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Throughout the talk: R is a commutative (unital) ring.

Definition
An R-module P is called projective if it is a direct summand of a free
R-module.

Equivalently, P is projective if:

(lifting property) given an R-module map f : P→ M, and a surjective
R-module map N � M, we may always find f̃ : P→ N.

(linear algebraic) if P is also finitely generated, then there exist an integer
n, and ε ∈ EndR(R⊕n) such that ε2 = ε and P = εR⊕n.

From now on, all projective modules will be assumed finitely generated (f.g.)
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Projective modules behave like vector bundles:

f.g. projective modules are “locally free” modules
Algebraically: P a f.g. projective R-module; we can find elements f1, . . . , fr ∈ R
such that fi generate the unit ideal and such that P[ 1

fi
] is a free R[ 1

fi
]-module of finite

rank
Geometrically: we associate with R its prime spectrum SpecR, and SpecR[ 1

fi
]

forms an open cover of SpecR on which the bundle corresponding to P may be
trivialized

f.g. projective modules have a rank
if SpecR is connected, then this is just an integer
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Serre–Swan correspondence

{ finite rank v.b. over M} ←→ { f.g. projective C(M)− modules };

M a (say) compact manifold;

C(M) = ring of continuous real-valued functions on M

Analogously:

Serre’s dictionary
If R is a ring, then

{ finite rank v.b. over SpecR} ←→ { f.g. projective R−modules };

Using this dictionary, one transplants intuition from geometry to algebra
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Theorem (Serre’s splitting theorem ’58)
Suppose R is a Noetherian commutative ring of Krull dimension d. If P is a
projective R-module of rank r > d, then there exists a projective R-module Q
of rank d and an isomorphism P ∼= Q⊕ R⊕r−d.

Example
If K is a number field, and OK is the ring of integers in K, then there are at
most finitely many projective OK-modules of a given rank.

OK is a Dedekind domain (in particular, it has Krull dimension 1)

By Serre’s theorem, a f.g. projective OK-module of rank r can be written
L⊕ Or−1

K where L has rank 1

Rank 1 projective modules form an abelian group (the Picard group)
under tensor product

Minkowski’s theorem implies that the Picard group is finite
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The problem of describing vector bundles is really homotopy-theoretic:

Vr(M) - set of isomorphism classes of rank r (real) vector bundles on M

Vr(M)→ Vr(M × I) is a bijection (homotopy invariance)

Grr - Grassmannian of r-dimensional subspaces of an infinite
dimensional real vector space

Grr carries a rank r “tautological” vector bundle

Continuous maps M → Grr yield rank r vector bundle on M by pullback;
homotopic maps yield isomorphic bundles

Theorem (Pontryagin–Steenrod)
Pulling back the tautological bundle determines a bijection:

[M,Grr]
∼−→Vr(M).

Real vector bundles on any contractible manifold (e.g., Rn) are trivial
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Question (Serre ’55)
If k is a field, is every f.g. projective k[x1, . . . , xn]-module free?

n = 1: yes, structure theorem for f.g. modules over a PID

n = 2: yes, Seshadri ’58

yes if r > n, Bass ’64

n = 3: yes if k algebraically closed, Murthy–Towber ’74

n = 3, 4, 5: yes, Suslin–Vaserstein ’73/’74

Theorem (Quillen–Suslin ’76)
If R is a PID, then every f.g. projective R[x1, . . . , xn]-module is free.
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Vr(SpecR) = {isomorphism classes of rank r v.b. on SpecR}

Question
If R is a ring, is

Vr(SpecR) −→ Vr(SpecR[t])

a bijection?

False for r = 1 without additional hypotheses on R
(e.g., R = k[x, y]/(y2 − x3))

We will assume R is regular (an analog of smoothness)
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Conjecture (Bass–Quillen ’72)
If R is a regular ring of finite Krull dimension, then for any r ≥ 0

Vr(SpecR) −→ Vr(SpecR[t])

is a bijection.

Quillen’s solution to Serre’s problem actually shows that the Bass-Quillen conjecture
holds for R a polynomial ring over a Dedekind domain.

