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SET VALUES FOR MEAN FIELD GAMES

MELİH İŞERİ AND JIANFENG ZHANG

Abstract. In this paper we study mean field games with possibly multiple
mean field equilibria. Instead of focusing on the individual equilibria, we
propose to study the set of values over all possible equilibria, which we call the
set value of the mean field game. When the mean field equilibrium is unique,
typically under certain monotonicity conditions, our set value reduces to the
singleton of the standard value function which solves the master equation. The
set value is by nature unique, and we shall establish two crucial properties:
(i) the dynamic programming principle, also called time consistency; and (ii)
the convergence of the set values of the corresponding N-player games, which

can be viewed as a type of stability result. To our best knowledge, this is
the first work in the literature which studies the dynamic value of mean field
games without requiring the uniqueness of mean field equilibria. We emphasize
that the set value is very sensitive to the type of the admissible controls.
In particular, for the convergence one has to restrict to corresponding types
of equilibria for the N-player game and for the mean field game. We shall
illustrate this point by investigating three cases, two in finite state space models
and the other in a continuous time model with controlled diffusions.

1. Introduction

In this paper we study Mean Field Games (MFG, for short) without monotonicity
conditions. There are typically multiple Mean Field Equilibria (MFE, for short)
with possibly different values. Instead of focusing on the individual equilibria, we
propose to study the set of values over all equilibria, which we call the set value
of the MFG. Note that the set value always exists (with empty set as a possible
value) and is by definition unique. When the MFE is unique, typically under certain
monotonicity conditions, our set value is reduced to the singleton of the standard
value function of the game, which solves the so called master equation. So the set
value can be viewed as the counterpart of the standard value function for MFGs
without monotonicity conditions, and it indeed shares many nice properties. In
this paper, we focus particularly on two crucial properties of the set value:

• the Dynamic Programming Principle (DPP, for short), or say the time
consistency;

• the convergence of the set values of the corresponding N -player games,
which can be viewed as a type of stability result in terms of model pertur-
bation.
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7118 MELİH İŞERİ AND JIANFENG ZHANG

For general theory of MFGs, we refer to Caines-Huang-Malhamé[7], Lasry-Lions
[34], Lions [36], Cardaliaguet [8], Bensoussan-Frehse-Yam [6], and Camona-Delarue
[13, 14].

In standard stochastic control theory, it is well known that the dynamic value
function satisfies the DPP. In fact, this is the underlying reason for the PDE ap-
proach to work. For MFGs under appropriate monotonicity conditions, the value
function (at the unique MFE) also satisfies the DPP, which, together with the Itô
formula, leads to the master equation. However, with the presence of multiple equi-
libria (see, e.g., Bardi-Fischer [2] for some examples), to our best knowledge this
is the first work in the literature to study the MFG dynamically and to address
the time consistency issue. We show that, when formulated properly, the dynamic
set value function satisfies the DPP. This also opens the door to a possible PDE
approach for these general games by introducing the so called set valued PDE.
We refer to our work [30] for set valued PDEs induced by multivariate stochastic
control problems, and Ma-Zhang-Zhang [37] for numerical methods for set valued
PDEs, and we leave their extension to mean field games for future research. Our set
value approach follows from Feinstein-Rudloff-Zhang [24], which studies non-zero
sum games with finitely many players. See also the related works Abreu-Pearce-
Stacchetti [1] and Sannikov [42] in economics literature, and Feinstein [23] which
studies the set of equilibria instead of values.

We note that the set value of games relies heavily on the types of admissible
controls we use. In this paper we shall consider closed loop controls. The open
loop equilibria of games are typically time inconsistent, see e.g. Buckdahn’s coun-
terexample in Pham-Zhang [40, Appendix E] for a two person zero sum game, and
consequently, the set value of games with open loop controls would violate the DPP.
For the MFG, noting that the required symmetry decomposes the game problem
into a standard control problem and a fixed point problem of measures, and that
open loop and closed loop controls yield the same value function for a standard con-
trol problem, it is possible that the set value with open loop controls still satisfies
the DPP. Nevertheless, bearing in mind the DPP of the set value for more general
(non-symmetric) games, as well as the practical consideration in terms of the in-
formation available to the players, we shall focus on closed loop controls. There
is also a very subtle path dependence issue. While the game parameters are state
dependent, we may consider both state dependent and path dependent controls.
For general non-zero sum games (not mean field type), [24] shows that DPP holds
for the set value for path dependent controls, but in general fails for the set value
for state dependent controls. For MFGs with closed loop controls, again due to the
required symmetric properties, the set values for both state dependent controls and
path dependent controls will satisfy the DPP, but they are in general not equal.
For MFGs with closed loop relaxed controls, or say closed loop mixed strategies,
however, it turns out that the state dependent controls and the path dependent
controls induce the same set value which still satisfies the DPP.

We next turn to the convergence issue. Let V and V
N denote the set values of

the MFG and the corresponding N -player games, respectively, under appropriate
closed-loop controls. Our convergence result reads roughly as follows (the precise
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SET VALUES FOR MEAN FIELD GAMES 7119

form is slightly different):

(1.1) lim
N→∞

V
N (0, �x) = V(0, μ), when μN

�x :=
1

N

N∑
i=1

δxi
→ μ.

In the realm of master equations, again under certain monotonicity conditions and
hence with unique MFE, one can show that the values of the N -player games
converge to the value of the MFG. See Cardaliaguet-Delarue-Lasry-Lions [10],
followed by Bayraktar-Cohen [3], Cardaliaguet [9], Cecchin-Pelino [17], Delarue-
Lacker-Ramanan [20, 21], Gangbo-Meszaros [29], and Mou-Zhang [38], to mention
a few. So (1.1) can be viewed as their natural extension to MFGs without mono-
tonicities.

We emphasize again that the set value is very sensitive to the types of admissible
controls. To ensure the convergence, one simple but crucial observation is that the
N -player game and the MFG should use the “same” type of controls (more precisely,
corresponding types of controls in appropriate sense). We illustrate this point by
considering two cases. Note that in the standard literature each player is required to
use the same closed loop control along an MFE. For the first case, we will obtain the
desired convergence by restricting the N -player game to homogeneous equilibria,
namely each player also uses the same closed loop control. In the second case,
we remove such restriction and consider heterogeneous equilibria for the N -player
games. Note that a closed loop control means the control depends only on the state.
In this heterogeneous case players with the same state may choose different controls,
then one can not expect in the limit they will have to use the same control1. Indeed,
in this case the limit is characterized by the MFG with closed loop relaxed controls,
or say closed loop mixed strategies, which exactly means players with the same state
may still have a distribution of controls to choose from. However, since our relaxed
control for MFG is still homogeneous, namely each player uses the same relaxed
control, the controls for N-player game and for MFG appear to be in different forms.
Our approach is to introduce a new formulation for the MFG, which embeds the
structure of heterogeneous controls and shares the same set value as the relaxed
control formulation of the MFG. For the homogeneous case, we will investigate
both a discrete time model with finite state space and a continuous time diffusion
model with drift controls. But for the heterogeneous case we will investigate the
discrete model only. The continuous model in such case involves some technical
challenges for the convergence and we shall leave it for future research. We shall
point out that, however, the DPP would hold in much more general models without
significant difficulties.

To ensure the convergence, another main feature is that we define the set value
as the limit of the approximate set values over approximate equilibria, rather than
the true equilibria. We call the latter the raw set value, and both the set value
and the raw set value satisfy the DPP. However, the raw set value is extremely
sensitive to small perturbations of the game parameters, in fact, in general even
its measurability is not clear, so one can hardly expect the convergence for the
raw set values. In the standard control theory, the value function is defined as the

1When the MFE is unique, under appropriate monotonicity conditions, the set value becomes
a singleton and it is not sensitive to the type of admissible controls anymore. Consequently, the
convergence becomes possible even if the N-player games and the MFG use different types of
controls, see e.g. [10]
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infimum of controlled values, which is exactly the limit of values over approximate
optimal controls, rather than the value over true optimal controls which may not
even exist. So our set value, not the raw set value, is the natural extension of the
standard value function in control theory. Moreover, since we are considering infin-
itely many players, an approximate equilibrium means it is approximately optimal
for most players, but possibly with a small portion of exceptions, as introduced in
Carmona [11].

We would like to mention that, although it is not the focus of the present paper,
the set value is also numerically a lot easier to compute than the raw set value. For
example, the duality result for set values in [24, Section 3.4] (for finite player games)
is very useful for constructing efficient numerical algorithms, see [37]. However,
this is not feasible for the raw set value which lacks regularity and thus is hard to
approximate in general.

At this point we should mention that, for MFGs without monotonicity condi-
tions, there have been many publications on the convergence of N -player games, in
terms of equilibria instead of values. For open loop controls, we refer to Camona-
Delarue [12], Feleqi [25], Fischer [26], Fischer-Silva [27], Lacker [31], Lasry-Lions
[34], Lauriere-Tangpi [35], and Nutz-San Martin-Tan [39], to mention a few. In
particular, [31] provides the full characterization for the convergence: any limit of
approximate Nash equilibria of N -player games is a weak MFE, and conversely any
weak MFE can be obtained as such a limit. The work [26] is also in this direction.
For closed loop controls, which we are mainly interested in, the situation becomes
much more subtle. The seminal paper Lacker [32] established the following result:
(1.2)

{Strong MFEs} ⊂ {Limits of N -player approx. equilibria} ⊂ {Weak MFEs}.
Here an MFE is strong if it depends only on the state processes, and weak if it
allows for additional randomness. The left inclusion in (1.2) was known to be
strict in general. This work has very interesting further developments recently2 by
Lacker-Flem [33] and Djete [22]. In particular, [22] shows that the right inclusion
in (1.2) is actually an equality.

We emphasize again that we are considering the convergence of sets of values,
rather than sets of equilibria as in (1.2). For standard control problems, the focus is
typically to characterize the (unique) value and to find one (approximate) optimal
control, and the player is less interested in finding all optimal controls since they
have the same value. The situation is quite different for games, because different
equilibria can lead to different values. Then it is not satisfactory to find just one
equilibrium (especially if it is not Pareto optimal). However, for different equilibria
which lead to the same value, the players are indifferent on them. So for practical
purpose the players would be more interested in finding all possible values3 and then
to find one (approximate) equilibrium for each value. This is one major motivation
that we focus on the set value, rather than the set of all equilibria. We also note
that in general the set value could be much simpler than the set of equilibria. For
example, in the trivial case that both the terminal and the running cost functions
are constants, the set value is a singleton, while the set of equilibria consists of all
admissible controls.

2These two works [22,33] were circulated slightly after our present paper.
3Another very interesting question is how to choose an optimal (in appropriate sense) value

after characterizing the set value. We shall leave this for future research.
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We should point out that our admissible controls differ from those in [22,32,33].
Roughly speaking, we put two constraints, due to both practical and technical
considerations, on the N -player approximate equilibria so that the left inclusion in
(1.2) (in terms of values instead of equilibria) becomes an equality. First, for the
N -player games, [22, 32, 33] use full information controls αi(t,X

1
t , · · · , XN

t ), while
we consider symmetric controls αi(t,X

i
t , μ

N
t ), where Xi

t is the state of Player i, and

μN
t := 1

N

∑N
j=1 δXj

t
is the empirical measure of all the players’ states. Note that, as

a principle the controls should depend only on the information the players observe.
While both settings are very interesting, since N is large, the full information may
not be available in many practical situations.

The second difference is that we assume each control is Lipschitz continuous in μ,
while [22,32,33] allow for measurable controls. We shall emphasize though we allow
the Lipschitz constant to depend on the control, and thus our set value does not
depend on any fixed Lipschitz constant. Roughly speaking, we are considering game
values which can be approximated by Lipschitz continuous approximate equilibria.
This is typically the case in the standard control theory: even if the optimal control
is discontinuous, in most reasonable frameworks, we should be able to find Lipschitz
continuous approximate optimal controls. The situation is more subtle for games.
There may exist (closed loop) equilibria whose values cannot be approximated
by any Lipschitz continuous approximate equilibria. In fact, when considering
all measurable equilibria, the convergence of set values in (1.1) fails in general,
see Example 7.2 and Remark 7.3. While clearly more general and very interesting
mathematically, such measurable equilibria are hard to implement in practice, since
inevitably we have all sorts of errors in terms of the information, or say, data.
Their numerical computation is another serious challenge. For example, in the
popular machine learning algorithm, the key idea is to approximate the controls
via composition of linear functions and the activation function, then by definition
the optimal controls/equilibria provided by these algorithms are (locally) Lipschitz
continuous. That is, the game values falling out of our set value are essentially
out of reach of these algorithms, see e.g. [37]. Moreover, as a consequence of
our constraints, our proof of (1.1) is technically a lot easier than the compactness
arguments for (1.2) used in [22, 32, 33].

Finally we would like to mention some other approaches for MFGs with multiple
equilibria. One is to add sufficient (possibly infinite dimensional) noise so that
the new game will become non-degenerate and hence have unique MFE, see e.g.
Bayraktar-Cecchin-Cohen-Delarue [4,5], Delarue [18], Delarue-Foguen Tchuendom
[19], Foguen Tchuendom [28]. Another approach is to study a special type of
MFEs, see e.g. Cecchin-Dai Pra-Fisher-Pelino [15], Cecchin-Delarue [16], and [19].
Another interesting work is Possamai-Tangpi [41] which introduces an additional
parameter function Λ such that the MFE corresponding to any fixed Λ is unique
and then the desired convergence is obtained.

The rest of the paper is organized as follows. In Section 2 we introduce the
set value for an MFG in a discrete time model on finite state space and establish
the DPP, and in Section 3 we prove the convergence for the corresponding N -
player games with homogeneous equilibria. Sections 4 and 5 are devoted to MFGs
with relaxed controls and the corresponding N -player games with heterogeneous
equilibria. In Section 6 we study a continuous time model with controlled diffusions.
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Finally in Appendix we provide some examples, discuss the subtle path dependence
issue, and complete some technical proofs.

2. Mean field games on finite space with closed loop controls

In this section we consider an MFG on finite space (both time and state are
finite) with closed loop controls, and for simplicity we restrict to state dependent
setting. Since the game typically has multiple MFEs which may induce different
values, see Example 7.1 for an example, we shall introduce the set value of the
game over all MFEs. Our goal is to establish the DPP for the MFG set value, and
we shall show in the next section that the set values of the corresponding N -player
games converge to the MFG set value.

2.1. The basic setting. Let T := {0, · · · , T} be the set of discrete times; Tt :=
{t, · · · , T} for t ∈ T; S the finite state space4 with size |S| = d; P(S) the set of
probability measures on S, equipped with the 1-Wasserstein distance W1. Since S

is finite, W1 is equivalent to the total variation distance5 which is convenient for
our purpose: by abusing the notation W1,

(2.1) W1(μ, ν) :=
∑
x∈S

|μ(x)− ν(x)|, μ, ν ∈ P(S).

Let P0(S) denote the subset of μ ∈ P(S) which has full support, namely μ(x) > 0
for all x ∈ S. Moreover, let A ⊂ R

d0 be a measurable set from which the controls
take values; and q : T × S × P(S) × A × S → (0, 1) be a transition probability
function: ∑

x̃∈S

q(t, x, μ, a; x̃) = 1, ∀(t, x, μ, a) ∈ T× S× P(S)× A.

We shall use the weak formulation which is more convenient for closed loop
controls. That is, we fix the canonical space and consider controlled probability
measures on it. To be precise, let Ω := X := S

T+1 be the canonical space; X :
T × Ω → S the canonical process: Xt(ω) = ωt; F := {Ft}t∈T := FX the filtration
generated by X; and Astate the set of state dependent admissible controls α :
T× S → A. Introduce the concatenation for controls:

(2.2) (α⊕T0
α̃)(s, x) := α(s, x)1{s<T0} + α̃(s, x)1{s≥T0}, α, α̃ ∈ Astate.

It is clear that α ⊕T0
α̃ ∈ Astate. Given (t, μ, α) ∈ T × P(S) × Astate, let P

t,μ,α

denote the probability measure on FT determined recursively by: for s = t, · · · , T ,

(2.3)
P
t,μ,α ◦X−1

t = μ, P
t,μ,α(Xs+1 = x̃|Xs = x) = q(s, x, μα

s , α(s, x); x̃);

where μα
s := P

t,μ,α ◦X−1
s .

We note that μα := {μα
s }s∈Tt

are uniquely determined and X is a Markov chain on
Tt under P

t,μ,α. We also note that μα depends on (t, μ) as well, but we omit it for no-
tational simplicity. However, the distribution of {Xs}s=0,··· ,t−1 is not specified and
is irrelevant, and {αs}0≤s<t is also irrelevant. Moreover, given {μ·} := {μs}s∈Tt

,

4We may allow the state space St to depend on time t and all the results in this paper will
remain true.

5More precisely, the total variation distance is 1
2
W1 for the W1 in (2.1).
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x ∈ S, and α̃ ∈ Astate, let P
{μ·};t,x,α̃ denote the probability measure on FT deter-

mined recursively by: for s = t, · · · , T − 1,
(2.4)

P
{μ·};t,x,α̃(Xt = x) = 1, P

{μ·};t,x,α̃(Xs+1 = x̄|Xs = x̃) = q(s, x̃, μs, α̃(s, x̃); x̄).

As in the standard MFG literature, here we are assuming that the population uses
the common control α while the individual player is allowed to use a different
control α̃.

We remark that, since we assume q > 0, then for any (t, μ) and α, μα
s ∈ P0(S)

for all s > t. For the convenience of presentation, in this section we shall restrict
our discussion to the case μ ∈ P0(S). The general case that the initial measure μ
is not fully supported can be treated fairly easily, as we will do in Section 6. The
situation with degenerate q, however, is more subtle and we shall leave it for future
research.

We finally introduce the cost functional for the MFG: for the μα = {μα
· } in (2.3),

(2.5)
J(t, μ, α;x, α̃) := J(μα; t, x, α̃), v({μ·}; s, x) := inf

α̃∈Astate

J({μ·}; s, x, α̃);

where J({μ·}; s, x, α̃) := E
P
{μ·};s,x,α̃

[
G(XT , μT ) +

T−1∑
r=s

F (r,Xr, μr, α̃(r,Xr))
]
.

Here, since T and S are finite, F and G are arbitrary measurable functions satisfying

inf
a∈A

F (t, x, μ, a) > −∞ for all (t, x, μ).

We remark that here v({μ·}; ·, ·) is the value function of a standard stochastic
control problem with parameter {μ·}. In particular, in continuous time models,
μα and v(μα; ·, ·) will satisfy the Fokker-Planck equation and the HJB equation,
respectively.

Definition 2.1. Given (t, μ) ∈ T×P0(S), we say α∗ ∈ Astate is a state dependent
MFE at (t, μ), denoted as α∗ ∈ Mstate(t, μ), if

(2.6) J(t, μ, α∗;x, α∗) = v(μα∗
; t, x), for all x ∈ S.

In this and the next section, we will use the following conditions.

Assumption 2.2.

(i) q ≥ cq for some constant cq > 0;
(ii) q is Lipschitz continuous in (μ, a), with a Lipschitz constant Lq;
(iii) F,G are bounded by a constant C0 and uniformly continuous in (μ, a), with

a modulus of continuity function ρ.

2.2. The raw set value V0. We introduce the raw set value for the MFG over all
state dependent MFEs:

(2.7) V0(t, μ) :=
{
J(t, μ, α∗; ·, α∗) : α∗ ∈ Mstate(t, μ)

}
⊂ L

0(S;R).

Here the elements of V0(t, μ) are functions from S to R, which coincide with R
d by

identifying ϕ ∈ L0(S;R) with (ϕ(x) : x ∈ S) ∈ Rd. We call V0(t, μ) the raw set
value and we will introduce the set value V(t, μ) of the MFG in the next subsection.
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Next, for any T0 ∈ Tt, ψ ∈ L0(S × P0(S);R), we introduce the MFG on
{t, · · · , T0}:

(2.8) J(T0, ψ; t, μ, α;x, α̃) := E
P
μα;t,x,α̃

[
ψ(XT0

, μα
T0
)+

T0−1∑
s=t

F (s,Xs, μ
α
s , α̃(s,Xs))

]
.

In the obvious sense we define α∗ ∈ Mstate(T0, ψ; t, μ) by: for any x ∈ S,

(2.9) J(T0, ψ; t, μ, α
∗;x, α∗) = v(T, ψ;μα∗

; t, x) := inf
α̃∈Astate

J(T, ψ; t, μ, α∗;x, α̃).

At below we will repeatedly use the following simple fact due to the tower property
of conditional expectations:

(2.10) J(t, μ, α;x, α̃) = J(T0, ψ; t, μ, α;x, α̃), where ψ(y, ν) := J(T0, ν, α; y, α̃).

The following time consistency of MFE is the essence of the DPP for the raw set
value.

Proposition 2.3. Fix 0 ≤ t < T0 ≤ T and μ ∈ P0(S). For any α∗, α̃∗ ∈ Astate,
denote α̂∗ := α∗ ⊕T0

α̃∗ and ψ(y, ν) := J(T0, ν, α̃
∗; y, α̃∗). Then α̂∗ ∈ Mstate(t, μ)

if and only if α∗ ∈ Mstate(T0, ψ; t, μ) and α̃∗ ∈ Mstate(T0, μ
α∗

T0
).

Proof. (i) We first prove the if part. Let α∗ ∈ Mstate(T0, ψ; t, μ) and α̃∗ ∈
Mstate(T0, μ

α∗

T0
). For arbitrary α ∈ Astate and x ∈ S, by (2.10) we have

J(t, μ, α̂∗;x, α) = E
P
μα∗

;t,x,α
[
J(T0, μ

α∗

T0
, α̃∗;XT0

, α) +

T0−1∑
s=t

F (s,Xs, μ
α∗

s , α(s,Xs))
]

≥ E
P
μα∗

;t,x,α
[
J(T0, μ

α∗

T0
, α̃∗;XT0

, α̃∗) +
T0−1∑
s=t

F (s,Xs, μ
α∗

s , α(s,Xs))
]

= E
P
μα∗

;t,x,α
[
ψ(XT0

, μα∗

T0
) +

T0−1∑
s=t

F (s,Xs, μ
α∗

s , α(s,Xs))
]

= J(T0, ψ; t, μ, α
∗;x, α) ≥ J(T0, ψ; t, μ, α

∗;x, α∗) = J(t, μ, α̂∗;x, α̂∗),

where the first inequality is due to α̃∗ ∈ Mstate(T0, μ
α∗

T0
) and the second inequality

is due to α∗ ∈ Mstate(T0, ψ; t, μ). Then α̂∗ ∈ Mstate(t, μ).
(ii) We now prove the only if part. Let α̂∗ ∈ Mstate(t, μ). For any α ∈ Astate,

we have α⊕T0
α̃∗ ∈ Astate. Then, since α̂∗ ∈ Mstate(t, μ), for any x ∈ S, by (2.10)

we have

J(T0, ψ; t, μ, α
∗;x, α∗) = J(t, μ, α̂∗;x, α̂∗) ≤ J(t, μ, α̂∗;x, α⊕T0

α̃∗)

= J(T, ψ; t, μ, α∗;x, α).

This implies that α∗ ∈ Mstate(T0, ψ; t, μ).
Moreover, note that α∗ ⊕T0

α ∈ Astate and again since α̂∗ ∈ Mstate(t, μ), we
have

E
P
μα∗

;t,x,α∗ [
J(T0, μ

α∗

T0
, α̃∗;XT0

, α̃∗) +
T0−1∑
s=t

F (s,Xs, μ
α∗

s , α∗(s,Xs))
]

= J(t, μ, α̂∗;x, α̂∗) ≤ J(t, μ, α̂∗;x, α∗ ⊕T0
α)

= E
P
μα∗

;t,x,α∗ [
J(T0, μ

α∗

T0
, α̃∗;XT0

, α) +

T0−1∑
s=t

F (s,Xs, μ
α∗

s , α∗(s,Xs))
]
.

