Counting vector bundles

Aravind Asok (USC)

March 9, 2017

Aravind Asok (USC) Counting vector bundles

Vector bundles and projective modules

Definition

An *R*-module *P* is called **projective** if it is a direct summand of a free *R*-module.

Definition

An *R*-module *P* is called **projective** if it is a direct summand of a free *R*-module.

Equivalently, P is projective if:

Definition

An *R*-module *P* is called **projective** if it is a direct summand of a free *R*-module.

Equivalently, P is projective if:

• (lifting property) given an *R*-module map $f : P \to M$, and a surjective *R*-module map $N \twoheadrightarrow M$, we may always find $\tilde{f} : P \to N$.

Definition

An *R*-module *P* is called **projective** if it is a direct summand of a free *R*-module.

Equivalently, P is projective if:

- (lifting property) given an *R*-module map $f : P \to M$, and a surjective *R*-module map $N \twoheadrightarrow M$, we may always find $\tilde{f} : P \to N$.
- (linear algebraic) if *P* is also finitely generated, then there exist an integer *n*, and $\epsilon \in End_R(R^{\oplus n})$ such that $\epsilon^2 = \epsilon$ and $P = \epsilon R^{\oplus n}$.

From now on, all projective modules will be assumed finitely generated (f.g.)

- f.g. projective modules are "locally free" modules
 - Algebraically: *P* a f.g. projective *R*-module; we can find elements $f_1, \ldots, f_r \in R$ such that f_i generate the unit ideal and such that $P[\frac{1}{f_i}]$ is a free $R[\frac{1}{f_i}]$ -module of finite rank

- f.g. projective modules are "locally free" modules
 - Algebraically: *P* a f.g. projective *R*-module; we can find elements $f_1, \ldots, f_r \in R$ such that f_i generate the unit ideal and such that $P[\frac{1}{f_i}]$ is a free $R[\frac{1}{f_i}]$ -module of finite rank
 - Geometrically: we associate with *R* its prime spectrum Spec *R*, and Spec $R[\frac{1}{f_i}]$ forms an open cover of Spec *R* on which the bundle corresponding to *P* may be trivialized

- f.g. projective modules are "locally free" modules
 - Algebraically: *P* a f.g. projective *R*-module; we can find elements $f_1, \ldots, f_r \in R$ such that f_i generate the unit ideal and such that $P[\frac{1}{f_i}]$ is a free $R[\frac{1}{f_i}]$ -module of finite rank
 - Geometrically: we associate with *R* its prime spectrum Spec *R*, and Spec $R[\frac{1}{f_i}]$ forms an open cover of Spec *R* on which the bundle corresponding to *P* may be trivialized
- f.g. projective modules have a rank if Spec *R* is connected, then this is just an integer

{ finite rank v.b. over M} \longleftrightarrow { f.g. projective C(M) – modules };

- *M* a (say) compact manifold;
- C(M) = ring of continuous real-valued functions on M

{ finite rank v.b. over M} \longleftrightarrow { f.g. projective C(M) – modules };

- *M* a (say) compact manifold;
- C(M) = ring of continuous real-valued functions on M

Analogously:

Serre's dictionary

If *R* is a ring, then

{ finite rank v.b. over Spec R} \longleftrightarrow { f.g. projective R – modules };

{ finite rank v.b. over M} \longleftrightarrow { f.g. projective C(M) - modules };

- *M* a (say) compact manifold;
- C(M) = ring of continuous real-valued functions on M

Analogously:

Serre's dictionary

If *R* is a ring, then

{ finite rank v.b. over Spec R} \longleftrightarrow { f.g. projective R – modules };

Using this dictionary, one transplants intuition from geometry to algebra

Suppose *R* is a Noetherian commutative ring of Krull dimension *d*. If *P* is a projective *R*-module of rank r > d, then there exists a projective *R*-module *Q* of rank *d* and an isomorphism $P \cong Q \oplus R^{\oplus r-d}$.

Suppose R is a Noetherian commutative ring of Krull dimension d. If P is a projective R-module of rank r > d, then there exists a projective R-module Q of rank d and an isomorphism $P \cong Q \oplus R^{\oplus r-d}$.

Example

Suppose R is a Noetherian commutative ring of Krull dimension d. If P is a projective R-module of rank r > d, then there exists a projective R-module Q of rank d and an isomorphism $P \cong Q \oplus R^{\oplus r-d}$.

Example

If K is a number field, and \mathcal{O}_K is the ring of integers in K, then there are at most finitely many projective \mathcal{O}_K -modules of a given rank.

• \mathcal{O}_K is a Dedekind domain (in particular, it has Krull dimension 1)

Suppose R is a Noetherian commutative ring of Krull dimension d. If P is a projective R-module of rank r > d, then there exists a projective R-module Q of rank d and an isomorphism $P \cong Q \oplus R^{\oplus r-d}$.

Example

- \mathcal{O}_K is a Dedekind domain (in particular, it has Krull dimension 1)
- By Serre's theorem, a f.g. projective \mathfrak{O}_K -module of rank r can be written $L \oplus \mathfrak{O}_K^{r-1}$ where L has rank 1

Suppose R is a Noetherian commutative ring of Krull dimension d. If P is a projective R-module of rank r > d, then there exists a projective R-module Q of rank d and an isomorphism $P \cong Q \oplus R^{\oplus r-d}$.

Example

- \mathcal{O}_K is a Dedekind domain (in particular, it has Krull dimension 1)
- By Serre's theorem, a f.g. projective \mathfrak{O}_K -module of rank r can be written $L \oplus \mathfrak{O}_K^{r-1}$ where L has rank 1
- *Rank* 1 *projective modules form an abelian group (the Picard group) under tensor product*

Suppose R is a Noetherian commutative ring of Krull dimension d. If P is a projective R-module of rank r > d, then there exists a projective R-module Q of rank d and an isomorphism $P \cong Q \oplus R^{\oplus r-d}$.

