Skip to main content

One Man’s Trash, Another Man’s Treasure

USC Dornsife chemist G.K. Surya Prakash and his team discover a way to turn a harmful byproduct of Teflon — used on everything from cooking pans to armor-piercing bullets — into material for pharmaceuticals.

G.K. Prakash, Professor and George A. and Judith A. Olah Nobel Laureate Chair in Hydrocarbon Chemistry in USC Dornsife, who has spent decades researching flourine reagents is also working on a methanol economy concept. Here, he holds up a methanol fuel cell, which is powering a fan. Photo by Philip Channing.
G.K. Prakash, Professor and George A. and Judith A. Olah Nobel Laureate Chair in Hydrocarbon Chemistry in USC Dornsife, who has spent decades researching flourine reagents is also working on a methanol economy concept. Here, he holds up a methanol fuel cell, which is powering a fan. Photo by Philip Channing.

A team of USC Dornsife chemists has developed a way to transform a hitherto useless ozone-destroying greenhouse gas that is the byproduct of Teflon manufacture into reagents for producing pharmaceuticals.

The discovery was published in a paper titled, “Taming of Fluoroform (CF3H): Direct Nucleophilic Trifluoromethylation of Si, B, S and C Centers,” in the Dec. 7 issue of Science. The method is also being patented.

Because of the popularity of Teflon — used on everything from cooking pans to armor-piercing bullets — there’s no shortage of its waste byproduct, fluoroform. Major chemical companies, such as DuPont, Arkema Inc., and others, have huge tanks of it and are unable to simply release it because of the potential damage to the environment. Fluoroform has an estimated global warming potential 11,700 times higher than carbon dioxide.

But one man’s trash is another man’s treasure, and G.K. Surya Prakash — who has spent decades working with fluorine reagents — saw the tanks of fluoroform as an untapped opportunity.

Prakash, Professor and George A. and Judith A. Olah Nobel Laureate Chair in Hydrocarbon Chemistry in USC Dornsife, and director of the USC Loker Hydrocarbon Research Institute, describes fluorine as “the kingpin of drug discovery.” About 20 to 25 percent of drugs on the market today contain at least one fluorine atom; fluorine can be found in many drugs, from 5-Fluorouracil (a widely used cancer treatment discovered by Charles Heidelberger at USC in the ’70s) to Prozac to Celebrex.

“It’s a small atom with a big ego,” Prakash said, referring to the fact that while fluorine is about the same size as a tiny hydrogen atom — so similar that living cells cannot tell the two elements apart — it is also extremely electronegative (that is, it has a strong attraction for electrons) making carbon-fluorine chemical bond quite strong, which improves the bioavailability of drugs made with fluorine.

Prakash led a team that included longtime colleague Nobel laureate George Olah, Donald P. and Katherine B. Loker Distinguished Professor of Organic Chemistry, and research associates Parag Jog and Patrice Batamack of USC Dornsife.

The discovery was the product of many years of trial-and-error tests, hard work that the postdocs performed under Prakash’s direction. Eventually, the team pinned down the precise conditions needed to coax the harmful fluoroform (CF3H) into useful reagents, including the silicon-based Ruppert-Prakash Reagent for efficient CF3 transfer. Fluoroform with elemental sulfur was also converted to trifluoromethanesulfonic acid, a widely used superacid 100 times stronger than sulfuric acid.

“In real estate, everything is ‘location, location, location,’ Prakash said. “In chemistry, it is ‘conditions, conditions, conditions.’ ”

The research was funded by the Loker Hydrocarbon Research Institute.