Rational connectivity and A¹-connectivity

or geometric applications of the Milnor conjectures (joint with F. Morel)

Aravind Asok (UCLA)

May 8, 2009

Aravind Asok (UCLA) Rational connectivity and A¹-connectivity

The goal

"No doubt topologists will welcome a version which can be read by those not familiar with modern algebraic geometry."

> -J.F. Adams from Math Reviews

э

Outline

1 Conventions, definitions and basic examples

Rational connectivity and \mathbb{A}^1 -connectivity Aravind Asok (UCLA)

・ロン ・回と ・ヨン ・ヨン

Э

Outline

1 Conventions, definitions and basic examples

2 An elementary example

Aravind Asok (UCLA) Rational connectivity and \mathbb{A}^1 -connectivity

・ロン ・回と ・ヨン・

æ

Outline

1 Conventions, definitions and basic examples

- 2 An elementary example
- 3 A proposed generalization

Outline

1 Conventions, definitions and basic examples

- 2 An elementary example
- **3** A proposed generalization
- 4 The geometric/topological mechanism

(1日) (1日) (日)

 Throughout the talk we consider algebraic varieties over a field L (or F) having characteristic 0.

э

 Throughout the talk we consider algebraic varieties over a field L (or F) having characteristic 0.

• E.g., take
$$L = \mathbb{C}$$
, or

→ 同 → → 目 → → 目 →

э

Conventions

 Throughout the talk we consider algebraic varieties over a field L (or F) having characteristic 0.

• E.g., take
$$L = \mathbb{C}$$
, or

• take $L = \mathbb{C}(t_1, \ldots, t_n)$ and think of a family of varieties.

イロン イヨン イヨン イヨン

Conventions

- Throughout the talk we consider algebraic varieties over a field L (or F) having characteristic 0.
 - E.g., take $L = \mathbb{C}$, or
 - take $L = \mathbb{C}(t_1, \ldots, t_n)$ and think of a family of varieties.
- All algebraic varieties will be assumed smooth, connected, and often proper (read: compact).

イロン イヨン イヨン イヨン

Conventions

- Throughout the talk we consider algebraic varieties over a field L (or F) having characteristic 0.
 - E.g., take $L = \mathbb{C}$, or
 - take $L = \mathbb{C}(t_1, \ldots, t_n)$ and think of a family of varieties.
- All algebraic varieties will be assumed smooth, connected, and often proper (read: compact).
- Given an algebraic variety X over L, we write L(X) for its field of rational functions.

・ロン ・回と ・ヨン ・ヨン

Basic definitions: rationality

Definition

An algebraic variety X over L is L-rational if $L(X) \cong L(t_1, \ldots, t_n)$.

・ロン ・回と ・ヨン ・ヨン

Basic definitions: rationality

Definition

An algebraic variety X over L is L-rational if $L(X) \cong L(t_1, \ldots, t_n)$.

• Write \mathbb{P}^n for *n*-dimensional projective space (over *L*), which is the basic example of a rational variety.

イロン イヨン イヨン イヨン

Basic definitions: rationality

Definition

An algebraic variety X over L is L-rational if $L(X) \cong L(t_1, \ldots, t_n)$.

- Write \mathbb{P}^n for *n*-dimensional projective space (over *L*), which is the basic example of a rational variety.
- Think: "most," i.e., a (Zariski) open set, of the solutions to the equations defining X can be rationally parameterized.

・ロト ・日本 ・モート ・モート

Basic question

Question

If $X_d \subset \mathbb{P}^n_{\mathbb{C}}$ is a smooth degree d complex hypersurface, (when) is X_d rational?

・ロン ・回と ・ヨン ・ヨン

æ

Basic example

Example

If $X_2 \subset \mathbb{P}^n_{\mathbb{C}}$, i.e., a quadric, then X_2 is rational.

Aravind Asok (UCLA) Rational connectivity and A¹-connectivity

・ロト ・回ト ・ヨト ・ヨト

Э

Basic example

Example

If $X_2 \subset \mathbb{P}^n_{\mathbb{C}}$, i.e., a quadric, then X_2 is rational. Why? Stereographic projection.

・ロン ・回と ・ヨン・

æ

Basic example

Example

If $X_2 \subset \mathbb{P}^n_{\mathbb{C}}$, i.e., a quadric, then X_2 is rational. Why? Stereographic projection.

Same argument shows any quadric over a field F having an F-rational point is actually F-rational.

イロト イヨト イヨト イヨト

One degree up

What about the case d = 3, n = 2?

・ロン ・回と ・ヨン・

Э

One degree up

What about the case d = 3, n = 2?

• This argument fails for smooth cubic curves in $\mathbb{P}^2_{\mathbb{C}}$

イロン 不同と 不同と 不同と

æ

One degree up

What about the case d = 3, n = 2?

- This argument fails for smooth cubic curves in $\mathbb{P}^2_{\mathbb{C}}$
- Of course, there are many ways to prove that smooth cubic curves are not rational, but let us give another (elementary) argument.

イロン イヨン イヨン イヨン

One degree up

What about the case d = 3, n = 2?

- This argument fails for smooth cubic curves in $\mathbb{P}^2_{\mathbb{C}}$
- Of course, there are many ways to prove that smooth cubic curves are not rational, but let us give another (elementary) argument.
- Begin by defining another invariant.

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Fields and valuations

Aravind Asok (UCLA) Rational connectivity and \mathbb{A}^1 -connectivity

・ロン ・回 と ・ヨン ・ヨン

Э

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Fields and valuations

• Let L/\mathbb{C} be a finitely generated extension, and

・ロト ・回ト ・ヨト ・ヨト

æ

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Fields and valuations

- Let L/\mathbb{C} be a finitely generated extension, and
- let *L*^{*} denote the multiplicative group of non-zero elements.

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Fields and valuations

- Let L/\mathbb{C} be a finitely generated extension, and
- let L* denote the multiplicative group of non-zero elements.
- A discrete valuation is a group homomorphism $\nu: L^* \to \mathbb{Z}$ satisfying a "metric" property.

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Fields and valuations

- Let L/\mathbb{C} be a finitely generated extension, and
- let *L*^{*} denote the multiplicative group of non-zero elements.
- A discrete valuation is a group homomorphism $\nu: L^* \to \mathbb{Z}$ satisfying a "metric" property.
- Write $\mathcal{V}(L)$ for the set of inequivalent discrete valuations of L.

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Fields and valuations

- Let L/\mathbb{C} be a finitely generated extension, and
- let *L*^{*} denote the multiplicative group of non-zero elements.
- A discrete valuation is a group homomorphism $\nu: L^* \to \mathbb{Z}$ satisfying a "metric" property.
- Write $\mathcal{V}(L)$ for the set of inequivalent discrete valuations of L.
- Any discrete valuation ν gives rise to a homomorphism

$$\partial_{\nu}: L^*/(L^*)^2 \to \mathbb{Z}/2\mathbb{Z}.$$

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Unramified square classes

・ロト ・回ト ・ヨト ・ヨト

Э

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Unramified square classes

Definition

Set

$$k_1^{ur}(L/\mathbb{C}):=igcap_{
u\in\mathcal{V}(L)}\mathsf{Ker}(\partial_
u:L^*/(L^*)^2 o\mathbb{Z}/2).$$

・ロン ・回と ・ヨン ・ヨン

Э

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Unramified square classes

Definition

Set

$$k_1^{ur}(L/\mathbb{C}):=igcap_{
u\in\mathcal{V}(L)}\mathsf{Ker}(\partial_
u:L^*/(L^*)^2 o\mathbb{Z}/2).$$

 Elements of k₁^{ur}(L/C) will be referred to as unramified (square) classes, or simply unramified elements, and

イロト イヨト イヨト イヨト

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Unramified square classes

Definition

Set

$$k_1^{ur}(L/\mathbb{C}):=igcap_{
u\in\mathcal{V}(L)}{\sf Ker}(\partial_
u:L^*/(L^*)^2 o\mathbb{Z}/2).$$

- Elements of k₁^{ur}(L/C) will be referred to as unramified (square) classes, or simply unramified elements, and
- $k_1^{ur}(L/\mathbb{C})$ will be called the group of *unramified square classes*.