Licensed to Univ of Southern Calif. Prepared on Thu Jan 30 12:54:19 EST 2025 for download from IP 154.59.124.74.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SET VALUES FOR MEAN FIELD GAMES 7125

This implies that, recalling the v in (2.5) and by the standard stochastic control
theory,

E
P
μα∗

;t,x,α∗ [
J(T0, μ

α∗

T0
, α̃∗;XT0

, α̃∗)
]
≤ inf

α∈Astate

E
P
μα∗

;t,x,α∗ [
J(T0, μ

α∗

T0
, α̃∗;XT0

, α)
]

= E
P
μα∗

;t,x,α∗ [
v(μα̂∗

;T0, XT0
)
]
.(2.11)

On the other hand, by definition v(μα̂∗
;T0, x̃) ≤ J(T0, μ

α∗

T0
, α̃∗; x̃, α̃∗) for all x̃ ∈ S.

Then

J(T0, μ
α∗

T0
, α̃∗;XT0

, α̃∗) = v(μα̂∗
;T0, XT0

), P
μα∗

;t,x,α∗
-a.s.

Since q > 0, then clearly Pμα∗
;t,x,α∗

(XT0
= x̃) > 0 for all x̃ ∈ S. Thus J(T0, μ

α∗

T0
, α̃∗;

x̃, α̃∗) = v(μα̂∗
;T0, x̃), for all x̃ ∈ S. This implies that α̃∗ ∈ Mstate(T0, μ

α∗

T0
). �

We then have the following DPP.

Theorem 2.4. For any 0 ≤ t < T0 ≤ T , and μ ∈ P0(S), we have
(2.12)

V0(t, μ) :=
{
J(T0, ψ; t, μ, α

∗; ·, α∗) : for all ψ ∈ L
0(S× P0(S);R) and α∗ ∈ Astate

such that ψ(·, μα∗

T0
) ∈ V0(T0, μ

α∗

T0
) and α∗ ∈ Mstate(T0, ψ; t, μ)

}
.

Proof. Let Ṽ0(t, μ) denote the right side of (2.12). First, for any J(T0, ψ; t, μ, α
∗;

·, α∗) ∈ Ṽ0(t, μ) with desired ψ, α∗ as in (2.12). Since ψ(·, μα∗

T0
) ∈ V0(T0, μ

α∗

T0
), there

exists α̃∗ ∈ Mstate(T0, μ
α∗

T0
) such that ψ(·, μα∗

T0
) = J(T0, μ

α∗

T0
, α̃∗; ·, α̃∗). By Proposi-

tion 2.3 we have α̂∗ := α∗ ⊕T0
α̃∗ ∈ Mstate(t, μ). Then, by (2.10), J(T0, ψ; t, μ, α

∗;

·, α∗) = J(t, μ, α̂∗; ·, α̂∗) ∈ V0(t, μ), and thus Ṽ0(t, μ) ⊂ V0(t, μ).
On the other hand, let J(t, μ, α∗; ·, α∗) ∈ V0(t, μ) with α∗ ∈ Mstate(t, μ). In-

troduce ψ(x, ν) := J(T0, ν, α
∗;x, α∗). By Proposition 2.3 again we see that α∗ ∈

Mstate(T0, ψ; t, μ) and α∗ ∈ Mstate(T0, μ
α∗

T0
), and the latter implies further that

ψ(·, μα∗

T0
) ∈ V0(T0, μ

α∗

T0
). Then by the definition of Ṽ0(t, μ) that J(t, μ, α

∗; ·, α∗) =

J(T0, ψ; t, μ, α
∗; ·, α∗) ∈ Ṽ0(t, μ). That is, V0(t, μ) ⊂ Ṽ0(t, μ). �

2.3. The set value Vstate. While Theorem 2.4 is elegant, the raw set value V0(t, μ)
is very sensitive to small perturbations of the coefficients F,G and the variable
μ. Moreover, in general it does not look possible to have the convergence of the
raw set value of the corresponding N -player games to V0(t, μ). Therefore, in this
subsection we shall modify V0(t, μ) and introduce the set value Vstate(t, μ) of the
MFG as follows.

Definition 2.5.

(i) For any (t, μ) ∈ T × P0(S) and ε > 0, let Mε
state(t, μ) denote the set of

α∗ ∈ Astate such that

(2.13) J(t, μ, α∗;x, α∗) ≤ v(μα∗
; t, x) + ε, for all x ∈ S.

(ii) The set value of the MFG at (t, μ) is defined as:

(2.14) Vstate(t, μ) :=
⋂
ε>0

V
ε
state(t, μ), where
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V
ε
state(t, μ)

:=
{
ϕ ∈ L

0(S;R) : ‖ϕ− J(t, μ, α∗; ·, α∗)‖∞ ≤ ε for some α∗ ∈ Mε
state(t, μ)

}
.

Recall (2.5), then (2.13) and (2.14) imply that

(2.15) 0 ≤ J(t, μ, α∗;x, α∗)− v(μα∗
; t, x) ≤ ε, ‖ϕ− v(μα∗

; t, ·)‖∞ ≤ 2ε.

So we may alternatively define V
ε
state(t, μ) by using ‖ϕ− v(μα∗

; t, ·)‖∞ ≤ ε.

Remark 2.6.

(i) In the case that there is only one player, namely q, F,G do not depend on μ,

P
μα∗

;t,x,α = P
t,x,α does not depend on μ and α∗. Let

V (t, x) := inf
α∈Astate

E
P
t,x,α

[
G(XT ) +

T−1∑
s=t

F (s,Xs, α(s,Xs))
]

denote the value function of the standard stochastic control problem. One can easily
see that, when there exists an optimal control α∗, V0(t, μ) = Vstate(t, μ) = {V (t, ·)}.
However, when there is no optimal control, we still have Vstate(t, μ) = {V (t, ·)} but
V0(t, μ) = ∅. So the natural extension of the value function V is the set value
Vstate, not V0.

(ii) We remark that
⋂

ε>0 Mε
state(t, μ) = Mstate(t, μ), however, in general it is

possible that Vstate(t, μ) is strictly larger than V0(t, μ). Indeed, Vstate(t, μ) can be
even larger than the closure of V0(t, μ), where the latter is still empty when there
is no optimal control.

Similarly, given T0 and ψ, Mε
state(T0, ψ; t, μ) denotes the set of α∗ ∈ Astate such

that

(2.16) J(T0, ψ; t, μ, α
∗;x, α∗) ≤ inf

α∈Astate

J(T0, ψ; t, μ, α
∗;x, α) + ε, ∀x ∈ S.

The DPP remains true for Vstate after appropriate modifications as follows.

Theorem 2.7. Under Assumption 2.2(i), for any 0 ≤ t < T0 ≤ T and μ ∈ P0(S),

(2.17)

Vstate(t, μ) :=
⋂
ε>0

{
ϕ ∈ L

0(S;R) : ‖ϕ− J(T0, ψ; t, μ, α
∗; ·, α∗)‖∞ ≤ ε

for some ψ ∈ L
0(S× P0(S);R) and α∗ ∈ Astate such that

ψ(·, μα∗

T0
) ∈ V

ε
state(T0, μ

α∗

T0
), α∗ ∈ Mε

state(T0, ψ; t, μ)
}
.

This theorem can be proved by modifying the arguments in Theorem 2.4 and
Proposition 2.3. However, since the proof is very similar to that of Theorem 4.2
below, except that the latter is in the more complicated path dependent setting,
we thus postpone it to Appendix.
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3. The N-player game with homogeneous equilibria

In this section we study the N -player game whose set value converges to Vstate.

3.1. The N-player game. Set ΩN := X
N with canonical processes �X =

(X1, · · · , XN ), where Xi stands for the state process of player i. The empirical

measure of �X is denoted as: with the Dirac measure δ·,

(3.1) μN
t := μN

�Xt
where μN

�x :=
1

N

N∑
i=1

δxi
∈ P(S), for �x = (x1, · · · , xN ) ∈ S

N .

The player i will have control αi. In the literature, a closed loop control αi may

depend on the full information �X. However, since we are talking about large N , in
practice it may not be feasible for each player to observe all other players’ states
individually. Moreover, in the MFG setting the population state is characterized by
its distribution, not by each player’s individual state. So in this section we consider
only symmetric controls, namely αi depends on his/her own state Xi and on the
others through the empirical measure μN .

In order to have the desired convergence, we introduce another parameter L ≥ 0.
Denote
(3.2)

AL
state :=

{
α : T× S× P(S) → A :

∣∣α(t, x, μ)− α(t, x, ν)
∣∣ ≤ LW1(μ, ν), ∀t, x, μ, ν

}
,

and A∞
state :=

⋃
L≥0 AL

state. Given t ∈ T, �x ∈ SN , and �α = (α1, · · · , αN ) ∈
(A∞

state)
N , let Pt,�x,�α denote the probability measure on F �X

T determined recursively
by: for s = t, · · · , T − 1,
(3.3)

P
t,�x,�α( �Xt = �x) = 1,Pt,�x,�α( �Xs+1 = �x′′| �Xs = �x′) =

N∏
i=1

q(s, x′
i, μ

N
s , αi(s, x′

i, μ
N
s );x′′

i ),

and the cost function of player i is:

(3.4) Ji(t, �x, �α) := E
P
t,�x,�α

[
G(Xi

T , μ
N
T ) +

T−1∑
s=t

F (s,Xi
s, μ

N
s , αi(s,Xi

s, μ
N
s ))

]
.

Remark 3.1.

(i) It is obvious that A0
state = Astate for the Astate in the previous subsection.

For the MFG, there is no need to consider A∞
state. Indeed, given (t, μ) ∈ T×P0(S),

for any α ∈ A∞
state, let P

t,μ,α be defined as in (2.3): again denoting μα
s := Pt,μ,α ◦

X−1
s ,

P
t,μ,α ◦X−1

t = μ, P
t,μ,α(Xs+1 = x̃|Xs = x) = q(s, x, μα

s , α(s, x, μ
α
s ); x̃).

Introduce α̃(s, x) := α(s, x, μα
s ). Then α̃ ∈ Astate and one can easily verify that

μα̃ = μα. In particular, the set value Vstate(t, μ) will remain the same by allowing
α ∈ A∞

state. For the N -player game, however, since μN is random, the dependence
on μN makes the difference.

(ii) In the literature one typically uses μN,−i
t := 1

N−1

∑
j 	=i δXj

t
, rather than μN

t ,

in (3.3) and (3.4). The convergence results in this section will remain true if we use
μN,−i instead. However, we find it more convenient to use μN

t .
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There is another crucial issue concerning the equilibria. Note that an MFE re-
quires by definition that each player takes the same control α∗. To achieve the
desired convergence, for the N -player game it is natural to consider only the ho-
mogeneous equilibria: α1 = · · · = αN , which we will do in the rest of this section.
We note that, for a homogeneous control α, the Pt,�x,α := Pt,�x,(α,··· ,α) in (3.3) and
Ji(t, �x, α) := Ji(t, �x, (α, · · · , α)) in (3.4) are also symmetric in �x, or say invariant
in terms of its empirical measure:

(3.5) P
t,�x,α = P

t,μN
�x ,α, Ji(t, �x, α) = JN (t, xi, μ

N
�x , α).

Definition 3.2. For any ε > 0, L ≥ 0, we say α∗ ∈ AL
state is a homogeneous

state dependent (ε, L)-equilibrium of the N -player game at (t, �x), denoted as α∗ ∈
MN,ε,L

state (t, �x), if:
(3.6)

Ji(t, �x, α
∗) ≤ vN,L

i (t, �x, α∗) := inf
α̃∈AL

state

Ji(t, �x, (α
∗, α̃)i) + ε, i = 1, · · · , N,

where (α, α̃)i denote the vector �α such that αi = α̃ and αj = α for all j = i.

In light of (3.5), clearly MN,ε,L
state (t, �x) is law invariant: MN,ε,L

state (t, �x) =

MN,ε,L
state (t, �x

′) whenever μN
�x = μN

�x′ . Thus, by abusing the notation, we may de-

note MN,ε,L
state (t, �x) = MN,ε,L

state (t, μ
N
�x ) and call α∗ a homogeneous state dependent

(ε, L)-equilibrium at (t, μN
�x ).

Note again that q > 0, then similar to Subsection 2.1, for convenience in this
section we restrict to only those �x such that μN

�x has full support, and we denote

(3.7) S
N
0 :=

{
�x ∈ S

N : μN
�x ∈ P0(S)

}
, PN (S) :=

{
μN
�x : �x ∈ S

N
0

}
⊂ P0(S).

We now define the set value of the homogeneous N -player game: recalling (3.5),
(3.8)

V
N
state(t, μ) :=

⋂
ε>0

V
N,ε
state(t, μ) :=

⋂
ε>0

⋃
L≥0

V
N,ε,L
state (t, μ), ∀(t, μ) ∈ T× PN (S), where

V
N,ε,L
state (t, μ) :=

{
ϕ∈L

0(S;R) : ∃α∗ ∈ MN,ε,L
state (t, μ) s.t. ‖ϕ− JN (t, ·, μ, α∗)‖∞≤ε

}
.

Remark 3.3. Note that we require α̃ ∈ AL
state in (3.6) for the same L, so⋃

L≥0 V
N,ε,L
state (t, μ) at above is in general different from V

N,ε,∞
state (t, μ), which is de-

fined in an obvious way by requiring α∗, α̃ ∈ A∞
state in (3.6). See also Remark

3.8(ii).

3.2. Convergence of the empirical measures.

Theorem 3.4. Let Assumption 2.2(ii) hold. Then, for any L ≥ 0, there exists
a constant CL, which depends only on T, d, Lq, and L such that, for any t ∈ T,
�x ∈ SN0 , μ ∈ P0(S), α, α̃ ∈ AL

state, and s ≥ t, i = 1, · · · , N ,

E
P
t,�x,(α,α̃)i

[
W1(μ

N
s , μα

s )
]
≤ CLθN , where θN := W1(μ

N
�x , μ) +

1√
N

;(3.9)

W1

(
P
t,�x,(α,α̃)i ◦ (Xi

s)
−1,Pμα;t,xi,α̃ ◦X−1

s

)
≤ CLθN .(3.10)

Proof. We first recall Remark 3.1 and extend all the notations in Subsection 2.1 to
those α ∈ AL

state in the obvious sense. Fix t, i and denote PN := Pt,�x,(α,α̃)i .
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Step 1. We first prove (3.9) for s = t+1. Note that X1
t+1, · · · , XN

t+1 are independent

under PN . By (2.1), we have

E
P
N [

W1(μ
N
t+1, μ

α
t+1)

]
=

∑
x̃∈S

E
P
N [|μN

t+1(x̃)− μα
t+1(x̃)|

]

≤
∑
x̃∈S

(
E
P
N [

|μN
t+1(x̃)− μα

t+1(x̃)|2
]) 1

2

=
∑
x̃∈S

[
V arP

N [
μN
t+1(x̃)

]
+
(
E
P
N [

μN
t+1(x̃)− μα

t+1(x̃)
])2] 1

2

(3.11)

=
∑
x̃∈S

[ 1

N2

N∑
j=1

V arP
N [

1{Xj
t+1=x̃}

]
+
( 1

N

N∑
j=1

P
N (Xj

t+1 = x̃)− μα
t+1(x̃)

)2] 1
2

≤ C√
N

+
∑
x̃∈S

∣∣ 1
N

N∑
j=1

P
N (Xj

t+1 = x̃)− μα
t+1(x̃)

∣∣.
Note that, by the desired Lipschitz continuity of q in μ and that |S| = d is finite,

∣∣ 1
N

N∑
j=1

P
N (Xj

t+1 = x̃)− μα
t+1(x̃)

∣∣

=
∣∣∣ 1
N

∑
x∈S

[∑
j 	=i

q(t, x, μN
�x , α(t, x, μN

�x ); x̃)1{xj=x}+q(t, x, μN
�x , α̃(t, x, μN

�x ); x̃)1{xi=x}

]

−
∑
x∈S

q(t, x, μ, α(t, x, μ); x̃)μ(x)
∣∣∣

≤
∣∣∣ 1
N

∑
x∈S

N∑
j=1

q(t, x, μN
�x , α(t, x, μN

�x ); x̃)1{xj=x} −
∑
x∈S

q(t, x, μ, α(t, x, μ); x̃)μ(x)
∣∣∣

+
1

N

∑
x∈S

∣∣q(t, x, μN
�x , α(t, x, μN

�x ); x̃)− q(t, x, μN
�x , α̃(t, x, μN

�x ); x̃)
∣∣1{xi=x}

≤
∣∣∑
x∈S

q(t, x, μN
�x , α(t, x, μN

�x ); x̃)μN
�x (x)−

∑
x∈S

q(t, x, μ, α(t, x, μ); x̃)μ(x)
∣∣+ 1

N

≤
∑
x∈S

[
|μN

�x (x)− μ(x)|+ CLW1(μ
N
�x , μ)μ(x)

]
+

1

N
≤ CLθN .

Then, EP
N [

W1(μ
N
t+1, μ

α
t+1)

]
≤ C√

N
+ CLθN ≤ CLθN .

Step 2. We next prove (3.9) by induction. For any s = t, · · · , T − 1, by Step 1 we
have

E
P
N [W1(μ

N
s+1, μ

α
s+1)

∣∣F �X
s

]
≤ CL

[
W1(μ

N
s , μα

s ) +
1√
N

]
, P

N -a.s.

Then

E
P
N [

W1(μ
N
s+1, μ

α
s+1)

]
= E

P
N
[
E
P
N [

W1(μ
N
s+1, μ

α
s+1)

∣∣ �XN
s

]]

≤ CLE
P
N [

W1(μ
N
s , μα

s )
]
+

CL√
N

.

Since T is finite, by induction we obtain (3.9) immediately.
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Step 3. We now prove (3.10). Denote

κs := W1

(
P
N ◦ (Xi

s)
−1,Pi ◦X−1

s

)
where P

i := P
μα;t,xi,α̃.

Then κt = 0, and for s = t, · · · , T − 1,

κs+1 =
∑
x̃∈S

∣∣PN (Xi
s+1 = x̃)− P

i(Xs+1 = x̃)
∣∣

=
∑
x̃∈S

∣∣∣EP
N [

q(s,Xi
s, μ

N
s , α̃(s,Xi

s, μ
N
s ); x̃)

]
− E

P
i[
q(s,Xs, μ

α
s , α̃(s,Xs, μ

α
s ); x̃)

]∣∣∣
≤

∑
x̃∈S

∣∣∣EP
N [

q(s,Xi
s, μ

N
s , α̃(s,Xi

s, μ
N
s ); x̃)

]
− E

P
N [

q(s,Xi
s, μ

α
s , α̃(s,X

i
s, μ

α
s ); x̃)

]∣∣∣
+
∑
x̃∈S

∣∣∣EP
N [

q(s,Xi
s, μ

α
s , α̃(s,X

i
s, μ

α
s ); x̃)

]
− E

P
i[
q(s,Xs, μ

α
s , α̃(s,Xs, μ

α
s ); x̃)

]∣∣∣
≤ CLE

P
N [

W1(μ
N
s , μα

s )
]

+
∑
x,x̃∈S

q(s, x, μα
s , α̃(s, x, μ

α
s ); x̃)

∣∣PN (Xi
s = x)− P

i(Xs = x)
∣∣

≤ CLθN + κs,

where the last inequality thanks to (3.9). Now by induction one can easily prove
(3.10). �

3.3. Convergence of the set values. We first study the convergence of the cost

functions. Recall the θN in (3.9) and the functions v in (2.5) and vN,L
i in (3.6).

Theorem 3.5. Let Assumption 2.2(ii) and (iii) hold. For any L ≥ 0, there exists
a modulus of continuity function ρL, which depends only on T, d, Lq, C0, ρ, and
L such that, for any t ∈ T, μN

�x ∈ PN (S), μ ∈ P0(S), and any α, α̃ ∈ AL
state,

i = 1, · · · , N ,

(3.12)
∣∣Ji(t, �x, (α, α̃)i)− J(t, μ, α;xi, α̃)

∣∣+ ∣∣vN,L
i (t, �x, α)− v(μα; t, xi)

∣∣ ≤ ρL(θN ).

Proof. Clearly the uniform estimates for J implies that for v, so we shall only
prove the former one. Recall (3.4), (2.5), and the notations PN , Pi in the proof of
Theorem 3.4. Then

∣∣∣Ji(t, �x, (α, α̃)i)− J(t, μ, α;xi, α̃)
∣∣∣ ≤ IT +

T−1∑
s=t

Is, where

IT :=
∣∣∣EP

N [
G(Xi

T , μ
N
T )

]
− E

P
i[
G(XT , μ

α
T )

]∣∣∣;
Is :=

∣∣∣EP
N [

F (s,Xi
s, μ

N
s , α̃(s,Xi

s, μ
N
s ))

]
− E

P
i[
F (s,Xs, μ

α
s , α̃(s,Xs, μ

α
s ))

]∣∣∣, s < T.
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Note that, for s < T , by (3.10),

Is ≤
∣∣∣EP

N [
F (s,Xi

s, μ
N
s , α̃(s,Xi

s, μ
N
s ))

]
− E

P
N [

F (s,Xi
s, μ

α
s , α̃(s,X

i
s, μ

α
s ))

]∣∣∣
+
∣∣∣EP

N [
F (s,Xi

s, μ
α
s , α̃(s,X

i
s, μ

α
s ))

]
− E

P
i[
F (s,Xs, μ

α
s , α̃(s,Xs, μ

α
s ))

]∣∣∣
≤ E

P
N [

ρ
(
CLW1(μ

N
s , μα

s )
)]

+
∑
x∈S

∣∣F (s, x, μα
s , α̃(s, x, μ

α
s ))

∣∣∣∣PN (Xi
s = x)− P

i(Xs = x)
∣∣

≤ E
P
N [

ρ
(
CLW1(μ

N
s , μα

s )
)]

+ CLθN .

Similarly we have the estimate for IT , and thus

∣∣∣Ji(t, �x, (α, α̃)i)− J(t, μ, α;xi, α̃)
∣∣∣ ≤

T∑
s=t

E
P
N [

ρ
(
CLW1(μ

N
s , μα

s )
)]

+ CLθN .

This, together with (3.9), implies (3.12) for some appropriately defined modulus of
continuity function ρL. �

Our main result of this section is the following convergence of the set values.

Recall, for a sequence of sets {EN}N≥1, lim
N→∞

EN :=
⋂
n≥1

⋃
N≥n

EN , lim
N→∞

EN :=

⋃
n≥1

⋂
N≥n

EN .

Theorem 3.6. Let Assumption 2.2(ii), (iii) hold and μN
�x ∈ PN (S) → μ ∈ P0(S).

Then

(3.13)
⋂
ε>0

⋃
L≥0

lim
N→∞

V
N,ε,L
state (t, μ

N
�x ) ⊂ Vstate(t, μ) ⊂

⋂
ε>0

lim
N→∞

V
N,ε,0
state (t, μ

N
�x ).

In particular, since lim
N→∞

V
N,ε,0
state (t, μ

N
�x ) ⊂

⋃
L≥0

lim
N→∞

V
N,ε,L
state (t, μ

N
�x ), actually equali-

ties hold.

Note that �x ∈ SN0 obviously depends on N , so more rigorously we should write
�xN in the above statements. For notational simplicity we omit this N here. We
also remark that at above we are not able to switch the order of limN→∞ and⋂

ε>0

⋃
L≥0 in the left side, or the order of limN→∞ and

⋂
ε>0 in the right side.

Proof. (i) We first prove the right inclusion in (3.13). Fix ϕ ∈ Vstate(t, μ), ε >
0, and set ε1 := ε

2 . Note that Astate = A0
state. By (2.14), there exists α∗ ∈

Mε1
state(t, μ) such that ‖ϕ− J(t, μ, α∗; ·, α∗)‖∞ ≤ ε1. Recall (2.13), we have

J(t, μ, α∗;x, α∗) ≤ v(μα∗
; t, x) + ε1, for all x ∈ S.
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For any α ∈ A0
state = Astate, by Theorem 3.5 we have

Ji(t, �x, α
∗) ≤ J(t, μ, α∗;xi, α

∗) + ρ0(θN )

≤ v(μα∗
; t, x) + ε1 + ρ0(θN ) ≤ vN,L

i (t, �x, α∗) + ε1 + 2ρ0(θN ).

