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In an extended mean field game the vector field governing the flow of the population 
can be different from that of the individual player at some mean field equilibrium. 
This new class strictly includes the standard mean field games. It is well known that, 
without any monotonicity conditions, mean field games typically contain multiple 
mean field equilibria and the wellposedness of their corresponding master equations 
fails. In this paper, a partial order for the set of probability measure flows is proposed 
to compare different mean field equilibria. The minimal and maximal mean field 
equilibria under this partial order are constructed and satisfy the flow property. 
The corresponding value functions, however, are in general discontinuous. We thus 
introduce a notion of weak-viscosity solutions for the master equation and verify 
that the value functions are indeed weak-viscosity solutions. Moreover, a comparison 
principle for weak-viscosity semi-solutions is established and thus these two value 
functions serve as the minimal and maximal weak-viscosity solutions in appropriate 
sense. In particular, when these two value functions coincide, the value function 
becomes the unique weak-viscosity solution to the master equation. The novelties 
of the work persist even when restricted to the standard mean field games.

© 2024 Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans les jeux à champ moyen étendu, le champ vectoriel gouvernant le flot de 
la population peut être différent de celui du joueur individuel pour certaines 
solutions d’équilibre du jeu. Il s’agit d’une classe de jeux à champ moyen qui 
inclut strictement les jeux à champ moyen standard. Il est bien connu que, sans des 
conditions de monotonie, les jeux à champ moyen admettent généralement plusieurs 
solutions d’équilibre, et que les équations maîtresses correspondantes ne seraient 
pas bien posées. Dans cet article, nous introduisons un ordre partiel sur l’ensemble 
des flot de mesures de probabilité pour comparer différentes solutions d’équilibre. 
Sous cet ordre partiel, les équilibres de champ moyen minimaux et maximaux 
sont construits, et ils satisfont la propriété du flot. Cependant, les fonctions de 
valeur correspondantes sont généralement discontinues. Nous introduisons donc une 
notion de solution de viscosité faible pour l’équation maîtresse et vérifions que les 
fonctions de valeur sont effectivement des solutions de viscosité faible. De plus, un 
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principe de comparaison pour les semi-solutions de viscosité faible est établi, et 
ainsi ces deux fonctions de valeur servent de solutions de viscosité faible minimale 
et maximale dans un sens approprié. En particulier, lorsque ces deux fonctions de 
valeur coïncident, la fonction de valeur devient l’unique solution de viscosité faible 
de l’équation maîtresse. Restreint à la classe des jeux à champ moyen standard, les 
résultats demeurent nouveaux.

© 2024 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper we consider the following extended mean field game system: given μ ∈ P2(Rd),

∂tν(t, x) − 1
2tr

(
∂xxν(t, x)) + div(ν(t, x)̂b(x, ∂xv(t, x), νt)

)
= 0, ν0 = μ;

∂tv(t, x) + 1
2tr(∂xxv(t, x)) + H(x, ∂xv(t, x), νt) = 0, v(T, x) = G(x, νT ).

(1.1)

The master equation, see (2.12) below, is to characterize its decoupling field V in the sense that

v(t, x) = V (t, x, νt). (1.2)

The standard mean field game and its master equation correspond to the special case:

b̂(x, p, μ) = ∂pH(x, p, μ). (1.3)

Initiated independently by Caines-Huang-Malhamé [12] and Lasry-Lions [37], mean field games (MFGs, 
for short) have received very strong attention and is by now a well-established theory for the study of the 
asymptotic behavior of stochastic differential games with a large number of players interacting in certain 
symmetric way. We refer to the monographs Carmona-Delarue [17,18] and the lecture note Cardaliaguet-
Porretta [14] for a complete introduction of recent progresses on the subject.

Extended MFGs were first introduced by Lions-Souganidis [40] to study a more general class of MFGs 
where the vector field governing the flow of the population might be different from that of the individual 
player at some mean field equilibrium (MFE, for short). Their motivation comes from two folds. Firstly, 
the homogenization limit of a class of oscillatory classical MFGs is in general not a classical MFG but 
an extended MFG. Secondly, extended MFGs arise naturally in the optimal transportation-type control 
problems. More precisely, the Euler-Lagrange systems of optimal transportation-type control problems are 
in general not of the classical MFG type but of the extended MFG type. A new and meaningful monotonicity 
condition was proposed in [40] to study the wellposedness of extended MFG systems, and their wellpoedness 
results were further extended in Munõz [43]. In particular, the proposed monotonicity condition ensures the 
uniqueness of MFE of extended MFGs.

It should be noted that [40,43] consider extended MFG systems with local coupling, that is, the data 
G, H, ̂b depend on ν(t, x), rather than νt. We instead study extended MFGs with nonlocal coupling, as in 
(1.1), via the master equation (2.12). Our motivation for studying such extended MFGs comes from the 
study of MFGs with a major player. These games consist of a major player and infinite many homogeneous 
minor players where the major player can have a significant impact on the minor players while all the minor 
players as a whole can have an impact on the major player. In this case, the value function of the major 
player will take the form

V0(t,X0
t ,L X0 ), (1.4)
Xt|Ft
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where X0 and X stand for the major player’s state and the representative minor player’s state, respectively. 
In particular, the measure variable L

Xt|FX0
t

is not the law of the major player’s state X0
t . This is exactly 

in the spirit of the extended MFG. The local (in time) wellposedness of the MFG systems for MFGs with 
a major player has been established in Cardaliaguet-Cirant-Porretta [13]. Its global wellposedness has not 
been studied in the literature, to the best of our knowledge, and we shall address it in an accompanying 
paper.

In the literature of standard MFGs, the global wellposedness of master equations requires the unique-
ness of MFE, typically under certain monotonicity conditions. See, e.g., Bertucci [6], Bertucci-Cecchin [7], 
Cardaliaguet-Delarue-Lasry-Lions [15], Cardaliaguet-Souganidis [16], Carmona-Delarue [18], Chassagneux-
Crisan-Delarue [20], Lions [38], Mou-Zhang [41], for the well-known Lasry-Lions monotonicity condition; 
Ahuja [1], Bensoussan-Graber-Yam [2,3], Gangbo-Meszaros [30], Gangbo-Meszaros-Mou-Zhang [31] for the 
displacement monotonicity condition; and Mou-Zhang [42] for the anti-monotonicity condition. We empha-
size that, all these monotonicity conditions require the measure variable to be the law of the state process, 
and thus fail automatically for value functions in the form (1.4). The works Graber-Meszaros [32,33] pro-
posed a new type of monotonicity condition, which does not have this constraint. We should mention the 
very recent work Bertucci-Lasry-Lions [10] concerning master equations for extended MFGs with nonlocal 
coupling as in the present paper. It shows that the master equation admits at most one global solution 
which is Lipschitz continuous in the measure variable. However, the existence of such a solution requires 
additional structural conditions and remains open. Moreover, there are studies on master equations for finite 
state extended MFGs, see e.g. Bertucci [5] and Bertucci-Lasry-Lions [8,9]. We shall investigate the existence 
of global classical solutions of master equations for extended MFGs in another accompanying paper.

In this paper we focus on extended MFGs and their master equations, with possibly multiple MFEs. Our 
main idea is to introduce a partial order � for the set of probability measure flows, in the spirit of stochastic 
dominance. This allows us to compare different MFEs, and we shall construct the minimal/maximal MFE 
for extended MFGs under this partial order, following the Knaster–Tarski fixed point theorem. To be precise, 
we shall construct MFEs ν and ν such that:

ν � ν∗ � ν, for all MFE ν∗. (1.5)

For this purpose, we shall assume the data G, H, ̂b are monotone in μ under the partial order �. We 
emphasize that this type of monotonicity under � has a completely different nature from the various 
monotonicity conditions mentioned in the previous paragraph. Our approach is strongly inspired by Dianetti-
Ferrari-Fischer-Nendel [26,27] and Dianetti [25] which obtained (1.5) under the same partial order for 
standard MFGs. A similar idea has also been applied previously to investigate MFGs of optimal stopping, 
see Carmona-Delarue-Lacker [19] and Bertucci [4].

We next establish the flow property of the minimal/maximal MFEs, which is crucial for studying the 
dynamic value function and the master equation. That is, let νt,μ denote the minimal MFE for the extended 
MFG on [t, T ] with initial distribution μ. Then, for any t0 < t1,

νt0,μt = ν
t1,ν

t0,μ
t1

t , t ≥ t1. (1.6)

This implies the following value function is time consistent:

V (t0, x, μ) = v(t0, x), (1.7)

where v solves the backward PDE in (1.1) with ν = νt0,μ. This function V is smooth in x, but is typically 
discontinuous in (t, μ), as we will see in Section 8 below. So a classical solution theory for the master equation 
is not viable under our conditions.



C. Mou, J. Zhang / J. Math. Pures Appl. 184 (2024) 190–217 193
We thus turn to weak solutions, by adapting the notion of weak-viscosity solution proposed in our 
previous paper [41]. We shall show that, by introducing V associated to the maximal MFE, both V and 
V are weak-viscosity solutions of the master equation (2.12). Moreover, for any weak-viscosity solution V , 
the spatial derivative ∂xV always stays between ∂xV and ∂xV component wise. In this sense, V and V can 
be viewed as the minimal and maximal weak-viscosity solution of the master equation. In particular, the 
weak-viscosity solution is unique if and only if V = V . We would like to note that, the very recent work 
Lions-Seeger [39] has used the same approach to establish the global well-posedness for linear and nonlinear 
finite dimensional transport equations with coordinate-wise increasing velocity fields, and the theory has 
also been applied to study MFGs in a finite state space.

We note that our consideration of ν and ν can be viewed as a special selection of MFEs. In the literature 
there have been other selection criteria for standard MFGs with multiple MFEs, see e.g. Delarure-Foguen 
Tchuendom [24], Cecchin-Dai Pra-Fisher-Pelino [21], Cecchin-Delaure [22,23]. In [24], three methods of 
selection, including the minimal cost, zero noise limit, N -player limit selections, are considered for the 
linear quadratic MFGs. In particular, in this case the master equation is reduced to a one dimensional PDE 
and the MFE selected by the last two methods provides an entropy solution to this PDE. Similar results 
have been obtained for two-state MFGs in [21]. In [22,23] the authors established the global wellposedness of 
master equations for potential MFGs with multiple MFEs. The potential game structure allows to link the 
MFG to a mean field control problem in the sense that the selected MFE for the MFG is an optimal strategy 
for the control problem. We would also like to mention that Iseri-Zhang [36] takes a different approach by 
investigating the set value of MFGs, namely the set of game values over all MFEs, which satisfies the 
dynamic programming principle. Again our V and V can be viewed as the minimal and maximal (in terms 
of ∂xV instead of V ) elements of the set value.

