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Theorem 1. Suppose k is an algebraically closed field having characteristic 0 and d ≥ 1 is
an integer. If X is a smooth affine k-variety of dimension d+ 1, and E is a rank d vector
bundle on X, then E splits off a trivial rank 1 summand if and only if 0 = cd(E) ∈ CHd(X).

Remark 2. Tbe result above answers in the affirmative “Murthy’s conjecture” in character-
istic 0. The statement is immediate if d = 1 in which case it holds without restriction on
the characteristic of k. The statement also holds when d = 2, 3 if k has characteristic not
equal to 2 by previous work of J. Fasel and the first author [AF14, AF15].

Suppose k is a field having characteristic 0. Write Smk for the category of smooth k-
schemes. We write Spck for a suitable category of spaces (e.g., simplicial presheaves on Smk)
and H(k) for the Morel–Voevodsky unstable motivic homotopy category of k [MoVo99].
Traditionally, H(k) is obtained by a two-step Bousfield localization of Spck: one first inverts
Nisnevich local weak equivalences and then A1-weak equivalences.

Theorem 1 is established using techniques of motivic homotopy theory. Combining the
A1-homotopy classification of vector bundles and the existence of A1-fiber sequences of the
form

An \ 0 −→ BGLn−1 −→ BGLn,

techniques of obstruction theory reduce the verification of Theorem 1 to understanding the
A1-homotopy theory of An \ 0.

Write S1 for the space A1/{0, 1} and Gm for A1 \ 0 pointed by 1. We set Sp := (S1)∧p

and Sp,q = Sp ∧ G∧qm . For any pointed space (X,x), one defines homotopy (Nisnevich)
sheaves πA

1

p (X,x). These sheaves detect A1-weak equivalences and we may define A1-n-
connectedness by imposing vanishing conditions on homotopy sheaves. One can define,
more generally, πA

1

p,q(X,x), and these sheaves may be identified with πA
1

p (Ωq
Gm
X), where

Ωq
Gm
X is the q-fold Gm-loop space of X.

One knows that An\0 ∼ Sn−1,n and P1 ∼= S1,1. F. Morel’s foundational unstable connec-
tivity theorem asserts that A1-localization preserves connectivity. One deduces immediately
that An \ 0 is A1-(n− 2)-connected. Morel also computed the first non-vanishing homotopy
sheaf of Sp,q in various situations. For example, if p ≥ 2 and q ≥ 1, then πA

1

p,i (S
p,q) ∼= KMW

q−i .

where KMW
r is the so-called Milnor–Witt K-theory sheaf (see [Mor12] for all these results).

Granted Morel’s computations, the required information to establish Theorem 1 is con-
tained in the next non-vanishing A1-homotopy sheaf πn(An \ 0). Previous work of the first
author and J. Fasel (exposed at a previous Oberwolfach meeting) gave a regular form for
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this result, which could be deduced from a suitable version of the Freudenthal suspension
theorem for P1-suspension.

While Morel established a Freudenthal suspension theorem for S1-suspension that looks
formally identical to the classical case, simple computations show that Freudenthal sus-
pension for P1-suspension requires further hypotheses. For example, it is easy to see that
πA

1

p (Sp) ∼= Z for all p ≥ 1, and therefore, for p ≥ 2, the map Sp → ΩP1Sp+1,1 is not an
isomorphism on homotopy sheaves in degree p.

Intuitively speaking, Sp is not sufficiently “Gm-connected”. To make this precise, one
proceeds as follows, roughly mimicking one construction of the classical Postnikov tower
using Bousfield localization. Consider the left Bousfield localization of H(k) generated by
the maps G∧n+1

m ×X → X,X ∈ Smk; write Ln for the resulting localization functor.

Definition 3. We will say that a space X is Gm-n-connected if X ∼ LnX and Gm-n-
truncated if LnX ∼= ∗.

By construction, any pointed space that is of the form G∧n+1
m ∧X is Gm-n-connected.

One says that a space X is (p, q)-connected if it is p-connected and Gm-q-connected. In
particular, An\0 is (n−2, n−1)-connected. From the definitions, it is not hard to show that
a pointed, connected space X is Gm-n-truncated if and only if the Gm-loop space Ωn+1

Gm
X is

contractible. In particular, by a result of Morel it follows that such an X is Gm-n-truncated
if and only if πA

1

i (X,x)−n−1 = 0 for all i. It follows that the motivic Eilenberg–Mac Lane
space K(Z(n), 2n) is Gm-n-truncated for any n ≥ 0.

