,, where the

first isomorphism is given by ¢, ! and the second morphism is given by ;, is determined by a unit
T; € Rin we see that O'Z,- differs from o; by ;.

Let us now describe these statements in sheaf-theoretic terms. Let J#” be the constant sheaf of
rings on Spec R associated with the the R-module K, and let .# * be the sheaf of units in J#". In
that case, we have a short exact sequence of sheaves of the form

0— OF

Specr — A —> H 7 [Ospecr — 0.

Taking global sections we get the following exact sequence:
0— R — K* — T(Spec R, X/ Og, .. p)-

Since # </ ﬁsxpec r 1s a cokernel, it is the sheaf associated with the presheaf cokernel. In fact, the
failure of surjectivity of the rightmost map in the above sequence is precisely a measure of the extent
to which the quotient group K */R* differs from the global sections of the cokernel.

If we unwind the definitions, then we will see that a section of I'(Spec R, % * / ﬁsxp o ) CONSists

precisely of an open cover U; of Spec R together with sections o; of 2> over U; such that 7t €
J

Sxpec R(Uij). In paticular, assuming U; = Dy, as above, we see that what we constructed in the

previous paragraph was precisely a global section of I'(Spec R, ¢~/ Sxpec ) relative to a specific
open cover. We can add any two sections on a common refinement.

Now, any Cartier divisor admits a trivialization on some open cover, changing the trivialization
amounts to a new presentation as a Cartier divisor. I leave it as an exercise to check that what we
have constructed is an isomorphism of the form:

Cart(R) — T'(Spec R, X" /0§, p)-
Furthermore, given a Cartier divisor, there is an evident function
§: T(Spec R, A /O . ) — H'(Spec R, 0% ) = Pic(R)

obtained by sending (U;, 0;) to o;; = 0;/0;. Indeed, the very by definition any such «;; is a Cech
1-cocycle and we simply take the line bundle attached to this cocycle. This function is evidently
a homomorphism and we saw above that it is a surjective homomorphism. Summing up, we’ve
established the following result, which yields another intrepretation of the units-Pic sequence.
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Theorem 3.2.2.3. If X = Spec R for R and integral domain with fraction field K, then the short
exact sequence of sheaves

0— 05 — X" — H*]0F —0
induces an exact sequence in Cech cohomology of the form
0—= H%X,0%) — H(X, #*) — H°(Spec R, A OG e p) — H'(Spec R, Opecr) — 0

| | l |

0 R* K~ Cart(R) Pic(R)

We can even say a bit more. Consider the group H Y(X,.#) for X = Spec R as above. Any
element of this group is represented by sections «;; € U;; satisfying the cocycle condition. Without
loss of generality, we may assume that U; = Dy,. Each a;; € K*, and we claim that implies it
is actually a Cech 1-coboundary. Indeed, since .# * is a constant sheaf, the restriction mapping
H(U;) — % (Uyy) is always surjective. In that case, we may lift the unit c;; to a section 7; over
U;. Then 7;|y,; = 7j|u;; by construction. Thus, we have even shown that HY (X, %) = 0. There
is an evident map H(X, 0 3) — HY(X, . #™), say defined at the level of cocycles. We can put
this in the context above as well.

Suppose, more generally, that X is a topological space, and we are given a short exact sequence
of sheaves of abelian groups of the form

0—%F — 7% —F"—0.

Generalizing what we observed above, a global section of .#” can be described as an element
{Ui, 0;} where o; are sections of .# on Uj such that o; — o € .#'(U;;). As above, sending such an
element to the differences o; — o; defines a morphism ¢ : H(X,.#") — H'(X,.7’). There is
then an exact sequence of abelian groups of the form:

0 —HYX, 7 — H'(X,Z) — H'(X,Z")
LAY (X, 7)) — HY(X, F) — HY(X, Z")

We would like to define cohomology so that a short exact sequence of sheaves gives rise to a corre-
sponding exact sequence of cohomology groups generalizing the above constructions.

Another variation: fractional ideals

Here is a variation on the description of Cartier divisors given above. Suppose R is an integral
domain with fraction field K as above, and P is a finitely generated rank n projective Z-module.
In that case, we may pick a surjection R®" — P for some integer 7. As above, we have an
identification P @r K = K®", but the surjection we fixed yields a map R®" — K% ie., a
sequence of r elements of K®". In the case where L is an invertible R-module, i.e., n = 1, we thus
get an identification of L as the R-submodule of K generated by elements o1,...,0, € K. Now,
each element o; can be written as ” for elements r; € R, s; € R\ 0. By clearmg denominators,
e.g., multiplying through by the least common multiple s of s;, we see sL is an R-submodule of R,
i.e., an ideal of R.
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Definition 3.2.2.4. If R is an integral domain, a fractional ideal I in R is an R-submodule I C K
such that there exists a (non-zero) element r € R with r] C R.

Thus, any invertible R-module L, together with a choice of isomorphism L ® g K — K and a
choice of surjection R®" — L gives rise to a fractional ideal.

Remark 3.2.2.5. We have imposed no finiteness hypotheses on [ in the above definition so that
ideals are always examples of fractional ideals. If R is Noetherian, then since I C R, we conclude
that 7 is necessarily finitely generated.

So far, we have only use the property that L has rank 1, but not that L is actually an invertible R-
module. Now, we know Hompz(L, R) is an invertible R-module and the evaluation map yields the
isomorphism L@ grHompg (L, R) — R. If I is the invertible ideal attached to LV, then [® g I' = R.

Definition 3.2.2.6. If R is an integral domain, an invertible fractional ideal I in R is a fractional
ideal I in R for which there exists an invertible ideal I’ with I @ g I’ = R.

Remark 3.2.2.77. Note that invertible fractional ideals are automatically finitely presented ideals,
since invertible modules are finitely presented by Lemma 2.2.1.9. If I is an invertible fractional
ideal, then forgetting the choice of generators yields an invertible module. In other words, there is a
canonical forgetful map from the group of invertible fractional ideals to Pic(R).

Example 3.2.2.8. The theory of fractional ideals is probably most familiar from number theory. A
number field K is a finite extension of QQ. The ring of integers Ok in K is the integral closure of
Z in K. In this situation, the Picard group is more commonly known as the ideal class group and
measures the failure of unique factorization. Take K = Q(y/—5). Note that unique factorization
fails in Q(v/—5) since 6 = 2-3 = (1 +v/=5)(1 — v/=5). Let J = (2,1 — /=5). One shows that
J? = (2), which is principal. In fact, Pic(R) is cyclic of order 2 generated by .J. More generally, it
is a fantastic fundamental result in algebraic number theory that Pic(0'x) is always a finite abelian
group.

Example 3.2.2.9. If R is a principal ideal domain, it follows from the structure theorem that Pic(R) =
0. In particular, Pic(k[t]) = 0. More generally, any localization of a PID is a PID, so we conclude
that Picard groups of (non-empty) proper open subsets of A}c also have trivial Picard groups.

3.2.3 The units-Pic sequence for general commutative rings

In the discussion above, we restricted attention to integral domains, but this was only a technical
convenience. Rings of continuous functions will not, in general, be integral domains. Moreover,
typically they have many zero divisors (e.g., functions with bounded but disjoint supports). We now
observe that with slightly more work, the theory developed above holds equally well for rings that
are integral domains; we will keep rings of continuous functions in the back of our head.

Definition 3.2.3.1. If R is a commutative ring, the total quotient ring of R, denoted Frac(R), is
the localization of R at the multiplicative set of all non-zero divisors.

In this generality, F'rac(R) is no longer a field. Nevertheless, since we are inverting precisely
the non-zero-divisors in R, the map R — Frac(R) is injective. Thus, if L is an invertible R-
module, the map L. — L ®p Frac(R) remains injective. However, we ca no longer assert anything
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about L @ Frac(R); this may be a non-free F'rac(R)-module! We can still analyze the extension
of scalars homomorphism Pic(R) — Pic(Frac(R)). The kernel of this map consists precisely of
those invertible R-modules such that L @ g F'rac(R) is a free rank 1 Frac(R)-module.

Suppose we are given an invertible R-module such that L& g F'rac(R) is a free rank 1 Frac(R)-
module. By choosing generators of L, one obtains an R-submodule I of F'rac(R) generated by
finitely many elements o1, . .., o,. Clearing the denominators, we conclude that sI C R.

Definition 3.2.3.2. If R is a commutative ring, then an invertible fractional ideal in R is an invertible
R-submodule of Frac(R), such that L ® g Frac(R) is a free rank 1 Frac(R)-module. Write I( R)
for the set of invertible fractional ideals.

As before the set of invertible fractional ideals is a group under tensor product of R-modules,
and there is, by construction an exact sequence of the form

I(R) — Pic(R) —» Pic(Frac(R)).

The kernel of the map I(R) — Pic(R) once again consists of invertible fractional ideal structures
on the trivial R-module. A choice of basis of a free rank 1 R-submodule of F'rac(R) is uniquely
determined by an element v € Frac(R)*. Two such choices of basis differ by an an element of
R* and therefore, just as above one obtains an exact sequence of the form

1 — R* — (Frac(R))* — I(R) — Pic(R) — Pic(Frac(R)),

which no longer need be exact on the right.

Remark 3.2.3.3. If ¢ : R — S is any R-module map, then the kernel of Pic(R) — Pic(S)
coincides precisely with the set of invertible R-modules L such that L ®p S = S; we will call such
objects invertible R-submodules of .S and we write Pic(p) or Pic(R, S) for the set of isomorphism
classes of such objects. This set is a group with respect to tensor product of R-modules. Arguing as
above, the kernel of the map Pic(¢) — Pic(R) corresponds to invertible R-submodule structures
on the trivial module R ® S, which correspond to elements of S* module the image of R* (which
need not inject in S* in general). In other words, one obtains an exact sequence of the form

R* — 8 — Pic(¢) — Pic(R) — Pic(S)

If R is a subring of .5, then we can even assert that the left hand map is injective. Functoriality of
the resulting exact sequence is a consequence of functoriality of extension of scalars.

The identification of the above sequence in terms of Cartier divisors is slightly more compli-
cated, but proceeds as before. Suppose I is an invertible R-submodule of Frac(R) (such a thing
is free of rank 1 as a Frac(R)-module by “clearing the denominators”). We may choose a local
trivialization of I. In other words, we may find elements fi,..., f, such that Iy, is a free Ry,-
module of rank 1 and such that { f1,..., f,} generates the unit ideal. The map R — Ry, induces a
homomorphism F'rac(R) — Frac(Ry,). Now, there is a commutative square of the form

R Ry,

| |

Frac(R) — Frac(Ry,).
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From this it follows that there is a canonical isomorphism Iy, @ g F'rac(Ry,) = (IQgFrac(R))®prac(R)
Frac(Ry,). Since I @ Frac(R) is a free Frac(R)-module of rank 1, it follows that so is
Iy, @ g Frac(Ry,). In any case, our choice of trivialization determines an element o; € Frac(Ry,).
As before, the formula o;;0; = o;-holds in Ry, £ It follows that Z—; must be an element of

R, € Frac(Ry,y;)*. Therefore, if we define a Cartier divisor on Spec R to be a collection
D = {U;,0;} where U; is an open cover by principal open sets and where o; € Frac(Ry,) such
that o;/ oj is a unit on U; N Uj, then we see that there is a bijection between Cartier divisors and
invertible R-submodules of Frac(R) just as in the case where X is integral. The fundamental
difference is that we may no longer be able to identify F'rac(Ry,) for different values of i.

Example 3.2.3.4. If X is a compact manifold, and we take R = C(X,R) the ring of real-valued
continuous functions on X. Given a partition of unity { f; };=1, .. », the f; are typically zero divisors:
if g is any compactly supported function with support disjoint from f;, then f;g = 0. For example,
fif; might even be zero. If f; is a zero divisor, then the R — Ry, is not injective. It follows that the
map Frac(R) — Frac(Ry,) is not injective in general either.

Picard groups of non-reduced rings

Now, suppose R is a connected commutative unital ring and N is the nilradical of R. The nilradical
is always contained in the Jacobson radical N C J(R). As a consequence, we may appeal to
Nakayama’s lemma to compare finitely generated R-modules and finitely generated R/N-modules.

Proposition 3.2.3.5. If R is a commutative unital ring, and P, P’ are projective R-modules, then if
P/N = P'/N then P = P'.

Using this fact, we observe that if we want to study Picard groups of commutative rings, we can
always assume that our rings are reduced by passing from R to R/N.

Corollary 3.2.3.6. If R is a commutative unital ring, then the map Pic(R) — Pic(R/N) is an
isomorphism.

Example 3.2.3.7. Suppose X is a compact Hausdorff space and R = C(X,R), the ring of real
valued continuous functions. If f is a nilpotent element of C'(X), then f” = 0 for some integer
n. This means f"(z) = 0 € R, which means f(z) = 0. In other words, in this case the ring of
continuous functions on X is reduced. In fact, the maximal ideals in C'(X') have been characterized
by Gelfand-Kolmogoroff (cf. [?, Chapter 7]): they are parameterized by the points x € X: m, is the
ideal of functions vanishing at a point. It follows that N,c xm, = 0. Thus, in the case of continuous
functions, the real differentiating feature is the presence of zero-divisors. The prime ideal structure
of such rings is much more complicated (see, e.g., [?],[?, Chapter 14]).

3.3 More geometry: closed immersions, separated maps and proper-
ness

Our next goal is to globalize the above results and to investigate them in various cases.



93 3.3 More geometry: closed immersions, separated maps and properness

3.3.1 Integral schemes

Earlier, we observed that a ring R was an integral domain then R was reduced and Spec R was
irreducible as a topological space. In fact, the converse is also true. We now globalize this definition.

Definition 3.3.1.1. A scheme X will be called reduced if O’x . is reduced for every x € X.

Lemma 3.3.1.2. A scheme X is reduced if and only if for every open subset U C X, Ox(U) is a
reduced ring.

Definition 3.3.1.3. A scheme X is integral if for every open U C X, Ox (U) is an integral domain.

Lemma 3.3.1.4. If X is a scheme, then any irreducible closed subset Z C X has a unique generic
point.

Proof. Suppose X is a scheme and Z C X is an irreducible closed subset. For any affine open
subset U = Spec R C X, the subset Z N U = V(I) for some radical ideal I of R. Now, Z N U is
either empty or irreducible, and the latter must happen for at least one U C X. In that case, [ is a
prime ideal R, which corresponds to a generic point £ of Z N U. It follows that Z = £. If £’ was
another generic point, then ¢’ € Z N U and we conclude that £ = &', O

Lemma 3.3.1.5. A scheme X is integral if and only if it is reduced and irreducible.

For us, the important statement will be that integral schemes have unique generic points. From
that observation, we can deduce the following result about Cech cohomology of constant sheaves.

Exercise 3.3.1.6. Show that if € is any constant sheaf of abelian groups on an irreducible scheme
X, then H{(X, %)) = 0 for every i > 0.

3.3.2 Closed immersions and separatedness

Definition 3.3.2.1. A morphism ¢ : Z — X of schemes is a closed immersion if 1) 7 is a homeomor-
phism of Z onto a closed subset of X, ii) the morphism of sheaves if : Ox — 7,0 is a surjective
morphism.

Remark 3.3.2.2. Frequently, the definition of closed immersion is made for locally ringed spaces,
in which case there is a further finiteness hypothesis imposed on the kernel .# of the morphism
i*: it should be locally generated by sections. In fact, it turns out for morphisms of schemes, this
additional hypothesis is superfluous, but establishing this requires some effort.

Definition 3.3.2.3. A morphism f : X — S of schemes is affine if the pre-image of any affine open
subscheme of S under f is affine.

Lemma 3.3.2.4. Any closed immersion of schemes is quasi-compact; any affine morphism of schemes
is quasi-compact.

The property that a morphism ¢ : Z — X of schemes is a closed immersion can be checked
locally for the Zariski topology: i.e., if we can find an open cover of X by open sets U;, then %
is a closed immersion if and only if the induced maps i|y, : Z N U; — U, are themselves closed
immersion. In particular, we may always reduce to the case where U; is an open affine subscheme
of X.
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Lemma 3.3.2.5. A closed immersion is an affine morphism.

The property that a topological space is Hausdorff can be phrased as saying that the digonal
X C X x X is aclosed subset. The following is the standard generalization of this definition in
algebraic geometry.

Definition 3.3.2.6. A morphism f : X — S of schemes is separated if the diagonal morphism
Ax/g is a closed immersion and has affine diagonal if A x /g is an affine morphism.

Remark 3.3.2.77. Note that since closed immersions are affine morphisms, it follows that separated
morphisms necessarily have affine diagonal. Moreoever, since affine morphisms are quasi-compact,
it follows that morphisms with affine diagonal are quasi-separated as well.

As before, the property that f is separated can be checked Zariski locally on S. In other words,
suppose there is an open cover U; of S and consider the morphisms f; : f~1(U;) := X; — U;; we
claim that f is separated if and only if f; is for each . Indeed, the scheme X can be glued together
from the X, the fiber product X x g X is glued from the X; Xy, X;. Now, the statement follows
from the fact that whether a morphism is a closed immersion can be checked Zariski locally.

Example 3.3.2.8. Any morphism of affine schemes is separated. Indeed, if ¢ : R — S is a ring
homomorphism corresponding to Spec S — Spec R, then the diagonal morphism Agpec 5/ 5pec R
Spec S — Spec S Xgpec R Spec S corresponds to the product homomorphism S ®g S — S. Any
closed immersion of schemes is a separated morphism. Indeed, this follows from the fact that
separatedness can be checked upon passing to an open affine cover of the target and the preceding
statement. Any morphism f : X — Y of schemes that is separated is automatically quasi-separated
since if Ay /y is a closed immersion, it is necessarily quasi-compact by the lemma above.

Definition 3.3.2.9. Assume £ is a field, and f : X — Speck is a k-scheme. We will say that X is
a k-variety if f is separated, has finite type and X is integral.

Stability under base-change

Assume f : X — Sand ¢ : S’ — S are morphisms of schemes. In that case, we may always form
the fiber product X’ := X x ¢ S’ and f induces a morphism f’ : X’ — S’. If P is a property of
morphisms of schemes, then we will say that P is stable by base-change if f has property P, then
for any ¢, the morphism f’ again has property P. Many properties of morphisms of schemes are
stable under base-change.

Lemma 3.3.2.10. The following types of morphisms of schemes are stable under (arbitrary) base-
change: quasi-compact, finite-type, open immersions, closed immersions, locally closed immer-
sions, or affine.

Proof. Exercise. [

We will add various classes of morphisms to this list as we move forward. For the time being,
observe that there are properties of morphisms that are not stable under arbitrary morphisms. For
example, we could call a morphism of schemes open or closed if the underlying map of topological
spaces is open or closed.
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Example 3.3.2.11. If k is a field, say algebraically closed for simplicity, then the morphism A}C —
Speck is closed. Indeed, the closed subsets of A,lc are precisely finite sets of points, which are all
evidently sent to the closed point of Spec k. Note, however, that closed morphisms are not stable
under base-change. Indeed, consider the base-change of the structure morphism A}C — Spec k along
itself, i.e., consider the morphism A,%/, X Spec k A}C — A}i. In this case, the base-change is identified
with the projection morphism onto the (say) second factor. The fiber product is identified with Az
and the subset zy = 1 is a closed subset. The image of this subset under the second projection is
the locus y # 0, which is not closed.

Definition 3.3.2.12. A morphism f : X — S of schemes is universally closed or universally open
if the base-change of f along any morphism S’ — S is closed (resp. open).

Remark 3.3.2.13. Universally closed or universally open morphisms are stable under arbitrary base-
change.

In topology, recall that a morphism f is called proper if the preimage of any compact set is
compact. At least under some Hausdorffness conditions, this notion of properness is equivalent to
being universally closed. This observation can be thought of as motivating the following definition.

Definition 3.3.2.14. A morphism f : X — S of schemes is proper if f is separated, has finite type
and is universally closed.

Lemma 3.3.2.15. Any closed immersion is proper.

Proof. We already saw that closed immersions are separated. Closed immersions are evidently
closed maps, and since closed immersions are stable by base change, it follows that they are also
universally closed. It remains to check that closed immersions are automatically finite type. Since
closed immersions are quasi-compact, it suffices to check that they are locally of finite type, i.e.,
for every point x € X, we can find a neighborhood U = Spec S of x mapping into an affine open
V' = Spec R such that R — S is finite type. However, .S is necessarily a quotient of R by an ideal,
so automatically finitely type as an R-algebra. O

3.3.3 Separation, properness and valuation rings

Another one of the equivalent characterization of Hausdorfness for topological spaces is in terms of
uniqueness of uniqueness of limits (for spaces that are not metrizable, “limits” have to be taken in
terms of nets, rather than countable sequences). Likewise, compactness of topological spaces can
be phrased in terms of existence of limits for nets (every net has a convergent subnet). We would
like to formulate analogous notions of “limits” in algebraic geometry.

Here is a motivating example: the simplest case where we can think about limits is in terms
of G,, C Al. If we have a morphism \ : G,, — X, then we might say that A “has a limit as
t — 0”if \ can be extended to a morphism A' — X, in which case it makes sense to call the
image of 0 the “value” of the limit. Now, as the example of the identity morphism G,, — G,,
shows, in general we cannot hope that limits like this exist (i.e., the identity morphism does not
factor through a morphism A' — G, ). However, we can always ask, assuming a limit exists, is it
unique? In order to phrase this uniqueness question in scheme-theoretic terms, we would like some
information about the locus of points on which limits exist. The following result shows that this
locus is well-behaved, i.e., it may be described in scheme-theoretic terms.
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Proposition 3.3.3.1. Let X, and Y be schemes over S. Let a,b : X — Y be morphisms of schemes
over S. There exists a largest locally closed subscheme Z C X such that a|z = b|z. In fact Z is
the equalizer of (a,b). Moreover, if Y is separated over S, then Z is a closed subscheme.

Proof. The pair (a, b) defines a morphism (a, b) : X — Y x g Y. In that case, we may consider the
fiber product diagram:

Z =Y XY xgY X X
iAX/S l(a,b)
A
Y Sy XY,

The equalizer of (a, b) is then the scheme Z in this fiber product diagram for categorical reasons.
We claim that the A /g is always a locally closed immersion (exercise). To say that Y is separated
over S is to say that Ay is a closed immersion. In that case, the morphism Z — X is necessarily
also a closed immersion because closed immersions are stable under base change. O

Valuation rings: definitions

Next, we would like to talk about the kinds of limits we would like to expect are unique. Rather
than looking at G,,, C Al if all we care about is the value of the limit, then we can localize
A' = Speck[t] at the ideal (¢) corresponding to the closed point 0. Then, rather than considering
G,, C A', we would simply look at the generic point 7 € A'. This local ring Spec k[t](t) consists
of two points: the generic point 77 and a closed point corresponding to the maximal ideal (£)k[t] ).
One could, more generally, try to talk about existence of limits using arbitrary maps from local
rings, but we will restrict our attention to a special class of local rings contained in the following
definition.

Definition 3.3.3.2. Suppose K is a field, and A and B are two local rings contained in /. We will
say that B dominates A if A C B and ANmp = my. If A is alocal domain with fraction field
K, then we say that A is a valuation ring if A is maximal for the relation of dominance among local
rings contained in K. If A is a valuation ring with fraction field K, given a domain R C K, we will
say that A is centered on R if R C A.

If A is a valuation ring with fraction field K, then since A is a local domain, A has two points:
a generic point and a closed point lying in the closure of the generic point. More generally, we will
say that a point y is a specialization of a point x if ¥ is contained in the closure of x. This notion of
specalization is a partial ordering on the points of X.

Morphisms out of spectra of valuation rings

Now, suppose A is a valuation ring with fraction field K and X is a scheme. We will try to describe
the set of morphisms Spec A — X in terms of more concrete data. Suppose we have a morphism
Spec A — X. The image of the generic point of Spec A gives a point 1 of X and the image of
the closed point of Spec A gives a point g of X; moreover z is necessarily a specalization of z;.
Write Z for the scheme we get by equipping the closure of z; with the reduced scheme structure
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and consider the local ring R := 07 ;. By construction Spec A — X factors through Spec R, i.e.,
corresponds to a ring homomorphism ¢ : R — A. Note that R is a domain by assumption.

The generic point of Spec R corresponds to the zero ideal, while the closed point is precisely
¢ !(m4). The map R — K factors through k(x1). Since the map R C k(z1) is injective, we also
conclude that R — A is injective and thus that the maximal ideal of R is precisely R Nm 4. In other
words, A dominates R in K in terms of the definition above. These observations lead to the next
result.

Proposition 3.3.3.3. Suppose A is a valuation ring with fraction field K and X is a scheme. There
is a bijection between the set of morphisms Spec A — X and the set consisting of the following
data: a pair (x1,x0) of points in X such that xq is a specialization of x1, k(x1) C K, and the local
ring Oz 4, where Z is &1 with its reduced scheme structure, is dominated by A.

Proof. The construction of the function from the set of morphisms Spec A — X to the specified
data is carried out before the statement of the proposition. Conversely, suppose we have data as in
the statement. In that case, the inclusion 0z ,, C A defines a morphism Spec A — Spec 0z ,,
which when composed with the inclusion Spec 0z ,, C X yields the required morphism. It is
straightforward to check that the two functions just described are mutually inverse bijections. [

Valuative criteria I

We can now formulate our statements about existence and uniqueness of limits in terms of lifting
properties.

Definition 3.3.3.4 (Valuative criteria). Suppose f : X — S is a morphism of schemes. If, given a
valuation ring A with fraction field K fitting into a diagram of the form

Spec K —= X

-

Spec A —— S,

then there exists at most one morphism Spec A — X making all triangles commutes, we will say
that f satisfies the uniqueness part of the valuative criterion. If, given a valuation ring A with
fraction field K and a diagram as above, there exists a morphism Spec A — X making all resulting
triangles commute, we will say that f satisfies the existence part of the valuative criterion.

Proposition 3.3.3.5. If f : X — S is a separated morphism, then f satisfies the uniqueness part of
the valuative criterion.

Proof. Suppose given a diagram of the form:

Spec K ——= X

-

SpecA—— S,
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and two morphisms a,b : Spec A — X making all resulting triangles commute. In that case, we
may form the equalizer scheme of @ and b via Proposition 3.3.3.1. Since f is separated, it follows
that there exists a closed subscheme of Spec A on which a and b agree. By assumption, this closed
subscheme contains the generic point of A since a and b agree upon restriction of Spec K. Since A
is a domain, it follows that the closed subscheme must be all of Spec A, which is exactly what we
wanted to show. O

We would like to establish converses to the above statements and characterize separatedness
and properness in terms of the relevant valuative criteria.

Proposition 3.3.3.6. If f : X — S is a universally closed morphism (e.g., a proper morphism),
then f satisfies the existence part of the valuative criterion.

Proof. Suppose given a diagram of the form:

Spec K —= X

-

Spec A —— S.

The morphism f : X — S is universally closed by assumption, so consider the base-change of
f along the morphism Spec A — S; write X 4 for this base-change, and consider the morphism
f':+ X4 — Spec A; this morphism is again universally closed since universally closed morphisms
are stable under base-change. On the other hand, by the universal property of fiber products, the
morphisms Spec K — X and Spec K — Spec A determine a unique morphism Spec K — X4
whose composites agree with the morphisms in the diagram above. We will show that f’ has a
section.

Write &1 for the image of the map Spec K — X4, and let Z be &; with the reduced-induced
subscheme structure. Since f’ is universally closed, it follows that the image of Z in Spec A is a
closed subset. Since the composite of f’ and the map Spec K — X 4 coincides with the inclusion
of the generic point in Spec A, it follows that the iamge of Z is all of Spec A. Moreover, the residue
field of &; necessarily coincides with K. Let £y be any point in X 4 that maps to the closed point
in Spec A. In that case, we get two points &1 and £, such that £ is a specalization of ;. The local
ring Oz ¢, is contained in K and is necessarily dominated by A since A is maximal among local
domains with fraction field K. As such, we obtain the required section Spec A — X 4 of f’. O

Valuative criteria I1

We now aim to prove the valuative criterion of separatedness and properness. Note that the two
criteria are closely related since to check that a morphism is separated, we simply have to check
that the morphism A /g is a closed immersion. Before doing this, we further analyze the link
between valuation rings and specializations; our goal is to strengthen the analogy between limits
and valuation rings.

Lemma 3.3.3.7. If K is a field and A is a local ring contained in K, then there exists a valuation
ring with fraction field K dominating A.
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Proof. The idea for existence is to apply Zorn’s lemma to the partially ordered set of local rings
in K dominating A. To do this, we need to know that there exists a local ring dominating A that
is different from A. Since A # K, we can always find an element ¢ € K that lies outside of the
fraction field of A. We then analyze various cases. Either ¢ is algebraic over A or it is transcendental
over A. If it is transcendental over A, then A[t] C K, and the localization Ay, ;) does the job. If
t is algebraic over A, then for some element a € A, the element at satisfies a monic irreducible
polynomial with coefficients in A. The subring A’ := A[at] of K is then finite over A. It suffices
to know that if m is a prime ideal, then there exists a prime ideal m’ of A that lies over m. We claim
that the localization of A’ at m’ gives the required local ring. Indeed, since the element ¢ lies outside
the fraction field of A, it cannot be the case that A = Afn,. O

Lemma 3.3.3.8. If S is a scheme, and s’ specializes to s, then

1. there exists a valuation ring A and a morphism f : Spec(A) — S such that the generic point
n of Spec(A) maps to s’ and the special point maps to s, and

2. given a field extension rk(s') C K we may arrange it so that the extension k(s') C k(n)
induced by f is isomorphic to the given extension.

Proof. Let s be a specialization of s’ in S, and let x(s’) C K be an extension of fields. Each of
these points corresponds to a morphism from the spectrum of a field into K. It follows that there
are ring maps Og ; — k(s’) — K. Let A C K be any valuation ring whose field of fractions is K
and which dominates the image of s ; — K (such a valuation ring exists by the previous lemma).
One checks that the ring map g ; — A induces the morphism f : Spec(A) — S. O]

Next, we’d like to further link closedness and specializations.

Lemma 3.3.39. If f : Y — X is an immersion of schemes, then f is a closed immersion if and
only if f(Y) is a closed subset of X.

Proof. If f is a closed immersion, then f(Y") is homeomorphic to a closed subset of X and hence
closed. Conversely, suppose that f(Y") is a closed. Since f is an immersion, by definition, there is an
open subscheme U C X such that f is the composition of a closed immersion ¢ : Y — U followed
by the open immersion j : Y — X. Let .# C Oy be the sheaf of ideals associated with the closed
immersion i (locally finitely generated). In that case, . ]U\,-(y) = Op\iy) = O X\i(y)\ U\i(Y)-
Thus, we may glue .# and the trivial sheaf &'x\;(y) via the identity map on the intersection. The
resulting sheaf ¢ is locally finitely generated by construction. Again by construction, _¢ is sup-
ported on U and equal to 07 /.7 . Thus we see that the closed subspaces associated with .# and ¢
are the same. The result follows. O

Lemma 3.3.3.10. Suppose f : X — Y is a quasi-compact morphism of schemes. The subset
f(X) C Y is closed if and only if it stable under specialization.

Proof. Assume that f(X) is stable under specialization. Let U C Y be an affine open subscheme.
It suffices to prove that U N f(X) is closed in U. Since U N f(X) is stable under specializations
in U, this reduces us to the case where Y is affine. Because f is quasi-compact and U is affine,
we conclude that X is quasi-compact as well. Thus, we may take a finite open cover of X by open
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affine subschemes Uj;; say Y = Spec R and U; = Spec A;. In that case, f(X) coincides with the
image of [[,.; U; — Y. Since [, ; U; = Spec(]]; A;), we have reduced to proving the result in
the case where X is affine as well.

Thus, assume ¢ : R — A is aring homomorphism. We want to show that f(Spec A) is closed if
and only if it is stable under specialization. If f(Spec A) is closed, it is stable under specialization.
Thus, let us assume that f(Spec A) is closed under specialization. Suppose p C R be a prime
ideal such that the corresponding point of Spec R is in the closure of f(Spec A). Unwinding the
definition of the image of f, this means that for every r € R, r ¢ p, i.e., D, N f(Spec A) # 0.
Since D, N f(Spec A) is the image of Spec A, in Spec R, we conclude that A, # 0. In other words,
1 # Oin the ring A,. Since A, is the directed colimit of the rings A,., we conclude that 1 # 0in A,.
Thus, A, # 0 and considering the image of Spec A, — Spec A — Spec R we see that there exists
p’ € f(Spec A) with p’ C p. Since f(Spec A) is closed under specialization, we conclude that p is
a point of f(Spec A) as required. O

In the next lemma, we can link closedness and specializations.

Lemma 3.3.3.11. A quasi-compact morphism f : X — Y of schemes is universally closed if and
only if specializations lift along arbitrary base extensions of f.

Proof. If f : X — Y is a closed map of topological spaces, then note that specializations lift along
f, i.e., if y specializes to ¢ and y = f(x), then there exists 2’ € X such that x specializes to z’
and f(z') = x. Indeed, since y = f(x), consider the set z C X which is closed. Since f is closed,
f(z) is a closed subset of Y that contains y. It must therefore contain 3. Since y' € g, we can thus
choose the required lift.

Conversely, suppose f : X — Y is a quasi-compact morphism of schemes, and suppose specal-
izations lift along f; we claim that means that f is itself closed. Let Z C X be a closed subset;
give it the reduced induced scheme structure so that Z — X is a closed immersion. In that case,
Z — X is automatically a quasi-compact morphism so the composite Z — Y is quasi-compact as
well. Since Z — X is closed, we know that specalizations lift along Z — X. Then it follows that
specializations lift along the composite map Z — Y as well. Thus, we are reduced to proving that
f(X) is closed if specializations lift along f. Note that, in particular, this means that f(X) is stable
under specialization which implies it is closed by Lemma 3.3.3.10. 0

Next, we can link lifting of specializations to the existence part of the valuative criterion.

Lemma 3.3.3.12. Assume that f : X — S is a morphism of schemes. We claim that the following
statements are equivalent:

1. specializations lift along arbitrary base-changes of f;
2. the morphism f satisfies the existence part of the valuative criterion.

Proof. That the first statement implies the second was essentially the argument we gave above
about universally closed maps satisfying the valuative criterion. Thus, let us prove that the second
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statement implies the first. Thus, suppose we have a diagram

Spec K ——= X

-

Spec A —— S.

If ¢ : S’ — S is an arbitrary morphism, then consider the base-change of f along . We claim that
the valuative criterion also holds for the base-change. Indeed, suppose we are given a diagram of
the form

Spec K —= X' —= X

N
SpecA —— 8§ —— 8.

Since the existence part of the valuative criterion holds for f, we can lift the composite map along
f to a morphism Spec A — X making the resulting triangles commute. In that case, the univer-
sal property of fiber products, yields a map Spec A — X' making all of the resulting triangles
commute. Thus, we are reduced to showing that specializations lift along the original morphism f.

Thus, let s’ be a point of S with specialization s and choose a point =’ lying over s’. In that
case, this specialization corresponds to a valuation ring A with fraction field K and a morphism
Spec A — S. Since the existence part of the valuative criterion holds, it follows that there exists a
lift Spec A — X making the diagram commute. The image of the closed point of Spec A in X then
yields the required lift of s. O

Finally, we can put everything together.

Theorem 3.3.3.13. A morphism f : X — S of schemes is separated if and only if it is quasi-
separated for any valuation ring A with fraction field K and any diagram of the form

Spec K ——= X

-

Spec A —— §S.
there exists at most one lift Spec A — X making all the relevant triangles commute.

Proof. We have already established the forward implication, so it remains to establish the reverse
implication. To show that f is separated, it suffices to show that A x /¢ is a closed immersion. Since
Ax/g is an immersion, it suffices by Lemma 3.3.3.9 to check that A x/g(X) is a closed subset of X..
Since f is quasi-separated, A x /g is quasi-compact by assumption. Therefore, by Lemma 3.3.3.10
it suffices to check that A x g is stable by specialization. Then, by Lemma 3.3.3.12 it follows A x /g
satisfies the existence part of the valuative criterion, i.e., given a diagram of the form

Spec K X

T

SpecA ——= X xg X.
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there exists a morphism Spec A — X making the relevant triangles exist. Now, specifying a
morphism Spec A — X x g X is equivalent to specifying a pair of morphisms a, b : Spec A — X.
Commutativity of the above diagram implies that the two composites Spec K — X obtained from
a and b agree. The existence of a lift as in the diagram thus says that a = b, which is precisely the
uniqueness part of the valuative criterion. O

Theorem 3.3.3.14. A morphism f : X — S of schemes is proper if and only if it is finite-type,
quasi-separated and for any valuation ring A with fraction field K, and any diagram of the form

Spec K ——= X

-

Spec A ——= S.
there exists a unique lift Spec A — X making the resulting triangles commute.

Proof. We have already seen the forward implication is true. For the reverse implication, assume
f is finite-type and quasi-separated. In that case, since f is quasi-separated by assumption, it is
separated by the uniqueness part of the valuative criterion 3.3.3.13. It remains to check that f
is universally closed. Since f has finite-type it is quasi-compact by assumption. Therefore, by
Lemma 3.3.3.11 to check f is universally closed, it suffices to check that specializations lift along
arbitrary base-extensions for f. In that case, specializations lift along arbitrary base extensions if
the existence part of the valuative criterion holds by Lemma 3.3.3.12. Since the existence part of
the valuative criterion holds by assumption, we conclude. O

Permanence properties

Proposition 3.3.3.15. Separated, universally closed and proper morphisms are stable under base-
change and composition.