The rest of the paper is organized as follows. In Section 2 we introduce the problem, the main results, 
and the assumptions. In Section 3 we investigate the backward PDE in (1.1) for given ν. In Section 4 we 
construct the minimal MFE for the extended MFG. In Section 5 we study the basic properties of the value 
function V . In Section 6 we establish the weak-viscosity solution theory. In Section 7 we present the results 
concerning the maximal MFE and its corresponding value function V ; the results under an alternative set 
of monotonicity condition under the partial order; as well as the extension of the current results to extended 
MFGs with a common noise. Finally in Section 8 we solve an example explicitly, which in particular shows 
that V is discontinuous in (t, μ).

Acknowledgements. The research of CM was supported in part by Hong Kong RGC Grants ECS 
21302521, GRF 11311422 and GRF 11303223. The research of JZ was supported in part by NSF grants 
DMS-1908665 and DMS-2205972.

2. The setting and the main results

Throughout the paper, we fix a finite time horizon [0, T ] and a filtered probability space (Ω, F , F , P ), on 
which is defined a d-dimensional Brownian motion B. For any p ≥ 1, let Pp(Rd) denote the set of probability 
measures on Rd with finite p-th moment, equipped with the p-Wasserstein distance Wp. We assume F0 is 
rich enough to support any μ ∈ P2(Rd), and Ft := F0 ∨ FB

t . For any p ≥ 1, G ⊂ F , and μ ∈ Pp(Rd), 
denote by Lp(G) the set of G-measurable and p-integrable random variables ξ; and Lp(G; μ) the set of those 
ξ ∈ Lp(G) with Lξ = μ. For any t0 ∈ [0, T ], denote Bt0

t := Bt − Bt0 , t ∈ [t0, T ], and F t0 := {Ft}t0≤t≤T . 
Moreover, we denote 0 := (0, · · · , 0) and 1 := (1, · · · , 1) with appropriate dimensions.

2.1. The extended mean field game

First, given t0 ∈ [0, T ] and ν ∈ C([t0, T ]; P2(Rd)), consider the following parabolic PDE on [t0, T ]:
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∂tv(ν; t, x) + 1
2tr(∂xxv(ν; t, x)) + H(x, ∂xv(ν; t, x), νt) = 0,

v(ν;T, x) = G(x, νT ).
(2.1)

Under certain technical conditions on H, G as we will specify later, the above PDE has a unique classical 
solution v(ν; ·, ·). Next, given ξ ∈ L2(Ft0), consider the following SDE on [t0, T ]:

Xt0,ξ,ν
t = ξ +

t∫
t0

b̂
(
Xt0,ξ,ν

s , ∂xv(ν; s,Xt0,ξ,ν
s ), νs

)
ds + Bt0

t . (2.2)

It is clear that the mapping ξ �→ LXt0,ξ,ν is law invariant. We then define the Nash field Φ for the extended 
MFG as follows: for any (t0, μ) ∈ [0, T ] × P2(Rd) and ξ ∈ L2(Ft0 ; μ),

Φ(t0, μ, ν) := {L
X

t0,ξ,ν
t

}t0≤t≤T , ∀ν ∈ C([t0, T ];P2(Rd)). (2.3)

Definition 2.1. For any (t0, μ) ∈ [0, T ] × P2(Rd), we say ν∗ ∈ C([t0, T ]; P2(Rd)) is a mean field equilibrium 
(MFE) at (t0, μ) if it is a fixed point of the Nash field Φ(t0, μ, ·):

Φ(t0, μ, ν∗) = ν∗. (2.4)

Remark 2.2. (i) The typical case is that H is a Hamiltonian and thus (2.1) is the HJB equation:

H(x, p, μ) := inf
a∈R

h(x, p, μ, a), (2.5)

where

h(x, p, μ, a) := p · b0(x, a, μ) + f(x, a, μ).

In this case, as in the standard theory we have a representation formula for v:

X0,ν;t0,x,α
t = x +

t∫
t0

b0(X0,ν;t0,x,α
s , α(s,X0,ν;t0,x,α

s ), νs)ds + Bt0
t ;

J(ν; t0, x, α) := E
[
g(X0,ν;t0,x,α

T , νT )

+
T∫

t0

f(X0,ν;t0,x,α
s , α(s,X0,ν;t0,x,α

s ), νs)ds
]
;

v(ν; t0, x) := inf
α∈At0

J(ν; t0, x, α)

(2.6)

where At0 denotes the appropriate set of admissible controls α : [t0, T ] ×Rd → Rd.
(ii) In the case in which the Hamiltonian H has a minimizer a∗ = φ(x, p, μ), namely

H(x, p, μ) = h(x, p, μ, φ(x, p, μ)). (2.7)

By (2.5) one can easily check that

b0(x, φ(x, p, μ), μ) = ∂pH(x, p, μ),

f(x, φ(x, p, μ), μ) = H(x, p, μ) − p · ∂ H(x, p, μ).
(2.8)
p
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(iii) Assuming (2.7) holds true, one typical case of b̂ is: for some appropriate function b,

b̂(x, p, μ) = b(x, φ(x, p, μ), μ).

When b = b0 or b̂(x, p, μ) = ∂pH(x, p, μ), the extended MFG becomes a standard MFG.

2.2. The master equation

When there is a unique MFE for each (t0, μ) ∈ [0, T ] × P2(Rd), denoted as (α∗(t0, μ; ·), ν∗(t0, μ)). Then 
the game problem leads to the following value function:

V (t0, x, μ) := J(ν∗(t0, μ); t0, x, α∗(t0, μ; ·)) for any x ∈ Rd. (2.9)

Recall the extended MFG (2.1), (2.2), (2.3), and (2.4). In light of (2.6) and (2.8) we introduce the following 
FBSDE system (the system does not require the structure in Remark 2.2 (i) though):

X0,∗
t = x +

t∫
t0

∂pH(X0,∗
s , ∂xV (s,X0,∗

s , ν∗s ), ν∗s )ds + Bt0
t ;

X∗
t = ξ +

t∫
t0

b̂(X∗
s , ∂xV (s,X∗

s , ν
∗
s ), ν∗s )ds + Bt0

t ;

Y ∗
t = G(X0,∗

T , ν∗T ) −
T∫
t

Z∗
sdBs

+
T∫
t

[
H(·) − ∂xV (s,X0,∗

s , ν∗s ) · ∂pH(·)
](

X0,∗
s , ∂xV (s,X0,∗

s , ν∗s ), ν∗s
)
ds;

where ν∗t := LX∗
t
.

(2.10)

In particular, we have

Y ∗
t = V

(
t,X0,∗

t , ν∗t
)

= V
(
t,X0,∗

t ,LX∗
t

)
. (2.11)

By applying the Itô’s formula (cf. [11,20]) and comparing it with (2.10), we derive the master equation:

∂tV + 1
2tr(∂xxV ) + H(x, ∂xV, μ) + MV = 0, V (T, x, μ) = G(x, μ), (2.12)

where

MV (t, x, μ) := tr
( ∫
Rd

[
∂μV (t, x, μ, x̃)̂b�(x̃, ∂xV (t, x̃, μ), μ)

+1
2∂x̃∂μV (t, x, μ, x̃)

]
μ(dx̃)

)
.

Note that we may alternatively view V as the decoupling field of the following FBSDE system:
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X 0,∗
t = x + Bt0

t ;

X ∗
t = ξ +

t∫
t0

b̂(X∗
s , ∂xV (s,X∗

s , ν
∗
s ), ν∗s )ds + Bt0

t , where ν∗t := LX∗
t
;

Y∗
t = G(X 0,∗

T , ν∗T ) +
T∫
t

H
(
X 0,∗

s , ∂xV (s,X 0,∗
s , ν∗s ), ν∗s

)
ds−

T∫
t

Z∗
s dBs;

in the sense Y∗
t = V (t,X 0,∗

t , ν∗t ).

(2.13)

Moreover, V also serves as the decoupling field of the extended MFG system, see (1.1) and (1.2).
The main feature here is that the measure variable ν∗t in (2.11) is the law of X∗

t , rather than that of X0,∗
t . 

Consequently, the MV above involves the term ∂μV b̂�, instead of ∂μV b�0 = ∂μV ∂pH
� as in the standard 

master equations. This feature appears naturally in MFG with a major player, which is the main motivation 
of this paper and will be the subject of an accompanying paper. We also refer to [40] for more applications 
of extended MFGs.

However, in general there could be multiple MFEs, which lead to multivalued functions. Our goal in this 
paper is to construct the minimal/maximal MFE and to verify that their value functions satisfy the master 
equation, in the sense of weak-viscosity solutions introduced in [41].

2.3. The main results

The main results of this paper build on the following partial order � (or alternatively 
).

Definition 2.3. For a generic dimension n and for i = 1, 2,
(i) for any xi = (xi

1, · · · , xi
n) ∈ Rn, we say that x1 � x2 if x1

j ≤ x2
j for all j = 1, · · · , n;

(ii) for any μi ∈ P2(Rn), we say that μ1 � μ2 if there exist ξi ∈ L2(F0; μi) s.t. ξ1 � ξ2 P -a.s.;
(iii) for any νi ∈ C([t0, T ]; P2(Rn)), we say that ν1 � ν2 if ν1

t � ν2
t for all t ∈ [t0, T ].

We note that μ1 � μ2 is equivalent to the stochastic dominance. We say x1 
 x2 if x2 � x1, and a function 
ϕ : Rn → Rm is increasing (resp. decreasing) if ϕ(x1) � ϕ(x2) whenever x1 � (resp. 
) x2. Similarly we 
define the monotonicity of functions on P2(Rd) and C([t0, T ]; P2(Rd)).

We first have the following simple proposition.

Proposition 2.4. Assume ϕ ∈ C1(P2(Rd)), namely it has a continuous Lions derivative ∂μϕ. Then ϕ is 
increasing if and only if ∂μϕ(μ, x) 
 0 for all (μ, x) ∈ P2(Rd) ×Rd.

Proof. We first prove the if part. Assume ∂μϕ 
 0. Let μ1, μ2 ∈ P2(Rd) be such that μ1 � μ2, i.e. there 
exist ξi ∈ L2(F0; μi), i = 1, 2, such that ξ1 � ξ2 P -a.s. Then

ϕ(μ2) − ϕ(μ1) =
1∫

0

E
[
∂μϕ

(
Lξ1+θ(ξ2−ξ1), ξ

1 + θ(ξ2 − ξ1)
)
· (ξ2 − ξ1)

]
dθ ≥ 0.

We next prove the only if part. Assume ϕ is increasing. For any μ ∈ P2(Rd), ξ ∈ L2(F0; μ), and 
η ∈ L2(F0) such that η 
 0, we have

0 ≤ lim
ε↓0

ϕ(Lξ+εη) − ϕ(μ)
ε

= E
[
∂μϕ(μ, ξ) · η

]
.