イロン イヨン イヨン イヨン

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Basic properties of unramified square classes

Formal properties

・ロン ・回と ・ヨン ・ヨン

э

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Basic properties of unramified square classes

Formal properties

• The group $k_1^{ur}(L/\mathbb{C})$ is an **invariant** of L/\mathbb{C}

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Basic properties of unramified square classes

Formal properties

- The group $k_1^{ur}(L/\mathbb{C})$ is an **invariant** of L/\mathbb{C}
- and a covariant functor on field extensions.

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Basic properties of unramified square classes

Formal properties

- The group $k_1^{ur}(L/\mathbb{C})$ is an **invariant** of L/\mathbb{C}
- and a covariant **functor** on field extensions.

Basic computations

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Basic properties of unramified square classes

Formal properties

- The group $k_1^{ur}(L/\mathbb{C})$ is an **invariant** of L/\mathbb{C}
- and a covariant **functor** on field extensions.

Basic computations

• If $L = \mathbb{C}(t)$, then $k_1^{ur}(L/\mathbb{C}) = 0$.

イロト イポト イヨト イヨト

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Basic properties of unramified square classes

Formal properties

- The group $k_1^{ur}(L/\mathbb{C})$ is an **invariant** of L/\mathbb{C}
- and a covariant **functor** on field extensions.

Basic computations

- If $L = \mathbb{C}(t)$, then $k_1^{ur}(L/\mathbb{C}) = 0$.
 - Why? Every class in C(t)*/(C(t)*)² admits a representative lying in C[t]; use the fundamental theorem of algebra.

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Basic properties of unramified square classes

Formal properties

- The group $k_1^{ur}(L/\mathbb{C})$ is an **invariant** of L/\mathbb{C}
- and a covariant **functor** on field extensions.

Basic computations

• If
$$L = \mathbb{C}(t)$$
, then $k_1^{ur}(L/\mathbb{C}) = 0$.

Why? Every class in C(t)*/(C(t)*)² admits a representative lying in C[t]; use the fundamental theorem of algebra.

• In fact, $k_1^{ur}(\mathbb{C}(t_1,\ldots,t_n)/\mathbb{C})=0.$

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An exact sequence

Back to cubic hypersurfaces: consider the cubic curve given by the (affine) equation $y^2 = f(x)$.

・ロン ・回と ・ヨン ・ヨン

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An exact sequence

Back to cubic hypersurfaces: consider the cubic curve given by the (affine) equation $y^2 = f(x)$.

For concreteness, take f(x) = x(x+1)(x-1). Let $L = \mathbb{C}(x)(\sqrt{f})$.

・ロト ・回ト ・ヨト ・ヨト

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An exact sequence

Back to cubic hypersurfaces: consider the cubic curve given by the (affine) equation $y^2 = f(x)$.

- For concreteness, take f(x) = x(x+1)(x-1). Let $L = \mathbb{C}(x)(\sqrt{f})$.
- The field extension $\mathbb{C}(x) \hookrightarrow L$ gives rise to

ヘロン 人間 とくほど くほとう

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An exact sequence

Back to cubic hypersurfaces: consider the cubic curve given by the (affine) equation $y^2 = f(x)$.

- For concreteness, take f(x) = x(x+1)(x-1). Let $L = \mathbb{C}(x)(\sqrt{f})$.
- The field extension $\mathbb{C}(x) \hookrightarrow L$ gives rise to a map

$$\mathbb{C}(x)^*/(\mathbb{C}(x)^*)^2 \longrightarrow L^*/(L^*)^2$$

ヘロン 人間 とくほど くほとう

whose kernel is generated by f.

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An exact sequence

Back to cubic hypersurfaces: consider the cubic curve given by the (affine) equation $y^2 = f(x)$.

- For concreteness, take f(x) = x(x+1)(x-1). Let $L = \mathbb{C}(x)(\sqrt{f})$.
- The field extension $\mathbb{C}(x) \hookrightarrow L$ gives rise to an exact sequence

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{C}(x)^*/(\mathbb{C}(x)^*)^2 \longrightarrow L^*/(L^*)^2$$

sending $1 \in \mathbb{Z}/2\mathbb{Z}$ to the image of f in $\mathbb{C}(x)^*/(\mathbb{C}(x)^*)^2$.

ヘロン 人間 とくほど くほとう

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example

Example

The cubic curve $y^2 = x(x+1)(x-1)$ is not rational.

ヘロン 人間 とくほど くほとう

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example

Example

The cubic curve $y^2 = x(x+1)(x-1)$ is not rational.

Proof.

Step 1. Construct a non-trivial square class in $L^*/(L^*)^2$.

・ロト ・回ト ・ヨト ・ヨト

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example

Example

The cubic curve
$$y^2 = x(x+1)(x-1)$$
 is not rational.

Proof.

Step 1. Construct a non-trivial square class in $L^*/(L^*)^2$.

Idea: use the exact sequence; guess "x" determines a non-trivial element of L*/(L*)².

・ロト ・回ト ・ヨト ・ヨト

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example

Example

The cubic curve
$$y^2 = x(x+1)(x-1)$$
 is not rational.

Proof.

Step 1. Construct a non-trivial square class in $L^*/(L^*)^2$.

- Idea: use the exact sequence; guess "x" determines a non-trivial element of L*/(L*)².
- If x were 0 in $L^*/(L^*)^2$, either

・ロン ・回と ・ヨン ・ヨン

э

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example

Example

The cubic curve
$$y^2 = x(x+1)(x-1)$$
 is not rational.

Proof.

Step 1. Construct a non-trivial square class in $L^*/(L^*)^2$.

- Idea: use the exact sequence; guess "x" determines a non-trivial element of L*/(L*)².
- If x were 0 in $L^*/(L^*)^2$, either
 - x is 0 in $\mathbb{C}(x)^*/(\mathbb{C}(x)^*)^2$, or

・ロン ・回と ・ヨン・

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example

Example

The cubic curve
$$y^2 = x(x+1)(x-1)$$
 is not rational.

Proof.

Step 1. Construct a non-trivial square class in $L^*/(L^*)^2$.

- Idea: use the exact sequence; guess "x" determines a non-trivial element of L*/(L*)².
- If x were 0 in $L^*/(L^*)^2$, either
 - x is 0 in $\mathbb{C}(x)^* / (\mathbb{C}(x)^*)^2$, or
 - $\frac{f}{x} = (x+1)(x-1)$ is a square.

イロン イヨン イヨン イヨン

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example (continued)

Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more *ad hoc* argument).

・ロン ・回と ・ヨン ・ヨン

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example (continued)

Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more *ad hoc* argument).

• We guessed "x" was a non-trivial square class, so let's guess that it is also unramified.

・ロト ・回ト ・ヨト ・ヨト

æ

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example (continued)

Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more *ad hoc* argument).

- We guessed "x" was a non-trivial square class, so let's guess that it is also unramified.
- Let ν denote a valuation of *L*. We have to show that $\nu(x)$ is even.