Theorem (Lindel ’81)
The Bass-Quillen conjecture is true if R contains a field.

Popescu ’89 extended the Lindel’s theorem to some arithmetic situations (e.g., R is
regular over a Dedekind domain with perfect residue fields)

Still open in completely generality!
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Vector bundles and
motivic homotopy theory
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Grr is an (infinite-dimensional) algebraic variety

A map SpecR→ Grr corresponds to a vector bundle on R and a
collection of generating sections

We may speak of “naive” homotopies between such maps, i.e., two maps
f , g : SpecR→ Grr are naively homotopic if there exists a map
H : SpecR[t]→ Grr with H(0) = f and H(1) = g.

Theorem
If k is a field, and R is a regular k-algebra, then

[SpecR,Grr]naive
∼−→Vr(SpecR);

Unfortunately, naive homotopy is not a “good” notion (e.g., it is not an
equivalence relation).
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We restricted attention to regular rings in order to have an analog of
homotopy invariance.

k a fixed base-ring; Smk, the category of smooth k-varieties

Smk is not “big enough” to do homotopy theory (e.g., Grr is not in this
category, cannot form all quotients, etc.)

Spck - “spaces” an enlargement of Smk where we can perform all the
constructions we will want later (simplicial presheaves on Smk)
We now force two kinds of maps to be “weak-equivalences”:

Nisnevich local weak equivalences: roughly, if X can be covered by {Ui},
then we may build a Cech object C(u)→ X, and we force C(u)→ X to be
an isomorphism
A1-weak equivalences: X × A1 → X

Halg(k) for the category obtained by inverting Nisnevich local weak
equivalences and

Hmot(k) for the category obtained by inverting both Nisnevich local and
A1-weak equivalences (this is the Morel–Voevodsky A1-homotopy
category)
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Computing maps in Halg(k) or Hmot(k) is hard (not just a quotient of
morphisms by an equivalence relation)

Example (Non-abelian sheaf cohomology)
Rank r vector bundles are the same thing as principal bundles under the
general linear group GLr;

If X is a smooth scheme, then the sheaf cohomology pointed set
H1(X,GLr) classifies GLr-torsors (can be computed using Cech
cohomology)

We may define a space BGLr

· · ·
//////// GLr × GLr ////// GLr

//// ∗

Then, for any smooth scheme X, HomHalg(k)(X,BGLr) ∼= Vr(X)

Note: BGLr and Grr are not isomorphic in Halg(k)!
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Isomorphisms in Hmot(k) are called A1-weak equivalences

Example
If π : Y → X is Zariski locally trivial with affine space fibers, then π is an
A1-weak equivalence (e.g., if π is a vector bundle):

SL2 → A2 \ 0 (project a matrix onto its first column) is an A1-weak
equivalence;

the complement of the incidence divisor in P1 × P1 is a smooth affine
quadric Q2 that is A1-weakly equivalent to P1

Example

A∞ \ 0 is A1-contractible: the “shift map” is naively homotopic to the
identity

Gr1 = P∞ = A∞ \ 0/GL1 → BGL1 is an A1-weak equivalence

More generally, Grn → BGLn corresponding to the tautological vector
bundle is an A1-weak equivalence
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If k is regular, one may show HomHmot(k)(X,BGL1) = Pic(X) for any smooth
k-scheme X.

Unfortunately, this fails for BGLr with r ≥ 2.

Example (A., B. Doran ’08)
Set Q4 = Spec k[x1, x2, x3, x4, z]/〈x1x2 − x3x4 = z(z + 1)〉
E2 ⊂ Q4 defined by x1 = x3 = z + 1 = 0 is isomorphic to A2

X4 = Q4 \ E2 is actually A1-contractible: there is an explicit morphism
A5 → X4 that is Zariski locally trivial with fibers A1

Q4 carries an explicit non-trivial rank 2 bundle (the Hopf bundle);

this bundle restricts non-trivially to X4, i.e., A1-contractible varieties
may carry non-trivial vector bundles!
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Nevertheless:

Theorem
If k is a field or Z, then for any smooth affine k-scheme X = SpecR,

[SpecR,Grr]naive = [SpecR,Grr]A1
∼−→Vr(SpecR).