By the arbitrariness of η 
 0, this implies that ∂μϕ(μ, ξ) 
 0, P -a.s. That is ∂μϕ(μ, x) 
 0, for μ-a.e. x. 
Since ∂μϕ is continuous, we see that ∂μϕ(μ, x) 
 0 for all (μ, x). �
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Remark 2.5. As we saw in [31], a smooth function U on Rd×P2(Rd) satisfies the Lasry-Lions monotonicity 
condition if and only if: for any μ ∈ P2(Rd), ξ ∈ L2(F0; μ), η ∈ L2(F0),

E
[
〈∂xμU(ξ, μ, ξ̃)η, η̃〉

]
≥ 0. (2.14)

We note that (2.14) is always under expectation, while in Proposition 2.4 we require ∂μϕ(μ, x) 
 0 point-
wisely. In this sense we are considering pointwise monotonicity in this paper. We shall remark that (2.14)
and the pointwise monotonicity of ∂xU(x, ·) do not imply each other.

Our main results consist of two parts, under the conditions specified in the next subsection.

• First, given (t, μ) ∈ [0, T ] × P2(Rd), we will construct the minimal MFE νt,μ and the maximal MFE 
νt,μ at (t, μ), in the sense that for any other MFE ν∗ at (t, μ) it holds:

νt,μ � ν∗ � νt,μ.

• Next, we define the dynamic value functions

V (t, x, μ) := v(νt,μ; t, x), V (t, x, μ) := v(νt,μ; t, x).

We shall show that they are weak-viscosity solutions of the master equation (2.12) such that ∂xV and 
∂xV satisfy certain minimal/maximal property.

Since the analyses are similar, in the paper we will focus only on νt,μ and V (t, x, μ), and we will present 
the results concerning νt,μ and V (t, x, μ) in Section 7.1 below.

2.4. The assumptions

We first introduce some technical assumptions on the coefficients, which are more or less standard in the 
literature. Denote, for any R > 0,

OR := {p ∈ Rd : |p| < R}, ∀R > 0. (2.15)

Assumption 2.6. (i) G ∈ C0(Rd × P2(Rd)) and H ∈ C0(R2d × P2(Rd)) are functions satisfying G(·, μ) ∈
C2(Rd) and H(·, ·, μ) ∈ C2(Rd ×Rd) for each μ ∈ P2(Rd);
(ii) there exist constants LG

0 , LH
0 , and LH(R) for each R > 0, such that

|∂xG(x, μ)|, |∂xxG(x, μ)| ≤ LG
0 , ∀(x, p, μ);

|∂xH(x, p, μ)| ≤ LH
0 [1 + |p|], ∀(x, p, μ);

|∂pH|, |∂xxH|, |∂xpH|, |∂ppH| ≤ LH(R) on Rd ×OR × P2(Rd);

(iii) for each R > 0 and any compact set K ⊂ P2(Rd), ∂xG, ∂xxG are uniformly continuous in (x, μ) on 
Rd ×K, and ∂xH, ∂pH, ∂xxH, ∂xpH, ∂ppH are uniformly continuous in (x, p, μ) on Rd ×OR ×K.

Assumption 2.7. Assume that b̂(·, ·, μ) ∈ C1(Rd × Rd) for each μ ∈ P2(Rd), and for each R > 0 and any 
compact set K ⊂ P2(Rd), b̂, ∂xb̂, ∂pb̂ are bounded with bound Lb̂(R) and b̂ is uniformly continuous in μ on 
Rd ×OR ×K.

The following pointwise monotonicity condition under partial order � is crucial.
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Assumption 2.8. (i) ∂xG is increasing in (x, μ);
(ii) ∂xH is increasing in (x, μ), ∂pH is increasing in (p, μ), and ∂xipj

H ≥ 0 for all i �= j (which is slightly 
weaker than that ∂pH is increasing in x);
(iii) b̂ is increasing in (p, μ) and ∂xj

b̂i ≥ 0 for all i �= j.

Alternatively, we may replace the above assumption with the following monotonicities.

Assumption 2.9. (i) ∂xG is decreasing in (x, μ);
(ii) ∂xH is decreasing in (x, μ), ∂pH is increasing in (p, μ), and ∂xipj

H ≥ 0 for all i �= j;
(iii) b̂ is decreasing in p, increasing in μ, and ∂xi

b̂j ≥ 0 for all i �= j.

In the paper we will focus only on the analyses under Assumption 2.8. The corresponding results under 
Assumption 2.9 are essentially the same, with obvious changes, so we will present them in Section 7.2
without proofs.

2.5. Some preliminary comparison results

In this subsection we present two well known comparison results for multidimensional SDEs and BSDEs, 
which will play an important role in the paper. The proofs are rather standard, and we refer to [35] for 
further discussions on the BSDE case.

Lemma 2.10. Consider the following two n-dimensional SDE systems: for k = 1, 2,

Xk,i
t = ξik +

t∫
0

bik(s,Xk
s )ds + Bi

t, i = 1, · · · , n, (2.16)

where ξik ∈ L2(F0) and bik : [0, T ] × Ω ×Rn → R is F-progressively measurable. Assume
(i) for k = 1, 2, bk is uniformly Lipschitz continuous in x and

E[
T∫

0

|bk(t, 0)|2dt] < ∞;

(ii) bi1 (or bi2) is increasing in xj for any i �= j, and ξ1 � ξ2 and b1 � b2.
Then X1

t � X2
t , 0 ≤ t ≤ T , P -a.s.

Lemma 2.11. Consider the following two n-dimensional BSDE systems: for k = 1, 2,

Y k,i
t = ξik +

T∫
t

f i
k(s, Y k

s , Zk,i
s )ds−

T∫
t

Zk,i
s · dBs, i = 1, · · · , n, (2.17)

where ξik ∈ L2(FT ) and f i
k : [0, T ] × Ω ×Rn ×Rd → Rd is F-progressively measurable. Assume

(i) for k = 1, 2, fk is uniformly Lipschitz continuous in (y, z) and

E[
T∫
|fk(t, 0, 0)|2dt] < ∞;
0
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(ii) f i
1 (or f i

2) is increasing in yj for any i �= j, and ξ1 � ξ2 and f1 � f2.
Then Y 1

t � Y 2
t , 0 ≤ t ≤ T , P -a.s.

3. The PDE (2.1)

In this section we focus on the properties of the solution v for the PDE (2.1). The following lemma is 
more or less standard. For the sake of completeness, we sketch a proof here. In particular, our probabilistic 
arguments will remain valid for the common noise case which will be discussed in Section 7.3 below.

Lemma 3.1. Let Assumption 2.6 hold.
(i) For any given ν ∈ C([0, T ]; P2(Rd)), the equation (2.1) admits a unique classical solution v, and there 
exist constants C1, C2 > 0, depending on T , d, LG

0 , LH
0 , and the function LH , but independent of ν, such 

that

|∂xv| ≤ C1 and |∂xxv| ≤ C2; (3.1)

(ii) for any compact set K ⊂ P2(Rd), there exists a modulus of continuity function ρK such that: for any 
ν, ν1, ν2 ∈ C([0, T ]; P2(Rd)) satisfying νt, ν1

t , ν
2
t ∈ K for all t,

|∂xv(ν1; t, x) − ∂xv(ν2; t, x)| ≤ ρK
(

sup
t≤s≤T

W2(ν1
s , ν

2
s )
)
; (3.2)

|∂xv(ν; t1, x) − ∂xv(ν; t2, x)| ≤ ρK(t2 − t1), ∀0 ≤ t1 < t2 ≤ T. (3.3)

Proof. First it follows from [31, Proposition 6.1] that the following function v(ν; t, x) satisfies (3.1): denoting 
Xt,x

s := x + Bt
s, t ≤ s ≤ T ,

v(ν; t, x) := Y t,x,ν
t , where

Y t,x,ν
s = G(Xt,x

T , νT ) +
T∫
s

H(Xt,x
r , Zt,x,ν

r , νr)dr

−
T∫
s

Zt,x,ν
r · dBr, t ≤ s ≤ T.

(3.4)

In particular, we have

|Zt,x,ν
s | = |∂xv(ν; s,Xt,x

s )| ≤ C1. (3.5)

We note that the assumptions in the statement of [31, Proposition 6.1] involve the derivatives of G and H
with respect to μ as well, but they are never used in that proof.

We next prove (3.2). Fix K and let ρ0
K denote the common modulus of continuity function of ∂xG, ∂xxG

on Rd × K and that of ∂xH, ∂pH, ∂xxH, ∂xpH, ∂ppH on Rd × OC1 × K for the C1 in (3.1) or (3.5). By 
standard arguments we have

∂xv(ν; t, x) = ∇xY
t,x,ν
t , ∂xxv(ν; t, x) = ∇2

xxY
t,x,ν
t , (3.6)

where ∇xY
t,x,ν ∈ Rd and ∇2

xxY
t,x,ν ∈ Rd×d satisfy the following linear BSDEs on [t, T ]:
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∇xi
Y t,x,ν
s = ∂xi

G(Xt,x
T , νT ) −

T∫
s

∇xi
Zt,x,ν
r · dBr

+
T∫
s

[∂xi
H + ∂pH∇xi

Zt,x,ν
r ](Xt,x

r ,∇xY
t,x,ν
r , νr)dr,

(3.7)

∇xixj
Y t,x,ν
s = ∂xixj

G(Xt,x
T , νT ) −

T∫
s

∇xixj
Zt,x,ν
r · dBs

+
T∫
s

[
∂xixj

H +
d∑

k=1

[∂xipk
H∇xjxk

Y t,x,ν
r + ∂xjpk

H∇xixk
Y t,x,ν
r ]

+
d∑

k,l=1

[∇xjxk
Y t,x,ν
r ∂pkpl

H∇xixl
Y t,x,ν
r ]

+∂pH∇xixj
Zt,x,ν
r

]
(Xt,x

r ,∇xY
t,x,ν
r , νr)dr.

(3.8)

Here we used the fact that Zt,x,ν
r = ∂xv(ν; r, Xt,x

r ) = ∇xY
t,x,ν
r . Recall (3.5) again, then we may rewrite 

(3.7) as:

∇xi
Y t,x,ν
s = ∂xi

G(Xt,x
T , νT ) −

T∫
s

∇xi
Zt,x,ν
r · dBr

+
T∫
s

[
∂xi

H + ∂pH(−C1 ∨∇xi
Zt,x,ν
r ∧ C1)

]
(Xt,x

r ,∇xY
t,x,ν
r , νr)dr,

where the truncation is in the component wise sense. Note that the generator of the above BSDE is Lipschitz 
continuous. Then, by the standard BSDE estimates (cf. [46, Chapter 4]) we can easily obtain (3.2). Similarly, 
we can show that ∂xv and ∂xxv are uniformly continuous in x, with a possibly different modulus of continuity 
function ρ.

