Counting vector bundles

Aravind Asok (USC)

March 9, 2017

Vector bundles and projective modules

Throughout the talk: R is a commutative (unital) ring.

Throughout the talk: R is a commutative (unital) ring.

Definition

An R-module P is called projective if it is a direct summand of a free R-module.

Throughout the talk: R is a commutative (unital) ring.

Definition

An R-module P is called projective if it is a direct summand of a free R-module.

Equivalently, P is projective if:

Throughout the talk: R is a commutative (unital) ring.

Definition

An R-module P is called projective if it is a direct summand of a free R-module.

Equivalently, P is projective if:

- (lifting property) given an R-module map $f: \underset{\sim}{P} \rightarrow M$, and a surjective R-module map $N \rightarrow M$, we may always find $\tilde{f}: P \rightarrow N$.

Throughout the talk: R is a commutative (unital) ring.

Definition

An R-module P is called projective if it is a direct summand of a free R-module.

Equivalently, P is projective if:

- (lifting property) given an R-module map $f: \underset{\sim}{P} \rightarrow M$, and a surjective R-module map $N \rightarrow M$, we may always find $\tilde{f}: P \rightarrow N$.
- (linear algebraic) if P is also finitely generated, then there exist an integer n, and $\epsilon \in \operatorname{End}_{R}\left(R^{\oplus n}\right)$ such that $\epsilon^{2}=\epsilon$ and $P=\epsilon R^{\oplus n}$.

From now on, all projective modules will be assumed finitely generated (f.g.)

Projective modules behave like vector bundles:

Projective modules behave like vector bundles:

- f.g. projective modules are "locally free" modules
- Algebraically: P a f.g. projective R-module; we can find elements $f_{1}, \ldots, f_{r} \in R$ such that f_{i} generate the unit ideal and such that $P\left[\frac{1}{f_{i}}\right]$ is a free $R\left[\frac{1}{f_{i}}\right]$-module of finite rank

Projective modules behave like vector bundles:

- f.g. projective modules are "locally free" modules
- Algebraically: P a f.g. projective R-module; we can find elements $f_{1}, \ldots, f_{r} \in R$ such that f_{i} generate the unit ideal and such that $P\left[\frac{1}{f_{i}}\right]$ is a free $R\left[\frac{1}{f_{i}}\right]$-module of finite rank
- Geometrically: we associate with R its prime spectrum $\operatorname{Spec} R$, and $\operatorname{Spec} R\left[\frac{1}{f_{i}}\right]$ forms an open cover of $\operatorname{Spec} R$ on which the bundle corresponding to P may be trivialized

Projective modules behave like vector bundles:

- f.g. projective modules are "locally free" modules
- Algebraically: P a f.g. projective R-module; we can find elements $f_{1}, \ldots, f_{r} \in R$ such that f_{i} generate the unit ideal and such that $P\left[\frac{1}{f_{i}}\right]$ is a free $R\left[\frac{1}{f_{i}}\right]$-module of finite rank
- Geometrically: we associate with R its prime spectrum $\operatorname{Spec} R$, and $\operatorname{Spec} R\left[\frac{1}{f_{i}}\right]$ forms an open cover of $\operatorname{Spec} R$ on which the bundle corresponding to P may be trivialized
- f.g. projective modules have a rank
if $\operatorname{Spec} R$ is connected, then this is just an integer

Serre-Swan correspondence

$\{$ finite rank v.b. over $M\} \longleftrightarrow\{$ f.g. projective $C(M)-$ modules $\} ;$

- M a (say) compact manifold;
- $C(M)=$ ring of continuous real-valued functions on M

Serre-Swan correspondence

$\{$ finite rank v.b. over $M\} \longleftrightarrow\{$ f.g. projective $C(M)-$ modules $\} ;$

- M a (say) compact manifold;
- $C(M)=$ ring of continuous real-valued functions on M

Analogously:

Serre's dictionary

If R is a ring, then
$\{$ finite rank v.b. over $\operatorname{Spec} R\} \longleftrightarrow\{$ f.g. projective $R-$ modules $\} ;$

Serre-Swan correspondence

$\{$ finite rank v.b. over $M\} \longleftrightarrow\{$ f.g. projective $C(M)-$ modules $\} ;$

- M a (say) compact manifold;
- $C(M)=$ ring of continuous real-valued functions on M

Analogously:

Serre's dictionary

If R is a ring, then

$$
\{\text { finite rank v.b. over } \operatorname{Spec} R\} \longleftrightarrow\{\text { f.g. projective } R-\text { modules }\} ;
$$

Using this dictionary, one transplants intuition from geometry to algebra

Theorem (Serre's splitting theorem '58)

Suppose R is a Noetherian commutative ring of Krull dimension d. If P is a projective R-module of rank $r>d$, then there exists a projective R-module Q of rank d and an isomorphism $P \cong Q \oplus R^{\oplus r-d}$.

Theorem (Serre's splitting theorem '58)

Suppose R is a Noetherian commutative ring of Krull dimension d. If P is a projective R-module of rank $r>d$, then there exists a projective R-module Q of rank d and an isomorphism $P \cong Q \oplus R^{\oplus r-d}$.

Example

If K is a number field, and \mathcal{O}_{K} is the ring of integers in K, then there are at most finitely many projective \mathcal{O}_{K}-modules of a given rank.

Theorem (Serre's splitting theorem '58)

Suppose R is a Noetherian commutative ring of Krull dimension d. If P is a projective R-module of rank $r>d$, then there exists a projective R-module Q of rank d and an isomorphism $P \cong Q \oplus R^{\oplus r-d}$.

Example

If K is a number field, and \mathcal{O}_{K} is the ring of integers in K, then there are at most finitely many projective \mathcal{O}_{K}-modules of a given rank.

- \mathcal{O}_{K} is a Dedekind domain (in particular, it has Krull dimension 1)

Theorem (Serre's splitting theorem '58)

Suppose R is a Noetherian commutative ring of Krull dimension d. If P is a projective R-module of rank $r>d$, then there exists a projective R-module Q of rank d and an isomorphism $P \cong Q \oplus R^{\oplus r-d}$.

Example

If K is a number field, and \mathcal{O}_{K} is the ring of integers in K, then there are at most finitely many projective \mathcal{O}_{K}-modules of a given rank.

- \mathcal{O}_{K} is a Dedekind domain (in particular, it has Krull dimension 1)
- By Serre's theorem, a f.g. projective \mathcal{O}_{K}-module of rank r can be written $L \oplus \mathcal{O}_{K}^{r-1}$ where L has rank 1

Theorem (Serre's splitting theorem '58)

Suppose R is a Noetherian commutative ring of Krull dimension d. If P is a projective R-module of rank $r>d$, then there exists a projective R-module Q of rank d and an isomorphism $P \cong Q \oplus R^{\oplus r-d}$.

Example

If K is a number field, and \mathcal{O}_{K} is the ring of integers in K, then there are at most finitely many projective \mathcal{O}_{K}-modules of a given rank.

- \mathcal{O}_{K} is a Dedekind domain (in particular, it has Krull dimension 1)
- By Serre's theorem, a f.g. projective \mathcal{O}_{K}-module of rank r can be written $L \oplus \mathcal{O}_{K}^{r-1}$ where L has rank 1
- Rank 1 projective modules form an abelian group (the Picard group) under tensor product

Theorem (Serre's splitting theorem '58)

Suppose R is a Noetherian commutative ring of Krull dimension d. If P is a projective R-module of rank $r>d$, then there exists a projective R-module Q of rank d and an isomorphism $P \cong Q \oplus R^{\oplus r-d}$.

Example

If K is a number field, and \mathcal{O}_{K} is the ring of integers in K, then there are at most finitely many projective \mathcal{O}_{K}-modules of a given rank.