・ロト ・回ト ・ヨト ・ヨト

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example (continued)

Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more *ad hoc* argument).

- We guessed "x" was a non-trivial square class, so let's guess that it is also unramified.
- Let ν denote a valuation of *L*. We have to show that $\nu(x)$ is even.
 - Case 1. $\nu(x) = 0$, nothing to show

<ロ> (日) (日) (日) (日) (日)

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example (continued)

Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more *ad hoc* argument).

- We guessed "x" was a non-trivial square class, so let's guess that it is also unramified.
- Let ν denote a valuation of *L*. We have to show that $\nu(x)$ is even.
 - Case 1. $\nu(x) = 0$, nothing to show
 - Case 2. v(x) > 0.

イロト イヨト イヨト イヨト

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example (continued)

Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more *ad hoc* argument).

- We guessed "x" was a non-trivial square class, so let's guess that it is also unramified.
- Let ν denote a valuation of *L*. We have to show that $\nu(x)$ is even.
 - Case 1. $\nu(x) = 0$, nothing to show
 - Case 2. $\nu(x) > 0$. Exc: Using the equation
 - $y^2 = x(x+1)(x-1)$, show that $2\nu(y) = \nu(x)$.

イロト イヨト イヨト イヨト

æ

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example (continued)

Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more *ad hoc* argument).

- We guessed "x" was a non-trivial square class, so let's guess that it is also unramified.
- Let ν denote a valuation of *L*. We have to show that $\nu(x)$ is even.
 - Case 1. ν(x) = 0, nothing to show
 Case 2. ν(x) > 0. Exc: Using the equation y² = x(x + 1)(x 1), show that 2ν(y) = ν(x).
 Case 3. ν(x) < 0.

イロト イヨト イヨト イヨト

э

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

An example (continued)

Proof (continued).

Step 2. Construct a non-trivial element in $k_1^{ur}(L/\mathbb{C})$ (this requires a more *ad hoc* argument).

- We guessed "x" was a non-trivial square class, so let's guess that it is also unramified.
- Let ν denote a valuation of *L*. We have to show that $\nu(x)$ is even.
 - Case 1. $\nu(x) = 0$, nothing to show
 - Case 2. $\nu(x) > 0$. Exc: Using the equation
 - $y^2 = x(x+1)(x-1)$, show that $2\nu(y) = \nu(x)$.
 - Case 3. $\nu(x) < 0$. Exc: Using the equation, show that $2\nu(y) = 3\nu(x)$.

・ロト ・日本 ・モート ・モート

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Summary of the example

To prove non-rationality of a variety with affine equation $y^2 = f(x)$, which can be thought of as a 0-dimensional projective quadric over $\mathbb{C}(x)$, we

・ロン ・回と ・ヨン ・ヨン

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Summary of the example

To prove non-rationality of a variety with affine equation $y^2 = f(x)$, which can be thought of as a 0-dimensional projective quadric over $\mathbb{C}(x)$, we

• defined an invariant $k_1^{ur}(L/\mathbb{C})$ using the function field and discrete valuations

・ロン ・回と ・ヨン ・ヨン

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Summary of the example

To prove non-rationality of a variety with affine equation $y^2 = f(x)$, which can be thought of as a 0-dimensional projective quadric over $\mathbb{C}(x)$, we

- defined an invariant $k_1^{ur}(L/\mathbb{C})$ using the function field and discrete valuations
- constructed an exact sequence, and then

・ロン ・回と ・ヨン・

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Summary of the example

To prove non-rationality of a variety with affine equation $y^2 = f(x)$, which can be thought of as a 0-dimensional projective quadric over $\mathbb{C}(x)$, we

- defined an invariant $k_1^{ur}(L/\mathbb{C})$ using the function field and discrete valuations
- constructed an exact sequence, and then
- constructed a non-zero unramified element.

・ロト ・回ト ・ヨト ・ヨト

Defining an invariant Constructing an exact sequence Proving non-triviality of the invariant

Summary of the example

To prove non-rationality of a variety with affine equation $y^2 = f(x)$, which can be thought of as a 0-dimensional projective quadric over $\mathbb{C}(x)$, we

- defined an invariant $k_1^{ur}(L/\mathbb{C})$ using the function field and discrete valuations
- constructed an exact sequence, and then
- constructed a non-zero unramified element.
- *Note:* with more work, one can actually determine the group $k_1^{ur}(L/\mathbb{C})$.

・ロト ・回ト ・ヨト ・ヨト

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

Back to the basic question

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

Back to the basic question

• Case
$$d = 3$$
, $n = 3$.

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

Back to the basic question

We were discussing the rationality problem for smooth hypersurfaces of degree d in projective space \mathbb{P}^n .

Case d = 3, n = 3. Classical geometric arguments demonstrate rationality.

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

Back to the basic question

We were discussing the rationality problem for smooth hypersurfaces of degree d in projective space \mathbb{P}^n .

 Case d = 3, n = 3. Classical geometric arguments demonstrate rationality.

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回 と ・ ヨ と ・ ヨ と

Back to the basic question

- Case d = 3, n = 3. Classical geometric arguments demonstrate rationality.
- Case d = 3, n = 4. (Clemens-Griffiths '71) famously showed that none are rational!

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回 と ・ ヨ と ・ ヨ と

Back to the basic question

- Case d = 3, n = 3. Classical geometric arguments demonstrate rationality.
- Case d = 3, n = 4. (Clemens-Griffiths '71) famously showed that none are rational!

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

Back to the basic question

- Case d = 3, n = 3. Classical geometric arguments demonstrate rationality.
- Case d = 3, n = 4. (Clemens-Griffiths '71) famously showed that none are rational!
- Case d = 3, n > 4. No known irrational examples, though some rational examples are known (Hassett '99)!

A reformulation

• Assume n > 3.

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

æ

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回 と ・ ヨ と ・ ヨ と

A reformulation

- Assume n > 3.
- Any smooth cubic $X_3 \subset \mathbb{P}^n$ has a line. Fix one, call it L.

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回 と ・ ヨ と ・ ヨ と

A reformulation

- Assume n > 3.
- Any smooth cubic $X_3 \subset \mathbb{P}^n$ has a line. Fix one, call it L.
- Projection away from L determines a map $X_3 \setminus L \to \mathbb{P}^{n-2}$.

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回 と ・ ヨ と ・ ヨ と

A reformulation

- Assume n > 3.
- Any smooth cubic $X_3 \subset \mathbb{P}^n$ has a line. Fix one, call it L.
- Projection away from L determines a map $X_3 \setminus L \to \mathbb{P}^{n-2}$.
- After blowing-up *L*, one gets a map

$$\mathsf{Bl}_L X_3 \to \mathbb{P}^{n-2}$$

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロト イヨト イヨト イヨト

A reformulation

- Assume n > 3.
- Any smooth cubic $X_3 \subset \mathbb{P}^n$ has a line. Fix one, call it L.
- Projection away from L determines a map $X_3 \setminus L \to \mathbb{P}^{n-2}$.
- After blowing-up *L*, one gets a map

$$\mathsf{Bl}_L X_3 \to \mathbb{P}^{n-2}$$

whose fibers are conics.

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

э

A reformulation

- Assume n > 3.
- Any smooth cubic $X_3 \subset \mathbb{P}^n$ has a line. Fix one, call it L.
- Projection away from L determines a map $X_3 \setminus L \to \mathbb{P}^{n-2}$.
- After blowing-up *L*, one gets a map

$$\mathsf{Bl}_L X_3 \to \mathbb{P}^{n-2}$$

whose fibers are conics.