Moreover, for any t1 < t2, note that ∇xY
t1,x,ν
t2 = ∂xv(ν; t2, Xt1,x

t2 ) and thus, by (3.7),

∂xv(ν; t1, x) = ∇xY
t1,x,ν
t1

= ∂xv(ν; t2, Xt1,x
t2 ) +

t2∫
t1

[∂xH + ∂pH∇xZ
t,x,ν
r ](Xt,x

r , Zt,x,ν
r , νr)dr

−
t2∫

t1

∇xZ
t,x,ν
r · dBr.

Then, noting that |∇xZ
t,x,ν
r | = |∂xxv(ν, r, Xt,x

r )| ≤ C2, one can easily prove (3.3), for a possibly different 
ρK . Similarly ∂xv and ∂xxv are also uniformly continuous in t. Moreover, since G and H are continuous, by 
(3.4) one can easily show that v is also continuous in t. Then by (3.4) clearly v(ν; ·, ·) is the unique classical 
solution of (2.1). �
Proposition 3.2. Under Assumptions 2.6 and 2.8 (i)-(ii), ∂xv is increasing in (x, ν).
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Proof. First we may rewrite (3.8) as: omitting t,x,ν for notational simplicity,

∇xixj
Ys = ∂xixj

G(XT , νT ) −
T∫
s

∇xixj
Zr · dBr

+
T∫
s

[
f0
(
r, (∇xkxl

Yr)(k,l) �=(i,j)
)

+ Γr∇xixj
Yr

+∂pH(Xr,∇xYr, νr)∇xixj
Zr

]
dr,

(3.9)

where

Γr :=
[
∂xipi

H + ∂xjpj
H +

∑
l �=j

∂pipl
H∇xixl

Yr

+
∑
k �=i

∂pkpj
H∇xjxk

Yr

]
(Xr,∇xYr, νr),

f0
(
r, (yk,l)(k,l) �=(i,j)

)
:=

[
∂xixj

H +
∑
k �=i

∂xipk
Hyjk +

∑
k �=j

∂xjpk
Hyik

+
∑

k �=i,l �=j

∂pkpl
H[(−C2) ∨ yj,k ∧ C2][(−C2) ∨ yi,l ∧ C2]

]
(Xr,∇xYr, νr).

Here the constant C2 is from (3.1) and we used (3.6). We may view (3.9) as a d2-dimensional BSDE system, 
with index (i, j) and solution {(∇xixj

Y, ∇xixj
Z)}(i,j), where Γ is viewed as a given coefficient. We next 

introduce two d2-dimensional BSDE systems, again with index (i, j):

Y 1,(i,j)
s = −

T∫
s

Z1,(i,j)
r · dBr +

T∫
s

[
ΓrY

1,(i,j)
r + ∂pH(Xr,∇xYr, νr)Z1,(i,j)

r

]
dr;

Y 2,(i,j)
s = ∂xixj

G(XT , νT ) −
T∫
s

Z2,(i,j)
r · dBr

+
T∫
s

[
f0
(
r, {(Y 2,(k,l)

r )+}(k,l) �=(i,j)
)

+ ΓrY
2,(i,j)
r + ∂pH(Xr,∇xYr, νr)Z2,(i,j)

r

]
dr.

By Assumption 2.8 (i)-(ii), we have for all (i, j) and r ∈ [t, T ]

∂xixj
G(XT , νT ) ≥ 0, f0

(
r, {(yk,l)+}(k,l) �=(i,j)

)
≥ 0.

Note that f0 is increasing in {(yk,l)+}(k,l) �=(i,j), and it is obvious that Y 1,(i,j)
s ≡ 0. Then it follows from 

Lemma 2.11 that Y 2,(i,j)
s ≥ Y

1,(i,j)
s = 0, and thus

f0
(
r, {(Y 2,(k,l)

r )+}(k,l) �=(i,j)
)

= f0
(
r, {Y 2,(k,l)

r }(k,l) �=(i,j)
)
.

This implies that 
{
Y 2,(i,j), Z2,(i,j)}

(i,j) satisfies BSDE system (3.9). Then ∂xixj
v(ν; t, x) = ∇xixj

Yt =
Y

2,(i,j)
t ≥ 0. That is, ∂xv is increasing in x.
Similarly, given ν1, ν2 ∈ C([0, T ]; P2(Rd)) such that ν1 � ν2, omit t,x and denote, for θ ∈ [0, 1],

∇̄xi
Ys := ∇xi

Y ν2

s −∇xi
Y ν1

s , ∇̄xi
Zs := ∇xi

Zν2

s −∇xi
Zν1

s ,

∇ Y θ := (1 − θ)∇ Y ν2
+ θ∇ Y ν1

.
x s x s x s
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Note that ∇xi
Z =

(
∇xix1Y, · · · , ∇xixd

Y )�. By (3.7) we have

∇̄xi
Ys = [∂xi

G(XT , ν
2
T ) − ∂xi

G(XT , ν
1
T )] −

T∫
s

∇̄xi
Zr · dBr

+
T∫
s

[
γ̄r + f̄0

(
r, {∇̄xj

Yr}j �=i

)
+ Γ̄r∇̄xi

Yr

+∂pH(Xr,∇xY
ν1

r , ν1
r )∇̄xi

Zr

]
dr,

(3.10)

where

Γ̄r :=
1∫

0

[
∂xipi

H +
d∑

k=1

∂pipk
H∇xixk

Y ν2

r

]
(Xr,∇xY

θ, ν1)dθ,

f̄0
(
r, {yj}j �=i

)
:=

∑
j �=i

1∫
0

[
∂xipj

H +
d∑

k=1

∂pjpk
H∇xixk

Y ν2

r

]
(Xr,∇xY

θ, ν1)dθ yj

γ̄r := [∂xi
H(Xr,∇xY

ν2

r , ν2
r ) − ∂xi

H(Xr,∇xY
ν2

r , ν1
r )]

+
d∑

k=1

[∂pk
H(Xr,∇xY

ν2

r , ν2
r ) − ∂pk

H(Xr,∇xY
ν2

r , ν1
r )]∇xixk

Y ν2

r .

Note that ∇xixk
Y ν2

r = ∂xixk
v(ν2; r, Xr) ≥ 0. Then, by Assumption 2.8 (i)-(ii) we see that f̄0 is increasing 

in {yj}j �=i and, for all i and r ∈ [t, T ],

[∂xi
G(XT , ν

2
T ) − ∂xi

G(XT , ν
1
T )] ≥ 0, γ̄r ≥ 0.

Now compare (3.10) with the following d-dimensional linear BSDE system:

Ȳ i
s =

T∫
s

[
f̄0
(
r, {Y j

r }j �=i

)
+ Γ̄rȲ

i
r + ∂pH(Xr,∇xY

ν1

r , ν1
r )Z̄i

r

]
dr

−
T∫
s

Z̄i
r · dBr.

(3.11)

It follows from Lemma 2.11 again that ∇̄xi
Ys ≥ Ȳ i

s for all i. From (3.11) it is obvious that Ȳ i
s ≡ 0. Then

∂xi
v(ν2; t, x) − ∂xi

v(ν1; t, x) = ∇̄xi
Yt = Ȳ i

s ≥ 0.

That is, ∂xv is increasing in ν. �
4. The minimal MFE

In this section we construct the minimal MFE for the extended MFG. We first establish the pointwise 
monotonicity of the Nash field Φ.

Theorem 4.1. Let Assumptions 2.6, 2.7, and 2.8 hold. Then for any t0 ∈ [0, T ], Φ(t0, ·, ·) is increasing in 
(μ, ν).
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Proof. Let μ1, μ2 ∈ P2(Rd) and ν1, ν2 ∈ C([t0, T ]; P2(Rd)) be such that μ1 � μ2, ν1 � ν2, and ξ1 ∈
L2(Ft0 ; μ1), ξ2 ∈ L2(Ft0 ; μ2) be such that ξ1 ≤ ξ2. For k = 1, 2, we have

Xt0,ξk,ν
k

t = ξk +
t∫

t0

b̂(Xt0,ξk,ν
k

s , ∂xv(νk; s,Xt0,ξk,ν
k

s ), νks )ds + Bt0
t .

Denote bk(s, x) := b̂(x, ∂xv(νk; s, x), νks ), k = 1, 2. By Lemma 3.1 bk satisfies Lemma 2.10 (i). Moreover, by 
Assumption 2.8 (iii) and Proposition 3.2 we see that b1 � b2 and

∂xj
bik(s, x) =

[
∂xj

b̂i + ∂pb̂
i · ∂xjxv

]
(x, ∂xv(νk; s, x), νks ) ≥ 0, i �= j.

Since ξ1 � ξ2, then by Lemma 2.10 we have Xt0,ξ1,ν
1

t � Xt0,ξ2,ν
2

t , t0 ≤ t ≤ T , P -a.s. This implies that 
Φ(t0, μ1, ν1) � Φ(t0, μ2, ν2). �

We now construct the minimal MFE by Picard iteration, following the standard procedure in Knaster-
Tarski fixed point theorem. Fix (t0, μ) ∈ [0, T ] × P2(Rd) and ξ ∈ L2(Ft0 ; μ). Recall Assumption 2.7 and 
(3.1), we set

Xt0,ξ,0
t := ξ − Lb̂(C1)1 + Bt0

t , X
t0,ξ,0
t := ξ + Lb̂(C1)1 + Bt0

t , (4.1)

and, for n = 0, · · · ,

Xt0,ξ,n+1
t = ξ +

t∫
t0

b̂(Xt0,ξ,n+1
s , ∂xv(LXt0,ξ,n ; s,Xt0,ξ,n+1

s ),L
X

t0,ξ,n
s

)ds + Bt0
t . (4.2)

We then have the first main result of the paper.

Theorem 4.2. Let Assumptions 2.6, 2.7, and 2.8 hold. Then for any (t0, μ) ∈ [0, T ] × P2(Rd) and ξ ∈
L2(Ft0 ; μ), there exists a process Xt0,ξ on [t0, T ] such that
(i) Xt0,ξ,n

t � Xt0,ξ,n+1
t , ∀n, t, P -a.s. with

lim
n→∞

E[ sup
t0≤t≤T

|Xt0,ξ,n
t −Xt0,ξ

t |2] = 0;

(ii) νt0,μ := LXt0,ξ is an MFE of the extended MFG at (t0, μ);
(iii) for any MFE ν∗ of the extended MFG at (t0, μ), we have νt0,μ � ν∗. That is, νt0,μ is the minimal 
MFE.

Proof. For notational simplicity we omit t0,ξ and t0,μ.
First, by Assumption 2.7 and (3.1),

b̂(X1
s, ∂xv(LX0 ; s,X1

s),LX0
s
) 
 −Lb̂(C1)1.