Choose N large enough such that ρ0(θN ) ≤ ε
4 , then Ji(t, �x, α

∗) ≤ vN,L
i (t, �x, α∗)+ε.

This implies that α∗ ∈ MN
ε,0(t, μ

N
�x ). Moreover,

‖ϕ− JN (t, ·, μN
�x , α∗)‖∞ ≤ ε1 + sup

i

∣∣∣Ji(t, �x, α∗)− J(t, μ, α∗;xi, α
∗)
∣∣∣

≤ ε1 + ρ0(θN ) ≤ ε1 +
ε

4
≤ ε.

Then ϕ ∈ V
N,ε,0
state (t, μ

N
�x ) for all N large enough. That is, ϕ ∈ limN→∞ V

N,ε,0
state (t, μ

N
�x ).

Since ϕ ∈ Vstate(t, μ) and ε > 0 are arbitrary, we obtain the right inclusion in
(3.13).

(ii) We next show the left inclusion in (3.13). Fix ϕ ∈
⋂
ε>0

⋃
L≥0

lim
N→∞

V
N,ε,L
state (t, μ

N
�x )

and ε > 0. Then, for ε1 := ε
2 > 0, there exist Lε > 0 and an infinite sequence

{Nk}k≥1 such that ϕ ∈ V
Nk,ε1,Lε

state (t, μNk

�x ) for all k ≥ 1. Recall (3.8), for each

k ≥ 1 there exists αk ∈ MNk,ε1,Lε

state (t, μNk

�x ) such that ‖ϕ− JN (t, ·, μNk

�x , αk)‖∞ ≤ ε1.

By Definition 3.2, we have Ji(t, �x, α
k) ≤ vNk,Lε

i (t, �x, αk) + ε1. Similar to (i), by
Theorem 3.5 we have

J(t, μ, αk;xi, α
k) ≤ v(μαk

; t, xi) + ε1 + 2ρLε
(θNk

) ≤ v(μαk

; t, xi) + ε,

for k large enough. That is, αk ∈ Mε
state(t, μ). Similar to (i) again, for k large

enough we have ‖ϕ − J(t, μ, αk; ·, αk)‖∞ ≤ ε. Then ϕ ∈ V
ε
state(t, μ). Since ε >

0 is arbitrary, we obtain ϕ ∈ Vstate(t, μ), and hence derive the left inclusion in
(3.13). �

Remark 3.7.

(i) From Theorem 3.6(i) we see that, for any α∗ ∈ M
ε
2
state(t, μ), we have α∗ ∈

MN,ε,0
state (t, μ

N
�x ) when N is large enough. Moreover, by (3.9) we have the desired

estimate for the approximate equilibrium measure E
P
t,�x,α∗ [

W1(μ
N
s , μα∗

s )
]
≤ CLθN .

This verifies the standard result in the literature that an approximate MFE is an
approximate equilibrium of the N -player game.

(ii) From Theorem 3.6(ii) we see that, for any αk ∈ MNk,
ε
2 ,Lε

state (t, μNk

�x ), we have

αk ∈ Mε
state(t, μ) when k is large enough, and we again have the estimate for the

approximate equilibrium measure E
P
t,�x,αk [

W1(μ
Nk
s , μαk

s )
]
≤ CLθNk

. This is in the
spirit that any limit point of the N -player equilibrium measures is an MFE measure.

Remark 3.8.

(i) We should point out that the key to obtain the convergence here is to consider
homogeneous equilibria for the N -player games. If we use heterogeneous equilibria
for the N -player games, it turns out that we will have the desired convergence when
we consider relaxed controls for the MFG, as we will do in the next two sections.

(ii) Another feature of our convergence result is the uniform Lipschitz continuity
requirement on the admissible controls. Indeed, the left inclusion in (3.13) would

fail in general if we replace
⋂
ε>0

⋃
L≥0

lim
N→∞

V
N,ε,L
state (t, μ

N
�x ) with

⋂
ε>0

lim
N→∞

V
N,ε,∞
state (t, μN

�x )
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or with
⋂
ε>0

lim
N→∞

V
N,ε
state(t, μ

N
�x ), where VN,ε,∞

state is defined in Remark 3.3 and V
N,ε
state is

defined similarly, by requiring α∗, α̃ : T× S× P(S) → A in (3.6) to be measurable
only. See Example 7.2. We refer to [22,32,33] for some related convergence analysis
without such regularity requirement.

(iii) We note that the above regularity requirement on the admissible controls
is also crucial for numerical computations of set values, as well as for practical
implementation of the equilibria, although these issues are not studied in the present
paper.

4. Mean field games on finite space with relaxed controls

In this section we study MFG with relaxed controls, or say mixed strategies.
Besides its independent interest, our main motivation is to characterize the limit
of N -player games with heterogeneous equilibria. We shall still consider the finite
space in Section 2, however, for the purpose of generality in this section we consider
path dependent setting.

4.1. The relaxed set value with path dependent controls. We start with
some notations for the path dependent setting. For x = (xt)0≤t≤T ∈ X, denote by
xt∧· = (x0, · · · ,xt,xt, · · · ,xt) the path stopping at t and Xt := {xt∧· : x ∈ X} ⊂ X.
For x, x̃ ∈ X, we say x =t x̃ if xt∧· = x̃t∧·. Denote Xt,x := {x̃ ∈ X : x̃ =t x} and
Xt,x

s := Xt,x ∩ Xs, for s ≥ t. Introduce the concatenation x⊕t x̃ ∈ X by

(x⊕t x̃)s := xs1{s≤t} + x̃s1{s>t}, and (x⊕t x)s := xs1{s≤t} + x1{s>t}, x ∈ S.

For each t ∈ T, let P(Xt) denote the set of probability measures on (Ω,FX
t ),

equipped with

W1(μ, ν) :=
∑
x∈Xt

|μ(x)− ν(x)|, ∀μ, ν ∈ P(Xt),

and P0(Xt) the subset of μ ∈ P(Xt) with full support Xt. Again this is just for
convenience of presentation. For a measure μ ∈ P(X) = P(XT ), denote μt∧· :=
μ ◦X−1

t∧· ∈ P(Xt). We remark that, by abusing the notation μ, here μt∧· denote the
joint law of the stopped process Xt∧·, while in Section 2 {μ·} denote the family of
marginal laws.

For a path dependent function ϕ on T × X × P(X), we say ϕ is adapted if
ϕ(t,x, μ) = ϕ(t,xt∧·, μt∧·). Throughout this section, all the path dependent func-
tions are required to be adapted. In particular, the data of the game q : T × X ×
P(X) × A × S → (0, 1), F : T × X × P(X) × A → R, and G : X × P(X) → R are
path dependent with q, F adapted. By adapting to the path dependent setting, we
shall still assume Assumption 2.2.

Let Arelax denote the set of path dependent adapted relaxed controls γ : T×X →
P(A). Given t ∈ T, μ ∈ P(Xt), γ ∈ Arelax, and x ∈ Xt, x̃ ∈ Xt,x, γ̃ ∈ Arelax, we
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introduce:
(4.1)

P
t,μ,γ ◦X−1

t∧· = μ, P
t,μ,γ(Xs+1 = x̃|X =s x) =

∫
A

q(s,x, μγ , a; x̃)γ(s,x; da);

where μγ
s∧· := P

t,μ,γ ◦X−1
s∧·, s ≥ t;

P
μγ ;t,x,γ̃(X =t x) = 1, P

μγ ;t,x,γ̃(Xs+1 = x̄|X=s x̃)=

∫
A

q(s, x̃, μγ , a; x̄)γ̃(s, x̃; da);

J(μγ ; s, x̃, γ̃) := E
P
μγ ;t,x,γ̃

[
G(X,μγ) +

T−1∑
r=s

∫
A

F (r,X, μγ , a)γ̃(r,X, da)
∣∣∣X =s x̃

]
;

J(t, μ, γ;x, γ̃) := J(μγ ; t,x, γ̃), v(μγ ; s, x̃) := inf
γ̃∈Arelax

J(μγ ; s, x̃, γ̃).

Definition 4.1.

(i) For any t ∈ T, μ ∈ P0(Xt), and ε > 0, let Mε
relax(t, μ) denote the set of

relaxed ε-MFE γ∗ ∈ Arelax such that

(4.2) J(t, μ, γ∗;x, γ∗) ≤ v(μγ∗
; t,x) + ε, for all x ∈ Xt.

(ii) The relaxed set value of the MFG at (t, μ) is defined as:

Vrelax(t, μ) :=
⋂
ε>0

V
ε
relax(t, μ), where ‖ϕ‖Xt

:= sup
x∈Xt

|ϕ(x)|, and(4.3)

V
ε
relax(t, μ)

:=
{
ϕ ∈ L

0(Xt;R) : ∃γ∗ ∈ Mε
relax(t, μ) s.t. ‖ϕ− J(t, μ, γ∗; ·, γ∗)‖Xt

≤ ε
}
.

Similarly, given T0 and ψ : XT0
× P(XT0

) → R, as in (2.8) define
(4.4)

J(T0, ψ; t, μ, γ;x, γ̃) := E
P
μγ ;t,x,γ̃

[
ψ(XT0∧·, μ

γ
T0∧·)+

T0−1∑
s=t

∫
A

F (s,X, μγ, a)γ̃(s,X, da)
]
,

and let Mε
relax(T0, ψ; t, μ) denote the set of γ∗ ∈ Arelax such that, ∀x ∈ Xt,

(4.5)
J(T0, ψ; t, μ, γ

∗;x, γ∗) ≤ v(T, ψ;μγ ; s,x) := inf
γ∈Arelax

J(T0, ψ; t, μ, γ
∗;x, γ) + ε.

Note that the tower property in (2.10) remains true for relaxed controls:

(4.6) J(t, μ, γ;x, γ̃) = J(T0, ψ; t, μ, γ;x, γ̃), where ψ(y, ν) := J(T0, ν, γ;y, γ̃).

The DPP for Vrelax takes the following form.

Theorem 4.2. Under Assumption 2.2(i), for any t ∈ T, T0 ∈ Tt, and μ ∈ P0(Xt),

Vrelax(t, μ) =
⋂
ε>0

{
ϕ ∈ L

0(Xt;R) : ‖ϕ− J(T0, ψ; t, μ, γ
∗; ·, γ∗)‖Xt

≤ ε

for some ψ ∈ L
0(XT0

× P0(XT0
);R) and γ∗ ∈ Arelax such that(4.7)

ψ(·, μγ∗

T0∧·) ∈ V
ε
relax(T0, μ

γ∗

T0∧·), γ
∗ ∈ Mε

relax(T0, ψ; t, μ)
}
.

Proof. We shall follow the arguments in Theorem 2.4, in particular, we shall extend
Proposition 2.3. Let Ṽrelax(t, μ) =

⋂
ε>0 Ṽ

ε
relax(t, μ) denote the right side of (4.2).
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(i) We first prove Ṽrelax(t, μ) ⊂ Vrelax(t, μ). Fix ϕ ∈ Ṽrelax(t, μ), ε > 0, and set

ε1 := ε
4 . Since ϕ ∈ Ṽ

ε1
relax(t, μ), then

‖ϕ− J(T0, ψ; t, μ, γ
∗; ·, γ∗)‖Xt

≤ ε1 for some desirable ψ, γ∗ as in (4.2).

Since ψ(·, μγ∗

T0∧·) ∈ V
ε1
relax(T0, μ

γ∗

T0∧·), there exists γ̃∗ ∈ Mε1
relax(T0, μ

γ∗

T0∧·) such that

‖ψ(·, μγ∗

T0∧·)− J(T0, μ
γ∗

T0∧·, γ̃
∗; ·, γ̃∗)‖XT0

≤ ε1.

As in (2.2) denote γ̂∗ := γ∗ ⊕T0
γ̃∗ := γ∗1{s<T0} + γ̃∗1{s≥T0} ∈ Arelax. Then, for

any x ∈ Xt and γ ∈ Arelax, similarly to Proposition 2.3(i) we have

J(t, μ, γ̂∗;x, γ)

= E
P
μγ∗

;t,x,γ
[
J(T0, μ

γ∗

T0∧·, γ̃
∗;XT0∧·, γ) +

T0−1∑
s=t

∫
A

F (s,X, μγ∗
, a)γ(s,X, da)

]

≥ E
P
μγ∗

;t,x,γ
[
J(T0, μ

γ∗

T0∧·, γ̃
∗;XT0∧·, γ̃

∗) +
T0−1∑
s=t

∫
A

F (s,X, μγ∗
, a)γ(s,X, da)

]
− ε1

≥ E
P
μγ∗

;t,x,γ
[
ψ(XT0∧·, μ

γ∗

T0∧·) +

T0−1∑
s=t

∫
A

F (s,X, μγ∗
, a)γ(s,X, da)

]
− 2ε1

= J(T0, ψ; t, μ, γ
∗;x, γ)− 2ε1 ≥ J(T0, ψ; t, μ, γ

∗;x, γ∗)− 3ε1

= E
P
μγ∗

;t,x,γ∗ [
ψ(XT0∧·, μ

γ∗

T0∧·) +
T0−1∑
s=t

∫
A

F (s,X, μγ∗
, a)γ∗(s,X, da)

]
− 3ε1

≥ E
P
μγ∗

;t,x,γ∗ [
J(T0, μ

γ∗

T0∧·, γ̃
∗;XT0∧·, γ̃

∗)+
T0−1∑
s=t

∫
A

F (s,X, μγ∗
, a)γ∗(s,X, da)

]
−4ε1

= J(t, μ, γ̂∗;x, γ̂∗)− 4ε1 = J(t, μ, γ̂∗;x, γ̂∗)− ε.

That is, γ̂∗ ∈ Mε
relax(t, μ). Moreover, note that, by (4.6),

‖ϕ− J(t, μ, γ̂∗; ·, γ̂∗)‖Xt
≤ ε1 + ‖J(T0, ψ; t, μ, γ

∗; ·, γ∗)− J(t, μ, γ̂∗; ·, γ̂∗)‖Xt

= ε1 + sup
x∈Xt

∣∣∣EP
μγ∗

;t,x,γ∗ [
ψ(XT0∧·, μ

γ∗

T0∧·)− J(T0, μ
γ∗

T0∧·, γ̃
∗;XT0∧·, γ̃

∗)
]∣∣∣ ≤ 2ε1 < ε.

Then ϕ ∈ V
ε
relax(t, μ). Since ε > 0 is arbitrary, we obtain ϕ ∈ Vrelax(t, μ).

(ii) We now prove the opposite inclusion. Fix ϕ ∈ Vrelax(t, μ) and ε > 0. Let
ε2 > 0 be a small number which will be specified later. Since ϕ ∈ V

ε2
relax(t, μ), then

‖ϕ− J(t, μ, γ∗; ·, γ∗)‖Xt
≤ ε2 for some γ∗ ∈ Mε2

relax(t, μ).

Introduce ψ(y, ν) := J(T0, ν, γ
∗;y, γ∗) and recall (4.6). Then

‖ϕ− J(T0, ψ; t, μ, γ
∗; ·, γ∗)‖Xt

= ‖ϕ(x)− J(t, μ, γ∗;x, γ∗)‖Xt
≤ ε2.

Moreover, since γ∗ ∈ Mε2
relax(t, μ), for any γ ∈ Arelax and x ∈ Xt, we have

J(T0, ψ; t, μ, γ
∗;x, γ∗) = J(t, μ, γ∗;x, γ∗)

≤ J(t, μ, γ∗;x, γ ⊕T0
γ∗) + ε2 = J(T0, ψ; t, μ, γ

∗;x, γ) + ε2.

This implies that γ∗ ∈ Mε2
relax(T0, ψ; t, μ). We claim further that

(4.8) ψ(·, μγ∗

T0∧·) ∈ V
Cε2
relax(T0, μ

γ∗

T0∧·),
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for some constant C ≥ 1. Then by (4.2) we see that ϕ ∈ Ṽ
Cε2
relax(t, μ) ⊂ Ṽε

relax(t, μ)

by setting ε2 ≤ ε
C . Since ε > 0 is arbitrary, we obtain ϕ ∈ Ṽrelax(t, μ).

To see (4.8), recalling (4.1), for any γ ∈ Arelax we have

E
P
μγ∗

;t,x,γ∗ [
J(T0, μ

γ∗

T0∧·, γ
∗;XT0∧·, γ

∗)
]
− E

P
μγ∗

;t,x,γ∗ [
J(T0, μ

γ∗

T0∧·, γ
∗;XT0∧·, γ)

]
= J(t, μ, γ∗;x, γ∗)− J(t, μ, γ∗;x, γ∗ ⊕T0

γ) ≤ ε2.

Then, by taking infimum over γ ∈ Arelax, it follows from the standard control
theory that

E
P
μγ∗

;x,γ∗ [
J(T0, μ

γ∗

T0∧·, γ
∗;XT0∧·, γ

∗)
]
≤ E

P
μγ∗

;t,x,γ∗ [
v(μγ∗

;T0, XT0∧·)
]
+ ε2,

∀x ∈ Xt.

On the other hand, it is obvious that v(μγ∗
;T0, x̃) ≤ J(T0, μ

γ∗

T0∧·, γ
∗; x̃, γ∗) for all

x̃ ∈ XT0
. Moreover, since q ≥ cq, clearly Pμγ∗

;t,x,γ∗
(X =T0

x̃) ≥ cT0−t
q , for any

x̃ ∈ X
t,x
T0

. Thus,

0 ≤ J(T0, μ
γ∗

T0∧·, γ
∗; x̃, γ∗)− v(μγ∗

;T0, x̃)

≤ CE
P
μγ∗

;t,x,γ∗ [[
J(T0, μ

γ∗

T0∧·, γ
∗;XT0∧·, γ

∗)− v(μγ∗
;T0, XT0∧·)

]
1{X=T0

x̃}

]

≤ CE
P
μγ∗

;t,x,γ∗ [
J(T0, μ

γ∗

T0∧·, γ
∗;XT0∧·, γ

∗)− v(μγ∗
;T0, XT0∧·)

]
≤ Cε2,

where C := ct−T0
q . This implies that γ∗ ∈ MCε2

relax(T0, μ
γ∗

T0∧·). Then (4.8) follows

directly from ψ(·, μγ∗

T0∧·) = J(T0, μ
γ∗

T0∧·, γ
∗; ·, γ∗), and hence ϕ ∈ Ṽrelax(t, μ). �

Remark 4.3. Consider the setting that q, F,G are state dependent, as in Section 2.
There is a very subtle issue between state dependence and path dependence of the
controls.

(i) For a standard non-zero sum game problems where the players may have dif-
ferent cost functions Fi, Gi, if one uses state dependent controls, in general
the set value does not satisfy DPP. See a counterexample in [24]. However,
with path dependent controls the set value of the game satisfies the DPP.

(ii) In Section 2, since all players have the same cost function, as we saw the
set value with state dependent controls satisfies DPP. If we consider path
dependent controls α ∈ Apath, the set value will also satisfy DPP. However,
the set values in these two settings are in general not equal, see Example
7.1 in Appendix for a counterexample.

(iii) For relaxed controls, again restricting to state dependent q, F,G, it turns
out that state dependent and path dependent controls lead to the same set
value, see Theorem 7.6 in Appendix. The main reason is that the convex
combination of relaxed controls remains a relaxed control, while the controls
α in Section 2 does not share this property.

4.2. An alternative formulation of the relaxed mean field game. In this
subsection we provide an alternative formulation for the MFG with relaxed controls.
This new formulation is motivated from the heterogeneous controls for the N -player
games, and thus is crucial for the convergence result in the next section.
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Let Apath denote the set of adapted path dependent controls α : T × X → A,
and for each t ∈ T, At

path =
{
(α(t, ·), · · · , α(T − 1, ·)) : α ∈ Apath

}
. Denote

Ξt := P(Xt × At
path), and for each Λ ∈ Ξt, define recursively: for s ≥ t, x ∈ Xt,

and x̃ ∈ Xt,x,
(4.9)

μΛ
t∧·(x) := Λ(x,At

path), μΛ
s∧·(x̃) :=

∫
At

path

s−1∏
r=t

q(r, x̃, μΛ, α(r, x̃); x̃r+1)Λ(x, dα).

Here, noting that α ∈ At
path can be equivalently expressed as {α(s, x̃) : t ≤ s ≤ T −

1, x̃ ∈ Xt,x
s }, we are using the following interpretation on dα: for any ϕ : At

path → R,

(4.10)

∫
At

path

ϕ(α)dα :=

∫
A

· · ·
∫
A

ϕ
(
{α(s, x̃)}

) T−1∏
s=t

∏
x̃∈X

t,x
s

dα(s, x̃).

Next, for μ ∈ P0(Xt), denote Ξt(μ) := {Λ ∈ Ξt : μΛ
t∧· = μ}. Moreover, recall

(4.1),
(4.11)

J(t,Λ;x, α) := J(μΛ; t,x, α), v(t,Λ;x) := v(μΛ; t,x), x ∈ Xt, α ∈ At
path.

To simplify the notations, we introduce:

(4.12) Qt
s({μ·}; x̃, α) :=

∏s−1
r=t q(r, x̃, μ, α(r, x̃); x̃r+1).

In particular, Qt
t({μ·};x, α) = 1. Then we have, for any x̃ ∈ Xt,x,

(4.13) μΛ
s (x̃) :=

∫
At

path

Qt
s(μ

Λ; x̃, α)Λ(x, dα), P
μΛ;t,x,α(X =s x̃) = Qt

s(μ
Λ; x̃, α).

Definition 4.4. For any t ∈ T, μ ∈ P0(Xt), and ε > 0, we call Λ∗ ∈ Ξt(μ) a global
ε-MFE at (t, μ), denoted as Λ∗ ∈ Mε

global(t, μ), if

(4.14)

∫
At

path

[J(t,Λ∗;x, α)− v(t,Λ∗;x)]Λ∗(x, dα) ≤ ε, ∀x ∈ Xt.

Note that the above α is global in time, so we call Λ∗ a global equilibrium. More-
over, since there are infinitely many α ∈ At

path, it is hard to require J(t,Λ∗;x, α)−
v(t,Λ∗;x) ≤ ε for each α ∈ At

path, we thus use the above L1-type of optimality
condition. For the x part, however, since there are only finitely many x and each
of them has positive probability, we may require the optimality for each x.

The main result of this subsection is the following equivalence result.

Theorem 4.5. For any t ∈ T and μ ∈ P0(Xt), we have
(4.15)

Vrelax(t, μ) = Vglobal(t, μ) :=
⋂
ε>0

V
ε
global(t, μ), where

V
ε
global(t, μ) :=

{
ϕ ∈ L

0(Xt,R) : ∃Λ∗ ∈ Mε
global(t, μ) s.t. ‖ϕ− v(t,Λ∗; ·)‖Xt

≤ ε
}
.

We shall prove the mutual inclusion of the two sides separately. First, given
(t,Λ), we construct a relaxed control as follows: for any t ∈ T, x ∈ Xt, and s ≥ t,
x̃ ∈ Xt,x

s ,

(4.16) γΛ(s, x̃, da) :=
1

μΛ
s∧·(x̃)

∫
At

path

Qt
s(μ

Λ; x̃;α)δα(s,x̃)(da)Λ(x, dα).
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On the opposite direction, given t ∈ T, μ ∈ P0(Xt), γ ∈ Arelax, recalling (4.10) we
construct

(4.17) Λγ(x, dα) := μ(x)

T−1∏
s=t

∏
x̃∈X

t,x
s

γ(s, x̃, dα(s, x̃)), ∀x ∈ Xt, α ∈ At
path.

In particular, the following calculation implies Λγ ∈ Ξt(μ):

Λγ(x,At
path) = μ(x)

T−1∏
s=t

∏
x̃∈X

t,x
s

γ(s, x̃,A) = μ(x)

T−1∏
s=t

∏
x̃∈X

t,x
s

1 = μ(x).