Integral and finite ring extensions

Definition 3.3.3.16. Suppose ¢ : R — S is a ring homomorphism. An element s € S is integral
over R if s satisfies a monic polynomial with coefficients in R. We say that ¢ is an integral ring
homomorphism if every element of S is integral over R. We will say that ¢ is a finite ring map, if
S is finitely generated as an R-module.

Lemma 3.3.3.17. Any finite ring map is integral. Conversely, any finite type, integral ring homo-
morphism is finite.

Proof. If ¢ : R — S is a finite ring map, then suppose x € S. In that case, pick a surjection
R®" — S, ie., finitely many elements z; € S that generate S as an R-module. In that case,
the elements 1, z, ..., z" necessarily satisfy some relation (just as in linear algebra) and the result
follows. Conversely, if R — S is a finite-type integral ring homomorphism, then the images of the
algebra generators show that S is a finitely generated R-module. Say z,...,an are the algebra
generators. In that case, each z; is integral over R.... O
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Lemma 3.3.3.18. Composites of finite or integral ring maps are again finite or integral.

Lemma 3.3.3.19. If ¢ : R — S is a ring homomorphism, then the subset of elements in S that are
integral over R is a subring S’ of S that is integral over R; it is the largest integral sub-extension

of S.

Definition 3.3.3.20. If ¢ : R — S is a ring homomorphism, then the the integral closure of R in .S
is the subring S’ of S consisting of elements integral over R. If R — S is a ring homomorphism,
then we say that R is integrally closed in S'if R = S.

Lemma 3.3.3.21. Integral closure commutes with localization.

Lemma 3.3.3.22. Integral and finite ring maps are stable under extension of scalars. Composites
of integral and finite ring maps are again integral or finite ring maps.

Proposition 3.3.3.23. If o : R — S is an integral ring map, then Spec S — Spec R is surjective.
Moreover if p C p’ is an inclusion of prime ideals, and q is a prime ideal that maps to p, then there
exists a prime ideal q' containing q and mapping to p’.

Proof. Suppose zx is a point of Spec R corresponding to a prime ideal p. We want to show that
pSy # Sy to show that the scheme-theoretic fiber of Spec ¢ is non-empty. Since integral ring maps
are stable under extension of scalars, it suffices to prove that x lies in the image of Spec ¢ after
localization. Thus, considering the map R, — Sp, we can assume that R is local with maximal
ideal m. In that case, it suffices to prove that mS # S. If mS = S that means that m generates
the unit ideal, i.e., we can write 1 = Zl fis; with f; € m and s; € S. In that case, consider the
finite R-sub-module S’ of S generated by the s;. By construction S’ = mS’, so Nakayama’s lemma
implies that S = 0.

For the second statement, the prime ideal q exists by appeal to the first point. In that case,
consider the map R — R/p; the latter is an integral domain and p’ corresponds to a prime ideal in
R/p. Since the prime ideal q maps to p, it follows that the ring S/q coincides with the extension
of scalars ring S ®r R/p, and the ring homomorphism R/p — S/q is induced by . Since the
extension of scalars of an integral ring homomorphism is again integral, it follows that R/p — S/q
is surjective. Therefore, by appeal to the first part, there exists a prime ideal of S/q mapping to
p. O

Remark 3.3.3.24. The second part of this statement is known as going up for integral ring homo-
morphisms. It follows by induction that given an integral ring homomorphism ¢ : R — S and a
chain of prime ideals in R, we can find a chain of prime ideals in S lifting the given chain in R.
Of course, this statement admits an interpretation in terms of lifting specializations lifting along the
corresponding map Spec .

We can globalize the notions of integral and finite ring maps.

Definition 3.3.3.25. A morphism f : X — S of schemes is integral (resp. finite) if it is affine
and for every open affine V' C S, the ring homomorphism corresponding to the morphism of affine
schemes f~1 (V) — V is an integral (resp. finite) ring homomorphism.

Lemma 3.3.3.26. Finite and integral morphisms are stable under arbitrary base-change.
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Proposition 3.3.3.27. If f : X — S is a finite morphism, then f is proper.

Proof. Since f is affine by assumption, it is separated and quasi-compact. The definition of finite
morphisms also implies that f has finite-type. Thus, it remains to check that f is universally closed.
That f is closed follows from going up, i.e., Proposition 3.3.3.23. 0

Valuation rings in more detail

We would like to give a characterization of valuation rings that makes the name “valuation” more
apparent.

Lemma 3.3.3.28. If A is a valuation ring with maximal ideal m and fraction field K, then if x € K,
eitherz € Aorxz~! € A.

Proof. Assume thatx ¢ A, we want to show that z=! € A. Let A’ be the subring of K generated by
A and z. Since A is a valuation ring, we claim there is no prime of A’ lying over m. Indeed, if there
was a prime p C A’ such that p N1 A = m, then A, would be a local ring with fraction field K that
dominates A, which contradicts the maximality of A among local rings contained in K. In that case,
since m is maximal, it follows that V' (mA’) = (), i.e., mA’ is necessarily the unit ideal. Thus, we
can write 1 = Zg:o tiz! fort; € m. Rewriting this equation, we see that 1 —tg =ty z+-- -+ tgx?.
Multiplying both sides by z~¢, we see that

(1 . to)l‘id = tlxlid + - tg,

i.e., the element x~! is integral over A. Therefore, the subring A” of K generated by A and z—!
is finite over A. In particular, by Proposition ?? there exists a prime ideal m” of A” lying over m.
Since A is a valuation ring, we conclude that A/, = A and that r~1c A O

Remark 3.3.3.29. In fact, the above condition characterizes valuation rings: if A is a subring of a
field K such that for any z € K either z € A or 2! € A, then A is a valuation ring. We won’t
prove this here.

Suppose A is a valuation ring with fraction field K. Set I' := K*/A*; we write + for the
group law on I". Write v for the quotient map K * — I'. We define an ordering on I by v > ~/ if
v — ~' lies in the image of A\ 0 — T. Since for any x € K, either z or x~1 € A, it follows that
> is a total order on I". Thus, v is a homomorphism from K * to a totally ordered abelian group.
By construction, v(a) = 0 if and only if @ € A*. Since we have written the group law additively,
it also follows that v(ab) = v(a) + v(b). Finally, we claim that v(a + b) > min(v(a),v(b)). We
will say that A is a discrete valuation ring if I' = Z.

Projective space is proper
Proposition 3.3.3.30. Let X = PY = ProjZlxo, ..., xy). We claim X — SpecZ is proper.

Proof. Projective space has finite type by construction since it has a finite open cover by affine
spaces. We will check the existence and uniqueness parts of the valuative criterion. Suppose we
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have a diagram of the form

Spec K X
Spec A —— Spec Z.

Let & be the image of Spec K in X. By induction on n, we can assume that &; lies outside any of the
hyperplanes defined by z; = 0, which are themselves isomorphic to lower-dimensional projective
spaces. Thus, we can assume that all the functions x; are invertible in the local ring Ox ¢,. Let
fij € K be the image of ;"’—; Note that f;; is a non-zero element of K and also that f;; fjr = fix

since the corresponding formulas hold for .
J

Let v be the valuation attached to A and set g; = v(fip) fori = 0,...,n. Choose k such that
gr. is minimal among the set {go, . .., g }. In that case, v(fir) = v(fio) — v(fxo) = gi — gx > 0 by
minimality of gi. In other words, f;x € A fori = 0,...,n. In that case, the map sending ;C—; to fij
factors through A and yields the resulting extension.

Remark 3.3.3.31. Since proper morphisms are stable under base-change we conclude that Py is
proper over S for any scheme S. Likewise, since closed immersions are proper and composites of
proper morphisms are proper, we conclude that any closed subscheme of [P is again proper.

3.3.4 Dimension

Definition 3.3.4.1. Suppose X is a topological space. A chain of irreducible subsets Zy C Z; C Z,
will be said to have length n if each inclusion is proper. The (Krull) dimension of X, denoted
dim X, is the supremum of the lengths of chains of irreducible subsets. If X is a scheme, then
the (Krull) dimension of X is dimension of the topological space underyling X. If Y C X is an
irreducible closed subset, then the codimension of Y in X, denoted codim(Y, X) is the supremum
of the lengths of chains of irreducible subsets containing Y.

Remark 3.3.4.2. By convention the emptyset has dimension —co. By definition, we see that dim Y+
codim(Y, X) < dim X. If X = Spec R, then we know that V(I is irreducible if and only if v/T is
prime. Thus the Krull dimension of Spec R coincides with the maximum length of a chain of prime
ideals in R.

Definition 3.3.4.3. If A is a commutative ring, and p is a prime ideal, then ht(p) is the supremum
of the lengths of chains of prime ideals contained in p. For an arbitrary ideal I, ht(I) is the infimum
of the heights of prime ideals containing 1.

Proposition 3.3.4.4. If A is a ring and p is a prime ideal of A, then dim A, = ht(p) = codim(V (p), A)

Proposition 3.34.5. If o : R — S is an integral ring homomorphism, then dim SpecS <
dim Spec R. If v is injective, then Spec o is surjective, and dim Spec S = dim Spec R.
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3.4 Curves

We now attempt to compute Picard groups of some simple integral varieties. Since we view dimen-
sion as a reasonable measure of complexity of a variety, we start with low-dimensional examples.
Suppose R is a commutative domain of Krull dimension 0. In that case, we know that (0) is the
only prime ideal and furthermore that it is maximal. In other words, R is simply a field. If R is not
a domain, then situation is more interesting, but perhaps less geometric, so we leave this for later.
Arguably the first geometrically interesting case to consider is that were R has Krull dimension 1.

3.4.1 Normality and curves

Definition 3.4.1.1. If k is a field, then by a curve over k, we will mean a k-variety of dimension 1.
We will sometimes use the word curve more generally for a Noetherian, integral, separated scheme
of dimension 1.

Example 3.4.1.2. By this definition, SpecZ is itself a curve. Likewise A} is a curve, and PP}, is
a curve. Moreover, any scheme that is finite over ]P’/,l€ is again a curve over k. If we consider the
subscheme of A% = Spec k[z, y] defined by the equation y?> = 23 or 2 = 23 — x:?; these are both
curves over k by this definition. These latter schemes are rather different than A}c however: if k = C
for example, the relevant spaces do not give rise to manifolds. As a consequence, we want to restrict
the kinds of curves we consider.

Definition 3.4.1.3. A domain R with fraction field K will be called normal if R is integrally closed
in its field of fractions.

Example 3.4.1.4. The ring kt] is integrally closed in its field of fractions k(). The ring k[C] :=
K[z, y]/(y?* — x3) is not integrally closed in its field of fractions. Let C' = Spec k[z,y]/(y* — z3).
Observe that k[x,y]/(y? — ) can be viewed as a subring of k[t] by means of the map sending
z to t? and y to 3. This corresponds to a morphism of schemes A} — C. The field of fractions
of k[C] coincides with k(t), e.g., by means of the above map. To see that k[z,y]/(y? — 2?) fails
to be integrally closed in its field of fractions, we need to write down a monic polynomial with
coefficients in k[x,y]/(y? — 2%) that admits a solution in k() but no solution in k[C]. Indeed, the
element ¢ = y/x is integral over k[C] since t? = y?/2% = x but fails to lie in k[C]. Likewise, the
ring k[N] := k[z,y]/(y? — 23 + 2 fails to be integrally closed in its field of fractions. Once again,
the element ¢ = ¥ witnesses this failure.

Lemma 3.4.1.5. Suppose R is a domain. The following conditions are equivalent.
1. Ris normal;
2. then for every prime ideal p C R, Ry is normal;
3. for every maximal ideal m C R, Ry, is normal.

Proof. That (1) = (2) follows from the fact that integral closures commute with localizations.
That (2) = (3) is immediate. To show that (3) = (1), note that since R is a domain, the map
R — R, is injective. It follows that R — Ny Ry, (where the intersection is taken in the fraction
field) is again injective. We claim that this map is also surjective. Consider M := Ny Ry as an
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R-module and let C be the cokernel of the injective R-module map R — M. Since M C Ry, for
any maximal ideal m C R, it follows that upon localization at m we have a sequence of inclusions

Ry C My C R,

i.e., My = Ry It follows that Cy,, = 0 for any maximal ideal m, which means that C' = 0 as well.
Thus, if R is a domain, then R = Ny, Ryy,. If each Ry, is normal, then it follows from this observation
that R is normal as well. L]

Definition 3.4.1.6. An integral scheme X is called normal if for every x € X, the local ring Ox
is normal.

Lemma 3.4.1.7. Assume X is an integral scheme. The following statements are equivalent.
1. The scheme X is normal.
2. For any open affine cover U; of X, the rings Ox (U;) are normal.

Definition 3.4.1.8. If k is a field, then a curve X over k is non-singular if it is a normal scheme.

3.4.2 Dedekind domains

We now want to being a “local” analysis of curves. To this end, we recall the following classical
definition.

Definition 3.4.2.1. A commutative ring R is called a Dedekind domain if it a Noetherian normal
domain of Krull dimension 1.

Remark 3.4.2.2. To say that R has Krull dimension 1 (see Definition 1.1.1.30) is to say that every
chain of prime ideals is of the form py C p;. Since R is an integral domain that has Krull dimension
1, then we know that (0) is a prime ideal, and therefore that any non-zero prime ideal is maximal.

Examples of Dedekind domains

Directly from the definitions, one sees that for any field k, k[z] and Z are Dedekind domains. We
first establish a way to produce new Dedekind domains from old ones.

Proposition 3.4.2.3. If R is a Dedekind domain with fraction field K and L is a finite separable
extension of K, then the integral closure S of R in L is a Dedekind domain as well.

Proof. First, we prove that S is a Noetherian domain. To this end, we will show that it is a sub-
R-module of a finite rank free R-module and therefore Noetherian as well (that it is a domain is
left as an exercise). For any extension L /K, we can consider the trace pairing L x L — K given
by (z,y) = Trp/k(wy) (recall that we view L as a K-vector space and take the trace). The
separability assumption arises in the following way: the extension L/K is separable if and only if
the trace pairing is non-degenerate.

We claim that for any element z € L, if x is integral over R, then Ty g (x) € R. This
follows from two facts: (i) the minimal polynomial of x has coefficients in R and (ii) if P is
the minimal polynomial of z, d is the degree of P, and [L : K] = ed for some integer e, then
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Try, / k(z) = —eay, where a; is the coefficient of 2%1 in the minimal polynomial. For (i), if we
take any monic polynomial () with coefficients in R satisfied by x (such a polynomial exists since
x 1is integral over R), then the minimal polynomial P divides (). In this case, one shows that the
coefficients of P are integral over R (exercise!) and since R is integrally closed, must lie in .

Now, pick x1,...,x, € L that are integral over R and that form a K -basis for L. The integral
closure S of R is contained in the module M := {y € L|(x;,y) € R,i = 1,...,n}. There is
an induced isomorphism M = R®™ and since S C R®™, since R is Noetherian, S is a finitely
generated R-module. We conclude that S is also a Noetherian domain.

Since S is integrally closed in its field of fractions it remains to show that S has Krull dimension
1 if R has the same property. To this end, we analyze chains of prime ideals in S. Let *J3 be a non-
zero prime ideal of S and let p = 3N R. We claim that p is non-zero. Indeed, if we pick a non-zero
element = of P, then since x is integral over R, we see that z satisfies a monic polynomial with
coefficients in R and we can choose one f of minimal degree. This polynomial necessarily has
non-zero constant term (if not, this would contradict minimality). Moreover, the equation shows
that the constant term is in the ideal ().

Now, if B C £ is a proper inclusion of prime ideals in .S, then setting ¢ = Q N R we conclude
that there is an inclusion p C ¢. One may check that this inclusion is proper as well. Thus, if R has
Krull dimension 1, S must have Krull dimension 1 as well. O

Lemma 3.4.2.4. If L/ K is a finite separable extension, then the trace pairing is non-degenerate.
Proof. Exercise. ]

Remark 3.4.2.5. The following result is known as the Krull-Akizuki theorem [?, Theorem 11.7]: if
R is a Noetherian integral domain with field of fractions K and having Krull dimension 1, L is a
finite algebraic extension of K and S is a ring with R C S C L, then B is a Noetherian ring of
Krull dimension < 1. From this one deduces [?, p. 85], that if I is any Noetherian integral domain
of Krull dimension 1, and L is any finite algebraic extension of the fraction field of R, then the
integral closure S of R in L is a Dedekind domain. In particular, separability is not necessary in the
statement.

Example 3.4.2.6. Since Z is an integral domain, the integral closure Ok of Z in a finite extension K
of Q is a Dedekind domain. Likewise, k[z] is a Dedekind domain for any field k. Given any finite
separable extension E of k(z) the integral closure of k[z] in E is a Dedekind domain.

Example 3.4.2.7. Suppose f € k[x] is a non-zero polynomial, and consider the equation y" — f(x).
Assume 7 is invertible in k£ (i.e., the r is coprime to the characteristic exponent of k). If f is a
separable polynomial (i.e., f has no repeated roots upon passing to an algebraic closure of k), then
you can check that P := y" — f(z) is irreducible over k(x) and we can consider its splitting field
E over k(x). In that case, we can form the integral closure R of k[z] in E.

Note that there is a ring homomorphism k[z] — R by definition. There is also a ring homomor-
phism k[z,y]/(y" — f(x)) — R by construction. The fraction field of k[x, y]/(y" — f(z)) coincides
with £ and you can check that k[z, y]/(y" — f(z)) is integrally closed in its field of fractions.

The map k[z] — R factors as the inclusion k[z] — k[z,y] — klz,y]/(y" — f). If we set
C = Speck[z,y]/(y" — f), then we have the composite map p : C — A? — A]. The composite
map is the inclusion follows by the “projection onto x””. We now study the fibers of this map. If m
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is a maximal ideal of k[z], then we let v := k[z]/m. Observe that R/mR is a x-algebra, and we
can describe this x-algebra explicitly. Indeed, the element f has value f € k[z]/m. In that case,
the algebra R/mR can be identified as x[y]/(y" — f). Note that k[y]/(y" — f) is an algebra of
dimension precisely . If f = 0 (i.e., f vanishes at the closed point corresponding to m) then this
algebra is x[y]/y", i.e., it has only one closed point with “nilpotent fuzz.” On the other hand, if f
has an 7-th root in &, then x[y]/(y" — f) is K @ - -- K as a x-algebra, and the fiber has r distinct
points. In general, the structure of the fiber depends on the roots of f in &.

The picture we are describing here is a slight refinement of the usual ideal from complex analysis
thatp : C — A}C is a branched cover of A}C branched along the locus where f vanishes. Indeed, the
description above shows the kind of additional information that is kept beyond just keeping track of

the number of points in the fiber of p.

3.4.3 Local Dedekind domains: equivalent characterizations

Now, let us analyze local Dedekind domains first, characterize such things, and then attempt to
patch the information together.

Local Dedekind domains

We now proceed to characterize local Dedekind domains. If (R, m) is a local Dedekind domain,
then R has a unique non-zero ideal, which is necessarily the maximal ideal m.

Lemma 3.4.3.1. If (R, m) is a local Dedekind domain, then w is principal.

Proof. Let K be the fraction field of R. Suppose we fix an element 7 € m. Since R is Noetherian,
m is finitely generated. By Nakayama’s lemma if m = m?, then m = 0, so we conclude that
m # m2. Analogously, we conclude that m™ # m”*! for all n > 0. Choose an element ¢ € m \ m?.
In that case, (¢) C m and we claim that equality holds.

In a Noetherian ring, every ideal contains a power of its radical. Since m is the unique non-zero
ideal of R, it follows that the radical of (¢) is m. Therefore, it follows that m™ C (¢). If n = 1,
then we are done, so assume that n > 1. In that case, we may find x € m”~! that does not lie
in (¢). Then, zm C m" C (t) and the element y := ¥ lies in K. If y was in R, then yt would
necessarily lie in (¢) C R, but yt = z ¢ (t) by assumption. If y was integral over R, then since R is
integrally closed in its field of fractions, then y would be in R, which would contradict the assertion
we just made. We thus claim that y is integral over R. Indeed, we know that zm C m"™ C (¢).
Thus ym C R is an ideal. If ym = R, then we may find f € m such that yf = 1. In that case,
xf = ytf = t; however, zf € m? which contradicts the assumption that ¢ ¢ m?. Thus, ym is a
proper ideal of R and ym C m. In that case, choose generators myq, . .., m, of m and we may write
ym; = Zz ai;m; for a;; € R. We can rewrite this equation as

> (8559 — aij)ym; = 0.

Let d = det(d;;y — a;j). In that case, Cramer’s rule tells us that dm; = 0 for all i. In other
words, dm = 0. Since m is non-zero, we conclude that d = 0, and this yields the required integral
dependence relation for y. O
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Lemma 3.4.3.2. If R is a valuation ring with fraction field K, then R is integrally closed in K

Proof. Let o € K be a non-zero element of K that is integral over R. Let f be a monic polynomial
that is satisifed by «, i.e.,
A" 4 cp1a" g =0

If o is not already in V, then o~ € V. Multiplying both sides of the equation by o' =™, we see that

a=—cpq1+-+coat™

which means that o € V also. O

Example 3.4.3.3. We begin by analyzing a special case, namely consider the localization of k[z] at
the maximal ideal m; this is certainly a local Dedekind domain with maximal ideal mok[z]m,. We
can take the polynomial x as a generator of the ideal my. In that case, any element of k[z]n, can be
written uniquely as 2"« and the number r is the order of vanishing of f at 0. This defines a function
from k[z|m, — N and if we restrict to non-zero elements, it is a surjective monoid homomorphism,
i.e., ordo(fg) = ordo(f) + ordy(g). Furthermore, it satisfies ord(f + g) > min(ord(f), ord(g)).
Now, if f € k(x)*, then either f € k[x]y, or f~! € k[z], and therefore, we can extend ord to a
(surjective) group homomorphism k(z)* — Z preserving the additional inequality. It is convenient
to define ordy(0) = oo so that ord(x + —x) = oo > min(ord(x), ord(—=z)) (this helps to remem-
ber the inequality). (Note: alternatively, we could have spoken about the order of pole of a function;
in this case, the inequality would be reversed.) We now abstract these facts.

Lemma 3.4.34. If (R, m) is a local Dedekind domain with fraction field K, then R is a discrete
valuation ring.

Proof. We first show that R is a valuation ring. Fix a generator 7w of m. Since R is a local ring
with fraction field K, it follows that R is dominated by some valuation ring V' with fraction field
K. Suppose t € V is a non-zero element. Every non-zero element of K can be written as —; for
some unit ¥ € R, so we may write t = W%, ie., 7™t € R. If tis notin R, then m > 0, and ¢!
is necessarily in R. Moreover, ' C m = (¢). In that case, t~! lies in the maximal ideal of V.
However, if t~! lies in the maximal ideal of V, then ¢ could not lie in V to begin with. Finally,
the value group of R is K*/R*; every element of K* can be written uniquely as un™ for some

m € 7Z. O

Remark 3.4.3.5. Because of the preceding example, we will think of v as the “order of pole” of a
rational function.

We now summarize the conclusions we have drawn.

Theorem 3.4.3.6. The following are equivalent:
1. R is alocal Dedekind domain;
2. Ris adiscrete valuation ring;
3. Risalocal PID.

Proof. That (1) = (2) follows from the discussion above. That (2) = (3) is an exercise: one
checks that if v is the valuation attached to R, then v is a Euclidean norm, and thus R is a principal
ideal domain. See [?, Theorem 11.2] for the equivalences. O
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3.5 Picard groups, Dedekind domains and Weil divisors

Having understood Dedekind domains locally (they are discrete valuation rings), we now attempt to
understand how to patch this information together. We begin by studying how the property of being
“integrally closed in the fraction field” behaves under localization.

3.5.1 Integral closure and localization

Exercise 3.5.1.1. Show that any UFD is normal.

The beginning of the proof of Proposition 3.4.2.3 can be repeated to establish the following
result.

Proposition 3.5.1.2. If R is a normal Noetherian integral domain with fraction field K and L is a
finite separable extension of K, then if R is the integral closure of R in L, the map R — R' makes
R’ into a finitely generated R-module.

3.5.2 Equivalent characterizations of Dedekind domains

Theorem 3.5.2.1. The following conditions on a commutative integral domain R are equivalent:
1. the ring R is a Dedekind domain;
2. the ring R is Noetherian, and for each non-zero prime ideal p C R, Ry, is a discrete valuation
ring.

Proof. The implication (1) = (2) follows from combining the results established above. For the
implication (2) = (1), note that R is a Noetherian domain by assumption, and integrally closed in
its field of fractions by Lemma ??. Therefore, it suffices to show that R has Krull dimension 1. For
any (non-zero) prime ideal p, the ring R, has precisely 2 ideals (0) and the ideal pR,. The result
follows. O

3.5.3 Picard groups of non-singular curves

We now analyze Picard groups of non-singular curves over a field k. In that case, if X is a non-
singular curve over a field k, then for x € X, the ring Ox , is a discrete valuation ring. Suppose
Z is an invertible &'x-module. As before, we know that line bundles on X correspond to elements
of H X, 0%). Let £ be the sheaf of total quotients; we may consider the exact sequence of
sheaves

0— O35 — HY — K05 — 0.

Repeating the arguments we gave earlier, we can identify H°(X,.# % /0>) as Cartier divisors:
elements are given by pairs (U;;c;, fi) where U, is an open cover of X (which we can assume affine
without loss of generality) and f; € " (U;) = K* such that f;/f; € 0% (Ui;). In particular, we
have the two-term complex

K* — HYX, % )0%)

whose cohomology computes the Picard group of X and the units of X.
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Fix a Cartier divisor (Uj;cy, fi). Now, take a point 2 € X. Since X is acurve, Ox , is a discrete
valuation ring with valuation v,. Since f; € K*, then we may consider v,(f;) € Z. If z € Uy,
then v, ( %) = ( since }c— is a unit on Uy;. In other words, v, (f;) = v»(f;). It follows that there is a

well-defined homomorp]hism

H(X, /0% — ] Z-=

zeX;zclosed

We want to analyze this map in more detail.

Let us first analyze the case where X is a local curve, i.e., the spectrum of a discrete valuation
ring. Thus, assume R is a discrete valuation ring with fraction field K. In that case, there is a single
closed point = € Spec R, so the group P, Xizclosed £+ @ 18 simply the integers. In that case, we
have the exact sequence

0— R* — K* — K*/R* — 0

this follows from the definition of exactness of a sequence of sheaves because local rings are pre-
cisely the stalks in the Zariski topology. Alternatively, it follows because Pic(R) = 0. In this case,
the map

K*/R* —Z

is the map induced by v : K* — Z since R* lies in the kernel by construction, i.e., the above
map is an isomorphism because it is the map that defines the value group. In this case, we can
construct an explicit inverse map as follows: simply choose an element 7 € K* that generates
the maximal ideal of R since such an element necessarily has valuation 1 by the definition of the
discrete valuation.

Now, let us return to the general situation described above. Observe that we can give a simple
description to the composite map

KX — H(X, x*.0") — [[ Z- .
zeX

Indeed, the Cartier divisor defined by an element f € K * is simply the global section f. In other
words, the composite map sends

xclosed

Let us analyze this sum.

Definition 3.5.3.1. A scheme X will be called locally Noetherian if every x € X has an open affine
neighborhood U = Spec R such that R is a Noetherian ring. We will say that X is Noetherian if X
is locally Noetherian and quasi-compact.

If a scheme X is Noetherian, then its underyling topological space is Noetherian, which means
every descending chain of closed subspaces stabilizes.

Lemma 3.5.3.2. Assume X is a locally Noetherian scheme. If Z C X is any closed subscheme,
then the collection of irreducible components of Z is locally finite.
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Proof. Let U C X be a quasi-compact open subscheme (e.g., an affine open subscheme). In that
case, U is a Noetherian scheme and has a Noetherian underlying topological space. In particular,
that means that any subspace is Noetherian and thus has finitely many irreducible components. []

Lemma 3.5.33. If f € K*, then Y 1oscq V2 (f) is a finite sum, i.e., v,(f) is only non-zero for
finitely many points x € X.

Proof. Suppose X is a non-singular curve over a field k, and f € k(X)* is a non-zero rational
function. Note that X is a Noetherian scheme by construction. In that case, there is an affine open
set U C X on which f is actually regular. Then, Z = X \ U is a proper closed subset of X and can
therefore only consist of finitely many points. O

As a consequence of this lemma, the map

H(X, /0% — ] Z-=

e X;xclosed

has image in €D, x ;ciosea Z * T-

Definition 3.5.3.4. If X is a locally Noetherian integral scheme, then a prime divisor on X is
an integral closed subscheme of codimension 1. A Weil divisor D on X is a finite formal linear
combination of prime divisors, i.e., an element of the free abelain group on prime divisors; we write
Div(X) for the group of Weil divisors on X.

With this definition, we constructed above a map
H(X, #)0%) — Div(X)
for any curve X. We have also constructed a map K* — Div(X) as the composite K* —
HY(X, ¢/ 0%) — Div(X). Any Weil divisor in the image of the map will be called a principal
divisor; if f is a non-zero rational function, then we will write (f) for the associated principal

divisor.

Definition 3.5.3.5. If X is a non-singular curve, then the (Weil) divisor class group of X, denoted
Cl(X) is the quotient Div(X)/imK*.

By construction there is an induced homomorphism
Pic(X) — Cl(X)
for any non-singular curve. We now analyze this homomorphism.
Proposition 3.5.3.6. The map Pic(X) — CI(X) is an isomorphism.
Proof. By diagram chasing, the map Pic(X) — CI(X) is an isomorphism if and only if the map

H(X, # ) 0%) — Div(X)
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from which it is induced is an isomorphism. Let us construct an explicit inverse map. Since the
group on the right is a free abelian group, the inverse can be defined by specifying its value on
generators.

Suppose « is a closed point. We attach a Cartier divisor to x as follows. Let f; be a choice of
uniformizing parameter in Ox . The function f; lies in K and by construction v, (f1) = 1. Since
there are only finitely many points € X where v, (f;) # 0, by shrinking Uy if necessary, we
can assume that x is the only point in U; for which v, (f1) # 0 and furthermore that U; is affine.
The complement of U; in X consists of finitely many points yo,...,y,. Let U;,7 = 2,...,n be
neighborhoods of each of those points and choose a function f; € K> on U; that restricts to a unit
in 0 )X(yz Since f; is a unit in O ,,, it is a unit in some neighborhood of y;, thus by shrinking
U;,i = 2,...,n if necessary, we may assume that f; is a unit on U;. We may also assume that z
does not liein U;,7 = 2,...,n.

To conclude, we have to show that {(U;, f;)} is a Cartier divisor, i.e., we have to show that }Jj—;
is a unit on Uj;. This is immediate if neither 7 nor j is equal to 1 by the construction we have given.
Therefore, it suffices to show that % is a unit on Uy ;.

Say U; = Spec R. Since R is ajDedekind domain, observe that R = Nycjosedfm, (indeed, this
is true for any integral domain). However, since the localizations of a Dedekind domain at closed
points are discrete valuation rings, we obtain the following criterion for a non-zero element of K to
be a unit: v, (f) = 0 for all closed points y € Spec R. Now, any intersection Uy ; corresponds to a
localization of R, which is again a Dedekind domain. In that case, uy(%) = vy(f1) —vy(f;). Since

fj is a unit on Uy; it has valuation 0. Thus, it suffices to prove that v, (f1) = 0 for all y € Uy;.
However, U;; does not contain the point x, and we constructed Uy so that f had valuation O for all
points # x, so we conclude that v, (f1) = 0 on Uy; as well. We conclude that {(U;, f;)} defines a
Cartier divisor.

We leave it as an exercise to check that this actually defines the required inverse function. [

Remark 3.5.3.7. Observe that the isomorphism we just constructed gives a presentation of Pic(X)
for X a non-singular curve. Indeed, Div(X) is a free abelian group by construction, and the sub-
group of principal divisors is also a free abelian group (as any subgroup of a free abelian group is
free abelian).

3.5.4 In what sense can we “actually”’ compute Picard groups?

While the above structural results are nice, they perhaps sidestep the question of what the Picard
group actually looks like, even for Dedekind domains. Saying that a group is a quotient of a free
abelian group of infinite rank by the image of a map that is difficult to understand is perhaps not
so helpful. I state a few results that indicate how widely the Picard group can vary. The first result
shows that Picard groups of curves over algebraically closed fields can be “very big”.

Theorem 3.5.4.1 (Grothendieck(?)). If k is an algebraically closed field, and R is a Dedekind
k-algebra then Pic(R) is a divisible abelian group.

Remark 3.5.4.2. The proof of this result uses techniques that are very different from those we study
here. In fact, one shows that Pic(R) is the set of points of an algebraic variety (the Picard variety)
that has a natural abelian group structure; this structure is obtained essentially by studying integrals
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of differential forms. When & = C, one observes that Pic(R) is a compact topological space
(in the usual topology), and is isomorphic as a complex manifold to a torus 7". If k£ has positive
characteristic, one produces a purely algebraic variant of this complex torus.

Theorem 3.5.4.3 (Mordell-Weil). If k is a number field, and R is a Dedekind k-algebra, then
Pic(R) is a finitely generated abelian group.

Remark 3.5.4.4. Even saying this raises questions: a finitely generated abelian group is a product of
a free part and a torsion part. What does the torsion subgroup look like? What is the rank of the free
part? Each of these questions is interesting, and the answers are largely conjectural. E.g., the Birch—
Swinnerton-Dyer (BSD) conjecture asserts that the rank of the free part can be calculated purely
analytically from an L-function one attaches to the abelian variety in a fashion that generalizes the
analytic class number formula.

Finally, we state a result of Claborn, which shows that the Picard groups of Dedekind domains
comprise all abelian groups.

Theorem 3.5.4.5 ([?, Theorem 7]). Given any abelian group A, there is a Dedekind domain D such
that Pic(D) = A.

Remark 3.5.4.6. We refer the reader to [?, §14] for a detailed treatment of the above result and a
discussion of the strategy of the proof.

3.6 Weil divisors and Picard groups of higher dimensional varieties

The discussion above for curves presages what should happen for higher-dimensional varieties.

3.6.1 Weil divisors

We now analyze the construction made above for integral schemes of higher dimension. We will
now assume that X is a Noetherian normal scheme having Krull dimension d. If K is the fraction
field of X, then we can study discrete valuations on K. Since discrete valuation rings are always of
dimension 1, the kinds of local rings on X we will get will not be localizations at arbitrary prime
ideals.

Proposition 3.6.1.1. If X is a Noetherian normal scheme of dimension d, and if x € X is a point
of codimension 1, then Ox ,, is a discrete valuation ring.

Proof. Without loss of generality we can restrict attention to an affine open neighborhood U =
Spec R of = so R is a Noetherian normal domain by the equivalent characterizations of normality,
and x corresponds to a prime ideal p of R that has height 1. In that case, R, is a local Noetherian
normal domain, and since p has height 1, it follows that R, has dimension 1. In that case, as a
local Noetherian normal domain of dimension 1, R, is a discrete valuation ring by the equivalent
characterizations of discrete valuation rings. O

Theorem 3.6.1.2 (Krull). Suppose R is a Noetherian normal domain.
1. The equality R = (\p—1 Rp holds.
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2. Forany f € R\ O, there are only finitely many height 1 prime ideals containing f.
Proof. See [?, Theorem 12.4(i) p.88] ]

We now proceed to link the Picard group more closely with the geometry of closed subvarieties
of codimension 1, generalizing the situation with curves. Let X be a Noetherian normal scheme
of Krull dimension d; for a point x of codimension 1, we will write v, for the assoiated discrete
valuation. It follows from the discussion above that if K is the fraction field of X (i.e., the residue
field at the generic point of X), then for f € K * there at most finitely many codimension 1 points
x € X for which v;(f) # 0. As before, any element f € K* defines a Weil divisor

div(f) == Z Ve ().

xcodim1

If (U;, f;) is a Cartier divisor, then we can define a Weil divisor D by the formula that D =
Y weodimi Yz (fi), where f; is chosen so that « lies in U;. Thus, we get a function

HY(X, x")|0") — @ Z-=,
zcodim1

which factors through a morphism
Pic(X) — CU(X).

To begin we revisit the notion of Cartier divisor. Suppose X = Spec R is an integral affine
scheme with fraction field K. In that case, a Cartier divisor D = {U;, 0;} with o; € K is called
effective if o; is a unit on U;. Note that every Cartier divisor can be written as the difference of two
effective divisors: if we write o; = 3£, with r;, 5; € R, then {U;, r;} and {U;, 5} are both effective
Cartier divisors. Indeed, since T; 5i 1s a unit on U; N Uy, we conclude that both r; and 3t are units
on U; N Uj. Thus, the group of Cartler divisors can be thought of in terms of formal dlfferences in
the monoid of all effective Cartier divisors.