Then X0
t � X1

t , t0 ≤ t ≤ T , P -a.s. and thus LX0 � LX1 . Applying Theorem 4.1 repeatedly, we see that Xn

is increasing in n, and thus we may define X := limn→∞ Xn. Moreover, following similar arguments one 
can easily see that Xn

t � X
0
t , t0 ≤ t ≤ T , P -a.s. for all n. Then it follows from the dominated convergence 

theorem that limn→∞ E[|Xn
t −Xt|2] = 0, for any t.
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Next, by Assumption 2.7 and (3.1) we see that b̂(·, ∂xv(·), ·) is bounded by Lb̂(C1). Then it follows from 
[45, Lemma 4.1] that the set ∪n≥1{LXn

t
}0≤t≤T is precompact. Now send n → ∞ in (4.2), by the desired 

continuity of b̂ in Assumption 2.7 and that of ∂xv in Lemma 3.1, we have

Xt = ξ +
t∫

t0

b̂(Xs, ∂xv(LX ; s,Xs),LXs
)ds + Bt0

t . (4.3)

This implies that ν := LX is an MFE of the extended MFG at (t0, μ). Moreover, compare this with (4.2), 
one can easily see that limn→∞ E[supt0≤t≤T |Xn

t −Xt|2] = 0.
Finally, for any MFE ν∗ of the extended MFG at (t0, μ), consider the related SDE system:

X∗
t = ξ +

t∫
t0

b̂(X∗
s , ∂xv(ν∗; s,X∗

s ), ν∗s )ds + Bt0
t . (4.4)

Since ν∗ is an MFE, we have ν∗ = LX∗ . Again since b̂(X∗
s , ∂xv(ν∗; s, X∗

s ), ν∗s ) 
 −Lb̂(C1)1, we have 
X0

t � X∗
t , t0 ≤ t ≤ T , P -a.s. Applying Theorem 4.1 repeatedly, we see that Xn

t � X∗
t , t0 ≤ t ≤ T , 

P -a.s. for all n. Then Xt � X∗
t , t0 ≤ t ≤ T , P -a.s. and thus ν � ν∗. �

We conclude this section with the following crucial flow property.

Proposition 4.3. Let Assumptions 2.6, 2.7, and 2.8 hold. Then, for any (t0, μ) ∈ [0, T ] × P2(Rd),

νt0,μt = ν
t1,ν

t0,μ
t1

t , for all t0 ≤ t1 ≤ t ≤ T. (4.5)

Proof. Let ξ ∈ L2(Ft0 ; μ). Then νt0,μt = L
X

t0,ξ
t

, ∀t ≥ t0, where Xt0,ξ satisfies (4.3). Note that

Xt0,ξ
t = Xt0,ξ

t1 +
t∫

t1

b̂(Xt0,ξ
s , ∂xv(LXt0,ξ ; s,Xt0,ξ

s ),L
X

t0,ξ
s

)ds + Bt1
t , t ≥ t1.

We see that νt0,μ is an MFE of the extended MFG at (t1, LX
t0,ξ
t1

) = (t1, νt0,μt1 ). Then by Theorem 4.2 (iii) 

we have ν
t1,ν

t0,μ
t1

t � νt0,μt , for all t ≥ t1.
On the other hand, for the Picard iteration in (4.1) and (4.2), by Theorem 4.2 (i) we have Xt0,ξ,n

t1 �
Xt0,ξ

t1 =: ξ1, for all n. By (4.1) it is clear that Xt0,ξ,0
t � Xt1,ξ1,0

t for all t ≥ t1. Note that

Xt0,ξ,1
t = Xt0,ξ,0

t1 +
t∫

t1

b̂(Xt0,ξ,1
s , ∂xv(LXt0,ξ,0 ; s,Xt0,ξ,1

s ),L
X

t0,ξ,0
s

)ds + Bt1
t .

Since Xt0,ξ,1
t1 � ξ1, by Theorem 4.1 we see that Xt0,ξ,1

t � Xt1,ξ1,1
t , t ≥ t1, P -a.s. Repeat the arguments, we 

obtain Xt0,ξ,n
t � Xt1,ξ1,n

t . Send n → ∞, by Theorem 4.2 (i) we have Xt0,ξ
t � Xt1,ξ1

t , t ≥ t1, P -a.s. That is, 
νt0,μt � ν

t1,ν
t0,μ
t1

t , for all t ≥ t1. Then we must have the equality. �
5. The corresponding value function

In this section we investigate the dynamic value function corresponding to the minimal MFE:

V (t, x, μ) := v(νt,μ; t, x). (5.1)
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The following properties are immediate.

Proposition 5.1. Let Assumptions 2.6, 2.7, and 2.8 hold.
(i) For any (t, μ) ∈ [0, T ] ×P2(Rd), V (t, ·, μ) ∈ C2(Rd) with |∂xV | ≤ C1 and |∂xxV | ≤ C2 for the C1, C2 in 
(3.1);
(ii) for any t ∈ [0, T ], ∂xV (t, ·, ·) is increasing in (x, μ).

Proof. (i) is a direct consequence of Lemma 3.1 (i).
(ii) Assume x1 � x2, μ1 � μ2 and let ξi ∈ L(Ft0 , μi), i = 1, 2, be such that ξ1 � ξ2. Then Xt0,ξ1,0

t �
Xt0,ξ2,0

t for all t0 ≤ t ≤ T . Apply Theorem 4.1 repeatedly, we have Xt0,ξ1,n
t � Xt0,ξ2,n

t , t0 ≤ t ≤ T , P -a.s. for 
all n. Then Xt0,ξ1

t � Xt0,ξ2
t , t0 ≤ t ≤ T , P -a.s. and hence νt0,μ1 � νt0,μ2 . Since ∂xV (t, x, μ) = ∂xv(νt,μ; t, x), 

then it follows from Proposition 3.2 that ∂xV (t, x1, μ1) � ∂xV (t, x2, μ2). �
However, as we will see in Section 8 below, in general V is discontinuous in (t, μ). At below we show that 

∂xV is lower semi-continuous in μ in the following sense.

Definition 5.2. (i) Let μn, μ ∈ P2(Rd), n ≥ 1. We say that μn ↑ μ (resp. μn ↓ μ) if μn � (resp. 
) μn+1 for 
all n and limn→∞ W2(μn, μ) = 0;
(ii) we say a function U : P2(Rd) → Rd is lower semi-continuous (resp. upper semi-continuous) if 
lim inf
n→∞

U(μn) 
 U(μ) (resp. lim sup
n→∞

U(μn) � U(μ)) whenever lim
n→∞

W2(μn, μ) = 0.

Here lim inf and lim sup are taken component wise. We then have the semi-continuity of V in (t, μ).

Proposition 5.3. Let Assumptions 2.6, 2.7, and 2.8 hold. Then
(i) for any (tk, μk) → (t, μ), we have lim infn→∞ ∂xV (tk, x, μk) 
 ∂xV (t, x, μ), i.e. ∂xV is lower semi-
continuous in (t, μ). Moreover, if μk ↑ μ, then limk→∞ ∂xV (t, x, μk) = ∂xV (t, x, μ);
(ii) for any x ∈ Rd and ν ∈ C([0, T ]; P2(Rd)), the mapping t �→ ∂xV (t, x, νt) is lower semi-continuous, and 
in particular it is Borel measurable.

Proof. (i) Fix x and let (tk, μk) → (t, μ), with ξk ∈ L2(Ftk ; μk), ξ ∈ L2(Ft; μ). Denote εk := |tk − t| +
W2(μk, μ) and t̂k := tk ∨ t. Then, by Proposition 3.2 and (3.3) we have

∂xV (tk, x, μk) = ∂xv(νtk,μk ; tk, x) 
 ∂xv(LXtk,ξk,n ; tk, x)

 ∂xv(LX

tk,ξk,n

[t̂k,T ]
; t̂k, x) − ρ(εk).

Recall (4.1) and (4.2). It is clear that supt̂k≤s≤T W2(LX
tk,ξk,0
s

, LXt,ξ,0
s

) ≤ εk+√
εk. Similarly to the arguments 

in Theorem 4.2, we may utilize the locally uniform regularity in Assumption 2.7 with R = C1 and with 
appropriate compact set K. Then, by Lemma 3.1 and stability of SDEs, one can easily show that there 
exists a modulus of continuity function ρ1 such that supt̂k≤s≤T W2(LX

tk,ξk,1
s

, LXt,ξ,1
s

) ≤ ρ1(εk). Moreover, 
by Lemma 3.1 and (4.2) again, we can show by induction on n that there exists a modulus of continuity 
function ρn such that supt̂k≤s≤T W2(LX

tk,ξk,n
s

, LXt,ξ,n
s

) ≤ ρn(εk). Then, by (3.2) and (3.3) we have, for each 
n, k,

∂xV (tk, x, μk) 
 ∂xv(LXt,ξ,n

[t̂k,T ]
; t̂k, x) − ρ(ρn(εk)) − ρ(εk)


 ∂xv(LXt,ξ,n ; t, x) − ρ(ρn(εk)) − 2ρ(εk).

Send k → ∞, we have lim infk→∞ ∂xV (tk, x, μk) 
 ∂xv(LXt,ξ,n ; t, x). Now send n → ∞, by (3.2) again we 
have
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lim inf
k→∞

∂xV (tk, x, μk) 
 ∂xv(LXt,ξ ; t, x) = ∂xV (t, x, μ).

Moreover, if μk ↑ μ, by Proposition 5.1 we have ∂xV (t, x, μk) � ∂xV (t, x, μ), then the above inequality 
implies limk→∞ ∂xV (t, x, μk) = ∂xV (t, x, μ).

(ii) For tk → t, since νtk → νt, then lim infk→∞ ∂xV (tk, x, νtk) 
 ∂xV (t, x, νt). This proves the claimed 
lower semi-continuity, which implies further the Borel measurability. �
Definition 5.4. Let C2 denote the set of functions V : [0, T ] ×Rd × P2(Rd) → R satisfying:
(i) V (t, ·, μ) ∈ C2(Rd) for each (t, μ), and ∂xV, ∂xxV are uniformly bounded;
(ii) for any x ∈ Rd and ν ∈ C([0, T ]; P2(Rd)), the mapping t �→ ∂xV (t, x, νt) is Borel measurable.

Then it is clear that V ∈ C2. The following lemma will be important in the next section.

Lemma 5.5. Let Assumptions 2.7 and 2.8 (iii) hold and V ∈ C2. Assume further that ∂xV is increasing in 
μ and lower or upper semi-continuous in μ. Then, for any (t0, μ) ∈ [0, T ] ×P2(Rd) and ξ ∈ L2(Ft0 ; μ), the 
following McKean-Vlasov SDE has a strong solution:

Xt0,ξ
t = ξ +

t∫
t0

b̂
(
Xt0,ξ

s , ∂xV (s,Xt0,ξ
s ,L

X
t0,ξ
s

),L
X

t0,ξ
s

)
ds + Bt0

t . (5.2)

Equivalently, the following Fokker-Planck equation has a weak solution ν(t, x):

∂tν(t, x) − 1
2tr(∂xxν(t, x)) + div(ν(t, x)̂b(x, ∂xV (t, x, νt), νt)) = 0,

νt0 = μ.
(5.3)

Proof. We shall only prove the case that ∂xV is lower semi-continuous in μ. The upper semi-continuous 
case can be proved similarly, in the same spirit as we construct the maximal MFE in Subsection 7.1 below.