Lemma 4.6. For any t ∈ T, μ ∈ P0(Xt), and Λ ∈ Ξt(μ), γ ∈ Arelax, we have

μγΛ

= μΛ and μΛγ

= μγ . Moreover,

(4.18) J(t, μ, γΛ;x, γΛ) =
1

μ(x)

∫
At

path

J(t,Λ;x, α)Λ(x, dα), ∀x ∈ Xt.

Proof. We first prove μγΛ

s∧· = μΛ
s∧· by induction. The case s = t follows from the

definitions. Assume it holds for all r ≤ s. For s + 1 and x̃ ∈ X
t,x
s+1, by Fubini

Theorem we have

μγΛ

(s+1)∧·(x̃)

μγΛ

s∧·(x̃s∧·)
=

∫
A

q(s, x̃, μγΛ

, a; x̃s+1)γ
Λ(s, x̃, da)

=

∫
A

q(s, x̃, μγΛ

, a; x̃s+1)
1

μΛ
s∧·(x̃)

∫
At

path

Qt
s(μ

Λ; x̃;α)δα(s,x̃)(da)Λ(x, dα)

=
1

μΛ
s∧·(x̃)

∫
At

path

q(s, x̃, μΛ, α(s, x̃); x̃s+1)Q
t
s(μ

Λ; x̃;α)Λ(x, dα)

=
1

μΛ
s∧·(x̃)

∫
At

path

Qt
s+1(μ

Λ; x̃;α)Λ(x, dα) =
μΛ
(s+1)∧·(x̃)

μΛ
s∧·(x̃)

.

Then μγΛ

(s+1)∧· = μΛ
(s+1)∧·, and we complete the induction argument.

We next prove μΛγ

s∧· = μγ
s∧· by induction. Again the case s = t is obvious. Assume

it holds for all r < s. Now for s, recalling (4.10) we have

μΛγ

s∧·(x̃) =

∫
At

path

[ s−1∏
r=t

q(r, x̃, μγ , α(r, x̃); x̃r+1)
][
μ(x)

T−1∏
r=t

∏
x̄∈X

t,x
r

γ(r, x̄, dα(r, x̄))
]

= μ(x)
[ s−1∏
r=t

∫
A

q(r, x̃, μγ , α(r, x̃); x̃r+1)γ(r, x̃, dα(r, x̄))
]

×
[ s−1∏
r=t

∏
x̄∈X

t,x
r \{x̃}

γ(r, x̄,A)
]
×
[ T−1∏

r=s

∏
x̄∈X

t,x
r

γ(r, x̄,A)
]

= μ(x)

s−1∏
r=t

∫
A

q(r, x̃, μγ , a; x̃r+1)γ(r, x̃, da) = μγ
s∧·(x̃).
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We finally prove (4.18). For each s ≥ t and x̃ ∈ Xt,x
s , by Fubini Theorem again

we have ∫
A

F (s, x̃, μΛ, a)γΛ(s, x̃, da)

=

∫
A

F (s, x̃, μΛ, a)

μΛ
s∧·(x̃)

∫
At

path

Qt
s(μ

Λ; x̃;α)δα(s,x̃)(da)Λ(x, dα)

=
1

μΛ
s∧·(x̃)

∫
At

path

F (s, x̃, μΛ, α(s, x̃))Qt
s(μ

Λ; x̃;α)Λ(x, dα).

By (4.1) we have PμΛ;t,x,γΛ

(X =s x̃) =
μΛ
s∧·(x̃)
μ(x) . Thus

J(t, μ, γΛ;x, γΛ)

=
1

μ(x)

[ ∑
x̃∈Xt,x

G(x̃, μΛ)μΛ
T∧·(x̃) +

T−1∑
s=t

∑
x̃∈X

t,x
s

μΛ
s∧·(x̃)

∫
A

F (s, x̃, μΛ, a)γΛ(s, x̃, da)
]

=
1

μ(x)

∫
At

path

[ ∑
x̃∈Xt,x

G(x̃, μΛ)Qt
T (μ

Λ; x̃;α)

+

T−1∑
s=t

∑
x̃∈X

t,x
s

F (s, x̃, μΛ, α(s, x̃))Qt
s(μ

Λ; x̃;α)
]
Λ(x, dα).

This implies (4.18) immediately. �

Remark 4.7. We can actually show that γ(Λγ) = γ for all γ ∈ Arelax, see Appendix.

However, it is not clear that we would have Λ(γΛ) = Λ for all Λ ∈ Ξt(μ).

Proof of Theorem 4.5. Since μ ∈ P0(Xt) has full support, then cμ := inf
x∈Xt

μ(x) > 0.

(i) We first prove Vglobal(t, μ) ⊂ Vrelax(t, μ). Fix ϕ ∈ Vglobal(t, μ) and ε > 0.
Let ε1 > 0 be a small number which will be specified later. Since ϕ ∈ V

ε1
global(t, μ),

there exists Λ∗ ∈ Mε1
global(t, μ) such that ‖ϕ−v(t,Λ∗; ·)‖Xt

≤ ε1. Set γ
∗ := γΛ∗

. For

any x ∈ Xt, since μγ∗
= μΛ∗

, by (4.1), (4.11) we have v(μγ∗
; t,x, γ∗) = v(t,Λ∗;x),

and, by (4.18), (4.14),

J(t, μ, γ∗;x, γ∗)− v(t,Λ∗;x)

=
1

μ(x)

∫
At

path

[J(t,Λ∗;x, α)− v(t,Λ∗;x)]Λ∗(x, dα) ≤ ε1
cμ

≤ ε,

provided ε1 > 0 is small enough. This implies γ∗ ∈ Mε
relax(t, μ).

Moreover, it is clear now that, for any x ∈ Xt and for a possibly smaller ε1,∣∣ϕ(x)− J(t, μ, γ∗;x, γ∗)
∣∣ ≤ ε1 +

∣∣v(t,Λ∗;x)− J(t, μ, γ∗;x, γ∗)
∣∣ ≤ ε1 +

ε1
cμ

≤ ε.

Then ϕ ∈ V
ε
relax(t, μ), and since ε > 0 is arbitrary, we obtain ϕ ∈ Vrelax(t, μ).

(ii) We next prove Vrelax(t, μ) ⊂ Vglobal(t, μ). Fix ϕ ∈ Vrelax(t, μ), ε > 0, and
set ε2 := ε

2 . Since ϕ ∈ V
ε2
relax(t, μ), there exists γ∗ ∈ Mε2

relax(t, μ) such that ‖ϕ −
J(t, μ, γ∗; ·, γ∗)‖Xt

≤ ε2. Set Λ∗ := Λγ∗
, then μΛ∗

= μγ∗
. Since γ∗ ∈ Mε2

relax(t, μ),
we have

|ϕ(x)− v(t,Λ∗;x)| = |ϕ(x)− v(μγ∗
; t,x)| ≤ 2ε2 ≤ ε, ∀x ∈ Xt.
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Moreover, note that, by (4.18) again,

(4.19)

∫
At

path

[J(t,Λ∗;x, α)− v(t,Λ∗;x)]Λ∗(x, dα)

= μ(x)[J(t, μ, γ∗;x, γ∗)− v(t,Λ∗;x)] ≤ μ(x)ε2 ≤ ε2 ≤ ε.

This implies ϕ ∈ V
ε
global(t, μ), and hence by the arbitrariness of ε, ϕ ∈ Vglobal(t, μ).

�

5. The N-player game with heterogeneous equilibria

In this section we drop the requirement α1 = · · · = αN for the N -player game,
and show that the corresponding set value converges to Vrelax, which in general
is strictly larger than Vstate. We note that we shall still use the pure strategies,
rather than mixed strategies, for the N -player game. Moreover, since we used path
dependent controls in Section 4, we shall also use path dependent controls here.

5.1. The N-player game. Let ΩN and �X be as in Section 3, and denote
(5.1)

μN
t∧· := μN

t, �Xt∧·
, where μN

t,�x :=
1

N

N∑
i=1

δxi ∈ P(Xt), �x = (x1, · · · ,xN ) ∈ X
N
t .

Similarly to (3.7), for the convenience of the presentation we introduce

(5.2) X
N
0,t :=

{
�x ∈ X

N
t : supp(μN

t,�x) = Xt

}
, PN (Xt) :=

{
μN
t,�x : �x ∈ X

N
0,t

}
.

We shall consider path dependent symmetric controls: At,∞
path :=

⋃
L≥0 A

t,L
path, where

At,L
path :=

{
α : {t, · · · , T − 1} × X× P(X) → A

∣∣∣α is adapted and

uniformly Lipschitz continuous in μ (under W1) with Lipschitz constant L
}
.

Given t ∈ T, �x ∈ XN
0,t, and �α = (α1, · · · , αN ) ∈ (At,∞

path)
N , introduce, for s ≥ t,

P
t,�x,�α( �X=t�x)=1,Pt,�x,�α( �Xs+1=�x′′| �X=s�x

′)=
N∏
i=1

q(s,x′i, μN , αi(s,x′i, μN );x′′
i ),

Ji(t, �x, �α) := E
P
t,�x,�α

[
G(Xi, μN ) +

T−1∑
s=t

F (s,Xi, μN , αi(s,Xi, μN ))
]
;(5.3)

vN,L
i (t, �x, �α) := inf

α̃∈At,L
path

Ji(t, �x, �α
−i, α̃), i = 1, · · · , N.

Here (�α−i, α̃) is the vector obtained by replacing αi in �α with α̃.

Definition 5.1. For any ε > 0, L ≥ 0, we say �α ∈ (At,L
path)

N is an (ε, L)-equilibrium

of the N -player game at (t, �x), denoted as �α ∈ MN,ε,L
hetero(t, �x), if:

(5.4)
1

N

N∑
i=1

[
Ji(t, �x, �α)− vN,L

i (t, �x, �α)
]
≤ ε.
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Here, since there are N players and we will send N → ∞, similar to (4.14) we
do not require the optimality for each player. In fact, by (5.4) one can easily show
that

(5.5)
1

N

∣∣∣{i = 1, · · · , N : Ji(t, �x, �α)− vN,L
i (t, �x, �α) ≥

√
ε
}∣∣∣ ≤ √

ε.

This is exactly the (
√
ε,
√
ε)-equilibrium in [11].

We then define the set value of the N -player game with heterogeneous equilibria:

V
N
hetero(t, �x) :=

⋂
ε>0

V
N,ε
hetero(t, �x) :=

⋂
ε>0

⋃
L≥0

V
N,ε,L
hetero(t, �x),

where V
N,ε,L
hetero(t, �x) :=

{
ϕ ∈ L

0(Xt;R) : ∃�α ∈ MN,ε,L
hetero(t, �x) such that(5.6)

max
x∈Xt

min
{i:xi=x}

∣∣ϕ(x)− vN,L
i (t, �x, �α)

∣∣ ≤ ε
}
.

Remark 5.2.

(i) An alternative definition of VN,ε,L
hetero(t, �x) is to require ϕ satisfying

(5.7) max
i=1,··· ,N

∣∣ϕ(xi)− vN,L
i (t, �x, �α)

∣∣ = max
x∈Xt

max
{i:xi=x}

∣∣ϕ(x)− vN,L
i (t, �x, �α)

∣∣ ≤ ε.

Indeed, the convergence result Theorem 5.3 remains true if we use (5.7). However,

in general it is possible that xi = xj but vN,L
i (t, �x, �α) = vN,L

j (t, �x, �α). Then,

by fixing N and sending ε → 0, under (5.7) we would have V
N
hetero(t, �x) :=⋂

ε>0 V
N,ε
hetero(t, �x) = ∅.

(ii) In the homogeneous case, vN,L
i (t, �x, �α) = vN,L

j (t, �x, �α) whenever xi = xj , so

we don’t have this issue in (3.8).
(iii) Note that μN

t,�x = μN
t,�x′ if and only if �x is a permutation of �x′, and one

can easily verify that vN,L
i (t, �x, �α) = vN,L

π(i) (t, (xπ(1), · · · ,xπ(N)), (απ(1), · · · , απ(N)))

for any permutation π on {1, · · · , N}, . Then, similar to the homogenous case,

V
N,ε,L
hetero(t, �x) is invariant in μN

t,�x and we will denote it as VN,ε,L
hetero(t, μ

N
t,�x).

The following convergence result of the set value is in the same spirit of Theorem
3.6.

Theorem 5.3. Let Assumption 2.2 hold and μN
t,�x ∈ PN (Xt) → μ ∈ P0(Xt) under

W1. Then

(5.8)
⋂
ε>0

⋃
L≥0

lim
N→∞

V
N,ε,L
hetero(t, μ

N
t,�x) ⊂ Vrelax(t, μ) ⊂

⋂
ε>0

lim
N→∞

V
N,ε,0
hetero(t, μ

N
t,�x).

In particular, since lim
N→∞

V
N,ε,0
hetero(t, μ

N
t,�x) ⊂

⋃
L≥0

lim
N→∞

V
N,ε,L
hetero(t, μ

N
t,�x), actually equal-

ities hold.

Unlike Theorem 3.6, here the N -player game and the MFG take different types of
controls �α and γ, respectively. The key for the convergence is the global formulation

in Subsection 4.2 for MFG. Indeed, given t ∈ T, �x ∈ XN
0,t, and �α ∈ (At,L

path)
N , the

N -player game is naturally related to the following ΛN ∈ P(Xt ×At,L
path):

(5.9)

ΛN (x, dα) :=
1

N

∑
i∈I(x)

δαi
(dα), where I(x) :=

{
i = 1, · · · , N : xi = x

}
,x ∈ Xt.
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By the symmetry of the problem, there exists a function JN , independent of i, such
that

(5.10) Ji(t, �x, �α) = JN (ΛN ; t,xi, αi), i = 1, · · · , N.

We shall use this and Theorem 4.5 to prove Theorem 5.3 in the rest of this section.
We also make the following obvious observation:

(5.11) ΛN (x,At
path) =

|I(x)|
N

= μN
t,�x(x), ∀x ∈ Xt.

Remark 5.4.

(i) In this section we are using symmetric controls and we obtain the con-

vergence in Theorem 5.3. If we use full information controls αi(t, �X), as
observed in [32] in terms of the equilibrium measure, one may expect the
limit set value will be strictly larger than Vrelax. It will be interesting
to find an appropriate notion of MFE so that the corresponding MFG set
value will be equal to the above limit, in the sense of Theorem 5.3.

(ii) While the convergence in Theorem 5.3 is about set values, the proofs in the
rest of this section confirm the convergence of the approximate equilibria
as well, exactly in the same manner as in Remark 3.7.

5.2. From N-player games to mean field games. In this subsection we prove

the left inclusion in (5.8). Notice that the ΛN in (5.9) is defined on At,L
path, rather

than At
path = At,0

path. For this purpose, recall (4.12) and introduce

νNt∧·(x) := μN
t,�x(x), ν

N
s∧·(x̃) :=

1

N

∑
i∈I(x)

Qt
s(ν

N ; x̃, αi(·, ·, νN )),x ∈ Xt, x̃∈X
t,x
s , s ≥ t;

Λ̄N (x, dα) :=
μ(x)

|I(x)|
∑

i∈I(x)

δᾱi
(dα), where ᾱi(s, x̃) := αi(s, x̃, ν

N ).

(5.12)

Then it is obvious that ᾱi ∈ At
path and Λ̄N ∈ Ξt(μ). Moreover, when μ = μN

t,�x, by

(4.13) and (5.11) it is straightforward to verify by induction that μΛ̄N

= νN .

Theorem 5.5. Let Assumption 2.2(ii) hold. Then, for any L ≥ 0, there exists a
constant CL, depending only on T, d, Lq, and L such that, for any t ∈ T, �x ∈ XN

0,t,

μ ∈ P0(Xt), �α ∈ (At,L
path)

N , α̃ ∈ At,L
path, and for the νN , Λ̄N defined in (5.12), we

have
(5.13)

max
1≤i≤N

max
t≤s≤T

E
P
t,�x,(�α−i,α̃)[W1(μ

N
s∧·, μ

Λ̄N

s∧·)
]
≤ CLθN , θN := W1(μ

N
t,�x, μ) +

1√
N

.

Proof. Fix i and denote α̃j := αj for j = i, and α̃i := α̃i. We first show that

(5.14) κs := E
P
N [W1(μ

N
s∧·, ν

N
s∧·)

]
≤ CL√

N
, where P

N := P
t,�x,(�α−i,α̃).
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Indeed, for s ≥ t, by the conditional independence of {Xj
s+1}1≤j≤N under PN ,

conditional on Fs, it follows from the same arguments as in (3.11) that

κs+1 = E
P
N
[
E
P
N

Fs

[
W1(μ

N
(s+1)∧·, ν

N
(s+1)∧·)

]]

≤ C√
N

+ C
∑

x∈Xs+1

E
P
N
[∣∣∣ 1
N

N∑
j=1

P
N (Xj =s+1 x|Fs)− νN(s+1)∧·(x)

∣∣∣].

Note that,

∣∣∣ 1
N

N∑
j=1

P
N (Xj =s+1 x|Fs)−

1

N

N∑
j=1

1{Xj=sx}q(s,x, ν
N , αj(s,x, ν

N );xs+1)
∣∣∣

=
∣∣∣ 1
N

N∑
j=1

1{Xj=sx}
[
q(s,x, μN , α̃j(s,x, μ

N );xs+1)−q(s,x, νN , αj(s,x, ν
N );xs+1)

]∣∣∣

≤ CLW1(μ
N
s∧·, ν

N
s∧·) +

1

N
= CLκs +

1

N
,

where in the last inequality, the first term is due to the sum over all j = i. Then

κs+1 ≤ CLκs +
C√
N

+ E
P
N
[ ∑
x∈Xs+1

∣∣∣ 1
N

N∑
j=1

1{Xj=sx}q(s,x, ν
N , αj(s,x, ν

N);xs+1)

− 1

N

∑
j∈I(xt∧·)

Qt
s(ν

N ;x, ᾱj)q(s,x, ν
N , αj(s,x, ν

N);xs+1)
∣∣∣]

= CLκs +
C√
N

+ E
P
N
[ ∑
x∈Xs

∣∣∣ 1
N

N∑
j=1

1{Xj=sx} −
1

N

∑
j∈I(xt∧·)

Qt
s(ν

N ;x, ᾱj)
∣∣∣]

= CLκs +
C√
N

+ E
P
N
[ ∑
x∈Xs

∣∣μN
s∧·(x)− νNs∧·(x)

∣∣] ≤ CLκs +
C√
N

.

It is obvious that κt = 0. Then by induction we obtain (5.14).

Next, denote κ̄s := W1(ν
N
s∧·, μ

Λ̄N

s∧·). For s ≥ t, by (5.12), (4.13), and (4.12), we
have

κ̄s+1 =
∑
x∈Xt

∑
x̃∈X

t,x
s+1

∣∣νN(s+1)∧·(x̃)− μΛ̄N

(s+1)∧·(x̃)
∣∣

=
∑
x∈Xt

∑
x̃∈X

t,x
s+1

∣∣ 1
N

∑
j∈I(x)

Qt
s+1(ν

N ; x̃, ᾱj)−
μ(x)

|I(x)|
∑

j∈I(x)

Qt
s+1(μ

Λ̄N

; x̃, ᾱj)
∣∣

=
∑
x∈Xt

∑
x̃∈X

t,x
s+1

[ 1

N

∑
j∈I(x)

∣∣Qt
s+1(ν

N ; x̃, ᾱj)−Qt
s+1(μ

Λ̄N

; x̃, ᾱj)
∣∣

+
∣∣∣ 1
N

− μ(x)

|I(x)|

∣∣∣ ∑
j∈I(x)

Qt
s+1(μ

Λ̄N

; x̃, ᾱj)
]

≤ C
∑
x∈Xt

∑
x̃∈X

t,x
s+1

[ 1

N

∑
j∈I(x)

s∑
r=t

W1(ν
N
r∧·, μ

Λ̄N

r∧·) +
∣∣∣ 1
N

− μ(x)

|I(x)|

∣∣∣|I(x)|]
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≤ C
s∑

r=t

κ̄r + C
∑
x∈Xt

∣∣μN
t,�x(x)− μ(x)

∣∣ ≤ C
s∑

r=t

κ̄r.

Obviously k̄t = W1(μ
N
t,�x, μ). Then by induction we have sup

t≤s≤T
κ̄s ≤ CW1(μ

N
t,�x, μ).

This, together with (5.14), implies (5.13) immediately. �

Theorem 5.6. For the setting in Theorem 5.5 and assuming further Assumption
2.2(iii), there exists a modulus of continuity function ρL, depending on T, d, Lq, C0,
ρ, L, such that
(5.15)∣∣∣Ji(t, �x, (�α−i, α̃))− J(t, Λ̄N ;xi, α̃(·, νN ))

∣∣∣+ ∣∣vN,L
i (t, �x, �α)− v(μΛ̄N

; t,xi)
∣∣ ≤ ρL(θN ).

Moreover, assume �α ∈ MN,ε1,L
hetero (t, �x) for some ε1 > 0, then

(5.16)

∫
At

path

[J(t, Λ̄N ;x, α)− v(t, Λ̄N ;x)]Λ̄N (x, dα) ≤ ε1 + 2ρL(θN ), ∀x ∈ Xt.

In particular, if ε1 + 2ρL(θN ) ≤ ε, then Λ̄N ∈ Mε
global(t, μ).

Proof. First, given Theorem 5.5, (5.15) follows from the arguments in Theorem 3.5.

Then, for �α ∈ MN,ε1,L
hetero (t, �x) and x ∈ Xt, by (5.4) we have∫

At
path

[J(t, Λ̄N ;x, α)− v(t, Λ̄N ;x)]Λ̄N (x, dα)

=
1

N

∑
i∈I(x)

[
J(t, Λ̄N ;x, ᾱi)− v(t, Λ̄N ;x)

]

≤ 1

N

∑
i∈I(x)

[∣∣J(t, Λ̄N ;xi, ᾱi)− Ji(t, �x, �α)
∣∣+ [

Ji(t, �x, �α)− vN,L
i (t, �x, �α)

]

+
∣∣vN,L

i (t, �x, �α)− v(μΛ̄N

; t,xi)
∣∣]

≤ ρL(θN ) + ε1 + ρL(θN ) = ε1 + 2ρL(θN ).

�

Proof of Theorem 5.3: the left inclusion. We first fix an arbitrary function ϕ ∈⋂
ε>0

⋃
L≥0 limN→∞ V

N,ε,L
hetero(t, μ

N
t,�x), ε > 0, and set ε1 := ε

2 . Then there ex-

ists Lε ≥ 0 and a sequence Nk → ∞ (possibly depending on ε) such that ϕ ∈
V

Nk,ε1,Lε1

hetero (t, μNk

t,�x), for all k ≥ 1. Now choose k large enough so that 2ρLε
(θNk

) ≤ ε1.

By (5.1) there exists �α ∈ MNk,ε1,Lε

hetero (t, �x) such that maxx∈Xt
mini∈I(x) |ϕ(x) −

vN,L
i (t, �x, �α)| ≤ ε1. By Theorem 5.6 we see that Λ̄Nk ∈ Mε

global(t, μ) and, by

(5.15),

‖ϕ− v(μΛ̄N

; t, ·)‖Xt

≤ max
x∈Xt

min
i∈I(x)

[∣∣ϕ(x)− vN,L
i (t, �x, �α)

∣∣+ ∣∣vN,L
i (t, �x, �α)− v(μΛ̄N

; t,x)
∣∣]

≤ ε1 + ρLε
(θN ) ≤ ε.

Then ϕ ∈ Vε
global(t, μ). Since ε > 0 is arbitrary, by Theorem 4.5 we get ϕ ∈

Vrelax(t, μ). �
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5.3. From mean field games to N-player games. We now turn to the right
inclusion in (5.8). Fix t ∈ T, �x ∈ XN

0,t, μ ∈ P0(Xt), and γ ∈ Arelax. Our goal

is to construct a desired �α ∈ (At,0
path)

N . However, since �α, or equivalently the

corresponding ΛN , is discrete, we need to discretize γ first. We note that it is
slightly easier to discretize γ than a general Λ ∈ Ξt(μ).