- \mathcal{O}_{K} is a Dedekind domain (in particular, it has Krull dimension 1)
- By Serre's theorem, a f.g. projective \mathcal{O}_{K}-module of rank r can be written $L \oplus \mathcal{O}_{K}^{r-1}$ where L has rank 1
- Rank 1 projective modules form an abelian group (the Picard group) under tensor product
- Minkowski's theorem implies that the Picard group is finite

The problem of describing vector bundles is really homotopy-theoretic:

The problem of describing vector bundles is really homotopy-theoretic:

- $\mathscr{V}_{r}(M)$ - set of isomorphism classes of rank r (real) vector bundles on M

The problem of describing vector bundles is really homotopy-theoretic:

- $\mathscr{V}_{r}(M)$ - set of isomorphism classes of rank r (real) vector bundles on M
- $\mathscr{V}_{r}(M) \rightarrow \mathscr{V}_{r}(M \times I)$ is a bijection (homotopy invariance)

The problem of describing vector bundles is really homotopy-theoretic:

- $\mathscr{V}_{r}(M)$ - set of isomorphism classes of rank r (real) vector bundles on M
- $\mathscr{V}_{r}(M) \rightarrow \mathscr{V}_{r}(M \times I)$ is a bijection (homotopy invariance)
- $G r_{r}$ - Grassmannian of r-dimensional subspaces of an infinite dimensional real vector space

The problem of describing vector bundles is really homotopy-theoretic:

- $\mathscr{V}_{r}(M)$ - set of isomorphism classes of rank r (real) vector bundles on M
- $\mathscr{V}_{r}(M) \rightarrow \mathscr{V}_{r}(M \times I)$ is a bijection (homotopy invariance)
- $G r_{r}$ - Grassmannian of r-dimensional subspaces of an infinite dimensional real vector space
- $G r_{r}$ carries a rank r "tautological" vector bundle

The problem of describing vector bundles is really homotopy-theoretic:

- $\mathscr{V}_{r}(M)$ - set of isomorphism classes of rank r (real) vector bundles on M
- $\mathscr{V}_{r}(M) \rightarrow \mathscr{V}_{r}(M \times I)$ is a bijection (homotopy invariance)
- $G r_{r}$ - Grassmannian of r-dimensional subspaces of an infinite dimensional real vector space
- $G r_{r}$ carries a rank r "tautological" vector bundle
- Continuous maps $M \rightarrow G r_{r}$ yield rank r vector bundle on M by pullback; homotopic maps yield isomorphic bundles

The problem of describing vector bundles is really homotopy-theoretic:

- $\mathscr{V}_{r}(M)$ - set of isomorphism classes of rank r (real) vector bundles on M
- $\mathscr{V}_{r}(M) \rightarrow \mathscr{V}_{r}(M \times I)$ is a bijection (homotopy invariance)
- $G r_{r}$ - Grassmannian of r-dimensional subspaces of an infinite dimensional real vector space
- $G r_{r}$ carries a rank r "tautological" vector bundle
- Continuous maps $M \rightarrow G r_{r}$ yield rank r vector bundle on M by pullback; homotopic maps yield isomorphic bundles

Theorem (Pontryagin-Steenrod)

Pulling back the tautological bundle determines a bijection:

$$
\left[M, G r_{r}\right] \xrightarrow{\sim} \mathscr{V}_{r}(M) .
$$

The problem of describing vector bundles is really homotopy-theoretic:

- $\mathscr{V}_{r}(M)$ - set of isomorphism classes of rank r (real) vector bundles on M
- $\mathscr{V}_{r}(M) \rightarrow \mathscr{V}_{r}(M \times I)$ is a bijection (homotopy invariance)
- $G r_{r}$ - Grassmannian of r-dimensional subspaces of an infinite dimensional real vector space
- $G r_{r}$ carries a rank r "tautological" vector bundle
- Continuous maps $M \rightarrow G r_{r}$ yield rank r vector bundle on M by pullback; homotopic maps yield isomorphic bundles

Theorem (Pontryagin-Steenrod)

Pulling back the tautological bundle determines a bijection:

$$
\left[M, G r_{r}\right] \xrightarrow{\sim} \mathscr{V}_{r}(M) .
$$

- Real vector bundles on any contractible manifold (e.g., \mathbb{R}^{n}) are trivial

Question (Serre '55)

If k is a field, is every f.g. projective $k\left[x_{1}, \ldots, x_{n}\right]$-module free?

Question (Serre '55)

If k is a field, is every f.g. projective $k\left[x_{1}, \ldots, x_{n}\right]$-module free?

- $n=1$: yes, structure theorem for f.g. modules over a PID

Question (Serre '55)

If k is a field, is every f.g. projective $k\left[x_{1}, \ldots, x_{n}\right]$-module free?

- $n=1$: yes, structure theorem for f.g. modules over a PID
- $n=2$: yes, Seshadri '58

Question (Serre '55)

If k is a field, is every f.g. projective $k\left[x_{1}, \ldots, x_{n}\right]$-module free?

- $n=1$: yes, structure theorem for f.g. modules over a PID
- $n=2$: yes, Seshadri '58
- yes if $r>n$, Bass '64

Question (Serre '55)

If k is a field, is every f.g. projective $k\left[x_{1}, \ldots, x_{n}\right]$-module free?

- $n=1$: yes, structure theorem for f.g. modules over a PID
- $n=2$: yes, Seshadri '58
- yes if $r>n$, Bass '64
- $n=3$: yes if k algebraically closed, Murthy-Towber ' 74

Question (Serre '55)

If k is a field, is every f.g. projective $k\left[x_{1}, \ldots, x_{n}\right]$-module free?

- $n=1$: yes, structure theorem for f.g. modules over a PID
- $n=2$: yes, Seshadri '58
- yes if $r>n$, Bass '64
- $n=3$: yes if k algebraically closed, Murthy-Towber ' 74
- $n=3,4,5$: yes, Suslin-Vaserstein '73/'74

Question (Serre '55)

If k is a field, is every f.g. projective $k\left[x_{1}, \ldots, x_{n}\right]$-module free?

- $n=1$: yes, structure theorem for f.g. modules over a PID
- $n=2$: yes, Seshadri '58
- yes if $r>n$, Bass '64
- $n=3$: yes if k algebraically closed, Murthy-Towber ' 74
- $n=3,4,5$: yes, Suslin-Vaserstein '73/'74

Theorem (Quillen-Suslin '76)

If R is a PID, then every f.g. projective $R\left[x_{1}, \ldots, x_{n}\right]$-module is free.

- $\mathscr{V}_{r}(\operatorname{Spec} R)=\{$ isomorphism classes of rank r v.b. on $\operatorname{Spec} R\}$
- $\mathscr{V}_{r}(\operatorname{Spec} R)=\{$ isomorphism classes of rank r v.b. on $\operatorname{Spec} R\}$

Question

If R is a ring, is

$$
\mathscr{V}_{r}(\operatorname{Spec} R) \longrightarrow \mathscr{V}_{r}(\operatorname{Spec} R[t])
$$

a bijection?

- $\mathscr{V}_{r}(\operatorname{Spec} R)=\{$ isomorphism classes of rank r v.b. on $\operatorname{Spec} R\}$

Question

If R is a ring, is

$$
\mathscr{V}_{r}(\operatorname{Spec} R) \longrightarrow \mathscr{V}_{r}(\operatorname{Spec} R[t])
$$

a bijection?

- False for $r=1$ without additional hypotheses on R
(e.g., $R=k[x, y] /\left(y^{2}-x^{3}\right)$)
- $\mathscr{V}_{r}(\operatorname{Spec} R)=\{$ isomorphism classes of rank r v.b. on $\operatorname{Spec} R\}$

Question

If R is a ring, is

$$
\mathscr{V}_{r}(\operatorname{Spec} R) \longrightarrow \mathscr{V}_{r}(\operatorname{Spec} R[t])
$$

a bijection?

- False for $r=1$ without additional hypotheses on R
(e.g., $R=k[x, y] /\left(y^{2}-x^{3}\right)$)
- We will assume R is regular (an analog of smoothness)

Conjecture (Bass-Quillen '72)

If R is a regular ring of finite Krull dimension, then for any $r \geq 0$

$$
\mathscr{V}_{r}(\operatorname{Spec} R) \longrightarrow \mathscr{V}_{r}(\operatorname{Spec} R[t])
$$

is a bijection.

Conjecture (Bass-Quillen '72)

If R is a regular ring of finite Krull dimension, then for any $r \geq 0$

$$
\mathscr{V}_{r}(\operatorname{Spec} R) \longrightarrow \mathscr{V}_{r}(\operatorname{Spec} R[t])
$$

is a bijection.

- Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for R a polynomial ring over a Dedekind domain.

Conjecture (Bass-Quillen '72)

If R is a regular ring of finite Krull dimension, then for any $r \geq 0$

$$
\mathscr{V}_{r}(\operatorname{Spec} R) \longrightarrow \mathscr{V}_{r}(\operatorname{Spec} R[t])
$$

is a bijection.

- Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for R a polynomial ring over a Dedekind domain.

Theorem (Lindel '81)

The Bass-Quillen conjecture is true if R contains a field.

Conjecture (Bass-Quillen '72)

If R is a regular ring of finite Krull dimension, then for any $r \geq 0$

$$
\mathscr{V}_{r}(\operatorname{Spec} R) \longrightarrow \mathscr{V}_{r}(\operatorname{Spec} R[t])
$$

is a bijection.

- Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for R a polynomial ring over a Dedekind domain.

Theorem (Lindel '81)

The Bass-Quillen conjecture is true if R contains a field.

- Popescu ' 89 extended the Lindel's theorem to some arithmetic situations (e.g., R is regular over a Dedekind domain with perfect residue fields)

Conjecture (Bass-Quillen '72)

If R is a regular ring of finite Krull dimension, then for any $r \geq 0$

$$
\mathscr{V}_{r}(\operatorname{Spec} R) \longrightarrow \mathscr{V}_{r}(\operatorname{Spec} R[t])
$$

is a bijection.

- Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for R a polynomial ring over a Dedekind domain.

Theorem (Lindel '81)

The Bass-Quillen conjecture is true if R contains a field.

- Popescu ' 89 extended the Lindel's theorem to some arithmetic situations (e.g., R is regular over a Dedekind domain with perfect residue fields)
- Still open in completely generality!

Vector bundles and motivic homotopy theory

- $G r_{r}$ is an (infinite-dimensional) algebraic variety
- $G r_{r}$ is an (infinite-dimensional) algebraic variety
- A map $\operatorname{Spec} R \rightarrow G r_{r}$ corresponds to a vector bundle on R and a collection of generating sections
- $G r_{r}$ is an (infinite-dimensional) algebraic variety
- A map $\operatorname{Spec} R \rightarrow G r_{r}$ corresponds to a vector bundle on R and a collection of generating sections
- We may speak of "naive" homotopies between such maps, i.e., two maps $f, g: \operatorname{Spec} R \rightarrow G r_{r}$ are naively homotopic if there exists a map $H: \operatorname{Spec} R[t] \rightarrow G r_{r}$ with $H(0)=f$ and $H(1)=g$.
- $G r_{r}$ is an (infinite-dimensional) algebraic variety
- A map $\operatorname{Spec} R \rightarrow G r_{r}$ corresponds to a vector bundle on R and a collection of generating sections
- We may speak of "naive" homotopies between such maps, i.e., two maps $f, g: \operatorname{Spec} R \rightarrow G r_{r}$ are naively homotopic if there exists a map $H: \operatorname{Spec} R[t] \rightarrow G r_{r}$ with $H(0)=f$ and $H(1)=g$.

Theorem

If k is a field, and R is a regular k-algebra, then

$$
\left[\operatorname{Spec} R, G r_{r}\right]_{\text {naive }} \xrightarrow{\sim} \mathscr{V}_{r}(\operatorname{Spec} R) ;
$$

- $G r_{r}$ is an (infinite-dimensional) algebraic variety
- A map $\operatorname{Spec} R \rightarrow G r_{r}$ corresponds to a vector bundle on R and a collection of generating sections
- We may speak of "naive" homotopies between such maps, i.e., two maps $f, g: \operatorname{Spec} R \rightarrow G r_{r}$ are naively homotopic if there exists a map $H: \operatorname{Spec} R[t] \rightarrow G r_{r}$ with $H(0)=f$ and $H(1)=g$.

Theorem

If k is a field, and R is a regular k-algebra, then

$$
\left[\operatorname{Spec} R, G r_{r}\right]_{\text {naive }} \xrightarrow{\sim} \mathscr{V}_{r}(\operatorname{Spec} R) ;
$$

Unfortunately, naive homotopy is not a "good" notion (e.g., it is not an equivalence relation).

- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_{k}, the category of smooth k-varieties
- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_{k}, the category of smooth k-varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_{k}, the category of smooth k-varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- Spc_{k} - "spaces" an enlargement of Sm_{k} where we can perform all the constructions we will want later (simplicial presheaves on Sm_{k})
- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_{k}, the category of smooth k-varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- Spc_{k} - "spaces" an enlargement of Sm_{k} where we can perform all the constructions we will want later (simplicial presheaves on Sm_{k})
- We now force two kinds of maps to be "weak-equivalences":
- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_{k}, the category of smooth k-varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- Spc_{k} - "spaces" an enlargement of Sm_{k} where we can perform all the constructions we will want later (simplicial presheaves on Sm_{k})
- We now force two kinds of maps to be "weak-equivalences":
- Nisnevich local weak equivalences: roughly, if X can be covered by $\left\{U_{i}\right\}$, then we may build a Cech object $C(u) \rightarrow X$, and we force $C(u) \rightarrow X$ to be an isomorphism
- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_{k}, the category of smooth k-varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- Spc_{k} - "spaces" an enlargement of Sm_{k} where we can perform all the constructions we will want later (simplicial presheaves on Sm_{k})
- We now force two kinds of maps to be "weak-equivalences":
- Nisnevich local weak equivalences: roughly, if X can be covered by $\left\{U_{i}\right\}$, then we may build a Cech object $C(u) \rightarrow X$, and we force $C(u) \rightarrow X$ to be an isomorphism
- \mathbb{A}^{1}-weak equivalences: $X \times \mathbb{A}^{1} \rightarrow X$
- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_{k}, the category of smooth k-varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- Spc_{k} - "spaces" an enlargement of Sm_{k} where we can perform all the constructions we will want later (simplicial presheaves on Sm_{k})
- We now force two kinds of maps to be "weak-equivalences":
- Nisnevich local weak equivalences: roughly, if X can be covered by $\left\{U_{i}\right\}$, then we may build a Cech object $C(u) \rightarrow X$, and we force $C(u) \rightarrow X$ to be an isomorphism
- \mathbb{A}^{1}-weak equivalences: $X \times \mathbb{A}^{1} \rightarrow X$
- $\mathscr{H}_{\text {alg }}(k)$ for the category obtained by inverting Nisnevich local weak equivalences
- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_{k}, the category of smooth k-varieties
- Sm_{k} is not "big enough" to do homotopy theory (e.g., $G r_{r}$ is not in this category, cannot form all quotients, etc.)
- Spc_{k} - "spaces" an enlargement of Sm_{k} where we can perform all the constructions we will want later (simplicial presheaves on Sm_{k})
- We now force two kinds of maps to be "weak-equivalences":
- Nisnevich local weak equivalences: roughly, if X can be covered by $\left\{U_{i}\right\}$, then we may build a Cech object $C(u) \rightarrow X$, and we force $C(u) \rightarrow X$ to be an isomorphism
- \mathbb{A}^{1}-weak equivalences: $X \times \mathbb{A}^{1} \rightarrow X$
- $\mathscr{H}_{\text {alg }}(k)$ for the category obtained by inverting Nisnevich local weak equivalences and
- $\mathscr{H}_{\text {mot }}(k)$ for the category obtained by inverting both Nisnevich local and \mathbb{A}^{1}-weak equivalences (this is the Morel-Voevodsky \mathbb{A}^{1}-homotopy category)

Computing maps in $\mathscr{H}_{\text {alg }}(k)$ or $\mathscr{H}_{\text {mot }}(k)$ is hard (not just a quotient of morphisms by an equivalence relation)

Computing maps in $\mathscr{H}_{\text {alg }}(k)$ or $\mathscr{H}_{\text {mot }}(k)$ is hard (not just a quotient of morphisms by an equivalence relation)

Example (Non-abelian sheaf cohomology)

- Rank r vector bundles are the same thing as principal bundles under the general linear group $G L_{r}$;

Computing maps in $\mathscr{H}_{\text {alg }}(k)$ or $\mathscr{H}_{\text {mot }}(k)$ is hard (not just a quotient of morphisms by an equivalence relation)

Example (Non-abelian sheaf cohomology)

- Rank r vector bundles are the same thing as principal bundles under the general linear group $G L_{r}$;
- If X is a smooth scheme, then the sheaf cohomology pointed set $H^{1}\left(X, G L_{r}\right)$ classifies $G L_{r}$-torsors (can be computed using Cech cohomology)

Computing maps in $\mathscr{H}_{\text {alg }}(k)$ or $\mathscr{H}_{\text {mot }}(k)$ is hard (not just a quotient of morphisms by an equivalence relation)