Now, if {U;, f;} is an effective Cartier divisor, then the vanishing of f; determines a hypersurface
in U;. Let R; be the ring of functions on U; (some principal open subset of X). The compatibilities
inherent in being a Cartier divisor mean that the local ideals (f;) C R; patch together to determine
anideal I(D) C R; this ideal is locally principal by construction (i.e., there is a Zariski open cover
of X by principal open sets on which this ideal is actually a principal ideal). This construction
yields an equivalence between locally principal ideals in R and effective Cartier divisors on R.
Thus, effective Cartier divisors on X correspond to certain closed subvarieties of X that are locally
cut out by a single equation.

Given an ideal I (D), if we consider the localization of R at a height 1 prime ideal, by Proposi-
tion 3.6.1.1 we obtain an ideal in a discrete valuation ring. Such an ideal is necessarily of the form
(mp)™ for some positive integer r and choice of local uniformizing parameter m,. Therefore, we
can attach to each ideal /(D) a formal sum 3, ; 7 - p. As in the case of Dedekind domains, it
follows from Theorem 3.6.1.2(2) that the integer ry is only non-zero for finitely many p. Since we
can write any Cartier divisor as a formal difference, in this way we obtain a function

Cart(R) — EB Z-p,
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just as in the situation for Dedekind domains. By Theorem 3.6.1.2(1), this homomorphism is nec-
essarily injective: indeed, if (D) is the ideal associated with an effective Cartier divisor, then if
I(D) N Ry = 0 for all height 1 prime ideals, then I(D) = 0 already.

3.6.2 Triviality of the class group

Lemma 3.6.2.1. If R is a Noetherian domain, then R is a unique factorization domain if and only
if R is normal and CI(R) = 0.

Proof. We use the following fact from ring theory: if R is a Noetherian domain, then R is a UFD if
and only if every height 1 prime ideal is principal [?, Tag 0340 Lemma 10.119.6] or [?, Theorem
20.1] (one proof of this result uses Krull’s principal ideal theorem: if I is a Noetherian ring, z € R,
and p is minimal among prime ideals in R containing z, then p has height < 1 together with a bit
of the theory of primary decomposition).

Suppose every prime ideal of height 1 is principal. In that case, if p is a prime ideal of height 1,
we can choose a generator f. Then, f lies in the image of the divisor map. It follows that the map
div is surjective, and thus that CI(R) = 0.

We leave the other direction as an exercise. 0

Corollary 3.6.2.2. If k is a field, Cl(k[z1,...,x,]) = 0.

Definition 3.6.2.3. A ring R is called locally factorial if for every prime ideal p, the localization
Ry, is a unique factorization domain.

Proposition 3.6.2.4. If R is a locally factorial Noetherian normal domain, then the map

Cart(R) — @ Z-p
plhtp=1

is an isomorphism. As a consequence, under these hypotheses, the induced map Pic(R) — CI(R)
is an isomorphism.

Proof. As before it suffices to construct an inverse map and to do this we proceed exactly as before:
beginning with a height 1 prime ideal p, it suffices to show that p is actually an invertible ideal in
R. Since R is Noetherian, p is automatically finitely presented, and therefore it suffices to check
this after localization at every prime. The ideal p determines an ideal in R as q ranges through the
prime ideals of R. By assumption, Cl(R;) = 0, so locally p is a principal fractional ideal. By the
finite presentation assumption, we can find a Zariski open neighborhood containing 12 on which p
is principal, and we can cover Spec R by such open sets. O

Example 3.6.2.5. Note that if R is a Dedekind domain, it follows from Lemma ?? that R is normal
and locally factorial. We will focus on systematically writing down other examples of such rings
soon.

We have shown that, if X = Spec R is a normal affine variety, then there is a two-term complex
K P zop
plhtp=1

the cokernel of the map div is Pic(R), while the kernel of div is R*.
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The Picard groups of a UFD

It is possible to give a direct proof that the Picard group of a UFD is trivial (without passing through
the identification afforded by Proposition 3.6.2.4.

Proposition 3.6.2.6. If R is a UFD, then Pic(R) = 0.
Proof. See [?, Tag 0OAFW Lemma 15.84.3]. O

3.6.3 Dominant maps

We are interested in analyzing the extent to which Pic(—) is homotopy invariant, i.e., what can we
say about the map
Pic(X) — Pic(X x AY)

given by pullback along the projection X xA! — X . Now, there is always a morphism X — X x Al
given by base-change along the morphism 0 — A®. As a consequence, we conclude that the above
map is always split injective. We would like to use what we have learned about Cartier and Weil
divisors in order to analyze this map, but we immediately run into some subtleties because the two
maps above behave very differently.

Example 3.6.3.1. Assume X = Spec R is an integral affine scheme with K the fraction field of R.
Let us consider the ring maps R < R|[t] corresponding to the projection X x A! — X and the
evo : R[t] — R corresponding to the closed immersion X — X x Al. A Cartier divisor on X x Al
corresponds to an invertible R|t]-module L together with a trivialization ¢ : L® gy K (t) — K (t).
The first homomorphism R — R[t] induces an inclusion of fields K < K (t) thus, given a Cartier
divisor I on X, i.e., an invertible R-module L’ together with ¢’ : L' ®p K — K, we get a
Cartier divisor on R|[t] by extension of scalars: L := L' ®p R|[t] is a line bundle, and ¢ induces
an isomorphism L ®p [t|K(t) 2 L' ®p K @k K(t) = K(t). What is essential here is that the
pullback of the zero ideal in R[t| under the ring homomorphism R — R]t] yields the zero ideal in
R. This is evidently false for the homomorphism R[t] — R, since (t) is contained in the pre-image!

Before moving forward we describe some ideal theoretic properties of the image of the mor-
phism of schemes attached to ¢ : R — S. We begin with some equivalent characterizations of the
condition that a point lies in the image.

Definition 3.6.3.2. A morphism ¢ : X — S of schemes will be called dominant if the scheme-
theoretic image of ¢ is dense.

Lemma 3.6.3.3. A morphism of integral schemes is dominant if and only if the generic point of the
target is contained in the image.

Example 3.6.3.4. Consider the map SL, — A? obtained by projection onto the first column. Ring
theorretically, if we identify k[SLs| = k[x11, %12, To1, T2/ (11222 — T12221 — 1), then map in
question is given by the inclusion of k[x11,z91]. This ring map is injective, so the morphism in
question is dominant, but note that the morphism SLs — A? is not surjective. Indeed, the first
column of an invertible 2 x 2-matrix over any ring cannot be identically zero. Thus, the scheme-
theoretic image of a ring map, and the image of the associated map of spectra need not coincide in
general.
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Lemma 3.6.3.5. A morphism ¢ : R — S of affine schemes is dominant if and only if ker(yp) is

3.6.4 Dominant maps and pullbacks of divisors

Construction 3.6.4.1. Given a dominant morphism ¢ : X — S of integral schemes, we can define
a pullback of Cartier divisors as follows. First, let us treat the case of affine schemes.

Thus, assume ¢ : R — S is a homomorphism of integral domains such that the induced map
on spectra is dominant. Given an invertible -module L, we obtain a Cartier divisor by considering
L — L®r K = K. Now, if R — S is dominant with corresponding inclusion K < F, then we
see that S — F is injective as well. In that case, the specified isomorphism L ® g K — K induces
a isomorphism

(Lop K)ok EX Lo (K®x E)2XLQrE -~ FE

and the composite L ®g S — L ® g E = F yields a Cartier divisor. Alternatively, if we think in
terms of the {U;, 0; }, then we can simply pullback the defining equations.

Proposition 3.6.4.2. Suppose R and S are integral domains, and p : R — S is a dominant ring
homomorphism with K the fraction field of R, and E the fraction field of S.
1. There is a commutative diagram of the form

K> 4y Cart(R)

.

px 9 Cart(.9),
where the left hand map is inclusion K* — E* and the right hand map is the pullback on
Cartier divisors from Construction 3.6.4.1.
2. If R and S are furthermore, locally factorial, Noetherian and normal, then we can replace
Cart(—) by Div(—).
3. The induced maps of kernels coincides with the pullback map of unit groups.
4. The induced maps of cokernels coincides with the pullback map of Picard groups.

Proof. For the first statement, the only thing that has to be checked is commutativity of the diagram.
Given an element f € K, itis sent to the Cartier divisor Rf C K. Unwinding the definitions, this
issentto Sf C F, as expected.

For the second statement, we appeal to the identification of Proposition 3.6.2.4 to transport the
pullback on Cartier divisors to Weil divisors (this is compatible with the divisor map by construc-
tion).

The final two statements follow by unwinding the definitions. O

If ¢ : X — Y is a dominant morphism of integral schemes, then we can always cover X and
Y by open affine schemes such that induced maps of affine schemes are dominant morphisms as
above. In that case, given an open affine cover U; of Y, and a line bundle .Z, we can realize the
Cartier divisor on U; as a generic trivialization as above. In that case, the pullback is defined on the
relevant open cover as above.
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3.7 Homotopy invariance, localization and Mayer-Vietoris

Having developed a fair amount of technology for studying Picard groups, we now reap the benefits
and deduce various basic properties that show Pic(—) acts like a cohomology theory: we show it is
Al-invariant, and a suitable form of Mayer-Vietoris holds.

3.7.1 Homotopy invariance

The inclusion map R — R[t] is a dominant ring homomorphism. Assuming R is a domain, then
RJt] is also a domain. Therefore, there is an induced pullback map Cart(R) — Cart(R][t]). If we
write K for the fraction field of R, then we can identify the fraction field of R[t] with K (¢).

Exercise 3.7.1.1. If R is a locally factorial Noetherian normal domain, then R]t] is as well.

In that case, there is a morphism of complexes of the following form:

(3.7.1) KX — 5 @ Y/
{pCR|ht(p)=1}

|

K(t)* —> a Z.

{pCR[t)ht(p)=1}

The left vertical map is evidently injective. We now describe the height 1 prime ideals in R[t] more
geometrically. If p is a prime ideal in R[t] that has height 1, then the pullback under the ring map
R — RJt] is a prime ideal in R, which may not have height 1. For example, the homomorphism
Z — R induced by the unit, determines a homomorphism Z[¢t] — R]t]. Any irreducible polynomial
in ¢ with integral coefficients therefore defines an ideal in R[t], which is a height 1 principal ideal.
Note that the pullback of this ideal to R under R — R]t] is R itself.

On the other hand, the evaluation map R[t] — R defines height 1 prime ideals of the form p|[t]
in R|[t]; the pullback of such an ideal to R under R — R][t] is precisely p. Only these latter prime
ideals are in the image of the pullback map. We summarize this observation in the following result.

Lemma 3.7.1.2. The pullback map

b z— b =z

{pCRht(p)=1} {pCR[t]Iht(p)=1}
is injective and its image consists of those height 1 prime ideals of the form plt].

To study the homotopy invariance question, it suffices to show that all height 1 prime ideals
in R[t] differ from a sum of those of the form p[t] by the divisor of a rational function. To this
end, suppose q C R[t] is a height 1 prime ideal. In that case, we can consider the image of ¢ in
K[t] O R[t]. Now, since K is a field, K[t] is a principal ideal domain, so the ideal q @ K|t]
is necessarily principal. Choose a generator f of the ideal q ® g K[t]. The element f yields an
element of K (t).
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Now, we analyze the principal divisor attached to f. If we pick generators fi, ..., f, of p, then
we can write these in the form f;(t) = ag; + - - - + ap, ;t"* where each a; € R. The corresponding
element of K[t] is obtained by introducing denominators. Since the ideal q @ gy K|[t] is principal,
that means after inverting coefficients, f;(t) = «a; f(¢) for o; € R. From the form of these expres-
sions, we can deduce that div( f) differs from q by prime divisors in the image of the pullback map.
Altogether, we have established the following fact:

Theorem 3.7.1.3 (Homotopy invariance). Assume X = Spec R, with R is a locally factorial
Noetherian normal domain.
1. the map Pic(X) — Pic(X x Al) is an isomorphism;
2. the map of Equation 3.7.1 is a quasi-isomorphism of complexes, i.e., induces an isomorphism
after taking cohomlogy.

Proof. Point (1) is established by the discussion just prior to the statement. For Point (2), we simply
describe the maps on cohomology. That the map of complexes induces an isomorphism on H? (i.e.,
after taking kernels) follows from Proposition 1.5.1.6 and an isomorphism on H' (i.e., after taking
cokernels) follows from the conclusion of Point (1). Since the complexes in question have only 2
terms, there are no other possibly non-vanishing cohomology groups. O

Example 3.7.1.4. Suppose R is a principal ideal domain. In that case, R is a UFD, and therefore
Pic(R) = 0 by the structure theorem for finitely generated modules. Theorem 3.7.1.3 and an
induction argument then show that if X = Spec R, Pic(X x A™) = 0 as well. For example, we
see that A7 has trivial Picard group.

Example 3.7.1.5. As is the case with units, the Picard group is not A'-invariant on all rings. More-
over, counterexamples to A'-invariance exist even for reduced rings. For example, one may check
that if R = k[x,y]/(y?> — 23), then the map R + R[t] is not an isomorphism on Picard groups.

Remark 3.7.1.6. Theorem 3.7.1.3 is not the best possible A'-invariance result for Picard groups.
Indeed, if R is a ring, then evaluation determines a homomorphism Pic(R[t]) — Pic(R) for any
ring R. Therefore, A'-invariance is equivalent to establishing the kernel of this map is trivial. The
kernel corresponds to invertible R[t]-modules L such L/tL = R, and thus one would like to show
that if L is a module such that L/t L is trivial, then L is already trivial.

Fix an isomorphism L/tL = R. On the other hand, if R is a domain, with fraction field K,
then we know that L ® gy K[t] is a trivial rank 1 module. Therefore, we can fix a trivialization
L ®pgpy K[t] = K][t] as well. Because L is finitely presented, we can find f € K such that the
above trivialization extends to an isomorphism L ® gy Ry[t] = Ry[t]. In this way, we obtain an
isomorphism Ry = L/tL ®r Ry = Ly/tLy = Ry, which corresponds to a unit in R;. Modifying
the trivialization of L ®p K [t] by this unit, we can extend the isomorphism L/tL = R over Ry[t].
One then wants to show that under suitable hypotheses this isomorphism can be extended over all of
RJt]. This can be accomplished, e.g., if R is a Noetherian normal domain. However, it holds even
more generally for semi-normal rings, which essentially rule out precisely singularities of “cusp”
type (cf. Example 3.7.1.5). See [?] [?] and [?] for more details.
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3.7.2 The localization sequence

Suppose X is a locally factorial normal integral scheme and U C X is an open subscheme. In that
case, there is an induced restriction morphism

Pic(X) — Pic(U).

If U is non-empty, then this homomorphism is dominant so we have pullbacks of divisors as above.
Let K be the fraction field of X, which is necessarily also the fraction field of U. In that case, the
induced map of complexes takes the form:

KX —— @ Z-x
{z€X|codimz=1}

|

K— f  z-a
{zeU|codimz=1}

The left hand vertical map is an isomorphism. Unwinding the definition of pullback of Cartier divi-
sors and the identification with Weil divisors, since all codimension 1 points of U are codimension
1 points of X, it follows that the right hand vertical map is surjective and corresponds simply to the
projection onto the factors corresponding to codimension 1 points in U. Now, X \ U is a closed
subscheme of X and if X is Noetherian, necessarily has finitely many codimension 1 irreducible
components. Putting everything together, we obtain the following result.

Theorem 3.7.2.1 (Localization sequence). Suppose X is a locally factorial Noetherian integral
normal scheme and U C X is a non-empty open subscheme.
1. There is a short exact sequence of complexes of the form:

0 K~ K>
0— + — N — N — 0.
7 Dz Dz
{zeX|codimz=1ze X\U} {z€X|codimz=1} {z€U|codimz=1

2. There is an exact sequence of groups of the form:

0— I(X,0%) — (U, 0F) — P Z-x —» Pic(X) — Pic(U) — 0.
{z€X|codimz=12z€ X\U}

Proof. The first point is an immediate consequence of the analysis before the statement. The second
point follows immediately from the first by taking the long exact sequence in cohomology associated
with a short exact sequence of complexes. 0

Corollary 3.7.2.2. If X is a locally factorial Noetherian normal integral scheme, and U C X is a
non-empty open subscheme whose complement X \ U has codimension > 2 in X, then the pullback
maps Pic(X) — Pic(U) andT'(X,0%) — T'(U, Of;) are both isomorphisms.
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Example 3.723. If X = P}, n > 2 and x € X is a Z-point (e.g., the point [0 : --- : 0 : 1] in
homogeneous coordinates), then Pic(X) — Pic(X \ z) is an isomorphism.

Example 3.72.4. If X = P7, then we can compute Pic(X) using the localization sequence and
induction. Indeed, X has an open subscheme A7 that has trivial Picard group by Example 3.7.1.4.
Moreover, by homotopy invariance of units we conclude that I'(A7, & g%) = 7Z* = Z/2. In that
case, the localization sequence reads:

7.)2 — 7. —s Pic(P}) — Pic(A}) — 0;

where the factor of Z is the free abelian group of rank 1 corresponding to the codimension 1 point of
P? defined by the copy of P, complementary to A%. Since Pic(AZ%) = 0 and any homomorphism
Z/2 — Z is trivial, we conclude that Pic(P%) = 0.

3.7.3 Zariski patching and Mayer-Vietoris sequences

Suppose X is a locally factorial Noetherian normal integral scheme and X = U U V for open
subschemes U and V. In that case we have a commutative square of the form

uvnv —U
v X.

Both the vertical and horizontal maps in this diagram give rise to localization sequences. The
relevant restriction maps then give rise to maps

Pic(X) — Pic(U) ® Pic(V) T(X,0%) — T(U,0F) @ T(V,0y)
and we also have “difference” maps
Pic(U) @ Pic(V) — Pic(UNV) T(U,05)@T(V,07) — T(UNV, 05,

These maps are induced by morphisms of complexes, which we now describe.
Assume K is the fraction field of X. In that case, there is a morphism of complexes of the form:

KX KX K*
I . I . I
Z D z D z
{z€X|codimz=1} {z€U|codimz=1} {z€V|codimz=1}

Likewise, there is a difference map at the level of complexes:

K K>~ KX
| . ! ., !
Z e =z o z

{z€U|codimz=1} {z€V|codimz=1} {zeUNV|codimz=1}
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defined as follows. The map K* @& K* — K* is given by (f, g) — fg~! and the map

@ Z-x| @ @ Z x| — @ Z

z€U|codimz=1 z€V|codimz=1 zeUNV |codimz=1

gotten by projection onto the factors corresponding to those codimension 1 points on X lying in
U NV and on such factors sending send (z,y) to x — y. You can check that the map defined
componentwise in this fashion is a homomorphism of complexes. The following result is obtained
by diagram chasing using localization sequences.

Theorem 3.7.3.1 (Mayer-Vietoris). Suppose X is a locally factorial Noetherian normal integral
scheme, and U and V' are open subschemes such that X = U U V.
1. Restriction and difference (as defined above) fit together to give a short exact sequence of
complexes of the form:

K~ K~ K* K>
0— N — N S N — N — (
© Z © Z © Z D Z
{zeX|codimz=1} {z€U|codimaz=1} {zeV|codimz=1} {zeUNV|codimz=1}

2. There is an induced Mayer-Vietoris exact sequence of the form

0 —T(X,05) — U0, eT(V,0p) —T(UNV,05,,)
— Pic(X) — Pic(U) @ Pic(V) — Pic((UNV) — 0.

The existence of this Mayer—Vietoris sequence has a number of other consequences.

Definition 3.7.3.2. A morphism f : X — Y of schemes will be called Zariski locally trivial with
fibers isomorphic to A™ if there exists an open cover U; of Y such that f~!(U;) form an open cover
of X and there are isomorphisms ; : f~1(U;) — U; x A",

Corollary 3.7.3.3. Assume X and Y are locally Noetherian normal integral schemes and f :
X — Y is a Zariski locally trivial morphism with fibers isomorphic to A™. The pullback map
f: Pic(Y) — Pic(X) is an isomorphism.

Proof. TBy Mayer—Vietoris this reduces to homotopy invariance for Picard groups in the affine
case. O

Corollary 3.7.3.4. For any integer n > 1 there is an isomorphism Pic(P}) = Z.

Proof. For n = 1, we know that Pz’c(]P’%) = 7. We claim that for any integer n > 2, the scheme
[P pt has the structure of a Zariski locally trivial morphism with A}g fibers over ]P’Z’l. Indeed,
simply project away from the point (you can write down formulas when = [0 : --- : 0 : 1] and
P%fl is identified with [z : -+ : 2,1 : 0]). The result then follows by induction using the fact
that Pic(IP}) — Pic(IP} \ pt) is an isomorphism for n > 2. O
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In this section, we would like to analyze sheaf cohomology from the point of view of abstract
homotopy theory. I could try to do this from the point of view of co-categories to give a truly
modern treatment, but since this would require introducing a rather long list of preliminaries, I have
chosen to follow a middle path: using the theory of model categories to construct derived categories
and various related homotopy categories.

4.1 Model categeories

In this section, we want to give the motivation and basic definitions around the theory of model
categories. We will keep two examples in mind.

4.1.1 Localizations of categories: motivation

The classical definition of the homotopy category of topological spaces is performed as follows.
Write Top for the category of all topological spaces. A continuous map f : X — Y of topological
spaces is a homotopy equivalence if there exists a homotopy inverse, i.e., a morphism g : ¥ — X
such that the two composites g o f and f o g are homotopic as maps to the relevant identity. This

125
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notion of homotopy equivalence of maps is an equivalence relation, and one defines the homotopy
category Ho as the category as a quotient category: the objects of Ho are the same Top], but for
which the morphisms are the quotient by the relevant equivalence relation. By construction, there is
a functor

Top — Ho;

this functor has the following universal property, which I will phrase rather vaguely: any functor ¥’
from Top to some category C that takes homotopy equivalences to isomorphisms factors uniquely
through Ho. This kind of construction is part of the general theory of localizations of categories:
one would like to build a “universal” category in which a prescribed set of morphisms have been
forced to be isomorphisms.

If we restrict our attention to CW complexes, then homotopy equivalences can be detected on
homotopy groups in the following sense. Recall that one defines a morphism f : X — Y of topo-
logical spaces to be a weak equivalence if the map mo(X) — m(Y) is a bijection, and for every
point x € X, and every integer ¢ > 1 the map f, : m(X,z) — (Y, f(z)) is an isomorphism
of groups. The cellular approximation theorem says that if f : X — Y is any continuous map,
then f is homotopic to a cellular map. If f is a cellular map of CW complexes, then f is a weak
equivalence if and only if f is a homotopy equivalence, i.e., one may build a homotopy inverse to
any cellular map. The CW approximation theorem says that if X is any topological space, then one
may build a CW complex Z and a weak equivalence f : Z — X. Thus, up to weak equivalence,
every space is equivalent to a CW complex. Unfortunately, weak homotopy equivalence is not an
equivalence relation: while weak homotopy equivalence is reflexive and and transitive (composites
of weak homotopy equivalences are weak homotopy equivalences), it fails to be symmetric as the
CW approximation theorem suggests. In that case, we may consider the equivalence relation gener-
ated by weak homotopy equivalences. Unwinding the notion of equivalence relation generated by a
reflexive and transitive relation, we will say that two spaces X and X’ have the same weak homo-
topy type if there is a finite sequence of spaces Xo = X, X1,..., X, Xp11 = X', 21, ..., Znia
and maps f; : Z; — X; and g; : Z; — X;_1 that are all weak equivalences.

Note that if f : X — Y is a weak equivalence of topological spaces, then the induced map
on singular homology (or cohomology) is an isomorphism. In fact, there are many functors from
topological spaces to abelian groups that transform weak equivalences into isomorphisms. As such,
one would like to construct a weak homotopy category which is universal in the sense that any
functor that transforms weak equivalences into isomorphism factors uniquely through this weak
homotopy category. One can build such a category using the ideas sketched above. Around the same
time, D. Kan introduced a combinatorialization of homotopy theory using the notion of (abstract)
simplicial set. There is a combinatorial notion of weak equivalence of simplicial sets, but it once
again fails to be an equivalence relation and one would like to effectively construct the homotopy
category.

Suppose R is a commutative ring, and C'hp, is the category of (say, bounded below or bounded
above) (co)chain complexes of R-modules, or if X is a topological space, we can write Ch(Ox)
for the category of bounded complexes of sheaves of &y-modules. In this context, there is the
notion of a chain homotopy of R-modules or of complexes of &x-modules. Chain homotopy is
an equivalence relation and one can construct the homotopy category of C'hp in exactly the same
way as one constructed the homotopy category of topological spaces above. Onwhen proving the
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Mayer-Vietoris theorem or excision for singular homology, one approach is to replace the the com-
plex of singular chains on a topological space X by a subcomplex of chains adapted to the open
covering. The inclusion of this sub-complex is not a chain homotopy equivalence, but it does in-
duce an isomorphism on homology groups, and this induces a finer notion of equivalence that is
frequently useful.

Definition 4.1.1.1. If f : A — B is a morphism of (co)chain complexes of sheaves of &'x-modules,
then f is a quasi-isomorphism if f induces an isomorphism on (co)homology sheaves.

As above, we would like to formally invert quasi-isomorphisms; the resulting category, if it
exists, is called the derived category of R-modules. The process of constructing the derived category
if formally analogous to that of constructing the weak homotopy category, so we would like to
introduce a formalism where we can perform all of these constructions together.

4.1.2 Limits and colimits

In order to build the homotopy category in an effective way (i.e., so that we can give an explicit
description of morphism sets in the homotopy category) we will need to know that various con-
structions we would like to perform in our category can actually be performed. For example, we
built pushouts of topological spaces via an explicit quotient construction. Likewise, we also built
fibered products in topological spaces by an explicit construction. Both of these constructions have
universal properties that we discussed (the coproduct for maps out, and the fiber product for maps
in). We now abstract these kinds of constructions.

Suppose I is a category. We will call I small if it has a set of objects and finite if it has a finite
set of objects. Fix a category C. By an I-diagram, we will mean a functor I — C. Two simple
examples to keep in mind are the categories Iy and Jg given pictorially by:

K> ok 4k ok 4k —> X,

where we have drawn the objects and the non-identity arrows in the category. Thus a functor from
Iy — Top consists of a diagram of topological spaces of the form

X —Z+Y.

The fiber product X Xy Z has the universal property that it comes equipped with two projection
maps X Xz Y — X and X xzY — Zgiven a space W together with maps W — X and W — Y
such that the two composites W — Z agree, there is a unique morphism W — X X z Y making the
relevant diagrams commute. We can rephrase this universal property using the diagram category I
as follows. The topological space W gives rise to a “constant” Ip-diagram
WL w Lw

In fact, assigning to a topological space IV the corresponding constant diagram determines a functor
¢ : Top — Fun(Iy, Top). In that case, specifying morphisms W — X and W — Y such that
the composites to W — Z agree amounts to specifying a natural transformation from the constant
Ip-diagram attached to WW. The universal property can then be stated as follows:

Hom ryp(15, Top) (c(W),X = Z «Y)=Homrep(W, X xy Z).
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The space X Xy Z is functorial in the diagram X — Z <« Y/, i.e., it corresponds to a functor
D : Fun(Iy, Top) — Top

which is characterized by the above property. The functor D is called a right adjoint to the functor
c. We abstract this discussion as follows.

Definition 4.1.2.1 (Constant diagram). If I is a small category, and C is a category, then we write
c1 for the constant functor assigning to an object X of C the diagram cy(X) that has cf(X)(i) = X
for every i € Ob(I) and ¢1(X)(i — ') = idx for every morphism i — 4 in L.

Definition 4.1.2.2 (Limits). If I is a small category, and C is a category, then we will say that
I-shaped limits exist in C if the functor ¢ has a right adjoint functor

li%n : Fun(I,C) — C,
i.e., forany ' : I — C we have
Hom gy 1,c)(c1(X), F) = Homg(X, lim F).

We will say that a category C is complete if for any small category I, I-shaped limits exist in C.

Example 4.1.2.3. Here are some other important examples. Consider the category
* ¢k,

Then limits for this diagram are called equalizers. A limit for the empty diagram is what is typically
called an final object. Inverse limits are limits in the above sense as well: take I to be the category
associated with the ordered set of natural numbers.

We can phrase the pushout construction analogously. The universal property for pushouts of
topological spaces is phrased via morphisms from Jy — Top. Indeed, if we have a diagram of
spaces of the form X <+ Z — Y, then the universal property of the pushout is that if we have a
space W and morphisms X — W and Y — W whose restrictions to Z coincide, then the pushout
X Uz Y comes equipped with two morphisms iy : X — X Uz Y andY — X Uz Y and a unique
morphism X Uz Y — W making all the relevant diagrams commute. This can be rephrased in
terms of the constant diagram functor as well:

Hom gy (op.jy, Top) (X~ Z =Y, c¢(W)) =Hompop(X LUz Y, W).

In fact, this construction is functorial in the input diagram, and the coproduct is a left adjoint to the
constant diagram functor.

Definition 4.1.2.4. If I is a small category, and C is a category, then we will say that I-shaped
colimits exist in C if the constant functor cg has a left adjoint functor, i.e., forany F' : I — C and
any object X € C

HomFun(I,C) (F, Ct (X)) = Homc (COhmI F, X)

We will say that C is cocomplete if for any small category I, I-shaped colimits exist in C.
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Example 4.1.2.5. If one takes the empty category, then a colimit of this shape corresponds to what
is usually called an initial object. If one takes the category

* %k,

then a colimit for this diagram is called a coequalizer. Direct limits are examples of colimits where
one takes I to be the category attached to the partially ordered set of the natural numbers.

Proposition 4.1.2.6. A category C is (co)complete if and only if it has all small (co)products and
(co)equalizers.

Proof. One direction here is immediate from our examples. The converse is obtained by factoring
an arbitrary category in terms of these constructions. O

The following result will be very useful.

Proposition 4.1.2.7. If I' : C — D and G : D — C is an adjoint pair of functors, then I preserves
colimits and G preserves limits.

Proof. MacLane. O

Example 4.1.2.8. The category Set is a model category: that all small limits and colimits exist can be
seen explicitly in the case of (co)products and (co)equlizers. Products are simply cartesian products
and equalizers are defined set-theoretically. Coproducts are disjoint unions and co-equalizers are
given by the relevant quotient construction.

Example 4.1.2.9. If R is a commutative ring, then the category Modp, is a model category. Products
and equalizers can be computed from the corresponding set-theoretic variants, i.e., are cartesian
products or equalizers. The coproduct is the direct sum, while the co-equalizer of two maps is the
difference cokernel, i.e.,if f : A — X and g : A — X are two morphisms, then the coequalizer of
f and g is simply the cokernel of the map f — g.

Example 4.1.2.10. If R is a commutative ring, then the category of (bounded, bounded above,
bounded below, or unbounded) chain complexes of 2-modules is a model category. Products, co-
products and equalizers or co-equalizers are inherited from R-modules by working degreewise.

Example 4.1.2.11. The category Top is a model category. Products and equalizers are defined in
the usual way (i.e., Cartesian product with product topology and equalizer with subspaces topology)
and likewise for coproducts and coequalizers.

Example 4.1.2.12. If X is a topological space, then the category of sheaves of abelian groups on X
is a model category. Coproducts and co-equalizers are defined by sheafifying the relevant presheaf
notions. The relevant presheaf notions of products and equalizers coincide with their sheaf variants.
Likewise, the category of chain complexes of sheaves of abelian groups on X is a model category
(working degreewise).

Underyling a number of these examples is the following general claim.

Proposition 4.1.2.13. If C is a category that is (co)complete, and if D is any small category, then
the category of functors Fun(D, C) is again (co)complete.
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4.1.3 Model categories

We now want to “do” homological algebra. As we discussed in the examples above, we have a class
of morphisms that we would like to invert (e.g., weak equivalences of topological spaces, quasi-
isomorphisms of chain complexes, etc.). Typically, when we want to compute something (e.g.,
homology of a space, etc.), we choose a model where we can conveniently make computations.
In order to effectively invert the relevant class of morphisms, it is helpful to have some supporting
morphisms to use.

Lifting properties

E.g., when we study topological spaces, we spend a lot of time discussing Serre fibrations and
cofibrations. Serre fibrations can be characterized by a suitable lifting property. Likewise, in homo-
logical algebra, projective modules can be characterized by suitable lifting properties.

Definition 4.1.3.1. Suppose we are given a commutative square of the form

A——sX
"
B——Y.

If there exists a morphism ¢ : B — X such that all the resulting triangles in the diagram:

A——X

7

commute, then we will say that f has the right lifting property with respect to i or i has the left-lifting
property with respect to f.

Example 4.1.3.2 (Projectives and injectives). Suppose R is a commutative ring. The notions of
projective and injective R-modules can be phrased in terms of these lifting properties. Indeed, a
module P is projective if and only if given any diagram

0——M

L

P——N

where f is a surjection there exists a morphism P — M making the relevant triangles commute.
In the terminology above: projective modules are precisely those modules for which the trivial
homomorphism 0 — P admits the left-lifting property with respect to any surjective R-module
homomorphism. Likewise, an R-module I is an injective R-module if given any diagram

M——1

i

N——0
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where ¢ is an injection, there exists a morphism N — I making the resulting diagram commute,
i.e., injective R-modules are characterized by the property that the trivial map I — 0 has the right
lifting property with respect to an arbitrary injection.

Example 4.1.3.3 (Serre fibrations). A morphism f : X — Y of topological spaces is called a Serre
fibration if it has the right lifting property with respect to the morphisms D™ — D" x I where D"
is the n-disc and [ is the unit interval.

Retractions

Suppose we are given a morphism f : X — Y. We will say that X is a retract of Y if there exists a
morphism r : Y — X such that the composite r o f = idx. Frequently, one will say X is a retract
of Y if the identity morphism on X factors through Y.

Example 4.1.3.4. Any retract of a projective R-module is projective. Any retract of an injective
R-module is injective.

Since retraction is a statement about factorizing morphisms (namely the identity morphism on
X), it will be useful to generalize the notion of retraction of an object to retraction of a morphism.

Definition 4.1.3.5. If C is a category, we will say that a morphism f is a retract of a morphism g if
there exists a commutative diagram of the form

A—s(C——A

T

B—sD——20B
where the horizontal composites are the identity maps on A and B respectively.

Remark 4.1.3.6. Suppose C is an arbitrary small category. Let I be the category
o — o,

The functor category Fun(I, C) is the category whose objects are morphisms f : A — B in C;
we will write Ar(C) for this category. A morphism in Ar(C) is simply a commutative diagram in
C. A retraction of a morphism as described in the preceding definition is simply a retraction of that
morphisms considered as an object in Ar(C).

Factorizations

Any function between sets admits a unique factorization as a surjection followed by an injection.
Indeed, any morphism f : S — T factors as the surjective function S — im(f) and the inclusion
im(f) — T. Likewise, analogous statements can be made for homomorphisms of groups, mor-
phisms of R-modules or morphisms of sheaves on a topological space. In fact, these factorizations
are even functorial. The existence of such (functorial) factorizations can be formalized in the no-
tion of a factorization system in a category and is exceedingly useful in analyzing exact sequences
of groups (it reduces problems about long exact sequences to corresponding problems about short
exact sequences).
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The notion of functorial factorization can be formalized as follows. If C is a small category, then
a collection of morphisms that contains the identity and is stable under compositions determines a
subcategory of Ar(C). Suppose we give ourselves two collections of morphisms that contain the
identity morphism and are stable under composition; these give rise to two subcategories of Ar(C).
A functorial factorization amounts to specifying two endofunctors L and R from Ar(C) to itself
such that (a) the composite R o L is the identity functor and (b) the functors R and L have image
in the specified subcategories of Ar(C). In other words, given a morphism f in C, the morphisms
L(f) and R(f) lie in the two distinguished subcategories and their composite in the identity.

Model structures

Definition 4.1.3.7. If C is a category, then a model structure on C consists of specifying three
classes of morphisms Cof, F'ib and W in C called the cofibrations, fibrations and weak equiva-
lences that are each (a) stable under composition and (b) contain the identity map on any object
satisfying the following axioms:

1. (2 out of 3) Given a pair of composable morphisms f and g, if any two of f, g or g f are weak
equivalences, then so is the third.

2. (Retracts) Any retract of a cofibration, fibration or weak equivalences is again a cofibration,
fibration or weak equivalence.

3. (Lifting) Say that a morphism is an acyclic cofibration (resp. acyclic fibration) if it is simulta-
neously a cofibration (resp. fibration) and weak equivalence. A trivial cofibration has the left
lifting property with respect to any fibration; a trivial fibration has the right lifting property
with respect to any cofibration.

4. (Functorial factorizations) Any morphism can be functorially factored either as a trivial cofi-
bration followed by a fibration and as a cofibration followed by a trivial fibration.

Example 4.1.3.8. Any complete and cocomplete category C admits a model structure. One can take
the isomorphisms as one of the sets of morphisms, and then all morphisms as the other two sets of
morphisms.

Definition 4.1.3.9. A category C is a model category if is complete, cocomplete and admits a model
structure.

Example 4.1.3.10. If C and D are model categories, then Cx D has a model structure: the “product”
model structure.