Example

- \mathcal{O}_K is a Dedekind domain (in particular, it has Krull dimension 1)
- By Serre's theorem, a f.g. projective \mathfrak{O}_K -module of rank r can be written $L \oplus \mathfrak{O}_K^{r-1}$ where L has rank 1
- *Rank* 1 *projective modules form an abelian group (the Picard group) under tensor product*
- Minkowski's theorem implies that the Picard group is finite

• $\mathscr{V}_r(M)$ - set of isomorphism classes of rank *r* (real) vector bundles on *M*

- $\mathscr{V}_r(M)$ set of isomorphism classes of rank *r* (real) vector bundles on *M*
- $\mathscr{V}_r(M) \to \mathscr{V}_r(M \times I)$ is a bijection (homotopy invariance)

- $\mathscr{V}_r(M)$ set of isomorphism classes of rank *r* (real) vector bundles on *M*
- $\mathscr{V}_r(M) \to \mathscr{V}_r(M \times I)$ is a bijection (homotopy invariance)
- *Gr_r* Grassmannian of *r*-dimensional subspaces of an infinite dimensional real vector space

- $\mathscr{V}_r(M)$ set of isomorphism classes of rank *r* (real) vector bundles on *M*
- $\mathscr{V}_r(M) \to \mathscr{V}_r(M \times I)$ is a bijection (homotopy invariance)
- *Gr_r* Grassmannian of *r*-dimensional subspaces of an infinite dimensional real vector space
- *Gr_r* carries a rank *r* "tautological" vector bundle

- $\mathscr{V}_r(M)$ set of isomorphism classes of rank *r* (real) vector bundles on *M*
- $\mathscr{V}_r(M) \to \mathscr{V}_r(M \times I)$ is a bijection (homotopy invariance)
- *Gr_r* Grassmannian of *r*-dimensional subspaces of an infinite dimensional real vector space
- Gr_r carries a rank r "tautological" vector bundle
- Continuous maps $M \rightarrow Gr_r$ yield rank *r* vector bundle on *M* by pullback; homotopic maps yield isomorphic bundles

- $\mathscr{V}_r(M)$ set of isomorphism classes of rank *r* (real) vector bundles on *M*
- $\mathscr{V}_r(M) \to \mathscr{V}_r(M \times I)$ is a bijection (homotopy invariance)
- *Gr_r* Grassmannian of *r*-dimensional subspaces of an infinite dimensional real vector space
- Gr_r carries a rank r "tautological" vector bundle
- Continuous maps $M \rightarrow Gr_r$ yield rank *r* vector bundle on *M* by pullback; homotopic maps yield isomorphic bundles

Theorem (Pontryagin–Steenrod)

Pulling back the tautological bundle determines a bijection:

 $[M, Gr_r] \xrightarrow{\sim} \mathscr{V}_r(M).$

- $\mathscr{V}_r(M)$ set of isomorphism classes of rank *r* (real) vector bundles on *M*
- $\mathscr{V}_r(M) \to \mathscr{V}_r(M \times I)$ is a bijection (homotopy invariance)
- *Gr_r* Grassmannian of *r*-dimensional subspaces of an infinite dimensional real vector space
- Gr_r carries a rank r "tautological" vector bundle
- Continuous maps $M \rightarrow Gr_r$ yield rank *r* vector bundle on *M* by pullback; homotopic maps yield isomorphic bundles

Theorem (Pontryagin–Steenrod)

Pulling back the tautological bundle determines a bijection:

 $[M, Gr_r] \xrightarrow{\sim} \mathscr{V}_r(M).$

• Real vector bundles on any contractible manifold (e.g., \mathbb{R}^n) are trivial

If k is a field, is every f.g. projective $k[x_1, \ldots, x_n]$ -module free?

• n = 1: yes, structure theorem for f.g. modules over a PID

- n = 1: yes, structure theorem for f.g. modules over a PID
- n = 2: yes, Seshadri '58

- n = 1: yes, structure theorem for f.g. modules over a PID
- n = 2: yes, Seshadri '58
- yes if r > n, Bass '64

- n = 1: yes, structure theorem for f.g. modules over a PID
- n = 2: yes, Seshadri '58
- yes if *r* > *n*, Bass '64
- n = 3: yes if k algebraically closed, Murthy–Towber '74

- n = 1: yes, structure theorem for f.g. modules over a PID
- n = 2: yes, Seshadri '58
- yes if *r* > *n*, Bass '64
- n = 3: yes if k algebraically closed, Murthy–Towber '74
- n = 3, 4, 5: yes, Suslin–Vaserstein '73/'74

If k is a field, is every f.g. projective $k[x_1, \ldots, x_n]$ -module free?

- n = 1: yes, structure theorem for f.g. modules over a PID
- n = 2: yes, Seshadri '58
- yes if *r* > *n*, Bass '64
- n = 3: yes if k algebraically closed, Murthy–Towber '74
- *n* = 3, 4, 5: yes, Suslin–Vaserstein '73/'74

Theorem (Quillen-Suslin '76)

If R is a PID, then every f.g. projective $R[x_1, \ldots, x_n]$ -module is free.

• $\mathscr{V}_r(\operatorname{Spec} R) = \{\operatorname{isomorphism \ classes \ of \ rank \ } r \text{ v.b. on \ } \operatorname{Spec} R\}$

• $\mathscr{V}_r(\operatorname{Spec} R) = \{\operatorname{isomorphism \ classes \ of \ rank \ } r \text{ v.b. on \ } \operatorname{Spec} R\}$

Question

If R is a ring, is

$$\mathscr{V}_r(\operatorname{Spec} R) \longrightarrow \mathscr{V}_r(\operatorname{Spec} R[t])$$

a bijection?

• $\mathcal{V}_r(\operatorname{Spec} R) = \{\operatorname{isomorphism classes of rank } r \text{ v.b. on } \operatorname{Spec} R\}$

Question

If R is a ring, is

$$\mathscr{V}_r(\operatorname{Spec} R) \longrightarrow \mathscr{V}_r(\operatorname{Spec} R[t])$$

a bijection?

• False for r = 1 without additional hypotheses on R(e.g., $R = k[x, y]/(y^2 - x^3)$) • $\mathcal{V}_r(\operatorname{Spec} R) = \{\operatorname{isomorphism classes of rank } r \text{ v.b. on } \operatorname{Spec} R\}$

Question

If R is a ring, is

$$\mathscr{V}_r(\operatorname{Spec} R) \longrightarrow \mathscr{V}_r(\operatorname{Spec} R[t])$$

a bijection?

- False for r = 1 without additional hypotheses on R(e.g., $R = k[x, y]/(y^2 - x^3)$)
- We will assume *R* is regular (an analog of smoothness)

If *R* is a regular ring of finite Krull dimension, then for any $r \ge 0$

$$\mathscr{V}_r(\operatorname{Spec} R) \longrightarrow \mathscr{V}_r(\operatorname{Spec} R[t])$$

is a bijection.

If *R* is a regular ring of finite Krull dimension, then for any $r \ge 0$

$$\mathscr{V}_r(\operatorname{Spec} R) \longrightarrow \mathscr{V}_r(\operatorname{Spec} R[t])$$

is a bijection.

• Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for *R* a polynomial ring over a Dedekind domain.

If *R* is a regular ring of finite Krull dimension, then for any $r \ge 0$

$$\mathscr{V}_r(\operatorname{Spec} R) \longrightarrow \mathscr{V}_r(\operatorname{Spec} R[t])$$

is a bijection.

• Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for *R* a polynomial ring over a Dedekind domain.

Theorem (Lindel '81)

The Bass-Quillen conjecture is true if R contains a field.

If *R* is a regular ring of finite Krull dimension, then for any $r \ge 0$

$$\mathscr{V}_r(\operatorname{Spec} R) \longrightarrow \mathscr{V}_r(\operatorname{Spec} R[t])$$

is a bijection.

• Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for *R* a polynomial ring over a Dedekind domain.

Theorem (Lindel '81)

The Bass-Quillen conjecture is true if R contains a field.

• Popescu '89 extended the Lindel's theorem to some arithmetic situations (e.g., *R* is regular over a Dedekind domain with perfect residue fields)

If *R* is a regular ring of finite Krull dimension, then for any $r \ge 0$

$$\mathscr{V}_r(\operatorname{Spec} R) \longrightarrow \mathscr{V}_r(\operatorname{Spec} R[t])$$

is a bijection.

• Quillen's solution to Serre's problem actually shows that the Bass-Quillen conjecture holds for *R* a polynomial ring over a Dedekind domain.

Theorem (Lindel '81)

The Bass-Quillen conjecture is true if R contains a field.

- Popescu '89 extended the Lindel's theorem to some arithmetic situations (e.g., *R* is regular over a Dedekind domain with perfect residue fields)
- Still open in completely generality!

Vector bundles and motivic homotopy theory

• Gr_r is an (infinite-dimensional) algebraic variety

- Gr_r is an (infinite-dimensional) algebraic variety
- A map Spec *R* → *Gr_r* corresponds to a vector bundle on *R* and a collection of generating sections

- Gr_r is an (infinite-dimensional) algebraic variety
- A map Spec *R* → *Gr_r* corresponds to a vector bundle on *R* and a collection of generating sections
- We may speak of "naive" homotopies between such maps, i.e., two maps $f, g: \operatorname{Spec} R \to Gr_r$ are naively homotopic if there exists a map $H: \operatorname{Spec} R[t] \to Gr_r$ with H(0) = f and H(1) = g.

- Gr_r is an (infinite-dimensional) algebraic variety
- A map Spec $R \to Gr_r$ corresponds to a vector bundle on R and a collection of generating sections
- We may speak of "naive" homotopies between such maps, i.e., two maps $f, g: \operatorname{Spec} R \to Gr_r$ are naively homotopic if there exists a map $H: \operatorname{Spec} R[t] \to Gr_r$ with H(0) = f and H(1) = g.

Theorem

If k is a field, and R is a regular k-algebra, then

$$[\operatorname{Spec} R, Gr_r]_{naive} \xrightarrow{\sim} \mathscr{V}_r(\operatorname{Spec} R);$$

- Gr_r is an (infinite-dimensional) algebraic variety
- A map Spec $R \to Gr_r$ corresponds to a vector bundle on R and a collection of generating sections
- We may speak of "naive" homotopies between such maps, i.e., two maps $f, g: \operatorname{Spec} R \to Gr_r$ are naively homotopic if there exists a map $H: \operatorname{Spec} R[t] \to Gr_r$ with H(0) = f and H(1) = g.

Theorem

If k is a field, and R is a regular k-algebra, then

$$[\operatorname{Spec} R, Gr_r]_{naive} \xrightarrow{\sim} \mathscr{V}_r(\operatorname{Spec} R);$$

Unfortunately, naive homotopy is not a "good" notion (e.g., it is not an equivalence relation).

• We restricted attention to regular rings in order to have an analog of homotopy invariance.

- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_k, the category of smooth k-varieties

- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_k, the category of smooth k-varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., *Gr_r* is not in this category, cannot form all quotients, etc.)

- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_k, the category of smooth k-varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., *Gr_r* is not in this category, cannot form all quotients, etc.)
- Spc_k "spaces" an enlargement of Sm_k where we can perform all the constructions we will want later (simplicial presheaves on Sm_k)

- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_k, the category of smooth k-varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., *Gr_r* is not in this category, cannot form all quotients, etc.)
- Spc_k "spaces" an enlargement of Sm_k where we can perform all the constructions we will want later (simplicial presheaves on Sm_k)
- We now force two kinds of maps to be "weak-equivalences":

- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_k, the category of smooth k-varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., *Gr_r* is not in this category, cannot form all quotients, etc.)
- Spc_k "spaces" an enlargement of Sm_k where we can perform all the constructions we will want later (simplicial presheaves on Sm_k)
- We now force two kinds of maps to be "weak-equivalences":
 - Nisnevich local weak equivalences: roughly, if *X* can be covered by $\{U_i\}$, then we may build a Cech object $C(u) \to X$, and we force $C(u) \to X$ to be an isomorphism

- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_k, the category of smooth k-varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., *Gr_r* is not in this category, cannot form all quotients, etc.)
- Spc_k "spaces" an enlargement of Sm_k where we can perform all the constructions we will want later (simplicial presheaves on Sm_k)
- We now force two kinds of maps to be "weak-equivalences":
 - Nisnevich local weak equivalences: roughly, if *X* can be covered by $\{U_i\}$, then we may build a Cech object $C(u) \to X$, and we force $C(u) \to X$ to be an isomorphism
 - \mathbb{A}^1 -weak equivalences: $X \times \mathbb{A}^1 \to X$

- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_k, the category of smooth k-varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., *Gr_r* is not in this category, cannot form all quotients, etc.)
- Spc_k "spaces" an enlargement of Sm_k where we can perform all the constructions we will want later (simplicial presheaves on Sm_k)
- We now force two kinds of maps to be "weak-equivalences":
 - Nisnevich local weak equivalences: roughly, if *X* can be covered by $\{U_i\}$, then we may build a Cech object $C(u) \to X$, and we force $C(u) \to X$ to be an isomorphism
 - \mathbb{A}^1 -weak equivalences: $X \times \mathbb{A}^1 \to X$
- $\mathscr{H}_{alg}(k)$ for the category obtained by inverting Nisnevich local weak equivalences