First, given ε > 0, there exists a partition A = ∪nε

k=0Ak with nε depending on ε
(and γ) such that, for some arbitrarily fixed ak ∈ Ak, k = 0, · · · , nε,
(5.17)

γ(s,x, A0) ≤ ε, ∀s ∈ Tt,x ∈ Xs, and |a− ak| ≤ ε, ∀a ∈ Ak, k = 1, · · · , nε.

Denote by At,ε
path the subset of α ∈ At,0

path taking values in Aε := {ak : k =

0, · · · , nε}. Define

(5.18) γε(s,x, da) :=

nε∑
k=0

γ(s,x, Ak)δak
(da).

Recall (4.17), we see that supp(Λγε

(x, dα)) = At,ε
path ⊂ At,0

path for all x ∈ Xt.

Next, recall (5.11) that NμN
t,�x(x) = |I(x)| is a positive integer for all x ∈ Xt.

Let Λε
t,�x ∈ P(Xt ×At,ε

path) be a modification of Λγε

such that,

(5.19)

Λε
t,�x(x,A

t,ε
path) = μN

t,�x(x) and NΛε
t,�x(x, α) is an integer;

|Λε
t,�x(x, α)− Λγε

(x, α)| ≤ 1
N + |μN

t,�x(x)− μ(x)|;
∀(x, α) ∈ Xt ×At,ε

path.

Note that, since At,ε
path is finite, such a construction is easy.

We now construct �α ∈ (At,ε
path)

N , which relies on γε and hence on ε. Note that∑
α∈At,ε

path

[NΛε
t,�x(x, α)] = NΛε

t,�x(x,A
t,ε
path) = NμN

t,�x(x) = |I(x)|,

and each NΛε
t,�x(x, α) is an integer. Let I(x) = ∪α∈At,ε

path
I(x, α) be a partition of

I(x) such that |I(x, α)| = NΛε
t,�x(x, α). We then set

(5.20) αi := α, i ∈ I(x, α), (x, α) ∈ Xt ×At,ε
path.

Let ΛN be the one defined by (5.9) corresponding to this �α. It is clear that ΛN =
Λε
t,�x.

Theorem 5.7.

(i) Let Assumption 2.2(ii) hold. Then there exists a constant C, depending only
on T, d, Lq, such that, for any t ∈ T, �x ∈ XN

0,t, μ ∈ P0(Xt), γ ∈ Arelax, ε > 0, and

for the �α ∈ (At,ε
path)

N constructed above, we have, for the θN in (5.13) and for any

α̃ ∈ At,0
path,

(5.21) max
1≤i≤N

max
t≤s≤T

E
P
t,�x,(�α−i,α̃)[

W1(μ
N
s∧·, μ

γ
s∧·)

]
≤ Cε+ CεθN ,

where Cε may depend on ε as well.
(ii) Assume further Assumption 2.2(iii), then there exists a modulus of continuity

function ρ0, depending only on T, d, Lq, C0, and ρ, such that,
(5.22)∣∣∣Ji(t, �x, (�α−i, α̃))− J(μγ ; t,xi, α̃)

∣∣∣+ ∣∣vN,0
i (t, �x, �α)− v(μγ ; t,xi)

∣∣ ≤ ρ0
(
Cε+ CεθN

)
.

Licensed to Univ of Southern Calif. Prepared on Thu Jan 30 12:54:19 EST 2025 for download from IP 154.59.124.74.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Moreover, assume γ ∈ Mε
relax(t, μ), then

(5.23)
1

N

N∑
i=1

[
Ji(t, �x, �α)− vN,0

i (t, �x, �α)
]
≤ ε+ 2ρ0

(
Cε+ CεθN

)
, ∀x ∈ Xt.

In particular, this means that �α ∈ MN,ε̃,0
hetero(t, �x) with ε̃ := ε+ 2ρ0

(
Cε+ CεθN

)
.

Proof. (i) We first show by induction that

(5.24) κs := W1

(
μγ
s∧·, μ

γε

s∧·
)
≤ Cε, s = t, · · · , T.

Indeed, it is obvious that κt = 0. For s ≥ t, by (4.1), (5.17), and (5.18), we have

κs+1 =
∑

x∈Xs+1

∣∣μγ
(s+1)∧·(x)− μγε

(s+1)∧·(x)
∣∣

=
∑

x∈Xs,x∈S

∣∣∣μγ
s∧·(x)

∫
A

q(s,x, μγ , a;x)γ(s,x, da)

− μγε

s∧·(x)

∫
A

q(s,x, μγε

, a;x)γε(s,x, da)
∣∣∣

≤
∑

x∈Xs,x∈S

[∣∣μγ
s∧·(x)− μγε

s∧·(x)
∣∣

+

nε∑
k=1

∫
Ak

∣∣q(s,x, μγ , a;x)− q(s,x, μγε

, ak;x)
∣∣γ(s,x, da)

+

∫
A0

q(s,x, μγ , a;x)γ(s,x, da) +

∫
A0

q(s,x, μγε

, a;x)γε(s,x, da)

≤ Cκs + Cε.

Then by induction we have (5.24).
We next show by induction that, recalling (5.12),

(5.25) κ̄s := W1

(
νNs∧·, μ

γε

s∧·
)
≤ CεθN , s = t, · · · , T.

Indeed, κ̄t = W1(μ
N
t,�x, μ). For s ≥ t, noting that αi ∈ At,ε

path ⊂ At,0
path and recalling

from Lemma 4.6 that μΛγε

= μγε

, then by (5.12) and (4.13) that

κ̄s+1 = W1

(
νNs+1∧·, μ

Λγε

(s+1)∧·
)

=
∑
x∈Xt

∑
x̃∈X

t,x
s+1

∣∣∣ 1
N

∑
α∈At,ε

path

∑
i∈I(x,α)

Qt
s+1(ν

N ; x̃, α)−
∫
At

path

Qt
s+1(μ

γε

; x̃, α)Λγε

(x, dα)
∣∣∣

=
∑
x∈Xt

∑
x̃∈X

t,x
s+1

∣∣∣ ∑
α∈At,ε

path

[
Λε
t,�x(x, α)Q

t
s+1(ν

N ; x̃, α)− Λγε

(x, α)Qt
s+1(μ

γε

; x̃, α)
]∣∣∣

≤
∑
x∈Xt

∑
x̃∈X

t,x
s+1

∑
α∈At,ε

path

[∣∣Λε
t,�x(x, α)− Λγε

(x, α)
∣∣Qt

s+1(ν
N ; x̃, α)

+ Λγε

(x, α)
∣∣Qt

s+1(ν
N ; x̃, α)−Qt

s+1(μ
γε

; x̃, α)
∣∣].
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Then, by (5.19) and noting that Cε := |At,ε
path| is independent of N , we have

κ̄s+1 ≤
∑
x∈Xt

∑
x̃∈X

t,x
s+1

∑
α∈At,ε

path

[
θNQt

s+1(ν
N ; x̃, α) + CΛγε

(x, α)

s∑
r=t

W1

(
νNr∧·, μ

γε

r∧·
)]

≤ CεθN + C
s∑

r=t

κ̄r.

This implies (5.25) immediately.
Finally, combining (5.24), (5.25), and (5.13), we obtain (5.21).
(ii) First, similar to (5.15), by (5.21) we have (5.22) following from the arguments

in Theorem 3.5. Next, for γ ∈ Mε
relax(t, μ), by (4.19) we have Λγ ∈ Mε

global(t, μ).

Then (5.23) follows from similar arguments as those for (5.16). �

Proof of Theorem 5.3: the right inclusion. Fix ϕ ∈ Vrelax(t, μ) and ε > 0. Let
ε1 > 0 be a small number which will be specified later. There exists γ ∈ Mε1

relax(t, μ)
such that ‖ϕ − J(t, μ, γ; ·, γ)‖Xt

≤ ε1. Let γε1 and �α be constructed as above. By
(5.23) we have

1

N

N∑
i=1

[
Ji(t, �x, �α)− vN,0

i (t, �x, �α)
]
≤ ε1 + 2ρ0

(
Cε1 + Cε1θN

)
, ∀x ∈ Xt.

Choose ε1 small enough such that ε1 + 2ρ0(Cε1 + ε1) < ε. Then, for all N large

enough such that θN ≤ ε1
Cε1

, we have 1
N

∑N
i=1

[
Ji(t, �x, �α)− vN,0

i (t, �x, �α)
]
≤ ε. That

is, �α ∈ V
N,ε,0
hetero(t, μ

N
t,�x) for all N large enough. Then, following the same arguments

as those in the proof for the left inclusion, we can easily get ϕ ∈ V
N,ε,0
hetero(t, μ

N
t,�x) for

all N large enough, and thus ϕ ∈ limN→∞ V
N,ε,0
hetero(t, μ

N
t,�x). Since ε > 0 is arbitrary,

we get the desired inclusion. �

6. A continuous time model with controlled diffusions

In this section we study a continuous time model where the state process is a
controlled diffusion with closed loop drift controls. In this case the laws of the
controlled state process are all equivalent. The volatility control case involves mu-
tually singular measures (corresponding to degenerate q in the discrete setting) and
is much more challenging. We shall leave that for future research. To ensure the
convergence, we consider state dependent homogeneous controls for the N -player
games, as we did in Section 3.

6.1. The mean field game and the dynamic programming principle. Let
T > 0 be a fixed terminal time, (Ω,F ,F = {Ft}0≤t≤T ,P) a filtered probability space
where F0 is atomless; B a d-dimensional Brownian motion; and the set A ⊂ R

d0 a
Borel measurable set. The state process X will also take values in Rd. Its law lies in
the space P2 := P2(R

d) equipped with the 2-Wasserstein distance W2. We remark
that in the finite state space case W1 and W2 are equivalent, while in continuous
models they are not. In fact, at below we shall require W1-regularity, which is
stronger than the W2-regularity, and obtain W1-convergence, which is weaker than
theW2-convergence. This is not surprising in the mean field literature, see, e.g. [38].
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7148 MELİH İŞERİ AND JIANFENG ZHANG

The main advantage of the W1-distance is the following well known representation,
see e.g. [13]: for any μ, μ̃ ∈ P1(R

d),
(6.1)

W1(μ, μ̃) = sup
{∫

Rd

ϕ(x)[μ(dx)−μ̃(dx)] : ϕ∈CLip(R
d) s.t. |ϕ(x)−ϕ(x̃)| ≤ |x−x̃|

}
.

Here CLip(R
d) denote the set of uniformly Lipschitz continuous functions ϕ : Rd →

R. Moreover, for each (t, μ) ∈ [0, T ]×P2, let L
2(t, μ) denote the set of Ft-measurable

random variables ξ whose law (under P) Lξ = μ.
We consider coefficients (b, f) : [0, T ]×R

d×P2×A → (Rd,R) and g : Rd×P2 → R.
Throughout this section, the following assumptions will always be in force.

Assumption 6.1.

(i) b, f, g are Borel measurable in t and bounded by C0 (for simplicity);
(ii) b, f, g are uniformly Lipschitz continuous in (x, μ, a) with a Lipschitz con-

stant L0, where the Lipschitz continuity in μ is under W1.

Let Acont denote the set of admissible controls α : [0, T ] × Rd → A which is
measurable in t and Lipschitz continuous in x, with the Lipschitz constant Lα

possibly depending on α. Given (t, μ) ∈ [0, T ] × P2, ξ ∈ L2(t, μ), and α ∈ Acont,
consider the McKean-Vlasov SDE:

(6.2) Xt,ξ,α
s = ξ +

∫ s

t

b(r,Xt,ξ,α
r , μα

r , α(r,X
t,ξ,α
r ))dr +Bs −Bt, μα

s := LXt,ξ,α
s

.

By the required Lipschitz continuity, the above SDE is wellposed, and it is obvious
that μα

t = μ and μα
s does not depend on the choice of ξ ∈ L2(t, μ). Then, when

only the law is involved, by abusing the notations we may also denote Xt,ξ,α as
Xt,μ,α.

Next, for any x ∈ R
d, and α̃ ∈ Acont, we introduce

J(t, μ, α;x, α̃) := J(μα; t, x, α̃), v(μα; s, x) := inf
α̃∈Acont

J(μα; s, x, α̃), s ≥ t, where

Xμα;s,x,α̃
r = x+

∫ r

s

b(l, Xμα;s,x,α̃
l , μα

l , α̃(l, X
μα;s,x,α̃
l ))dl +Br −Bs, r ≥ s;(6.3)

J(μα; s, x, α̃) := E

[
g(Xμα;s,x,α̃

T , μα
T ) +

∫ T

s

f(r,Xμα;s,x,α̃
r , μα

r , α̃(r,X
μα;s,x,α̃
r ))dr

]
.

Here we abuse the notations by using the same notations as in the discrete setting.
Clearly u(s, x) := J(μα; s, x, α̃) and v(s, x) := v(μα; s, x) satisfy the following linear
PDE and standard HJB equation on [t, T ]× Rd, respectively, with parameter μα:
(6.4)

∂su(s, x)+
1

2
tr
(
∂xxu(s, x)

)
+b(s, x, μα

s , α̃(s, x)) · ∂xu(s, x)+f(s, x, μα
s , α̃(s, x))=0;

∂tv(s, x)+
1

2
tr
(
∂xxv(s, x)

)
+ inf

a∈A

[
b(s, x, μα

s , a) · ∂xv(s, x) + f(s, x, μα
s , a)

]
=0;

u(T, x) = v(T, x) = g(x, μα
T ).

Definition 6.2. Fix (t, μ) ∈ [0, T ] × P2. For any ε > 0, we say α∗ ∈ Acont is an
ε-MFE at (t, μ), denoted as α∗ ∈ Mε

cont(t, μ), if

(6.5)

∫
Rd

[
J(t, μ, α∗;x, α∗)− v(μα∗

; t, x)
]
μ(dx) ≤ ε.
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Remark 6.3. Similar to (5.4) and (5.5), here we do not require α∗ to be optimal for
every player x. In fact, alternatively, we may replace (6.5) with

(6.6) μ
{
x : |J(t, μ, α∗;x, α∗)− v(μα∗

; t, x)| > ε
}
< ε.

The intuition is that, since there are infinitely many players, we shall tolerate that
a small portion of players may not be happy for the α∗, as in [11], and their possible
deviation from α∗ won’t change the equilibrium measure μα∗

significantly. We note
that, although (6.6) and (6.5) are not equivalent for fixed ε, they define the same
set value in (6.1) below, and the proofs are slightly easier by using (6.5).

However, if we require the ε-optimality for μ-a.e. x, namely the probability in
the left side of (6.6) becomes 0, then the set value will be different and may not
satisfy the DPP. Such difference would disappear in the discrete model though.

To define the set value, we need the following simple but crucial regularity result,
whose proof is postponed to Appendix.

Lemma 6.4. Let Assumption 6.1 hold. There exists a constant C > 0, depending
only on T, d, C0, L0, such that, for any t, μ, α, α̃ and s ≥ t,

(6.7)
∣∣J(μα; α̃, s, x)−J(μα; α̃, s, x̃)

∣∣+∣∣v(μα; s, x)−v(μα; s, x̃)
∣∣ ≤ C|x− x̃|, ∀x, x̃.

We then define the set value of the mean field game:

Vcont(t, μ) :=
⋂
ε>0

V
ε
cont(t, μ), where

V
ε
cont(t, μ) :=

{
ϕ ∈ CLip(R

d) : there exists α∗ ∈ Mε
cont(t, μ) such that(6.8) ∫

Rd

∣∣ϕ(x)− J(t, μ, α∗;x, α∗)
∣∣μ(dx) ≤ ε

}
.

In particular, since J(t, μ, α∗;x, α∗) ≥ v(μα∗
; t, x), then by (6.7) and (6.5) we see

that both J(t, μ, α∗; ·, α∗) and v(μα∗
; t, ·) belong to Vcont(t, μ). Moreover, again

due to (6.5), we may replace the inequality in the last line of (6.1) with
∫
Rd

∣∣ϕ(x)−
v(μα∗

; t, x)
∣∣μ(dx) ≤ ε.

Similarly, given T0 and ψ ∈ CLip(R
d), we may define the functions J(T0, ψ; t, μ, α;

x, α̃), J(T0, ψ;μ
α; s, x, α̃), v(T0, ψ;μ

α; s, x), as well as the sets Mε
cont(T0, ψ; t, μ),

Vε
cont(T0, ψ; t, μ), Vcont(T0, ψ; t, μ) in the obvious sense. In particular, we have the

following tower property:

(6.9)
J(t, μ, α;x, α̃) = J(T0, ψ; t, μ, α;x, α̃), where ψ(x) := J(T0, μ

α
T0
, α;x, α̃);

v(μα; t, x) = v(T0, ψ̃;μ
α; t, x), where ψ̃(x) := v(μα;T0, x).

We now establish the DPP for Vcont(t, μ).

Theorem 6.5. Let Assumption 6.1 hold. For any 0 ≤ t ≤ T0 ≤ T and μ ∈ P2, it
holds

Vcont(t, μ) = Ṽcont(t, μ) :=
⋂
ε>0

Ṽ
ε
cont(t, μ), where

Ṽ
ε
cont(t, μ) :=

{
ϕ ∈ CLip(R

d) :

∫
Rd

|ϕ(x)− J(T0, ψ; t, μ, α
∗;x, α∗)|μ(dx) ≤ ε,

(6.10)

for some (ψ, α∗) satisfying: ψ ∈ V
ε
cont(T0, μ

α∗

T0
), α∗ ∈ Mε

cont(T0, ψ; t, μ)
}
.
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Proof. (i) We first prove Vcont(t, μ) ⊂ Ṽcont(t, μ). Fix ϕ ∈ Vcont(t, μ), ε > 0, and
set ε1 := ε

2 . Since ϕ ∈ V
ε1
cont(t, μ), there exists α∗ ∈ Mε1

cont(t, μ) satisfying (6.1) for
ε1. Denote

ψ(x) := J(T0, μ
α∗

T0
, α∗;x, α∗), ψ̃(x) := v(μα∗

;T0, x).

By (6.9) we have J(T0, ψ; t, μ, α
∗;x, α∗) = J(t, μ, α∗;x, α∗) and thus∫

Rd

∣∣ϕ(x)− J(T0, ψ; t, μ, α
∗;x, α∗)

∣∣μ(dx) ≤ ε1 ≤ ε.

We shall show that ψ ∈ Vε
cont(T0, μ

α∗

T0
) and α∗ ∈ Mε

cont(T0, ψ; t, μ). Then ϕ ∈
Ṽε

cont(t, μ), and therefore, since ε > 0 is arbitrary, we have ϕ ∈ Ṽ(t, μ).

Step 1. In this step we show that
(6.11)∫
Rd

[
J(T0, μ

α∗

T0
, α∗;x, α∗)− v(μα∗

;T0, x)
]
μα∗

T0
(dx) =

∫
Rd

[ψ(x)− ψ̃(x)]μα∗

T0
(dx) ≤ ε1.

Then α∗ ∈ Mε
cont(T0, μ

α∗

T0
), which, together with the regularity of ψ from Lemma

6.4, implies immediately that ψ ∈ Vε
cont(T0, μ

α∗

T0
).

To see this, we recall (6.2) with ξ ∈ L2(t, μ). Since α∗ ∈ Mε1
cont(t, μ), by (6.9)

we have

ε1 ≥ E

[
J(t, μ, α∗; ξ, α∗)− v(μα∗

; t, ξ)
]

= E

[
J(T0, ψ; t, μ, α

∗; ξ, α∗)− v(T0, ψ̃;μ
α∗
; t, ξ)

]

≥ E

[
J(T0, ψ; t, μ, α

∗; ξ, α∗)− J(T0, ψ̃; t, μ, α
∗; ξ, α∗)

]

= E

[
ψ(Xt,ξ,α∗

T0
)− ψ̃(Xt,ξ,α∗

T0
)
]
.

Note that L
Xt,ξ,α∗

T0

= μα∗

T0
, then this is exactly (6.11).

Step 2. It remains to show that α∗ ∈ Mε
cont(T0, ψ; t, μ). By the definition of v and

its regularity from Lemma 6.4, there exists α̃∗ ∈ Acont such that

J(T0, ψ; t, μ, α
∗;x, α̃∗) ≤ v(T0, ψ;μ

α∗
; t, x) + ε1, ∀x ∈ R

d.

Then, denoting α̂∗ := α̃∗ ⊕T0
α∗ ∈ Acont, by (6.9) again we have

E

[
J(T0, ψ; t, μ, α

∗; ξ, α∗)− v(T0, ψ;μ
α∗
; t, ξ)

]

≤ E

[
J(T0, ψ; t, μ, α

∗; ξ, α∗)− J(T0, ψ; t, μ, α
∗; ξ, α̃∗)

]
+ ε1

= E

[
J(t, μ, α∗; ξ, α∗)− J(t, μ, α∗; ξ, α̂∗)

]
+ ε1

≤ E

[
J(t, μ, α∗; ξ, α∗)− v(μα∗

; t, ξ)
]
+ ε1 ≤ ε1 + ε1 = ε.

This means α∗ ∈ Mε
cont(T0, ψ; t, μ).

(ii) We next prove Ṽcont(t, μ) ⊂ Vcont(t, μ). Fix ϕ ∈ Ṽcont(t, μ), ε > 0, and set

ε1 := ε
4 . Since ϕ ∈ Ṽ

ε1
cont(t, μ), there exist (ψ, α∗) satisfying the desired properties

in (6.5) for ε1. In particular, since ψ ∈ V
ε1
cont(T0, μ

α∗

T0
), there exists desired α̃∗ ∈

Mε1
cont(T0, μ

α∗

T0
) required in (6.1) for ε1. Denote α̂∗ := α∗ ⊕T0

α̃∗ ∈ Acont and

ψ̂(x) := J(T0, μ
α∗

T0
, α̃∗;x, α̃∗), ψ̃(x) := v(μα̂∗

;T0, x).
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By (6.5),

E

[∣∣J(T0, ψ; t, μ, α
∗; ξ, α∗)− J(T0, ψ̂; t, μ, α

∗; ξ, α∗)
∣∣]

= E

[∣∣ψ(Xμα∗
;t,ξ,α∗

T0
)− ψ̂(Xμα∗

;t,ξ,α∗

T0
)
∣∣]

=

∫
Rd

∣∣ψ(x)− J(T0, μ
α∗

T0
, α̃∗;x, α̃∗)

∣∣μα∗

T0
(dx) ≤ ε1.

(6.12)

Then, since ϕ ∈ Ṽ
ε1
cont(t, μ) with corresponding (ψ, α∗), by (6.9) and (6.12) we have

E

[∣∣ϕ(ξ)− J(t, μ, α̂∗; ξ, α̂∗)
∣∣] ≤ E

[∣∣ϕ(ξ)− J(T0, ψ; t, μ, α
∗; ξ, α∗)

∣∣]+ ε1 ≤ 2ε1 ≤ ε,

where ξ ∈ L
2(t, μ). We claim further that α̂∗ ∈ Mε

cont(t, μ). Then ϕ ∈ V
ε
cont(t, μ),

and thus ϕ ∈ Vcont(t, μ), since ε > 0 is arbitrary.
To see the claim, since α∗ ∈ Mε1

cont(T0, ψ; t, μ), α̃
∗ ∈ Mε1

cont(T0, μ
α∗

T0
), by (6.9)

we have

E

[
J(t, μ, α̂∗; ξ, α̂∗)− v(μα̂∗

; t, ξ)
]

= E

[
J(T0, ψ̂; t, μ, α

∗; ξ, α∗)− v(T0, ψ̃;μ
α∗
; t, ξ)

]

≤ E

[
J(T0, ψ; t, μ, α

∗; ξ, α∗)− v(T0, ψ̃;μ
α∗
; t, ξ)

]
+ ε1

≤ E

[
v(T0, ψ;μ

α∗
; t, ξ)− v(T0, ψ̃;μ

α∗
; t, ξ)

]
+ 2ε1

≤ sup
α̃∈Acont

E

[
J(T0, ψ; t, μ, α

∗; ξ, α̃)− J(T0, ψ̃; t, μ, α
∗; ξ, α̃)

]
+ 2ε1

= E
[
ψ(Xt,ξ,α∗

T0
)− ψ̃(Xt,ξ,α∗

T0
)
]
+ 2ε1 ≤ E

[
ψ̂(Xt,ξ,α∗

T0
)− ψ̃(Xt,ξ,α∗

T0
)
]
+ 3ε1

≤ ε1 + 3ε1 = ε.