Morel ’06 if r 6= 2 and k a perfect field

Schlichting ’15 arbitrary r, k perfect; simplifies part of Morel’s argument

A.–M. Hoyois–M. Wendt ’15 (essentially self-contained: in essence, the
theorem is equivalent to the Bass–Quillen conjecture for all smooth
algebras over k)

New goal: effectively describe [SpecR,Grr]A1 .
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Classical homotopy theory gives techniques for providing a “cohomological”
description of homotopy classes: one factors a space into homotopically
simple spaces (Eilenberg–Mac Lane spaces). F. Morel developed these ideas
in algebraic geometry.

If (X , x) is a pointed space, we may define A1-homotopy sheaves
πA1

i (X , x).

A1-Postnikov tower: given a pointed A1-connected space, we can build
X inductively out of Eilenberg-Mac Lane spaces K(π, n); these have
exactly 1 non-trivial A1-homotopy sheaf in degree n

We can inductively describe the set of maps [U,X ]A1 using sheaf
cohomology with coefficients in A1-homotopy sheaves
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Intuition: a space should be A1-connected if points can be connected by
chains of affine lines

Example

For any integer n ≥ 1, πA1

0 (SLn) = 1

Turns out it suffices to check this on sections over fields

For any field F, any matrix in SLn(F) may be factored as a product of
elementary (shearing) matrices

Any elementary shearing matrix is A1-homotopic: if a ∈ F then use(
1 at
0 1

)

Any matrix in SLn(F) is naively A1-homotopic to the identity.
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Example

πA1

1 (BGL1) = GL1

GL1 is discrete, i.e., πA
1

0 (GL1) = GL1: there are no non-constant
algebraic maps A1 → GL1

the map A∞ \ 0→ BGL1 is a principal GL1-bundle and this yields an
A1-fiber sequence

since A∞ \ 0 is A1-contractible, the result follows from the long exact
sequence in homotopy

Example

For any n ≥ 2, πA1

1 (BSLn) = 1; one identifies πA1

1 (BSLn) = π0(SLn) using a
fiber sequence.

Example
For any n ≥ 2, the map BGLn → BGL1 coming from det : GLn → GL1
induces an isomorphism πA1

1 (BGLn) = GL1.
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Example (F. Morel)
There are isomorphisms

πA1

2 (BSLn)
∼−→

{
KMW

2 if n = 2
KM

2 if n ≥ 3.

KM
2 is the second Milnor K-theory sheaf

the map BSLn → BGL∞ induces an isomorphism on πA1

2 (−) for n ≥ 3
and the latter represents Quillen’s algebraic K-theory
KM

2 = πA1

1 (SLn), n ≥ 3 and can be thought of as “non-trivial relations
among elementary matrices” (classic presentation of Milnor K2)

KMW
2 is the second Milnor–Witt K-theory sheaf

SL2 = Sp2 and the map BSL2 → BSp∞ is an isomorphism on πA1

2 (−)
the latter represents symplectic K-theory and includes information about
symplectic forms over our base

the map BSp∞ → BGL∞ yields a map KMW
2 → KM

2 ; this map is an
epimorphism of sheaves and its kernel may be described via the
“fundamental ideal” in the Witt ring (A. Suslin)
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Counting vector bundles
with motivic homotopy theory

(based on joint work with J. Fasel, M. Hopkins)
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Restrict attention to smooth affine varieties over finite fields.

Question
Are there finitely many vector bundles of a given rank on a smooth affine
variety over a finite field?

No, not even in dimension 2. Indeed, Pic(Q2) = Pic(P1) = Z, which is
not finite.

This problem persists in higher rank, since we may take direct sums of
line bundles.

Fix the determinant, a.k.a., the first Chern class.
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Restrict attention to smooth affine varieties over finite fields.

Question
Are there finitely many vector bundles of a given rank with fixed determinant
on a smooth affine variety over a finite field?