- We restricted attention to regular rings in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_k, the category of smooth k-varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., *Gr_r* is not in this category, cannot form all quotients, etc.)
- Spc_k "spaces" an enlargement of Sm_k where we can perform all the constructions we will want later (simplicial presheaves on Sm_k)
- We now force two kinds of maps to be "weak-equivalences":
 - Nisnevich local weak equivalences: roughly, if *X* can be covered by $\{U_i\}$, then we may build a Cech object $C(u) \to X$, and we force $C(u) \to X$ to be an isomorphism
 - \mathbb{A}^1 -weak equivalences: $X \times \mathbb{A}^1 \to X$
- $\mathscr{H}_{alg}(k)$ for the category obtained by inverting Nisnevich local weak equivalences and
- ℋ_{mot}(k) for the category obtained by inverting both Nisnevich local and A¹-weak equivalences (this is the Morel–Voevodsky A¹-homotopy category)

Computing maps in $\mathcal{H}_{alg}(k)$ or $\mathcal{H}_{mot}(k)$ is hard (not just a quotient of morphisms by an equivalence relation)

Computing maps in $\mathcal{H}_{alg}(k)$ or $\mathcal{H}_{mot}(k)$ is hard (not just a quotient of morphisms by an equivalence relation)

Example (Non-abelian sheaf cohomology)

• *Rank r vector bundles are the same thing as principal bundles under the general linear group GL_r;*

Computing maps in $\mathscr{H}_{alg}(k)$ or $\mathscr{H}_{mot}(k)$ is hard (not just a quotient of morphisms by an equivalence relation)

Example (Non-abelian sheaf cohomology)

- *Rank r vector bundles are the same thing as principal bundles under the general linear group GL_r;*
- If X is a smooth scheme, then the sheaf cohomology pointed set $H^1(X, GL_r)$ classifies GL_r -torsors (can be computed using Cech cohomology)

Computing maps in $\mathcal{H}_{alg}(k)$ or $\mathcal{H}_{mot}(k)$ is hard (not just a quotient of morphisms by an equivalence relation)

Example (Non-abelian sheaf cohomology)

- *Rank r vector bundles are the same thing as principal bundles under the general linear group GL_r;*
- If X is a smooth scheme, then the sheaf cohomology pointed set $H^1(X, GL_r)$ classifies GL_r -torsors (can be computed using Cech cohomology)
- We may define a space BGL_r

$$\cdots \Longrightarrow GL_r \times GL_r \Longrightarrow GL_r \Longrightarrow *$$

Computing maps in $\mathcal{H}_{alg}(k)$ or $\mathcal{H}_{mot}(k)$ is hard (not just a quotient of morphisms by an equivalence relation)

Example (Non-abelian sheaf cohomology)

- *Rank r vector bundles are the same thing as principal bundles under the general linear group GL_r;*
- If X is a smooth scheme, then the sheaf cohomology pointed set $H^1(X, GL_r)$ classifies GL_r -torsors (can be computed using Cech cohomology)
- We may define a space BGL_r

$$\cdots \Longrightarrow GL_r \times GL_r \Longrightarrow GL_r \Longrightarrow *$$

• Then, for any smooth scheme X, $\operatorname{Hom}_{\mathscr{H}_{dle}(k)}(X, BGL_r) \cong \mathscr{V}_r(X)$

Computing maps in $\mathscr{H}_{alg}(k)$ or $\mathscr{H}_{mot}(k)$ is hard (not just a quotient of morphisms by an equivalence relation)

Example (Non-abelian sheaf cohomology)

- *Rank r vector bundles are the same thing as principal bundles under the general linear group GL_r;*
- If X is a smooth scheme, then the sheaf cohomology pointed set $H^1(X, GL_r)$ classifies GL_r -torsors (can be computed using Cech cohomology)
- We may define a space BGL_r

$$\cdots \Longrightarrow GL_r \times GL_r \Longrightarrow GL_r \Longrightarrow *$$

• Then, for any smooth scheme X, $\operatorname{Hom}_{\mathscr{H}_{dle}(k)}(X, BGL_r) \cong \mathscr{V}_r(X)$

Note: BGL_r and Gr_r are not isomorphic in $\mathscr{H}_{alg}(k)$!

Example

If $\pi : Y \to X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^1 -weak equivalence (e.g., if π is a vector bundle):

Example

If $\pi : Y \to X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^1 -weak equivalence (e.g., if π is a vector bundle):

• $SL_2 \rightarrow \mathbb{A}^2 \setminus 0$ (project a matrix onto its first column) is an \mathbb{A}^1 -weak equivalence;

Example

If $\pi : Y \to X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^1 -weak equivalence (e.g., if π is a vector bundle):

- $SL_2 \rightarrow \mathbb{A}^2 \setminus 0$ (project a matrix onto its first column) is an \mathbb{A}^1 -weak equivalence;
- the complement of the incidence divisor in P¹ × P¹ is a smooth affine quadric Q₂ that is A¹-weakly equivalent to P¹

Example

If $\pi : Y \to X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^1 -weak equivalence (e.g., if π is a vector bundle):

- $SL_2 \rightarrow \mathbb{A}^2 \setminus 0$ (project a matrix onto its first column) is an \mathbb{A}^1 -weak equivalence;
- the complement of the incidence divisor in P¹ × P¹ is a smooth affine quadric Q₂ that is A¹-weakly equivalent to P¹

Example

• $\mathbb{A}^{\infty} \setminus 0$ is \mathbb{A}^1 -contractible: the "shift map" is naively homotopic to the identity

Example

If $\pi : Y \to X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^1 -weak equivalence (e.g., if π is a vector bundle):

- $SL_2 \rightarrow \mathbb{A}^2 \setminus 0$ (project a matrix onto its first column) is an \mathbb{A}^1 -weak equivalence;
- the complement of the incidence divisor in P¹ × P¹ is a smooth affine quadric Q₂ that is A¹-weakly equivalent to P¹

Example

• $\mathbb{A}^{\infty} \setminus 0$ is \mathbb{A}^1 -contractible: the "shift map" is naively homotopic to the identity

•
$$Gr_1 = \mathbb{P}^{\infty} = \mathbb{A}^{\infty} \setminus 0/GL_1 \rightarrow BGL_1$$
 is an \mathbb{A}^1 -weak equivalence

Example

If $\pi : Y \to X$ is Zariski locally trivial with affine space fibers, then π is an \mathbb{A}^1 -weak equivalence (e.g., if π is a vector bundle):

- $SL_2 \rightarrow \mathbb{A}^2 \setminus 0$ (project a matrix onto its first column) is an \mathbb{A}^1 -weak equivalence;
- the complement of the incidence divisor in P¹ × P¹ is a smooth affine quadric Q₂ that is A¹-weakly equivalent to P¹

Example

- $\mathbb{A}^{\infty} \setminus 0$ is \mathbb{A}^1 -contractible: the "shift map" is naively homotopic to the identity
- $Gr_1 = \mathbb{P}^{\infty} = \mathbb{A}^{\infty} \setminus 0/GL_1 \rightarrow BGL_1$ is an \mathbb{A}^1 -weak equivalence
- More generally, $Gr_n \rightarrow BGL_n$ corresponding to the tautological vector bundle is an \mathbb{A}^1 -weak equivalence

If k is regular, one may show $\operatorname{Hom}_{\mathscr{H}_{mot}(k)}(X, BGL_1) = Pic(X)$ for any smooth k-scheme X.