Remark

If the cubic hypersurface is "more special," i.e., it posesses a linear subspace of higher dimension, then one can equip it with the structure of a higher dimensional quadric bundle.

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

First observations

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロト イポト イヨト イヨト

First observations

We'll look at the rationality problem for quadric bundles as above, which we can also think of as quadrics over $\mathbb{C}(t_1, \ldots, t_n)$.

 All "elementary" birational invariants of these higher dimensional quadric bundles are trivial.

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロト イポト イヨト イヨト

First observations

- All "elementary" birational invariants of these higher dimensional quadric bundles are trivial.
- These varieties are *rationally connected* in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two C-points can be connected by a P¹.

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

First observations

- All "elementary" birational invariants of these higher dimensional quadric bundles are trivial.
- These varieties are *rationally connected* in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two C-points can be connected by a P¹.
 - This implies their topological fundamental group is trivial, and, e.g.,

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

First observations

- All "elementary" birational invariants of these higher dimensional quadric bundles are trivial.
- These varieties are *rationally connected* in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two C-points can be connected by a P¹.
 - This implies their topological fundamental group is trivial, and, e.g.,
 - these varieties have no non-zero holomorphic *m*-forms.

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

First observations

- All "elementary" birational invariants of these higher dimensional quadric bundles are trivial.
- These varieties are *rationally connected* in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two C-points can be connected by a P¹.
 - This implies their topological fundamental group is trivial, and, e.g.,
 - these varieties have no non-zero holomorphic *m*-forms.
- The group $k_1^{ur}(L/\mathbb{C})$ is trivial for any of these varieties.

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

First observations

We'll look at the rationality problem for quadric bundles as above, which we can also think of as quadrics over $\mathbb{C}(t_1, \ldots, t_n)$.

- All "elementary" birational invariants of these higher dimensional quadric bundles are trivial.
- These varieties are *rationally connected* in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two C-points can be connected by a P¹.
 - This implies their topological fundamental group is trivial, and, e.g.,

• these varieties have no non-zero holomorphic *m*-forms.

• The group $k_1^{ur}(L/\mathbb{C})$ is trivial for any of these varieties.

What prevents these varieties from being rational?

The problem revisited

Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン 不良と 不良と 不良と

First observations

We'll look at the rationality problem for quadric bundles as above, which we can also think of as quadrics over $\mathbb{C}(t_1, \ldots, t_n)$.

- All "elementary" birational invariants of these higher dimensional quadric bundles are trivial.
- These varieties are *rationally connected* in the sense of Campana-Kollár-Miyaoka-Mori, i.e., any two C-points can be connected by a P¹.
 - This implies their topological fundamental group is trivial, and, e.g.,

• these varieties have no non-zero holomorphic *m*-forms.

The group $k_1^{ur}(L/\mathbb{C})$ is trivial for any of these varieties. What prevents these varieties from being rational? The quadric bundle need not admit a (rational) section!

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

æ

Higher unramified invariants

Aravind Asok (UCLA) Rational connectivity and \mathbb{A}^1 -connectivity

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロト ・日本 ・モート ・モート

Higher unramified invariants

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロト ・日本 ・モート ・モート

Higher unramified invariants

• Observe:
$$L^* := K_1^M(L)$$
, and $L^*/(L^*)^2 = K_1^M(L)/2$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Higher unramified invariants

- Observe: $L^* := K_1^M(L)$, and $L^*/(L^*)^2 = K_1^M(L)/2$.
- One possible generalization of the group of square classes goes by way of higher Milnor K-theory.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

Higher unramified invariants

- Observe: $L^* := K_1^M(L)$, and $L^*/(L^*)^2 = K_1^M(L)/2$.
- One possible generalization of the group of square classes goes by way of higher Milnor K-theory.
- The maps induced by discrete valuations can be thought of as "residue" maps in Milnor K-theory.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

æ

Milnor K-theory

Definition

Given a field L, set

$$K^M_*(L) := T_{\mathbb{Z}}(L^*)/J,$$

where $T_{\mathbb{Z}}(L^*)$ denotes the tensor algebra on L^* ,

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Milnor K-theory

Definition

Given a field L, set

$$K^M_*(L) := T_{\mathbb{Z}}(L^*)/J,$$

where $T_{\mathbb{Z}}(L^*)$ denotes the tensor algebra on L^* , and J denotes the Steinberg ideal, i.e., the graded ideal generated by $a \otimes (1-a)$ for $a \neq 0, 1$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン ・ヨン

Milnor K-theory

Definition

Given a field L, set

$$K^M_*(L) := T_{\mathbb{Z}}(L^*)/J,$$

where $T_{\mathbb{Z}}(L^*)$ denotes the tensor algebra on L^* , and J denotes the Steinberg ideal, i.e., the graded ideal generated by $a \otimes (1-a)$ for $a \neq 0, 1$.

• Let $K_n^M(L)$ denote the *n*-th graded piece of this ring.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

ヘロン 人間 とくほど くほとう

3

Milnor K-theory

Definition

Given a field L, set

$$K^M_*(L) := T_{\mathbb{Z}}(L^*)/J,$$

where $T_{\mathbb{Z}}(L^*)$ denotes the tensor algebra on L^* , and J denotes the Steinberg ideal, i.e., the graded ideal generated by $a \otimes (1-a)$ for $a \neq 0, 1$.

- Let $K_n^M(L)$ denote the *n*-th graded piece of this ring.
- Set $k_n(L) := \operatorname{coker}(K_n^M(L) \xrightarrow{\times 2} K_n^M(L))$; we call this mod 2 Milnor K-theory.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Residue maps

Given L/\mathbb{C} , and a discrete valuation $\nu : L^* \to \mathbb{Z}$ on L with residue field κ_{ν} ,

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロト ・回ト ・ヨト ・ヨト

Residue maps

Given L/\mathbb{C} , and a discrete valuation $\nu : L^* \to \mathbb{Z}$ on L with residue field κ_{ν} , we can define residue maps $K_n^M(L) \longrightarrow K_{n-1}^M(\kappa_{\nu})$

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロト ・回ト ・ヨト ・ヨト

Residue maps

Given L/\mathbb{C} , and a discrete valuation $\nu: L^* \to \mathbb{Z}$ on L with residue field κ_{ν} , we can define residue maps $K_n^M(L) \longrightarrow K_{n-1}^M(\kappa_{\nu})$ and

$$\partial_{\nu}: k_n(L) \longrightarrow k_{n-1}(\kappa_{\nu}).$$

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

ヘロン 人間と 人間と 人間と

Э

Residue maps

Given L/\mathbb{C} , and a discrete valuation $\nu: L^* \to \mathbb{Z}$ on L with residue field κ_{ν} , we can define residue maps $K_n^M(L) \longrightarrow K_{n-1}^M(\kappa_{\nu})$ and

$$\partial_{\nu}: k_n(L) \longrightarrow k_{n-1}(\kappa_{\nu}).$$

Example

• When n = 1, these maps are the maps already constructed.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

ヘロン 人間 とくほ とくほ とう

э

Residue maps

Given L/\mathbb{C} , and a discrete valuation $\nu : L^* \to \mathbb{Z}$ on L with residue field κ_{ν} , we can define residue maps $K_n^M(L) \longrightarrow K_{n-1}^M(\kappa_{\nu})$ and

$$\partial_{\nu}: k_n(L) \longrightarrow k_{n-1}(\kappa_{\nu}).$$

Example

- When n = 1, these maps are the maps already constructed.
- When n = 2, these maps are related to the so-called tame symbols L^{*} ⊗_ℤ L^{*} → L^{*} associated with a valuation ν