Example (Non-abelian sheaf cohomology)

- Rank r vector bundles are the same thing as principal bundles under the general linear group $G L_{r}$;
- If X is a smooth scheme, then the sheaf cohomology pointed set $H^{1}\left(X, G L_{r}\right)$ classifies $G L_{r}$-torsors (can be computed using Cech cohomology)
- We may define a space $B G L_{r}$

$$
\cdots \equiv \xi G L_{r} \times G L_{r} \Longrightarrow G L_{r} \Longrightarrow *
$$

Computing maps in $\mathscr{H}_{\text {alg }}(k)$ or $\mathscr{H}_{\text {mot }}(k)$ is hard (not just a quotient of morphisms by an equivalence relation)

Example (Non-abelian sheaf cohomology)

- Rank r vector bundles are the same thing as principal bundles under the general linear group $G L_{r}$;
- If X is a smooth scheme, then the sheaf cohomology pointed set $H^{1}\left(X, G L_{r}\right)$ classifies $G L_{r}$-torsors (can be computed using Cech cohomology)
- We may define a space $B G L_{r}$

$$
\cdots \equiv \xi G L_{r} \times G L_{r} \Longrightarrow G L_{r} \Longrightarrow *
$$

- Then, for any smooth scheme $X, \operatorname{Hom}_{\mathscr{H}_{\text {alg }}(k)}\left(X, B G L_{r}\right) \cong \mathscr{V}_{r}(X)$

Computing maps in $\mathscr{H}_{\text {alg }}(k)$ or $\mathscr{H}_{\text {mot }}(k)$ is hard (not just a quotient of morphisms by an equivalence relation)

Example (Non-abelian sheaf cohomology)

- Rank r vector bundles are the same thing as principal bundles under the general linear group $G L_{r}$;
- If X is a smooth scheme, then the sheaf cohomology pointed set $H^{1}\left(X, G L_{r}\right)$ classifies $G L_{r}$-torsors (can be computed using Cech cohomology)
- We may define a space $B G L_{r}$

$$
\cdots \equiv \xi G L_{r} \times G L_{r} \Longrightarrow G L_{r} \Longrightarrow *
$$

- Then, for any smooth scheme $X, \operatorname{Hom}_{\mathscr{H}_{\text {alg }}(k)}\left(X, B G L_{r}\right) \cong \mathscr{V}_{r}(X)$

Note: $B G L_{r}$ and $G r_{r}$ are not isomorphic in $\mathscr{H}_{\text {alg }}(k)$!

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences

Example

If $\pi: Y \rightarrow X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^{1}-weak equivalence (e.g., if π is a vector bundle):

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences

Example

If $\pi: Y \rightarrow X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^{1}-weak equivalence (e.g., if π is a vector bundle):

- $S L_{2} \rightarrow \mathbb{A}^{2} \backslash 0$ (project a matrix onto its first column) is an \mathbb{A}^{1}-weak equivalence;

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences

Example

If $\pi: Y \rightarrow X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^{1}-weak equivalence (e.g., if π is a vector bundle):

- $S L_{2} \rightarrow \mathbb{A}^{2} \backslash 0$ (project a matrix onto its first column) is an \mathbb{A}^{1}-weak equivalence;
- the complement of the incidence divisor in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is a smooth affine quadric Q_{2} that is \mathbb{A}^{1}-weakly equivalent to \mathbb{P}^{1}

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences

Example

If $\pi: Y \rightarrow X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^{1}-weak equivalence (e.g., if π is a vector bundle):

- $S L_{2} \rightarrow \mathbb{A}^{2} \backslash 0$ (project a matrix onto its first column) is an \mathbb{A}^{1}-weak equivalence;
- the complement of the incidence divisor in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is a smooth affine quadric Q_{2} that is \mathbb{A}^{1}-weakly equivalent to \mathbb{P}^{1}

Example

- $\mathbb{A}^{\infty} \backslash 0$ is \mathbb{A}^{1}-contractible: the "shift map" is naively homotopic to the identity

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences

Example

If $\pi: Y \rightarrow X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^{1}-weak equivalence (e.g., if π is a vector bundle):

- $S L_{2} \rightarrow \mathbb{A}^{2} \backslash 0$ (project a matrix onto its first column) is an \mathbb{A}^{1}-weak equivalence;
- the complement of the incidence divisor in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is a smooth affine quadric Q_{2} that is \mathbb{A}^{1}-weakly equivalent to \mathbb{P}^{1}

Example

- $\mathbb{A}^{\infty} \backslash 0$ is \mathbb{A}^{1}-contractible: the "shift map" is naively homotopic to the identity
- $G r_{1}=\mathbb{P}^{\infty}=\mathbb{A}^{\infty} \backslash 0 / G L_{1} \rightarrow B G L_{1}$ is an \mathbb{A}^{1}-weak equivalence

Isomorphisms in $\mathscr{H}_{\text {mot }}(k)$ are called \mathbb{A}^{1}-weak equivalences

Example

If $\pi: Y \rightarrow X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^{1}-weak equivalence (e.g., if π is a vector bundle):

- $S L_{2} \rightarrow \mathbb{A}^{2} \backslash 0$ (project a matrix onto its first column) is an \mathbb{A}^{1}-weak equivalence;
- the complement of the incidence divisor in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is a smooth affine quadric Q_{2} that is \mathbb{A}^{1}-weakly equivalent to \mathbb{P}^{1}

Example

- $\mathbb{A}^{\infty} \backslash 0$ is \mathbb{A}^{1}-contractible: the "shift map" is naively homotopic to the identity
- $G r_{1}=\mathbb{P}^{\infty}=\mathbb{A}^{\infty} \backslash 0 / G L_{1} \rightarrow B G L_{1}$ is an \mathbb{A}^{1}-weak equivalence
- More generally, $G r_{n} \rightarrow B G L_{n}$ corresponding to the tautological vector bundle is an \mathbb{A}^{1}-weak equivalence

If k is regular, one may show $\operatorname{Hom}_{\mathscr{H}_{\text {mot }}(k)}\left(X, B G L_{1}\right)=\operatorname{Pic}(X)$ for any smooth k-scheme X.

If k is regular, one may show $\operatorname{Hom}_{\mathscr{H}_{\text {mot }}(k)}\left(X, B G L_{1}\right)=\operatorname{Pic}(X)$ for any smooth k-scheme X. Unfortunately, this fails for $B G L_{r}$ with $r \geq 2$.

If k is regular, one may show $\operatorname{Hom}_{\mathscr{H}_{\text {mot }}(k)}\left(X, B G L_{1}\right)=\operatorname{Pic}(X)$ for any smooth k-scheme X. Unfortunately, this fails for $B G L_{r}$ with $r \geq 2$.

Example (A., B. Doran '08)

- Set $Q_{4}=\operatorname{Spec} k\left[x_{1}, x_{2}, x_{3}, x_{4}, z\right] /\left\langle x_{1} x_{2}-x_{3} x_{4}=z(z+1)\right\rangle$

If k is regular, one may show $\operatorname{Hom}_{\mathscr{H}_{\text {mot }}(k)}\left(X, B G L_{1}\right)=\operatorname{Pic}(X)$ for any smooth k-scheme X. Unfortunately, this fails for $B G L_{r}$ with $r \geq 2$.

Example (A., B. Doran '08)

- Set $Q_{4}=\operatorname{Spec} k\left[x_{1}, x_{2}, x_{3}, x_{4}, z\right] /\left\langle x_{1} x_{2}-x_{3} x_{4}=z(z+1)\right\rangle$
- $E_{2} \subset Q_{4}$ defined by $x_{1}=x_{3}=z+1=0$ is isomorphic to \mathbb{A}^{2}

If k is regular, one may show $\operatorname{Hom}_{\mathscr{H}_{\text {mot }}(k)}\left(X, B G L_{1}\right)=\operatorname{Pic}(X)$ for any smooth k-scheme X. Unfortunately, this fails for $B G L_{r}$ with $r \geq 2$.

