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1 Introduction

The goal of this note is to prove what is now known as the Jouanolou-Thomason homotopy lemma or
simply “Jouanolou’s trick.” Our main reason for discussing this here is that i) most statements (that
I have seen) assume unncessary quasi-projectivity hypotheses, and ii) most applications of the result
that I know (e.g., in homotopy K-theory) appeal to the result as merely a “black box,” while the proof
indicates that the construction is quite geometric and relatively explicit. For simplicity, throughout
the word scheme means separated Noetherian scheme.

Theorem 1.1 (Jouanolou-Thomason homotopy lemma). Given a smooth scheme X over a regular
Noetherian base ring k, there exists a pair (X̃, π), where X̃ is an affine scheme, smooth over k, and
π : X̃ → X is a Zariski locally trivial smooth morphism with fibers isomorphic to affine spaces.

Remark 1.2. In terms of an A1-homotopy category of smooth schemes over k (e.g., H(k) or Hét(k); see
[MV99, §3]), the map π is an A1-weak equivalence (use [MV99, §3 Example 2.4]. Thus, up to A1-weak
equivalence, any smooth k-scheme is an affine scheme smooth over k.

2 An explicit algebraic form

Let An denote affine space over Spec Z. Let An \ 0 denote the scheme quasi-affine and smooth over
Spec Z obtained by removing the fiber over 0. Let Q2m−1 denote the closed subscheme of A2m (with
coordinates x1, . . . , x2m) defined by the equation∑

i

xixm+i = 1.

Consider the following simple situation.

Lemma 2.1. For any m ≥ 1, projection onto x1, . . . , xm determines a morphism

ϕ : Q2m−1 → Am \ 0

that is Zariski locally trivial with fibers isomorphic to Am−1. In particular, for m = 1, π is an
isomorphism.

Proof. It is easy to check that π trivializes over the open affine subschemes Ui of Am \ 0 where one
coordinate xi is non-vanishing.
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Proposition 2.2. Suppose Z ⊂ An is a closed subscheme defined by the vanishing of functions
f1, . . . , fd. Consider the morphism An → Ad defined by the functions f1, . . . , fd. Define a morphism

f : An \ Z −→ Ad \ 0

via (f1, . . . , fd). Then,

i) the fiber product Ãn \ Z := An\Z×Ad\0Q2d−1 (via f and ϕ) is isomorphic to the closed subscheme
of An × Ad (say with coordinates y1, . . . , yn, x1, . . . , xd) defined by the equation

d∑
i=1

xifi = 1.

and is in particular affine.

ii) The projection morphism π : Ãn \ Z → An \ Z is Zariski locally trivial with fibers isomorphic to
Ad−1, and is, in particular, smooth.

Proof. Easy exercise. The key points are that f := (f1, . . . , fn) defines an affine morphism, and that π
can be (explicitly) trivialized along the open affine scheme Ui where fi 6= 0.

Remark 2.3. Note that this presentation depends only on a choice of generators for the underlying
reduced subscheme of Z. E.g., if we replace f1, . . . , fd by fa1

1 , . . . , fad

d for some integers a1, . . . , ad,
we get a new morphism that is again Zariski locally trivial with affine space fibers. Simple examples
show that the resulting schemes need not be isomorphic. Even though our construction does not
explicitly indicate dependence on the generators, this dependence is implicit and so the construction
is not functorial. This problem will reappear in all the varations on this result below. Furthermore, it
is clear how to extend this to complements of arbitrary closed subschemes of an affine scheme.

3 Jouanolou’s geometric lemma

Let V be a free Z-module, and let V ∨ denote the dual Z-module hom(V,Z). Consider the pairing
V × V ∨ → Z given by evaluation. Let P(V ) := Proj Sym•V and P(V ∨) := Proj Sym•V ∨. Note that
Z[x1, . . . , xn] ∼= Sym•V ∨ as graded algebras, so in our notation P(V ) corresponds to the projective
space whose k-points are hyperplanes in V ⊗Zk (as in Grothendieck’s conventions). Consider the closed
subscheme H of P(V )× P(V ∨) defined by the incidence hyperplane defined by the pairing above.

Proposition 3.1. Let P̃(V ) denote the complement P(V )× P(V ∨) \H. Then,

i) The scheme P̃(V ) is affine.

ii) The composite morphism
P̃(V ) ↪→ P(V )× P(V ∨)

p1−→ P(V )

is a Zariski locally trivial affine morphism with fibers isomorphic to affine space, and is, in
particular, smooth.



3

Proof. The hypersurface H defines a divisor on P(V ) × P(V ∨) that is ample. In particular, the as-
sociated invertible sheaf is O(1) � O(1) := p∗1O(1) ⊗ p∗2O(1). The complement of an ample divisor is
always affine (use the closed embedding into projective space and the fact that the complement of a
hyperplane in P(V ) is just an affine space).