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

ヘロン 人間 とくほ とくほ とう

э

Residue maps

Given L/\mathbb{C} , and a discrete valuation $\nu : L^* \to \mathbb{Z}$ on L with residue field κ_{ν} , we can define residue maps $K_n^M(L) \longrightarrow K_{n-1}^M(\kappa_{\nu})$ and

$$\partial_{\nu}: k_n(L) \longrightarrow k_{n-1}(\kappa_{\nu}).$$

Example

- When n = 1, these maps are the maps already constructed.
- When n = 2, these maps are related to the so-called tame symbols L^{*} ⊗_ℤ L^{*} → L^{*} associated with a valuation ν defined by

$$(f,g)\mapsto (-1)^{\nu(f)\nu(g)}[g^{\nu}(f)/f^{\nu(g)}].$$

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン ・ヨン

æ

Unramified mod 2 Milnor K-theory

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

æ

Unramified mod 2 Milnor K-theory

Definition

Set

$$k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} (\operatorname{Ker}(\partial_{\nu} : k_n(L) \longrightarrow k_{n-1}(\kappa_{\nu})),$$

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

Unramified mod 2 Milnor K-theory

Definition

Set

$$k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} (\operatorname{Ker}(\partial_{\nu} : k_n(L) \longrightarrow k_{n-1}(\kappa_{\nu})),$$

and call this group the unramified mod 2 Milnor K-theory of L.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン ・ヨン

Unramified mod 2 Milnor K-theory

Definition

Set

$$k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} (\operatorname{Ker}(\partial_{\nu} : k_n(L) \longrightarrow k_{n-1}(\kappa_{\nu})),$$

and call this group the unramified mod 2 Milnor K-theory of L.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン ・ヨン

Unramified mod 2 Milnor K-theory

Definition

Set

$$k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} (\operatorname{Ker}(\partial_{\nu} : k_n(L) \longrightarrow k_{n-1}(\kappa_{\nu})),$$

and call this group the unramified mod 2 Milnor K-theory of L.

•
$$k_n^{ur}(L/\mathbb{C})$$
 is an **invariant** of L/\mathbb{C} ,

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

Unramified mod 2 Milnor K-theory

Definition

Set

$$k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} (\operatorname{Ker}(\partial_{\nu} : k_n(L) \longrightarrow k_{n-1}(\kappa_{\nu})),$$

and call this group the unramified mod 2 Milnor K-theory of L.

- $k_n^{ur}(L/\mathbb{C})$ is an **invariant** of L/\mathbb{C} ,
- $k_n^{ur}(L/\mathbb{C})$ is a covariant **functor** on field extensions, and

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロト ・回ト ・ヨト ・ヨト

Unramified mod 2 Milnor K-theory

Definition

Set

$$k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} (\operatorname{Ker}(\partial_{\nu} : k_n(L) \longrightarrow k_{n-1}(\kappa_{\nu})),$$

and call this group the unramified mod 2 Milnor K-theory of L.

- $k_n^{ur}(L/\mathbb{C})$ is an **invariant** of L/\mathbb{C} ,
- $k_n^{ur}(L/\mathbb{C})$ is a covariant **functor** on field extensions, and
- $k_n^{ur}(\mathbb{C}(t_1,\ldots,t_n)/\mathbb{C})=0.$

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

Unramified mod 2 Milnor K-theory

Definition

Set

$$k_n^{ur}(L/\mathbb{C}) := \bigcap_{\nu \in \mathcal{V}(L)} (\operatorname{Ker}(\partial_{\nu} : k_n(L) \longrightarrow k_{n-1}(\kappa_{\nu})),$$

and call this group the unramified mod 2 Milnor K-theory of L.

One can check

- $k_n^{ur}(L/\mathbb{C})$ is an **invariant** of L/\mathbb{C} ,
- $k_n^{ur}(L/\mathbb{C})$ is a covariant **functor** on field extensions, and
- $k_n^{ur}(\mathbb{C}(t_1,\ldots,t_n)/\mathbb{C})=0.$

Goal: apply this invariant to study rationality of quadric bundles.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン 不同と 不同と 不同と

An exact sequence

Recall that if $L = \mathbb{C}(x)(\sqrt{f})$, with $y^2 = f(x)$ we had

$$0 \longrightarrow \mathbb{Z}/2 \longrightarrow k_1(\mathbb{C}(x)) \longrightarrow k_1(L),$$

where the kernel is generated by f.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

An exact sequence

Recall that if $L = \mathbb{C}(x)(\sqrt{f})$, with $y^2 = f(x)$ we had

$$0 \longrightarrow \mathbb{Z}/2 \longrightarrow k_1(\mathbb{C}(x)) \longrightarrow k_1(L),$$

where the kernel is generated by f.

If F is a field, and $f, g \in F^*$, consider the conic $x^2 + fy^2 = gz^2$; denote it $Q_{(f,g)}$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

An exact sequence

Recall that if $L = \mathbb{C}(x)(\sqrt{f})$, with $y^2 = f(x)$ we had

$$0 \longrightarrow \mathbb{Z}/2 \longrightarrow k_1(\mathbb{C}(x)) \longrightarrow k_1(L),$$

where the kernel is generated by f.

If F is a field, and $f, g \in F^*$, consider the conic $x^2 + fy^2 = gz^2$; denote it $Q_{(f,g)}$. Functoriality gives a map:

$$k_i(F) \rightarrow k_i(F(Q_{(f,g)})).$$

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロト イポト イヨト イヨト

An exact sequence

• Recall that if $L = \mathbb{C}(x)(\sqrt{f})$, with $y^2 = f(x)$ we had

$$0 \longrightarrow \mathbb{Z}/2 \longrightarrow k_1(\mathbb{C}(x)) \longrightarrow k_1(L),$$

where the kernel is generated by f.

If F is a field, and $f, g \in F^*$, consider the conic $x^2 + fy^2 = gz^2$; denote it $Q_{(f,g)}$. Functoriality gives a map:

$$k_i(F) \rightarrow k_i(F(Q_{(f,g)})).$$

Question: Can one describe the kernel of this map?

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

An exact sequence (continued)

The pair (f,g) determines an element of $k_2(F)$, which we refer to as the symbol (f,g).

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン 不同と 不同と 不同と

An exact sequence (continued)

The pair (f,g) determines an element of $k_2(F)$, which we refer to as the symbol (f,g).

Theorem (Amitsur '55 + (many authors) + Merkurjev '81)

The kernel of

$$k_2(F) \to k_2(F(Q_{(f,g)}))$$

is generated by the symbol (f,g).

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

An exact sequence (continued)

The pair (f,g) determines an element of $k_2(F)$, which we refer to as the symbol (f,g).

Theorem (Amitsur '55 + (many authors) + Merkurjev '81)

The kernel of

$$k_2(F) \to k_2(F(Q_{(f,g)}))$$

is generated by the symbol (f,g).

Use this to study rationality problems.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

An exact sequence (continued)

The pair (f,g) determines an element of $k_2(F)$, which we refer to as the symbol (f,g).

Theorem (Amitsur '55 + (many authors) + Merkurjev '81)

The kernel of

$$k_2(F) \to k_2(F(Q_{(f,g)}))$$

is generated by the symbol (f,g).

- Use this to study rationality problems.
- Generalize this result.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン 不同と 不同と 不同と

æ

The Milnor conjecture

Aravind Asok (UCLA) Rational connectivity and \mathbb{A}^1 -connectivity

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

The Milnor conjecture

"So you're telling me that two groups, both of which are really hard to understand, are isomorphic?"