Recall (4.1) and (4.2). Denote Xt0,ξ,0 := Xt0,ξ,0, with possibly a larger C1 which is an upper bound of 
|∂xV |, and for n = 0, 1, · · · ,

Xt0,ξ,n+1
t = ξ +

t∫
t0

b̂(Xt0,ξ,n+1
s , ∂xV (s,Xt0,ξ,n+1

s ,L
X

t0,ξ,n
s

),L
X

t0,ξ,n
s

)ds + Bt0
t . (5.4)

Since ∂xV is increasing in μ and by Assumption 2.8 (iii), it is clear that Xt0,ξ,n is increasing in n, and 

Xt0,ξ,n
t ≤ X

t0,ξ,0
t for all t ∈ [t0, T ]. Then there exists Xt0,ξ such that lim

n→∞
sup

t0≤t≤T
E[|Xt0,ξ,n

t −Xt0,ξ
t |2] = 0. 

Note that, since ∂xV is increasing and lower semi-continuous in μ, and LXt0,ξ,n ↑ LXt0,ξ , as in Proposition 5.3
(i) we have lim

n→∞
∂xV (t, x, L

X
t0,ξ,n
t

) = ∂xV (t, x, L
X

t0,ξ
t

). Then by sending n → ∞ in (5.4) we see that Xt0,ξ

satisfies (5.2). �
6. Weak-viscosity solutions to the master equation

6.1. Viscosity solution to PDE system

Differentiate (2.1) formally in x, we obtain the following system of PDEs: for i = 1, · · · , d,

∂tu
i(t, x) + 1

2tr(∂xxui(t, x)) + ∂xi
H(x, u(t, x), νt)

+∂ H(x, u(t, x), ν ) · ∂ ui(t, x) = 0.
(6.1)
p t x
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Definition 6.1. Fix ν ∈ C([0, T ] × P2(Rd)) and consider u : [0, T ] ×Rd → Rd such that both u and ∂xu are 
bounded. We say that u is a viscosity subsolution (resp. supersolution, solution) of the PDE system (6.1) if, 
for each i and for given u−i := (u1, · · · , ui−1, ui+1, · · · , ud), the function ui is a viscosity subsolution (resp. 
supersolution, solution) to the PDE (6.1) for fixed i in the standard sense.

Lemma 6.2. Let Assumption 2.6 hold true. Fix ν ∈ C([0, T ]; P2(Rd)) and let v(ν; ·, ·) be the unique classical 
solution of the PDE (2.1). Then u(t, x) := ∂xv(ν; t, x) is a viscosity solution to the PDE system (6.1).

Proof. Recall (3.6) and (3.7). Note that ∇xY
t,x,ν
s = u(s, Xt,x

s ). Then, for fixed i, (3.7) becomes:

∇xi
Y t,x,ν
s = ∂xi

G(Xt,x
T , νT ) −

T∫
s

∇xi
Zt,x,ν
r · dBr

+
T∫
s

[∂xi
H + ∂pH∇xi

Zt,x,ν
r ](Xt,x

r , u−i(r,Xt,x
r ),∇xi

Y t,x,ν
r , νr)dr.

Then by the standard BSDE theory we see that ui(t, x) = ∇xi
Y t,x,ν
t is a viscosity solution to the PDE (6.1)

for each fixed i. �
The next comparison principle is more or less standard, see e.g. [34] in slightly different contexts. We 

nevertheless sketch a proof for completeness.

Lemma 6.3. Let Assumptions 2.6 and 2.8 (i)-(ii) hold true, and fix ν ∈ C([0, T ]; P2(Rd)). Let u be as in 
Lemma 6.2, and u and u be a viscosity subsolution and a viscosity supersolution, respectively, to the PDE 
system (6.1) in the sense of Definition 6.1. If u(T, x) � ∂xG(x, νT ) � u(T, x) for all x ∈ Rd, then u � u � u

on [0, T ] ×Rd.

Proof. We shall prove only u � u. The inequality u � u can be proved similarly.
Fix (t, x) and denote Xs := x +Bt

s. For a possibly larger C1 such that |u| ≤ C1, recall (3.7) and introduce 
the following linear BSDEs recursively: ∇iY

0 := C1, and for n ≥ 0,

∇iY
n+1
s = ∂xi

G(XT , νT ) −
T∫
s

∇iZ
n+1
r · dBr

+
T∫
s

[
∂xi

H(Xr,∇−iY n
r ,∇iY

n+1
r , νr) + ∂pH(Xr,∇Y n

r , νr) · ∇iZ
n+1
r

]
dr.

(6.2)

That is, ∇Y n+1
s = un+1(s, Xs), where ui

0 ≡ C1, and for n ≥ 0 and for given un, the function ui
n+1 is the 

unique viscosity solution to the following PDE:

∂tu
i
n+1(t, x) + 1

2tr(∂xxui
n+1(t, x)) + ∂xi

H(x, u−i
n (t, x), ui

n+1(t, x), νt)
+∂pH(x, un(t, x), νt) · ∂xui

n+1(t, x) = 0, ui
n+1(T, x) = ∂xi

G(x, νT ).
(6.3)

Recall (3.7). One can easily show that limn→∞ supt≤s≤T E[|∇Y n
s −∇xY

t,x,ν
s |2] = 0, and thus limn→∞ un = u. 

Moreover, similar (actually easier) to the proof of Proposition 3.2, we can prove by induction on n that un

is increasing in x for all n. We claim that

u � un, for all n. (6.4)
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Then, by sending n → ∞, we obtain u � u.
To see (6.4), first, since ui

0 ≡ C1 ≥ ui, it holds true for n = 0. Assume it holds true for n, and we shall 
verify it for n + 1. By Assumption 2.8 (ii) and ∂xui

n+1 
 0, we see that

∂xi
H(x, u−i

n (t, x), ui
n+1(t, x), νt) + ∂pH(x, un(t, x), νt) · ∂xui

n+1(t, x)

≥ ∂xi
H(x, u−i(t, x), ui

n+1(t, x), νt) + ∂pH(x, u(t, x), νt) · ∂xui
n+1(t, x).

Then ui
n+1 is a viscosity supersolution of the following PDE:

∂tu
i
n+1(t, x) + 1

2tr(∂xxui
n+1(t, x)) + ∂xi

H(x, u−i(t, x), ui
n+1(t, x), νt)

+∂pH(x, u(t, x), νt) · ∂xui
n+1(t, x) ≤ 0, ui

n+1(T, x) = ∂xi
G(x, νT ).

(6.5)

Notice that ui is a viscosity subsolution of the above PDE. Then by the standard comparison principle we 
obtain ui ≤ ui

n+1. This proves (6.4) for n + 1, and hence u � u. �
6.2. Weak-viscosity solutions to the master equation

We now introduce a notion of weak-viscosity solution to the master equation (2.12), adapted from [41]. 
Recall Definition 5.4.

Definition 6.4. We say that V ∈ C2 is a weak-viscosity subsolution (resp. supersolution, solution) of the mas-
ter equation (2.12) if, for any (t0, μ) ∈ [0, T ] ×P2(Rd), the Fokker-Planck equation (5.3) has a weak solution 
ν such that the function u(t, x) := ∂xV (t, x, νt) is a viscosity subsolution (resp. supersolution, solution) to 
the PDE system (6.1) on [t0, T ] in the sense of Definition 6.1 and satisfies u(T, x) � (resp. 
, =)∂xG(x, νT ).

We first have the following simple result.

Proposition 6.5. Let Assumptions 2.6, 2.7, and 2.8 (i)-(ii) hold. Assume V ∈ C2 is a weak-viscosity solution 
of the master equation (2.12). Then, for any (t0, μ) ∈ [0, T ] ×P2(Rd), the ν in Definition 6.4 is an MFE of 
the extended MFG at (t0, μ).

Proof. First by Lemma 3.1 let v(ν; ·, ·) be the classical solution of the PDE (2.1). Then by Lemma 6.2
ũ := ∂xv(ν; ·, ·) is a viscosity solution of the PDE system (6.1) in the sense of Definition 6.1 with ũ(T, x) =
∂xG(x, νT ). Now by Definition 6.4 and the comparison principle in Lemma 6.3, we have ∂xv(ν; t, x) =
∂xV (t, x, νt). This identifies (5.3) and (2.2) with νt = L

X
t0,ξ,ν
t

, except that one is in PDE form while the 
other is in SDE form. Thus ν = Φ(t0, μ, ν), namely ν is an MFE at (t0, μ). �
Remark 6.6. Alternatively, we may call V ∈ C2 a weak-viscosity solution of the master equation (2.12) if it 
is both a weak-viscosity subsolution and a weak-viscosity supersolution of (2.12), where the weak-viscosity 
subsolution and supersolution are defined in Definition 6.4. Under this alternative definition, we may use 
one ν for the subsolution property and another different ν (and hence a different u) for the supersolution 
property. So this is weaker than Definition 6.4, in particular, a weak-viscosity solution in this alternative 
sense does not necessarily provide an MFE as in Proposition 6.5.

Our second main result of the paper is the following.

Theorem 6.7. Let Assumptions 2.6, 2.7, and 2.8 hold.
(i) V is a weak-viscosity solution to the master equation (2.12);
(ii) for any weak-viscosity supersolution V to the master equation (2.12), we have
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∂xV � ∂xV. (6.6)

Proof. (i) Fix (t0, μ) ∈ [0, T ] × P2(Rd). By Theorem 4.2 and in particular (4.3) we see that νt0,μ is a weak 
solution to the Fokker-Planck equation (5.3) with V = V . Moreover, by Proposition 4.3 we have

u(t, x) := ∂xV (t, x, νt0,μt ) = ∂xv(νt,ν
t0,μ
t ; t, x) = ∂xv(νt0,μ; t, x).

Then by Lemma 6.2 u is a viscosity solution to the PDE system (6.1) with νt = νt0,μt . Moreover, u(T, x) =
∂xG(x, νt0,μT ). Therefore, V is a weak-viscosity solution to the master equation (2.12).

