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The goal

“No doubt topologists will welcome a version which can
be read by those not familiar with modern algebraic
geometry.”

-J.F. Adams
from Math Reviews
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Conventions

Throughout the talk we consider algebraic varieties over a
field L (or F ) having characteristic 0.

E.g., take L = C, or
take L = C(t1, . . . , tn) and think of a family of varieties.

All algebraic varieties will be assumed smooth, connected, and
often proper (read: compact).

Given an algebraic variety X over L, we write L(X ) for its field
of rational functions.

Aravind Asok (UCLA) Rational connectivity and A1-connectivity



Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

Conventions

Throughout the talk we consider algebraic varieties over a
field L (or F ) having characteristic 0.

E.g., take L = C, or

take L = C(t1, . . . , tn) and think of a family of varieties.

All algebraic varieties will be assumed smooth, connected, and
often proper (read: compact).

Given an algebraic variety X over L, we write L(X ) for its field
of rational functions.

Aravind Asok (UCLA) Rational connectivity and A1-connectivity



Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

Conventions

Throughout the talk we consider algebraic varieties over a
field L (or F ) having characteristic 0.

E.g., take L = C, or
take L = C(t1, . . . , tn) and think of a family of varieties.

All algebraic varieties will be assumed smooth, connected, and
often proper (read: compact).

Given an algebraic variety X over L, we write L(X ) for its field
of rational functions.

Aravind Asok (UCLA) Rational connectivity and A1-connectivity



Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

Conventions

Throughout the talk we consider algebraic varieties over a
field L (or F ) having characteristic 0.

E.g., take L = C, or
take L = C(t1, . . . , tn) and think of a family of varieties.

All algebraic varieties will be assumed smooth, connected, and
often proper (read: compact).

Given an algebraic variety X over L, we write L(X ) for its field
of rational functions.

Aravind Asok (UCLA) Rational connectivity and A1-connectivity



Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

Conventions

Throughout the talk we consider algebraic varieties over a
field L (or F ) having characteristic 0.

E.g., take L = C, or
take L = C(t1, . . . , tn) and think of a family of varieties.

All algebraic varieties will be assumed smooth, connected, and
often proper (read: compact).

Given an algebraic variety X over L, we write L(X ) for its field
of rational functions.

Aravind Asok (UCLA) Rational connectivity and A1-connectivity



Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

Basic definitions: rationality

Definition

An algebraic variety X over L is L-rational if L(X ) ∼= L(t1, . . . , tn).

Write Pn for n-dimensional projective space (over L), which is
the basic example of a rational variety.

Think: “most,” i.e., a (Zariski) open set, of the solutions to
the equations defining X can be rationally parameterized.
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Basic question

Question

If Xd ⊂ Pn
C is a smooth degree d complex hypersurface, (when) is

Xd rational?
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Basic example

Example

If X2 ⊂ Pn
C, i.e., a quadric, then X2 is rational.

Why? Stereographic projection.

Same argument shows any quadric over a field F having an
F -rational point is actually F -rational.
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One degree up

What about the case d = 3, n = 2?

This argument fails for smooth cubic curves in P2
C

Of course, there are many ways to prove that smooth cubic
curves are not rational, but let us give another (elementary)
argument.

Begin by defining another invariant.
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Defining an invariant
Constructing an exact sequence
Proving non-triviality of the invariant

Fields and valuations

Let L/C be a finitely generated extension, and

let L∗ denote the multiplicative group of non-zero elements.

A discrete valuation is a group homomorphism ν : L∗ → Z
satisfying a “metric” property.

Write V (L) for the set of inequivalent discrete valuations of L.

Any discrete valuation ν gives rise to a homomorphism

∂ν : L∗/(L∗)2 → Z/2Z.
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Unramified square classes

Definition

Set
kur
1 (L/C) :=

⋂
ν∈V (L)

Ker(∂ν : L∗/(L∗)2 → Z/2).

Elements of kur
1 (L/C) will be referred to as unramified

(square) classes, or simply unramified elements, and

kur
1 (L/C) will be called the group of unramified square classes.
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Basic properties of unramified square classes

Formal properties

The group kur
1 (L/C) is an invariant of L/C

and a covariant functor on field extensions.

Basic computations

If L = C(t), then kur
1 (L/C) = 0.