Remark 4.1.3.11. The terminology model category was introduced by Quillen in his short book
“Homotopical algebra”; it is an abbreviation of “category of models for a homotopy theory.” It is
important to remember that we have just given one particular axiomatization, and the one we have
given differs from that given by Quillen. In the literature, there are a number of minor variations on
the above axioms. Quillen only required his model categories have finite limits and colimits, and
did not require factorizations to be functorial. In most of the examples considered by the theory,
the stronger axioms we have chosen are satisfied. Moreover, the axioms above overdetermine the
cofibrations and fibrations as the following lemma shows.

Lemma 4.1.3.12. If C is a category with a model structure, then a morphism f : A — B is
a cofibration (resp.acyclic cofibration) if and only if it has the left lifting property with respect
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to acyclic fibrations (resp. fibrations). Corresponding statements hold for fibrations and trivial
fibrations.

Proof. One implication is immediate from the definitions. Suppose f : A — B is a morphism,
which we assume has the left lifting property with respect to acyclic fibrations. In that case, we can
factor f = pi as a cofibration followed by an acyclic fibration, say i : A — C andp : C — B.
Diagramatically, we are given a diagram of the form:

i
—_—

C
)

s

-

Sy

—> B

so there is a morphism j : B — C making the resulting triangles commute. In that case, we can
unfold the above diagram to one of the following form:

A—s>A—s A

b,k

B—J>C—p>B7

which exhibits f as a retraction of 7. As a retract of a cofibration, it follows that f is also a cofibra-
tion. The other statements are established in a similar fashion. O

One important consequence of the above lemma is that if we specify the (co)fibrations and weak
equivalences in a model category, then the third class of morphisms is uniquely determined.

Corollary 4.1.3.13. Cofibrations and trivial cofibrations are stable under pushouts (i.e., cobase
change), while fibrations and trivial fibrations are stable by pullback (i.e., base change).

Proof. Suppose we have a pushout diagram

and a lifting problem of the form

If 4 is a cofibration, then whenever f is an acyclic fibration our lifting problem has a solution, i.e.,
there exists a morphism B — X making the resulting triangles commute. In that case, since D
is a push-out, and we are given morphisms B — X and C' — X whose composites to A agree,
there exists a unique morphism D — X making all resulting diagrams commute. This morphism
provides the required solution to the lifting problem. The other cases are established similarly. [
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4.1.3.14 (Fibrant and cofibrant objects). If C is a model category, then C necessarily has initial and
final objects. We will provisionally write () for the initial object and * for the final object. An object
X in C is called cofibrant if the map from the initial object to X is a cofibration and fibrant if the
map from X to the final object is a fibration.

4.1.3.15 (Fibrant and cofibrant replacements). If C is a model category, then by the factorization
axioms the map () — X can be (functorially) factored as a cofibration followed by an acyclic
fibration or as an acyclic cofibration followed by fibration. In the former case, our factorization
reads:

) — QX — X;

here QX is cofibrant while the map QX — X is an acyclic fibration, in particular a weak equiva-
lence. We will refer to QX as a (functorial) cofibrant replacement for X.
Similarly, if we factor X — x as an acyclic cofibration followed by a fibration, we get

X — RX — *;

here RX is fibrant, while X — RX is an acyclic cofibration, in particular a weak equivalence. We
will refer to RX as a (functorial) fibrant replacement for X.

4.1.4 Model structures on chain complexes

Our next goal is to analyze a number of examples. Let us fix some terminology before we move
forward. Suppose R is a commutative ring. By a cochain complex of R-modules, we will mean a
Z-graded R-module M® together with maps d’ : M* — M*! such that d+! o d* = 0 (we will say
that the differential has degree +1). By a chain complex of R-modules, we will mean a Z-graded
R-module M, together with maps d; : M; — M;_1 such that d; od; 1 = 0 (we say that differential
has degree —1). We will say that M*® is bounded above if there exists an integer j such that M’ = 0
whenever 7 > 1.

We write Ch%o for the chain complexes situated in non-negative degrees. Equivalently, these
can be thought of cochain complexes situated in non-positive degrees. Likewise, we write C' h§0 for
the cochain complexes situated in non-negative degrees. -

Theorem 4.1.4.1 (Projective model structure). Let R be a commutative ring. The category C’h%0
admits a model structure where

1. weak equivalences are quasi-isomorphisms;

2. cofibrations are monomorphisms with degreewise projective cokernel;

3. fibrations are surjections in positive (> 0) degrees.

Theorem 4.1.4.2 (Injective model structure). Let R be a commutative ring. The category Ch§0
admits a model structure where -
1. weak equivavalences are quasi-isomorphisms;
2. fibrations are epimorphisms with degreewise injective kernel;
3. cofibrations are monomorphisms in positive degrees.

Theorem 4.1.4.3 (Injective model structure; sheaves). If (X, Ox) is a ringed space, then the cate-
gory C hf)o( of non-negatively graded cochain complexes of O'x-modules admits a model structure
where
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1. weak equivalences are quasi-isomorphisms;
2. fibrations are epimorphisms with degreewise injective kernel;
3. cofibrations are monomorphisms in positive degrees.

The easy-to-verify axioms

Note that Theorem 4.1.4.2 is a special case of Theorem 4.1.4.3 taking X to be the 1-point space
with sheaf of rings R. A number of the constructions involved in establishing Theorems 4.1.4.1 and
4.1.4.3 are so similar that we will establish them simultaneously.

First, observe that Ch%o and Chf’of have all small limits and colimits as these are computed
degreewise and these statements are inherited from the underyling categories (either R-modules or
O'x-modules).

Likewise, since epimorphisms, monomorphisms and isomorphisms are stable under composi-
tion and contain the identities it follows that weak equivalences are stable under composition in
either model structure, and that cofibrations in the injective model structure and the fibrations in the
projective model structure are stable under composition.

Suppose f : A — Band g : B — C are two fibrations in the injective model structure. The
composite g f is necessarily also surjective in positive degrees and it remains to check that it has
injective kernel. To this end, one checks that there are short exact sequences of the form:

0 — ker(f); — ker(gf); — ker(g); — 0.

Since ker( f); is injective, this short exact sequence is split. Since ker(g); is injective, it follows that
ker(gf); is the direct sum of injective &'x-modules, and is thus itself injective.

Likewise, suppose f : A — B and g : B — ( are two cofibrations in the projective model
structure. The composite g f is necessarily also injective in positive degrees and it remains to check
that it has degreewise projective cokernel. In this case, diagram chasing gives a short exact sequence
of the form

0 —> coker(f); — coker(gf); — coker(g); — 0.

Once again, this short exact sequence is split and thus coker(gf); is a sum of projective modules
and thus projective.

2 out of 3. To check that 2 out of 3 property for weak equivalences, simply observe that a morphism
f : A — B of chain complexes is a quasi-isomorphism if the induced maps on homology modules
are isomorphisms of R-modules. Now, by functoriality of homology, H;(gf) = H;(g) o H;(f), so
the 2 out of 3 property for weak equivalences follows from the 2 out 3 property for isomorphisms
of R-modules.

Retracts. To see that retracts of cofibrations, weak equivalences or fibrations are again of the same
sort, we begin by observing that retracts of projective modules or injective sheaves are again auto-
matically projective or injective and likewise straightforward diagram chasing shows that retracts of
epi or monomorphisms are again epi or monomorphisms. Likewise, by functoriality of homology,
if f is aretract of g, then H;(f) is a retract of H;(g) for each i. Thus, if H;(g) is an isomorphism for
each i, then H;(f) must again be an isomorphism as retracts of isomorphisms are isomorphisms.
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The lifting axiom

Now, we verify the lifting axioms; these are essentially induction arguments using the extension
properties of injective or projective modules.

Lemma 4.1.4.4. Given a commutative diagram of objects in C’hg0 of the form:

A——X

b

B——=Y

where i is a monomorphism with degreewise projective cokernel and f is simultaneously an epimor-
phism in positive degrees and a quasi-isomorphism, there exists a morphism f : B — X solving
the lifting problem.

Proof. First assume that ¢ is a monomorphism with degreewise projective cokernel and f is simul-
taneously an epimorphism in positive degrees and a quasi-isomorphism.
Since ¢ is a monomorphism, there is a short exact sequence of chain complexes of the form

0—A-5B — coker(i) — 0,

where coker(7) is a chain complex of projective modules. Since coker(i) is degreewise projective,
these short exact sequences split degreewise. In particular, By = Ay @ coker(i)o.

Now, f is an epimorphism in positive degrees and the map fy : Ho(X) — Hy(Y) is an isomor-
phism by assumption. We thus have a commutative diagram of the form

X1 4>X04>H0(X)4>0

L

Y ——=Yy——= Hy(Y) ——=0.

A diagram chase (a.k.a., the four lemma) shows that Xy — Y must also be surjective in this
situation.

In that case, we define fo : By =2 Ay @ coker(i)g — Xo as follows. The diagram gives
a morphism Ay — X and the first component of By — Xy is this morphism. The diagram
gives a morphism By — Yj, which in conjunction with the splitting of By yields a morphism
coker(i)g — Yp. Since coker(i)g is projective and Xy — Y is surjective, we can choose a mor-
phism coker(i)g — X lifting this morphism.

Now, we work inductively to define the morphism B; to X; for [ > 0. To this end, observe that
what we have shown above yields an exact sequence of chain complexes

0—K—X—Y —0,

where K is an acyclic complex. As above, we can choose splittings B; = A; @ coker(i); where
coker(); is projective and the morphisms A; — X; are specified by commutativity of the diagram.
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The map X; — Y is surjective, and we have coker(i); — Y; determined by the splitting and
commutativity of the diagram.

As such, we can always pick a lift f; : coker(i); — X; lifting the given one. Without loss of
generality, we assume that f] : B; — Xj commutes with differential on X for j < [, and is likewise
compatible O

Lemma 4.1.4.5. Given a commutative diagram in Chgo of the form:

A——sX

b

B——Y

where i is simultaneously a monomorphism in positive degrees and a quasi-isomorphism and f is a
degreewise epimorphism with injective kernel, the resulting lifting problem has a solution.

Proof. Since f is a degreewise epimorphism with injective kernel, if ker(f) is the kernel, then
ker(f)? is an injective module for each 4. Therefore, there are splittings of the form X* = ker(f)!®
Y by the property of injectivity.

Now, we are working with cochain complexes, so the differential has degree +1, i.e., H 0 (A)is
a sub-module of A° equal to ker(d”). We therefore have a commutative diagram of the form

0——HYA) ——= A —— A!

L

0— H°(B) — B ——= Bl

By the 4-lemma since the map A' — B! is injective and the map H"(A) — H"(B) is an isomor-
phism, we conclude that A° — B? must also be injective. By the injectivity of ker(f)?, it follows
that we can extend the given map A — ker(f)° to a morphism B° — ker(f)°. Our candidate
lift f U is then this chosen morphism on one factor and the given morphism B — Y¥ on the other
factor. Working inductively as above gives the required lift. O

In order to establish the other lifting axiom, we introduce some helpful results. If A is a non-
negatively graded chain-complex, then assigning to A the term A,, determines a (family of) func-
tor(s) C’hl%0 — Modp. These functors admits left adjoints: indeed, if for an R-module M we
define D,,(M) to be the chain complex with D,,(M); = 0if i # n,n — 1 and equal to M when
i = n,n — 1; the unique potentially non-trivial differential D,,(M) — D,,_1(M) is the identity
map.

Lemma 4.1.4.6. If R is a commutative ring, and M is an R-module, then the map

HOHlChIZ%O (Dn(M)7 N) = HomMOdR (Ma Nn)

is an isomorphism.
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Corollary 4.1.4.7. If R is a commutative ring, and P is a projective R-module, then D, (P) is a
projective object in Chz ie., if M — N is any epimorphism of chain complexes, then given a
morphism D, (P) — N, there exists a lift D,,(P) — M. Likewise, arbitrary direct sums of Dy, (P)
are again projective chain complexes.

Proof. If M — N is an epimorphism, then M,, — N,, is an epimorphism. A morphism D,,(P) —
M corresponds to a morphism P — M, by the preceding lemma. Since P is projective and
M,, — N, is an epimorphism, there exists a lift P — N,,, which again by the preceding lemma
corresponds to a morphism D,,(P) — N. The second statement follows from the first. O

Henceforth, if A is a chain complex, we write Z(A) for the subcomplex of cycles, i.e., the
graded abelian group lying in the kernel of the differential, and B(A) for the boundaries, i.e., the
image of the differential on A. Now, suppose we have a diagram of the form

. X

N

B v

where A — B is an acyclic cofibration. This means thati : A — B is degreewise injective with
cokernel coker(i) a complex whose homology vanishes and has degreewise projective terms.

Lemma 4.1.4.8. If P is an acyclic object of C’h%o such that each P, is projective, then each
module Zy,(P) is projective and P is isomorphic to ®y~oDy(Zy—1(P)). In particular, P is itself a
projective chain complex.

Proof. If A is a chain complex, then the differential gives amap d : A,,—1 — A, —o. For any integer
n > 1, define 7>, A to be the complex that agrees with A in degrees > n and consists of im d in
degree n — 1. The inclusion 7>, A — A is a morphism of complexes that induces isomorphisms on
homology in degrees > n, but 7>, A has no homology in degrees < n by construction. In fact, if we
define 7<,, A to be the cokernel of 7>, A — A, then we have written A as an extension of complexes
whose homology is concentrated in degrees > n and < n.

Now, assume P is an acyclic complex whose elements are projective. In that case, since
Hy(P) = 0, it follows that P, — Py is surjective. Because Py is projective, we can split this
surjection and fix an isomorphism P; = ker(d;) ® Fy. As a summand of a projective module,
ker(dy) is again projective. Since Py — Py is surjective, we also see that 7> P = P. Putting these
two facts together, observe that we get a decomposition

P

I

T>1P = 759P & D1 (FPy) = m>2P & D1(Zy(P)).

Now, we proceed by induction. Since P is acyclic, ker(dy) = im(dz) and allows the induction to
proceed. The second statement follows from Corollary 4.1.4.7. O

Putting these facts together, we obtain the relevant lifting statement.
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Lemma 4.1.4.9. Given a diagram of the form

A——sX

L)

B——=Y

where f is an epimorphism in positive degrees and i is a monomorphism with projective cokernel
and a quasi-isomorphism, there exists a lift B — X making all triangles commute.

Proof. Since i : A — B is a monomorphism with projective cokernel and simultaneously a quasi-
isomorphism, there is a short exact sequence of chain complexes of the form

0 — A— B — coker(i) — 0

where coker () is an acyclic chain complex each of whose terms is projective. Since coker () is an
acyclic complex of projectives, it follows that coker (i) is a projective chain complex. Since the map
B — coker(4) is an epimorphism, we can therefore choose a splitting

B = A @ coker(7)

as complexes. Now, the map A — X is specified by the diagram, and we get a map coker(i) — Y’
from the morphism B — Y. Even though the map f : X — Y is not an epi-morphism, it is an
epimorphism in degrees > 0 and thus an epi-morphism onto its image. It follows that we can lift the
map coker(i) — Y to a morphism coker(i) — X, and any such choice yields the required lift. [

Functorial factorizations and the small object argument

To complete the proof of the model category axioms, we need to build our functorial factoriza-
tions. While this could be achieved by purely elementary inductive arguments, we will give a more
involved argument that works in a number of situations.

Recall that an R-module M is called compact if Homyjoq,, (M, —) commutes with filtered col-
imits. We observed earlier that the compact modules are precisely the finitely presented R-modules,
but this definition of compactness makes sense in other cocomplete categories as well. This notion
was sometimes called “sequential smallness” before the present terminology was adapted, and the
argument that follows is called the “small object argument” as a consequence.

Lemma 4.1.4.10. A chain complex A € C h%g is compact if and only if each A; is finitely presented
and at most finitely many A; are non-zero.

To build the required factorization of amap f : X — Y, we will simply build a new complex out
of X by attaching “cells” in a suitable fashion to guarantee that lifts exist. Here is the construction
more generally.

Suppose we have a set G of maps {f; : A; — B;};cs in some category C that we assume is
cocomplete. Now, fix a morphism f : X — Y. For each i, there is a set S(¢) indexing pairs (g, h)
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fitting into a commutative diagram of the form:

g
) >

A X
lfi lf
B

h

i —Y.

In that case, since C is cocomplete, it follows that U;er Uy pyes(iy Ai and Uier Ugg nyes() Bi are
both objects of C and we get a diagram of the form

Uier Uignmes) Bi <— Uier Ugnesi 4i — X,

and we define F' (G, p) as the colimit of the above diagram. In essence, we have built a new object
by gluing in all possible lifts. By the universal property of colimits, there is a map F}(G,p) — Y
as well such that p factors as:

X5 RGp Y

Note that by functorality of colimits, this construction is evidently functorial in p as well. The
new map Fj (G, p) — Y need not have lifts along the maps in GG, so we repeat the construction of
F1(G, p) with X replaced by F; (G, p) to obtain a new space F»(G, p). Continuing inductively in
this way, we obtain a sequence of spaces F;(G, p) and there is a factorization

ip lm lps

Y — Y — Y —

We then let i, (G, p) be the colimit colim,, F},(G, p). Once again, the universal property of colimits
shows that there is an induced factorization of p

X = F (G p) 25 Y,

and the construction is evidently functorial in p as well. We now observe that because F,. (G, p)
is constructed as a directed colimit, if we know that the sources of the morphisms f; are compact,
then poo, has the right-lifting property with respect to morphisms in . The above construction, in
conjunction with the following result is what is usually called the “small object argument.”

Proposition 4.1.4.11. If for each object f; € G the object C is compact, then the map F (G, p)
has the right lifting property with respect to every map in G.

Proof. Consider a diagram of the form

A
lfi J{Poo
B

Y

7
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Since A; is compact
Hom(A;, Fso (G, p)) = Hom(A;, colim,, F},(G, p)) = colim,, Hom(A;, F,,(G, p)).

In that case, there exists some integer j such that ¢ arises from a map A; — F;(G, p). In that case, a
lift of f; exists in Fj 11 (G, p) by construction and composing with the map Fj 1 (G, p) = Fo (G, p)
gives the required lift in the diagram. O

Note that any module is a filtered colimit of its compact sub-objects. Likewise, any chain
complex can be written as a filtered colimit of its compact sub-objects. In fact, there are some very
simple complexes out of which any complex of R-modules can be built. We already defined the
“disc” chain complex D,,(R). Consider now the sphere chain complex

R ifj=n-1

0  otherwise.

S"HR); = {

There is an evident inclusion map S"~!(R) — D, (R) which is the identity in degree n — 1 and
trivial in degree 0. These chain complexes are sequentially small. By convention, we write Dy (R)
for R in degree 0 and S~!(R) is the zero complex, while jo : S™1(R) — Dg(R) is the unique
map. By construction, the complexes S”~!(R) and D,,(R) are both compact. Note that the map
S"~1(R) — D, (R) is evidently a cofibration for every n > 0 and likewise, the map 0 — D,,(R)
is an acyclic cofibration for every n > 0. It follows that any map of complexes that is a fibration
has the right lifting property with respect to 0 — D,,(R) for every n > 0. Likwise, any map that is
an acyclic cofibration has the right lifting property with respect to all the maps S"~(R) — D, (R)
for all n > 0. In fact, these cofibrations and acyclic cofibrations generate all cofibrations or acyclic
cofibrations in the following sense: every cofibration can be built from these forming small colimits
(coproducts and coequalizers) and then taking retracts. We leave this is a straightforward exercise
in diagram chasing.

Lemma 4.1.4.12. A morphism f : X — Y in C’hlz{o has the right-lifting property with respect
to (acyclic) cofibrations if and only if it has the right-lifting property with respect to the set of
morphisms S"*(R) — Dy, (R),n > 0 (resp. 0 — D, (R), n > 0).

Corollary 4.1.4.13. If f : X — Y is a morphism in C h=0, then we may factor f either as a trivial
cofibration followed by a fibration or as a cofibration followed by a trivial fibration.

Proof. For the first assertion, we apply the small object argument with respect to the set of mor-
phisms S"~1(R) — D,,(R), n > 0. In that case, we get a functorial factorization X — X’ — Y.
The preceding lemma guarantees that X’ — Y is a fibration, so it remains to check that X — X’
is an acyclic cofibration. We see this by investigating the construction of X’ via the small object
argument. Indeed, the space X" is obtained from X by adding direct sums of copies of R in various
degrees and X" is a transfinite composition of such things. The other case is similar. O

4.1.5 The injective model structure

We return now to the proof of the injective model structure on &x-modules. We have to establish
the other lifting axiom and the existence of functorial factorizations. The proof of the other lifting
axiom is analogous to the projective case.
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Lemma 4.1.5.1. Given a commutative diagram in C hfg of the form

A——sX

g

B——=Y

where p is a quasi-isomorphism and an epimorphism with injective kernels and i is a monomorphism
in positive degrees, there exists a lift.

Proof. Since p is an epimorphism with injective kernels, it follows that its kernel is an acyclic
complex that is termwise injective. Let us analyze such complexes first; we claim such a chain
complex is necessarily injective. Consider the exact sequence

0— K’ —K' — ...

~

Since K is injective and K® — K is a monomorphism, it necessarily splits, so we write K =
K'e K'/K°.

Write D" (M) for the complex of &'x-modules that is M in degree n and n — 1 with identity
map as differential. Likewise, write 72°K for the complex that agrees with K in degrees > i and
is isomorphic to K*~1 /im(d’~?) in degree 1. There is an evident map K — 72K that induces an
isomorphism on cohomology in degrees > .

In that case, we have written K as the sum of D! (ker(d?)) @ 72 K*®. Note that D! (ker(d)) is
itself an injective chain complex, and proceeding inductively one concludes. The remainder of the
proof is dual to the case of the projective model structure. O

To finish, we need to establish the existence of functorial factorizations. This is slightly more
involved than in the projective case since it is more difficult to write down generating cofibrations
and trivial cofibrations. In fact, one way to proceed is simply to establish that such a set exists by
means of suitable cardinality counts.

Sketch this

4.2 The homotopy category of a model category

Now, we discuss the homotopy category of a model category; the homotopy category of chain
complexes will be what is typically called the derived category. We then talk a bit about derived
functors. The presentation below is standard.

4.2.1 The homotopy category via fractions

Suppose C is a model category and let W be the set of weak equivalences. We write Ho(C) for
the category defined as follows. Form the “free category” F(C,W~!) on the arrows of C and
the reversals of the arrows of W. The objects of the free category are the same as the objects in
C. A morphism in F(C, W 1) is a finite string of composable arrows f1, ..., f,, where each f; is
either a morphism in C or the reversal of a morphism in W. The empty string is the identity. We
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define Ho(C) to be the quotient of F(C, W 1) by the relations id4 = (ida) for all objects of A,
f,g = (g o f) for all composable arrows in C, and the identifying (w,w~!) with the identity on
domain, and (w~!, w) with the identity on the codomain.

A priori, it is not clear that Ho(()C) is even a category since it is not clear that the hom objects
are small. Nevertheless, if it is, then there is a functor v : C — Ho(()C) that is the identity on
objects and sends morphisms in W to isomorphisms. In fact, Ho(()C) is initial amongst categories
in which W has been inverted in the following sense.

Lemma 4.2.1.1. Suppose C is a model category with weak equivalences W'

1. If D is a category and F : C — D is a functor such that F(w) is an isomorphism for each
w € W, then there exists a unique functor Ho(F') : Ho(C) — D such that Ho(F') o v = F.

2. If v : C — E is a functor that enjoys the universal property of Point (1), then there is a
unique isomorphism F : Ho(C) — E such that F o u = v.

3. The correspondence of Point (1) induces an isomorphism of categories between the categories
of functors Ho(()C) — D (and natural transformations) and the category of functors C —
D that take W into isomorphisms and natural transformations.

Proof. For the first point, if Ho(C) is defined as a quotient of the free category as above, then the
factorization is defined by F' on objects and F(w~!) = F(w)~!. That this construction defines a
functor is immediate from the definition as a quotient category. The remainder of the statements can
be found in [?]. O

Lemma 4.2.1.2. If C is a model category, and C. is the sub-category of cofibrant objects, then
Ho(C,;) — Ho(C)
is an equivalence.

Proof. The inverse functor is constructed by cofibrant replacement; we leave the details as an exer-
cise. O

4.2.2 The homotopy category of a model category

In this section, we follow the standard construction of the homotopy category of a model category.
The basic idea is to identify the category Ho(C) as equivalent to a suitable quotient of the category
of cofibrant and fibrant objects by imposing a suitable homotopy equivalence relation on morphisms.

Left homotopy
If A is an object of C, then A U A exists and comes equipped with a map
AUA — A
We may functorially factor this morphism as a cofibration followed by an acyclic fibration:

AUA — ANT — A;
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the object A A I, will be called a very good cyclinder object for A (note that it is not obtained as a
product with anything). We will write ¢ : A — AA T and iy : A — A A I for the “inclusions of
the ends.” More generally, by a cylinder object for A we will mean any factorizationof ALJA — A
as a cofibration A L1 A — A’ followed by a weak equivalence A" — A.

Definition 4.2.2.1. If f,g : A — X are two maps in C, then we will say that f and g are left-
homotopic if there exists a cylinder object A’ for A together with a morphism H : A’ — X such
that f = H o1 and g = H o iy; a choice of such an H will be called a left-homotopy.

Note that id 4 factors through A — A1l A — A in two ways. If A’ is any cyclinder object
for A, then the composites A — A’ — A are the identity map and it follows from the 2 out of 3
property of weak equivalences ig, 1 : A — A’ are weak equivalences as well. If A is cofibrant, then
A — AU A is again a cofibration as a cobase change of a cofibration; in that case, the composite
A — AU A — Aisalso a cofibration. In other words, we have established the following result.

Lemma 4.2.2.2. If A is cofibrant, and A’ is a cyclinder object for A, then the two maps A — A’
are acyclic cofibrations.

Lemma 4.2.2.3. If f and g are left homotopic, then f is a weak equivalence if and only if g is a
weak equivalence.

Proof. If f is a weak equivalence, then f = Hig by definition, and we observed above that i is a
weak equivalence, so by 2 out of 3, it follows that H must be a weak equivalence as well. In that
case, g = H1; is again a weak equivalence. 0

Lemma 4.2.24. If f,g : A — X are left homotopic maps and h : X — Y is a map, then hf and
hg are left-homotopic.

Proof. Exercise. ]
Lemma 4.2.2.5. If A is cofibrant, then left homotopy is an equivalence relation on Hom(A, X).

Proof. Suppose f: A — X is a map, that f is left-homotopic to f follows from the definitions. To
see that left homotopy is symmetric, consider the swap map sw : AU A — A LI A that switches
the two factors. Since f LI g = (g U f) o sw, the required symmetry follows. Now, let us establish
transitivity. Suppose H : A A I — X is a left homotopy between f and gand H' : ANT' — X
is a left homotopy between g and h; we will assume that A A I and A A I’ are very-good cylinder
objects for A. In that case, consider the map i; : A — A A I’ and the map iy : A — A A I. Since
A is cofibrant, both of these maps are acyclic cofibrations. The pushout of the diagram

ANT 25 A By AN T

yields a space A A I" and the universal property of the coproduct gives a map A A I — A.
Since pushouts of cofibrations and trivial cofibrations are stable by cobase-change, it follows that
ANT — ANT"is again a trivial cofibration and thus that A — A A I” is a trivial cofibration, and
one checks that A A I" is a cyclider object for A as well.

Now, by construction, the maps H and H' yield amap H"” : A A I” — X. This doesn’t yield a
left-homotopy but it can be factored to obtain one. O
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Right homotopy

Dual to the above constructions, one can also analyze right homotopy when considering maps with
fibrant target. If X is an object, then X x X exists, and the map X — X x X that one obtains from
the universal property is called the diagonal map. By a very good path object for X we will mean a
factorization of X — X x X of the form

X — X s XxX

where the first map is an ayclic cofibration and the second map is a fibration. More generally, by
a path object for X we will mean any factorization X — X’ — X x X where X — X'isa
weak equivalence and X’ — X x X is a fibration. The factorization axiom in a model category
guarantees that there always exists a very good path object for X.

As above, we can define right homotopy and establish that right homotopy is an equivalence
relation on Hom(A, X') whenever X is fibrant.

Proposition 4.2.2.6. If f,g : A — X are maps, then
1. if Ais cofibrant and f and g are left-homotopic, then f and g are right homotopic as well.
2. if X is fibrant and [ and g are right-homotopic, then f and g are left homotopic as well.

Proof. The idea here is to use the lifting axioms to build the required homotopy. We prove the first

point, leaving the second as an exercise. Choose a very good cylinder object A A [ 7y Aand a
left-homotopy H : A AT — X between f and ¢. Likewise, choose a path object X! for X so that
XT — X x X is a fibration. In that case, the map f : A — X yields A — X — X'. We then have
a diagram of the form:

A x!
AnT DY x v x,

where the left map is by assumption an ayclic cofibration and X I X is a fibration. In that case,
there exists a lift H : A A I — X7 in the diagram. The composite Hi; : A — X! provides the
desired right homotopy between f and g. 0

Weak equivalence and homotopy equivalence

It follows from the above result that the notions of left and right homotopy agree on Hom(A, X)
whenever A is cofibrant and X is fibrant. We will refer to the resulting equivalence relation as the
homotopy equivalence relation. If A and X are both cofibrant and fibrant, then it makes sense to
say thatamap f : A — X to be a homotopy equivalence if there exists a homotopy inverse, i.e., a
morphism g : X — A such that the two composites are homotopic to the identity.

Proposition 4.2.2.7. If A and X are both cofibrant and fibrant, then a map f : A — X is a weak
equivalence if and only if it is a homotopy equivalence in the sense above.

Proof. Suppose f : A — X is a weak equivalence. In that case, we can factor f as a cofibration
followed by an acyclic fibration. In that case, the first map is an ayclic cofibration as well by 2 out
of 3. O
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We can then define Ho(()C) as the quotient of C.s (the subcategory of cofibrant and fibrant
objects) by the homotopy equivalence relation.

Ext and the homotopy category

We now specialize these definitions to the case of the category of chain complexes.

Proposition 4.2.2.8. Suppose A and B are R-modules; write B[n] for the chain complex which has
B in degree n and all differentials the zero map. For any integer n > 0,

Hom,, (A, Bln]) = Ezt"(A, B).

(Chz")
Proof. The standard definition of the Ext groups in question is as follows: take a projective resolu-
tion P, — A, and consider the complex Hom(P,, B) and take the homology of this complex. In
other words, Ext™ (A, B) is defined as follows. Consider the portion of the complex:

-+ — Hom(P,_1, B) — Hom(P,, B) — Hom(P,+1,B) — - .

The homology agree of this complex is the kernel of the map Hom(P,, B) — Hom(P,,+1, B)
modulo the image of the Hom(P,,—1, B) — Hom(P,, B).

We can identify some portion of the above in terms of maps of complexes: indeed, a map
of complexes P, — B[n] is the same thing as a morphism P,, — B such that the composite
P,+1 — P, — Bisthe zero map, i.e., an element in the kernel of Hom(P,,, B) — Hom(P,+1, B).
The condition that two maps Hom(FP,, B) lie in the image of Hom(P,,_1, B) is an equivalence
relation.

We now describe the computation in terms of the homotopy category. A map is a cofibration if
and only if it is a monomorphism with degreewise projective cokernel. Thus, if we factor the map
0— Aas0— QA — A where QA is cofibrant, then QA is a complex of projectives, and the fact
that QA — A is a weak equivalence says that (A has no homology except in degree 0 in which
case it coincides with A, i.e., QA is a projective resolution of A.

Now, every object of Chﬁo is fibrant by construction. It follows that right homotopy is an
equivalence relation on Hom(Q A, B[n]) and to understand right homotopy we need a path object
for B[n|. To this end, we want to factor the diagonal map

B[n] — B[n] ® B|n]

as a weak equivalence followed by a fibration. Since the second complex only has terms in degree
n, let us construct a path object X by setting X,, := B @ B; to guarantee that B[n] — X is a
quasi-isomorphism, we must have d : X,, — X,,_1 be the difference map B & B — B. This
construction gives an epimorphism X — B(n| x B[n]if n > 0.

Now, let us unwind the definition of right homotopy with respect to X. Two maps f,g: QA —
Bin] are right homotopic (with respect to X) if there exists amap H : QA — X lifting the product
map f X g: QA — B[n] x B[n]. Amap H : QA — X is exactly a pair of maps f,, g, : P, = B
and amap h : P,_; — Bsuchthatif 0: P, — P,_; is the differential, then f,, — g, = ho 0 as
maps P,, — B. This is precisely the equivalence relation described above. O
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4.3 Derived functors

Previously, we showed that Ext groups were naturally computed as homomorphisms in the homo-
topy category of projective Z-modules. But there is another point of view that will be useful here. If
A is an R-module, then we can consider the functor Hompg(A, —); this is a covariant endo-functor
of the category of R-modules, since the set of R-module homomorphisms Hompr(A, B) has natu-
rally the structure of an R-module itself. Given a short exact sequence of R-modules

0— By — By — By — 0,
if we apply the functor Homyoq, (A, —) we get the sequence
0 — Hom(A, B;) — Hom(A, By) — Hom(A, Bs).

The definition of projective of module shows that this sequence is exact on the right if and only if
A is a projective module. If A is not projective, then it’s natural to want to measure the failure of
exactness, and classically ext groups were defined precisely to measure the failure of exactness on
the right. Likewise, the functor Homp(—, A) is a contravariant functor and takes the short exact
sequence above to

0 — Hom(Bs3, A) — Hom(By, A) — Hom(B1, A),

i.e., it once again fails to preserve exactness on the right.

The functors Hompg(A, —) and Homp(—, A) are both additive functors, in the sense that they
preserve direct sums. In the category Modp, we know that finite sums are the same thing as finite
products. The assertion that Homp (A, —) preserves injections means that it preserves equalizers.
In other words, the functor Homp (A, —) preserves finite limits. Of course, as defined if A, is a
chain complex, it also makes sense to study the functor H0m0h§° (Ao, —). Classically, one defines
the group Ext'(A, B) in terms of a projective resolution of A. Our identification of

Ext'(A,B) = Homp gy (4, Bli])

shows that the Ext groups are naturally objects on the homotopy category of chain complexes, i.e.,
the ext groups yield a family of functors from D(R) — Ab, parameterized by the index i.

Analogously, consider the functor A ® p —. Again, this is a covariant functor Modp — Modp.
Tensoring the above exact sequence we get an exact sequence of the form

ARrB1 — A®r By — A®pr B3 — 0.

This sequence remains exact on the left if and only if A is a flat R-module, though exactness on
the right is always preserved. Once again, A ® p — preserves direct sums, i.e., it preserves finite
coproducts in Modg, so the assertion that it preserves exactness on the right can be rephrased as
saying that A ® g — preserves finite colimits. Classically, T'or functors are defined to measure the
failure of exactness on the right. Extending the functor A ® p — to the category of chain complexes
requires a bit more work: if A, is a chain complex, then A, ®p — does not a priori produce
a chain complex. We will address this problem and that of “measuring the failure of exactness”
simultaneously in the context of model categories.
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4.3.1 Exactness

Suppose we have abelian categories C and D that are both finitely complete and cocomplete (think
of Modpg). Given an additive functor ' : C — D and an exact sequence

0—A—B—C—0,
then there is an associated sequence
F(A) — F(B) — F(O).

We say that F' is left exact, if it preserves exactness on the left and right exact if it preserves ex-
actness on the right. The axioms of abelian categories imply that such categories are automatically
finitely complete and cocomplete (i.e., have all finite limits and colimits). Indeed, in an abelian cate-
gory, finite products necessarily agree with finite coproducts and existence of kernels and cokernels
implies existence of equalizers and coequalizers. Abstracting the notion of exactness, one arrives at
the following.

Definition 4.3.1.1. Assume C and D are categories that are finitely complete and cocomplete. A
functor I’ : C — D is called left exact (resp. right exact) if F' preserves finite limits (resp. finite
colimits).

Remark 4.3.1.2. There are many non-additive functors that naturally arise, even on abelian cate-
gories. For example, on Modpg, we can talk about tensor powers, symmetric powers and exterior
powers of modules. E.g., consider the functor that assigns to an R-module A, the R-modules
A ®p -+ ®r A. This functor is evidently not additive in general if there are more than 2 fac-
tors. Likewise, sending an R-module A to Autr(A) is a functor from R-modules to (non-abelian)
groups. Note that the category of groups is also finitely complete and cocomplete, so we can ask
about exactness here.

The derived functors of a given functor on a model category will be a “best approximation” of
that functor to factoring through the homotopy category.

Definition 4.3.1.3. Assume C is a model category and D is a category, and F' : C — D is a
functor. Write u : C — Ho(C) for the universal functor. Consider pairs consisting of a functor
G : Ho(C) — D and a natural transformation s : Gu — F'. A left derived functor of F is a pair
(LF,t) that is universal “from the left”, i.e., if (G, s) is any pair as above, then there is a unique
natural transformation s’ : G — LF such that the composite natural transformation

GuﬂLFu%F

coincides with s. Likewise, a right derived functor of F is a pair (RF,t) that is universal “from the
right”, i.e., if (G, s) is any pair consisting of a functor Ho(C) — D and a natural transformation
s : F — Gu, then there is a unique natural transformation s’ : RF — G such that the evident
composite natural transformation coincides with s.