As a composite of an open immersion and a projection with smooth fibers, it follows that π : P̃(V )→
P(V ) is a smooth morphism. Choosing sections s1, . . . , sn on V , we see by explicit computation that
π trivalizes on the complement of the loci where each si is non-zero.

Corollary 3.2 (cf. [Jou73] Lemma 1.5 or [Wei89] Proposition 4.3). Suppose X is a projective variety
over Spec Z, and fix a very ample line bundle L on X. Then,

i) If X̃ denotes the fiber product of X ×P(H0(X,L))
˜P(H0(X,L)), then X̃ is affine.

ii) The morphism π : X̃ → X induced by projection is Zariski locally trivial with fibers isomorphic
to affine spaces.

Proof. Easy exercise. Again, the key point is that the sections s1, . . . , sn of H0(X,L)∨ produce a
closed embedding, which is in particular an affine morphism. As before, the morphism π : X̃ → X
trivializes over the complement of the vanishing locus of the sections si.

Remark 3.3. Note, in particular, that we only care about Z-module structure of these sections, and
the particular choice of basis is not important (just as in the quasi-affine case we treated above). Thus,
to prove the result for more general schemes, one expects to need only “enough sections.”

4 Thomason’s extension

As per our previous remark, we need schemes that have “enough open affines.” There is a convenient
formalization of this concept generalizing the notion of an ample invertible sheaf.

Definition 4.1. A scheme X is said to divisorial or to admit an ample family of invertible sheaves if
there are invertible sheaves L0, . . . ,Ln on X together with global sections si ∈ H0(X,Li), such that
the schemes Ui ⊂ X defined as the complement of the vanishing locus of si are affine and the map
U :=

∐
i Ui → X is a Zariski cover.

Remark 4.2. The notion of a scheme admitting an ample family of line bundles (e.g., [SGA71, Exposé
II Définition 2.2.4-5]) was new terminology proposed by Illusie for the old notion of a divisorial scheme
(variety) introduced by Kleiman and Borelli (e.g., [Bor63, §3]). See [SGA71, Exposé II Proposition
2.2.3] for a proof of equivalence of various conditions with that given in Borelli’s definition.

The basic idea of the proof is to glue together the schemes Ui×An (note that there are n+1-sections)
with appropriate transition functions to obtain a morphism X̃ → X where X̃ is affine.

Proposition 4.3 (Thomason’s version of Jouanolou’s trick cf. [Wei89] Proposition 4.4). Let k be
a commutative unital ring. Suppose X is a k-scheme admitting an ample family of line bundles
L0, . . . ,Ln. Choose sections si ∈ H0(X,Li). There exists a pair (X̃, π) consisting of an affine scheme
X̃ together with a Zariski locally trivial morphism π : X̃ → X that has affine space fibers.

Proof. View each section si as a morphism si : OX → Li. If we set E = ⊕iLi, then the the function
(s0, . . . , sn) determines a morphism

s : OX → E.
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Over each Ui, the morphism s is a split monomoprhism. Thus, the cokernel of s, which we denote by
F, is actually a locally free sheaf. Set X̃ := PX(E) \ PX(F), and let π be the composite morphism

X̃ ↪→ PX(E) −→ X.

As the composite of an open immersion and a smooth projection, π is clearly a smooth morphism.
By construction, π trivializes along each Ui and one obtains a product decomposition as advertised
before the statement of the Proposition. More precisely, one can check that X̃ can be identified with
the closed subscheme of SpecX E defined by the equation s = 1. In particular, this shows that π is an
affine morphism. Let fi denote the element of Γ(X̃,OX) induced by si. We see that

∑
i fi = 1, and

the complement of fi = 0 is isomorphic to Ui × An, which is in particular an affine scheme. By the
local criterion for affineness [Gro61, Proposition 5.2.1], it follows that X̃ is affine.

Remark 4.4. One can check that the above actually proves more: the morphism π is a so-called affine
vector bundle torsor. If Linn denotes the (linear algebraic) group of affine linear automorphisms of
a vector space, then a torsor under a vector bundle of rank n is precisely a torsor, i.e., principal
homogeneous space, for Linn. A torsor under a vector bundle is called an affine vector bundle torsor
if its total space is affine. Thus, the above proof shows that π is a torsor under the vector bundle
associated with the locally free sheaf F.

To finish, the proof of Theorem 1.1, we need the following pair of results.

Theorem 4.5. If X is a regular variety over a field k, or more generally, a separated locally factorial
Noetherian scheme, then X admits an ample family of line bundles.

Proof. According to Borelli, the first statement is due to Zariski [Zar47] (I have not looked for the
precise reference). For a proof of a statement slightly more general than this, see [Bor63, Theorem
4.1], but note that he refers to what we would today call a locally factorial variety as simply factorial.
The second result is culled from [SGA71, Exposé II Proposition 2.2.7]. The latter proof is significantly
more involved than the former, which might be the reason that the result is not usually stated in this
generality.

Corollary 4.6. If X is smooth over a regular Noetherian base ring k, then X admits an ample family
of line bundles.
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