• Set
$$Q_4 = \operatorname{Spec} k[x_1, x_2, x_3, x_4, z] / \langle x_1 x_2 - x_3 x_4 = z(z+1) \rangle$$

Example (A., B. Doran '08)

• Set
$$Q_4 = \operatorname{Spec} k[x_1, x_2, x_3, x_4, z] / \langle x_1 x_2 - x_3 x_4 = z(z+1) \rangle$$

• $E_2 \subset Q_4$ defined by $x_1 = x_3 = z + 1 = 0$ is isomorphic to \mathbb{A}^2

- Set $Q_4 = \operatorname{Spec} k[x_1, x_2, x_3, x_4, z] / \langle x_1 x_2 x_3 x_4 = z(z+1) \rangle$
- $E_2 \subset Q_4$ defined by $x_1 = x_3 = z + 1 = 0$ is isomorphic to \mathbb{A}^2
- $X_4 = Q_4 \setminus E_2$ is actually \mathbb{A}^1 -contractible: there is an explicit morphism $\mathbb{A}^5 \to X_4$ that is Zariski locally trivial with fibers \mathbb{A}^1

- Set $Q_4 = \operatorname{Spec} k[x_1, x_2, x_3, x_4, z] / \langle x_1 x_2 x_3 x_4 = z(z+1) \rangle$
- $E_2 \subset Q_4$ defined by $x_1 = x_3 = z + 1 = 0$ is isomorphic to \mathbb{A}^2
- $X_4 = Q_4 \setminus E_2$ is actually \mathbb{A}^1 -contractible: there is an explicit morphism $\mathbb{A}^5 \to X_4$ that is Zariski locally trivial with fibers \mathbb{A}^1
- Q₄ carries an explicit non-trivial rank 2 bundle (the Hopf bundle);

- Set $Q_4 = \operatorname{Spec} k[x_1, x_2, x_3, x_4, z] / \langle x_1 x_2 x_3 x_4 = z(z+1) \rangle$
- $E_2 \subset Q_4$ defined by $x_1 = x_3 = z + 1 = 0$ is isomorphic to \mathbb{A}^2
- $X_4 = Q_4 \setminus E_2$ is actually \mathbb{A}^1 -contractible: there is an explicit morphism $\mathbb{A}^5 \to X_4$ that is Zariski locally trivial with fibers \mathbb{A}^1
- Q_4 carries an explicit non-trivial rank 2 bundle (the Hopf bundle);
- *this bundle restricts non-trivially to X*₄, *i.e.*, A¹-*contractible varieties may carry non-trivial vector bundles!*

Theorem

If k is a field or \mathbb{Z} , then for any smooth affine k-scheme $X = \operatorname{Spec} R$,

$$[\operatorname{Spec} R, Gr_r]_{naive} = [\operatorname{Spec} R, Gr_r]_{\mathbb{A}^1} \xrightarrow{\sim} \mathscr{V}_r(\operatorname{Spec} R).$$

Theorem

If k is a field or \mathbb{Z} , then for any smooth affine k-scheme $X = \operatorname{Spec} R$,

$$[\operatorname{Spec} R, Gr_r]_{naive} = [\operatorname{Spec} R, Gr_r]_{\mathbb{A}^1} \xrightarrow{\sim} \mathscr{V}_r(\operatorname{Spec} R).$$

• Morel '06 if $r \neq 2$ and k a perfect field

Theorem

If k is a field or \mathbb{Z} , then for any smooth affine k-scheme $X = \operatorname{Spec} R$,

$$[\operatorname{Spec} R, Gr_r]_{naive} = [\operatorname{Spec} R, Gr_r]_{\mathbb{A}^1} \xrightarrow{\sim} \mathscr{V}_r(\operatorname{Spec} R).$$

- Morel '06 if $r \neq 2$ and k a perfect field
- Schlichting '15 arbitrary r, k perfect; simplifies part of Morel's argument

Theorem

If k is a field or \mathbb{Z} , then for any smooth affine k-scheme $X = \operatorname{Spec} R$,

$$[\operatorname{Spec} R, Gr_r]_{naive} = [\operatorname{Spec} R, Gr_r]_{\mathbb{A}^1} \xrightarrow{\sim} \mathscr{V}_r(\operatorname{Spec} R).$$

- Morel '06 if $r \neq 2$ and k a perfect field
- Schlichting '15 arbitrary r, k perfect; simplifies part of Morel's argument
- A.–M. Hoyois–M. Wendt '15 (essentially self-contained: in essence, the theorem is equivalent to the Bass–Quillen conjecture for all smooth algebras over *k*)

Theorem

If k is a field or \mathbb{Z} , then for any smooth affine k-scheme $X = \operatorname{Spec} R$,

$$[\operatorname{Spec} R, Gr_r]_{naive} = [\operatorname{Spec} R, Gr_r]_{\mathbb{A}^1} \xrightarrow{\sim} \mathscr{V}_r(\operatorname{Spec} R).$$

- Morel '06 if $r \neq 2$ and k a perfect field
- Schlichting '15 arbitrary r, k perfect; simplifies part of Morel's argument
- A.–M. Hoyois–M. Wendt '15 (essentially self-contained: in essence, the theorem is equivalent to the Bass–Quillen conjecture for all smooth algebras over *k*)

New goal: effectively describe $[\operatorname{Spec} R, Gr_r]_{\mathbb{A}^1}$.

If (𝔅, x) is a pointed space, we may define A¹-homotopy sheaves π_i^{A1}(𝔅, x).