(ii) Let V be an arbitrary weak-viscosity supersolution to the master equation (2.12). For any (t0, μ) ∈
[0, T ] × P2(Rd), let ν, u be as in Definition 6.4. Then, for any ξ ∈ L2(Ft0 ; μ), the McKean-Vlasov SDE 
(5.2) has a strong solution Xt0,ξ with ν = LXt0,ξ . Recall (4.1) and (4.2). It is clear that Xt0,ξ,0

t � Xt0,ξ
t for 

all t ∈ [t0, T ]. Denote νt0,μ,0 := LXt0,ξ,0 � ν. Note that ∂xv(νt0,μ,0; ·, ·) is a viscosity solution to the PDE 
system (6.1) with νt0,μ,0 and by Proposition 3.2 ∂xv is increasing in x. Then by Assumption 2.8 (ii) one 
can easily see that ∂xv(νt0,μ,0; ·, ·) is a viscosity subsolution to the PDE system (6.1) with ν. Moreover, by 
Assumption 2.8 (i),

∂xv(νt0,μ,0;T, x) = ∂xG(x, νt0,μ,0T ) � ∂xG(x, νT ) � u(T, x).

Since u is a viscosity supersolution of this system, then by the comparison principle Lemma 6.3, we have 
∂xv(νt0,μ,0; t, x) � u(t, x) = ∂xV (t, x, νt) for all (t, x). Denote

b(t, x) := b̂(x, ∂xv(νt0,μ,0; t, x), νt0,μ,0), b(t, x) := b̂(x, ∂xV (t, x, νt); νt).

By Assumption 2.8 (iii) one can easily see that b � b, and ∂xj
bi ≥ 0 for all i �= j. Then, comparing (4.2)

and (5.2), it follows from Lemma 2.10 that Xt0,ξ,1
t � Xt0,ξ

t , t0 ≤ t ≤ T , P -a.s. Repeat the arguments we 
can show that Xt0,ξ,n

t � Xt0,ξ
t , t0 ≤ t ≤ T , P -a.s. and ∂xv(LXt0,ξ,n ; t, x) � u(t, x) for all n. Send n → ∞, 

by Theorem 4.2 and Lemma 3.1 (ii) we see that Xt0,ξ
t � Xt0,ξ

t , t0 ≤ t ≤ T , P -a.s. and ∂xv(νt0,μ; t, x) �
u(t, x). Therefore, ∂xV (t0, x, μ) = ∂xv(νt0,μ; t0, x) � u(t0, x) = ∂xV (t0, x, μ). Since (t0, x, μ) is arbitrary, we 
conclude the proof. �
7. Some extensions

7.1. The maximal case

Similarly to Section 4, we can construct the maximal MFE as follows. Fix (t0, μ) ∈ [0, T ] × P2(Rd) and 

ξ ∈ L2(Ft0 ; μ). Let Xt0,ξ,0 be defined by (4.1), and for n ≥ 0,

X
t0,ξ,n+1
t = ξ +

t∫
t0

b̂(Xt0,ξ,n+1
s , ∂xv(LX

t0,ξ,n ; s,Xt0,ξ,n+1
s ),L

X
t0,ξ,n
s

)ds + Bt0
t . (7.1)

Then, as in Theorem 4.2 and Proposition 4.3, we have the following results.

Theorem 7.1. Let Assumptions 2.6, 2.7, and 2.8 hold. Then for any (t0, μ) ∈ [0, T ] × P2(Rd) and ξ ∈
L2(Ft0 ; μ), there exists a process Xt0,ξ on [t0, T ] such that
(i) Xt0,ξ,n+1

t � X
t0,ξ,n

t , ∀n, t, P -a.s. with

lim
n→∞

E[ sup |Xt0,ξ,n

t −X
t0,ξ

t |2] = 0;

t0≤t≤T
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(ii) νt0,μ := L
X

t0,ξ is an MFE of the extended MFG at (t0, μ) and satisfies the flow property:

νt0,μt = ν
t1,ν

t0,μ
t1

t , for all t0 < t1 ≤ t ≤ T ; (7.2)

(iii) for any MFE ν∗ of the extended MFG at (t0, μ), we have νt0,μ 
 ν∗. That is, νt0,μ is the maximal 
MFE.

We next define

V (t, x, μ) := v(νt,μ; t, x). (7.3)

Theorem 7.2. Let Assumptions 2.6, 2.7, and 2.8 hold.
(i) V ∈ C2, ∂xV is increasing in (x, μ) and upper semi-continuous in (t, μ). Moreover, if μk ↓ μ, then 
limk→∞ ∂xV (t, x, μk) = ∂xV (t, x, μ);
(ii) V is a weak-viscosity solution to the master equation (2.12);
(iii) for any weak-viscosity subsolution V to the master equation (2.12), we have

∂xV � ∂xV . (7.4)

The following result is an immediate consequence of Theorems 6.7 and 7.2.

Corollary 7.3. Let Assumptions 2.6, 2.7, and 2.8 hold. If V = V on [0, T ] × Rd × P2(Rd), then the master 
equation (2.12) admits a unique weak-viscosity solution V := V = V .

7.2. The decreasing case

In this subsection we replace Assumption 2.8 with Assumption 2.9.

Theorem 7.4. Let Assumptions 2.6, 2.7, and 2.9 hold true.
(i) ∂xv is decreasing in (x, ν), and Φ in increasing in (μ, ν);
(ii) for any (t0, μ) ∈ [0, T ] × P2(Rd), there exist MFEs νt0,μ and νt0,μ of the extended MFG at (t0, μ) such 
that, for any other MFE ν∗ of the extended MFG at (t0, μ), we have νt0,μ � ν∗ � νt0,μ;
(iii) the minimal MFE νt0,μ and the maximal MFE νt0,μ satisfy the flow property (4.5) and (7.2).

Again we define the value functions:

V (t, x, μ) := v(νt,μ; t, x), V (t, x, μ) := v(νt,μ; t, x). (7.5)

Theorem 7.5. Let Assumptions 2.6, 2.7, and 2.9 hold.
(i) V , V ∈ C2, ∂xV is decreasing in (x, μ) and upper semi-continuous in (t, μ), and ∂xV is decreasing in 
(x, μ) and lower semi-continuous in (t, μ);
(ii) V , V are weak-viscosity solutions to the master equation (2.12);
(iii) for any weak-viscosity subsolution V1 and weak-viscosity supersolution V2 to the master equation (2.12), 
we have

∂xV 
 ∂xV1, ∂xV � ∂xV2. (7.6)

(iv) If V = V on [0, T ] × Rd × P2(Rd), then the master equation (2.12) admits a unique weak-viscosity 
solution V := V = V .
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7.3. The common noise case

In this subsection we study the extended mean field game with a common noise. We shall only consider 
the problem under Assumption 2.8. The case under Assumption 2.9 is similar.

Let B0 be the common noise which is independent of F , β ≥ 0 be a constant and β̂2 := 1 + β2. For any 
t0 ∈ [0, T ], denote B0,t0

t := B0
t − B0

t0 , t ∈ [t0, T ] and F0,t0 := {FB0,t0
t }t0≤t≤T . Let C(F0,t0 ; P2(Rd)) denote 

the set of stochastic measure flow ν : [t0, T ] × Ω → P2(Rd) which is F0,t0-progressively measurable and 
continuous in t. Given any ν ∈ C(F0,t0 ; P2(Rd)), consider the following backward stochastic PDE on [t0, T ]:

dv(ν; t, x) = z(ν; t, x) · dB0
t

−
[
tr
( β̂2

2 ∂xxv(ν; t, x) + β∂xz
�(ν; t, x)

)
+ H(x, ∂xv(ν; t, x), νt)

]
dt,

v(ν;T, x) = G(x, νT ),

(7.7)

where the solution pair (v, z) is F0,t0 -progressively measurable. Given ξ ∈ L2(Ft0), we still use Xt0,ξ,ν to 
denote the strong solution to the following SDE on [t0, T ]:

Xt0,ξ,ν
t = ξ +

t∫
t0

b̂
(
Xt0,ξ,ν

s , ∂xv(ν; s,Xt0,ξ,ν
s ), νs

)
ds + Bt0

t + βB0,t0
t . (7.8)

Introduce the Nash field Φ on C(F0,t0 ; P2(Rd)): for any (t0, μ) ∈ [0, T ] × P2(Rd) and ξ ∈ L2(Ft0 ; μ),

Φ(t0, μ, ν) := {L
X

t0,ξ,ν
t |F0,t0

t
}t0≤t≤T , ∀ν ∈ C(F0,t0 ;P2(Rd)). (7.9)

Fix (t0, μ), define MFE as a fixed point of Φ(t0, μ, ·). Then the corresponding master equation becomes 
second order:

∂tV + 1
2tr(∂xxV ) + H(x, ∂xV, μ) + MV = 0, V (T, x, μ) = G(x, μ), (7.10)

where

MV (t, x, μ) := tr
( ∫
Rd

[ β̂2

2 ∂x̃∂μV (t, x, μ, x̃) + β2∂x∂μV (t, x, μ, x̃)

+∂μV (t, x, μ, x̃)̂b�(x̃, ∂xV (t, x̃, μ), μ) + β2

2

∫
Rd

∂μμV (t, x, μ, x̄, x̃)μ(dx̄)
]
μ(dx̃)

)
.

Theorem 7.6. Let Assumptions 2.6, 2.7, and 2.8 hold true.
(i) ∂xv is increasing in (x, ν), and Φ in increasing in (μ, ν);
(ii) for any (t0, μ) ∈ [0, T ] × P2(Rd), there exist MFEs νt0,μ and νt0,μ of the extended MFG at (t0, μ) such 
that νt0,μ � ν∗ � νt0,μ for all other MFE ν∗ of the extended MFG at (t0, μ);
(iii) the minimal MFE νt0,μ and the maximal MFE νt0,μ satisfy the flow property (4.5) and (7.2), respec-
tively, P -a.s.

Here, for any νi ∈ C(F0,t0 ; P2(Rn)), i = 1, 2, the partial order ν1 � ν2 is extended naturally: ν1
t � ν2

t for 
all t ∈ [t0, T ], a.s. The monotonicity of ∂xv in (x, ν) is also in obvious sense.

Define the value functions corresponding to the minimal and maximal MFEs respectively:

V (t, x, μ) := v(νt,μ; t, x), V (t, x, μ) := v(νt,μ; t, x). (7.11)
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We note that V and V are F0,t
t -measurable and hence are actually deterministic.

Theorem 7.7. Let Assumptions 2.6, 2.7, and 2.8 hold. Then V , V ∈ C2, ∂xV is increasing in (x, μ) and 
lower semi-continuous in (t, μ), and ∂xV is increasing in (x, μ) and upper semi-continuous in (t, μ).