- Anonymous

イロン イヨン イヨン イヨン

Some more notation

Notation:

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

æ

Some more notation

Notation:

• Take $a_1, \ldots, a_n \in F^*$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン ・ヨン

æ

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Some more notation

Notation:

- Take $a_1, \ldots, a_n \in F^*$.
- Write $\langle a_1, \ldots, a_n \rangle$ for the quadratic form $a_1 x_1^2 + \cdots + a_n x_n^2$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Some more notation

Notation:

- Take $a_1, \ldots, a_n \in F^*$.
- Write $\langle a_1, \ldots, a_n \rangle$ for the quadratic form $a_1 x_1^2 + \cdots + a_n x_n^2$.
- Set $\langle \langle a_1, \ldots, a_n \rangle \rangle := \langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle.$

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Some more notation

Notation:

- Take $a_1, \ldots, a_n \in F^*$.
- Write $\langle a_1, \ldots, a_n \rangle$ for the quadratic form $a_1 x_1^2 + \cdots + a_n x_n^2$.
- Set $\langle \langle a_1, \ldots, a_n \rangle \rangle := \langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle.$
- Write $Q_{(a_1,...,a_n)}$ for the (small Pfister) quadric defined by the equation

$$\langle \langle a_1, \ldots, a_{n-1} \rangle \rangle = \langle a_n \rangle.$$

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

Some more notation

Notation:

- Take $a_1, \ldots, a_n \in F^*$.
- Write $\langle a_1, \ldots, a_n \rangle$ for the quadratic form $a_1 x_1^2 + \cdots + a_n x_n^2$.
- Set $\langle \langle a_1, \ldots, a_n \rangle \rangle := \langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle.$
- Write $Q_{(a_1,...,a_n)}$ for the (small Pfister) quadric defined by the equation

$$\langle \langle a_1, \ldots, a_{n-1} \rangle \rangle = \langle a_n \rangle.$$

Example

When n = 1, such quadrics are given by the equation $y^2 = f$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回 と ・ ヨン ・ ヨン

Some more notation

Notation:

- Take $a_1, \ldots, a_n \in F^*$.
- Write $\langle a_1, \ldots, a_n \rangle$ for the quadratic form $a_1 x_1^2 + \cdots + a_n x_n^2$.
- Set $\langle \langle a_1, \ldots, a_n \rangle \rangle := \langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle.$
- Write $Q_{(a_1,...,a_n)}$ for the (small Pfister) quadric defined by the equation

$$\langle \langle a_1, \ldots, a_{n-1} \rangle \rangle = \langle a_n \rangle.$$

Example

When n = 1, such quadrics are given by the equation $y^2 = f$. When n = 2, such quadrics reduce to the conics from before.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回 と ・ ヨン ・ ヨン

Some quick (revisionist) history

Goal: study the kernel of the map $k_n(F) \rightarrow k_n(F(Q_{(a_1,\ldots,a_n)}))$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロト ・回ト ・ヨト ・ヨト

Some quick (revisionist) history

Goal: study the kernel of the map $k_n(F) \rightarrow k_n(F(Q_{(a_1,\ldots,a_n)}))$. **Note**: (a_1,\ldots,a_n) determines an element of $k_n(F)$, which we call the associated symbol; easy to show that (a_1,\ldots,a_n) is contained in the kernel.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

Some quick (revisionist) history

Goal: study the kernel of the map $k_n(F) \rightarrow k_n(F(Q_{(a_1,\ldots,a_n)}))$. **Note**: (a_1,\ldots,a_n) determines an element of $k_n(F)$, which we call the associated symbol; easy to show that (a_1,\ldots,a_n) is contained in the kernel.

Example

• n = 1, this was our basic example.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

Some quick (revisionist) history

Goal: study the kernel of the map $k_n(F) \rightarrow k_n(F(Q_{(a_1,\ldots,a_n)}))$. **Note**: (a_1,\ldots,a_n) determines an element of $k_n(F)$, which we call the associated symbol; easy to show that (a_1,\ldots,a_n) is contained in the kernel.

Example

- n = 1, this was our basic example.
- n = 2, we stated this above (Amitsur + \cdots + Merkurjev).

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

Some quick (revisionist) history

Goal: study the kernel of the map $k_n(F) \rightarrow k_n(F(Q_{(a_1,\ldots,a_n)}))$. **Note**: (a_1,\ldots,a_n) determines an element of $k_n(F)$, which we call the associated symbol; easy to show that (a_1,\ldots,a_n) is contained in the kernel.

Example

- n = 1, this was our basic example.
- n = 2, we stated this above (Amitsur + \cdots + Merkurjev).
- n = 3, (Arason '75 + Rost '86/Merkurjev-Suslin '91) proved that the kernel is generated by the symbol.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン ・ヨン

Some quick (revisionist) history

Goal: study the kernel of the map $k_n(F) \rightarrow k_n(F(Q_{(a_1,\ldots,a_n)}))$. **Note**: (a_1,\ldots,a_n) determines an element of $k_n(F)$, which we call the associated symbol; easy to show that (a_1,\ldots,a_n) is contained in the kernel.

Example

- n = 1, this was our basic example.
- n = 2, we stated this above (Amitsur + \cdots + Merkurjev).
- n = 3, (Arason '75 + Rost '86/Merkurjev-Suslin '91) proved that the kernel is generated by the symbol.
- *n* = 4, (Jacob-Rost '89 + ...) proved that the kernel is generated by the symbol.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロ・ ・ 日・ ・ 日・ ・ 日・

A consequence of the Milnor conjecture

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

A consequence of the Milnor conjecture

Theorem (Orlov-Vishik-Voevodsky '07)

The kernel of the map $k_n(F) \rightarrow k_n(F(Q_{(a_1,...,a_n)}))$ is generated by the symbol $(a_1,...,a_n)$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン ・ヨン

A consequence of the Milnor conjecture

Theorem (Orlov-Vishik-Voevodsky '07)

The kernel of the map $k_n(F) \rightarrow k_n(F(Q_{(a_1,...,a_n)}))$ is generated by the symbol $(a_1,...,a_n)$.

Some key points in the proof.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

A consequence of the Milnor conjecture

Theorem (Orlov-Vishik-Voevodsky '07)

The kernel of the map $k_n(F) \rightarrow k_n(F(Q_{(a_1,...,a_n)}))$ is generated by the symbol $(a_1,...,a_n)$.

Some key points in the proof.

 "Topological" part: Voevodsky's construction and study of properties of Steenrod operations on an appropriately defined cohomology theory for algebraic varieties

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

A consequence of the Milnor conjecture

Theorem (Orlov-Vishik-Voevodsky '07)

The kernel of the map $k_n(F) \rightarrow k_n(F(Q_{(a_1,...,a_n)}))$ is generated by the symbol $(a_1,...,a_n)$.

Some key points in the proof.

- "Topological" part: Voevodsky's construction and study of properties of Steenrod operations on an appropriately defined cohomology theory for algebraic varieties
- Geometric" part: Rost's study of small Pfister quadrics.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

Application to rationality problems I

Example (Non-rational conic bundles)

Aravind Asok (UCLA) Rational connectivity and A¹-connectivity

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

Application to rationality problems I

Example (Non-rational conic bundles)

Artin-Mumford '71, Colliot-Thélène-Ojanguren '89; Take
 L = C(x₁, x₂)

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン ・ヨン

Application to rationality problems I

Example (Non-rational conic bundles)

- Artin-Mumford '71, Colliot-Thélène-Ojanguren '89; Take
 L = C(x₁, x₂)
- Take f, g_1, g_2 in L^* , and consider the conic $Q_{(f,g_1g_2)}$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

ヘロン 人間 とくほど くほとう

Application to rationality problems I

Example (Non-rational conic bundles)

- Artin-Mumford '71, Colliot-Thélène-Ojanguren '89; Take
 L = C(x₁, x₂)
- Take f, g_1, g_2 in L^* , and consider the conic $Q_{(f,g_1g_2)}$.
- For appropriate choice of f, g₁ and g₂, the symbol (f, g₁) is a non-zero element of k₂^{ur}(L(Q_{(f,g1g2}))/ℂ).