This means α̂∗ ∈ Mε
cont(t, μ), and hence completes the proof. �

Remark 6.6.

(i) Our set value Vcont(t, μ) is defined for each (t, μ) with elements in CLip(R
d),

instead of V(t, x, μ) ⊂ R for each (t, x, μ). This is consistent with (2.7) in the
discrete model, and is due to the fact that an ε-MFE α∗ in Definition 6.2 depends
on (t, μ), but is common for all initial states x. Indeed, if we define Vcont(t, x, μ)
in an obvious manner, it will not satisfy the DPP.

(ii) The above observation is also consistent with the fact that the following
master equation is local in (t, μ), but non-local in x due to the term ∂xV (t, x̃, μ):
(6.13)

∂tV (t, x, μ) +
1

2
tr(∂xxV ) +H(x, μ, ∂xV )

+

∫
Rd

[1
2
tr(∂x̃μV (t, x, μ, x̃)) + ∂pH(x̃, μ, ∂xV (t, x̃, μ))∂μV (t, x, μ, x̃)

]
μ(dx̃) = 0.

Under appropriate conditions, in particular under certain monotonicity conditions,
the above master equation has a unique solution and we have Vcont(t, μ) = {V(t, μ)}
is a singleton, where V(t, μ)(x) := V (t, x, μ) is a function of x. In this way, we may
also view (6.13) as a first order ODE on the space C2(Rd) (the regularity in x is a
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lot easier to obtain):

∂tV(t, μ) +H(μ,V(t, μ)) +M(μ,V(t, μ), ∂μV(t, μ)) = 0,

where H(μ, v(·))(x) := 1

2
tr(∂xxv(x)) +H(x, μ, ∂xv(x)),(6.14)

M(μ, v(·), ṽ(·, ·))(x) :=
∫
Rd

[1
2
tr(∂x̃ṽ(x, x̃)) + ∂pH(x̃, μ, ∂xv(x̃))ṽ(x, x̃)

]
μ(dx̃).

It could be interesting to explore master equations from this perspective as well.

6.2. Convergence of the N-player game. By enlarging the filtered probability
space (Ω,F ,F,P), if necessary, we let B1, · · · , BN be independent d-dimensional
Brownian motions on it. Set A∞

cont := ∪L≥0AL
cont, where, for each L ≥ 0, AL

cont

denotes the set of admissible controls α : [0, T ]× R
d × P2 → A such that

|α(t, x, μ)− α(t, x̃, μ̃)| ≤ Lα|x− x̃|+ LW1(μ, μ̃).

Here the Lipschitz constant Lα may depend on α, hence the Lipschitz continuity
in x is not uniform in α. We emphasize that the Lipschitz continuity in μ is
under W1, rather than W2, so that we can use the representation (6.1). Note that
Acont = A0

cont, and by Remark 3.1(i), all the results in the previous subsection
remain true if we replace Acont with A∞

cont.
Given t ∈ [0, T ], �x = (x1, · · · , xN ) ∈ RdN and �α = (α1, · · · , αN ) ∈ (AL

cont)
N ,

consider
(6.15)

Xt,�x,�α;i
s =xi+

∫ s

t

b
(
r,Xt,�x,�α;i

r , μt,�x,�α
r , αi(r,X

t,�x,�α;i
r , μt,�x,�α

r )
)
dr+Bi

s−Bi
t , i=1, · · · , N ;

where μt,�x,�α
s :=

1

N

N∑
i=1

δ
Xt,�x,�α;i

s
;

Ji(t, �x, �α) := E

[
g(Xt,�x,�α;i

T , μt,�x,�α
T )+

∫ T

t

f
(
s,Xt,�x,�α;i

s , μt,�x,�α
s , αi(s,X

t,�x,�α;i
s , μt,�x,�α

s )
)
ds
]
,

vN,L
i (t, �x, �α) := inf

α̃∈AL
cont

Ji(t, �x, (�α
−i, α̃)).

In light of Lemma 6.4, the following regularity result is interesting in its own
right. However, since it will not be used for our main result, we postpone its proof
to Appendix.

Proposition 6.7. Let Assumption 6.1 hold. For any L ≥ 0, there exists a constant
CL > 0, depending only on T, d, C0, L0, and L, such that, for any (t, �x) ∈ [0, T ] ×
RdN , x̄, x̃ ∈ Rd, and �α ∈ (AL

cont)
N , we have

(6.16)
∣∣vN,L

i

(
t, (�x−i, x̄), �α

)
− vN,L

i

(
t, (�x−i, x̃), �α

)∣∣ ≤ CL|x̄− x̃|, i = 1, · · · , N.

Given α ∈ AL
cont, by viewing it as the homogeneous control (α, · · · , α), we may

use the simplified notations Xt,�x,α;i, μt,�x,α, Ji(t, �x, α), and vN,L
i (t, �x, α) in the ob-

vious sense.
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Definition 6.8.

(i) For (t, �x) ∈ [0, T ] × RdN, ε > 0, L ≥ 0, we call α∗ ∈ AL
cont a homogeneous

(ε, L)-equilibrium of the N -player game at (t, �x), denoted as α∗∈MN,ε,L
cont (t, �x), if

(6.17)
1

N

N∑
i=1

[
Ji(t, �x, α

∗)− vN,L
i (t, �x, α∗)

]
≤ ε.

(ii) The set value for the N -player game is defined as:

V
N
cont(t, �x) :=

⋂
ε>0

V
N,ε
cont(t, �x) :=

⋂
ε>0

⋃
L≥0

V
N,ε,L
cont (t, �x), where(6.18)

V
N,ε,L
cont (t, �x)

:=
{
ϕ ∈ CLip(R

d) : ∃α∗ ∈ MN,ε,L
cont (t, �x) s.t.

1

N

N∑
i=1

|ϕ(xi)− Ji(t, �x, α
∗)| ≤ ε

}
.

We remark that, although V
N,ε,L
cont (t, �x) involves only the values {ϕ(xi)}1≤i≤N ,

for the convenience of the convergence analysis we consider its elements as ϕ ∈
CLip(R

d).

Remark 6.9.

(i) Recall (3.1). By the required symmetry, obviously there exist functions
JN , vN,L : [0, T ]× P2 ×AL

cont × Rd → R such that
(6.19)

Ji(t, �x, α) = JN (t, μN
�x , α;xi), vN,L

i (t, �x, α) = vN,L(t, μN
�x , α;xi), i = 1, · · · , N.

Moreover, VN
cont(t, �x) is invariant in μN

�x and thus can be denoted as VN
cont(t, μ

N
�x ).

(ii) The required inequalities in Definition 6.8 are equivalent to:∫
Rd

[JN−vN,L](t, μN
�x , α∗;x)μN

�x (dx) ≤ ε,

∫
Rd

[
ϕ(x)−JN(t, μN

�x , α∗;x)
]
μN
�x (dx) ≤ ε.

We now turn to the convergence, starting with the convergence of the equilibrium
measures. Recall the vector (α, α̃)i introduced in (3.6).

Theorem 6.10. Let Assumption 6.1 hold. For any L ≥ 0, there exists a constant
CL > 0, depending only on T, d, C0, L0, and L, such that, for any t ∈ [0, T ],
�x ∈ RdN , μ ∈ P2, α, α̃ ∈ AL

cont, and i = 1, · · · , N ,

sup
t≤s≤T

E

[
W1(μ

t,�x,(α,α̃)i
s , μα

s )
]
≤ CLθN ,(6.20)

where θN := W1(μ
N
�x , μ) +N− 1

d∨3 ‖�x‖2 +N−1, ‖�x‖22 :=
1

N

N∑
i=1

|xi|2.

Proof. Recall (6.15) and introduce, for j = 1, · · · , N ,
(6.21)

X̃j
s = xj +

∫ s

t

b(r, X̃j
r , μ

α
r , α(r, X̃

j
r , μ

α
r ))dr +Bj

s −Bj
t , μ̃N

s :=
1

N

N∑
j=1

δX̃j
s
;

X̃s = ξ̃ +

∫ s

t

b(r, X̃r, μ
α
r , α(r, X̃r, μ

α
r ))dr +Bs −Bt, where ξ̃ ∈ L

2(F0;μ
N
�x ).

Note that X̃1, · · · , X̃N are independent. We proceed the rest of the proof in two
steps.
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Step 1. In this step we estimate E
[
W1(μ̃

N
s , μα

s )
]
. First, by [38, Lemma 8.4] we have

E
[
W1(μ̃

N
s ,LX̃s

)
]
≤ CN− 1

d∨3 ‖�x‖2.

Next, fix an ϕ in (6.1) and let u = uϕ denote the solution to the following PDE on
[t, s]:

(6.22) ∂ru+
1

2
tr
(
∂xxu

)
+ b(r, x, μα

s , α(r, x, μ
α
r )) · ∂xu = 0, u(s, x) = ϕ(x).

Applying Lemma 6.4 with α̃(r, x) := α(r, x, μα
r ) and f = 0, we see that u is uni-

formly Lipschitz continuous in x, with a Lipschitz constant C independent of ϕ and
L. Thus,

E
[
ϕ(X̃s)− ϕ(Xα

s )
]
= E

[
u(t, ξ̃)− u(t, ξ)

]
≤ CE[|ξ̃ − ξ|].

Since F0 is atomless, we may choose ξ, ξ̃ such that E[|ξ̃ − ξ|] = W1(μ
N
�x , μ), then

(6.1) implies W1(LX̃s
, μα

s ) ≤ CW1(μ
N
�x , μ). Put together, we have

(6.23) E
[
W1(μ̃

N
s , μα

s )
]
≤ CW1(μ

N
�x , μ) + CN− 1

d∨3 ‖�x‖2 ≤ CθN , t ≤ s ≤ T.

Step 2. We next estimate E
[
W1(μ

t,�x,(α,α̃)i
s , μα

s )
]
. Denote αi := α̃, αj := α for j = i,

and

βj
s := b(s, X̃j

s , μ̃
N
s , αj(s, X̃

j
s , μ̃

N
s ))− b(s, X̃j

s , μ
α
s , α(s, X̃

j
s , μ

α
s )), 1 ≤ j ≤ N

Ms :=
N∏
j=1

M j
s , M j

s := exp
(∫ s

t

βj
rdB

j
r −

1

2

∫ s

t

|βj
r |2dr

)
.

Then, by the Girsanov theorem we have

E
[
W1(μ

t,�x,(α,α̃)i
s , μα

s )
]
= E

[
MsW1(μ̃

N
s , μα

s )
]

= E
[
[Ms − 1]W1(μ̃

N
s , μα

s )
]
+ E

[
W1(μ̃

N
s , μα

s )
]

=

N∑
j=1

E

[ ∫ s

t

Mrβ
j
rdB

j
rW1(μ̃

N
s , μα

s )
]
+ E

[
W1(μ̃

N
s , μα

s )
]
.

(6.24)

By the martingale representation theorem, we have

(6.25) W1(μ̃
N
s , μα

s ) = E
[
W1(μ̃

N
s , μα

s )
]
+

N∑
j=1

∫ s

t

Zj
rdB

j
r .

Note that X̃j are independent. Consider the following linear PDE on [t, s]× RdN :
(6.26)

∂ru(r, �x
′) +

1

2

N∑
j=1

tr
(
∂xjxj

u(r, �x′)
)
+

N∑
j=1

b(r, x′
j , μ

α
s , α(r, x

′
j , μ

α
r )) · ∂xj

u(r, �x′) = 0,

u(s, �x′) = W1(μ
N
�x′ , μα

s ).

By standard BSDE theory, see e.g. [43, Chapter 5], we have Zj
r = ∂xj

u(r, �Xt,�x
r ),

where Xt,�x,j
r := xj + Bj

r − Bj
t . Note that the terminal condition u(s, �x′) is Lip-

schitz continuous in x′
j with Lipschitz constant 1

N . Then, similarly to (6.22), by
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Lemma 6.4 we see that |Zj | ≤ |∂xj
u| ≤ C

N for some constant C independent of α
and L. Thus, by (6.24) and (6.25),

E

[
W1(μ

t,�x,(α,α̃)i
s , μα

s )−W1(μ̃
N
s , μα

s )
]
=

N∑
j=1

E

[ ∫ s

t

Mrβ
j
r · Zj

rdr
]

≤ C

N

N∑
j=1

E

[ ∫ s

t

Mr|βj
r |dr

]
.

Note that |βi| ≤ C and, for j = i, |βj
r | ≤ CLW1(μ̃

N
r , μα

r ). Then, by (6.23),

E

[
W1(μ

t,�x,(α,α̃)i
s , μα

s )
]
≤E

[
W1(μ̃

N
s , μα

s )
]
+

C

N
E

[ ∫ s

t

Mr|βi
r|dr+

∑
j 	=i

∫ s

t

Mr|βj
r |dr

]

≤E
[
W1(μ̃

N
s , μα

s )
]
+

C

N
+
CL

N

∑
j 	=i

E

[ ∫ s

t

MrW1(μ̃
N
r , μα

r )dr
]
=

C

N
+CLθN ≤ CLθN .

�

Theorem 6.11. For the setting in Theorem 6.10, we have

(6.27)
∣∣∣Ji(t, �x, (α, α̃)i)− J(t, μ, α;xi, α̃)

∣∣∣+ ∣∣∣vN,L
i (t, �x, α)− v(μα; t, xi)

∣∣∣ ≤ CLθ
1
4

N .

Proof. Fix i. First, by taking supremum over α̃ ∈ AL
cont, the uniform estimate for

J implies that for v immediately. So it suffices to prove the former estimate.
For this purpose, recall (6.15) and denote

J̃i(t, �x, (α, α̃)i)

:= E
P

[
g(X

t,�x,(α,α̃)i;i
T , μα

T ) +

∫ T

t

f(s,Xt,�x,(α,α̃)i;i
s , μα

s , α̃(s,X
t,�x,(α,α̃)i;i
s , μα

s ))ds
]
.

Then one can easily see that, by applying Theorem 6.10,
(6.28)∣∣Ji(t, �x, (α, α̃)i)− J̃i(t, �x, (α, α̃)i)

∣∣ ≤ CL sup
t≤s≤T

E
[
W1(μ

t,�x,(α,α̃)i
s , μα

s )
]
≤ CLθN .

Next, denote

Xi
s := xi +Bi

s −Bi
t , μ̃N,i

s :=
1

N

[∑
j 	=i

δ
X

t,�x,(α,α̃)i;j
s

+ δXi
s

]
;

βs := b(s,Xi
s, μ

α
s , α̃(s,X

i
s, μ

α
s )), Ms := exp

(∫ s

t

βrdB
i
r −

1

2

∫ s

t

|βr|2dr
)
;

β̃s := b(s,Xi
s, μ̃

N,i
s , α̃(s,Xi

s, μ̃
N,i
s )), M̃s := exp

(∫ s

t

β̃rdB
i
r −

1

2

∫ s

t

|β̃r|2dr
)
.

By (6.1) and (6.15), it follows from the Girsanov theorem again that

(6.29)

∣∣∣J̃i(t, �x, (α, α̃)i)− J(t, μ, α;xi, α̃)
∣∣∣

=
∣∣∣E[[M̃T −MT

][
g(Xi

T , μ
α
T ) +

∫ T

t

f(s,Xi
s, μ

α
s , α̃(s,X

i
s, μ

α
s )ds

]]∣∣∣
≤ CE

[
|M̃T −MT |

]
.
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Denote ΔMs := M̃s −Ms, Δβs := β̃s − βs. Then, since b is bounded,

E[|ΔMs|2] = E

[( ∫ s

t

[M̃rβ̃r −Mrβr]dB
i
r

)2]
= E

[ ∫ s

t

[M̃rβ̃r −Mrβr]
2dr

]

≤ C

∫ s

t

E[|ΔMr|2]dr + CE

[ ∫ s

t

|M̃r|2|Δβr|2dr
]

≤ C

∫ s

t

E[|ΔMr|2]dr + CE

[ ∫ s

t

M̃
3
2
r M̃

1
2
r |Δβr|

1
2 dr

]

≤ C

∫ s

t

E[|ΔMr|2]dr + C
(
E

[ ∫ s

t

M̃r|Δβr|dr
]) 1

2

≤ C

∫ s

t

E[|ΔMr|2]dr + CL

(
E

[ ∫ s

t

M̃rW1(μ̃
N,i
r , μα

r )dr
]) 1

2

= C

∫ s

t

E[|ΔMr|2]dr + CL

(
E

[ ∫ s

t

W1(μ
t,�x,(α,α̃)i
r , μα

r )dr
]) 1

2

≤ C

∫ s

t

E[|ΔMr|2]dr + CLθ
1
2

N ,

where the last inequality thanks to Theorem 6.10. Then, by the Gröwnwall in-

equality we obtain E[|ΔMs|2] ≤ CLθ
1
2

N , and thus (6.29) implies∣∣∣J̃i(t, �x, (α, α̃)i)− J(t, μ, α;xi, α̃)
∣∣∣ ≤ CLθ

1
4

N .

This, together with (6.28), implies the estimate for J in (6.27) immediately. �

Theorem 6.12. Let Assumption 6.1 hold. Assume further that lim
N→∞

W1(μ
N
�x , μ) =

0, and there exists a constant C > 0 such that6 ‖�x‖2 ≤ C for all N . Then

(6.30)
⋂
ε>0

⋃
L≥0

lim
N→∞

V
N,ε,L
cont (t, μN

�x ) ⊂ Vcont(t, μ) ⊂
⋂
ε>0

lim
N→∞

V
N,ε,0
cont (t, μN

�x ).

In particular, since lim
N→∞

V
N,ε,0
cont (t, μN

�x ) ⊂
⋃
L≥0

lim
N→∞

V
N,ε,L
cont (t, μN

�x ), actually equali-

ties hold.

Proof. (i) We first prove the right inclusion in (6.30). Fix ϕ ∈ Vcont(t, μ), ε > 0,
and set ε1 := ε

2 . By (6.1) and (6.5), there exists α∗ ∈ Mε1
cont(t, μ) such that∫

Rd

[
J(t, μ, α∗;x, α∗)−v(μα∗

; t, x)
]
μ(dx)≤ε1,

∫
Rd

∣∣ϕ(x)−J(t, μ, α∗;x, α∗)
∣∣μ(dx)≤ε1.

Recall Lemma 6.4 and note that ϕ ∈ CLip(R
d), then by (6.1) we have∫

Rd

[
J(t, μ, α∗;x, α∗)− v(μα∗

; t, x)
]
μN
�x (dx) ≤ ε1 + CW1(μ

N
�x , μ),

∫
Rd

∣∣ϕ(x)− J(t, μ, α∗;x, α∗)
∣∣μN

�x (dx) ≤ ε1 + CϕW1(μ
N
�x , μ),

6Note again that �x depends on N . Also, the conditions here are slightly weaker than
lim

N→∞
W2(μ

N
�x , μ) = 0.
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where Cϕ may depend on the Lipschitz constant of ϕ. Moreover, by (6.27) we have

1

N

N∑
i=1

[
Ji(t, �x, α

∗)− vN,L
i (t, �x, α∗)

]

≤ 1

N

N∑
i=1

[
J(t, μ, α∗;xi, α

∗)− v(μα∗
; t, xi)

]
+ CLθ

1
4

N

=

∫
Rd

[
J(t, μ, α∗;x, α∗)− v(μα∗

; t, x)
]
μN
�x (dx) + CLθ

1
4

N ≤ ε1 + CLθ
1
4

N ;

1

N

N∑
i=1

|ϕ(xi)− Ji(t, �x, α
∗)| ≤ 1

N

N∑
i=1

|ϕ(xi)− J(t, μ, α∗;xi, α
∗)|+ CLθ

1
4

N

=

∫
Rd

∣∣ϕ(x)− J(t, μ, α∗;x, α∗)
∣∣μN

�x (dx) + CLθ
1
4

N ≤ ε1 + CL,ϕθ
1
4

N .

We emphasize again that ‖�x‖2 ≤ C is independent of N . Then, by choosing N

large enough such that CLθ
1
4

N ≤ ε1, CL,ϕθ
1
4

N ≤ ε1, we obtain

1

N

N∑
i=1

[
Ji(t, �x, α

∗)− vN,L
i (t, �x, α∗)

]
≤ ε;

1

N

N∑
i=1

|ϕ(xi)− Ji(t, �x, α
∗)| ≤ ε.

This implies that α∗ ∈ MN,ε,0
cont (t, �x) and ϕ ∈ V

N,ε,0
cont (t, μN

�x ), for all N large enough.

That is, ϕ ∈ limN→∞ V
N,ε,0
cont (t, �x) for any ε > 0.

(ii) We next show the left inclusion in (6.30). Fix ϕ ∈
⋂
ε>0

⋃
L≥0

lim
N→∞

V
N,ε,L
cont (t, μN

�x ),

ε > 0, and set ε1 := ε
2 . There exist Lε ≥ 0 and an infinite sequence {Nk}k≥1 such

that ϕ ∈ V
Nk,ε1,Lε

cont (t, μN
�x ) for all k ≥ 1. Recall (6.17) and (6.18), there exists

αk ∈ ALε
cont such that

1

Nk

Nk∑
i=1

[
Ji(t, �x, α

k)− vNk,Lε

i (t, �x, αk)
]
≤ ε1;

1

Nk

Nk∑
i=1

|ϕ(xi)− Ji(t, �x, α
k)| ≤ ε1.

Note that Lε is fixed, in particular it is independent of k. In light of Remark 3.1(i)

and denote α̃k(s, x) := αk(s, x, μαk

), then μα̃k

= μαk

. Similarly to (i), by (6.27) we
have ∫

Rd

[
J(t, μ, α̃k;x, α̃k)− v(μαk

; t, x)
]
μNk

�x (dx) ≤ ε1 + CLε
θ

1
4

Nk
,

∫
Rd

∣∣ϕ(x)− J(t, μ, α̃k;x, α̃k)
∣∣μN

�x (dx) ≤ ε1 + CLε
θ

1
4

Nk
.

Then, by Lemma 6.4 and (6.1) we have∫
Rd

[
J(t, μ, α̃k;x, α̃k)− v(μαk

; t, x)
]
μ(dx) ≤ ε1 + CLε

θ
1
4

Nk
+ CW1(μ

Nk

�x , μ),

∫
Rd

∣∣ϕ(x)− J(t, μ, α̃k;x, α̃k)
∣∣μ(dx) ≤ ε1 + CLε

θ
1
4

Nk
+ CϕW1(μ

Nk

�x , μ).

Now choose k large enough (possibly depending on ε and ϕ) such that

CLε
θ

1
4

Nk
+ CW1(μ

Nk

�x , μ) ≤ ε1, CLε
θ

1
4

Nk
+ CϕW1(μ

Nk

�x , μ) ≤ ε1.
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Then we have∫
Rd

[
J(t, μ, α̃k;x, α̃k)−v(μαk

; t, x)
]
μ(dx) ≤ ε,

∫
Rd

∣∣ϕ(x)−J(t, μ, α̃k;x, α̃k)
∣∣μ(dx) ≤ ε.

This implies that α̃k ∈ Mε
cont(t, μ) and ϕ ∈ V

ε
cont(t, μ). Since ε > 0 is arbitrary,

we obtain ϕ ∈ Vcont(t, μ). �

7. Appendix

7.1. Some examples. In this subsection we first construct an example in discrete
setting such that V0 ⊂ Vstate ⊂ Vpath ⊂ Vrelax with all the inclusions strict, where
Vpath are defined in an obvious way. In particular, V0 is empty.

Example 7.1. Set T = 2, S = {x, x}, A = ( 13 ,
2
3 ), and

q(0, x, μ, a;x) = q(0, x, μ, a;x) ≡ 1

2
, q(1, x, μ, a;x) = a, q(1, x, μ, a;x) = 1− a;

F (0, x, μ, a) = 0, F (1, x, μ, a) = F1(a) := a[1− a], G(x, μ) = μ(x).