Remark 4.3.1.4. As usual, the universal properties satisfed by derived functors shows that if a left
derived functor exists, then any two are isomorphic up to a unique natural transforomation.
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Proposition 4.3.1.5. Let C be a model category and suppose F' : C — D is a functor that has
the property that F(f) is an isomorphism whenever f is a weak equivalence between cofibrant
objects in C. A total left derived functor (LFt) exists and for any cofibrant object X of C, the
map tx : LF(X) — F(X) is an isomorphism. Dually, if F' : C — D is a functor that has the
property that F(f) is an isomorphism whenever f is a weak equivalence between fibrant objects
in C, then a total right derived functor (RF,t) exists and for any fibrant object X of C, the map
tx : F(X) — RF(X) is an isomorphism.

Proof of 4.3.1.5. The idea to define the derived functor is straightforward: precompose F' with the
cofibrant replacement functor @, i.e., take LF(X) := F(QX). If X is cofibrant, then QX — X is
a weak equivalence on cofibrant objects so the assumption on F' guarantees that F(QX) — F(X)
is an isomorphism. Since QX — X is functorial, we therefore always have amap tx : F(QX) —
F(X). We just have to check that the pair (L X, t) constructed in this way has the relevant universal
property. We leave this as an exercise.

Dually, we can define right derived functors by using fibrant replacements. O

Suppose R is a commutative ring, and A is an R-module. The functor A ® g — extends to a
functor on the category of chain complexes Ch%o. We will build a left derived functor of A ®p —
using the result above, but to do this we need to check that A ® p — preserves weak equivalences
between cofibrant objects. To check this, we use the following result.

Proposition 4.3.1.6 (Ken Brown’s lemma). Suppose F' : C — D is a functor between model
categories. If F' carries acyclic cofibrations between cofibrant objects to weak equivalences, then
F preserves all weak equivalences between cofibrant objects. Dually, if F' carries acyclic fibrations
between fibrant objects to weak equivalences, then I preserves all weak equivalences between
fibrant objects.

Proof. We prove the first statement, leaving the second as an exercise in dualizing. Let f : A — B
be a weak equivalence in C between cofibrant objects. In that case, form the pushout diagram.

|
A——s AUB

The map f : A — B then gives a coproduct map fLlidg : AUB — B. Note thating: A - AUB
and iny : B — A Ll B are cofibrations as cobase changes of cofibrations. Since A and B are
cofibrant, it follows that A U B is cofibrant as well.

Now, we can functorially factor f U idp as

AuB L0 B

where the ¢ is a cofibration and p is an acyclic fibration. Since A U B is cofibrant, it follows that C'
is cofibrant as well.

Since ¢ is a cofibration, it follows that qing and gin; are both cofibrations as well. Since f and
idp are weak equivalences, it follows that pqin; are weak equivalences for ¢ = 0, 1 as well. Since
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p is a weak equivalence by assumption, it therefore follows from 2 out of 3 that gin; is also a weak
equivalence. In other words, gin; is an acyclic cofibration between cofibrant objects for ¢ = 0, 1.
Now F' preserves acyclic cofibrations between cofibrant objects, so it follows that F'(gin;) is a
weak equivalence for i = 0, 1. On the other hand, F'(idg) = idp p) and is therefore also a weak
equivalence. Since pgin; = idp, it follows from 2 out of 3 that F'(p) is also a weak equivalence.
Therefore, F'(f) = F(pging) = F(p)F(ging) is a weak equivalence as well. O

By the preceding lemma, it suffices to check that A ® p — carries acyclic cofibrations between
cofibrant objects to weak equivalences. Thus, suppose f : B — B’ is any acyclic cofibration
between cofibrant objects. In that case, B/B’ is necessarily an acyclic complex that is degreewise
projective, i.e., it is itself a projective chain complex and can be written as a sum of disk modules
on cycles; in particular B’ splits as a sum B & B’/B and B’/ B can be further written as a sum of
terms of the form Dy (P). Since A ® p — respects direct sums, it follows that

A®RB—>A®RB,gA®RB@A®RB//B,

where the final summand is a sum of terms of the form A ® g Dy (P). Thus, it suffices to check that
A ®p Di(P) has trivial homology, but by inspection, A ® g Dy (P) = Di(A ®pg P) is acyclic and
we conclude.

Definition 4.3.1.7. If R is a commutative ring, and A is an R-module, then we define T'or;(A, —) :=
H;(A®pr Q(—)), i.e., as homology of the left derived functors of A @ —.

Let us observe that with this definition, 7'or does the correct thing on exact sequences...

Change of rings

Suppose R — S is a ring homomorphism, and A is an R-module. In that case, we have the
extension of scalars functor from R-modules to S-modules and therefore from chain complexes of
R-modules to chain complexes of .S-modules. Note that if () A is a projective resolution of A, then
QA is a chain complex of projective R-modules. It follows that QA ®p S is a chain complex of
projective S-modules, since projectivity is preserved by extension of scalars, and thus QA ®p S
computes Q(A ®p S). We get the change of rings functoriality in this way.
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In this section, we introduce another invariant of rings coming from projective modules: the
Grothendieck of isomorphism classes of finitely generated projectives. We connect this invariant
with the Picard group studied in the previous section. We then introduce the notion of regularity of a
ring and study some basic properties of this notion as a first step toward understanding “smoothness”
in algebraic geometry. We also begin a discussion of the homological theory of projective modules,
along the lines initiated by Cartan—Eilenberg [?]. In particular, we will discuss projective dimension
of rings, and study conditions that guarantee finite projective dimension; these notions are closely
connected with regularity by classical results of Auslander-Buchsbaum-Serre.

5.1 Lecture 13: Grothendieck groups

5.1.1 Grothendieck groups

If R is a commutative unital ring, then we can consider the set of isomorphisms classes of projective
R-modules. This set has a monoid structure given by direct sum (the unit being the zero R-module),
but also a product given by tensor product of R-modules. Unlike the case of invertible R-modules,
elements need not have inverses for this group structure (e.g., if R is a field, the dimension of a direct
sum of R-modules is the sum of the dimensions of the summands and the dimension is always > 0).
Nevertheless, this monoid is still commutative (since M @M’ = M'® M, functorially in the inputs).

Grothendieck observed that there is a universal way to construct an abelian group from a com-
mutative monoid, generalizing the way the integers are built from the natural numbers. More pre-
cisely, every integer can be viewed as a “formal difference” of natural numbers. More abstractly,
a formal difference can be equated with an element of N x N. We define an addition on the set
of formal differences componentwise. However, many formal differences correspond to the same
integer, thus we need to impose an equivalence relation on the set of pairs to get integers. Say that
(a,b) and (a'b,") are equivalent if there exists ¥ € N such that a + b + k = o/ + b + k. In this
form, the procedure works more generally: given a monoid M, consider M x M, define addition
componentwise and define an equivalence relation on pairs by saying (m,n) ~ (m’,n’) if there
exists k € M suchthatm +n' +k=m' +n + k.

Exercise 5.1.1.1. Suppose A is a commutative monoid.
1. The procedure just described defines an abelian group A™ (the group completion of A); this
procedure is functorial with respect to homomorphisms of abelian groups.
2. There is a monoid homomorphism A — A™ (send a to (a,0)) and given any abelian group
B and a monoid map ¢ : A — B, there is a unique homomorphism A* — B such that ¢
factors as A — AT — B.

Definition 5.1.1.2. If R is a commutative unital ring, then K((R) is the Grothendieck group of the
monoid of isomorphism classes of projective modules with respect to direct sum.

Remark 5.1.1.3. If X is a topological space, and C'(X) is the algebra of real-valued continuous
functions, then Ky(C(X)) is the Grothendieck group of isomorphism classes of topological vector
bundles on X. If X is compact and Hausdorff, this coincides with the notion of topological K-theory
as studied by Atiyah [?] using the Vaserstein-Serre-Swan theorem.
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To really spell things out, consider the following result which explains when the isomorphism
classes of projective modules agree in Ko(R).

Lemma 5.1.1.4. If R is a commutative unital ring and P, P' are finitely generated projective R-
modules, the following statements are equivalent:
1. [P] = [P']in Ko(R);
2. there is a finitely generated projective R-module Q) such that P & Q = P’ & Q, i.e., the
modules P and P’ are stably isomorphic;
3. there is an integer n such that P & R®" = P' @& R®",

Proof. Exercise. O

Lemma 5.1.1.5. Tensor product of R-modules equips the group Ko(R) with the structure of a
commutative unital ring.

Proof. Exercise. O

Example 5.1.1.6. We can compute K(Z) from the definition: via the structure theorem for finitely
generated modules, the monoid of isomorphism classes of projective R-modules is isomorphic to
N under addition (via the monoid map sending a projective module to its rank). Thus, Ky(Z) = Z.
More generally, if R is a principal ideal domain, the same argument shows that Ko (R) = Z.

Lemma 5.1.1.7. If f : R — S is a ring homomorphism, then extension of scalars induces a ring
homomorphism f* : Ko(R) — Ko(95).

Example 5.1.1.8. If R is any commutative unital ring, then the map Z — R induces a homo-
morphism Ky(Z) — Ko(R); this homomomorphism sends Z®" — R®" and is injective. Since
any non-zero ring has a maximal ideal m, there is an induced map Ky(R) — Ko(R/m). The
composite map Z — R/m induces an isomorphism Z = Ky(Z) — Ky(R/m) = Z and there-
fore, we conclude that Z is a summand of K (R) for any non-zero commutative unital ring. Thus,
Ko(R) = Z @ Ko(R) where Ko(R) is called the reduced Ky of R. Note that Ko(R) = 0 if and
only if each projective R-module is stably free.

Exercise 5.1.1.9. Show that if R is a commutative unital ring and N C R is the nilradical, then
Ko(R) — Ko(R/N) is an isomorphism.

5.1.2 Grothendieck groups of schemes

If X is a scheme, then we may define the Grothendieck group of X in a fashion generalizing that
above. Doing this requires modifying the definition a bit. Over any affine scheme X = Spec R, a
short exact sequence of &'x-modules of the form

0—F —F ——F"—0
is always associated with a short exact sequence of R-modules (the global sections functor is exact)

0—-M —M-— M —0.
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If Z" is locally free of finite rank, then M" is finitely generated projective, and the definition of
projectivity shows that M = M' @ M".

Now, suppose X is a scheme and we consider a short exact sequence of locally free sheaves
as above. Unlike the situation when X is affine, such a short exact sequence of sheaves need not
split as direct sum. We will see non-trivial examples shortly. As a consequence, we will define the
Grothendieck group of a scheme differently.

Definition 5.1.2.1. If X is a scheme, then we write Vect(X) for the category of finite rank locally
free &'x-modules. We write K°(X) for the quotient of the free abelian group on the set of objects
of Vect(X') modulo the ideal generated by relations of the form

(7] = 7]+ [F"]
for each short exact sequence
0—F —F —>—7"—0
as above.

If f: X — Y is amorphism of schemes, then since the pullback of a finite rank locally free &'x -
module is again finite rank locally free, it follows that there is a functor f* : Vect(X) — Vect(Y').
This pullback functor preserves exact sequences and thus there is an induced homomorphism

f*:KY%(X) — K(Y),

i.e., the assignment X — K9(X) is a contravariant functor on the category of schemes. If X is a
connected scheme, then the rank of an &'x-module is additive in exact sequences. As a consequence,
there is an induced function

rk: K%(X) — Z.

Note that this homomorphism is always surjective, since it is split by 1 — [@x]. We write K°(X)
for the kernel of this map and refer to this abelian group as the reduced K-theory of X.

Example 5.1.2.2. We can compute K°(P}) if k is a field. We claim that K°(PL) 2 Z & Z where the
first summand is generated by the rank map. The classification of vector bundles on IP’,{T shows that
in a given rank n, the isomorphism classes of bundles are represented by expressions of the form
O(a1) ® - - @ O(ay,) for a weakly decreasing sequence of integers a; > -+ > a,.

However, there are many non-trivial relations that one may write down. For example, we claim
that there is a short exact sequence of the form

0— Op1 — o) o(l) — 0(2) — 0.

Indeed, we have global sections of &/(1) given by homogeneous coordinates xo and x; on Pk which
defines the first map, while the second map can be described in terms of clutching functions. Indeed,
if we trivialize our vector bundles on the usual open cover of P, i.e., Spec k[t], Spec k[t 1] with
intersection Spec k[t, 1], then we have maps k[t,t~1]%2 — k[t,t~!] given by the product map
for functions. This product map is evidently a k[t,¢~1]-module map and is the restriction of the
corresponding product maps k[t]®? — k[t] and k[t~1]®2 — k[t~!]. At the level of transition
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functions, the induced map sends the transition function diag(t,t) of €'(1) © €(1) to t2. We
leave it as an exercise to show that this sequence is short exact, but this follows from the fact that
the functions zp and z; are nowhere vanishing, and thus the above sequence is locally split. It is
important to note that this exact sequence is not globally split. Indeed, if it was globally split, then
we would have an isomorphism between ¢'(1) @ ¢'(1) and & & € (2), which would contradict our
classification of vector bundles on P;.

In fact, more generally, this kind of argument shows that if @ and b are positive integers, then
there is an exact sequence of the form

0— Op — O(a)® O(b) — O(a+b) — 0,

where the first map is given by multiplication by any homogeneous degree a function and a homo-
geneous degree b function and the second map can be described on transition functions as above.
Tensoring the exact sequence with &(c) for any integer ¢ yields another relation. Working induc-
tively, we then conclude that the class of [0(a1) ® O(ag)] = [O] + [O(a1 + a2)] for any integers
a; and az (tensor with &'(c) to make the representing integers positive, use the relation and tensor
by 0(—c) to get back to the original situation). Proceeding in this fashion, we get the relation

[O(a1) @ Olan)] = [O] @ --- @ [O] @ [O(a1 + - - + an)].

It follows that sending a vector bundle &'(a1) @ O'(a,) as above to (n,a1 + - - - + a,,) extends to a
well-defined isomorphism K°(P}) — Z®Z as claimed. In particular, observe that K °(IP}.) contains
no more information than Picard group in this case!

5.1.3 Determinants of locally free sheaves

If M is any R-module, we can speak of exterior powers of M. Define the tensor algebra T'(M) to
be the R-module @nzo M®™ with multiplication given on pure tensor by the formula

(1@ ) @ (N Qyp) = (@1Q T QYL@+ D Yn)

and extended linearly. Define the exterior algebra AM to be the quotient of the graded algebra
T (M) by the two-sided (graded) ideal generated by x ® = € T?(M). The image of the pure tensor
r1 ® -z, in AM is denoted 1 A - - - A xy,. The k-th graded piece of AM is denoted AFM and
called the k-th exterior power of M. It follows that NOM = R (since M®Y = R), A'M = M, and
A* M as the quotient of the k-fold tensor product M ®- - -® M by the submodule generated by terms
mi ® --- ® my, with m; = m; for some ¢ # j (this encodes the “alternating” condition). Exterior
powers define endo-functors of the category Modgr. Moreover, one can establish the following fact
using the compatibility of extension of scalars and tensor products.

Exercise 5.1.3.1. If ¢ : R — S is a ring homomorphism, then (\"M) ®@p S = A" (M ®p S).
The exterior power functors have the following properties that we will find useful.

Lemma 5.1.3.2. If R is a commutative unital ring, then the exterior power functor has the following
properties:
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1. The module A" RY" is a free module of rank -

nl(r—n)!"
2. If M & N is a direct sum decomposition, then there is a natural isomorphism

A" (M & N) = é(/\iM) ® (A"T'N).
=0

Lemma 5.1.3.3. Suppose P is a finitely generated projective R-module.
1. The module N\" P is a finitely generated projective R-module for any integer n.
2. If P has constant rank r, then \" P is an invertible module that we will call det P.
3. If P has constant rank r, then \"P = 0 for n > r.

Proof. For Point (1), note that A" P is finitely generated by assumption (as a quotient of a finitely
generated module). Since exterior powers commute with tensor product, and projective modules are
locally free, by localizing we can assume without loss of generality that P is free. Thus, by appeal
to Lemma 5.1.3.2(1), we conclude that A" P is also locally free.

Points (2) and (3) follow from Lemma 5.1.3.2(1) as well since A" R®" has dimension 1 if n = r
and is trivial if n > r. 0

Lemma 5.1.3.4. Assume R is a connected commutative unital ring.
1. The map sending a finitely generated projective R-module to its determinant extends to a
group homomorphism det : Ko(R) — Pic(R).
2. The homomorphism of Point (1) is functorial with respect to homomorphism of connected
commutative unital rings.

Proof. If P is a projective module of rank r, Lemma 5.1.3.3(3) tells us that A" P = 0 for n > r. If
P and (@) are projective R-modules of ranks m and n, then

m-+n

/\ern(P@ Q) o @ /\iP® /\m+n7iQ
=0

by Lemma 5.1.3.2(2). Now, since ¢ and m + n — ¢ are both > 0 and < m + n — 4, we conclude
that either A’P = 0 or A™*"/Q = 0 unless i = m. Thus, we conclude that A" (P @ Q) =
AP @ A"Q.

The functoriality statement is immediate from the fact that forming exterior powers commutes
with extension of scalars. O

Remark 5.1.3.5. Using local constancy of rank, one can define the determinant for projective mod-
ules with non-constant rank “componenentwise” and drop the assumption that 2 is connected in the
previous statement, but we leave it to the interested reader to work this out.

Theorem 5.1.3.6 (Cancellation for rank 1 modules). Suppose R is a commutative unital ring.
1. If L and L are stably isomorphic invertible R-modules, then L = /.
2. The map L — [L] determines an injection Pic(R) — Ko(R)*.

Proof. Suppose L@ R®™ = [/ @ R®™, In that case, we conclude that A"t (L@ R®") = A" H(L
R®™). However, A"T1(L @ R®") 2 AL ® A"R®™ = [, and similarly for L'. Therefore, L = L'.
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For Point (2), observe that the composite function Pic(R) — Koy(R) a Pic(R) is the identity
after the conclusion of Point (1) (though note that the second map is a homomorphism with respect
to the additive structure on K while the first map uses the multiplicative structure, so the composite
is not a group homomorphism). 0

Remark 5.1.3.7. A natural generalization of the Point (1) in Theorem 5.1.3.6 is the general “can-
cellation” problem: if P and () are stably isomorphic projective R-modules (of the same rank) are
P and @) isomorphic? A special case of the cancellation problem is: when are stably-free modules
free? These problems motivated some of the early study of the groups Ko (R).

The map det : Ko(R) — Pic(R) is a surjective group homomorphism by the same argument
as in Theorem 5.1.3.6(2). Therefore, if Ko(R) — Ko(R[t1,...,ty]) is an isomorphism, we see
Pic(R) — Pic(R[t1,...,ty]) is an isomorphism too (it is always split injective and the statement
about K guarantees surjectivity). Thus, one cannot expect Ko(R) to be Al-invariant without a
hypothesis on R at least as strong as (semi-)normality (cf. Theorem 3.7.1.3 and Remark 3.7.1.6).

Determinants of vector bundles on schemes
Now, assume X is a scheme. The category of &'x-modules has a tensor product making it symmetric
monoidal, and one can define the exterior powers as above. If X is connected, and if .%# is a rank
n locally free 'x-module, then A™.% is a rank 1 locally free &'x-module by appeal to the results
above. Moreover, the formula for exact sequences shows that if
0—F —F ——F"—0,

where the terms have rank 7/, r and 7"/, then » = 7’ + r”’ and then there is an induced isomorphism

AN T @ NP AT
As above, there is an induced map

det : K%(X) — Pic(X).

As above, if f : X — Y is a morphism of schemes, then there is an associated commutative diagram

KO(X) —% pic(X)

b

K%(Y) — Pic(Y),

i.e., the determinant homomorphism is functorial.

Adams and exterior operations

In fact, let us observe that the exterior powers give extra structure to the ring...
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5.2 Regular local rings

If M is a smooth manifold of dimension d, one way to define the tangent space at a point x € M is
as follows: consider the ideal m, C C°°(M) consisting of smooth functions vanishing at z. Since
locally around x there is a neighborhood of x diffeomorphic to an open subset of Euclidean space
R, we can pick local coordinates 1, ..., x, that generate the maximal ideal m,. The choice of
local coordinates then yields a basis of the real vector space m,/m2. The tangent space is then the
dual vector space (m,/m2)V, which is thus a real vector space of dimension d.

5.2.1 Regular local rings: definitions and examples

We first discuss the notion of regularity locally, essentially by directly reinterpreting the situation
in topology. There is one basic problem: in algebraic geometry, if X = Spec R is an affine k-
variety, then given a k-point, there is no reason for one to be able to find an open neighborhood
of  in X that can be identified with an open subset of affine space. For the sake of intuition,
let us discuss the case k = C, and let us think about the “embedded” point of view and identify
R = Clz1,...,zn]/(f1,..., fr). In that case, non-singularity can be tested using the Jacobian
criterion: one writes down the matrix of partial derivatives and smooth points are precisely those

where the rank of the matrix (‘gg L) is maximal, i.e., equal to 7. One identifies the tangent space as
J

a subspace of C", and thus at points where the rank of the Jacobian drops, the dimension of the
tangent space increases.

If R is a ring with a maximal ideal m, then we can consider the field & = R/m. There is
a natural structure of k-vector space on m/m2. We first establish a result the provides a purely
algebraic version of the intuitive description given above.

Theorem 5.2.1.1. If R is a Noetherian local ring of Krull dimension d, with maximal ideal m and
residue field k, then dim, m/m? > dim R.

Proof. This is a consequence of Krull’s generalized principal ideal theorem: if R is a Noetherian
ring, I € R is an n-generated ideal and p is minimal among prime ideals of R containing [, then
htp < c (in the special case where ¢ = 1, this says that principal ideals always have height < 1,
which is where the name comes from, and the proof in the general case can be reduced to this one).

Now, if R is a Noetherian local ring of Krull dimension d, then the ideal m has height d by
definition. Krull’s generalized principal ideal theorem then and by the previous result cannot be
generated by fewer than d elements. Now, to obtain the inequality observe that Nakayama’s lemma
implies that if R is a local ring, then any basis of m/m? as a x-vector space can be lifted to a
minimal generating set of of m, and every minimal generating set is obtained in this way. Thus,
dim, m/m? = htm > dim R as claimed. O

Remark 5.2.1.2. Krull’s principal ideal theorem is known to hold in various non-Noetherian settings,
e.g., for Krull domains (reference?). However, the generalized principal ideal theorem can fail for
Krull domains (reference). While work has been done to understand situations in which it holds,
this basic fact is one reason Noetherian assumptions are in place here.

Definition 5.2.1.3. A Noetherian local ring (R, m) with residue field  is called regular if dim,, m /m? =
dim R.
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Example 5.2.1.4. Every field is a regular local ring of dimension 0. Local rings like k[e] /€2 are not
regular: indeed (¢) is a non-zero maximal ideal here but (¢)/(¢)? is a 1-dimensional k-vector space.
However, the ring k[e]/e? has dimension 0. More generally, suppose (R, m) is a regular local ring
of Krull dimension 0 and residue field . In that case, dim,, m/m2 = 0 as well, i.e., m = m2, By
induction, one concludes that m = m” for all n > 0. However, a Noetherian ring of Krull dimension
0 is automatically Artinian, and therefore m™ = 0 for n sufficiently large. Therefore, m must be the
zero ideal, in which case R is a field.

Example 5.2.1.5. Any discrete valuation ring is a regular local ring of dimension 1. Indeed, this is
a consequence of one of the equivalent characterizations of discrete valuation rings.

Example 5.2.1.6. Any localization of a polynomial ring k[x1, . .., z,] at a maximal ideal is a regular
local ring of dimension n.

5.2.2 Symmetric algebras and tangent spaces

Given a Noetherian local ring (R, m) with residue field , we considered the x-vector space m/m?.
We want to enhance this k-vector space to an actual variety. To this end, we begin by recalling the
construction of symmetric powers of a module, and we do this in greater generality than we will
need here.

Symmetric powers

Definition 5.2.2.1. If R is aring and M is an R-module, then the symmetric algebra on M, denoted
SymM is defined as the quotient

SymM :=T(M)/{z @y —y ®z|z,y € M).

As with the exterior algebra, SymM is a graded algebra, but it is commutative. By the universal
property of the tensor algebra, if M is an R-module, and A is any commutative R-algebra, any
R-module homomorphism M — A extends to an R-algebra homomorphism T'(M) — A. The
commutativity of A ensures that this homomorphism factors through a homomorphism SymM —
A. On the other hand, given an R-algebra map SymM — A, there is an induced R-module
homomorphism M — A. These two constructions are mutually inverse and yield a universal
property characterizing the symmetric algebra, which we summarize in the following result.

Lemma 5.2.2.2. If M is an R-module, and A is an R-algebra, then
Homyjoa, (M, A) = Homag,, (SymM, A).
The symmetric power has other properties analogous to the exterior power.

Lemma 5.2.2.3. If R is a commutative unital ring, then the symmetric power functor has the fol-
lowing properties:

1. The module Sym”R@d is a free module of rank (d B 711+ n)
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2. If M & N is a direct sum decomposition, then there is a natural isomorphism

n

Sym™(M @ N) = @5 (Sym'M) @ (Sym" ' N).

i=0
Corollary 5.2.24. If M is a free R-module of rank n, then a choice of basis x1,...,xy of M
determines an isomorphism SymM = R[x1, ..., z,].

Tangent cones

If (R, m) is a Noetherian local ring with residue field x, then R is filtered by the powers of m: more
precisely, if a € m” and b € m®, then ab € m" "%, The associated graded ring of this filtered ring is
the r-algebra gro R := @, m"/m" 1. The fact that the ring (R, m) is filtered implies that there
is an induced ring homomorf)hism R — graR.

Example 5.2.2.5. If we take R to be the localization of a polynomial ring over a field k in d-variables
T1,...,xq at the maximal ideal (1, ..., x,), then it follows that m” /m"*! can be identified with
the vector space of homogeneous symmetric polynomials of degree r in n variables. In particular,

m” /m"T! = Sym"m/m?, which has dimension (d B i + T> . In particular, the identification

d—1+4+7r\ [(d—1+r
r - d—1
shows that this function grows as a polynomial of degree d — 1. More precisely, set

t 1

<n> = mt(t—l)-~-(t—n—|—1)

d—1+r
d—1

integer values at integers are called numerical polynomials.

t4(d—

and observe that < d—1

> is the value at integers of < 1)> Polynomials that take

We now analyze the situation discussed in the previous example in greater detail.

Definition 5.2.2.6. If (R, m) is a Noetherian local ring with residue field «, then the tangent cone
at m is the graded -algebra @, 5, m™ /m"*1.

Before discussing the relationship between this notion and regularity, we discuss some facts
about graded rings. Each m™/m"*! is a finite-dimensional x-vector space, and we can consider
its dimension dim, m™/m"*!; this assignment defines a function f(n) := dim, m”/m"*!. In
Example 5.2.2.5, we observed that in one special case this function grew as a polynomial in n.
Before studying the general case, we recall some simple facts about numerical polynomials.

Numerical polynomials

We begin with a brief review of integer polynomials. A polynomial P(t) is called a numerical poly-
nomial if it takes integer values at integers. The sum and product of any two numerical polynomials
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is integer valued, and since 0 and 1 are integer valued, it follows that numerical polynomials form
a subring of Q[t]. The following binomial polynomials give examples of numerical polynomials of
arbitrary degree:

In fact, the above polynomials form a basis of the Z-module of numerical polynomials. Indeed,
every numerical polynomial can be written as a rational linear combination of such polynomials
(since there is one of each degree). Therefore, if given an integer polynomial f and an equality

t
fononon (1)

with \; € Z, we conclude first that since f(0) = Ao, that A\g € Z. Then by induction we may
conclude that \; are all integers. Therefore, we have established the following fact.

Lemma 5.2.2.7. The Z-submodule of Q[t| consisting of numerical polynomials has a basis consist-
ing of the polynomials <:L>

The following result generalizes the observation made in Example 5.2.2.5.

Proposition 5.2.2.8. If R is a Noetherian local ring with maximal ideal m and residue field k, then
the assignment n + dim, m™/m"*! is a numerical polynomial p. Moreover, the following are
equivalent: dim R = d, o has degree d — 1 and m is generated by d elements.

Proof. This is established by induction; see [?, Tag 00KD Proposition 10.59.8] O

Tangent cones and regularity

The universal property of the symmetric algebra shows that the R-module map m/m? — gryR
induces a homomorphism Symm/m? — gry, R. We now use this observation to give another char-
acterization of regularity.

Proposition 5.2.2.9. If R is a regular local ring with maximal ideal m, the map m/m? — gry R :=
@D, mi/mi L induces an isomorphism Sym®*m/m? 5 gro,R.

Proof. Suppose R is simply a Noetherian local ring of Krull dimension d and maximal ideal m. In
that case, we get a map
Y : Sym®m/m? — gruR;

this map is a ring homomorphism by the construction of the product on both sides. The map ) is
surjective essentially by construction: indeed, since R is a Noetherian local ring of dimension d,
the ideal m is generated by > d generators z, ..., x, and we can then write down generators for
m” /m"*+1 as homogeneous polynomials of degree n in the x;. To see that 1 is injective it suffices
to count dimensions. Indeed, we observed above that if R is regular of dimension d, then m is
generated by exactly d elements (and cannot be generated by fewer elements). The assignment
n +— dim, m" /m"*! is a numerical polynomial and one shows that its degree is precisely d — 1 by
Proposition 5.2.2.8. The kernel of the map 1) is a graded ideal I and we can consider the dimensions
of the graded pieces of Symm/m?/I. The dimensions of these graded pieces also form a numerical
polynomial [?, Tag O0K1 Proposition 10.57.7] whose degree < d — 1 (see [?, Tag 00K3 Lemma
10.57.10]). O
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5.3 Lecture 15: Geometry of regular local rings

5.3.1 Structural properties of regular local rings

Suppose k is an algebraically closed field and consider the ring k[z]. If m C k[x] is a maximal ideal,
then we can write m = (z — a) and m"™ = (z — a)". There is an evident sequence of inclusions
m” C m™ L. The elements of m” are those functions that have a zero of order > n at z = a. It is
immediate from this observation that N, m"™ = 0. Now, if M is any k[z]-module, one can consider
the filtration on M by powers of m. Krull established the following far-reaching generalization of
this observation.

Proposition 5.3.1.1. If R is a Noetherian local ring, and I C R is any proper ideal, then for any
finitely generated R-module M, N, 1™ M.

Proof. Set N = N, I"™M; this is a finitely generated R-module. Note that N = I"M N N for
any integer n, by definition. We claim that /"M N N C IN for n sufficiently large; this is a
consequence of the Artin-Rees lemma (which states that if I is an ideal in a Noetherian ring R,M is
a finitely generated R-module and N C M is a submodule, then there exists an integer £ > 1 such
that for n > k the equality I"M NN = I"~*(I*M N N) holds). Granting this, the result follows
immediately from Nakayama’s lemma. O

The fact that regular local rings (R, m, k) have gry R isomorphic to a polynomial ring (via
Proposition 5.2.2.9) is very useful: we can use the ring map R — grn R to “lift” statements about
polynomial rings to corresponding statements about R itself (this technique works well to study
filtered rings whose associated graded rings are “easy to understand”, e.g., the universal enveloping
algebra of a Lie algebra). Here is an example of this kind of argument.

Proposition 5.3.1.2. If R is a regular local ring, then R is a normal domain.

Proof. We first prove that R is a domain. As usual, let m be the maximal ideal of R. Take elements
f,g € Rsuchthat fg = 0. By Proposition 5.3.1.1, since N, m"™ = 0, we can find ¢ and b maximal
such that f € m® and g € m®. The product fg lies in m®*®, but since it is zero, it lies in m®+b+1
as well. Thus, we can view fg € m®*! /ma+0+2 Now, Sym®*m/m? — gry, R is an isomorphism
by Proposition 5.2.2.9 and Sym®m/m? is isomorphic to a polynomial ring in d variables, and so is
a domain. In particular, the condition 0 = fg for the images in Sym®m/m? means that f = 0 or
g = 0. If f = 0, then that means f € m®*! as well and if g = 0, that means g € m**!. In either
case, we obtain a contradiction.

Now, we establish that R is integrally closed in its field of fractions. Let m be the maximal ideal
of R, k the residue field, and set K to be the fraction field of R. By Proposition 5.2.2.9 we know
that Sym®m/m? is isomorphic to a polynomial ring, and is therefore integrally closed in its field of
fractions (m/m?). The idea is that one deduces inductively that R is integrally closed in its field
of fractions. See [?, V.1.4 Proposition 15] for this statement. ]

Example 5.3.1.3. Any regular local ring R of Krull dimension 1 is a discrete valuation ring. Indeed,
Proposition 5.3.1.2 implies R is a local Noetherian normal domain of Krull dimension 1, so this
follows immediately from Theorem 3.4.3.6.
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Definition 5.3.1.4. A sequence of elements (z1,...,z,) in aring R is called a regular sequence if
the ideal (x1,...,2,) C R is proper, and for each i, z;11 is not a zero-divisor in R/(z1, ..., Ty).

Corollary 5.3.1.5. If R is a regular local ring with maximal ideal m, and x1, ..., x4 is a minimal
set of generators of R, then x1, ..., x4 is a regular sequence.

Proof. We proceed by induction on ¢ with the base case being that IR is regular. Assume induc-
tively that R/(x1,...,x;) is a regular local ring. The images of (z41,...,z4) form a minimal
set of generators for m/(xy,...,z;)/m, which is the maximal ideal in the Noetherian local ring
R/(x1,...,x;). Indeed, if one of these elements was zero, then we would have a generating set
with fewer than d — ¢ generators, which would contradict the conclusion of Theorem 5.2.1.1. Thus,
Proposition 5.3.1.2 guarantees that R/(z1,...,x;) is an integral domain, and therefore ;1 is not
a zero-divisor. O

We have obtained a number of criteria for regularity of a local ring now, and the following result
puts everything together.

Proposition 5.3.1.6. Suppose R is a Noetherian local ring of Krull dimension d, with maximal ideal
m and residue field k. The following conditions are equivalent.

1. Ris a regular local ring of Krull dimension d;

2. dim, m/m? = d;

3. the ideal m admits a system of generators with precisely d elements;

4. the map Sym®*m/m? — gro R is an isomorphism.

5. the ideal m admits a system of generators that is a regular sequence of length d.

Proof. That (1) < (2) was the definition. That (2) < (3) was Theorem 5.2.1.1. That (3) = (4) is
Proposition 5.2.2.9. That (4) = (5) is Corollary 5.3.1.5. It is not hard to show that (5) = (2). ]

5.3.2 Regular rings

Definition 5.3.2.1. Suppose R is a Noetherian ring. Say that X = Spec R is regular at a closed
point € Spec R corresponding to a maximal ideal m if Ry, is a regular local ring and singular
otherwise. Say that R is regular if Spec R is regular at all closed points.

Proposition 5.3.2.2. If R is a Noetherian regular domain, then R is a normal domain.

Proof. According to Definition 5.3.2.1, all the localizations of R at maximal ideals are regular local
rings. Now, Proposition 5.3.1.2 allows to conclude that the localizations of 2 at maximal ideas
are normal rings. Finally, appealing to Proposition ??, since R is a Noetherian domain, and every
localization of R at a maximal ideal is normal, we can conclude that R is normal as well. ]

Example 5.3.2.3. A regular ring of dimension 0 is a product of fields. Indeed, any Noetherian ring
of Krull dimension 0 is a product of Artin local rings. A regular domain of dimension 1 is precisely
a Dedekind domain. Indeed, if R is a regular ring of Krull dimension 1, then R is a Noetherian
normal domain of Krull dimension 1 by Proposition 5.3.2.2.

The following result gives the first geometric consequence of normality: singular points of
normal varieties lie in codimension > 2.
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Corollary 5.3.2.4. If R is a Noetherian normal domain, then R is regular in codimension 1, i.e., for
any height 1 prime ideal p C R, then Ry is a regular local ring.

Proof. Since discrete valuation rings are regular local rings, it suffices to observe that if R is a
Noetherian normal domain, then Ry, is a discrete valuation ring. O

Proposition 5.3.2.5. If R is a regular ring of Krull dimension d, then R[x1,...,x,) is a regular
ring of Krull dimension d + n.

Proof. By induction, it suffices to treat the case where n = 1. Suppose 91 is a maximal ideal of
R[z] and set m = M N R. In that case, R[z]oy is a localization of Ry[z| at the maximal ideal
M R [x], so we can assume without loss of generality that R is a regular local ring.

Assuming now that R is local with maximal ideal m, let ¥ = R/m and consider the homomor-
phism R[z] — k[z]. The ideal generated by 9 in k[z] is principal, generated by a monic irreducible
polynomial f. Therefore, we can find a monic polynomial in f € R[z] lifting this element and such
that 9t = (m, f). Since R is regular, it is an integral domain, and therefore R|[x] is an integral
domain as well. Since the ideal 97 is maximal, the element f cannot be zero and combining ev-
erything is not a zero-divisor. Therefore, ht9)t = htm + 1. Since R[x] has Krull dimension d + 1,
it follows that we have constructed a minimal set of generators for 9t and thus R[x]gy is a regular
local ring. O

Remark 5.3.2.6. Regularity is an interesting notion, but from what we said above it is not clear that
it captures the intuitive notion of smoothness from differential geometry. For example, we had to
work hard to prove that if X = Spec R is a regular ring then X x A" is regular. One can construct
examples to show that if X is regular, then X x X need not be regular. For example set k = F,(¢),
and take R = k[z]/(zP — t). In this case, R is a field, namely the purely inseparable extension of
[F,,(t) obtained by adjoining a p-th root of ¢; therefore R is regular. On the other hand R ®j, R is a
zero-dimensional local ring, which is not a field, and therefore not regular.