Why? Every class in C(t)∗/(C(t)∗)2 admits a representative
lying in C[t]; use the fundamental theorem of algebra.

In fact, kur
1 (C(t1, . . . , tn)/C) = 0.
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An exact sequence

Back to cubic hypersurfaces: consider the cubic curve given by the
(affine) equation y2 = f (x).

For concreteness, take f (x) = x(x + 1)(x − 1). Let
L = C(x)(

√
f ).

The field extension C(x) ↪→ L gives rise to a mapan exact sequence

0 −→ Z/2Z −→ C(x)∗/(C(x)∗)2 −→ L∗/(L∗)2

whose kernel is generated by f .sending 1 ∈ Z/2Z to the image of f in C(x)∗/(C(x)∗)2

.
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An example

Example

The cubic curve y2 = x(x + 1)(x − 1) is not rational.

Proof.

Step 1. Construct a non-trivial square class in L∗/(L∗)2.

Idea: use the exact sequence; guess “x” determines a
non-trivial element of L∗/(L∗)2.

If x were 0 in L∗/(L∗)2, either

x is 0 in C(x)∗/(C(x)∗)2, or
f
x = (x + 1)(x − 1) is a square.
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Proof.
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If x were 0 in L∗/(L∗)2, either
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An example (continued)

Proof (continued).

Step 2. Construct a non-trivial element in kur
1 (L/C) (this requires

a more ad hoc argument).

We guessed “x” was a non-trivial square class, so let’s guess
that it is also unramified.

Let ν denote a valuation of L. We have to show that ν(x) is
even.

Case 1. ν(x) = 0, nothing to show
Case 2. ν(x) > 0. Exc: Using the equation
y2 = x(x + 1)(x − 1), show that 2ν(y) = ν(x).
Case 3. ν(x) < 0. Exc: Using the equation, show that
2ν(y) = 3ν(x).
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Summary of the example

To prove non-rationality of a variety with affine equation
y2 = f (x), which can be thought of as a 0-dimensional projective
quadric over C(x), we

defined an invariant kur
1 (L/C) using the function field and

discrete valuations

constructed an exact sequence, and then

constructed a non-zero unramified element.

Note: with more work, one can actually determine the group
kur
1 (L/C).
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The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements

Back to the basic question

We were discussing the rationality problem for smooth
hypersurfaces of degree d in projective space Pn.

Case d = 3, n = 3. Classical geometric arguments
demonstrate rationality.

Case d = 3, n = 4. (Clemens-Griffiths ’71) famously showed
that none are rational!

Case d = 3, n > 4. No known irrational examples, though
some rational examples are known (Hassett ’99)!
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A reformulation

Assume n > 3.

Any smooth cubic X3 ⊂ Pn has a line. Fix one, call it L.

Projection away from L determines a map X3 \ L→ Pn−2.

After blowing-up L, one gets a map

BlLX3 → Pn−2

whose fibers are conics.

Remark

If the cubic hypersurface is “more special,” i.e., it posesses a linear
subspace of higher dimension, then one can equip it with the
structure of a higher dimensional quadric bundle.
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First observations

We’ll look at the rationality problem for quadric bundles as above,
which we can also think of as quadrics over C(t1, . . . , tn).

All “elementary” birational invariants of these higher
dimensional quadric bundles are trivial.

These varieties are rationally connected in the sense of
Campana-Kollár-Miyaoka-Mori, i.e., any two C-points can be
connected by a P1.

This implies their topological fundamental group is trivial, and,
e.g.,
these varieties have no non-zero holomorphic m-forms.

The group kur
1 (L/C) is trivial for any of these varieties.

What prevents these varieties from being rational? The quadric
bundle need not admit a (rational) section!
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Higher unramified invariants

We will define “higher” versions of kur
1 that have a better chance

of being non-trivial.

Observe: L∗ := KM
1 (L), and L∗/(L∗)2 = KM

1 (L)/2.

One possible generalization of the group of square classes
goes by way of higher Milnor K-theory.

The maps induced by discrete valuations can be thought of as
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Milnor K-theory

Definition

Given a field L, set

KM
∗ (L) := TZ(L∗)/J,

where TZ(L∗) denotes the tensor algebra on L∗,

and J denotes the
Steinberg ideal, i.e., the graded ideal generated by a⊗ (1− a) for
a 6= 0, 1.