Then for any μ ∈ P0(S), we have V = {(y, y) : y ∈ V̂} for V = V0,Vstate,Vpath,
Vrelax, and

V̂0(0, μ) = ∅, V̂state(0, μ) =
{5

9
,
13

18
,
8

9

}
,

V̂path(0, μ) :=

{
λ μ(x) + λ μ(x) +

2

9
: λ, λ ∈

{1

3
,
1

2
,
2

3

}}
,(7.1)

V̂relax(0, μ) :=

{
λ μ(x) + λ μ(x) +

2

9
: λ, λ ∈

[1
3
,
2

3

]}
.

Proof. Since |S| = 2, for any μ ∈ P0(S) clearly it suffices to specify μ(x).
(i) We first compute V0(0, μ). For any α, α̃ ∈ Astate, it is straightforward to

compute:

μα
1 (x) =

∑
x0∈S

μ(x0)q(0, x0, μ, α(0, x0);x) =
∑
x0∈S

μ(x0)
1

2
=

1

2
;

μα
2 (x) =

∑
x1∈S

μα
1 (x1)q(1, x1, μ

α
1 , α(1, x1);x) =

1

2

∑
x1∈S

α(1, x1);(7.2)

P
μα;0,x0,α̃(X1 = x) = q(0, x0, μ, α̃(0, x0);x) =

1

2
.

Then

J(0, μ, α;x0, α̃) = E
P
μα;0,x0,α̃

[
G(X2, μ

α
2 ) +

∑
t=0,1

F (t,Xt, μ
α
t , α̃(t,Xt))

]

= μα
2 (x) + E

P
μα;0,x0,α̃

[
F1(α̃(1, X1))

]

=
1

2

∑
x1∈S

α(1, x1) +
1

2

∑
x1∈S

F1(α̃(1, x1)).(7.3)

Given α, we see that inf α̃ J(0, μ, α;x0, α̃) =
1
2

∑
x1∈S

α(1, x1)+
2
9 , and the minimum

is achieved when α̃(1, x1) = 1
3 ,

2
3 , ∀x1 ∈ S, which are not included in A. Thus

Mstate(0, μ) = ∅, and hence V0(0, μ) = ∅.
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(ii) We next compute Vstate(0, μ). Fix ε > 0 small. By (2.13) and (7.3) it is
clear that

(7.4) αε ∈ Mε
state(0, μ) if and only if

1

2

∑
x1∈S

F1(α
ε(1, x1)) ≤

2

9
+ ε,

and in this case, for any x0 ∈ S, by (7.3) again we have

J(0, μ, αε;x0, α
ε) = J0(α

ε) :=
1

2

∑
x1∈S

F̃1(α
ε(1, x1)),

where F̃1(a) := a+ F1(a) = a[2− a].

In particular, this implies that Vε
state(0, μ) =

{
(y, y) : y ∈ V̂

ε
state(0, μ)

}
where

V̂
ε
state(0, μ) :=

{
J0(α

ε) : αε ∈ Mε
state(0, μ)

}
.

Recall again that inf
a∈A

F1(a) =
2

9
. By (7.4), αε ∈ Mε

state(0, μ) if and only if there

exists a function χε : S → R such that F1(α
ε(1, x1)) =

2
9 + χε(x1) for all x1 ∈ S,

and

(7.5) χε(x), χε(x) > 0, χε(x) + χε(x) ≤ 2ε.

This implies that

αε(1, x1) =
1

3
+ χ̂ε(x1) or

2

3
− χ̂ε(x1), where χ̂ε(x1) :=

6χε(x1)

1 +
√
1− 36χε(x1)

.

Note that F̃1 is strictly increasing for a ∈ A. Then, by (2.14) we have, for ε > 0
small,

V̂
ε
state(0, μ) =

⋃
χε

4⋃
i=1

(yi − ε, yi + ε),

y1 :=
1

2

[
F̃1

(1
3
+ χε(x)

)
+ F̃1

(1
3
+ χε(x)

)]
,

y2 :=
1

2

[
F̃1

(1
3
+ χε(x)

)
+ F̃1

(2
3
− χε(x)

)]
,

y3 :=
1

2

[
F̃1

(2
3
− χε(x)

)
+ F̃1

(1
3
+ χε(x)

)]
,

y4 :=
1

2

[
F̃1

(2
3
− χε(x)

)
+ F̃1

(2
3
− χε(x)

)]
,

where the first union is over all χε satisfying (7.5). Note that 0 < χε(x), χε(x) < 2ε.

Then by (2.14) it is obvious that Vstate(0, μ) =
{
(y, y) : y ∈ V̂state(0, μ)

}
and

V̂state(0, μ) =
{
F̃1

(1
3

)
,
1

2

[
F̃1

(1
3

)
+ F̃1

(2
3

)]
, F̃1

(2
3

)}
=

{5

9
,
13

18
,
8

9

}
.
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(iii) We now compute Vpath(0, μ). For any α, α̃ ∈ Apath, we still have μ
α
1 (x) =

1
2

and Pμα;0,x0,α̃(X1 = x) = 1
2 , for all x0 ∈ S. Moreover,

μα
2 (x) =

∑
x0,x1∈S

μ(x0)q(0, x0, μ, α(0, x0);x1)q(1, x1, μ
α
1 , α(1, x0, x1);x)

=
1

2

∑
x0,x1∈S

μ(x0)α(1, x0, x1);

J(0, μ, α;x0, α̃) = E
P
μα;0,x0,α̃

[
G(X2, μ

α
2 ) + F (1, X1, μ

α
1 , α̃(1, X0, X1))

]

= μα
2 (x) + E

P
μα;0,x0,α̃

[
F1(α̃(1, X0, X1))

]

=
∑
x̃0∈S

μ(x̃0)×
1

2

∑
x1∈S

α(1, x̃0, x1) +
1

2

∑
x1∈S

F1(α̃(1, x0, x1)).(7.6)

Similarly to (7.4),

αε ∈ Mε
path(0, μ) if and only if

1

2

∑
x1∈S

F1(α
ε(1, x0, x1)) ≤

2

9
+ ε, ∀x0 ∈ S.

Furthermore, by abusing the notation χε, the above is equivalent to that there

exists χε : S× S → A such that, by denoting χ̂ε(x0, x1) :=
6χε(x0,x1)

1+
√

1−36χε(x0,x1)
,

χε(x0, x1) > 0, ∀x0, x1 ∈ S, and χε(x0, x) + χε(x0, x) ≤ 2ε, ∀x0 ∈ S;

αε(1, x0, x1) =
1

3
+ χ̂ε(x0, x1) or

2

3
− χ̂ε(x0, x1).

Following the same arguments as in (ii), we can easily see that Vpath(0, μ) consists
of pairs

(
J(0, μ, α∗;x, α∗), J(0, μ, α∗;x, α∗)

)
for all α∗ : S2 → { 1

3 ,
2
3}. Note that

F1(
1
3 ) = F1(

2
3 ) = 2

9 , and 1
2

∑
x1∈S

α∗(1, x̃0, x1) takes 3 possible values: 1
3 ,

1
2 ,

2
3 .

Then by (7.6) we have

(7.7) J(0, μ, α∗;x0, α
∗) = λ μ(x) + λ μ(x) +

2

9
, where λ, λ ∈

{1
3
,
1

2
,
2

3

}
.

Again this is independent of x0. Then Vpath(0, μ) =
{
(y, y) : y ∈ V̂path(0, μ)

}
and

V̂path(0, μ) :=
{
λ μ(x) + λ μ(x) +

2

9
: λ, λ ∈

{1
3
,
1

2
,
2

3

}}
.

In particular, we see that V̂state(0, μ) consists of the elements of V̂path(0, μ) with

λ = λ, and V̂path(0, μ) = V̂state(0, μ) when μ(x) = μ(x).
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(iv) Finally we compute Vrelax(0, μ). Fix γ, γ̃ ∈ Arelax, it is straightforward to
compute:

μγ
1(x) =

∑
x0∈S

μ(x0)

∫
A

q(0, x0, μ, a;x)γ(0, x0; da) =
∑
x0∈S

μ(x0)×
1

2
=

1

2
;

P
μγ ;0,x0,γ̃(X1 = x) =

∫
A

q(0, x0, μ, a;x)γ̃(0, x0; da) =
1

2
;

μγ
2(x)

=
∑

x0,x1∈S

μ(x0)

∫
A2

q(0, x0, μ, a0;x1)q(1, x1, μ
γ
1 , a1;x)γ(0, x0; da0)γ(1, x0, x1; da1)

=
1

2

∑
x0,x1∈S

μ(x0)

∫
A

aγ(1, x0, x1; da);

J(0, μ, γ;x0, γ̃) = E
P
μγ ;0,x0,γ̃

[
G(X2, μ

γ
2) +

∑
t=0,1

∫
A

F (t,Xt, μ
γ
t , a)γ̃(t,X; da)

]

= μγ
2 (x) + E

P
μγ ;0,x0,γ̃

[ ∫
A

F1(a)γ̃(1, X; da)
]

=
1

2

∑
x̃0,x1∈S

μ(x̃0)

∫
A

aγ(1, x̃0, x1; da) +
1

2

∑
x1∈S

∫
A

F1(a)γ̃(1, x0, x1; da).

Similarly to (7.4),
(7.8)

γε ∈ Mε
relax(0, μ) if and only if

1

2

∑
x1∈S

∫
A

F1(a)γ
ε(1, x0, x1; da) ≤

2

9
+ε, ∀x0 ∈ S,

and in this case, for any x0 ∈ S,

(7.9) J(0, μ, γε;x0, γ
ε)

=
1

2

∑
x̃0,x1∈S

μ(x̃0)

∫
A

aγε(1, x̃0, x1; da) +
1

2

∑
x1∈S

∫
A

F1(a)γ
ε(1, x0, x1; da).

Let M̂relax denote the set of γ∗ : S2 → P({ 1
3 ,

2
3}) and set

(7.10) Ĵ(γ∗) :=
1

2

∑
x0,x1∈S

μ(x0)
[1
3
γ∗(x0, x1;

1

3
) +

2

3
γ∗(x0, x1;

2

3
)
]
+

2

9
.

We claim that, for any γε ∈ Mε
relax(0, μ), there exists γ̂ε ∈ M̂relax such that

(7.11)
∣∣∣J(0, μ, γε;x0, γ

ε)− Ĵ(γ̂ε)
∣∣∣ ≤ C

√
ε.

On the other hand, for any γ∗ ∈ M̂relax, denote

(7.12) Aε
1 := (

1

3
,
1

3
+
√
ε], Aε

2 := [
2

3
−
√
ε,

2

3
), Aε

3 := A\(Aε
1 ∪ Aε

2),

and set γε ∈ Arelax such that

γε(1, x0, x1; da) :=
1

2
√
ε

[
γ∗(x0, x1;

1

3
)1Aε

1
(a) + γ∗(x0, x1;

2

3
)1Aε

2
(a)

]
da.
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Note that F1(a) ≤ ( 13 +
√
ε)( 23 −

√
ε) = 2

9 +
√
ε
3 − ε, γε(1, x0, x1; da)-a.s. Then it is

clear that γε ∈ M
√

ε
3 −ε

relax . Moreover, one can easily verify that∣∣∣J(0, μ, γε;x0, γ
ε)− Ĵ(γ̂ε)

∣∣∣
≤

2∑
i=1

1

2

∑
x̃0,x1∈S

μ(x̃0)γ
∗(x0, x1;

i

3
)
∣∣∣ 1√

ε

∫
Aε

i

ada− i

3

∣∣∣+
√
ε

3
− ε ≤ C

√
ε.

This, together with (7.11) and (4.3), implies that Vrelax(0, μ) =
{
(y, y) : y ∈

V̂relax(0, μ)
}
and, by denoting λ := 1

2

∑
x1∈S

[
1
3γ

∗(x, x1;
1
3 )+

2
3γ

∗(x, x1;
2
3 )
]
∈ [ 13 ,

2
3 ]

and similarly for λ,

V̂relax(0, μ) :=
{
Ĵ(γ∗) : γ∗ ∈ M̂relax

}
=

{
λ μ(x) + λ μ(x) +

2

9
: λ, λ ∈ [

1

3
,
2

3
]
}
.

It remains to prove (7.11). Let γε satisfies (7.8). Then, for any x0 ∈ S, we have

ε ≥ 1

2

∑
x1∈S

∫
A

F1(a)γ
ε(1, x0, x1; da)−

2

9
=

1

2

∑
x1∈S

∫
A

(a− 1

3
)(
2

3
− a)γε(1, x0, x1; da)

≥ 1

2

∑
x1∈S

∫
Aε

3

(a− 1

3
)(
2

3
− a)γε(1, x0, x1; da)

≥
√
ε(
1

3
−
√
ε)
1

2

∑
x1∈S

∫
Aε

3

γε(1, x0, x1; da).

Thus ∫
Aε

3

γε(1, x0, x1; da) ≤ C
√
ε, ∀x0, x1 ∈ S.

Recall (7.12) and set γ̂ε ∈ M̂relax by:

γ̂ε(x0, x1;
1

3
) :=

γε(1, x0, x1;A
ε
1)∑2

i=1 γ
ε(1, x0, x1;Aε

i )
, γ̂ε(x0, x1;

2

3
) :=

γε(1, x0, x1;A
ε
2)∑2

i=1 γ
ε(1, x0, x1;Aε

i )
.

Then F1(a) =
2
9 , γ̂

ε(x0, x1; da)-a.s., and thus∣∣∣J(0, μ, γε;x0, γ
ε)− Ĵ(γ̂ε)

∣∣∣
≤

2∑
i=1

1

2

∑
x̃0,x1∈S

μ(x̃0)
∣∣∣
∫
Aε

i

aγε(1, x̃0, x1; da)−
i

3
γ̂ε(x̃0, x1;A

ε
i )
∣∣∣

+
1

2

∑
x̃0,x1∈S

μ(x̃0)

∫
Aε

3

aγε(1, x̃0, x1; da) +
∣∣∣1
2

∑
x1∈S

∫
A

F1(a)γ
ε(1, x0, x1; da)−

2

9

∣∣∣

≤ C
2∑

i=1

∣∣γε(1, x̃0, x1;A
ε
i )− γ̂ε(x̃0, x1;A

ε
i )
∣∣+ C

√
ε

≤ C
1−

∑2
i=1 γ

ε(1, x̃0, x1;A
ε
i )∑2

i=1 γ
ε(1, x̃0, x1;Aε

i )
+ C

√
ε ≤ C

√
ε

1− C
√
ε
+ C

√
ε ≤ C

√
ε.

This proves (7.11). �
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Our next example shows that the left inclusion in (3.13) fails if we remove the
L-Lipschitz continuity requirement, as mentioned in Remark 3.8(ii). This justifies
our uniform regularity requirement on the admissible controls in order to have the
desired convergence as in Theorem 3.6. Recall VN,ε and VN,ε,∞ in Remark 3.8(ii).

Example 7.2. Let T, S, q be as in Example 7.1, and

A = [
1

3
,
2

3
], F ≡ 0, G(x, μ) =

20

9
− 5μ(x), G(x, μ) =

20

9
− 3μ(x).

Then, for any μ ∈ P0(S) and μN
�x ∈ PN (S) with μN

�x → μ, (0, 0) is in⋂
ε>0

lim
N→∞

V
N,ε,∞
state (0, μN

�x ) and
⋂
ε>0

lim
N→∞

V
N,ε
state(0, μ

N
�x ), but not in Vstate(0, μ).

Proof. (i) We first compute Vstate(0, μ). For α, α̃ ∈ Astate (which do not depend
on μ), similarly to (7.1) we have

μα
1 (x) =

1

2
, μα

2 (x) =
1

2

∑
x1∈S

α(1, x1), P
μα;0,x0,α̃(X1 = x) =

1

2
,(7.13)

P
μα;0,x0,α̃(X2 = x) =

∑
x1∈S

P
μα;0,x0,α̃(X1 = x1)q(1, x1, μ

α
1 , α̃(1, x1);x)

=
1

2

∑
x1∈S

α̃(1, x1).

Then

J(0, μ, α;x0, α̃) = E
P
μα;0,x0,α̃

[G(X2, μ
α
2 )]

=
20

9
−5Pμα;0,x0,α̃(X2 = x)μα

2 (x)− 3Pμα;0,x0,α̃(X2 = x)μα
2 (x)

=
20

9
− 5

2

∑
x1∈S

α̃(1, x1)×
1

2

∑
x1∈S

α(1, x1)−3
[
1− 1

2

∑
x1∈S

α̃(1, x1)
][
1− 1

2

∑
x1∈S

α(1, x1)
]

=
1

2

[
3− 4

∑
x1∈S

α(1, x1)
] ∑
x1∈S

α̃(1, x1) +
3

2

∑
x1∈S

α(1, x1)−
7

9
.

Note that, when
∑

x1∈S
α(1, x1) >

3
4 , inf α̃∈Astate

J(0, μ, α;x0, α̃) is achieved at α̃ ≡
2
3 . Since

∑
x1∈S

2
3 = 4

3 > 3
4 , then α ≡ 2

3 is an equilibrium with

J(0, μ,
2

3
;x0,

2

3
) =

1

2

[
3− 4

∑
x1∈S

2

3

] ∑
x1∈S

2

3
+

3

2

∑
x1∈S

2

3
− 7

9
= −1

3
, ∀x0 ∈ S.

Similarly, when
∑

x1∈S
α(1, x1) <

3
4 , inf α̃∈Astate

J(0, μ, α;x0, α̃) is achieved at α̃ ≡
1
3 . Since

∑
x1∈S

1
3 = 2

3 < 3
4 , then α ≡ 1

3 is also an equilibrium with

J(0, μ,
1

3
;x0,

1

3
) =

1

2

[
3− 4

∑
x1∈S

1

3

] ∑
x1∈S

1

3
+

3

2

∑
x1∈S

1

3
− 7

9
=

1

3
, ∀x0 ∈ S.

Moreover, when
∑

x1∈S
α(1, x1) =

3
4 , then all α̃, including α̃ = α, are minimizers of

J , and thus such α is an equilibrium. In this case

J(0, μ, α;x0, α) =
3

2

∑
x1∈S

α(1, x1)−
7

9
=

3

2
× 3

4
− 7

9
=

25

72
, ∀x0 ∈ S.

Put all cases together, we have Vstate(0, μ) =
{
(− 1

3 ,−
1
3 ), (

1
3 ,

1
3 ), (

25
72 ,

25
72 )

}
.
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(ii) We next show that (0, 0) ∈
⋂

ε>0 limN→∞ V
N,ε
state(0, μ

N
�x ). Set

α(t, x, μ) := α(μ) :=
1

3
1{μ(x)≤ 1

2} +
2

3
1{μ(x)> 1

2 },

EN
1 := {μN

1 (x) ≤ 1

2
}, EN

2 := {μN
1 (x) >

1

2
},

where α does not depend on (t, x). Then, for any α̃ : T× S× P(S) → A, recalling
the setting in Subsection 3.1 and denoting P

i := P
0,�x,(α,α̃)i , we have

Ji(0, �x, (α, α̃)i) = E
P
i[
G(Xi

2, μ
N
2 )

]
=

20

9
− E

P
i[
5μN

2 (x)1{Xi
2=x} + 3μN

2 (x)1{Xi
2=x}

]

=
20

9
− 1

N
E
P
i[
51{Xi

2=x} + 31{Xi
2=x}

]
− 1

N

∑
j 	=i

E
P
i[
51{Xj

2=Xi
2=x} + 31{Xj

2=Xi
2=x}

]

=
20

9
− 1

N

∑
j 	=i

E
P
i
[
5α(μN

1 )α̃(1, Xi
1, μ

N
1 ) + 3[1−α(μN

1 )][1−α̃(1, Xi
1, μ

N
1 )

]]
+O

( 1

N

)

=
20

9
− E

P
i
[[
2− 1

3
α̃(1, Xi

1, μ
N
1 )

]
1EN

1
+
[
1 +

7

3
α̃(1, Xi

1, μ
N
1 )

]
1EN

2

]
+O

( 1

N

)
.

Notice that, under each Pi, X1
1 , · · · , XN

1 are i.i.d. with Pi(Xj
1 = x) = Pi(Xj

1 =

x) = 1
2 . Thus we may use a common P̄, under which �X1 has the above distribution,

such that

(7.14) Ji(0, �x, (α, α̃)i)

=
20

9
− E

P̄

[[
2− 1

3
α̃(1, Xi

1, μ
N
1 )

]
1EN

1
+
[
1 +

7

3
α̃(1, Xi

1, μ
N
1 )

]
1EN

2

]
+O

( 1

N

)
.

If we ignore the term O
(

1
N

)
, clearly α̃ = α is the minimizer of the above Ji. Then

for fixed ε > 0 and for N large enough, α is an ε-minimizer for all i, and thus α is an

ε-equilibrium. Note that NμN
1 (x) =

∑N
i=1 1{Xi

1=x} has distribution Binomial(N, 1
2 )

under P̄. Then P̄(EN
1 ) = 1

2 when N is odd, and

1

2
≤ P̄(EN

1 ) ≤ 1

2
+ P̄(NμN

1 (x) =
N

2
) =

1

2
+

1

2N

(
N
N
2

)
=

1

2
+O

( 1√
N

)
,

when N is even. Thus

Ji(0, �x, α) =
20

9
− 17

9
P̄(EN

1 )− 23

9
P̄(EN

2 ) +O
( 1

N

)

=
20

9
− 1

2
[
17

9
+

23

9
] +O

( 1√
N

)
= O

( 1√
N

)
.

Since μN
�x → μ ∈ P0(S), we have μN

�x ∈ P0(S) for N large enough. Then, in light of
(3.5),

JN (0, x0, μ
N
�x , α) = O

( 1√
N

)
, ∀x0 ∈ S.

This implies that (0, 0) ∈
⋂

ε>0 limN→∞ V
N,ε
state(0, μ

N
�x ).
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(iii) We finally show that (0, 0) ∈
⋂

ε>0 limN→∞ V
N,ε,∞
state (0, μN

�x ). Set

αN (t, x, μ) :=
1

3
1{μ(x)≤pN} +

2

3
1{μ(x)≥qN} +

[1
3
+

N

3

(
μ(x)− pN

)]
1{pN<μ(x)<qN},

where pN :=
1

2
− 1

2N
, qN :=

1

2
+

1

2N

ẼN
1 :=

{
μN
1 (x) ≤ pN

}
, ẼN

2 :=
{
μN
1 (x) ≥ qN

}
, ẼN

3 :=
{
pN < μN

1 (x) < qN
}
.

Then clearly αN ∈ A∞
state. For any α̃ ∈ A∞

state, similarly to (7.14) we have

Ji(0, �x, (α
N , α̃)i) =

20

9
− E

P̄

[[
2− 1

3
α̃(1, Xi

1, μ
N
1 )

]
1ẼN

1
+
[
1 +

7

3
α̃(1, Xi

1, μ
N
1 )

]
1ẼN

2

−
[
5α(μN

1 )α̃(1, Xi
1, μ

N
1 ) + 3[1− α(μN

1 )][1− α̃(1, Xi
1, μ

N
1 )]

]
1ẼN

3

]
+O

( 1

N

)
.

Again, fix ε > 0 and consider N large enough. On ẼN
1 ∪ ẼN

2 , it is optimal to choose
α̃ = αN , up to the error O

(
1
N

)
. Then

Ji(0, �x, (α
N , α̃)i)− Ji(0, �x, α

N ) ≤ CP̄(ẼN
3 ) +O

( 1

N

)
.

When N is odd, ẼN
3 = ∅ and thus P̄(ẼN

3 ) = 0. When N is even,

P̄(ẼN
3 ) = P̄(μN

1 (x) =
1

2
) =

1

2N

(
N
N
2

)
= O

( 1√
N

)
.

So in both cases, we have

Ji(0, �x, (α
N , α̃)i)− Ji(0, �x, α

N ) ≤ O
( 1√

N

)
.