Example (A., B. Doran '08)

- Set $Q_{4}=\operatorname{Spec} k\left[x_{1}, x_{2}, x_{3}, x_{4}, z\right] /\left\langle x_{1} x_{2}-x_{3} x_{4}=z(z+1)\right\rangle$
- $E_{2} \subset Q_{4}$ defined by $x_{1}=x_{3}=z+1=0$ is isomorphic to \mathbb{A}^{2}
- $X_{4}=Q_{4} \backslash E_{2}$ is actually \mathbb{A}^{1}-contractible: there is an explicit morphism $\mathbb{A}^{5} \rightarrow X_{4}$ that is Zariski locally trivial with fibers \mathbb{A}^{1}

If k is regular, one may show $\operatorname{Hom}_{\mathscr{H}_{\text {mot }}(k)}\left(X, B G L_{1}\right)=\operatorname{Pic}(X)$ for any smooth k-scheme X. Unfortunately, this fails for $B G L_{r}$ with $r \geq 2$.

Example (A., B. Doran '08)

- Set $Q_{4}=\operatorname{Spec} k\left[x_{1}, x_{2}, x_{3}, x_{4}, z\right] /\left\langle x_{1} x_{2}-x_{3} x_{4}=z(z+1)\right\rangle$
- $E_{2} \subset Q_{4}$ defined by $x_{1}=x_{3}=z+1=0$ is isomorphic to \mathbb{A}^{2}
- $X_{4}=Q_{4} \backslash E_{2}$ is actually \mathbb{A}^{1}-contractible: there is an explicit morphism $\mathbb{A}^{5} \rightarrow X_{4}$ that is Zariski locally trivial with fibers \mathbb{A}^{1}
- Q_{4} carries an explicit non-trivial rank 2 bundle (the Hopf bundle);

If k is regular, one may show $\operatorname{Hom}_{\mathscr{H}_{\text {mot }}(k)}\left(X, B G L_{1}\right)=\operatorname{Pic}(X)$ for any smooth k-scheme X. Unfortunately, this fails for $B G L_{r}$ with $r \geq 2$.

Example (A., B. Doran '08)

- Set $Q_{4}=\operatorname{Spec} k\left[x_{1}, x_{2}, x_{3}, x_{4}, z\right] /\left\langle x_{1} x_{2}-x_{3} x_{4}=z(z+1)\right\rangle$
- $E_{2} \subset Q_{4}$ defined by $x_{1}=x_{3}=z+1=0$ is isomorphic to \mathbb{A}^{2}
- $X_{4}=Q_{4} \backslash E_{2}$ is actually \mathbb{A}^{1}-contractible: there is an explicit morphism $\mathbb{A}^{5} \rightarrow X_{4}$ that is Zariski locally trivial with fibers \mathbb{A}^{1}
- Q_{4} carries an explicit non-trivial rank 2 bundle (the Hopf bundle);
- this bundle restricts non-trivially to X_{4}, i.e., \mathbb{A}^{1}-contractible varieties may carry non-trivial vector bundles!

Nevertheless:

Theorem

If k is a field or \mathbb{Z}, then for any smooth affine k-scheme $X=\operatorname{Spec} R$,
$\left[\operatorname{Spec} R, G r_{r}\right]_{\text {naive }}=\left[\operatorname{Spec} R, G r_{r}\right]_{\mathbb{A}^{1}} \xrightarrow{\sim} \mathscr{V}_{r}(\operatorname{Spec} R)$.

Nevertheless:

Theorem

If k is a field or \mathbb{Z}, then for any smooth affine k-scheme $X=\operatorname{Spec} R$,

$$
\left[\operatorname{Spec} R, G r_{r}\right]_{\text {naive }}=\left[\operatorname{Spec} R, G r_{r}\right]_{\mathbb{A}^{1}} \xrightarrow{\sim} \mathscr{V}_{r}(\operatorname{Spec} R) .
$$

- Morel '06 if $r \neq 2$ and k a perfect field

Nevertheless:

Theorem

If k is a field or \mathbb{Z}, then for any smooth affine k-scheme $X=\operatorname{Spec} R$,

$$
\left[\operatorname{Spec} R, G r_{r}\right]_{\text {naive }}=\left[\operatorname{Spec} R, G r_{r}\right]_{\mathbb{A}^{1}} \xrightarrow{\sim} \mathscr{V}_{r}(\operatorname{Spec} R) .
$$

- Morel '06 if $r \neq 2$ and k a perfect field
- Schlichting '15 arbitrary r, k perfect; simplifies part of Morel's argument

Nevertheless:

Theorem

If k is a field or \mathbb{Z}, then for any smooth affine k-scheme $X=\operatorname{Spec} R$,

$$
\left[\operatorname{Spec} R, G r_{r}\right]_{\text {naive }}=\left[\operatorname{Spec} R, G r_{r}\right]_{\mathbb{A}^{1}} \xrightarrow{\sim} \mathscr{V}_{r}(\operatorname{Spec} R) .
$$

- Morel '06 if $r \neq 2$ and k a perfect field
- Schlichting '15 arbitrary r, k perfect; simplifies part of Morel's argument
- A.-M. Hoyois-M. Wendt '15 (essentially self-contained: in essence, the theorem is equivalent to the Bass-Quillen conjecture for all smooth algebras over k)

Nevertheless:

Theorem

If k is a field or \mathbb{Z}, then for any smooth affine k-scheme $X=\operatorname{Spec} R$,

$$
\left[\operatorname{Spec} R, G r_{r}\right]_{\text {naive }}=\left[\operatorname{Spec} R, G r_{r}\right]_{\mathbb{A}^{1}} \xrightarrow{\sim} \mathscr{V}_{r}(\operatorname{Spec} R) .
$$

- Morel '06 if $r \neq 2$ and k a perfect field
- Schlichting ' 15 arbitrary r, k perfect; simplifies part of Morel's argument
- A.-M. Hoyois-M. Wendt '15 (essentially self-contained: in essence, the theorem is equivalent to the Bass-Quillen conjecture for all smooth algebras over k)

New goal: effectively describe $\left[\operatorname{Spec} R, G r_{r}\right]_{\mathbb{A}^{1}}$.

Classical homotopy theory gives techniques for providing a "cohomological" description of homotopy classes: one factors a space into homotopically simple spaces (Eilenberg-Mac Lane spaces). F. Morel developed these ideas in algebraic geometry.

Classical homotopy theory gives techniques for providing a "cohomological" description of homotopy classes: one factors a space into homotopically simple spaces (Eilenberg-Mac Lane spaces). F. Morel developed these ideas in algebraic geometry.

- If (\mathscr{X}, x) is a pointed space, we may define \mathbb{A}^{1}-homotopy sheaves $\boldsymbol{\pi}_{i}^{\mathbb{A}^{1}}(\mathscr{X}, x)$.

Classical homotopy theory gives techniques for providing a "cohomological" description of homotopy classes: one factors a space into homotopically simple spaces (Eilenberg-Mac Lane spaces). F. Morel developed these ideas in algebraic geometry.

- If (\mathscr{X}, x) is a pointed space, we may define \mathbb{A}^{1}-homotopy sheaves $\boldsymbol{\pi}_{i}^{\mathbb{A}^{1}}(\mathscr{X}, x)$.
- \mathbb{A}^{1}-Postnikov tower: given a pointed \mathbb{A}^{1}-connected space, we can build \mathscr{X} inductively out of Eilenberg-Mac Lane spaces $K(\boldsymbol{\pi}, n)$; these have exactly 1 non-trivial \mathbb{A}^{1}-homotopy sheaf in degree n

Classical homotopy theory gives techniques for providing a "cohomological" description of homotopy classes: one factors a space into homotopically simple spaces (Eilenberg-Mac Lane spaces). F. Morel developed these ideas in algebraic geometry.