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロト ・回ト ・ヨト ・ヨト

Application to rationality problems I

Example (Non-rational conic bundles)

- Artin-Mumford '71, Colliot-Thélène-Ojanguren '89; Take
 L = C(x₁, x₂)
- Take f, g_1, g_2 in L^* , and consider the conic $Q_{(f,g_1g_2)}$.
- For appropriate choice of f, g₁ and g₂, the symbol (f, g₁) is a non-zero element of k₂^{ur}(L(Q_(f,g1g2))/ℂ).

• Recall
$$k_1^{ur}(L(Q_{(f,g_1g_2)})/\mathbb{C}) = 0.$$

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロト ・日本 ・モート ・モート

Application to rationality problems II

Example (Non-rational quadric bundles I)

Aravind Asok (UCLA) Rational connectivity and A¹-connectivity

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

Application to rationality problems II

Example (Non-rational quadric bundles I)

• Colliot-Thélène-Ojanguren '89; Take $L = \mathbb{C}(x_1, x_2, x_3)$

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロン イヨン イヨン イヨン

Application to rationality problems II

Example (Non-rational quadric bundles I)

- Colliot-Thélène-Ojanguren '89; Take $L = \mathbb{C}(x_1, x_2, x_3)$
- Take f_1, f_2, g_1, g_2 in L*, and consider the quadric $Q_{(f_1, f_2, g_1 g_2)}$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

イロト イヨト イヨト イヨト

Application to rationality problems II

Example (Non-rational quadric bundles I)

- Colliot-Thélène-Ojanguren '89; Take $L = \mathbb{C}(x_1, x_2, x_3)$
- Take f_1, f_2, g_1, g_2 in L^* , and consider the quadric $Q_{(f_1, f_2, g_1g_2)}$.
- For appropriate choice of f_1, f_2, g_1 and g_2 , the symbol (f_1, f_2, g_1) is a non-zero element of $k_3^{ur}(L(Q_{(f_1, f_2, g_1g_2)})/\mathbb{C})$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロト ・回ト ・ヨト ・ヨト

Application to rationality problems II

Example (Non-rational quadric bundles I)

- Colliot-Thélène-Ojanguren '89; Take $L = \mathbb{C}(x_1, x_2, x_3)$
- Take f_1, f_2, g_1, g_2 in L^* , and consider the quadric $Q_{(f_1, f_2, g_1g_2)}$.
- For appropriate choice of f_1, f_2, g_1 and g_2 , the symbol (f_1, f_2, g_1) is a non-zero element of $k_3^{ur}(L(Q_{(f_1, f_2, g_1g_2)})/\mathbb{C})$.
- Furthermore $k_i^{ur}(L(Q_{(f_1, f_2, g_1g_2)})/\mathbb{C}) = 0$ for i = 1, 2.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

ヘロン 人間と くほと くほと

Application to rationality problems II

Example (Non-rational quadric bundles I)

- Colliot-Thélène-Ojanguren '89; Take $L = \mathbb{C}(x_1, x_2, x_3)$
- Take f_1, f_2, g_1, g_2 in L^* , and consider the quadric $Q_{(f_1, f_2, g_1 g_2)}$.
- For appropriate choice of f_1, f_2, g_1 and g_2 , the symbol (f_1, f_2, g_1) is a non-zero element of $k_3^{ur}(L(Q_{(f_1, f_2, g_1g_2)})/\mathbb{C})$.
- Furthermore $k_i^{ur}(L(Q_{(f_1, f_2, g_1g_2)})/\mathbb{C}) = 0$ for i = 1, 2.

Example (Non-rational quadric bundles II)

 Peyre '93: generalized these constructions of unramified elements and non-rational quadrics using k₄^{ur}.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

э

Application to rationality problems III

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

Application to rationality problems III

Theorem (More non-rational quadric bundles)

Set $L = \mathbb{C}(x_1, \ldots, x_n)$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロン ・回と ・ヨン・

Application to rationality problems III

Theorem (More non-rational quadric bundles)

Set $L = \mathbb{C}(x_1, \ldots, x_n)$. For every integer n > 0, there exist elements (f_1, \ldots, f_n) in L^* such that the quadric

 $Q_{(f_1,\ldots,f_n)}$

is non-rational,

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロト ・回ト ・ヨト ・ヨト

Application to rationality problems III

Theorem (More non-rational quadric bundles)

Set $L = \mathbb{C}(x_1, \ldots, x_n)$. For every integer n > 0, there exist elements (f_1, \ldots, f_n) in L^* such that the quadric

 $Q_{(f_1,\ldots,f_n)}$

is non-rational, and where non-rationality is detected by existence of a non-trivial element of $k_n^{ur}(L(Q_{(f_1,\ldots,f_n)})/\mathbb{C})$.

The problem revisited Generalizing Step 1: defining higher invariants Generalizing Step 2: constructing an exact sequence Generalizing Step 3: constructing unramified elements

・ロト ・回ト ・ヨト ・ヨト

Application to rationality problems III

Theorem (More non-rational quadric bundles)

Set $L = \mathbb{C}(x_1, ..., x_n)$. For every integer n > 0, there exist elements $(f_1, ..., f_n)$ in L^* such that the quadric

 $Q_{(f_1,\ldots,f_n)}$

is non-rational, and where non-rationality is detected by existence of a non-trivial element of $k_n^{ur}(L(Q_{(f_1,...,f_n)})/\mathbb{C})$. Furthermore $k_i^{ur}(L(Q_{(f_1,...,f_n)})/\mathbb{C}) = 0$ for $1 \le i < n$.

What lessons have we learned?

・ロン ・回と ・ヨン ・ヨン

Э

What lessons have we learned?

• All the quadric bundles in question are rationally connected.

イロン イヨン イヨン イヨン

What lessons have we learned?

- All the quadric bundles in question are rationally connected.
- As n increases, intuitively one imagines the examples we have constructed as being "closer and closer" to rational varieties.

- (目) - (日) - (日)

What lessons have we learned?

- All the quadric bundles in question are rationally connected.
- As n increases, intuitively one imagines the examples we have constructed as being "closer and closer" to rational varieties.
- One might imagine heirarchies of "higher rational connectivity" to make these notions precise (*cf.* A.J. de Jong-J. Starr).

A (10) A (10)

What lessons have we learned?

- All the quadric bundles in question are rationally connected.
- As n increases, intuitively one imagines the examples we have constructed as being "closer and closer" to rational varieties.
- One might imagine heirarchies of "higher rational connectivity" to make these notions precise (*cf.* A.J. de Jong-J. Starr).
- Concretely, as n increases, "some kind of mod 2 cohomology" vanishes in higher and higher degrees.

Connectedness in \mathbb{A}^1 -homotopy theory

An analog of chain-connectedness in algebraic geometry:

・ 回 と ・ ヨ と ・ ヨ と

Connectedness in \mathbb{A}^1 -homotopy theory

An analog of chain-connectedness in algebraic geometry:

Definition

A smooth variety X over a field F is \mathbb{A}^1 -chain connected if for every finitely generated, separable extension L/K, any two L-points of X can be connected by a chain of copies of the affine line.