5.4 Projective resolutions and Tor

5.4.1 Projective resolutions and K

If R is aring, then we think of elements of K (R) as formal differences ([P], [Q]) of projective R-
modules. We now give a more flexible homological approach to elements of K((R). First, observe
that given a short exact sequence of projective modules

0—P —P—P' —0,

since this exact sequence splits, we conclude that P = P’ & P”. We now extend this result slightly,
but before doing so we make the following general definition.

Definition 5.4.1.1. If R is a commutative unital ring, and M is an R-module, then a (left) resolution
of M is an exact sequence

o— B, —F,1—-—FE — F—M—0.
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Such a resolution is called finite if there is an integer » > 0 such that E; = 0 for all s > r, free
if each Ej; is free, and projective if each FE; is a projective R-module. We will frequently write
FEoe — M is a resolution.

Lemma 5.4.1.2. If R is a commutative unital ring, and Qe is a finite resolution of a projective
R-module P by finitely generated projective R-modules, i.e.,

0—Qn—Qn1 — - —Qo—P —0,

then [P] = x(Qe) = Z?:o(_l)i[Qz’]-

Proof. We proceed by induction on n. If n = 0, the result is obvious. Since the map ()9 — P is
surjective and P is projective, we conclude that Qg = P @ ker(Qo — P). However, ker(Qo — P)
is projective, and the map @)1 — ker(Qo — P) is surjective, so we obtain a resolution of ker(Qy —
P) of smaller length. Thus, [Qo] = [P] + [ker(Qo — P)] and the result follows from the induction
hypothesis. O

This easy observation shows that one way to obtain results about the structure of Ky(R) is to
show that all modules have projective resolutions by modules of a certain type.

Proposition 5.4.1.3. If o : R — S is a ring homomorphism, then say an S-module M is extended
from Rif M = M' Qg S for some R-module M'. If every projective S-module admits a finite
projective resolution by modules extended from R, then Ko(R) — Ko(S) is surjective.

5.4.2 Properties of Tor

Suppose now that R is a commutative unital ring and M is an R-module, we can consider the
functor M ®r — on Modpg. Since neither this functor, nor — ®p M preserves exactness, we are
interested in measuring the failure of exactness. The functor Torg is cooked up to measure this
failure.

Example 5.4.2.1. Suppose R is aring and M is an R-module, in that case given an element r € R,
multiplication by r determines an R-module map -r : R — R. If r is not a zero-divisor, then this
map is injective. In that case, there is the following exact sequence

0—R-5R— R/(r) — 0.

Now, if we tensor this exact sequence with M the multiplication by r map induces the multiplication
by r map:
M -5 M.

While the initial sequence was exact, this sequence fails to be exact: the cokernel of multiplication
by ris M/rM = M ®pg R/(r), but the kernel of the multiplication by r map consists of those
elements m € M such that rm = 0, i.e., it is the r-torsion submodule of M, sometimes written
Torf(R/(r), M).
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Example 5.4.2.2. More generally, given a finitely generated ideal I C R and generators (71, ... ,7y)
of I, we can study the /-torsion in an R-module M by sequentially comparing torsion with respect
to each 7;; as in the previous example, we will need some condition on the r; to ensure that we
actually obtain a resolution. For example, if I is generated by 2 elements r; and r2, then we can
consider the map R®? — R given by multiplication by (r1,72)¢. The cokernel of this map is I. We
can analyze this a bit more systematically by tensoring the two complexes R % Rand R 3 R to

obtain a diagram of the form

T2
—_—

R R
b
R—">R.

By changing the signs slightly, this yields the following complex
r1
T2

(the composite is zero precisely because of the sign change). The cokernel of the last map is pre-

cisely R/(r1,72), and in good situations, this sequence actually yields a resolution of R/(r1,72).

Indeed, if we know that r; and r9 are not zero-divisors, then the first map is injective.

The kernel of the map R & R — R consists of those pairs (a,b) such that ria + r2b = 0.
Thus, r2b lies in the ideal (r1) and the kernel of the first map can be described as those elements
r € R such that r(r2) C (r1). This collection of elements is an ideal, called the ideal quotient and
often denoted (71 : 72). Since r; is assumed to not be a zero-divisor, it follows that a is uniquely
determined by b. The image of R — R & R consists of elements of the form (rar, —r17). Now,
such an element is contained in the kernel and the image in (r; : 72) is precisely (r1). Thus, if 7o
is not a zero-divisor in R/(r1), we conclude that the sequence is exact in the middle as well. Thus,
if (r1,r2) is a regular sequence in the sense we studied earlier, then we obtain a free resolution of
R / (7’1, 7’2).

Tensoring this sequence with M we obtain a complex that has non-trivial homology: the zeroth
homology still computes M /(r1,r2) M, but there are higher homology terms. For example, the
map M @& M — M one obtains sends (mj, mg) — rymq + roma. Thus the first homology of

the complex obtained by tensoring with M is the quotient of the submodule of M annihilated by
(r1,72) by certain relations.

R R VY R,

Remark 5.4.2.3. The complex described in Example 5.4.2.2 is called the Koszul complex, and admits
a generalization to regular sequences in an arbitrary commutative ring R. The specific example
shows that if (R, m, ) is a 2-dimensional regular local ring, then the maximal ideal admits a finite
free resolution. The second example points to an ambiguity: there are many possible sequences of
generators for an ideal [ in a ring R, and the cohomology groups obtained in the example might
depend on these choices.

Suppose M is a fixed R-module. If P, — M is a projective (flat) resolution of M, then the
tensor product P, @ N has the structure of a complex of R-modules and thus we can consider
the homology of this complex. If P, is another projective (flat) resolution of M, then using sign
changes in a fashion similar to Example 5.4.2.2, then one can build a complex T'ot(Ps @ g P,) out of
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Py®p P, (see [?,2.7.1] for details). Since P, and P, are resolutions, one shows that T'ot(Ps @ i P,)
is another resolution of M. Moreover, the maps Py — Tot(Ps @ P,) and P, — Tot(Ps ®p P))
induce morphisms of complexes after tensoring with some module N. One checks as in [?, Theorem
2.7.6] that the maps on homology induced by the morphisms of complexes in the previous sentence
are isomorphisms. Therefore, the following deifinition makes sense.

Definition 5.4.2.4. Suppose M is a fixed R-module. If N is an arbitrary R-module, define TorZR(M , V)
as the ¢-th homology of the complex P, ®p M for any flat resolution Py — M.

Lemma 5.4.2.5. If M is a fixed R-module, then the following statements hold:

1. the groups TorZR(M , N') can be computed using a projective resolution;

2. the groups Tor®(M,N) = 0 ifi < 0;

3. the group Torl*(M,N) = M @ N;

4. there is an isomorphism Tor®(M, N) = Tor®(N, M);

5. the groups TorlR(M , N) have a natural R-module structure, functorially in the input mod-
ules; moreover the map induced by multiplication by v € R on M is precisely multiplication
by r, i.e., the functor TorlR(—, N) is an R-linear functor; and

6. given a short exact sequence O — M' — M — M" — 0, there is a functorially associated
short exact sequence of R-modules of the form

coo — Torf(M’,N) — Tor®(M,N) — Tor®(M",N) — Torl* |(M',N) — --- .

Remark 5.4.2.6. When we actually use these results, we will assume R is Noetherian and study
finitely generated modules. In this case, a resolution by finitely generated flat modules will au-
tomatically be a projective resolution, so we will later be sloppy about the distinction. However,
without suitable finiteness hypotheses in place, we will need to be careful about the difference be-
tween flat and projective resolutions. For example, take R = Z and consider M = Q. Note that Q
is a flat Z-module and therefore Tor?(Q, N) = 0 for i > 0 and any Z-module M. However, Q is
not itself a projective Z-module (it is an injective Z-module) and has projective dimension 1.

5.4.3 Change of rings

If R — S is aring homomorphism, and M and N are R-modules, then we can extend scalars from
Rto Stoview M ®r S and N ®p S as S-modules. Now if P, — M is a projective resolution of
M, we can use it to compute Tor!*(M, N) = H;(P, ®p N). The tensor product P, ®p S is not in
general a projective resolution of M ®pr S. However, if R — S is a flat ring homomorphism, then
P, ®g S is a flat resolution of M ® g S. In that case, we deduce the following result.

Lemma 54.3.1. If ¢ : R — S is a flat ring homomorphism, and M is an R-module, and N is an
S-module then there is a functorial isomorphism

Torl'(M,N) @ S — Tor{ (M ®f S, N).

In particular, if S is a localization of R, it follows that Tor;g(M ®r S, N ®g9S) is a localization of
the R-module Tor?(M, N).
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When R — S is not flat, the Tor-groups are still suitably functorial with respect to change of
rings.

Lemma 5.4.3.2. If ¢ : R — S is a ring homomorphism, M and N are R-modules, then there is a
natural R-module map

Tor (M, N) — TorR(M @5 S, N @F S).

Definition 5.4.3.3. If M is an R-module, then we say that M has projective (resp. flat) dimension
< d if M admits a projective (resp. flat) resolution of length < d. We write pd(M) (resp. fd(M))
for the minimum of the lengths of finite projective (resp. flat) resolutions of d (or co if no such
resolution exists).

Lemma 5.4.34. If R is a Noetherian ring, and M is an R-module, the following conditions are
equivalent:

1. pd(M) =d;

2. Tor®(M,N) = 0fori > d.

Proof. The second statement implies the first since Tor can be computed using projective resolu-
tions. For the other direction, we leave this as an exercise (for the time being): use the facts (i) that
finitely presented flat modules are finitely generated projective and (ii) an arbitrary R-module can
be written as a filtered colimit of its finitely presented sub-modules. 0

Definition 5.4.3.5. If R is aring, we say R has finite global dimension if sup{pd(M)|M € Modpr}
is finite.

5.5 Homological theory of regular rings

5.5.1 Regular local rings and finite free resolutions

Our goal will be to study projective resolutions over regular local rings. If R is a regular local ring of
dimension 0, then R is a field, and therefore every R-module is automatically projective. Therefore,
regular local rings of dimension 0 have finite global dimension. If R is a regular local ring of Krull
dimension 1, then R is a discrete valuation ring and therefore a principal ideal domain. In that case,
every finitely generated module is the direct sum of a finitely generated free module and a finitely
generated torsion module. Any finitely generated torsion module admits a free resolution of length
1 and therefore, we conclude that every finitely generated module admits projective resolutions
of length < 1. By careful limit arguments, one can show that not necessarily finitely generated
modules also admit projective resolutions of length < 1. We now analyze the global dimension of
modules over regular local rings in general.

5.5.2 Minimal free resolutions

There are particularly nice free resolutions of finitely generated modules over Noetherian local rings.
If M is finitely generated, then we can choose a minimal set of generators of M to obtain a surjection
Fy — M. Continuing inductively, we can choose a minimal set of generators of ker(F; — F;_1) to
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build a free resolution of M. Such a resolution will be called a minimal free resolution. If ¥y — M
is a minimal free resolution, then F; — F;_; is given by an matrix with coefficients in R. Now, the
image of F; — F;_; surjects onto the kernel of F;_; — F;_5. Now, the kernel of F;_; — F;_»
consists of relations among generators of F;_;. If such a relation is given by a unit in R, then it
follows that the two basis vectors are redundant; in other words if a resolution is minimal, then there
is no relation with coefficient that is a unit. Thus, the image of F; — F;_; is contained in mF;_.
Using this observation, we deduce the following fact.

Theorem 5.5.2.1. Let M be a finitely generated module over a local ring (R, m, k). The modules
Tor®(M, k) are finite-dimensional r-vector spaces and dim,(Tor;(M, k)) is the same rank as the
rank of the i-th free module in a minimal free resolution of M. Moreover; the following statements
are equivalent:

* in a minimal free resolution Fyq of M, F,;1 = 0;

* the projective dimension of M is at most n;

» Tor,+1(M,k) =0;

e Tor;(M,k) =0foralli>n+ 1.
It follows that a minimal free resolution is the shortest possible projective resolution of M. In
particular, M has finite projective dimension if and only if a minimal free resolution is finite.

Proof. If M is a finitely generated module, we can compute TorzR(M , k) by taking a free resolution
of M. Pick a minimal free resolution Fy — M. In that case, Fy ®pg ~ is a complex of finite-rank x-
vector spaces and the finiteness of dim,(Tor;(M, x)) is immediate. Since the image of F; — F;_;
is contained in mF;_1, it follows that after tensoring with x = R/m, the maps F; @k — F;_1Qprk
are trivial. Therefore, dim,,(Tor;(M, k)) = dim,, F; ®g k.

Now, (1) = (2) since Tor can be computed by a projective resolution. The statement (2) = (3)
is immediate from the definition of projective dimension. Note that (3) = (1) as well, since we can
compute Tor,, ;1 (M, k) using a minimal free resolution, and in that case, 0 = dim(Tor,11(M, k))
dimy, Fy 41 ®R K, i.e., Fj,41 = 0. Once one term in a minimal free resolution is zero, we conclude
that all higher terms are zero as well.

Note also that (1) = (4) = (3) — (1) by a similar argument and using the fact that there cannot
exist a resolution of length shorter than a minimal free resolution. O

5.5.3 Tor and regular sequences

If Ris aring and z € R is not a zero-divisor, then we begin by establishing a connection between
Tork R/x
or;" and Tor, ' ™.
Proposition 5.5.3.1. Let R be a ring and x € R an element.
1. Given an exact sequence Qo of modules

"'—>Qn+1—>Qn—>Qn—1—>"'

such that x is not a zerodivisor on all Q.,, the complex Qo obtained by tensoring with R/ xR,
ie.,
e QnJrl/xQnJrl — Qn/fEQn — anl/fEanl —

is also exact.
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2. If x is not a zerodivisor in R and also not a zerodivisor on the module M, while tN = 0,
then, for all i Torl*(M, N) = Torf/xR(M/:UM, N)

Proof. For Point (1), observe that since x is not a zero-divisor, the multiplication by = map deter-
mines a short exact sequence Q,, — Q, — Qn/xQ,, for every n. Thus, multiplication by z yields
an exact sequence of chain complexes of the form:

0— Qo — Qo — Qo — 0.

Consider the associated long exact sequence in homology for this chain complex. Since (), is
an exact sequence, it follows that H,(Q.) = 0. Therefore, by the five lemma, we conclude that
H*(Q.) =0, i.e., Q. is exact as claimed.

For Point (2), take a free resolution of F;, — --- — Fy — M — 0. By Point (1), this sequence
remains exact after applying ® g R/« R. Thus, we obtain a free resolution of M /xM over R/xR.
Let F, be the complex obtained by forgetting M in our free resolution. In that case, the homology
at the n-th spot of F, ® N computes Torf (M, N). Since z kills N, (R/zR) ®p/zp N =
N. Thus, Tor, (M, N) is the homology at the n-th spot of (Fo ®g R/(7)) ®p/(z) N. Since
Foe ®r R/(x) is a free resolution of M /xM over R/(x) it follows that this gorup coincides with
Tor/ @ (M, N). 0
Proposition 5.5.3.2. If R is a regular local ring of Krull dimension < d, then any finitely generated
R-module has projective dimension < d.

Proof. Suppose R is a regular local ring; throughout we write m for the maximal ideal in R and k
for the residue field. We proceed by induction on the dimension.

If dim R = 0, then R is a field by Example 5.2.1.4. In that case, every finitely generated
R-module is already free and the result follows.

Now, suppose dim R > 1 and fix a finitely generated R-module M. It suffices to prove that
Tory, (M, ) = 0 for n > d by the equivalent properties of Tor. Now, choose a projective module
P and a surjection P — M and let M be the kernel of this map so we have a short exact sequence

00— My —F — M —0,

where F' is finitely generated and free. Since M; C F, if we choose a regular parameter x € M, x
is not a zerodivisor on M, as well.
Therefore by Proposition 5.5.3.1 we conclude that Tor? (M, k) = Torﬁ/mR(Ml Jx My, K).
The long exact sequences for Tor associated with the above short exact sequence show that
TorZ 1 (M, k) & Tor, (M, k) = Torf/mR(Ml/le, k) for n > d. Since R is a regular local ring
with maximal ideal m and x is a regular parameter, we conclude that R/x R is again a regular local
ring. O

Proposition 5.5.3.3. If R is a ring, the following conditions are equivalent:
1. the ring R has finite global dimension;
2. every cyclic module R/I has projective dimension < d;
3. every finitely generated R-module has projective dimension < d.
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Proof. That (1) = (2) is immediate from the definition.

To see that (2) = (3), first observe that every finitely generated R-module has a finite filtration
by cyclic modules. Indeed, we proceed by induction on the number of generators of M. Let
x1,...,x, be a minimal generating set of M. Set M’ = Rxy; C M. In that case, M /M’ hasr — 1
generators, and M’ = R/I; with Iy = {f € R|fx; = 0}.

To see that (3) = (2), we use a limit argument and write M as a filtered limit of finitely generated
sub-modules. See [?, Tag 065T] for more details. O]

Theorem 5.5.3.4. If R is a regular local ring of Krull dimension < d, then R has finite global
dimension.

Proof. By Proposition 5.5.3.3 it suffices to show that all finitely generated modules have projective
dimension < d, but this follows form Proposition 5.5.3.2. OJ

5.5.4 Globalizing

In this section, we globalize the results of the previous section and show that for an arbitrary regular
ring R, every R-module admits a finite projective resolution. The following result links finiteness
of the global dimension for a Noetherian ring to its localizations at maximal ideals.

Proposition 5.5.4.1. If R is a Noetherian ring, then R has finite global dimension if and only if there
exists an integer n such that for every maximal ideal m C R the ring Ry, has global dimension < n.

Localization is exact and preserves projectives. Thus, if R has finite global dimension, then Ry,
has finite global dimension for any m; in fact, more generally, any localization of R has finite global
dimension. To establish the converse, we will first state some preparatory lemmas. We begin by
recording a useful trick due to Schanuel.

Lemma 5.5.4.2 (Schanuel’s lemma). Suppose R is a ring and M is an R-module. Given two short
exact sequences ) - K — P - M — 0and 0 — L — P, — M — 0 with P, and P, projective,
KeP=2L&P.

Proof. The maps P; — M and P, — M yield a surjective map P, & P» — M, and we write N
for the kernel of this map. Consider the composite maps

N—P &P, — P,

We claim these composites are surjective. Indeed, since the kernel of the map P, — M is K and the
kernel of the map P, — M is L, one checks that the composite N — P is surjective with kernel
L and N — P, is surjective with kernel K. However, since the P; are projective, the surjections
N — P; can be split, which yields the required isomorphism. 0

Corollary 5.5.4.3. Suppose R is a ring and M is an R-module of projective dimension d. Given
Fo— F._1 — -+ — Fy — M an exact sequence with F; projective and e > d — 1, the kernel of
F. — F._1 is projective (or the kernel of Fy — M is projective if e = 0).



5.6 Ky of regular rings: homotopy invariance and Mayer-Vietoris 172

Proof. We proceed by induction on d. If d = 0, then M is projective so given a surjection Fy — M,
we can choose a splitting and identify Fy = M @ ker(Fy — M) with both summands projective.
Thus, if e = 0, we are done. If e > 0, then replacing M by ker(Fy — M) we can decrease e so we
conclude by induction.

Now assume d > 0. Let0 — Py — P31 — --- — Py — M be a minimal length finite
resolution with P; projective. By Schanuel’s lemma 5.5.4.2 we see that Py @ ker(Fy — M) = Fy @
ker(Py — M). Thus, the result is true if d = 1 and e = 0 since the right hand side is F{ & P;, which
is projective. Therefore, we may assume that e > 0. In that case, the module Fy@®ker(Py — M) has
a finite projective resolution 0 — Py®Fy — Py 1®Fy — -+ — Pi®Fy — ker(Py — M )@ Fp of
length d— 1. Thus, by induction on d, we conclude that ker(F, ® Py — F._1® P) is projective. [

Proof of Proposition 5.5.4.1. Assume that R is a Noetherian ring and M is an R-module. We will
prove that if M is finitely generated, and R, has finite global dimension for every localization of R
at a maximal ideal m, then M has a finite projective resolution.

Thus, suppose M is finitely generated and 0 — K,, — F,—1 — --- — Fy — M is a res-
olution with each F; finitely generated and free (since I? is Noetherian we can always build such
a resolution: pick generators of M and build a surjection Fy — M, take the kernel of this map,
which is again finitely generated. In that case, since R is Noetherian, K, is finitely generated. By
Corollary 5.5.4.3 we conclude that K,, ® Ry, is projective for every m. However, since K, is
finitely generated and locally projective, it must be projective. In other words, we have constructed
a finite projective resolution of M. O

Corollary 5.5.4.4. If R is a regular ring of Krull dimension d, then every finitely generated projec-
tive R-module has finite projective dimension. Moreover, R has finite global dimension.

Proof. If R is a regular ring, then R, is a regular local ring of Krull dimension d by definition.
Proposition 5.5.3.4 implies that regular local rings of Krull dimension d have projective dimension
< d. Therefore Proposition 5.5.4.1 guarantees that R has finite projective dimension as well. O

5.6 K of regular rings: homotopy invariance and Mayer-Vietoris

Our goal in this lecture is to finally establish homotopy invariance of Ky over regular rings. If R
is a regular ring, then R[t] is a regular ring by Proposition 5.3.2.5, and by induction it suffices to
establish that the map Ko(R) — Ko(R[t]) induced by R — R]t] is an isomorphism. This map is
split by the evaluation map R[t] — R, so it is automatically injective and therefore we just need to
establish surjectivity. By Proposition 5.4.1.3 it suffices to show that every projective R[t] module
has a resolution by modules that are extended from R. The argument we give is due to Swan [?] as
presented in [?, IL.5].

5.6.1 A'-invariance and resolutions of projective modules over R|[t]

Suppose N is a projective R[t]-module. If N admits a finite free resolution, then M is automatically
extended from R. However, only stably free R[t]-modules admit finite free resolutions (indeed, if
a finitely generated projective M admits a finite free resolution, then its class in K is necessarily
trivial). Nevertheless, we can start building a free resolution and study the failure of extensibility
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from R. More precisely, by picking R[t]-module generators, we obtain a surjection R[t]" — M,
and the module R]t] is evidently extended from R. The kernel M of R[t]” — N is thus a sub-
module of an R[t]-module that is extended from R. While M itself is not evidently extended from
R, we will show that we can resolve it by (finitely generated) R[¢]-modules that are so extended.
More precisely, following Swan, we establish the following result.

Lemma 5.6.1.1 (Swan). If R is a Noetherian ring and M is an R[t]-submodule of some finitely
generated R[t|-module N that is extended from R, then there exists a short exact sequence

0—x -5y Lm0

where X and'Y are finitely generated R-modules that are extended from R.

Proof. Write N = R[t|®@g Ny for some Ny € Mod{%g. In that case, set N, == Y .\ R-t*®pr Ny and
set M, = M NN,,r > 0. Since N, € Modég and since R is Noetherian, we see that M, € Modég
as well. Since R][t] is also Noetherian and since N € Modé‘f 4» we know that M € Modﬁt].

Pick an integer n large enough so that M, contains an R[t]-module generating set of M and
set X = R[t] ®g M,, and Y = R[t] ®g M,,11. Defineamap f : Y — M by f(t' @ m) = t'm
for every m € M,,4+1 and extend by linearity. Note that M, is contained in the image of f by
construction and therefore f is automatically a surjective R[t]-module map.

We construct an R[t]-module homomorphism g : X — Y as follows. Observe that tN,, C
Np+1 and therefore tM,, C M, as well. Now, define g by means of the formula

gtt@m) =t eom—tietm, meM,,

and extend this by linearity to an R[t]-module morphism.
It remains to check that the resulting sequence is exact. First, we claim that fg = 0. To see this,
take m € M,, and compute:

fo(tt@m) = ftr @m —t' @tm) =t m — T lm = 0.

Next, we claim that g is injective. Take z = ! @ m+t""'@m/ +- - - with m, m’ € M,, and m # 0.
In that case,

gttem+t=teom +...)
T om—t'@tm) + (tom +t L @tm)
T @m)+tte(m —tm)+---,

g9(z)

and t'H1 @ m # 050 g(x) # 0.
To conclude, it remains to show that ker(f) = im(g). Suppose y = > i_,t' ® m; € ker(f),
with m; € M,,11. We will show that y € im(g) by induction on r. If » = 0, this is clear. Thus,

assume r > 0. Write m; = Z;Liol t® ai; where a;; € Ny. In that case,

0=fly) =D tPmi=Y > " w@ay
=0

i=0 j=0
=t @y TR (L)
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Thus, a1 = 0,1.e., m; € M,. Then,
r—1
y—gt"™ ' @m,) =y —t"@m, +t" ! @tm, = Zt’ ® mi...
i=0

O]

So far, we have not used regularity of R. Under this assumption, using Corollary 5.5.4.4 we
may further resolve the X and Y as above by projective modules that are extended from R.

Proposition 5.6.1.2 (Swan). If R is a regular ring, then every finitely generated R|[t]-module M
admits a finite projective resolution Py — M with each P; extended from R.

Proof. Suppose M is a finitely generated R[t]-module. As above, pick a surjection R[t]" — M
and let M’ be its kernel. In that case, Lemma 5.6.1.1 guarantees the existence of an exact sequence
of the form:

0—X -5y —M—0,

where X and Y are finitely generated R|[t]-modules that are extended from R.

If X and Y are finitely generated R-modules such that X = X ®x R[t]and Y = Y ®p R[t],
then since R is regular, by appealing to Corollary 5.5.4.4, we can find a finite projective resolutions
X, > XandY, —» Y.

Next, note that R[t] is free as an R-module (of countable rank). In particular, it follows that
R[t] is flat as an R-module and therefore that R — R[t] is a flat ring homomorphism. Therefore, it
follows that X, := X, ®p R[t] » X and Y, := Y, @p R[t] — Y are again projective resolutions
of X and Y.

Since X, and Y, are projective, we can inductively lift the morphim g to a morphism of com-
plexes (abusing terminology)

g: Xe — Y.

To obtain a resolution of M’, we form the mapping cone of g. More precisely, we define a new
complex C'(g)e Whose terms are C'(g)e := Xe—1 @ Y, and where the differential X;_; & Y; —

X;_o & Y;_ is given by the matrix
—dit 0
5 &)
g dy

Now, one checks that C'(g) is actually a chain complex, and that C(g) is exact except in degree 0
where the cohomology is M. In other words, we have produced a resolution

0 — C(g9) — R[t]®"" — M — 0.

By assumption, the terms of C(g) are projective R[t]-modules extended from R, and the result
follows. =

Putting everything together, we obtain the following result.

Theorem 5.6.1.3 (Grothendieck). If R is a regular ring, then Ko(R) — Ko(R|[t]) is an isomor-
phism of rings.
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5.6.2 Mayer-Vietoris

We can also deduce a Mayer-Vietoris sequence just as for the Picard group. To begin, recall that if
f and g are comaximal elements of a ring R, then there is a fiber product diagram of categories of
the form:

Vec(Ryqy) — Vec(Ry)

i |

Vec(Ry) — Vec(R).

The next result can be obtained from directly from this patching result (and thus could have been
established immediately after our definition of Kj).

Proposition 5.6.2.1 (Weak Mayer-Vietoris). If R is a commutative unital ring and f and g are
comaximal elements of R, then there is a short exact sequence of the form

Ko(R) — Ko(Ry) ® Ko(Rg) — Ko(Ryg)-

Proof. Suppose P is a projective R-module. Suppose we have projective Ry and R, modules
Py and P, whose classes in Ko(Ry,) agree. In that case, the modules (Py), and (P;) s are stably
isomorphic. Therefore, we can fix an isomorphism (Py), ® R}, = (Py) ;@ R},. Since the modules
Ry, are free, the are obtained via restriction. Therefore, we can glue these modules together to get
an R-module. Thus, the image of Ko(R) — Ko(Ry) ® Ko(Ry) surjects onto the kernel of the
difference map. O

Remark 5.6.2.2. In general, both the kernel of Ko(R) — Ko(Ry) ® Ko(Ry) and the cokernel
of Ko(Ry) @ Ko(Ry) — Ko(Ryg4) are non-trivial. One of the original goals of K-theory was to
measure the failure of surjectivity and to turn K -theory into a cohomology theory. For example, we
can describe the kernel of Ko(R) — Ko(Ry) @ Ko(Ry) in terms of automorphisms of projective
modules on Ry,, just by paying attention to patching. Originally, one built ad hoc groups that
allowed one to extend the above (very) short exact sequence to the left. Quillen eventually gave a
good definition of higher K-theory, but it took longer to obtain Mayer-Vietoris sequences in great
generality.

5.7 (G-theory and the localization sequence

We introduce here a variant of K -theory of a scheme X. We focus on the case where X is Noethe-
rian and consider the abelian category C'oh(X) of coherent sheaves on X.

Definition 5.7.0.1. If X is a scheme, then Go(X) is the quotient of the free abelian group on
isomorphism classes of objects in Coh(X) by the ideal generated by the relations:

(7] =7+ [7"]
whenever there is a short exact sequence

0—F — 7 —F"—0.



5.7 G-theory and the localization sequence 176

Example 5.7.0.2. We can study Go(Z) explicitly using the structure theorem. Any finitely generated
Z-module can be written as a sum of a free part and a torsion part. The torsion part is itself a sum
of finite cyclic groups. Now, note that there is an exact sequence of the form

0 —2Z—7Z—Z/nZ— 0,

which yields a relation of the form [Z] = [Z] 4 [Z/nZ]. Cancelling in the abelian group G(Z)
we see that [Z/nZ] = 0. In other words, the class in K-theory of any torsion group is zero. This
example generalizes to principal ideal domains.

Example 5.7.0.3. We can study Go(Z/p™) and K°(Z/p™) as well.

Note that there is always a homomorphism K°(X) — Go(X) by considering the subcategory
Vect(X) — Coh(X); this homomorphism is sometimes called the Cartan homomorphism. The
previous example shows that this map is an isomorphism for Z. In fact, that statement is true much
more generally.

Theorem 5.7.0.4. If X is the spectrum of a regular ring, then the canonical map K°(X) —
Go(X) is an isomorphism.

Proof. This follows from the fact that any regular ring has a finite projective resolution. O

In fact, the above theorem holds even more generally. If X is a regular Noetherian scheme with
affine diagonal (e.g., separated), then the Cartan homomorphism is an isomorphism.

Proposition 5.7.0.5. If X = PZ, then the map K°(P%) — Go(P%) is an isomorphism.

The G| of a scheme behaves somewhat differently than K from the standpoint of functoriality.
First, it’s not immediately apparent how to construct a pullback morphism f* : Go(Y) — Go(X)
for an arbitrary morphism f : X — Y of schemes. Indeed, even though f* will take coherent
sheaves to coherent sheaves, it fails to preserve exact sequences in general. For example, the pull-
back along a closed immersion i : Spec R/I — Spec R corresponds to tensoring R-modules with
R/I and failure of exactness is precisely measured by the existence of Tor-functors

Lemma 5.7.0.6. If f : X — Y is a flat morphism of schemes, then there is an induced pullback
morphism f* : Go(Y) — Go(X).

Proof. Tt suffices to observe that if f : X — Y is a flat morphism of schemes, then f* : Coh(Y) —
Coh(X) is an exact functor. O

There is one other bit of functoriality that exists for GG that would require more effort to con-
struct for KV: a pushforward. If f : X — Y is a closed immersion of schemes, then f, : X — Y
sends coherent sheaves to coherent sheaves. Indeed, suppose f : Spec R/I — Spec R is a closed
immersion of affine schemes. In that case, we have the ring homomorphism R — R/I and the
pushforward functor corresponds to viewing an R/I-module as an R-module. In that case, exact-
ness is immediate: if we have an exact sequence of R/I-modules then it remains exact when viewed
as a sequence of R-modules. The only thing that remains to be checked is that if we have a coher-
ent R/I-module, then it remains coherent when viewed as an R-module. Let us assume that all
schemes in question are Noetherian, so R is a Noetherian ring. In that case, if M is an R/I-module
that is finitely presented as an R/I-module.
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Proposition 5.7.0.7. If i : Z — X is a closed immersion of schemes, cut out by a quasi-coherent
sheaf of ideals .7, then the functor i, is an exact and fully-faithful functor QCoh(Cz) — QCoh(COx)
whose essential image consists of quasi-coherent sheaves % on Ox such that . % = 0. If X is
Sfurthermore locally Noetherian, then i, sends coherent sheaves to coherent sheaves.

Proof. Add. O

5.7.1 Devissage

Theorem 5.7.1.1. Let A be an abelian category and B be an exact abelian subcategory of A that is
closed under formation of quotients and subobjects. If every object of A has a finite filtration with
subquotients in B, then the map i, : Ko(B) — Ko(A) induced by the inclusion functor B C A is
an isomorphism.

Proof. We first observe that i, is surjective. Every object A in A has a filtration A = Ay D A; C
-+ D Ay, = 0such that A;/A;+1 is an object in B. By induction on the length of the filtration we
conclude that

[A] = [Ao/A1] + -+ + [An—1/An]

where the latter object lies in the image of Ky(B) by definition.

Next, we claim that i, is injective. To this end, we will construct an explict inverse function.
Since an object A € A has a finite filtration with successive subquotients in B, we would like to
use the formula above to define the inverse: send [A] to " ([A;/A;+1]. What is unclear is that
this is well-defined: since we might have another filtration of A which defines an a priori different
element of Ky(B). However, any two filtrations have an equivalent common refinement and the
result follows. O

Definition 5.7.1.2. Suppose X is a Noetherian scheme, and Z C X is a closed subscheme, then we
write Cohz(X) for the category of coherent &'x-modules that are supported on Z, i.e., coherent
O x-modules that are killed by some power of .# where . is the quasi-coherent sheaf of ideals that
cuts out Z in X.

Corollary 5.7.1.3. Let Z C X be a closed subscheme, then the inclusion Go(Z) — Ko(Cohz(X))
is an isomorphism.

Proof. An immediate consequence of devissage since every €'x-module supported on Z admits a
finite filtration with subquotients that are killed by .# and therefore come from Z. O

5.7.2 Localization

Now, suppose X is a Noetherian scheme and let Z C X be an closed subscheme with open com-
plement U. In that case, the inclusion j : U C X is a flat morphism (as an open immersion) so we
have the exact functor

j*: Coh(X) — Coh(U),
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which induces j* : Go(X) — Go(U). We claim that this functor is always surjective and we can
even describe its kernel. Indeed, a coherent sheaf on X whose restriction to U is trivial is necessarily
supported on Z. Thus, we have the sequence of exact functors:

Cohz(X) C Coh(X) — Coh(U).

We will see that this sequence gives rise to an exact sequence of Grothendieck groups. The right
hand functor is in fact known to be essentially surjective: every coherent sheaf on U extends to a
coherent sheaf on X. Thus, the right hand functor is thus akin to a surjective group homomorphism,
and by this analogy might be thought of as a quotient of the category Coh(X). The category
Cohz(X) has the property that it is an abelian full subcategory of C'oh(X) but it is furthermore
closed under taking sub-objects, quotients, and formation of extensions. We would like to think
of such a subcategory as akin to a normal subgroup: in that case we would like to form a suitable
quotient category. We now say this more abstractly.

Construction 5.7.2.1 (Quotient category). Suppose A is an abelian category. A Serre subcategory
B C A is an abelian subcategory that is closed under formations of subobjects, quotients and
extensions. We would like to construct a quotient category A /B; this should come equipped with
a functor A satisfying the universal property that if C is any abelian category such that the objects
and morphisms in B are sent to 0 in C, then there is a unique functor A /B — C factoring the given
functor.

We define the objects of A /B to be the objects of A. A morphism f : A — A’ in A will be
called a B-monomorphism, resp. B-epimorphism if the kernel (resp. cokernel) of f lies in B, and
a B-isomorphism if both the kernel and the cokernel of f lie in B. A morphism in A /B will an
equivalence class of diagrams of the form

Al%A—>A2

where the left and right arrows are B-isomorphisms. The equivalence classes will be given by
diamonds. Composition is given by pullbacks of diamonds. There is an induced functor

loc: A — A/B

that is an isomorphism on objects and sends a morphism to its equivalence class. One has to check
that A /B is an abelian category and loc is an exact functor with the universal property described
above.

Theorem 5.7.2.2 (Gabriel). If X is a Noetherian scheme, U is an open subscheme and Z is the
complementary closed subset with its reduced induced scheme structure, then the restriction functor

j* : Coh(X) — Coh(U) identifies Coh(U) with the quotient category Coh(X)/Cohz(X).
If A/B is a quotient, then the localization functor
loc:A — A/B
preserves exact sequences and thus induces a homomorphism
Ko(A) — Ko(A/B);

this function is evidently surjective. The next theorem identifies its kernel.
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Theorem 5.7.2.3 (Localization). If B is a Serre subcategory of an abelian category A, then there
is an exact sequence of the form

Proof. Note that any object in B is sent to the zero object in A /B since the map B — 0 is a B-
isomorphism by definition. It follows that the composite map Go(B) — Go(A /B) is the zero map
and there is an induced surjection

Ko(A)/Ko(B) — Ko(A/B).