- If (\mathscr{X}, x) is a pointed space, we may define \mathbb{A}^{1}-homotopy sheaves $\pi_{i}^{\mathbb{A}^{1}}(\mathscr{X}, x)$.
- \mathbb{A}^{1}-Postnikov tower: given a pointed \mathbb{A}^{1}-connected space, we can build \mathscr{X} inductively out of Eilenberg-Mac Lane spaces $K(\boldsymbol{\pi}, n)$; these have exactly 1 non-trivial \mathbb{A}^{1}-homotopy sheaf in degree n
- We can inductively describe the set of maps $[U, \mathscr{X}]_{\mathbb{A}^{1}}$ using sheaf cohomology with coefficients in \mathbb{A}^{1}-homotopy sheaves

Intuition: a space should be \mathbb{A}^{1}-connected if points can be connected by chains of affine lines

Intuition: a space should be \mathbb{A}^{1}-connected if points can be connected by chains of affine lines

Example
For any integer $n \geq 1, \pi_{0}^{\mathbb{A}^{1}}\left(S L_{n}\right)=1$

Intuition: a space should be \mathbb{A}^{1}-connected if points can be connected by chains of affine lines

Example
For any integer $n \geq 1, \pi_{0}^{\mathbb{A}^{1}}\left(S L_{n}\right)=1$

- Turns out it suffices to check this on sections over fields

Intuition: a space should be \mathbb{A}^{1}-connected if points can be connected by chains of affine lines

Example

For any integer $n \geq 1, \pi_{0}^{\mathbb{A}^{1}}\left(S L_{n}\right)=1$

- Turns out it suffices to check this on sections over fields
- For any field F, any matrix in $S L_{n}(F)$ may be factored as a product of elementary (shearing) matrices

Intuition: a space should be \mathbb{A}^{1}-connected if points can be connected by chains of affine lines

Example

For any integer $n \geq 1, \pi_{0}^{\mathbb{A}^{1}}\left(S L_{n}\right)=1$

- Turns out it suffices to check this on sections over fields
- For any field F, any matrix in $S L_{n}(F)$ may be factored as a product of elementary (shearing) matrices
- Any elementary shearing matrix is \mathbb{A}^{1}-homotopic: if $a \in F$ then use

$$
\left(\begin{array}{cc}
1 & a t \\
0 & 1
\end{array}\right)
$$

Intuition: a space should be \mathbb{A}^{1}-connected if points can be connected by chains of affine lines

Example

For any integer $n \geq 1, \pi_{0}^{\mathbb{A}^{1}}\left(S L_{n}\right)=1$

- Turns out it suffices to check this on sections over fields
- For any field F, any matrix in $S L_{n}(F)$ may be factored as a product of elementary (shearing) matrices
- Any elementary shearing matrix is \mathbb{A}^{1}-homotopic: if $a \in F$ then use

$$
\left(\begin{array}{cc}
1 & a t \\
0 & 1
\end{array}\right)
$$

- Any matrix in $S L_{n}(F)$ is naively \mathbb{A}^{1}-homotopic to the identity.

Example

$\pi_{1}^{\mathbb{A}^{1}}\left(B G L_{1}\right)=G L_{1}$

Example

$\pi_{1}^{\mathbb{A}^{1}}\left(B G L_{1}\right)=G L_{1}$

- $G L_{1}$ is discrete, i.e., $\pi_{0}^{\mathbb{A}^{1}}\left(G L_{1}\right)=G L_{1}$: there are no non-constant algebraic maps $\mathbb{A}^{1} \rightarrow G L_{1}$

Example

$\pi_{1}^{\mathbb{A}^{1}}\left(B G L_{1}\right)=G L_{1}$

- $G L_{1}$ is discrete, i.e., $\pi_{0}^{\mathbb{A}^{1}}\left(G L_{1}\right)=G L_{1}$: there are no non-constant algebraic maps $\mathbb{A}^{1} \rightarrow G L_{1}$
- the map $\mathbb{A}^{\infty} \backslash 0 \rightarrow B G L_{1}$ is a principal $G L_{1}$-bundle and this yields an \mathbb{A}^{1}-fiber sequence

Example

$\pi_{1}^{\mathbb{A}^{1}}\left(B G L_{1}\right)=G L_{1}$

- $G L_{1}$ is discrete, i.e., $\pi_{0}^{\mathbb{A}^{1}}\left(G L_{1}\right)=G L_{1}$: there are no non-constant algebraic maps $\mathbb{A}^{1} \rightarrow G L_{1}$
- the map $\mathbb{A}^{\infty} \backslash 0 \rightarrow B G L_{1}$ is a principal $G L_{1}$-bundle and this yields an \mathbb{A}^{1}-fiber sequence
- since $\mathbb{A}^{\infty} \backslash 0$ is \mathbb{A}^{1}-contractible, the result follows from the long exact sequence in homotopy

Example

$\pi_{1}^{\mathbb{A}^{1}}\left(B G L_{1}\right)=G L_{1}$

- $G L_{1}$ is discrete, i.e., $\pi_{0}^{\mathbb{A}^{1}}\left(G L_{1}\right)=G L_{1}$: there are no non-constant algebraic maps $\mathbb{A}^{1} \rightarrow G L_{1}$
- the map $\mathbb{A}^{\infty} \backslash 0 \rightarrow B G L_{1}$ is a principal $G L_{1}$-bundle and this yields an \mathbb{A}^{1}-fiber sequence
- since $\mathbb{A}^{\infty} \backslash 0$ is \mathbb{A}^{1}-contractible, the result follows from the long exact sequence in homotopy

Example

For any $n \geq 2, \pi_{1}^{\mathbb{A}_{1}^{1}}\left(B S L_{n}\right)=1$; one identifies $\pi_{1}^{\mathbb{A}^{1}}\left(B S L_{n}\right)=\pi_{0}\left(S L_{n}\right)$ using a fiber sequence.

Example

$$
\pi_{1}^{\mathbb{A}^{1}}\left(B G L_{1}\right)=G L_{1}
$$

- $G L_{1}$ is discrete, i.e., $\pi_{0}^{\mathbb{A}^{1}}\left(G L_{1}\right)=G L_{1}$: there are no non-constant algebraic maps $\mathbb{A}^{1} \rightarrow G L_{1}$
- the map $\mathbb{A}^{\infty} \backslash 0 \rightarrow B G L_{1}$ is a principal $G L_{1}$-bundle and this yields an \mathbb{A}^{1}-fiber sequence
- since $\mathbb{A}^{\infty} \backslash 0$ is \mathbb{A}^{1}-contractible, the result follows from the long exact sequence in homotopy

Example

For any $n \geq 2, \pi_{1}^{\mathbb{A}_{1}^{1}}\left(B S L_{n}\right)=1$; one identifies $\pi_{1}^{\mathbb{A}^{1}}\left(B S L_{n}\right)=\pi_{0}\left(S L_{n}\right)$ using a fiber sequence.

Example

For any $n \geq 2$, the map $B G L_{n} \rightarrow B G L_{1}$ coming from det : $G L_{n} \rightarrow G L_{1}$ induces an isomorphism $\pi_{1}^{\mathbb{A}^{1}}\left(B G L_{n}\right)=G L_{1}$.

Example (F. Morel)

There are isomorphisms

$$
\pi_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

Example (F. Morel)

There are isomorphisms

$$
\boldsymbol{\pi}_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

- \mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf

Example (F. Morel)

There are isomorphisms

$$
\pi_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

- \mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf
- the map $B S L_{n} \rightarrow B G L_{\infty}$ induces an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ for $n \geq 3$ and the latter represents Quillen's algebraic K-theory

Example (F. Morel)

There are isomorphisms

$$
\boldsymbol{\pi}_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

- \mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf
- the map $B S L_{n} \rightarrow B G L_{\infty}$ induces an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ for $n \geq 3$ and the latter represents Quillen's algebraic K-theory
- $\mathbf{K}_{2}^{M}=\pi_{1}^{\mathbb{A}^{1}}\left(S L_{n}\right), n \geq 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_{2})

Example (F. Morel)

There are isomorphisms

$$
\pi_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

- \mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf
- the map $B S L_{n} \rightarrow B G L_{\infty}$ induces an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ for $n \geq 3$ and the latter represents Quillen's algebraic K-theory
- $\mathbf{K}_{2}^{M}=\pi_{1}^{\mathbb{A}^{1}}\left(S L_{n}\right), n \geq 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_{2})
- $\mathbf{K}_{2}^{M W}$ is the second Milnor-Witt K-theory sheaf

Example (F. Morel)

There are isomorphisms

$$
\pi_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

- \mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf
- the map $B S L_{n} \rightarrow B G L_{\infty}$ induces an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ for $n \geq 3$ and the latter represents Quillen's algebraic K-theory
- $\mathbf{K}_{2}^{M}=\pi_{1}^{\mathbb{A}^{1}}\left(S L_{n}\right), n \geq 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_{2})
- $\mathbf{K}_{2}^{M W}$ is the second Milnor-Witt K-theory sheaf
- $S L_{2}=S p_{2}$ and the map $B S L_{2} \rightarrow B S p_{\infty}$ is an isomorphism on $\pi_{2}^{\mathbb{A}^{1}(-)}$

Example (F. Morel)