- If (𝔅, x) is a pointed space, we may define A¹-homotopy sheaves π_i^{A1}(𝔅, x).
- A¹-Postnikov tower: given a pointed A¹-connected space, we can build X̂ inductively out of Eilenberg-Mac Lane spaces K(π, n); these have exactly 1 non-trivial A¹-homotopy sheaf in degree n

- If (𝔅, 𝔅) is a pointed space, we may define A¹-homotopy sheaves π^{A¹}_i(𝔅, 𝔅).
- A¹-Postnikov tower: given a pointed A¹-connected space, we can build X̂ inductively out of Eilenberg-Mac Lane spaces K(π, n); these have exactly 1 non-trivial A¹-homotopy sheaf in degree n
- We can inductively describe the set of maps $[U, \mathscr{X}]_{\mathbb{A}^1}$ using sheaf cohomology with coefficients in \mathbb{A}^1 -homotopy sheaves

Example

For any integer $n \ge 1$, $\pi_0^{\mathbb{A}^1}(SL_n) = 1$

Example

For any integer $n \ge 1$, $\pi_0^{\mathbb{A}^1}(SL_n) = 1$

• Turns out it suffices to check this on sections over fields

Example

For any integer $n \ge 1$, $\pi_0^{\mathbb{A}^1}(SL_n) = 1$

- Turns out it suffices to check this on sections over fields
- For any field F, any matrix in SL_n(F) may be factored as a product of elementary (shearing) matrices

Example

For any integer $n \ge 1$, $\pi_0^{\mathbb{A}^1}(SL_n) = 1$

- Turns out it suffices to check this on sections over fields
- For any field F, any matrix in SL_n(F) may be factored as a product of elementary (shearing) matrices
- Any elementary shearing matrix is \mathbb{A}^1 -homotopic: if $a \in F$ then use

$$\begin{pmatrix} 1 & at \\ 0 & 1 \end{pmatrix}$$

Example

For any integer $n \ge 1$, $\pi_0^{\mathbb{A}^1}(SL_n) = 1$

- Turns out it suffices to check this on sections over fields
- For any field F, any matrix in SL_n(F) may be factored as a product of elementary (shearing) matrices
- Any elementary shearing matrix is \mathbb{A}^1 -homotopic: if $a \in F$ then use

$$\begin{pmatrix} 1 & at \\ 0 & 1 \end{pmatrix}$$

• Any matrix in $SL_n(F)$ is naively \mathbb{A}^1 -homotopic to the identity.

$$\boldsymbol{\pi}_1^{\mathbb{A}^1}(BGL_1) = GL_1$$

- $\pi_1^{\mathbb{A}^1}(BGL_1) = GL_1$
 - GL₁ is discrete, i.e., π₀^{A¹}(GL₁) = GL₁: there are no non-constant algebraic maps A¹ → GL₁

 $\pi_1^{\mathbb{A}^1}(BGL_1) = GL_1$

- GL₁ is discrete, i.e., π₀^{A¹}(GL₁) = GL₁: there are no non-constant algebraic maps A¹ → GL₁
- the map $\mathbb{A}^{\infty} \setminus 0 \to BGL_1$ is a principal GL_1 -bundle and this yields an \mathbb{A}^1 -fiber sequence

 $\pi_1^{\mathbb{A}^1}(BGL_1) = GL_1$

- GL₁ is discrete, i.e., π₀^{A¹}(GL₁) = GL₁: there are no non-constant algebraic maps A¹ → GL₁
- the map $\mathbb{A}^{\infty} \setminus 0 \to BGL_1$ is a principal GL_1 -bundle and this yields an \mathbb{A}^1 -fiber sequence
- since A[∞] \ 0 is A¹-contractible, the result follows from the long exact sequence in homotopy

 $\pi_1^{\mathbb{A}^1}(BGL_1) = GL_1$

- GL₁ is discrete, i.e., π₀^{A¹}(GL₁) = GL₁: there are no non-constant algebraic maps A¹ → GL₁
- the map $\mathbb{A}^{\infty} \setminus 0 \to BGL_1$ is a principal GL_1 -bundle and this yields an \mathbb{A}^1 -fiber sequence
- since A[∞] \ 0 is A¹-contractible, the result follows from the long exact sequence in homotopy

Example

For any
$$n \ge 2$$
, $\pi_1^{\mathbb{A}^1}(BSL_n) = 1$; one identifies $\pi_1^{\mathbb{A}^1}(BSL_n) = \pi_0(SL_n)$ using a fiber sequence.

 $\pi_1^{\mathbb{A}^1}(BGL_1) = GL_1$

- GL₁ is discrete, i.e., π₀^{A¹}(GL₁) = GL₁: there are no non-constant algebraic maps A¹ → GL₁
- the map $\mathbb{A}^{\infty} \setminus 0 \to BGL_1$ is a principal GL_1 -bundle and this yields an \mathbb{A}^1 -fiber sequence
- since A[∞] \ 0 is A¹-contractible, the result follows from the long exact sequence in homotopy

Example

For any
$$n \ge 2$$
, $\pi_1^{\mathbb{A}^1}(BSL_n) = 1$; one identifies $\pi_1^{\mathbb{A}^1}(BSL_n) = \pi_0(SL_n)$ using a fiber sequence.

Example

For any $n \ge 2$, the map $BGL_n \to BGL_1$ coming from det : $GL_n \to GL_1$ induces an isomorphism $\pi_1^{\mathbb{A}^1}(BGL_n) = GL_1$.

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \ge 3. \end{cases}$$

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \ge 3. \end{cases}$$

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \ge 3. \end{cases}$$

- \mathbf{K}_2^M is the second Milnor K-theory sheaf
 - the map $BSL_n \to BGL_\infty$ induces an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$ for $n \ge 3$ and the latter represents Quillen's algebraic K-theory

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \ge 3. \end{cases}$$

- the map BSL_n → BGL_∞ induces an isomorphism on π₂^{A¹}(-) for n ≥ 3 and the latter represents Quillen's algebraic K-theory
- $\mathbf{K}_2^M = \pi_1^{\mathbb{A}^1}(SL_n), n \ge 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_2)

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \geq 3. \end{cases}$$

- the map BSL_n → BGL_∞ induces an isomorphism on π₂^{A¹}(-) for n ≥ 3 and the latter represents Quillen's algebraic K-theory
- $\mathbf{K}_2^M = \pi_1^{\mathbb{A}^1}(SL_n), n \ge 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_2)
- \mathbf{K}_2^{MW} is the second Milnor–Witt K-theory sheaf

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \geq 3. \end{cases}$$

- the map BSL_n → BGL_∞ induces an isomorphism on π₂^{A¹}(−) for n ≥ 3 and the latter represents Quillen's algebraic K-theory
- $\mathbf{K}_2^M = \pi_1^{\mathbb{A}^1}(SL_n), n \ge 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_2)
- \mathbf{K}_2^{MW} is the second Milnor–Witt K-theory sheaf
 - $SL_2 = Sp_2$ and the map $BSL_2 \to BSp_\infty$ is an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \geq 3. \end{cases}$$