That is, αN ∈ MN,ε,∞
state (0, μN

�x ) for N large enough. Thus JN (0, ·, μN
�x , αN ) ∈

V
N,ε,∞
state (0, μN

�x ). Then by similar arguments as in (ii) we see that (0, 0)

∈
⋂

ε>0 limN→∞ V
N,ε,∞
state (0, μN

�x ). �

Remark 7.3. Consider the setting in Example 7.2(ii). Denote P
α = P

0,�x,α, we have

E
P
α

[μN
2 (x)] =

1

N

N∑
i=1

P
α(Xi

2 = x) =
1

N

N∑
i=1

E
P̄
[
α(μN

1 )
]

=
1

3
P̄
(
μN
1 (x) ≤ 1

2

)
+

2

3
P̄
(
μN
1 (x) >

1

2

)
=

1

2
;

E
P
α

[|μN
2 (x)|2] = 1

N2

N∑
i,j=1

P
α(Xi

2 = Xj
2 = x)

=
1

N2

N∑
i=1

E
P̄
[
α(μN

1 )
]
+

1

N2

∑
i 	=j

E
P̄
[
|α(μN

1 )|2
]

=
1

9
P̄
(
μN
1 (x) ≤ 1

2

)
+

4

9
P̄
(
μN
1 (x) >

1

2

)
+O

( 1

N

)
=

5

18
+O

( 1

N

)
;

V arP
α

(μN
2 (x)) =

5

18
+O

( 1

N

)
− (

1

2
)2 =

1

36
+O

( 1

N

)
.

Then we see that the random measure μN
2 under Pα, which is an O( 1√

N
)-equilibrium

measure of the N -player problem, does not converge to a deterministic measure.
This explains why [32] introduced the weak mean field equilibrium when considering
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the convergence issue for all measurable controls. However, we shall emphasize
again that, as pointed out in Remark 3.8(iii), measurable controls/equilibria are
not desirable for numerical or practical purpose.

7.2. The subtle path dependence issue in Remark 4.3. In this subsection
we elaborate Remark 4.3(ii) and (iii). Throughout the subsection, q, F,G are state
dependent as in Section 2. As we saw in Example 7.1, in general Vstate = Vpath,
confirming Remark 4.3(ii). We now turn to Remark 4.3(iii) for relaxed controls.
For simplicity we verify it only for raw set values. The equality for set values follow
similar ideas but with more involved approximations, as we saw in Example 7.1(iv).
Let Arelax be the path dependent ones in Section 4, and Astate

relax denote the subset
taking the form γ(t, x, da). We emphasize again that here we are considering state
dependent q, F,G. Fix t = 0 and μ ∈ P0(S).

Lemma 7.4. For any γ ∈ Arelax, define
(7.15)

γ̃(s, x, da) :=
1

μγ
s (x)

∑
x∈Xs:xs=x

μγ
s∧·(x)γ(s,x, da), where μγ

s (x) :=
∑

x∈Xs:xs=x

μγ
s∧·(x).

Then γ̃ ∈ Astate
relax and μγ̃

s = μγ
s .

Proof. First it is obvious that

γ̃(s, x,A) =
1

μγ
s (x)

∑
x∈Xs:xs=x

μγ
s∧·(x)γ(s,x,A) =

1

μγ
s (x)

∑
x∈Xs:xs=x

μγ
s∧·(x) = 1,

so γ̃ ∈ Astate
relax. Next, by definition μγ̃

0 = μ = μγ
0 . Assume μγ̃

s = μγ
s , then for s+ 1,

μγ̃
s+1(x) =

∑
x̃∈S

μγ̃
s (x̃)

∫
A

q(s, x̃, μγ̃
s , a;x)γ̃(s, x̃, da)

=
∑
x̃∈S

μγ
s (x̃)

∫
A

q(s, x̃, μγ
s , a;x)

1

μγ
s (x̃)

∑
x∈Xs:xs=x̃

μγ
s∧·(x)γ(s,x, da)

=
∑
x∈Xs

μγ
s∧·(x)

∫
A

q(s,xs, μ
γ
s , a;x)γ(s,x, da) = μγ

s+1(x).

This completes the induction argument. �
Lemma 7.5. If γ∗ ∈ Arelax is a relaxed MFE at (0, μ), then the corresponding
γ̃∗ ∈ Astate

relax is a state dependent relaxed MFE at (0, μ). Moreover, in this case we
have

(7.16) J(0, μ, γ∗;x, γ∗) = J(0, μ, γ̃∗;x, γ̃∗).

Proof. First, by Lemma 7.4 it is straightforward to verify that∫
S

J(0, μ, γ;x, γ)μ(dx) =

∫
S

J(0, μ, γ̃;x, γ̃)μ(dx).

On the other hand, since γ∗ ∈ Arelax, by the standard control theory we have
(7.17)

inf
γ∈Arelax

J(0, μ, γ∗;x, γ) = v(μγ∗
; 0, x) = v(μγ̃∗

; 0, x) = inf
γ′∈Astate

relax

J(0, μ, γ̃∗;x, γ′).

Then∫
S

J(0, μ, γ̃∗;x, γ̃∗)μ(dx) =

∫
S

J(0, μ, γ∗;x, γ∗)μ(dx) =

∫
S

v(μγ̃∗
; 0, x)μ(dx).
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Since J(0, μ, γ̃∗;x, γ̃∗) ≥ v(μγ̃∗
; 0, x) and supp(μ) = S, then J(0, μ, γ̃∗;x, γ̃∗) =

v(μγ̃∗
; 0, x) for all x ∈ S. This implies that γ̃∗ ∈ Astate

relax is a state dependent relaxed
MFE at (0, μ), and consequently (7.17) leads to (7.16). �

Theorem 7.6. The MFGs with state dependent relaxed controls and path dependent
relaxed controls have the same relaxed raw set value.

Proof. By Lemma 7.5, clearly the path dependent raw set value is included in the
state dependent raw set value. On the other hand, for any state dependent relaxed
control γ̂∗ ∈ Astate

relax, we may still view γ∗ := γ̂∗ as a path dependent relaxed
control,7 and it is straightforward to verify that the γ̃∗ ∈ Astate

relax corresponding to
γ∗ is equal to γ̂∗. Then, following the arguments in Lemma 7.5, in particular (7.17),

one can easily show that J(0, μ, γ∗;x, γ∗) = v(μγ∗
; 0, x) and thus γ∗ is also an MFE

among Arelax. Therefore, J(0, μ, γ∗; ·, γ∗) belong to the path dependent raw set
value as well. �

7.3. Some technical proofs.

Proof of Theorem 2.7. Let Ṽstate(t, μ) =
⋂

ε>0 Ṽ
ε
state(t, μ) denote the right side of

(2.17) in the obvious sense. We shall follow the arguments in Theorem 2.4.

(i) We first prove Ṽstate(t, μ) ⊂ Vstate(t, μ). Fix ϕ ∈ Ṽstate(t, μ), ε > 0, and set

ε1 := ε
4 . Since ϕ ∈ Ṽ

ε1
state(t, μ), there exist desirable ψ and α∗ ∈ Mε1

state(T0, ψ; t, μ)

as in (2.17), and the property ψ(·, μα∗

T0
) ∈ V

ε1
state(T0, μ

α∗

T0
) implies further that there

exists α̃∗ ∈ Mε1
state(T0, μ

α∗

T0
) such that

‖ϕ− J(T0, ψ; t, μ, α
∗; ·, α∗)‖∞ ≤ ε1, ‖ψ(·, μα∗

T0
)− J(T0, μ

α∗

T0
, α̃∗; ·, α̃∗)‖∞ ≤ ε1.

Denote α̂∗ := α∗ ⊕T0
α̃∗ ∈ Astate. Then, for any α ∈ Astate and x ∈ S, similar to

the arguments in Proposition 2.3(i), we have

J(t, μ, α̂∗;x, α) = E
P
μα∗

;t,x,α
[
J(T0, μ

α∗

T0
, α̃∗;XT0

, α) +

T0−1∑
s=t

F (s,Xs, μ
α∗

s , α(s,Xs))
]

≥ E
P
μα∗

;t,x,α
[
J(T0, μ

α∗

T0
, α̃∗;XT0

, α̃∗) +
T0−1∑
s=t

F (s,Xs, μ
α∗

s , α(s,Xs))
]
− ε1

≥ E
P
μα∗

;t,x,α
[
ψ(XT0

, μα∗

T0
) +

T0−1∑
s=t

F (s,Xs, μ
α∗

s , α(s,Xs))
]
− 2ε1

= J(T0, ψ; t, μ, α
∗;x, α)− 2ε1 ≥ J(T0, ψ; t, μ, α

∗;x, α∗)− 3ε1

= E
P
μα∗

;t,x,α∗ [
ψ(XT0

, μα∗

T0
) +

T0−1∑
s=t

F (s,Xs, μ
α∗

s , α∗(s,Xs))
]
− 3ε1

≥ E
P
μα∗

;t,x,α∗ [
J(T0, μ

α∗

T0
, α̃∗;XT0

, α̃∗) +

T0−1∑
s=t

F (s,Xs, μ
α∗

s , α∗(s,Xs))
]
− 4ε1

= J(t, μ, α̂∗;x, α̂∗)− ε.

7While it is trivial that Astate
relax ⊂ Apath

relax
:= Arelax, as stated here, in general it is not trivial

that Mstate
relax ⊂ Mpath

relax, because for the latter one has to compare with other path dependent

relaxed controls, which is a stronger requirement than that for Mstate
relax. The rest of the proof is

exactly to prove Mstate
relax ⊂ Mpath

relax.
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That is, α̂∗ ∈ Mε
state(t, μ). Moreover, note that

‖ϕ− J(t, μ, α̂∗; ·, α̂∗)‖∞ ≤ ε1 + ‖J(T0, ψ; t, μ, α
∗; ·, α∗)− J(t, μ, α̂∗; ·, α̂∗)‖∞

= ε1 + sup
x∈S

∣∣∣EP
μα∗

;t,x,α∗ [
ψ(XT0

, μα∗

T0
)− J(T0, μ

α∗

T0
, α̃∗;XT0

, α̃∗)
]∣∣∣ ≤ 2ε1 ≤ ε.

Then ϕ ∈ Vε
state(t, μ). Since ε > 0 is arbitrary, we obtain ϕ ∈ Vstate(t, μ).

(ii) We now prove the opposite inclusion. Fix ϕ ∈ Vstate(t, μ) and ε > 0. Let
ε1 > 0 be a small number which will be specified later. Since ϕ ∈ V

ε1
state(t, μ),

there exists α∗ ∈ Mε1
state(t, μ) such that ‖ϕ − J(t, μ, α∗; ·, α∗)‖∞ ≤ ε1. Introduce

ψ(x, ν) := J(T0, ν, α
∗;x, α∗). By (2.10) we have

‖ϕ− J(T0, ψ; t, μ, α
∗; ·, α∗)‖∞ = ‖ϕ− J(t, μ, α∗; ·, α∗)‖∞ ≤ ε1.

Moreover, since α∗ ∈ Mε1
state(t, μ), for any α ∈ Astate and x ∈ S, we have

J(T0, ψ; t, μ, α
∗;x, α∗) = J(t, μ, α∗;x, α∗)

≤ J(t, μ, α∗;x, α⊕T0
α∗) + ε1 = J(T, ψ; t, μ, α∗;x, α) + ε1.

This implies that α∗ ∈ Mε1
state(T0, ψ; t, μ). We claim further that

(7.18) ψ(·, μα∗

T0
) ∈ VCε1(T0, μ

α∗

T0
),

for some constant C ≥ 1. Then by (2.17) we see that ϕ ∈ Ṽ
Cε1
state(t, μ) ⊂ Ṽε

state(t, μ)

by setting ε1 ≤ ε
C . Since ε > 0 is arbitrary, we obtain ϕ ∈ Ṽstate(t, μ).

To show (7.18), we follow the arguments in Proposition 2.3(ii). Recall v in (2.5)
and the standard DPP (2.11) for v, for any x ∈ S we have

E
P
μα∗

;t,x,α∗ [
J(T0, μ

α∗

T0
, α∗;XT0

, α∗)
]

≤ inf
α∈Astate

E
P
μα∗

;t,x,α∗ [
J(T0, μ

α∗

T0
, α∗;XT0

, α)
]
+ ε1

= E
P
μα∗

;t,x,α∗ [
v(μα∗

;T0, XT0
)
]
+ ε1.

It is obvious that v(μα∗
;T0, ·) ≤ J(T0, μ

α∗

T0
, α∗; ·, α∗). Moreover, since q ≥ cq, clearly

Pμα∗
;t,x,α∗

(XT0
= x̃) ≥ cT0−t

0 , for any x̃ ∈ S. Thus, for C := ct−T0
0 ,

0 ≤ J(T0, μ
α∗

T0
, α∗; x̃, α∗)− v(μα∗

;T0, x̃)

≤ CE
P
μα∗

;t,x,α∗ [[
J(T0, μ

α∗

T0
, α∗;XT0

, α∗)− v(μα∗
;T0, XT0

)
]
1{XT0

=x̃}

]

≤ CE
P
μα∗

;t,x,α∗ [[
J(T0, μ

α∗

T0
, α∗;XT0

, α∗)− v(μα∗
;T0, XT0

)
]]

≤ Cε1.

This implies that α∗ ∈ MCε1
state(T0, μ

α∗

T0
). Since ψ(·, μα∗

T0
) = J(T0, μ

α∗

T0
, α∗; ·, α∗), we

obtain (7.18) immediately, and hence ϕ ∈ Ṽstate(t, μ). �
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Proof of the claim in Remark 4.7. By (4.16) and (4.17) we have

γ(Λγ)(s, x̃, da) :=
1

μγ
s∧·(x̃)

∫
At

path

Qt
s(μ

γ ; x̃;α)δα(s,x̃)(da)Λ
γ(x, dα)

=
1

μγ
s∧·(x̃)

∫
A

· · ·
∫
A

[ s−1∏
r=t

q(r, x̃, μγ , α(r, x̃);xr+1)
]
× δα(s,x̃)(da)×

[
μ(x)

T−1∏
r=t

∏
x̄∈X

t,x
s

γ(r, x̄, dα(r, x̄))
]

=
μ(x)

μγ
s∧·(x̃)

∫
A

· · ·
∫
A

[ s−1∏
r=t

q(r, x̃, μγ , α(r, x̃);xr+1)γ(r, x̃, dα(r, x̃))
]
×

[
δα(s,x̃)(da)γ(s, x̃, dα(s, x̃))

∏
x̄∈X

t,x
s \{x̃}

γ(s, x̄, dα(s, x̄))
]
×

[ s−1∏
r=t

∏
x̄∈X

t,x
s \{x̃}

γ(r, x̄, dα(r, x̄))
][ T−1∏

r=s

∏
x̄∈X

t,x
s

γ(r, x̄, dα(r, x̄))
]

=
μ(x)

μγ
s∧·(x̃)

[ s−1∏
r=t

∫
A

q(r, x̃, μγ , ā;xr+1)γ(r, x̃, dā)
]
×
[
γ(s, x̃, da)

]

=
μ(x)

μγ
s∧·(x̃)

Qt
s(μ

γ ; x̃, γ)γ(s, x̃, da) = γ(s, x̃, da).

That is, γ(Λγ) = γ. �

Proof of Lemma 6.4. Clearly the uniform estimate for J(μα; ·) implies that for
v(μα; ·), so we shall only prove the former one. Fix (t, μ) ∈ [0, T ] × P2 and
α, α̃ ∈ Acont, and denote u(s, x) := J(μα; α̃, s, x). By standard PDE theory u
is a classical solution to the linear PDE in (6.4) and we have the following formula:
denoting Xs,x

r := x+Br −Bs,

∂xu(s, x) = E
P

[
[g(Xs,x

T , μα
T )− g(x, μα

T )]
BT −Bs

T − s

+

∫ T

s

[
b(r,Xs,x

t , μα
r , α̃(r,X

s,x
r )) · ∂xu(r,Xs,x

r )

+ f(r,Xs,x
t , μα

r , α̃(r,X
s,x
r ))

]Br −Bs

r − s
dr
]
.

Then, by the Lipschitz continuity of g and the boundedness of b and f ,

|∂xu(s, x)| ≤ E

[
L0

|BT −Bs|2
T − s

+ C0

∫ T

s

[
|∂xu(r,Xs,x

r )|+ 1
] |Br −Bs|

r − s
dr
]

≤ C + C0E

[ ∫ T

s

|∂xu(r,Xs,x
r )| |Br −Bs|

r − s
dr
]
.
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Denote Ks := eλs supx |∂xu(s, x)|, K̄ := supt≤s≤T Ks, for some constant λ > 0.
Then

Ks ≤ Ceλs + C0

∫ T

s

Kre
−λ(r−s)

√
r − s

dr ≤ Ceλs + C0K̄

∫ T

s

e−λ(r−s)

√
r − s

dr

≤ Ceλs + C0K̄

∫ ∞

s

e−λ(r−s)

√
r − s

dr = Ceλs + C0K̄

∫ ∞

0

e−λr

√
r
dr = Ceλs +

C0√
πλ

K̄.

Thus K̄ ≤ C0√
πλ

K̄ + CeλT . Set λ :=
4C2

0

π so that C0√
πλ

= 1
2 , we obtain K̄ ≤ C1 :=

2CeλT , which implies the desired estimate immediately. �

Proof of Proposition 6.7. Fix (t, �x, �α, x̄, x̃) and i. For any α̃ ∈ AL
cont, introduce

ᾱ(s, x, μ) := α̃(s, x− x̄+ x̃, μ), and denote

X̄i
s := x̄+Bi

s −Bi
t , Xj

s := xj +Bj
s −Bj

t , j = i, ;

μ̄N
s :=

1

N

[
δX̄i

s
+
∑
j 	=i

δXj
s

]
, M̄ j

s := exp
(∫ s

t

b̄jrdB
j
r −

1

2

∫ s

t

|b̄jr|2dr
)
, j ≥ 1, where

b̄is := b(s, X̄i
s, μ̄

N
s , ᾱ(s, X̄i

s, μ̄
N
s )), b̄js := b(s,Xj

s , μ̄
N
s , αj(s,X

j
s , μ̄

N
s )), j = i.

By the Girsanov Theorem we have

Ji(t, (�x
−i, x̄), (�α−i, ᾱ))

= E

[[ N∏
j=1

M̄ j
T

][
g(X̄i

T , μ̄
N
T ) +

∫ T

t

f(s, X̄i
s, μ̄

N
s , ᾱ(s, X̄i

s, μ̄
N
s ))

]
ds
]
.

Similarly define X̃i, μ̃N , M̃ j , b̃i, b̃j corresponding to (x̃, α̃) in the obvious sense.

Then we have a similar expression as above and ᾱ(s, X̄i
s, μ) = α̃(s, X̃i

s, μ). There-
fore,

(7.19)

vN,L
i

(
t, (�x−i, x̄), �α

)
− Ji(t, (�x

−i, x̃), (�α−i, α̃))

≤ Ji(t, (�x
−i, x̄), (�α−i, ᾱ))− Ji(t, (�x

−i, x̃), (�α−i, α̃)) ≤ C

N∑
j=1

Kj
T +K0,

where

Kj
s := E

[[∏
k<j

M̄k
s

][∏
k>j

M̃k
s

]∣∣M̄ j
s − M̃ j

s |
]
, j ≥ 1;

K0 := E

[ N∏
j=1

M̄ j
T

[
|g(X̄i

T , μ̄
N
T )− g(X̃i

T , μ̃
N
T )|

+

∫ T

t

|f(s, X̄i
s, μ̄

N
s , ᾱ(s, X̄i

s, μ̄
N
s ))− f(s, X̃i

s, μ̃
N
s , α̃(s, X̃i

s, μ̃
N
s ))|ds

]]
.

Denote Δx := x̄− x̃. Note that

(7.20)
X̄i

s − X̃i
s = Δx, W1(μ̄

N
s , μ̃N

s ) ≤ |Δx|
N

,

∣∣ᾱ(s, X̄i
s, μ̄

N
s )− α̃(s, X̃i

s, μ̃
N
s )

∣∣ = ∣∣α̃(s, X̃i
s, μ̄

N
s )− α̃(s, X̃i

s, μ̃
N
s )

∣∣ ≤ L

N
|Δx|.
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By the required Lipschitz continuity, we have

(7.21) K0 ≤ CE
P

[ N∏
j=1

M̄ j
T

[
[1 +

1

N
]|Δx|+

∫ T

t

[1 +
L

N
]|Δx|ds

]]
≤ C|Δx|.

Next, introduce

Γj
s := E

[[∏
k<j

M̄k
s

][∏
k>j

M̃k
s

]∣∣M̄ j
s |2

]
, ΔΓj

s := E

[[∏
k<j

M̄k
s

][∏
k>j

M̃k
s

]∣∣M̄ j
s − M̃ j

s |2
]
.

Note that B1, · · · , BN are independent. By applying the Itô formula, we have

Γj
s = 1 +

∫ s

t

E

[[∏
k<j

M̄k
r

][∏
k>j

M̃k
r

]∣∣M̄ j
r b̄

j
r|2

]
dr ≤ 1 + C

∫ s

t

Γj
rdr.

Then Γj
s ≤ C. Thus, by applying the Itô formula again we have

ΔΓj
s =

∫ s

t

E

[[∏
k<j

M̄k
r

][∏
k>j

M̃k
r

][
M̄ j

r b̄
j
r − M̃ j

r b̃
j
r]

2
]
dr

≤ C

∫ s

t

E

[[∏
k<j

M̄k
r

][ ∏
k>j

M̃k
r

][
|M̄ j

r − M̃ j
r |+ M̄ j

r |b̄jr − b̃jr|
]2]

dr

≤ C

∫ s

t

ΔΓj
rdr + C

∫ s

t

E

[[ ∏
k<j

M̄k
r

][∏
k>j

M̃k
r

][
M̄ j

r |b̄jr − b̃jr|]2
]
dr.

Note that, by (7.20),

|b̄ir − b̃ir| =
∣∣∣b(s, X̄i

s, μ̄
N
s , α̃(s, X̃i

s, μ̄
N
s ))− b(s, X̃i

s, μ̃
N
s , α̃(s, X̃i

s, μ̃
N
s ))

∣∣∣ ≤ CL|Δx|

|b̄jr − b̃jr| ≤
CL

N
|Δx|, j = i.

Then, since Γj
s ≤ C,

ΔΓi
s ≤ C

∫ s

t

ΔΓi
rdr + CL|Δx|2, ΔΓj

s ≤ C

∫ s

t

ΔΓj
rdr +

CL

N2
|Δx|2, j = i,

and thus

(7.22)

ΔΓi
s ≤ CL|Δx|2, Ki

s ≤
|Δx|
2

+
ΔΓi

s

2|Δx| ≤ CL|Δx|;

ΔΓj
s ≤

CL

N2
|Δx|2, Kj

s ≤ |Δx|
2N

+
NΔΓj

s

2|Δx| ≤ CL

N
|Δx|, j = i.

Then, by (7.19), (7.21) and (7.22) we have

vN,L
i

(
t, (�x−i, x̄), �α

)
− Ji(t, (�x

−i, x̃), (�α−i, α̃)) ≤ K0 + CKi
s + C

∑
j 	=i

Kj
s

≤ C|Δx|+ CL|Δx|+ CL

∑
j 	=i

|Δx|
N

≤ CL|Δx|.

Since α̃ ∈ AL is arbitrary, we obtain vN,L
i

(
t, (�x−i, x̄), �α

)
− vN,L

i

(
t, (�x−i, x̃), �α

)
≤

CL|Δx|. Similarly we have vN,L
i

(
t, (�x−i, x̃), �α

)
− v

(
t, (�x−i, x̄), �α

)
≤ CL|Δx|, and

hence (6.16). �
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[13] René Carmona and François Delarue, Probabilistic theory of mean field games with applica-
tions. I, Probability Theory and Stochastic Modelling, vol. 83, Springer, Cham, 2018. Mean
field FBSDEs, control, and games. MR3752669
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