Let KM
n (L) denote the n-th graded piece of this ring.

Set kn(L) := coker(KM
n (L)

×2−→ KM
n (L)); we call this mod 2

Milnor K-theory.
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Residue maps

Given L/C, and a discrete valuation ν : L∗ → Z on L with residue
field κν ,

we can define residue maps KM
n (L) −→ KM

n−1(κν) and

∂ν : kn(L) −→ kn−1(κν).

Example

When n = 1, these maps are the maps already constructed.

When n = 2, these maps are related to the so-called tame
symbols L∗ ⊗Z L∗ → L∗ associated with a valuation ν defined
by

(f , g) 7→ (−1)ν(f )ν(g)[gν(f )/f ν(g)].
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Unramified mod 2 Milnor K-theory

Definition

Set

kur
n (L/C) :=

⋂
ν∈V (L)

(Ker(∂ν : kn(L) −→ kn−1(κν)),

and call this group the unramified mod 2 Milnor K-theory of L.

One can check

kur
n (L/C) is an invariant of L/C,

kur
n (L/C) is a covariant functor on field extensions, and

kur
n (C(t1, . . . , tn)/C) = 0.

Goal: apply this invariant to study rationality of quadric bundles.
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An exact sequence

Recall that if L = C(x)(
√

f ), with y2 = f (x) we had

0 −→ Z/2 −→ k1(C(x)) −→ k1(L),

where the kernel is generated by f .

If F is a field, and f , g ∈ F ∗, consider the conic
x2 + fy2 = gz2; denote it Q(f ,g). Functoriality gives a map:

ki (F )→ ki (F (Q(f ,g))).

Question: Can one describe the kernel of this map?
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An exact sequence (continued)

The pair (f , g) determines an element of k2(F ), which we refer to
as the symbol (f , g).

Theorem (Amitsur ’55 + (many authors) + Merkurjev ’81)

The kernel of
k2(F )→ k2(F (Q(f ,g)))

is generated by the symbol (f , g).

Use this to study rationality problems.

Generalize this result.
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The Milnor conjecture

“So you’re telling me that two groups, both of which are
really hard to understand, are isomorphic?”

- Anonymous
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Some more notation

Notation:

Take a1, . . . , an ∈ F ∗.

Write 〈a1, . . . , an〉 for the quadratic form a1x2
1 + · · ·+ anx2

n .

Set 〈〈a1, . . . , an〉〉 := 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉.
Write Q(a1,...,an) for the (small Pfister) quadric defined by the
equation

〈〈a1, . . . , an−1〉〉 = 〈an〉.

Example

When n = 1, such quadrics are given by the equation y2 = f .
When n = 2, such quadrics reduce to the conics from before.
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Some more notation

Notation:

Take a1, . . . , an ∈ F ∗.

Write 〈a1, . . . , an〉 for the quadratic form a1x2
1 + · · ·+ anx2

n .

Set 〈〈a1, . . . , an〉〉 := 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉.
Write Q(a1,...,an) for the (small Pfister) quadric defined by the
equation

〈〈a1, . . . , an−1〉〉 = 〈an〉.

Example

When n = 1, such quadrics are given by the equation y2 = f .
When n = 2, such quadrics reduce to the conics from before.
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Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements

Some quick (revisionist) history

Goal: study the kernel of the map kn(F )→ kn(F (Q(a1,...,an))).

Note: (a1, . . . , an) determines an element of kn(F ), which we call
the associated symbol; easy to show that (a1, . . . , an) is contained
in the kernel.

Example

n = 1, this was our basic example.

n = 2, we stated this above (Amitsur + · · · + Merkurjev).

n = 3, (Arason ’75 + Rost ’86/Merkurjev-Suslin ’91) proved
that the kernel is generated by the symbol.

n = 4, (Jacob-Rost ’89 + ...) proved that the kernel is
generated by the symbol.
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Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements

A consequence of the Milnor conjecture

Theorem (Orlov-Vishik-Voevodsky ’07)

The kernel of the map kn(F )→ kn(F (Q(a1,...,an))) is generated by
the symbol (a1, . . . , an).

Some key points in the proof.