- the map BSL_n → BGL_∞ induces an isomorphism on π₂^{A¹}(−) for n ≥ 3 and the latter represents Quillen's algebraic K-theory
- $\mathbf{K}_2^M = \pi_1^{\mathbb{A}^1}(SL_n), n \ge 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_2)
- \mathbf{K}_2^{MW} is the second Milnor–Witt K-theory sheaf
 - $SL_2 = Sp_2$ and the map $BSL_2 \to BSp_\infty$ is an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$
 - the latter represents symplectic K-theory and includes information about symplectic forms over our base

There are isomorphisms

$$\pi_2^{\mathbb{A}^1}(BSL_n) \xrightarrow{\sim} \begin{cases} \mathbf{K}_2^{MW} & \text{if } n = 2\\ \mathbf{K}_2^M & \text{if } n \ge 3. \end{cases}$$

- the map $BSL_n \to BGL_\infty$ induces an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$ for $n \ge 3$ and the latter represents Quillen's algebraic K-theory
- $\mathbf{K}_2^M = \pi_1^{\mathbb{A}^1}(SL_n), n \ge 3$ and can be thought of as "non-trivial relations among elementary matrices" (classic presentation of Milnor K_2)
- \mathbf{K}_2^{MW} is the second Milnor–Witt K-theory sheaf
 - $SL_2 = Sp_2$ and the map $BSL_2 \to BSp_\infty$ is an isomorphism on $\pi_2^{\mathbb{A}^1}(-)$
 - the latter represents symplectic K-theory and includes information about symplectic forms over our base
- the map $BSp_{\infty} \to BGL_{\infty}$ yields a map $\mathbf{K}_{2}^{MW} \to \mathbf{K}_{2}^{M}$; this map is an epimorphism of sheaves and its kernel may be described via the "fundamental ideal" in the Witt ring (A. Suslin)

Counting vector bundles with motivic homotopy theory (based on joint work with J. Fasel, M. Hopkins)

Question

Are there finitely many vector bundles of a given rank on a smooth affine variety over a finite field?

Question

Are there finitely many vector bundles of a given rank on a smooth affine variety over a finite field?

• No, not even in dimension 2. Indeed, $Pic(Q_2) = Pic(\mathbb{P}^1) = \mathbb{Z}$, which is not finite.

Question

Are there finitely many vector bundles of a given rank on a smooth affine variety over a finite field?

- No, not even in dimension 2. Indeed, $Pic(Q_2) = Pic(\mathbb{P}^1) = \mathbb{Z}$, which is not finite.
- This problem persists in higher rank, since we may take direct sums of line bundles.

Question

Are there finitely many vector bundles of a given rank on a smooth affine variety over a finite field?

- No, not even in dimension 2. Indeed, $Pic(Q_2) = Pic(\mathbb{P}^1) = \mathbb{Z}$, which is not finite.
- This problem persists in higher rank, since we may take direct sums of line bundles.
- Fix the determinant, a.k.a., the first Chern class.

Question

Are there finitely many vector bundles of a given rank with fixed determinant on a smooth affine variety over a finite field?

If X is a smooth affine surface over a finite field, then there are finitely many isomorphism classes of vector bundles with a given rank and determinant.

If X is a smooth affine surface over a finite field, then there are finitely many isomorphism classes of vector bundles with a given rank and determinant.

Proof (trivial determinant case).

• Serre's splitting theorem \implies suffices to prove finiteness in rank 2

If X is a smooth affine surface over a finite field, then there are finitely many isomorphism classes of vector bundles with a given rank and determinant.

Proof (trivial determinant case).

- Serre's splitting theorem \implies suffices to prove finiteness in rank 2
- Since *X* has dimension 2, we can identify $[X, BSL_2]_{\mathbb{A}^1} = H^2(X, \mathbf{K}_2^{MW})$

If X is a smooth affine surface over a finite field, then there are finitely many isomorphism classes of vector bundles with a given rank and determinant.

Proof (trivial determinant case).

- Serre's splitting theorem \implies suffices to prove finiteness in rank 2
- Since X has dimension 2, we can identify $[X, BSL_2]_{\mathbb{A}^1} = H^2(X, \mathbf{K}_2^{MW})$
- The canonical map H²(X, K^{MW}₂) → H²(X, K^M₂) is surjective, and an ≃ since we work over a finite field (uses Merkurjev–Suslin theorem)

If X is a smooth affine surface over a finite field, then there are finitely many isomorphism classes of vector bundles with a given rank and determinant.

Proof (trivial determinant case).

- Serre's splitting theorem \implies suffices to prove finiteness in rank 2
- Since X has dimension 2, we can identify $[X, BSL_2]_{\mathbb{A}^1} = H^2(X, \mathbf{K}_2^{MW})$
- The canonical map H²(X, K^{MW}₂) → H²(X, K^M₂) is surjective, and an ≃ since we work over a finite field (uses Merkurjev–Suslin theorem)
- When working over a finite field, $H^2(X, \mathbf{K}_2^M)$ is finite by higher-dimensional class field theory (Kato–Saito)

• The determinant of a vector bundle is a class in Pic(X); this is the first Chern class in Chow-theory

- The determinant of a vector bundle is a class in Pic(X); this is the first Chern class in Chow-theory
- We may define higher Chern classes in Chow theory as in topology: the Chow ring of the Gr_r may be computed to be a polynomial ring on generators c₁,..., c_r

- The determinant of a vector bundle is a class in Pic(X); this is the first Chern class in Chow-theory
- We may define higher Chern classes in Chow theory as in topology: the Chow ring of the Gr_r may be computed to be a polynomial ring on generators c₁,..., c_r
- The class in $H^2(X, \mathbf{K}_2^M) = CH^2(X)$ (Kato's formula) described above is precisely the second Chern class of the vector bundle

- The determinant of a vector bundle is a class in Pic(X); this is the first Chern class in Chow-theory
- We may define higher Chern classes in Chow theory as in topology: the Chow ring of the Gr_r may be computed to be a polynomial ring on generators c₁,..., c_r
- The class in $H^2(X, \mathbf{K}_2^M) = CH^2(X)$ (Kato's formula) described above is precisely the second Chern class of the vector bundle
- The argument actually shows that there are precisely $|CH^2(X)|$ vector bundles with a fixed rank and determinant

- The determinant of a vector bundle is a class in Pic(X); this is the first Chern class in Chow-theory
- We may define higher Chern classes in Chow theory as in topology: the Chow ring of the Gr_r may be computed to be a polynomial ring on generators c₁,..., c_r
- The class in $H^2(X, \mathbf{K}_2^M) = CH^2(X)$ (Kato's formula) described above is precisely the second Chern class of the vector bundle
- The argument actually shows that there are precisely $|CH^2(X)|$ vector bundles with a fixed rank and determinant
- The result actually holds for a "regular affine arithmetic surface" (without using any A¹-homotopy theory), but the A¹-homotopy theoretic argument generalizes.