There are isomorphisms

$$
\pi_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

- \mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf
- the map $B S L_{n} \rightarrow B G L_{\infty}$ induces an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ for $n \geq 3$ and the latter represents Quillen's algebraic K-theory
- $\mathbf{K}_{2}^{M}=\pi_{1}^{\mathbb{A}^{1}}\left(S L_{n}\right), n \geq 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_{2})
- $\mathbf{K}_{2}^{M W}$ is the second Milnor-Witt K-theory sheaf
- $S L_{2}=S p_{2}$ and the map $B S L_{2} \rightarrow B S p_{\infty}$ is an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$
- the latter represents symplectic K-theory and includes information about symplectic forms over our base

Example (F. Morel)

There are isomorphisms

$$
\pi_{2}^{\mathbb{A}^{1}}\left(B S L_{n}\right) \xrightarrow{\sim} \begin{cases}\mathbf{K}_{2}^{M W} & \text { if } n=2 \\ \mathbf{K}_{2}^{M} & \text { if } n \geq 3\end{cases}
$$

- \mathbf{K}_{2}^{M} is the second Milnor K-theory sheaf
- the map $B S L_{n} \rightarrow B G L_{\infty}$ induces an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$ for $n \geq 3$ and the latter represents Quillen's algebraic K-theory
- $\mathbf{K}_{2}^{M}=\pi_{1}^{\mathbb{A}^{1}}\left(S L_{n}\right), n \geq 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_{2})
- $\mathbf{K}_{2}^{M W}$ is the second Milnor-Witt K-theory sheaf
- $S L_{2}=S p_{2}$ and the map $B S L_{2} \rightarrow B S p_{\infty}$ is an isomorphism on $\pi_{2}^{\mathbb{A}^{1}}(-)$
- the latter represents symplectic K-theory and includes information about symplectic forms over our base
- the map $B S p_{\infty} \rightarrow B G L_{\infty}$ yields a map $\mathbf{K}_{2}^{M W} \rightarrow \mathbf{K}_{2}^{M}$; this map is an epimorphism of sheaves and its kernel may be described via the "fundamental ideal" in the Witt ring (A. Suslin)

Counting vector bundles with motivic homotopy theory

(based on joint work with J. Fasel, M. Hopkins)

Restrict attention to smooth affine varieties over finite fields.

Question

Are there finitely many vector bundles of a given rank on a smooth affine variety over a finite field?

Restrict attention to smooth affine varieties over finite fields.

Question

Are there finitely many vector bundles of a given rank on a smooth affine variety over a finite field?

- No, not even in dimension 2. Indeed, $\operatorname{Pic}\left(Q_{2}\right)=\operatorname{Pic}\left(\mathbb{P}^{1}\right)=\mathbb{Z}$, which is not finite.

Restrict attention to smooth affine varieties over finite fields.

Question

Are there finitely many vector bundles of a given rank on a smooth affine variety over a finite field?

- No, not even in dimension 2. Indeed, $\operatorname{Pic}\left(Q_{2}\right)=\operatorname{Pic}\left(\mathbb{P}^{1}\right)=\mathbb{Z}$, which is not finite.
- This problem persists in higher rank, since we may take direct sums of line bundles.

Restrict attention to smooth affine varieties over finite fields.

Question

Are there finitely many vector bundles of a given rank on a smooth affine variety over a finite field?

- No, not even in dimension 2. Indeed, $\operatorname{Pic}\left(Q_{2}\right)=\operatorname{Pic}\left(\mathbb{P}^{1}\right)=\mathbb{Z}$, which is not finite.
- This problem persists in higher rank, since we may take direct sums of line bundles.
- Fix the determinant, a.k.a., the first Chern class.

Restrict attention to smooth affine varieties over finite fields.

Question

Are there finitely many vector bundles of a given rank with fixed determinant on a smooth affine variety over a finite field?

Theorem (Bloch, Mohan Kumar-Murthy-Roy, Parshin)

If X is a smooth affine surface over a finite field, then there are finitely many isomorphism classes of vector bundles with a given rank and determinant.

Theorem (Bloch, Mohan Kumar-Murthy-Roy, Parshin)

If X is a smooth affine surface over a finite field, then there are finitely many isomorphism classes of vector bundles with a given rank and determinant.

Proof (trivial determinant case).

- Serre's splitting theorem \Longrightarrow suffices to prove finiteness in rank 2

Theorem (Bloch, Mohan Kumar-Murthy-Roy, Parshin)

If X is a smooth affine surface over a finite field, then there are finitely many isomorphism classes of vector bundles with a given rank and determinant.

Proof (trivial determinant case).

- Serre's splitting theorem \Longrightarrow suffices to prove finiteness in rank 2
- Since X has dimension 2, we can identify $\left[X, B S L_{2}\right]_{\mathbb{A}^{1}}=H^{2}\left(X, \mathbf{K}_{2}^{M W}\right)$

Theorem (Bloch, Mohan Kumar-Murthy-Roy, Parshin)

If X is a smooth affine surface over a finite field, then there are finitely many isomorphism classes of vector bundles with a given rank and determinant.

Proof (trivial determinant case).

- Serre's splitting theorem \Longrightarrow suffices to prove finiteness in rank 2
- Since X has dimension 2, we can identify $\left[X, B S L_{2}\right]_{\mathbb{A}^{1}}=H^{2}\left(X, \mathbf{K}_{2}^{M W}\right)$
- The canonical map $H^{2}\left(X, \mathbf{K}_{2}^{M W}\right) \rightarrow H^{2}\left(X, \mathbf{K}_{2}^{M}\right)$ is surjective, and an \cong since we work over a finite field (uses Merkurjev-Suslin theorem)

Theorem (Bloch, Mohan Kumar-Murthy-Roy, Parshin)

If X is a smooth affine surface over a finite field, then there are finitely many isomorphism classes of vector bundles with a given rank and determinant.

Proof (trivial determinant case).

- Serre's splitting theorem \Longrightarrow suffices to prove finiteness in rank 2
- Since X has dimension 2, we can identify $\left[X, B S L_{2}\right]_{\mathbb{A}^{1}}=H^{2}\left(X, \mathbf{K}_{2}^{M W}\right)$
- The canonical map $H^{2}\left(X, \mathbf{K}_{2}^{M W}\right) \rightarrow H^{2}\left(X, \mathbf{K}_{2}^{M}\right)$ is surjective, and an \cong since we work over a finite field (uses Merkurjev-Suslin theorem)
- When working over a finite field, $H^{2}\left(X, \mathbf{K}_{2}^{M}\right)$ is finite by higher-dimensional class field theory (Kato-Saito)

Remark

- The determinant of a vector bundle is a class in Pic(X); this is the first Chern class in Chow-theory

Remark

- The determinant of a vector bundle is a class in Pic(X); this is the first Chern class in Chow-theory
- We may define higher Chern classes in Chow theory as in topology: the Chow ring of the $G r_{r}$ may be computed to be a polynomial ring on generators c_{1}, \ldots, c_{r}

Remark

- The determinant of a vector bundle is a class in $\operatorname{Pic}(X)$; this is the first Chern class in Chow-theory
- We may define higher Chern classes in Chow theory as in topology: the Chow ring of the $G r_{r}$ may be computed to be a polynomial ring on generators c_{1}, \ldots, c_{r}
- The class in $H^{2}\left(X, \mathbf{K}_{2}^{M}\right)=C H^{2}(X)$ (Kato's formula) described above is precisely the second Chern class of the vector bundle

Remark

- The determinant of a vector bundle is a class in $\operatorname{Pic}(X)$; this is the first Chern class in Chow-theory
- We may define higher Chern classes in Chow theory as in topology: the Chow ring of the $G r_{r}$ may be computed to be a polynomial ring on generators c_{1}, \ldots, c_{r}
- The class in $H^{2}\left(X, \mathbf{K}_{2}^{M}\right)=C H^{2}(X)$ (Kato's formula) described above is precisely the second Chern class of the vector bundle
- The argument actually shows that there are precisely $\left|C H^{2}(X)\right|$ vector bundles with a fixed rank and determinant

Remark

- The determinant of a vector bundle is a class in Pic (X); this is the first Chern class in Chow-theory
- We may define higher Chern classes in Chow theory as in topology: the Chow ring of the $G r_{r}$ may be computed to be a polynomial ring on generators c_{1}, \ldots, c_{r}
- The class in $H^{2}\left(X, \mathbf{K}_{2}^{M}\right)=C H^{2}(X)$ (Kato's formula) described above is precisely the second Chern class of the vector bundle
- The argument actually shows that there are precisely $\left|C H^{2}(X)\right|$ vector bundles with a fixed rank and determinant
- The result actually holds for a "regular affine arithmetic surface" (without using any \mathbb{A}^{1}-homotopy theory), but the \mathbb{A}^{1}-homotopy theoretic argument generalizes.