“Topological” part: Voevodsky’s construction and study of
properties of Steenrod operations on an appropriately defined
cohomology theory for algebraic varieties

“Geometric” part: Rost’s study of small Pfister quadrics.
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Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements

Application to rationality problems I

Example (Non-rational conic bundles)

Artin-Mumford ’71, Colliot-Thélène-Ojanguren ’89; Take
L = C(x1, x2)

Take f , g1, g2 in L∗, and consider the conic Q(f ,g1g2).

For appropriate choice of f , g1 and g2, the symbol (f , g1) is a
non-zero element of kur

2 (L(Q(f ,g1g2))/C).

Recall kur
1 (L(Q(f ,g1g2))/C) = 0.
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Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements

Application to rationality problems II

Example (Non-rational quadric bundles I)

Colliot-Thélène-Ojanguren ’89; Take L = C(x1, x2, x3)

Take f1, f2, g1, g2 in L∗, and consider the quadric Q(f1,f2,g1g2).

For appropriate choice of f1, f2, g1 and g2, the symbol
(f1, f2, g1) is a non-zero element of kur

3 (L(Q(f1,f2,g1g2))/C).

Furthermore kur
i (L(Q(f1,f2,g1g2))/C) = 0 for i = 1, 2.

Example (Non-rational quadric bundles II)

Peyre ’93: generalized these constructions of unramified
elements and non-rational quadrics using kur

4 .

Aravind Asok (UCLA) Rational connectivity and A1-connectivity



Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements

Application to rationality problems II

Example (Non-rational quadric bundles I)

Colliot-Thélène-Ojanguren ’89; Take L = C(x1, x2, x3)

Take f1, f2, g1, g2 in L∗, and consider the quadric Q(f1,f2,g1g2).

For appropriate choice of f1, f2, g1 and g2, the symbol
(f1, f2, g1) is a non-zero element of kur

3 (L(Q(f1,f2,g1g2))/C).

Furthermore kur
i (L(Q(f1,f2,g1g2))/C) = 0 for i = 1, 2.

Example (Non-rational quadric bundles II)

Peyre ’93: generalized these constructions of unramified
elements and non-rational quadrics using kur

4 .

Aravind Asok (UCLA) Rational connectivity and A1-connectivity



Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements

Application to rationality problems II

Example (Non-rational quadric bundles I)

Colliot-Thélène-Ojanguren ’89; Take L = C(x1, x2, x3)

Take f1, f2, g1, g2 in L∗, and consider the quadric Q(f1,f2,g1g2).

For appropriate choice of f1, f2, g1 and g2, the symbol
(f1, f2, g1) is a non-zero element of kur

3 (L(Q(f1,f2,g1g2))/C).

Furthermore kur
i (L(Q(f1,f2,g1g2))/C) = 0 for i = 1, 2.

Example (Non-rational quadric bundles II)

Peyre ’93: generalized these constructions of unramified
elements and non-rational quadrics using kur

4 .

Aravind Asok (UCLA) Rational connectivity and A1-connectivity



Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements

Application to rationality problems II

Example (Non-rational quadric bundles I)

Colliot-Thélène-Ojanguren ’89; Take L = C(x1, x2, x3)

Take f1, f2, g1, g2 in L∗, and consider the quadric Q(f1,f2,g1g2).

For appropriate choice of f1, f2, g1 and g2, the symbol
(f1, f2, g1) is a non-zero element of kur

3 (L(Q(f1,f2,g1g2))/C).

Furthermore kur
i (L(Q(f1,f2,g1g2))/C) = 0 for i = 1, 2.

Example (Non-rational quadric bundles II)

Peyre ’93: generalized these constructions of unramified
elements and non-rational quadrics using kur

4 .

Aravind Asok (UCLA) Rational connectivity and A1-connectivity



Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements

Application to rationality problems II

Example (Non-rational quadric bundles I)

Colliot-Thélène-Ojanguren ’89; Take L = C(x1, x2, x3)

Take f1, f2, g1, g2 in L∗, and consider the quadric Q(f1,f2,g1g2).

For appropriate choice of f1, f2, g1 and g2, the symbol
(f1, f2, g1) is a non-zero element of kur

3 (L(Q(f1,f2,g1g2))/C).

Furthermore kur
i (L(Q(f1,f2,g1g2))/C) = 0 for i = 1, 2.