It suffices to prove that this map is injective, and we do this by constructing an explicit inverse
function. To this end, since the objects of A /B are the same as the objects of A, it would suffice to
show that sending [A] to [A] is additive. It remains to show that if loc(A;) is isomorphic to loc(As2)
in A/B, then [A;] = [As] in the quotient Ky(A)/Ky(B). Indeed, in that case we can represent the
isomorphism A; — Az in A /B by a diagram A; < A — As where both the left and right arrows
are B-isomorphisms. In other words, there are exact sequences

0 — ker(f) — A — A; — coker(f) — 0,
which yield ker(f) = [A] + [A/ ker(f)] and [A1] = [coker(f)] + [A/ ker(f)], i.e.,
[A] — [ker()] + [A1] — [eoker(f)] = 0.

Similarly,
[A] — [ker(g)] + [As] — [coker(g)] = 0.

Thus, [A;] = [A2] in Ko(A)/Ko(B) as claimed.

The additivity can be checked similarly. O

Theorem 5.7.2.4 (Localization sequence). If X is a Noetherian scheme, U is an open subscheme
and Z C X is the complement with its reduced induced structure, then there is a localization exact
sequence

Go(Z) 5 Go(X) L5 Go(U) — 0.
Proof. From the localization theorem combined with Gabriel’s theorem, we get an identification
Ko(Cth(X)) — Go(X) — G()(U) — 0.

By devissage, we conclude that Go(Z) — Ko(Cohz(X)) is an isomorphism. Moreover, i, sends
a coherent sheaf on Z to the coherent sheaf on X that is annihilated by .# so we’re done. O

Corollary 5.7.2.5. If X is a separated regular Noetherian scheme and U is an open subscheme
with closed complement Z with its reduced-induced structure, then there is an exact sequence of the
form

Go(Z) — K°(X) — K°(U) — 0.

If Z is furthermore regular, then the term on the left can be replaced by K°(Z) and the sequence
remains exact.
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5.7.3 Computations/Consequences

Diagram chasing, we get a Mayer—Vietoris sequence for K -theory of separated regular Noetherian
schemes.

Example 5.7.3.1. The K-theory of P is Z"*! by induction. We do this by induction on n using the
localization sequence and the fact that We know that K°(SpecZ) = Z and K°(A%) = Z as well.
Now, consider the localization sequence

K'P" ') — K°(P") — K°(A™) — 0.

The right hand morphism is a split surjection (split by pullback along the projection P — Spec k).
We claim the left hand morphism is also injective and the result follows by induction.

5.8 K, units and homotopy invariance

At the end of the previous section we observed the existence of a portion of the Mayer-Vietoris
sequence for Ky and we observed that the failure of injectivity of the first map was described, via
patching ideas, in terms of automorphisms. We now make this more precise by introducing the
functor K.

5.8.1 K, of aring: basic definitions

Suppose R is a commutative unital ring. Consider the inclusion maps GL,(R) — GLn11(R)
defined by the formula

X | 0
0 | 1

X —

and set
GL(R) := colim,, GL,(R),

where the colimit is formed in the category of groups. We will refer to GL(R) as the stable or
“infinite” general linear group.

If G is any group, recall that the commutator subgroup [G, G| is subgroup generated by commu-
tators [g, h] = ghg~'h~!. The quotient G/[G, G] = G is an abelian group. Moreover, if A is any
abelian group, then given any homomorphism ¢ : G — A, the composite map [G,G] - G — Ais
trivial so ¢ factors through a map G/[G, G] — A. In particular, the assignment G — G/[G, G] is
a left adjoint to the forgetful functor Ab — Grp.

Definition 5.8.1.1. If R is a commutative unital ring, then
K1(R) := GL(R)/[GL(R), GL(R)];

this is an abelian-group valued functor on the category of commutative unital rings.
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If R is any ring, then det : GL,(R) — G,,,(R) is a homomorphism. Since det commutes with
the inclusion maps GL,,(R) — GL,+1(R), it follows that there is an induced map det : GL(R) —
G,,(R). Since G,,(R) is abelian, this map factors uniquely through a homomorphism

det : Kl(R) — R*

The maps G L, (R) — R* are split by the map sending u to the diagonal matrix diag(u, 1,...,1).
Since these maps are also compatible with stabilization, we conclude that there is an induced split-
ting R* — GL(R) and thus a splitting R* — K;(R) of det. In particular, det is always surjec-
tive. If we write SK;(R) = ker(det : K1(R) — R*), then using the splitting we conclude that
Ki(R) = R* @ SK (R).

Proposition 5.8.1.2. If F' is a field, then det : K1(F') — F* is an isomorphism.

Next, we develop the link between K7 and projective modules. Begin by observing that if
F' is a finite rank free R-module, then the homomorphism GL,(R) — K;(R) shows that any
automorphism of F' gives rise to an element of K (R). Suppose more generally that P is a finitely
generated projective [-module. Since P is a summand of a finite rank free [2-module, we can write
P ® @ = R for some projective module (). Suppose o : P — P is an automorphism of P.
The choice of splitting allows us to extend « to the automorphism (¢, idg) of R™. We now claim
that « has a well-defined class in K7 (R) independent of the splitting P & Q = R™. Indeed, any
other splitting differs from this one by an automorphism of R"™. Thus, if X is a matrix representing
(ar,idg), then g X g~ ! represents the new splitting. This defines an inner automorphism of G L,,(R).
Stabilizing, such automorphisms act trivially on the abelianization. Therefore, we conclude that for
any f.g. projective R-module P there is a well-defined map Autr(P) — Ki(R).

5.8.2 The Bass—Heller-Swan theorem

As before, we can consider the map K (R) — K;(R]t]) for any commutative unital ring R. This
map is always split injective. We now observe that in the same situations as for Ky, it is also
surjective. Because of the existence of the determinant homomorphism, by appeal to homotopy
invariance for units, we see that a necessary condition for surjectivity is that R is a reduced ring.
The following result, due to Bass—Heller—Swan [?], has a proof very similar to that given for K
above.

Theorem 5.8.2.1. If R is a regular ring, then Ki(R) — Ki(R[t1,...,t,]) is an isomorphism.
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Chapter 6

Vector bundles and A !-invariance

We give Quillen’s solution to the Serre problem on freeness of projective modules over polyno-
mial rings over fields (or, more generally, PIDs). The two key tools are “Horrocks’ theorem” and
Quillen’s “local-to-global” principle.

6.1 The Quillen—Suslin theorem

6.1.1 Stably free modules vs. unimodular rows

Proposition 6.1.1.1. Assume k is a commutative ring. If P is a finitely generated projective k-
module of the form P : ker(f : k™ — k™), then P is free if and only if f can be lifted to an
isomorphism f : k™ S k™ @ k" such that f coincides with f followed by the projection onto the
first factor.

Proof. If f can be lifted to an isomorphism f as in the statement, then ker(f) coincides with the
kernel of the projection which is evidently free. Conversely, suppose P is free via an isomorphism
g : P — k™. In that case, Q = ker(g) is projective and the restriction of f to ) determines an
isomorphism Q — k™. The map fy @ g then gives the required lift of f. O

The above proposition can be phrased in terms of matrices as well: if P is a stably free R-
module, then since f as is in the statement above is split, it corresponds to the kernel of an m X n-
matrix M that is right invertible (in the sense that there exists an n x m-matrix whose product with
M vyields the m x m-identity matrix). Sometimes, such matrices are called unimodular m x n-
matrices. We already mentioned the special case where » = 1: such matrices are called unimodular
rows. The isomorphism k™ — k™ @ k" in the statement means that after change of basis, M can
be realized as the first m rows of an invertible n x n-matrix. Matrices of the form M are called
completeable unimodular m x n-matrices. Of course, if every stable free module over k is free,
then, in particular, every unimodular row is completeable. In fact, the converse holds.

Corollary 6.1.1.2. If k is a commutative ring, then the following statements are equivalent.

1. Any stably free f.g. projective k-module is free.
2. Any unimodular row over k is completeable.

183
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Proof. The second statement implies the first by induction on m. 0

For any ring k, we know that k — k[x] induces an isomorphism K°(k) — K%(k[z]). In
particular, if K O(k:) = Z, i.e., if all stably free k-modules are free, then the same holds true for
k[x]. By induction if k is a principal ideal domain, we conclude that all stably free k[x1, ..., zy]-
modules are free. The result above then shows that if we want to establish that all f.g., projective
k[xi,...,zn]-modules are free, it suffices to establish this fact for unimodular rows (of arbitrary
length).

6.1.2 Vaserstein’s proof of the Quillen—-Suslin

Suppose R is a commutative ring. Observe that there is an action of GL,,(R) on Um,,(R) given by
left multiplication. We will say that two unimodular rows of length n are equivalent if the cosets in
Umy(R)/GLy(R) coincide. Two elements of Um,y,(R) lying in the same orbit for this GL,,(R)-
action determine isomorphic f.g., projective modules. The properties of this action are summarized
in the following proposition, whose proof is left as an exercise.

Proposition 6.1.2.1. The assignment sending an element of (f1, ..., fn) € Umy,(R) to the associ-

ated projective module ker(f1, ..., f,) determines a bijection between the set of orbits Um,,(R)/GL,,(R)
and the set of rank n — 1 projective R-modules such that P & R is free. This bijection sends the

orbit of (1,0, . ..,0) to the free module of rank n.

Now, consider the polynomial ring R[t]. Suppose we give ourselves a unimodular row (f1,. .., f,)
over R|[t]. Each polynomial f; = Y% a;;t/ with a;,, # 0; we will refer to the term a; , as the
leading coefficient of f;.

Theorem 6.1.2.2 (Vaserstein). Assume f := (f1,. .., fn) is a unimodular row of length n over R][t].
If the leading coefficients of the f; generate the unit ideal in R, then f(t) lies in the same orbit for
GL,(R[t]) as £(0).

Let us first show how this result implies that stably free k-modules, & a field, are free.
Theorem 6.1.2.3. If k is a field, then every f.g. projective k[z1, ..., xy,]|-module is free.

Proof. We proceed by induction on d: we already know that every f.g., projective k-module is free
so the result is true for d = 0. Thus, assume d > 0 and suppose f = (f1,..., f,) is a unimodular
row of length n over k[z1,...,x4]. Without loss of generality, we may assume f; # 0. We claim
there exists a change of variables

t1 — 11, l—>ti—|—t71ni,2 <i<d
such that fi(t1,t2 +t1%,...) = ch(t1, ..., tq) withc € k\ 0 and h(ty, ..., t4) a monic polynomial
in t1. Indeed, let ' '
fi= Zail,...,idtlll -t
Then

filty,to + 2+ tg+11%) = Z Qi oo iy (t’f”liﬁ'”wdid + terms with lowert; -degree)
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Now, we may choose 7o, ..., 74 such that i, 4+ r1i3 + - - - 4+ 1414 are distinct for all the intervening
d-tuples (i1, ...,iq4). In fact, if m is an integer greater than max(i1,...,iq), then we may choose
rj = m?~1. In that case, the monomial with the highest non-vanishing coefficient will be have
non-zero leading coefficient and the result follows. This argument is part of Nagata’s proof of the
Noether normalization theorem.

Importantly, note that this change of variables determines a k-algebra automorphism of k[z, . . ., x4].
Thus, after choosing this automorphism, we can assume that f; is, up to a scalar multiple, a monic
polynomial in R[t;] where R = k[to, ..., t4]. Note that the leading coefficient of this polynomial is
a unit and therefore certainly generates the unit ideal. By the proposition above, we conclude that
our original unimodular row lies in the same G L,,(R]t])-orbit as its corresponding constant term,
which is a polynomial ring of lower degree. By the induction hypothesis, all stably free modules
over k[x1,...,x4] are free and therefore this unimodular row is completeable. Thus, our original
unimodular row is a free module and we conclude. O

Thus, let us now concentrate on establishing Vaserstein’s theorem. First, we know that unimod-
ular rows over local rings are completable, so a test case is a polynomial ring over a local ring.

Proposition 6.1.2.4 (Horrocks). If R is a local ring and £ = (f1,..., fn) a unimodular row of
length n in R|[t] such that fi has leading coefficient a unit in R, then f is completeable, i.e., equiv-
alent to (1,0, ...,0).

Proof. The proof of this fact we give is due to Suslin. We can assume that n > 3 without loss of
generality, since the cases n = 1, 2 are immediate. Write

flzadtd—i—-"-i-ao

where a4 is a unit by assumption. By means of elementary row operations, we can assume that
aq = 1 without loss of generality. If d = 0, then we’re done, so assume that d > 0 and we proceed
by induction on d. By means of further elementary row operations we can eliminate all terms in
f2, ..., fn of degree > d — 1. Now, since f is unimodular, we can choose a complement

Z figi = 1.

If all the coefficients of all the fs,..., f, were in m then the above relation could not hold upon
reduction modulo m. Thus, some coefficient of some fo, ..., f, does not lie in m. Rearranging the
fi if necessary, we may assume that fo has a coefficient not lying in m, in which case it is necessarily
a unit as R is local. Summarizing this discussion, we may write

fa = bst® + -+ + bo,

with s < d — 1 and some b; a unit.

Now, we claim that if we have two polynomials fi, fo € R]t], with deg fi = d and f; monic
and deg fo < d — 1 with some coefficient a unit, then there is a polynomial u f; + v fs of degree
< d—1 whose leading coefficient is 1. Indeed, consider the ideal I generated by leading coefficients
of polynomials of the form uf; + v fa; it suffices to show that this ideal is the unit ideal. Observe
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that b; € I, and one inductively concludes that b; lie in I as well. using expressions of the form
2975 f5 — by f1(x). Since some b; is a unit, we conclude.

Now, we can use row operations to conclude that f;,i # 1,2 has degree < d — 1 and leading
coefficient a unit. In that case, we conclude by appeal to the induction hypothesis. O

Corollary 6.1.2.5. If R is a local ring, and f is a unimodular row of length n in R[t] one of whose
elements is monic, then £ is equivalent to £(0) in GL,(R[t]).

Proof. Since f is a unimodular row in R[t], we can choose a complement g such that fg! = 1.
Since evaluation is a ring homomorphism, we conclude that evy(fg!) = 1 as well, i.e., evy(f) is
a unimodular row over R. In that case, since we know that all f.g. projective R-modules are free,
since R is local, then evy(f) is equivalent to (1,0, ...,0). Since Horrocks’ result above shows that
f is equivalent to (1,...,0) as well, we conclude. O

The local-to-global principle

Since we have a local solution to the problem implicit in Vaserstein’s theorem, we now want to try
to patch these local solutions together to obtain a global solution. We begin with some preparatory
lemmas.

Lemma 6.1.2.6. Let R be an integral domain and let S be a multiplicative subset. If f(x) ~ f(0)
over R[S™[x], then there exists ¢ € S such that f(x + cy) ~ f(z) over R[x,y]. Conversely, if
there exists ¢ € S such that f(x 4 cy) ~ f(x) over R[z,y), then £(z) ~ £(0).

Proof. Let M € GL,(R[S™!][z]) such that f = Mf(0). in that case, M ~'f = £(0) is constant
and thus invariant under translation. Let

G(z,y) = M(z)M(z +y)~".

In that case, G(z,y) f(x,y) = f(x). Inthatcase, G(x,0) = Id,, so G(x,y) = Id+yH (z,y), with
H(x,y) € R[x,y][S™!]. Clearing denominators, there exists ¢ € S such that cH has elements in
R[z,y]. In that case, G(z, cy) has coefficients in R. Since det M is a unit in R[S]~! (by homotopy
invariance of units), we conclude that det M (x+cy) is equal to this same constant and thus G(z, cy)
has determinant 1.

For the converse, extend scalars to R[S™!][x, y] and specalize the resulting equivalence. O

Theorem 6.1.2.7. Let R be a commutative ring, and f a unimodular row of length n in R|[t]. Let

A ={a € RIf(t) ~ £(0) over R,][t]},
B = {b e R|f(t + cx) ~ £(t) over R[t, z]}.

Then, I and J are ideals in R, with I = radJ.

Proof. If b € B and ¢ € R, then substitution of cz for = gives f(t + bcx) ~ f(t) so we conclude
that bc € B as well. Likewise if b, b’ € B, then substituting ¢ + b’z for ¢ gives

ft+bz+bx)~ ft+ (b+b)z) ~ f(t).

Thus, we conclude that B is an ideal. Lemma 6.1.2.6 guarantees that A is the radical of B. O
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Theorem 6.1.2.8. Suppose R is an integral domain and f is a unimodular row of length n over
R[t]. If f(t) ~ f(0) in Ryl[t] for all maximal ideals m C R, then f(t) ~ f(0) in R[t] as well. In

particular, Vaserstein’s theorem holds.

Proof. Form the ideal B as in Theorem 6.1.2.7. For any maximal ideal m C R, Lemma 6.1.2.6
implies that for any R \ m contains an element of B. It follows that B = R. Thus U = R as well,
and we conclude.

Vaserstein’s theorem then follows by our analysis of the local case. O

6.1.3 Cech cohomology of bundles on the projective line

In this section, we compute the Cech cohomology of the bundles ¢'(n) on P!,

Proposition 6.1.3.1. Suppose R is a fixed commutative unital ring. Let V be the 2-dimensional
vector space of The following formula hold:

1. H(P'g,0(n)) =0ifi #0,1;

2. HO(P'g, 0(n)) = Rlxo, z1]"™ if n > 0 and vanishes otherwise.

3. H'(P'g, O0(n)) = Rlxo, 1] "2 if n < —2 and vanishes otherwise.

Proof. In this case, we may compute Cech cohomology with respect to the open cover of P! by two
open sets isomorphic to A! with intersection G,,. If we choose coordinates R[z] and R[z~!] then,
the differential is given by... O

Proposition 6.1.3.2. If R is a Noetherian ring, and if ¥ is a locally free sheaf on IP’}%, then
H(P'g, .Z) is a finitely generated R-module.

Proof. We proceed by descending induction on i. Fori > 1 H® (IP)}%, ) = 0 by definition of the
Cech complex. Now, we know the result is true for finite direct sums of bundles of the form &'(7)
by the previous proposition. Therefore, we deduce the result for any quotient of @;_, 0(a;) as
follows. Indeed, the short exact sequence of sheaves

0— A — 0P 6(a)—F—0
=1

yields a long exact sequence in cohomology of the form

H'(PE, @ O(a;)) — H'(PhL,.7) — HTY(PL, 7).
=1

The induction hypothesis guarantees that H* ™! (P}, ") and therefore we conclude that H'(P},, .7)
is finitely generated as well.

Therefore, to conclude it suffices to know that .% can be written as a quotient of of a finite
direct sum of modules of the form (7). Indeed, restrict .# to Spec R[t] and Spec R[t~1]; we
obtain finitely generated free modules M, and M_ over each of these open sets. Pick surjections
R®" — M, and R®™ — M_. By including more generators if necessary, we may assume that
n=m. O
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6.1.4 Horrocks’ theorem

As we have seen above, the description of vector bundles on P! over a local ring can be complicated
even when the local ring is regular of dimension 1. Suppose R a Noetherian local ring and consider
R[z]. View Spec R[z] as an open subscheme of P}, as the complement of the section at co. If
we begin with a finite rank vector bundle on Spec R[z|, equivalently a projective R|x]-module,
when does this module arise as the restriction of a vector bundle on IP’}%? Of course, any free R[x]-
module extends (in many ways) to ]P’}% and any free R[x]-module is necessarily extended from R. In
[?], Horrocks analyzed the converse to this statement. What can we say about a finitely generated
projective R[z]-module that extends to PL?

Theorem 6.1.4.1 ([?, Theorem 1]). Suppose R is a Noetherian local ring. If & is a vector bundle
on Aépec p and & extends to a bundle on Pépec r» then & is a trivial bundle.

Proof. Suppose m is the maximal ideal of R and  is the residue field. Let us suppose that &
extends to a vector bundle ¢ on IP’}%. The restriction ¢|spec «; is a vector bundle on ]P’,lg. Therefore, by
Corollary ??, the bundle ¢ |Spec « 18 a direct sum of line bundles over . On the other hand, tensoring
by a line bundle on P%pec  Will not affect the form of the restriction to Spec R[x]. Therefore, we
may assume that &|specx = O(a1) @ O(a2) ® - - - @ (ar,) where a, > 0.

The proof proceeds by induction on the rank of &. Evidently a rank 0 projective module is
extended from Spec R, so assume & has rank > 0. In that case, observe that there is an exact
sequence of the form

0— 0 — Yspeck — Y|/O — 0.

The map 0 — ¥|gpec r is precisely a nowhere vanishing section. If we can extend this section to a
nowhere vanishing section of ¢, then we obtain a short exact sequence of modules of the form

0—0—9Y—Y/0—0,

where ¢ / 0 is locally free. The restriction of this exact sequence to Aépec , then yields a short exact
sequence of projective modules, which necessarily splits by the definition of projectivity.

Thus, we will try to lift a non-vanishing section of ¢|gpec  to . We do this in two steps. First,
we can filter R by powers of m. In doing this, we obtain exact sequences of the form

0 — m'/m*™ — R/m™ — R/m" — 0.
The maps R — R/m**! induce maps Spec R/m‘*! — Spec R and we obtain corresponding maps
Pépec R/mi+1 —* Pépec R
Since ¢ is locally free, tensoring with the exact sequence above yields an exact sequence
0 —Yopm'/m™ — G orR/m*t! — & o R/m' — 0.

Taking cohomology of this short exact sequence yields a long exact sequence; we examine the
portion of the sequence

HO(% ®RRr R/mi+1) . HO(—> G @p R/mi) . Hl(g ® mi/mz‘—i—l).
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However, m’/m‘*!) is a finite-dimensional x-vector space and thus by simply choosing a basis
we obtain isomorphisms H'(4 @z m'/m'™!) = HY(¥|,) ® m’/m'TL. In particular, if H'(¥|,)
vanishes, then we may lift at each stage. By our assumptions ¢|,, is a direct sum of bundles of the
form 0 (n) with n > 0. In particular, the first Cech cohomology of each such bundle vanishes, and
we deduce the required surjectivity.

Now, there are maps H°(¥4) — HY(Y ®r R/m'*!) and taking the inverse limit, we obtain a
map

HY(9) — lim H°(Y ®r R/m'™)

On the other hand, H°(%) is an R-module and thus has a topology induced by powers of m. If we

complete this Z-module, we obtain a module .Fﬁ(? ). The map above factors as

—

HY(4) — HY(Y) — lim H*(Y ®r R/m").

It is a special case of Grothendieck’s theorem on formal functions that the right hand map is an
isomorphism (though in this case, we may simply check everything by hand).
Now, H°(%) is a finite generated R-module. By basic properties of completion, we conclude
that .
H*(9) — HY(Y) — H°(Y ®p )

is surjective. However, since H°(¥4 ®g ) has a nowhere vanishing section, we conclude that ¥
also has a nowhere vanishing section, but this is precisely what we wanted to show. O

Remark 6.1.4.2. While the proof of Horrocks’ theorem is rather short and intuitive in this setting,
it requires some algebro-geometric machinery. In applications, Quillen used a closely related alge-
braic version of the result. It is possible to give a purely algebraic proof of this algebraic version of
the result: see [?, Chapter IV] for more details. We have chosen to give Horrocks’ original proof
since we found it geometrically appealing.

6.2 Lecture 32: The Quillen—Suslin theorem

It was observed by Murthy that a global version of Horrocks’ theorem would imply a solution to the
Serre problem about triviality of projective modules over polynomial rings over a field.

6.2.1 Extending vector bundles from A}, to P},

We may use Horrocks’ theorem to effectively give a criterion to study when modules are extended.
Suppose we begin with a vector bundle on A}z (for what we are about to say, it will not be necessary
to assume that R is a Noetherian local ring). If we would like to extend this vector bundle to P1,,
then we do this by attempting to glue. In order to glue, it suffices to extend A}:{ to a Zariski open
cover of IP’}%. The simplest possible situation would be if we could find an open cover by two sets.
The easiest open cover is, of course, the usual open cover by Spec R[t] and Spec R[t~!]. However,
it would suffice to take any Zariski open subset of t ! = 0 inside Spec R[t]. Now, we give an easy
and useful criterion for gluing.
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Lemma 6.2.1.1. Suppose X is a scheme and we have a Zariski open cover of X by two open
subschemes U and V. If & is a rank n vector bundle on U, such that &|yny is trivial, then &
extends to a vector bundle on X.

Proof. Take the trivial bundle 6"‘6/5” and observe that by assumption ﬁ}e/anwmv > &lyny. Gluing
these two vector bundles, we obtain the required extension. O

Rather than attempt to make a choice of a Zariski open subset of Spec R[t~!] that contains the
section at “o00”, we will look at all possible refinements of Zariski neighborhoods of co. To make
this clearer, set s = ¢~1. We want to consider Zariski open subsets of Spec R][s] that contain s = 0.
We look at elements of R][s] of the form 1+ sR[s]: such elements have constant term 1 and therefore
evidently avoid s = 0. We consider the localization:

Voo := Spec R[s][(1 + sR[s]) 7!

Note that the map R[s] — R[s](1 + sR[s])~! is a localization and thus flat. Essentially Vo, is
the intersection of all open sets that contain co. We can therefore cover IP’}Q by the two open sets
Spec R[t] and V. We now give a description of this intersection.

Proposition 6.2.1.2. The intersection Spec R[t] N Vo = Spec R(t), where R(t) is the localization
of R[t] at the multiplicative set of all monic polynomials.

Combining these two results, we deduce the following criterion for extensibility.

Corollary 6.2.1.3. If P is a projective R[t]-module, then if P @ gy R(t) is free, then P extends to
P.

Proof. 1f P is a projective R[t]-module and P ® g, R(t) is free, then there exits a monic irreducible
polynomial f such that Py is a free R[t];-module. We can view R|[t]f as the intersection with A},
of an open subset of ]P’}% containing the section at oo. O

In order to make this result useful, we need to better understand R(t)-modules. To this end,
observe that if R = k is a field, then R(t) = k(t), thus k(¢) has smaller dimension than R[t]. We
now observe that this phenomenon is general.

Lemma 6.2.1.4. Suppose R is a Noetherian ring of Krull dimension d.
1. The ring R(t) has Krull dimension d.
2. If Ris PID (resp. a field), then so is R(t).

Proof. We understand prime ideals in R[t] rather well and we know R[t] has Krull dimension d+ 1.
To show that R(t) has Krull dimension d, we have to show that every prime ideal 8 C R][t] of
height d + 1 localizes to the unit ideal in R(t). Equivalently, we have to show that 3 contains a
monic polynomial. Following [?, IV Proposition 1.2], we give an elementary proof of this fact.

Setp = PN R. One knows that if P has height d+-1, then ‘B is not pulled back from R, and thus
p[t] is a proper subset of 3 while p has height d. Therefore, p is a maximal ideal in R. Now, suppose
f € P is some polynomial with coefficients in R that lies outside of p[t]. Say f = a,t™ + - - - + ao.
We want to modify f by an element of B to be monic.
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Without loss of generality, we may assume that a,, does not lie in p. Now, since p is maximal,
we can find ¢ = a,b — 1 € p. In that case, b - f — ct” is a monic polynomial contained in 23, but
this is precisely what we wanted to show.

For the second point, it suffices to observe that if R is a UFD, then R[t] is also a UFD and then
R(t) is also a UFD. Since a dim R[] = dim R, if R has dimension 1, it suffices to observe that
UFDs are normal. O

Combining this result with Horrocks’ result, we may establish a preliminary result about pro-
jective modules over rings that are not principal ideal domains.

Corollary 6.2.1.5. If R is a discrete valuation ring, then every finitely generated projective R|t]-
module is free.

Proof. By assumption R is a local PID. Thus, by the lemma above R(t) is also a PID. In particular,
every f.g. projective module over R(t) is free. Now, suppose P is a f.g. projective R[t]-module.
By what we just said P ® gy, R(t) is a free R(t)-module. Therefore, by the proposition above, we
may extend P to a vector bundle over IP}%. In that case, it follows from Horrocks’ theorem, that
P is extended from an R-module Fy. But since R is a local PID, it follows that F is free itself.
Therefore, P is also free. O]

Remark 6.2.1.6. This discussion makes it clear that if one has a “global” version of Horrocks’
theorem, then one would inductively be able to understand vector bundles on polynomial rings over
a PID. That this is true, was more-or-less observed by Murthy shortly after Horrocks’ theorem was
published. Quillen’s solution to the Serre problem proceeds precisely in this fashion by allowing
one to prove a global version of Horrocks’ theorem.

6.2.2 Quillen’s patching theorem

Following Quillen, we now search for a global version of Horrocks’ theorem. Recall that descent
theory tells us that if R is a commutative unital ring and f and g are a pair of comaximal elements
of R, then one way to build a projective R-module is by specifying projective Ry and R,-modules
together with suitable gluing data. Suppose we would like to tell if a given R-module is trivial.
Know that the associated Ry and Ry4-modules obtained by localization are trivial is certainly not
sufficient to guarantee triviality. However, we could ask if, perhaps, one can modify the isomor-
phism over Ry, to guarantee that the glued module is trivial. Quillen’s local-to-global principle
precisely addresses this problem.

Theorem 6.2.2.1. If M is a finitely presented R[T|-module, and My, is an extended Ry, [t]-module
for each maximal ideal m C R, then M is extended.

Proof. Our argument follows the presentation of [?, Theorem V.1.6]. Let Q(M ) be the setof f € R
such that M is an extended A|[t]-module. We claim that (/) is an ideal in A. We must show
thatif fy, f1 € Q(M), then f = fo+ f1 is alsoin Q(M). After replacing R by R, we may assume
that fo and f; are comaximal in R. If we set N = M/t M, then we will try to show that M = N¢].

We can assume that My, is extended from Ny, [t] and thus we may fix automorphisms u; :
My, — Ny [t], i = 0, 1. After composing with a suitable automorphism of Ny, [t] if necessary, we
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may assume that u; reduces modulo ¢ to the identity map of Ny,. Pictorially, we have the following
situation:

Mfo Mfofl Mf1
| N |
(u0) 1
[/
Nfo[t]*)'Nfoﬁm 77777777 >Nf0f1[t]%Nf1[t]‘

If (uo) f, = (u1),, then by Zariski descent, these two isomoprhism patch together to give a module
isomorphism M = N|t] and we are done.

Quillen’s idea is to modify the choices of ug and u; by suitable automorphisms to guarantee
that we may patch. Note that the element

b = (ul)fo © ((uo)fl)il € EndeOfl [t](N)foﬁ t] = EndR(N)foﬁ [t].

Set E = Endgr(N). By assumption ¢ reduces to the identity modulo ¢, i.e., § € (1 4+ tEy ¢ [t])*.
Therefore, it suffices to show that # may be rewritten as (vl)fol o (vg)y, for suitable v; € EY,[t].
Granting this for the moment (it will be established in Lemma 6.2.2.2) then (voug) s, = (viu1)y,
and so after replacing u; by v;u;, we may patch together our local extensions as observed above.
To establish the result, it suffices then to show that Q (M) is the unit ideal. Set M’ = R[t] ®r
M /tM; this is a finitely presented R[t]-module that is extended from M. For any maximal ideal
m C R, there exists an isomorphism ¢ : My, = M) . Since ¢ is a map of finitely presented modules,
by clearing the denominators we conclude that there is an element ¢ € R \ m such that ¢ is the
localization of an isomorphism of Ry [t]-modules M, — M. In that case, g € Q(M) \ m and
therefore (Q(M) is an ideal that is not contained in m which means that Q(M) = R. O

Lemma 6.2.2.2. Let R be a commutative unital ring, and suppose E is an R-algebra (not nec-
essarily commutative!). If f € Rand 6 € (1 + TEy [T]*), then there exists an integer k > 0
such that for any gi,g2 € R with g1 — g2 € fFR, there exists 0 € (1 + TR[T])* such that

Yi(T) = (1 T)0(g2T) .
Proof. To be added. For the moment, see [?, Corollary V.1.2-3] O

6.2.3 Globalizing Horrocks’ theorem and the Quillen—Suslin theorem

Combining the results so far, we may give the “global” version of Horrocks’ theorem.

Corollary 6.2.3.1. If M is a finitely generated projective R[t|-module that is the restriction of a
vector bundle on ]P’épeC r» then M is extended.

Proof. To check whether M is extended, it suffices to check whether M is exteded after localizing
at every maximal ideal m C R. However, if M is a vector bundle on Ry, [t] that extends to P}{m,
then M is extended by Horrocks’ theorem. Therefore, M is extended. 0

Finally, we may establish the Quillen—Suslin theorem.

Theorem 6.2.3.2 (Quillen—Suslin). If R is a principal ideal domain, then ¥.(R) — V7 (R[z1, ..., %y))
is an isomorphism.
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Proof. We proceed by induction on n. The result is true if n = 0 by the structure theorem. Take
A =k[t1,...,tn—1] and sett = t,,. Then, B = A®ppy R(t) is a polynomial ring in n — 1-variables
over R(t). However, since R is a principal ideal domain, so is R(t). Therefore, M ®g [t|R(r) is
free over B by the induction hypothesis. Thus, M ® 4 A(t) is free over A(t) and therefore M is
free by the results above. O

6.3 Lecture 33: Lindel’s theorem on the Bass—Quillen conjecture

In this section, we turn our attention to A'-invariance of the functor #;(X ). We already know that
if X = P!, then A'-invariance fails. However, buoyed by the Quillen—Suslin theorem, we consider
the problem of Al-invariance for X = Spec R with R a regular ring. That this should be true
was conjectured by Bass and became known as the Bass—Quillen conjecture. We begin by giving a
mild strengthening Quillen’s patching theorem 6.2.2.1. Using this version of patching, to establish
the Bass-Quillen conjecture in general, it suffices to establish it for a regular local ring. Beyond
Quillen’s patching theorem, Lindel’s key idea was to reduce the result to the case of polynomial
rings by using his étale neighborhood theorem and a refined étale descent result for vector bundles
(though in the form we will state the result it will not be a special case of ’etale descent).

6.3.1 Quillen’s patching revisited and Roitman’s ‘“‘converse”

Once again, our treatment follows [?, Theorem 1.6]. We generalize Quillen’s theorem to treat two
special cases of the Bass—Quillen conjecture.

Theorem 6.3.1.1. If R is a commutative unital ring, and M is a finitely presented Rlt1, ..., ty]-

module, then following statements hold.

(Ay) The set Q(M) consisting of elements g € R such that My is extended from an Ry-module is
an ideal in R (sometimes called the Quillen ideal).

(By) If My, is extended from an R.,-module for every maximal ideal m C R, then M is extended.

Proof. To be added. [
Corollary 6.3.1.2. If R is a Dedekind domain, then every R|[t1, ..., t,]-module is extended from R.

Proof. By Quillen’s patching theorem, it suffices to prove this when R is a local Dedekind domain,
i.e., when R is a local PID, but this follows immmediately from the Quillen—Suslin theorem. O]

The above result admits a rather strong generalization, due to Roitman (without assuming the
Quillen—Suslin theorem).

Theorem 6.3.1.3 (Roitman). Suppose R is a commutative unital ring and S C R is a multiplicative
set. Fix an integer n > 1. If every finitely generated projective R[t1, ..., t,|-module is extended
from R, then every finitely generated R[S™'|[t1, ..., t,]-module is extended from R[S™1].

Proof. This is [?, Proposition 2] (see also [?, Theorem V.1.11]). By induction on n, it suffices to
treat the case where n = 1. Therefore, assume every finitely generated projective R[t]-module is
extended from R and suppose P is a finitely generated projective R[S~!][t]-module. By Quillen’s
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patching theorem, we may replace R[S~!] by (R[S™!]) for m a maximal ideal of R[S~!]. Equiv-
alently, we may find a prime p C R such that (R[S™!])m = R, and therefore, we may assume
without loss of generality that R[S™!] = R,.

Thus, suppose P is a finitely generated projective Ry[t]-module. We want to show that P is free.
Since P is a direct summand of a finitely generated free module P = R,[2]®", it is determined by
a projection operator on R,[t]*™. We want to show that this projection operator is conjugate in
Aut g, (Rp[x]®") to the matrix diag(1,...,1,0,...,0) where the number of 1s that appear is
given by the rank of P.

Write e(t) for the projection operator associated with P. Since R, is local, the module P/tP is
free, and therefore e(0) is conjugate in Autg, (R;") to diag(1,...,1,0,...,0). Thus, by conjuga-
tion by an element of Autg, (R;") we can assume without loss of generality that e(0) is equal to
the standard projection operator.

By clearing the denominators, we may find an element 7 € R \ p such that e(rt) lies in the
image of

M, (R[t]) — Mn(Rplt])

(the constant terms e(0) are 0 or 1, which already lie in R). Thus, we may fix eg(¢) € M,,(R]t]) that
localizes to e(rt) such that e (0) is the standard operator above. Since e(rt) is a projection operator,
e(rt)? — e(rt) = 0. Therefore, since eg(t) localizes to e(rt), we conclude that eq(t)? — eo(t)
localizes to zero and therefore is killed by some element s € R \ p.