No, not even in dimension 2. Indeed, Pic(Q2) = Pic(P1) = Z, which is
not finite.

This problem persists in higher rank, since we may take direct sums of
line bundles.

Fix the determinant, a.k.a., the first Chern class.
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Theorem (Bloch, Mohan Kumar–Murthy-Roy, Parshin)
If X is a smooth affine surface over a finite field, then there are finitely many
isomorphism classes of vector bundles with a given rank and determinant.

Proof (trivial determinant case).
Serre’s splitting theorem =⇒ suffices to prove finiteness in rank 2

Since X has dimension 2, we can identify [X,BSL2]A1 = H2(X,KMW
2 )

The canonical map H2(X,KMW
2 )→ H2(X,KM

2 ) is surjective, and an ∼=
since we work over a finite field (uses Merkurjev–Suslin theorem)

When working over a finite field, H2(X,KM
2 ) is finite by

higher-dimensional class field theory (Kato–Saito)
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Remark
The determinant of a vector bundle is a class in Pic(X); this is the first
Chern class in Chow-theory

We may define higher Chern classes in Chow theory as in topology: the
Chow ring of the Grr may be computed to be a polynomial ring on
generators c1, . . . , cr

The class in H2(X,KM
2 ) = CH2(X) (Kato’s formula) described above is

precisely the second Chern class of the vector bundle

The argument actually shows that there are precisely |CH2(X)| vector
bundles with a fixed rank and determinant

The result actually holds for a “regular affine arithmetic surface”
(without using any A1-homotopy theory), but the A1-homotopy theoretic
argument generalizes.
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Theorem
If F is a finite field, characteristic unequal to 2, and X is a smooth affine
3-fold over F, then there are finitely many isomorphism classes of vector
bundles with given ci ∈ CHi(X), i = 1, 2.

In particular, there are finitely many
isomorphism classes of vector bundles with given rank and determinant if and
only if CH2(X) is finite.

Proof.
Suffices to establish the result for ranks 2 and 3 by Serre’s splitting

Working up the Postnikov tower requires computation of πA1

3 (GL2) and
π3(BGL3) (A.-Fasel)

Then, use known finiteness results for certain motivic cohomology
groups (Kato–Saito, Kerz–Saito)
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One may check CH2(X) is finite in many examples.

A variant of the Beilinson–Tate conjecture implies that CH2(X) is
always finite under the above hypotheses.

Conjecture
If X is a smooth affine threefold over a finite field, then there are always
finitely many isomorphism classes of vector bundles with a given rank and
determinant.
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What should we expect in higher dimensions?

There are smooth affine 4-folds over a finite field that have infinitely
many isomorphism classes of rank 2 vector bundles with fixed rank and
determinant (e.g., take the complement of the incidence divisor in
P2 × P2).

Similar counterexamples suggest that the following is the best-possible
statement.

Conjecture
If X is a smooth affine variety of dimension d over a finite field, then there are
finitely many isomorphism classes of vector bundles with fixed Chern clases
ci ∈ CHi(X), 1 ≤ i ≤ bd

2c.
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Why should we believe this? Panglossian optimism:

Jannsen’s version of Beilinson–Tate conjecture, resolution of
singularities in positive characteristic and the motivic Bass conjecture on
finite generation of motivic cohomology guarantee that CHi(X) is finite
for i > b d

2c, together with finiteness of a host of other motivic
cohomology groups

Thus, the conjecture follows if we know that we can always express
maps into [X,BGLn]A1 purely in terms of motivic cohomology

The latter follows from Hopkins’ “Wilson splitting hypothesis”; loosely
the classifying space for algebraic cobordism is “even”; this guarantees
that we may write nice “resolutions” of BGLn
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Given finiteness, we may actually count vector bundles. For concreteness:

Question
If X is a smooth affine threefold over a finite field, then how many vector
bundles are there with a given rank and determinant?

This number may depend on the determinant.

What do these numbers mean, what do they measure? We might think of
them as some higher rank/higher dimensional version of the class
number

What happens for general regular rings of Krull dimension d ≥ 3 that are
finitely generated as Z-algebras?
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Thank you!
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