Example (Non-rational quadric bundles II)

Peyre ’93: generalized these constructions of unramified
elements and non-rational quadrics using kur

4 .

Aravind Asok (UCLA) Rational connectivity and A1-connectivity



Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements

Application to rationality problems II

Example (Non-rational quadric bundles I)

Colliot-Thélène-Ojanguren ’89; Take L = C(x1, x2, x3)

Take f1, f2, g1, g2 in L∗, and consider the quadric Q(f1,f2,g1g2).

For appropriate choice of f1, f2, g1 and g2, the symbol
(f1, f2, g1) is a non-zero element of kur

3 (L(Q(f1,f2,g1g2))/C).

Furthermore kur
i (L(Q(f1,f2,g1g2))/C) = 0 for i = 1, 2.

Example (Non-rational quadric bundles II)

Peyre ’93: generalized these constructions of unramified
elements and non-rational quadrics using kur

4 .

Aravind Asok (UCLA) Rational connectivity and A1-connectivity



Conventions, definitions and basic examples
An elementary example

A proposed generalization
The geometric/topological mechanism

The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements

Application to rationality problems III

Theorem (More non-rational quadric bundles)

Set L = C(x1, . . . , xn). For every integer n > 0, there exist
elements (f1, . . . , fn) in L∗ such that the quadric

Q(f1,...,fn)

is non-rational, and where non-rationality is detected by existence
of a non-trivial element of kur

n (L(Q(f1,...,fn))/C). Furthermore
kur
i (L(Q(f1,...,fn))/C) = 0 for 1 ≤ i < n.
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The problem revisited
Generalizing Step 1: defining higher invariants
Generalizing Step 2: constructing an exact sequence
Generalizing Step 3: constructing unramified elements
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What lessons have we learned?

All the quadric bundles in question are rationally connected.

As n increases, intuitively one imagines the examples we have
constructed as being “closer and closer” to rational varieties.

One might imagine heirarchies of “higher rational
connectivity” to make these notions precise (cf. A.J. de
Jong-J. Starr).

Concretely, as n increases, “some kind of mod 2 cohomology”
vanishes in higher and higher degrees.
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Connectedness in A1-homotopy theory

An analog of chain-connectedness in algebraic geometry:

Definition

A smooth variety X over a field F is A1-chain connected if for
every finitely generated, separable extension L/K , any two L-points
of X can be connected by a chain of copies of the affine line.

Example

All stably rational smooth proper varieties are A1-chain connected.

More generally, there is a notion of πA1

0 that underlies this notion
of connectedness (defined using the A1-homotopy category). For
smooth proper X : think of chain-connected components.
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Vanishing of “unramified invariants”

Any time one has an (abelian) group-valued functor on field
extensions,

together with residue maps associated with discrete
valuations having reasonable functorial properties, one can define a
notion of “unramified invariant.” (cf. Rost, Morel, etc...)

Theorem

If X/F is A1-chain connected, then all “unramified invariants” of
X are “trivial” (i.e., isomorphic to the value of the unramified
invariant on the base-field).

Corollary

If X/F has a “non-trivial” unramified invariant, then F is not
stably rational.
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Homological interpretation

Basic principle: πA1

0 (X ) controls all unramified invariants of X .

Topological fact: if A is a discrete abelian group, and M is a
manifold, then continuous maps M → A are in bijection with
group homomorphisms H0(M)→ A.

Analogous to πA1

0 , one can define a notion of HA1

0 , which is a
universal unramified invariant.

Let A be an unramified invariant (thought of as a functor on
field extensions).

Concrete incarnation (Morel): Unramified invariants on X
correspond bijectively with morphisms of functors
HA1

0 (X )→ A.
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The upshot

Rost’s study of the small Pfister quadrics (i.e., construction of
the Rost motive) should allow one to understand the
homomorphisms

HA1

0 (Q(f1,...,fn))→ kur
n .

For the rationality problem: Completely understand HA1

0 (X )
(even in the case of conics or small Pfister quadrics, this is
open as far as I know).

There are many natural generalizations: e.g., so-called norm
varieties can be used construct other examples of “bundles”
that are rationally connected yet not A1-connected.
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Thank you!

See http://www.math.ucla.edu/~asok for more information
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