This notion of Gm-connectivity is well-behaved in that Gm-connectedness and truncat-
edness is preserved by taking suitable fibers and cofibers. To see this, one appeals to a
comparison between unstable and S1-stable homotopy theory. In the S1-stable context one
uses results about existence of Gm-deloopings based on the work of the second author and
M. Yakerson [BY20, Bac21]. One nice consequence of these results is that one can establish a
Whitehead theorem using motives, at least over fields k having finite étale 2-cohomological
dimension: a map f of (1, 1)-connected spaces such that HZ∧f is an isomorphism is an
A1-weak equivalence.

Theorem 4 (P1-Freudenthal suspension theorem). Assume 1 ≤ p ≤ q are integers. If
(X,x) is a pointed (p, q)-connected space, then the unit map

X −→ ΩP1ΣP1X

has A1-homotopy fiber that is at least (2p, 2q + 1)-connected.

Theorem 4 can be reduced to the case of motivic Eilenberg–Mac Lane spaces. The
assembly maps

an : P1∧K(Z(n), 2n) −→ K(Z(n+ 1), 2n+ 2)

defining the motivic Eilenberg-Mac Lane spectrum can be used to factor the identity map
on K(Z(n), 2n) through the unit of the loop suspension adjunction:

K(Z(n), 2n)
u−→ ΩP1ΣP1K(Z(n), 2n)

ΩP1an−→ ΩP1K(Z(n+ 1), 2n+ 2) ∼= K(Z(n), 2n).
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In that case, there is a fiber sequence fib(u) −→ ∗ −→ fib(ΩP1an), i.e., fib(u) ∼= Ω fib(ΩP1an).
To establish the result, it then suffices to establish a suitable connectivity bound on fib(an).
By Blakers–Massey style results, one then reduces to establishing the following bound on
the connectivity of cof(an).

Lemma 5. The space cof(an) is (2n+ 1, 2n)-connected;

Sketch of proof. The proof of Lemma 5 proceeds by analyzing the geometry of symmetric
powers. Following Voevodsky, write QuotΣr

for the unique colimit preserving extension of
the functor on quasi-projective Σr-schemes to motivic spaces with Σr-action given by taking

the quotient. One defines Symr(P1∧n) ∼= QuotΣr
(P1∧n×r). To analyze the connectivity of

an, one uses Voevodsky’s motivic Dold-Thom theorem: K(Z(n), 2n) ∼= Sym∞(P1∧n) and
the fact that the latter space is a colimit of spaces of the form Symr(P1∧n).

Let us write ρ for the standard r-dimensional representation of Σr, which decomposes
as ρ̄ ⊕ 1, where 1 is the trivial representation. To make explicit the Σr-action we identify
Symr(P1∧n) with QuotΣr

(Th(A(ρ⊕n))), viewing A(ρ⊕n) as a trivial vector bundle over a
point. The identification ρ⊕n ∼= 1⊕n ⊕ ρ̄⊕n and the usual properties of Thom spaces imply
QuotΣr

(Th(A(ρ⊕n))) ∼= Σn
P1QuotΣr

(Th(A(ρ̄⊕n))).
The assembly map an arises from the sequence of inclusions 1⊕nρ ⊂ ρ⊕nρ ∼= (n+ 1)ρ

by applying QuotΣr
(Th(A(−))), i.e., it is a map

Σr+1
P1 QuotΣr

Th(A(ρ̄⊕n)) −→ Σr+1
P1 QuotΣr

Th(A(ρ̄)⊕n+1).

We may then identify cof(an) with a colimit of spaces of the form

ΣQuotΣr
Th(AA(ρ̄)\0(ρ̄⊕n ⊕ 1)),

viewing A(ρ̄⊕n ⊕ 1) as a trivial vector bundle over A(ρ̄) \ 0.
Following Nakaoka and Voevodsky (see [AD01] and [Voe04, §4]), we analyze the Thom

space above by stratifying A(ρ̄) \ 0 by stabilizer type. The connectivity of the Thom space
in question can be bounded below by the Thom spaces of normal bundles to each of the
stabilizers. One analyzes these normal bundles using a bit of representation theory of the
symmetric group.

Since ρ̄ is an irreducible representation of Σr, the only fixed point in A(ρ̄) is the origin,
i.e., every point of A(ρ̄) \ 0 has a non-trivial stabilizer. Each stabilizer in Σr is a partition
subgroup and the the stabilizers appearing in A(ρ̄) \ 0 are proper partition subgroups. A
proper partition subgroup of Σr is of the form Σr1×· · ·×Σrs where

∑
i ri = r; in particular, a

non-trivial such subgroup necessarily has more than 1 factor. If H is a partition subgroup of
Σr, then ResΣr

H (ρ) decomposes as a direct sum of the standard ri-dimensional representation
of Σri , each of which splits off a trivial summand. By induction, this observation yields the
required connectvity estimate.

Remark 6. The restriction on the characteristic of the base field arises because of our need
to analyze symmetric powers, which may be singular. More generally, a version of the
suspension theorem also holds after inverting the exponential characteristic of the base
field.
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