Theorem

If F is a finite field, characteristic unequal to 2 , and X is a smooth affine 3-fold over F, then there are finitely many isomorphism classes of vector bundles with given $c_{i} \in C H^{i}(X), i=1,2$.

Theorem

If F is a finite field, characteristic unequal to 2 , and X is a smooth affine 3-fold over F, then there are finitely many isomorphism classes of vector bundles with given $c_{i} \in C H^{i}(X), i=1,2$. In particular, there are finitely many isomorphism classes of vector bundles with given rank and determinant if and only if $\mathrm{CH}^{2}(X)$ is finite.

Theorem

If F is a finite field, characteristic unequal to 2 , and X is a smooth affine 3-fold over F, then there are finitely many isomorphism classes of vector bundles with given $c_{i} \in C H^{i}(X), i=1,2$. In particular, there are finitely many isomorphism classes of vector bundles with given rank and determinant if and only if $\mathrm{CH}^{2}(X)$ is finite.

Proof.

- Suffices to establish the result for ranks 2 and 3 by Serre's splitting

Theorem

If F is a finite field, characteristic unequal to 2 , and X is a smooth affine 3-fold over F, then there are finitely many isomorphism classes of vector bundles with given $c_{i} \in C H^{i}(X), i=1,2$. In particular, there are finitely many isomorphism classes of vector bundles with given rank and determinant if and only if $\mathrm{CH}^{2}(X)$ is finite.

Proof.

- Suffices to establish the result for ranks 2 and 3 by Serre's splitting
- Working up the Postnikov tower requires computation of $\boldsymbol{\pi}_{3}^{\mathbb{A}^{1}}\left(G L_{2}\right)$ and $\pi_{3}\left(B G L_{3}\right)$ (A.-Fasel)

Theorem

If F is a finite field, characteristic unequal to 2 , and X is a smooth affine 3-fold over F, then there are finitely many isomorphism classes of vector bundles with given $c_{i} \in C H^{i}(X), i=1,2$. In particular, there are finitely many isomorphism classes of vector bundles with given rank and determinant if and only if $\mathrm{CH}^{2}(X)$ is finite.

Proof.

- Suffices to establish the result for ranks 2 and 3 by Serre's splitting
- Working up the Postnikov tower requires computation of $\pi_{3}^{\mathbb{A}^{1}}\left(G L_{2}\right)$ and $\pi_{3}\left(B G L_{3}\right)$ (A.-Fasel)
- Then, use known finiteness results for certain motivic cohomology groups (Kato-Saito, Kerz-Saito)

Theorem

If F is a finite field, characteristic unequal to 2 , and X is a smooth affine 3-fold over F, then there are finitely many isomorphism classes of vector bundles with given $c_{i} \in C H^{i}(X), i=1,2$. In particular, there are finitely many isomorphism classes of vector bundles with given rank and determinant if and only if $\mathrm{CH}^{2}(X)$ is finite.

Proof.

- Suffices to establish the result for ranks 2 and 3 by Serre's splitting
- Working up the Postnikov tower requires computation of $\pi_{3}^{\mathbb{A}^{1}}\left(G L_{2}\right)$ and $\pi_{3}\left(B G L_{3}\right)$ (A.-Fasel)
- Then, use known finiteness results for certain motivic cohomology groups (Kato-Saito, Kerz-Saito)
- One may check $C H^{2}(X)$ is finite in many examples.
- One may check $C H^{2}(X)$ is finite in many examples.
- A variant of the Beilinson-Tate conjecture implies that $\mathrm{CH}^{2}(\mathrm{X})$ is always finite under the above hypotheses.
- One may check $C H^{2}(X)$ is finite in many examples.
- A variant of the Beilinson-Tate conjecture implies that $\mathrm{CH}^{2}(\mathrm{X})$ is always finite under the above hypotheses.

Conjecture

If X is a smooth affine threefold over a finite field, then there are always finitely many isomorphism classes of vector bundles with a given rank and determinant.

What should we expect in higher dimensions?

What should we expect in higher dimensions?

- There are smooth affine 4-folds over a finite field that have infinitely many isomorphism classes of rank 2 vector bundles with fixed rank and determinant (e.g., take the complement of the incidence divisor in $\mathbb{P}^{2} \times \mathbb{P}^{2}$).

What should we expect in higher dimensions?

- There are smooth affine 4-folds over a finite field that have infinitely many isomorphism classes of rank 2 vector bundles with fixed rank and determinant (e.g., take the complement of the incidence divisor in $\mathbb{P}^{2} \times \mathbb{P}^{2}$).
Similar counterexamples suggest that the following is the best-possible statement.

What should we expect in higher dimensions?

- There are smooth affine 4-folds over a finite field that have infinitely many isomorphism classes of rank 2 vector bundles with fixed rank and determinant (e.g., take the complement of the incidence divisor in $\mathbb{P}^{2} \times \mathbb{P}^{2}$).
Similar counterexamples suggest that the following is the best-possible statement.

Conjecture

If X is a smooth affine variety of dimension d over a finite field, then there are finitely many isomorphism classes of vector bundles with fixed Chern clases $c_{i} \in C H^{i}(X), 1 \leq i \leq\left\lfloor\frac{d}{2}\right\rfloor$.

Why should we believe this? Panglossian optimism:

Why should we believe this? Panglossian optimism:

- Jannsen's version of Beilinson-Tate conjecture, resolution of singularities in positive characteristic and the motivic Bass conjecture on finite generation of motivic cohomology guarantee that $\mathrm{CH}^{i}(X)$ is finite for $i>\left\lfloor\frac{d}{2}\right\rfloor$, together with finiteness of a host of other motivic cohomology groups

Why should we believe this? Panglossian optimism:

- Jannsen's version of Beilinson-Tate conjecture, resolution of singularities in positive characteristic and the motivic Bass conjecture on finite generation of motivic cohomology guarantee that $\mathrm{CH}^{i}(\mathrm{X})$ is finite for $i>\left\lfloor\frac{d}{2}\right\rfloor$, together with finiteness of a host of other motivic cohomology groups
- Thus, the conjecture follows if we know that we can always express maps into $\left[X, B G L_{n}\right]_{\mathbb{A}^{1}}$ purely in terms of motivic cohomology

Why should we believe this? Panglossian optimism:

- Jannsen's version of Beilinson-Tate conjecture, resolution of singularities in positive characteristic and the motivic Bass conjecture on finite generation of motivic cohomology guarantee that $\mathrm{CH}^{i}(\mathrm{X})$ is finite for $i>\left\lfloor\frac{d}{2}\right\rfloor$, together with finiteness of a host of other motivic cohomology groups
- Thus, the conjecture follows if we know that we can always express maps into $\left[X, B G L_{n}\right]_{\mathbb{A}^{1}}$ purely in terms of motivic cohomology
- The latter follows from Hopkins' "Wilson splitting hypothesis"; loosely the classifying space for algebraic cobordism is "even"; this guarantees that we may write nice "resolutions" of $B G L_{n}$

Given finiteness, we may actually count vector bundles. For concreteness:

Given finiteness, we may actually count vector bundles. For concreteness:

Question

If X is a smooth affine threefold over a finite field, then how many vector bundles are there with a given rank and determinant?

Given finiteness, we may actually count vector bundles. For concreteness:

Question

If X is a smooth affine threefold over a finite field, then how many vector bundles are there with a given rank and determinant?

- This number may depend on the determinant.

Given finiteness, we may actually count vector bundles. For concreteness:

Question

If X is a smooth affine threefold over a finite field, then how many vector bundles are there with a given rank and determinant?

- This number may depend on the determinant.
- What do these numbers mean, what do they measure? We might think of them as some higher rank/higher dimensional version of the class number

Given finiteness, we may actually count vector bundles. For concreteness:

Question

If X is a smooth affine threefold over a finite field, then how many vector bundles are there with a given rank and determinant?

- This number may depend on the determinant.
- What do these numbers mean, what do they measure? We might think of them as some higher rank/higher dimensional version of the class number
- What happens for general regular rings of Krull dimension $d \geq 3$ that are finitely generated as \mathbb{Z}-algebras?

Thank you!