We may continue to study weak-viscosity solution of the master equation (7.10) as in Section 6. In this 
case the PDE (6.1) becomes a backward SPDE (7.7), which can be viewed as a path dependent PDE, see 
e.g. Zhang [46, Chapter 11]. However, in this case u(t, x, ω) := ∂xV (t, x, νt0,μt (ω)) is in general discontinuous 
in (t, ω), thus the viscosity theory for path dependent PDEs in Ekren-Touzi-Zhang [28,29] and Zhou [47]
cannot be applied here. One possibility is to adapt the viscosity solution for backward SPDEs in Qiu [44], 
which does not require the regularity in ω. On the other hand, we note that the value function (1.4) for the 
MFG with a major player will have the same regularity issue, even when there is no common noise. So we 
shall leave the systematic investigation of this issue to a future research.

8. An example

In this section we solve an example completely. In particular, we shall show that V is in general discon-
tinuous in (t, μ). Set d = 1 and denote

m(μ) :=
∫
R

xμ(dx).

Consider the example:

G(x, μ) := xm(μ), H(x, p, μ) := p2

2 ,

b̂(x, p, μ) := b̂(p) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−2, p < −2;
2p + 1

2p
2, −2 ≤ p < 0;

2p− 1
2p

2, 0 ≤ p < 2;
2, p ≥ 2.

One can easily verify that Assumptions 2.6, 2.7, and 2.8 hold true. Moreover, (2.1) becomes

∂tv(ν; t, x) + 1
2tr(∂xxv(ν; t, x)) + |∂xv(ν; t, x)|2

2 = 0,

v(ν;T, x) = G(x, νT ) = xm(νT ).

It admits a unique solution:

v(ν; t, x) = xm(νT ) + 1
2(T − t)|m(νT )|2. (8.1)

Then ∂xv(ν; t, x) = m(νT ) and thus (2.2) becomes:

Xt0,ξ,ν
t = ξ + b̂(m(νT ))(t− t0) + Bt0

t . (8.2)

Note that Φ depends on ν only through m(νT ). Introduce the following operator:

Φ̂(t0, μ, p) := E
[
ξ + b̂(p)(T − t0) + Bt0

T

]
= m(μ) + b̂(p)(T − t0), p ∈ R. (8.3)
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One can easily see that ν∗ is an MFE at (t0, μ) if and only if p∗ := m(ν∗T ) is a fixed point of Φ̂:

p∗ = Φ̂(t0, μ, p∗) = m(μ) + b̂(p∗)(T − t0), (8.4)

or equivalently,

b̂(p∗) = p∗ −m(μ)
T − t0

.

Then, by (8.2) and (8.1), the corresponding MFE and value are:

Xt0,ξ,p
∗

t = ξ + b̂(p∗)(t− t0) + Bt0
t , v(p∗; t, x) = xp∗ + 1

2(T − t)|p∗|2. (8.5)

Note that one side of (8.4) is piecewise quadratic, and the other side is linear. By elementary calculation 
we solve (8.4) in four cases. Denote

λ := 1
T − t0

, m1 := 2 − 2
λ
, m2 := λ

2 + 2
λ
− 2;

φ−(λ,m) :=
√

(λ− 2)2 − 2λm, φ+(λ,m) :=
√

(λ− 2)2 + 2λm
(8.6)

Case 1. λ ≥ 2. In this case m1 > 0, and there is a unique fixed point p∗:

p∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m(μ) − 2
λ , if m(μ) < −m1;

λ− 2 − φ−(λ,m(μ)), if −m1 ≤ m(μ) < 0;

2 − λ + φ+(λ,m(μ)), if 0 ≤ m(μ) < m1;

m(μ) + 2
λ , if m(μ) ≥ m1.

(8.7)

Case 2. 4 − 2
√

2 < λ < 2. In this case 0 < m2 < m1. We solve the problem in three subcases.
Case 2.1. |m(μ)| > m2. In this case there is a unique fixed point:

p∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m(μ) − 2
λ , if m(μ) < −m1;

λ− 2 − φ−(λ,m(μ)), if −m1 ≤ m(μ) < −m2;

2 − λ + φ+(λ,m(μ)), if m2 < m(μ) < m1;

m(μ) + 2
λ , if m(μ) ≥ m1.

(8.8)

Case 2.2. |m(μ)| = m2. In this case there are two fixed points:

p∗ = λ− 2 − φ−(λ,m(μ)) or p∗ = 2 − λ, if m(μ) = −m2;
p∗ = λ− 2 or p∗ = 2 − λ + φ+(λ,m(μ)), if m(μ) = m2.

(8.9)

Case 2.3. |m(μ)| < m2. In this case there are three fixed points:

p∗ = λ− 2 − φ−(λ,m(μ))
or p∗ = 2 − λ± φ+(λ,m(μ))

, if −m2 < m(μ) ≤ 0;

p∗ = λ− 2 ± φ−(λ,m(μ))
or p∗ = 2 − λ + φ (λ,m(μ))

, if 0 < m(μ) < m2.

(8.10)
+
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Case 3. 1 < λ ≤ 4 − 2
√

2. In this case 0 < m1 ≤ m2. We solve the problem in three subcases.
Case 3.1. |m(μ)| > m2. In this case there is a unique fixed point:

p∗ =
{

m(μ) − 2
λ , if m(μ) < −m2;

m(μ) + 2
λ , if m(μ) > m2.

(8.11)

Case 3.2. |m(μ)| = m2. In this case there are two fixed points:

p∗ = m(μ) − 2
λ

or p∗ = 2 − λ, if m(μ) = −m2;

p∗ = λ− 2 or p∗ = m(μ) + 2
λ
, if m(μ) = m2.

(8.12)

Case 3.3. |m(μ)| < m2. In this case there are three fixed points:

p∗ = m(μ) − 2
λ

or p∗ = 2 − λ± φ+(λ,m(μ))
, if −m2 < m(μ) ≤ −m1;

p∗ = λ− 2 − φ−(λ,m(μ))
or p∗ = 2 − λ± φ+(λ,m(μ))

, if −m1 < m(μ) ≤ 0;

p∗ = λ− 2 ± φ−(λ,m(μ))
or p∗ = 2 − λ + φ+(λ,m(μ))

, if 0 < m(μ) ≤ m1;

p∗ = λ− 2 ± φ−(λ,m(μ))
or p∗ = m(μ) + 2

λ

, if m1 < m(μ) < m2;

(8.13)

Case 4. 0 < λ ≤ 1. In this case 0 ≤ −m1 < m2. We solve the problem in three subcases.
Case 4.1. |m(μ)| > m2. In this case there is a unique fixed point:

p∗ =
{

m(μ) − 2
λ , if m(μ) < −m2;

m(μ) + 2
λ , if m(μ) > m2.

(8.14)

Case 4.2. |m(μ)| = m2. In this case there are two fixed points:

p∗ = m(μ) − 2
λ

or p∗ = 2 − λ, if m(μ) = −m2;

p∗ = λ− 2 or p∗ = m(μ) + 2
λ
, if m(μ) = m2.

(8.15)

Case 4.3. |m(μ)| < m2. In this case there are three fixed points:

p∗ = m(μ) − 2
λ

or p∗ = 2 − λ± φ+(λ,m(μ))
, if −m2 < m(μ) ≤ m1;

p∗ = m(μ) ± 2
λ

or p∗ = 2 − λ− φ+(λ,m(μ))
, if m1 ≤ m(μ) < 0;

p∗ = m(μ) ± 2
λ

or p∗ = λ− 2 + φ−(λ,m(μ))
, if 0 ≤ m(μ) ≤ −m1;

p∗ = λ− 2 ± φ−(λ,m(μ))
or p∗ = m(μ) + 2 , if −m1 < m(μ) < m2.

(8.16)
λ
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Put all the cases together, we find that the minimal p∗, denoted as pt0,μ, is:

pt0,μ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(μ) − 2
λ
, if λ > 0,m(μ) ≤ −m1;

λ− 2 − φ−(λ,m(μ)), if λ ≥ 2,−m1 ≤ m(μ) < 0,
or 0 < λ < 2,−m1 < m(μ) ≤ m2;

2 − λ + φ+(λ,m(μ)), if λ ≥ 2, 0 ≤ m(μ) < m1,

or 4 − 2
√

2 < λ < 2,m2 < m(μ) < m1;
m(μ) + 2

λ
, if λ > 4 − 2

√
2,m(μ) ≥ m1,

or 0 < λ ≤ 4 − 2
√

2,m(μ) > m2.

(8.17)

By (8.5), we then have the minimal MFE and the corresponding value function:

Xt0,ξ
t = ξ + b̂(pt0,μ)(t− t0) + Bt0

t ,

V (t0, x, μ) = xpt0,μ + 1
2(T − t0)|pt0,μ|2.

(8.18)

Similarly, we find that the maximal p∗, denoted as pt0,μ, is:

pt0,μ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(μ) − 2
λ
, if λ > 4 − 2

√
2,m(μ) < −m1,

or 0 < λ ≤ 4 − 2
√

2,m(μ) < −m2;
λ− 2 − φ−(λ,m(μ)), if λ ≥ 2,−m1 ≤ m(μ) < 0,

or 4 − 2
√

2 < λ < 2,−m1 ≤ m(μ) < −m2;
2 − λ + φ+(λ,m(μ)), if λ ≥ 2, 0 ≤ m(μ) < m1,

or 0 < λ < 2,−m2 ≤ m(μ) < m1;
m(μ) + 2

λ
, if λ > 0,m(μ) ≥ m1;

(8.19)

and the maximal MFE and the corresponding value function are:

X
t0,ξ

t = ξ + b̂(pt0,μ)(t− t0) + Bt0
t ,

V (t0, x, μ) = xpt0,μ + 1
2(T − t0)|pt0,μ|2.

(8.20)

We note that, when λ > 2, namely T − t < 1
2 , pt,μ is smooth in (t, μ) and actually in this case V = V is a 

classical solution of the master equation (2.12). This is consistent with the standard result that the master 
equation admits a unique classical solution over small time interval.

However, for 4 − 2
√

2 < λ < 2, namely 1
2 < T − t < 1

4−2
√

2 , we have

lim
m(μ)↑m2

pt,μ = λ− 2 − φ−(λ,m2) = 1
T − t

− 2;

lim
m(μ)↓m2

pt,μ = 2 − λ + φ+(λ,m2) = (1 +
√

2)(2 − 1
T − t

);
(8.21)

That is, ∂xV (t, x, μ) = pt,μ is discontinuous in μ when 1
2 < T − t < 1

4−2
√

2 and m(μ) = m2.
Similarly, when m(μ) = 1

20 , we see that m2 > m(μ) if T − t > 5
8 and m2 < m(μ) if T − t > 1

8 . Then, by 
(8.21) we have
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lim
t↑(T− 5

8 )
pt,μ = 1

T − (T − 5
8 )

− 2 = −2
5 ,

lim
t↓(T− 5

8 )
pt,μ = (1 +

√
2)(2 − 1

T − (T − 5
8)

) = 2(1 +
√

2)
5 .

That is, ∂xV (t, x, μ) = pt,μ is discontinuous in t at t = 1
8 and m(μ) = 1

20 .
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