If F is a finite field, characteristic unequal to 2, and X is a smooth affine 3-fold over F, then there are finitely many isomorphism classes of vector bundles with given $c_i \in CH^i(X)$, i = 1, 2.

If F is a finite field, characteristic unequal to 2, and X is a smooth affine 3-fold over F, then there are finitely many isomorphism classes of vector bundles with given $c_i \in CH^i(X)$, i = 1, 2. In particular, there are finitely many isomorphism classes of vector bundles with given rank and determinant if and only if $CH^2(X)$ is finite.

If F is a finite field, characteristic unequal to 2, and X is a smooth affine 3-fold over F, then there are finitely many isomorphism classes of vector bundles with given $c_i \in CH^i(X)$, i = 1, 2. In particular, there are finitely many isomorphism classes of vector bundles with given rank and determinant if and only if $CH^2(X)$ is finite.

Proof.

• Suffices to establish the result for ranks 2 and 3 by Serre's splitting

If F is a finite field, characteristic unequal to 2, and X is a smooth affine 3-fold over F, then there are finitely many isomorphism classes of vector bundles with given $c_i \in CH^i(X)$, i = 1, 2. In particular, there are finitely many isomorphism classes of vector bundles with given rank and determinant if and only if $CH^2(X)$ is finite.

Proof.

- Suffices to establish the result for ranks 2 and 3 by Serre's splitting
- Working up the Postnikov tower requires computation of $\pi_3^{\mathbb{A}^1}(GL_2)$ and $\pi_3(BGL_3)$ (A.-Fasel)

If F is a finite field, characteristic unequal to 2, and X is a smooth affine 3-fold over F, then there are finitely many isomorphism classes of vector bundles with given $c_i \in CH^i(X)$, i = 1, 2. In particular, there are finitely many isomorphism classes of vector bundles with given rank and determinant if and only if $CH^2(X)$ is finite.

Proof.

- Suffices to establish the result for ranks 2 and 3 by Serre's splitting
- Working up the Postnikov tower requires computation of $\pi_3^{\mathbb{A}^1}(GL_2)$ and $\pi_3(BGL_3)$ (A.-Fasel)
- Then, use known finiteness results for certain motivic cohomology groups (Kato–Saito, Kerz–Saito)

If F is a finite field, characteristic unequal to 2, and X is a smooth affine 3-fold over F, then there are finitely many isomorphism classes of vector bundles with given $c_i \in CH^i(X)$, i = 1, 2. In particular, there are finitely many isomorphism classes of vector bundles with given rank and determinant if and only if $CH^2(X)$ is finite.

Proof.

- Suffices to establish the result for ranks 2 and 3 by Serre's splitting
- Working up the Postnikov tower requires computation of $\pi_3^{\mathbb{A}^1}(GL_2)$ and $\pi_3(BGL_3)$ (A.-Fasel)
- Then, use known finiteness results for certain motivic cohomology groups (Kato–Saito, Kerz–Saito)

• One may check $CH^2(X)$ is finite in many examples.

- One may check $CH^2(X)$ is finite in many examples.
- A variant of the Beilinson–Tate conjecture implies that $CH^2(X)$ is *always* finite under the above hypotheses.

- One may check $CH^2(X)$ is finite in many examples.
- A variant of the Beilinson–Tate conjecture implies that $CH^2(X)$ is *always* finite under the above hypotheses.

Conjecture

If X is a smooth affine threefold over a finite field, then there are always finitely many isomorphism classes of vector bundles with a given rank and determinant.

Similar counterexamples suggest that the following is the best-possible statement.

Similar counterexamples suggest that the following is the best-possible statement.

Conjecture

If X is a smooth affine variety of dimension d over a finite field, then there are finitely many isomorphism classes of vector bundles with fixed Chern clases $c_i \in CH^i(X), 1 \le i \le \lfloor \frac{d}{2} \rfloor$.

Jannsen's version of Beilinson–Tate conjecture, resolution of singularities in positive characteristic and the motivic Bass conjecture on finite generation of motivic cohomology guarantee that CHⁱ(X) is finite for i > ⌊d/2⌋, together with finiteness of a host of other motivic cohomology groups

- Jannsen's version of Beilinson–Tate conjecture, resolution of singularities in positive characteristic and the motivic Bass conjecture on finite generation of motivic cohomology guarantee that CHⁱ(X) is finite for i > ⌊d/2⌋, together with finiteness of a host of other motivic cohomology groups
- Thus, the conjecture follows if we know that we can always express maps into [X, BGL_n]_{A¹} purely in terms of motivic cohomology

- Jannsen's version of Beilinson–Tate conjecture, resolution of singularities in positive characteristic and the motivic Bass conjecture on finite generation of motivic cohomology guarantee that CHⁱ(X) is finite for i > ⌊d/2⌋, together with finiteness of a host of other motivic cohomology groups
- Thus, the conjecture follows if we know that we can always express maps into [X, BGL_n]_{A¹} purely in terms of motivic cohomology
- The latter follows from Hopkins' "Wilson splitting hypothesis"; loosely the classifying space for algebraic cobordism is "even"; this guarantees that we may write nice "resolutions" of BGL_n

Question

If X is a smooth affine threefold over a finite field, then how many vector bundles are there with a given rank and determinant?

Question

If X is a smooth affine threefold over a finite field, then how many vector bundles are there with a given rank and determinant?

• This number may depend on the determinant.

Question

If X is a smooth affine threefold over a finite field, then how many vector bundles are there with a given rank and determinant?

- This number may depend on the determinant.
- What do these numbers mean, what do they measure? We might think of them as some higher rank/higher dimensional version of the class number

Question

If X is a smooth affine threefold over a finite field, then how many vector bundles are there with a given rank and determinant?

- This number may depend on the determinant.
- What do these numbers mean, what do they measure? We might think of them as some higher rank/higher dimensional version of the class number
- What happens for general regular rings of Krull dimension *d* ≥ 3 that are finitely generated as Z-algebras?

Thank you!