Since e0(0)? = ey(0), we conclude that ey (t)? — eo(t) has the form te(t) for some matrix €(t)
in R[t]. Now, ¢ is not a zero-divisor in R[t]. Therefore, ste(t) = 0 implies se(t) = 0. Therefore,
se(st) = 0 as well. Thus,

eo(st)? — ep(st) = ste(st) = 0 € M, (R[t]),

and therefore, e((st) determines a finitely generated projective R[t]-module as well. Because every
RJ[t]-module is extended from R, it follows that this module is extended from R as well. Therefore,
we may find o (t) € Aut gy (R[t]®™) such that

o(t) teg(st)o(z) = ep(0).
Localizing to M,, (9,[t]), this becomes
o(t) te(rst)o(t) = e(0),

and dividing by 7s yields the formula we want:

O]

Combining Roitman’s theorem and the Quillen—Suslin theorem, we may deduce another special
case of the Bass—Quillen conjecture: the conjecture holds for I the localization of a polynomial
ring over a field or PID.
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Corollary 6.3.1.4. If R is a principal ideal domain (or a field), and A is a localization of a polyno-
mial ring over R, then any finitely generated projective Alty, ..., t,]-module is extended.

Proof. By the Quillen—Suslin theorem, if B is a polynomial ring over R, then every finitely gener-

ated projective B-module is free. Thus, every finitely generated B[y, ..., t,|-module is extended
from B, since every such module is free, again by the Quillen—Suslin theorem. Now, write A as a
localization of suitable B and apply Roitman’s theorem. O

6.3.2 Lindel’s patching theorem

Essentially, Lindel’s approach to the Bass—Quillen conjecture was to try to reduce it to the two
results established above. The key step in this reduction was a patching result that rests on Lindel’s
Nisnevich neighborhood theorem: this is the place where, unlike the proof of the Quillen—Suslin
theorem, one is forced to assume that one is considering regular rings containing a field. Indeed,
Lindel’s theorem shows that any regular local ring containing a field (such that the residue field
is separable over the base) is a Nisnevich neighborhood the localization of a polynomial ring at a
maximal ideal. The idea is then to use induction on the dimension combined with validity of the
conjecture over localizations of polynomial rings to conclude. There is one further technical issue
that arises: we cannot, without some restrictions, guarantee that residue field extensions at maximal
ideals are always separable: one way to guarantee this is to assume one is working with regular
varieties over a perfect field. It is possible to remove this assumption, but we treat this afterwards
so as not to complicate the essential geometric idea of the proof.

Suppose k is a perfect field, R is a localization of a finite-type regular k-algebra of dimen-
sion d at a maximal ideal m. If  is the residue field of R at m, we may find a polynomial ring
K[z1,...,24] C R such that, setting n = k[x1,...,z45) Nmand S = k[zy,...,24]s, the map
S — R is an étale neighborhood. In fact, without too much work we may refine this neighborhood
to a covering.

Lemma 6.3.2.1. Let R be an étale neighborhood of a local ring S. There exists an element f € n
such that

is an affine étale cover.

Proof. This is a consequence of local structure of étale morphisms. Essentially we may factor
Spec R — Spec S as the composite Spec R < Spec S[t] — Spec S where the first map is a
closed immersion defined by a polynomial h(t) € S[t] such that ~(0) lies in the maximal ideal of
S and h/(0) is a unit. In that case, we may take f = h(0) and it suffices to check the remaining
properties are satisfied. O

If we take any non-zero element f of nS and we invert it, then the resulting rings Sy and Ry
have dimension smaller than d. Note also that I is actually regular as the localization of a regular
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k-algebra is again regular (unfortunately, we have not proven this statement in this generality). Thus,
we have the following picture:
S——=5;

|

R—— Ry

is an affine étale cover of S by S; and R. Similarly, for any integer n > 0, we obtain an affine étale
cover S[ti,...,ty] of the form

S[tl,...,tn]4>Sf[t1,...,tn]

| |

R[tl, .. ,tn] *>Rf[t1, e ,tn].

Therefore, by étale descent, we may build projective S[t1, ..., t,]-modules by patching together
projective R[t1,...,t,]-modules and projective S¢[t1,...,t,]-modules that agree upon extension
of scalars to R¢[ti,...,tn].

A finitely generated projective R[t1,...,t,]-module P determines an R¢[t1,...,t,]-module
P’. If we work inductively with respect to the dimension of R, we may assume that P’ is ex-
tended from an Ry-module Fj. Note that ) = P'/(t1,...,t,)P’. We claim that P’ is actually
free. To see this, observe that Py = P'/(t1,...,t,)P" = (P/(t1,...,tn)P)s. Since R is local,
(P/(ti1,...,ty)P) is already a free R-module. On the other hand, finitely generated projective
S¢lti, ..., tp]-modules are always extended from S by the corollary to Roitman’s theorem estab-
lished above. In fact, such modules are free. Therefore, étale descent tells us that we may glue P
and a free Sy[t1,...,t,]-module to obtain an S[ty,...,t,]-module P. However, S is the localiza-
tion of a polynomial ring and therefore, again by appeal to Roitman’s theorem, we conclude that
Pis again extended from an S-module Py. Since P = P QS[ty,...,tn] R[ty,...,ty], we conclude
by associativity of tensor product that P/(ty,...,t,)P = Py ®g R, i.., that P is extended as
well. Thus, putting everything together with Quillen’s patching theorem, we have established the
following fact.

Theorem 6.3.2.2 (Lindel). If k is a perfect field, and R is a finite-type regular k-algebra, then every
finitely generated R|t1, . .., t,]|-module is extended from R.

6.3.3 The Bass-Quillen conjecture: the geometric case and beyond

Finally, we eliminate the hypothesis on perfection of the base field.

Theorem 6.3.3.1. Suppose R is a regular k-algebra, essentially of finite type over k. For any integer
r > 0 and any integer n > 0, the map

Y (R) — Vo(Rlt1, ..., tn])

is a bijection.
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Proof. 1t suffices to reduce to the case where k is perfect; this reduction was sketched by Mohan
Kumar. Let kg be the prime field of k. We may write R as a quotient of a polynomial algebra over k:
R =k[z1,...,24)/(f1,..., fr). Since P is a finitely generated projective R-module, it is the image
of an idempotent endomorphism of a free R-module of finite rank. Let &’ be the subfield of k& gener-
ated by the coefficients of fi, ..., f, and of the entries of . Set R’ = k'[x1, ..., zn]/(f1,---, fr)-
By construction, there is a projective module P’ such that P is obtained by extending scalars from
P. Note also that R — R’ ®4 k = R is a faithfully flat ring map. Since R is regular, it follows
that R’ is regular as well (use faithfully flat descent to show that it has finite global dimension).
Since k' /kq is a finite extension, it follows that R’ has essentially finite type over kg as well. Thus,
replacing R by R/, we may assume that the base field is perfect, in which case the result follows
from the version of Lindel’s theorem established above. O

6.3.4 Popescu’s extension of Lindel’s theorem

Popescu explained how to use approximation theorems to establish the Bass-Quillen conjecture in
certain mixed-characteristic situations. In particular, if R is a Dedekind domain with perfect residue
fields, he generalized Lindel’s étale neighborhood theorem in a fashion that it could be applied to
certain regular R-algebras A. We now state and prove the Lindel-Popescu’s étale neighborhood
theorem.

Theorem 6.3.4.1 ([?, Proposition 2.1]). Let R be a discrete valuation ring, p a local parameter
in R, and (A, m) a regular local R-algebra, essentially of finite type. Set k = A/m, and k =
Frac(R/(mNR)). If

1. k C Kk is separable;

2. p¢m? and

3. dim A > 2,
then A is an étale neighborhood of a localization of a polynomial R-algebra.

6.4 Lecture 34: Grassmannians and naive A'-homotopies

Our goal in this section is to show that Lindel’s theorem may be translated into a statement about
naive A'-homotopy classes of maps to a suitable Grassmannian variety. To begin, we recall the
construction of Grassmannian varieties in algebraic geometry. One key point here is that we describe
maps from an arbitrary affine scheme to a Grassmann variety.

6.4.1 Finite-dimensional Grassmannians

Classically, the Grassmannian is an object of linear algebra. Fix a field &, and let V' be an n-
dimensional vector space over a field k. As a set Gy, y parameterizes n-dimensional quotients (or
sub-spaces) of an /V-dimensional k-vector space. We begin by giving a construction of Gr,, y as
a scheme (over Spec Z, since this adds no additional complication). The idea of the construction
can be thought of as a generalization of homogeneous coordinates, analogous to the construction
of projective space. We will show that G'r,, y can be obtained by gluing together copies of affine
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space. The construction follows one of the standard constructions in differential geometry and
simply observes that all the defining maps are given by polynomials.

We would like to show that G, y is naturally the set of k-rational points of a smooth projective
k-scheme. To this end, we follow the usual description of coordinate charts. Fix a basis e, ..., exn
of V. If W C V is an n-dimensional subspace, then by picking a basis wy,...,w, of W and
writing v; in terms of the basis ey, ..., e,, we may associate with W an n x N-matrix of rank
precisely n. Now, the space of n x N-matrices of rank precisely n is an algebraic variety: it is an
open subscheme of A™" whose closed complement is defined by the vanishing of the n x n-minors.

We define V), y to be the open subscheme of A™Y complementary to the closed subscheme
whose ideal is given by the vanishing of n X n-minors of V. Observe that many different n x V-
matrices of rank n give rise to the same subspace: indeed, the redundancy is precisely the choice
of basis of W. At the level of k-points, the change of basis of W corresponds to left multiplying
by an element of GL, (k). However, by means of such multiplications, we can always reduce
an n X N-matrix to one where a fixed n X n-minor is the identity. Thus, we look at the closed
subscheme of A™V with coordinates Xi; where a fixed n X n-minor is the identity matrix. The
resulting subscheme is isomorphic to A"V —n) (with coordinates given by the non-constant entries.
Set-theoretically, these subsets form a cover of G, . We may explicitly write down the transition
maps on overlaps using matrix inverses and by Cramer’s rule, these maps are algebraic. Even better,
they are polynomial and all coefficients are 0, +1. Gluing these copies of A™(V—") together gives
Gry, N the structure of a scheme.

Note that Gry, y carries several “tautological” vector bundles -y, of rank n. Geometrically: if
V is an N-dimensional vector space, we may consider the quotient bundle of Gr,, y x V whose
fiber over x € Gy, v is the quotient R, of V' corresponding to . This definition does not suffice
to build a vector bundle over the scheme G, v, but it is easy to soup it up to define such a bundle.
We build a geometric vector bundle by gluing copies of the trivial bundle of rank n over each open
set in the previous section.

Now, if X is any scheme, a map X — Gr, n defines a rank n vector bundle on X together
with an epimorphism from a trivial bundle of rank N. If X = Spec R is affine, this corresponds
to a rank n projective R-module, together with a set of N R-module generators. In fact, we claim
this map is a bijection: given a rank n vector bundle on X together with a surjection from a rank N
trivial bundle, we can reconstruct the map X — G, n.

Suppose we are given a surjection RN — P. Pick a Zariski cover of Spec R over which P
and (@ trivialize. In that case, if we fix a subset of 1,..., N of size n, then there is an induced
inclusion map R®" — R®N | and we can ask that the composite map R®™ — P is an isomorphism.
This determines a collection of regular functions on Ry and thus a map Ry — AMN=7) Varying
through the subsets of size n, we obtain maps that may be glued to obtain a map Ry — Gy n.
Varying through the open cover, we may patch to determine our map X — Gry, n.

The construction we have just outlined goes by many different names and is very robust. In
differential geometry, the construction above is sometimes called the “Gauss map attached to a
vector bundle” and it is one step in a standard argument relating isomorphism classes of vector
bundles to homotopy classes of maps to Grassmannians. In our context, we have just described the
“functor of points” of the Grassmannian G, n.
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6.4.2 Infinite Grassmannians

If V is an N-dimensional vector space, and V’ is an N + 1-dimensional vector space, then any
injective map V' — V' defines a map Gr,, v — Gryp n41. These maps may be defined scheme-
theoretically. Indeed, we simply want to specify a rank n-vector bundle on G, n together with a
surjection from a trivial bundle of rank NV + 1. However, we may simply take the universal bundle
vn equipped with its standard surjection and add an additional trivial summand that maps trivially
to v,,. Now, we would like to define an analog of the infinite Grassmannian that appears in topology.
We set
Gry, = colimy Gry, N,

but we need to work a bit to make sense of the object on the right hand side. For our purposes here,
we may view G, n as a presheaf on the category of schemes. In that case, we may take the colimit
in the category of presheaves.

6.4.3 Naive homotopy classification

More precisely, suppose we define G, to be the co-Grassmannian. There is a rank n vector bundle
on G'ry,. Given any smooth affine scheme X, by the definition of the colimit, a morphism X — Gr,
corresponds to a morphism X — Gr, y for N sufficiently large. Since X = Spec R is affine,
such a morphism corresponds to a rank n projective module P over R together with a surjection
R®N — P,ie., N generators of P. Thus, there is an evident surjective map

Hom(X, Gry,) — 75(X).

Here, the left hand side corresponds to natural transformations of functors. Now, the right hand side
is Al-invariant. The left hand side is evidently not A'-invariant: if we take two different sets of N
generators of a given projective module of rank n over R yield different maps to the Grassmannian.
Therefore, we would like to form the quotient of the left hand side by the relation generated by naive
Al-homotopy.

Theorem 6.4.3.1. If k is a field and X is a smooth affine k-scheme, then the map
Hom(X, Gry)/ ~p1—> ¥p(X)
that sends a map X — Gr, to its naive A*-homotopy class is a bijection.

Proof. Tt suffices to demonstrate injectivity. Therefore, consider two maps ¢ : X — Gr, and
¢+ X — Gry, that yield the same vector bundle. The map ¢ corresponds to a pair (P, eq,...,¢e,)
where P is a rank n projective module and e, ...,e, are r-generators of P, while the map ¢
corresponds to (P, f1,..., fs). We want to show that the two resulting maps are naively Al-
homotopic. By adding copies of 0, we may view ¢ and ¢ as N-generated projective modules where
N = r + s. Thus, we want to construct a homotopy between the generators (eq,...,e,,0,...,0)
and (0,...,0, f1,..., fs)-

To this end, consider the R[t]-modules P[t] obtained by extending scalars to R[t]. The set
of elements ey, ..., e, defines a set of generators for the R[t]-module Pt and so does fi,..., fs.
However,

(61,...,€T,tf1,...,tfs) and ((1 —t)el,.. .y (1 —t)er,fl,...,fs)
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also define generators of P[t]. These two maps define a naive A!-homotopy connecting the two
different sets of generators, which is precisely what we wanted to prove. O

This result may be improved in several different ways. Given a commutative unital ring R, it is
not clear there is a uniform bound on the number of generators of a projective R-module of a fixed
rank. If R is not finitely generated, such a bound need not exist for a given module. However, if
R is finitely generated, then rank + dimension of Spec R is a bound by a result of Forster-Swan.
Passing to a larger Grassmannian was essential in the argument about to build a homotopy. As a
consequence, the naive A!-homotopy clases of maps to a fixed finite dimensional Grassmannian, do
not obviously coincide with maps to the infinite Grassmannian.

Naive homotopy classes of maps to spheres: unimodular rows and complete intersection ideals...
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A.1 Categories

For the most part, we use naive set theory, though we will differentiate between sets and classes.
We will assume the axiom of choice. We will use category theoretic language to attempt to keep
track of “structure” present in the objects under consideration. Neverthless, it is undoubtedly the

case that there can come a point where “structure” becomes so refined as to be unwieldy.

A.1.1 Sets

We will not pay too much attention to set theory, but for the most part it will suffice to think “in-
tuitively” about such things (though perhaps even saying this is unintuitive). As most people have
probably heard, we should not talk about the set of all sets, since one runs into paradoxical construc-
tions like “the set of all sets that do not contain themselves” (Russell’s paradox). We require that
the following constructions can be performed with sets; I hope you agree that all these constructions

are reasonable.

201
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1. For each set X and each “property” P, we can form the set {x € X|P(x)} of all members of
X that have the property P;

2. For each set X, the collection {x|z € X}, is a set; this set is sometimes denoted 2% or 22(X)
and referred to as the power set of X.

3. Given any pair of sets X and Y, we can form the following sets:

a) the set { X, Y} whose members are exactly X and Y;

b) the (ordered) pair (X, Y") with first coefficient X and second coefficient Y'; more gen-
erally for any natural number n and sets X7, ..., X,, we may form the ordered n-tuple
(Xl,XQ, ey Xn);

¢) theunion X UY :={z|z € X orz € Y};,0

d) the intersection X NY :={z|zr € X andz € Y'};

e) the Cartesian product X X Y := {(z,y)|xr € X andx € Y'};

f) the relative complement X \ YV := {z|x € X andx ¢ Y'};

g) afunction f : X — Y isatriple (X,Y, f) consisting of a subset of f C X x Y with
the property that for each = € X, there is a unique y such that (z, y) € f; the set YX of
all functions X — Y is a set.

4. For any set I and any family of sets X; indexed by I (write { X; };cr, we can form the follow-
ing sets:

a) the image {X;|¢ € I} of the indexing function;

b) the union U; X; := {z|x € X, forsome i € I};

¢) the intersection N;e; X; := {z|x € X, forall i € I}, provided I # 0;

d) the Cartesian product [[,.; X; := {f : I = U;erX;|f(i) € X foreachi € I};

e) the disjoint union [, ; X := User(X; x {i})).

5. We can form the sets N, Z, Q, R, C of all natural numbers, integers, rational numbers, real
numbers, complex numbers.

Remark A.1.1.1. With the above requirements, each topological space is a set, i.e., it is a pair (X, 7)
consisting of a set X and a topology 7 on X: the topology 7, which is given by the set of open sets
in X, is a subset of Z(#(X)). Likewise, each group is a set, each ring is a set, etc.. While
spelling everything out in terms of sets is possible in principle, in practice, it would be extremely
cumbersome.

While I hope you agree that whatever notion of set one takes one should be able to perform
the above constructions, requiring that one can perform such operations is closely related with the
notion of a Grothendieck universe, whose definition we now recall.

Definition A.1.1.2. A Grothendieck universe is a set U with the following properties:
1. f X eldandify € X, theny € U;
2. XY eld,then {X, Y} elU;
3. f X €U, then Z(X) € U,
4. If { X, }ies is a family of elements of U and if I € U, then N;c; X; € U.

Example A.1.1.3. Grothendieck universes are difficult to construct in general: the empty set gives
an example. There is another example of a countable universe (that of hereditarily finite sets). If
we want, as we do, to work in a universe that contains an uncountable set, then this amounts to a
“largeness hypothesis” on our universe. In any case, it turns out that positing the existence of such
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a universe requires adjoining an axiom to the usual axioms of set theory, and for this reason some
people prefer to avoid using universes.

If we fix a Grothendieck universe U/, an element X € U/ is called a {/-small set, or simply a
set. We will also need to consider “larger” constructions, and for this one introduces the notion of a
class. We require that (1) the members of each class are sets, and (2) for any property “P”, one can
form the class of all sets with property P, (3) every set is a class. Classes that are not sets are called
proper classes. Thus, one speaks of the class of all sets, or the class of all topological spaces.

A.1.2 Categories and Functors

Loosely speaking, categories are structures we introduce to keep track of mathematical structures
(objects) and the relations between them (morphisms). One can compose morphisms, and there is
an identity morphism from any object to itself. More formally, one makes the following definition.

Definition A.1.2.1. A category ¢ is a quadruple (Ob, Hom, id, o) consisting of
1. A class Obg of objects;
2. For each pair X, Y € Oby, a set Homy (X, Y);
3. For each object X, a morphism idx € Homy(X,Y);
4. For each triple of objects X, Y, Z, a function

o: Homg (Y, Z) x Homg(X,Y) — Homg (Y, Z);

these data are subject to the following axioms:
1. composition is associative, i.e., given four objets W, X, Y, Z, and morphism f : W — X,
g: X —=>Yandh:Y - Z, ho(gof)=(hog)o f;
2. idx is an identity, i.e., for f € Homg (W, X) and ¢ € Homy(X,Y), idx o f = f and
goidx =g;
3. the sets Hom¢ (X, Y") are pairwise disjoint.
If U is a universe, and if Oby is a U/-small set, then € will be called a I/-small category.

Remark A.1.2.2. What we are calling categories are often called locally small categories in the
literature.

Definition A.1.2.3. If ¥ is any category, then we can define the opposite category € ° to be the
category where objects are those of % and the direction of morphisms is reversed.

Definition A.1.2.4. If ¥’ and Z are categories, then a functor F' : ¥ — 2 consists of a function
that assigns to each object X in € an object F'(X) in 2, and to each pair of objects X, Y, assigns
a function Homy (X, Y) — Homy (F(X), F(Y)) (also denoted F) such that
1. F preserves composition, i.e., given f : X - Yandg:Y — Z, F(go f) = F(g) o F(f);
2. F preserves identities, i.e., F'(idx) = idp(x).

Example A.1.2.5. If € is any category, we write id4 for the functor ¢ — % that is the identity on
objects and morphisms. The composite of two functors is a functor.
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Definition A.1.2.6. If F, G : € — & are functors, then a natural transformation 0 : F — G (or a
morphism of functors) is a rule that assigns to each object X of 4" a morphism 0x : FI(X) — G(X)
such that, if f : X — Y is any morphism in %, then the following diagram commutes:

F(X) -2 a(X)

If for every object X of ¢ the morphism fx is an isomorphism in &, then @ is called a natural
equivalence (or natural isomorphism or isomorphism of functors).

Example A.1.2.7. Given any functor F' : € — 2, there is an identity natural transformation
id : F — F, which is simply the identity map idx : F(X) — F(X) for every object X in
¢. If F,G are two functors, and 6 and ¢’ are natural transformations, it makes sense to compose
6 o ', with composition given by objectwise composition.

Example A.1.2.8. If ¢ and 2 are categories, then we can form a new category F(¢, %) where
objects are functors from %" to & and morphisms are natural transformations of functors; the iden-
tity is given by the identity functor, and composition is composition of natural transformations as
described in Example A.1.2.7. Even if ¢ and & are small categories, the functor category F'(¢, Z)
is typically not small.

Definition A.1.2.9. Suppose ¢ and Z are categories and F' : € — & is a functor. We say that F' is

* faithful if for any pair of objects X, Y € ¥, the function Hom« (X,Y) — Homg (F(X), F(Y))
is injective;

* reflects isomorphisms (or conservative) if for any arrow f € ¢, F(f) is an isomorphism
implies f is an isomorphism.

* an embedding if it is faithful and injective on objects;

* full if for any pair of objects X,Y € &, the function Hom¢ (X,Y) - Homg (F(X), F(Y))
is surjective;

* fully faithful if it is both full and faithful;

o essentially surjective (or isomorphism dense) if for any object D € &, there exists an object
C € ¢ and an isomorphism F'(C) = D;

* an equivalence of categories if there exists a functor G : ¥ — % and natural equivalences
FG = idy and GF = idy

Proposition A.1.2.10. If F' : € — Z is a functor that is fully faithful and essentially surjective,
then there exists a functor G : 9 — € and isomorphisms of functors FG = idy and GF = idg.
In other words, F' is an equivalence of categories.

A.1.3 Indexing categories

When we speak about limits and colimits, we will use “indexing categories”. Sometimes indexing
categories are drawn as diagrams. For example, if we want to speak about pullbacks, we can think
of the category pictured as follows:

o —> 0 < o)
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this category has three objects, and we have drawn the non-identity morphisms. Similarly, any
directed graph defines a category: one has an object for each vertex and one non-identity morphism
for each arrow pictured.

Example A.1.3.1. If (P, <) is a category, we can define a directed graph by creating one vertex for
each element of P and where there is a unique non-identity morphism a — bif a < b.

We now describe further diagram categories.

Definition A.1.3.2. A category I is filtered if:
1. T is non-empty;
2. for every pair of objects 7,4’ € I, there exists an object j and two maps i — j and ¢/ — 7;

pictorially:
i i';
J

3. for every pair of morphisms «, 5 : i« — 7, there exists an object k and an arrow v : j — k,
pictorially:

E|
z’:;;jfjﬂ’c,

such that ya = 8.
Analogously, a category I is cofiltered if I°P is filtered.

Example A.1.3.3. If (D, <) is a partially ordered set, then we may view (D, <) as a category whose
set of objects is D and where there is a unique morphism a — b if a < b. This category if a filtered
category in the sense above.

Notation A.1.3.4. Typically, indexing categories take the form described above, but formally, any
category can be viewed as an indexing category.

Definition A.1.3.5. If C is a category, and I is a category, then an I-diagram is a functor I — C.
The category Fun(I, C) is called the category of I-diagrams in C (i.e., morphisms are natural
transformations of functors).

Example A.1.3.6. If C is a category, A € C is an object, and I is a category, then the constant
I-diagram (with value A) is the functor that assigns to each object ¢ € I the object A and to each
morphism ¢ — 4" € I the identity morphism. Sending an object A to the constant I-diagram defines
a functor

A : C — Fun(I, C);

this functor is typically called the diagonal.

Remark A.1.3.7. One point of view on limits and colimits is that an I-indexed limit is simply a right
adjoint to the diagonal functor while an I-indexed colimit is a left adjoint to the diagonal functor.

Filtered colimits versus directed colimits; every filtered category admits a cofinal functor from
a directed category. A category has filtered colimits if and only if it has directed colimits.
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A.2 Monoidal categories

A.2.1 Monoidal categories

Definition A.2.1.1. A monoidal category (¢, ®, 1, a,l,r) consists of

* acategory ¢,

* afunctor ® : € x € — €,

* a distinguished unit object 1 € €,

* natural isomorphisms Ix : 1® X — X, rx : X ® 1 — X, and

* natural associativity isomorphisms axy,z : (X ®Y)® Z — X ® (Y ® Z);
these data are supposed to satisfy two coherence axioms:

1. given a pair of objects X, Y € ¥, the diagram

(Xe)eY Xy XoIeY)

commutes;

2. given four objects W, X, Y, Z, the diagram

WRX,Y,

(WeX)oY)e 2 WeX)e (Yo 2/ e (X @ (Y 2))
J{aw,x,y®1z 1W®QX,Y,ZT

We(XRY)®Z We(XeY)® Z)

AW, X®Y,Z

commutes.

Remark A.2.1.2. A priori, there are infintely many more diagrams whose commutativity we could
request (e.g., the associativity relations for 5 or greater arrows). There is a “coherence theorem” that
shows that requesting commutativity of the above diagrams guarantees commutativity of various
more complicated diagrams...

Example A.2.1.3. The category Set of sets with Cartesian product is monoidal. The category Grp
of groups with the usual product of groups is monoidal. Likewise, the category Ab is a monoidal
subcategory of Grp. The category Cat of categories with product of categories is monoidal. the
category Top of topological spaces with the Cartesian product (equipped with the product topology)
is monoidal.

A.2.2 Enriched categories

Given a category % and three objects X, Y, Z, a priori one has a set of homomorphisms Hom¢ (X, Y')
and composition determines a function Homg (Y, Z) x Hom¢ (X, Y) — Homg (X, Z) via the for-
mula (f, g) — f o g. In many cases of interest, Hom¢ (X, Y') has additional structure, e.g., it is an
abelian group or a vector space over a field, and the composition operation respects this additional
structure. We now introduce some the standard terminology one uses to keep track of all of the
compatibilities inherent in such a structure.
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Definition A.2.2.1. Suppose (&, ®, 1, a,l,r) is a symmetric monoidal category. We will say that a
(locally small) category % is &-enriched (or simply an &-category) if

» for every pair of objects X, Y, the set Hom¢ (X, Y") is an object of &’;

* for each object X € ¥, there is an identity element ix : 1 — Home (X, X);

» for every triple of objects X,Y, Z, there is a composition law Mxy z : Homg (Y, Z) ®

Homg¢ (X,Y) — Homy (X, Z);

the following axioms hold:

1. composition is associative, i.e., for any four objects W, X, Y, Z the diagram

(Homg (Y, Z) ® Homg(X,Y)) ® Homg (W, X) 2 Homy (Y, Z)(® Homy (X, Y) @ T
iM@id lid@M

Homy (X, Z) ® Homg (W, X) Homgy (W, Z) Homy (Y, Z) @ Homeg (V

commutes;
2. composition is compatible with units, i.e., for any pair of objects X, Y in ¢ the diagram

Homy (Y,Y) ® Homeg (X, Yz\jl—> Homg (X,Y) <—H0m<g (X,Y) ® Homg (X, X)

wal \ i

1® Homgy (X,Y) Homy (X, Y)® 1
commutes.

Example A.2.2.2. Every (locally small) category is a Set-enriched category.

Definition A.2.2.3. A category % is called
* pre-additive if it is an Ab-enriched category;
* pre-R-linear if it a Mod g-enriched category, with R a commutative unital ring;
* topological if it is a Top-enriched category; and
* simplicial if it is an sSet-enriched category.

Given an enriched category, it will be important to consider functors that preserve the additional
structure present on morphism sets. This notion is summarized in the next definition.

Definition A.2.2.4. Given a monoidal category (&, ®, 1,a,l,r) and two &-enriched categories ¢
and Z, a functor F' : 4 — 2 will be called an &-enriched functor, or simply an &-functor if for any
pair of objects X,Y € %, the map Fap : Hom¢y (X,Y) — Homg(F(X), F(Y)) is a morphism in
&, and the following conditions are satisfied:
1. the functor is compatible with the monoidal structure, i.e., given three objects X, Y, Z the
diagram

Homy (Y, Z) ® Homg (X,Y) — X Homy (X, Z)

iF@F iF
Homgy (F(Y), F(Z)) ® Homg(F(X), F(V)) —— Homgy(F(X), F(Y))

commutes;



A.2 Monoidal categories 208

2. the functor is compatible with units, i.e., given any object X € %, the diagram

1

P

Home (X, X) Homg (F(X), F(X))

commutes.
Example A.2.2.5. An &-functor F' : € — 2 of &-categories is called
* pre-additive if & = Ab;

* pre-R-linear if & = Modpg, for R a commutative unital ring.

A.2.3 Symmetric monoidal categories

Definition A.2.3.1. If (¥, ®,1,a,l,r) is a monoidal category, a symmetric structure on ¢ is the
data of a natural isomorphism cxy : X ® Y — Y ® X (the commutativity isomorphism) satisfying
the following coherence axioms:

1. ¢® =idy, i.e., for every pair of objects X, Y € ¢, the diagram

id

T

XY —>YX——X®Y
commutes;

2. compatibility with the unit, i.e., for every object X € % the diagram

1 X = X®1
Ix
rx
X
commutes;

3. compatibility between commutativity and associativity, i.e., for every triple X, Y, Z of objects
in € the diagram

CX,Y®Z

XeoV)eZ2 xevYe2) ¥ (vez)eX

c®zdl J(GY,Z,X

Y®X)eX Y®(X©2Z) =Y e (ZeX)

e
ay, X,z
commutes.

A monoidal category equipped with a symmetric structure will be called a symmetric monoidal
category.

Example A.2.3.2. The category of abelian groups equipped with the isomorphismcy g : A X B —
B x A given by switching the two factors is a symmetric monoidal category. The same holds for
the category of R-modules over a commutative unital ring R.
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A.3 Other types of categories

A.3.1 Abelian categories

Definition A.3.1.1. An triple (%, 0) consisting of an Ab-enriched category % and a distinguished
object 0 is called abelian if
1. the object 0 is a zero object, i.e., it is both initial and final;
2. for any two objects X, Y, a biproduct X x Y exists in €;
3. every morphism in ¢ has a kernel and a cokernel;
4. every monomorphism is a kernel of its cokernel, and every epimorphism is a cokernel of its
kernel.

A.3.2 [Exact categories

Exact categories were initially defined by Quillen [?, §2]. With time, simplifications of Quillen’s
axioms were observed (cf. [?, §9.1]). The following definition is due to Keller [?, Appendix A].
See [?] for a more detailed treatment.

Definition A.3.2.1. Given an additive category 7, a pair of composable morphisms
x-Sy -z

is called exact if ¢ is a kernel of d and d is a cokernel of . We will refer to a diagram as a pair
(7, p) as above as an exact pair; the morphism ¢ will be called an admissible monomorphism and the
morphism p will be called an admissible epimorphism.

Definition A.3.2.2. Given an additive category </, an exact structure on &/ consists of a a class
& C o/ of exact pairs closed under isomorphisms and satisfying the following axioms:

EO the identity morphism on the zero object is an admissible epimorphism;

E1 admissible epimorphisms are stable by composition;

E2 admissible epimorphisms are stable by pullback;

E2° admissible monomorphisms are stable by pushout;

A pair (&7, &) consisting of an additive category and an exact structure will be called an exact
category.

Lemma A.3.2.3. If (<7, &) is an exact category, then for any pair of objects X, Y of €, the pair

(o)

1
xWxey Ly
is an exact pair.

Lemma A.3.2.4. If (<7, &) is an exact category, then admissible monomorphisms are stable under
composition.
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Appendix B

Some algebraic facts

Here, I want to include some algebra facts that we will use repeatedly, collected for convenient
reference.

B.1 Localization

In this section, we review some basic properties of localization of a ring that will be used repeatedly
in the main body of the text. Localization is a way of inverting elements in a ring or a module over
aring.

Definition B.1.0.1. Suppose R is a commutative unital ring. A multiplicative subset S C R is a
subset such that 1 € S, and if s,s" € S, then s’ € S. If S C R is a multiplicative subset, then
the localization R[S~!] (or sometimes S~!R) is quotient of R x S by the following equivalence
relation: (r,s) ~ (1, ") if and only if there exists u € S such that (rs" — sr’)u = 0.

The set R[S™!] is a ring with multiplicative unit (1, 1) addition defined by the usual formula
for adding fractions (r, s) + (1, s') = (rs’ + s1’, ss’) and multiplication defined componentwise,
ie., (r,s)(r',s") = (rr',ss’). For this reason, we will frequently write © for the element (r, s)
in R[S~!]. Of course, this notation should be taken with a grain of salt since S might have zero-
divisors. Since 1 € S there is an evident ring homomorphism R — R[S™!] sending  to (r, 1),
which we will refer to as the localization map. Since S might have zero divisors, the ring homo-
morphism R — R[S~!] can fail to be injective. More precisely, (r,1) = 0 in R[S~!] if and only
if there exists u € S such that ru = 0, i.e., the localization map is injective if and only if .S has no
zero divisors.

Example B.1.0.2. If f € Ris any element, then the multiplicative subset generated by f is the subset
{1,f,f%,...,}, we write R ¢ for the corresponding localization. If p is a prime ideal, then R \ p is
a multiplicative set by definition of a prime ideal and we write R, for the associated localization.

A key property of localization that we will use repeatedly is the universal property: the localiza-
tion of a ring R at a multiplicative set is the smallest ring in which the elements of S' are invertible.

Proposition B.1.0.3. Assume R is a ring, and S C R is a multiplicative set. If p : R — Ais a ring
homomorphism that sends every element s € S to a unit in A, then o factors uniquely through the
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localization map, i.e., there is a unique ring homomorphism R[S~ — A such that the composite
R — R[S™] — A coincides with .

Proof. For the existence statement, we send (7, s) to ¢(r)¢(s) !, which is defined since ¢(s) is
a unit in A by assumpion. It is straightforward to check that this is a ring homomorphism. Since
(1) = 1, it follows immediately that this homomorphism factors ¢ as claimed. O

Proposition B.1.0.4. If R is a commutative ring, and M is an R-module. For an element x € R,
the following statements are equivalent

1. x=0;

2. x maps to zero in M, for every prime ideal p C R;

3. x maps to zero in My, for every maximal ideal m C R.
In particular, the map M — ], p M is injective.

Proof. 1t is immediate that (1) = (2) and (2) = (3). We will establish that (3) => (1). To this
end, take z € M and consider the ideal I = {f € R|fxz = 0} (i.e., the annihilator ideal of ). Now,
the assumption that x maps to zero in each localization M, means that for every maximal ideal m,
there exists an element f € R\ m such that fx = 0. In other words, V' (I) contains no closed points.
If that is the case, it follows from Lemma 1.1.1.3(2) that I must be the unit ideal and so x must be
Zero. O

Corollary B.1.0.5. If R is a commutative ring and M is an R-module, the following statements are
equivalent:

1. M is zero;

2. My is zero for all prime ideals p C R;

3. M.y, is zero for all maximal ideals m C R.

Proof. This follows immediately from the preceding proposition applied to every element z €
M. O

Localization preserves exact sequences of R-modules by appeal to Theorem 2.1.3.11. As a
consequence, we deduce the following result by observing that the localization of the homology of
a sequence M7 — My — M3 of R-modules is the homology of the localization.

Corollary B.1.0.6. If R is a commutative ring, then the following statements are equivalent:
1. asequence My — Mo — M3z of R-modules is exact;
2. the sequence (M), — (Ma), — (M3), is exact for all prime ideals p C R;
3. the sequence (My)m — (Ma)m — (M3)w is exact for all maximal ideals m C R.

Lemma B.1.0.7. Let R be a ring. Let S C R be a multiplicative subset, and let M, and N be
R-modules. Assume all the elements of S act as automorphisms on N. Then the canonical map

Homp(M[S™1], N) — Hompg(M, N)

induced by the localization map is an isomorphism.
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