What Makes Life Go in the Tropics?

Research led by USC College biologist Jed Fuhrman points to heat, not light, as the engine driving diversity.
ByCarl Marziali

What causes tropical life to thrive: temperature or sunlight?

The answer is not necessarily “both.” According to a study published online in PNAS Early Edition, the explosion of species at the tropics has much more to do with warmth than with light.

“The diversity was unrelated to productivity [from photosynthesis], but it was strongly related to temperature,” said USC College biologist Jed Fuhrman, who led a group that analyzed bacterial samples from warm and cold oceans.

Fuhrman’s group found far greater diversity in samples taken near the equator. In particular, samples from low-productivity waters still contained many bacterial species, suggesting that photosynthesis has little influence on diversity.

Many researchers have tried to separate the influence of temperature and sunlight, Fuhrman said, but have found it hard to do by studying higher organisms.

Bacteria are ideal subjects because of their wide distribution and the recent availability of genetic fingerprinting, he added.

The question of what drives diversity is important to biologists who seek to uncover the basic rules governing life.

“Is diversity ruled by fundamental laws, and, if so, what is the basis of them?” Fuhrman asked.

The so-called kinetic law links the rates of metabolism, reproduction and many other biological processes to the motion of atoms and molecules. Such motion increases with temperature, presumably speeding up the biological processes.

Fuhrman calls this “the Red Queen runs faster when she is hot” hypothesis.

Productivity also is thought to promote diversity by increasing the food supply. This is “the larger pie can be divided into more pieces” hypothesis.

The two hypotheses may both be valid, Fuhrman said, but his group’s results show that “the kinetics of metabolism, setting the pace for life, has strong influence on diversity.”

Biologists have known for centuries that animal and plant biodiversity is greatest at the tropics, though they have not agreed on whether temperature or productivity was the cause.

The Fuhrman group is the first to show that bacteria follow the same pattern. And as the PNAS study shows, bacteria are useful vehicles for probing the causes of biodiversity.

Fuhrman, holder of the McCulloch-Crosby Chair in Marine Biology and professor of biological sciences in USC College, has been studying bacteria since the early 1980s, when new instruments and techniques greatly improved scientists’ ability to identify microbial species.

Since then, marine biologists have realized that bacteria play a dominant role in the oceans. More than half the carbon dioxide respired by marine organisms comes from bacteria, Fuhrman said. Bacteria also comprise most of the diversity on earth, control vital biogeochemical cycles and form an integral part of the food chain.

“I study them because, even though they’re invisible, they’re incredibly important,” Fuhrman said.

Fuhrman was first author on the PNAS paper. His co-authors were USC graduate students Joshua Steele, Ian Hewson, Michael Schwalbach and Mark Brown; University of Oregon, Eugene, biologist Jessica Green; and last author James Brown of the University of New Mexico, Albuquerque.

The National Science Foundation supported the group’s research.