- 4 同 6 4 日 6 4 日 6

Connectedness in \mathbb{A}^1 -homotopy theory

An analog of chain-connectedness in algebraic geometry:

Definition

A smooth variety X over a field F is \mathbb{A}^1 -chain connected if for every finitely generated, separable extension L/K, any two L-points of X can be connected by a chain of copies of the affine line.

Example

All stably rational smooth proper varieties are \mathbb{A}^1 -chain connected.

Connectedness in \mathbb{A}^1 -homotopy theory

An analog of chain-connectedness in algebraic geometry:

Definition

A smooth variety X over a field F is \mathbb{A}^1 -chain connected if for every finitely generated, separable extension L/K, any two L-points of X can be connected by a chain of copies of the affine line.

Example

All stably rational smooth proper varieties are \mathbb{A}^1 -chain connected.

More generally, there is a notion of $\pi_0^{\mathbb{A}^1}$ that underlies this notion of connectedness (defined using the \mathbb{A}^1 -homotopy category).

イロン イヨン イヨン イヨン

Connectedness in \mathbb{A}^1 -homotopy theory

An analog of chain-connectedness in algebraic geometry:

Definition

A smooth variety X over a field F is \mathbb{A}^1 -chain connected if for every finitely generated, separable extension L/K, any two L-points of X can be connected by a chain of copies of the affine line.

Example

All stably rational smooth proper varieties are \mathbb{A}^1 -chain connected.

More generally, there is a notion of $\pi_0^{\mathbb{A}^1}$ that underlies this notion of connectedness (defined using the \mathbb{A}^1 -homotopy category). For smooth proper X: think of chain-connected components.

・ロン ・回 と ・ ヨン ・ ヨン

Vanishing of "unramified invariants"

Any time one has an (abelian) group-valued functor on field extensions,

・ロン ・回と ・ヨン ・ヨン

э

Vanishing of "unramified invariants"

Any time one has an (abelian) group-valued functor on field extensions, together with residue maps associated with discrete valuations

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Vanishing of "unramified invariants"

Any time one has an (abelian) group-valued functor on field extensions, together with residue maps associated with discrete valuations having reasonable functorial properties,

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Vanishing of "unramified invariants"

Any time one has an (abelian) group-valued functor on field extensions, together with residue maps associated with discrete valuations having reasonable functorial properties, one can define a notion of "unramified invariant." (*cf.* Rost, Morel, etc...)

・ロン ・回 と ・ ヨ と ・ ヨ と

Vanishing of "unramified invariants"

Any time one has an (abelian) group-valued functor on field extensions, together with residue maps associated with discrete valuations having reasonable functorial properties, one can define a notion of "unramified invariant." (*cf.* Rost, Morel, etc...)

Theorem

If X/F is \mathbb{A}^1 -chain connected, then all "unramified invariants" of X are "trivial" (i.e., isomorphic to the value of the unramified invariant on the base-field).

・ロン ・回 と ・ ヨ と ・ ヨ と

Vanishing of "unramified invariants"

Any time one has an (abelian) group-valued functor on field extensions, together with residue maps associated with discrete valuations having reasonable functorial properties, one can define a notion of "unramified invariant." (*cf.* Rost, Morel, etc...)

Theorem

If X/F is \mathbb{A}^1 -chain connected, then all "unramified invariants" of X are "trivial" (i.e., isomorphic to the value of the unramified invariant on the base-field).

Corollary

If X/F has a "non-trivial" unramified invariant, then F is not stably rational.

・ロト ・回ト ・ヨト ・ヨト

Homological interpretation

Basic principle: $\pi_0^{\mathbb{A}^1}(X)$ controls all unramified invariants of X.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Homological interpretation

Basic principle: $\pi_0^{\mathbb{A}^1}(X)$ controls all unramified invariants of X.

■ Topological fact: if A is a discrete abelian group, and M is a manifold, then continuous maps M → A are in bijection with group homomorphisms H₀(M) → A.

(4月) (1日) (日)

Homological interpretation

Basic principle: $\pi_0^{\mathbb{A}^1}(X)$ controls all unramified invariants of X.

- Topological fact: if A is a discrete abelian group, and M is a manifold, then continuous maps $M \to A$ are in bijection with group homomorphisms $H_0(M) \to A$.
- Analogous to π₀^{A¹}, one can define a notion of H₀^{A¹}, which is a *universal* unramified invariant.

(4月) (4日) (4日)

Homological interpretation

Basic principle: $\pi_0^{\mathbb{A}^1}(X)$ controls all unramified invariants of X.

- Topological fact: if A is a discrete abelian group, and M is a manifold, then continuous maps $M \to A$ are in bijection with group homomorphisms $H_0(M) \to A$.
- Analogous to $\pi_0^{\mathbb{A}^1}$, one can define a notion of $H_0^{\mathbb{A}^1}$, which is a *universal* unramified invariant.
- Let A be an unramified invariant (thought of as a functor on field extensions).

・ロン ・回 とくほど ・ ほとう

Homological interpretation

Basic principle: $\pi_0^{\mathbb{A}^1}(X)$ controls all unramified invariants of X.

- Topological fact: if A is a discrete abelian group, and M is a manifold, then continuous maps $M \to A$ are in bijection with group homomorphisms $H_0(M) \to A$.
- Analogous to π₀^{A¹}, one can define a notion of H₀^{A¹}, which is a *universal* unramified invariant.
- Let A be an unramified invariant (thought of as a functor on field extensions).
- Concrete incarnation (Morel): Unramified invariants on X correspond bijectively with morphisms of functors H₀^{A¹}(X) → A.

・ロト ・回ト ・ヨト ・ヨト

The upshot

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

The upshot

 Rost's study of the small Pfister quadrics (i.e., construction of the Rost motive) should allow one to understand the homomorphisms

$$H_0^{\mathbb{A}^1}(Q_{(f_1,\ldots,f_n)}) \to k_n^{ur}.$$

- 4 回 2 - 4 回 2 - 4 回 2 - 4

э

The upshot

 Rost's study of the small Pfister quadrics (i.e., construction of the Rost motive) should allow one to understand the homomorphisms

$$H_0^{\mathbb{A}^1}(Q_{(f_1,\ldots,f_n)}) \to k_n^{ur}.$$

For the rationality problem: Completely understand $H_0^{\mathbb{A}^1}(X)$

・ロン ・回と ・ヨン・

The upshot

 Rost's study of the small Pfister quadrics (i.e., construction of the Rost motive) should allow one to understand the homomorphisms

$$H_0^{\mathbb{A}^1}(Q_{(f_1,\ldots,f_n)}) \to k_n^{ur}.$$

■ For the rationality problem: Completely understand H₀^{A¹}(X) (even in the case of conics or small Pfister quadrics, this is open as far as I know).

The upshot

 Rost's study of the small Pfister quadrics (i.e., construction of the Rost motive) should allow one to understand the homomorphisms

$$H_0^{\mathbb{A}^1}(Q_{(f_1,\ldots,f_n)}) \to k_n^{ur}.$$

- For the rationality problem: Completely understand H₀^{A¹}(X) (even in the case of conics or small Pfister quadrics, this is open as far as I know).
- There are many natural generalizations: e.g., so-called norm varieties can be used construct other examples of "bundles" that are rationally connected yet not A¹-connected.

・ 回 と ・ ヨ と ・ ヨ と

Thank you!

See http://www.math.ucla.edu/~asok for more information

(人間) (人) (人) (人)