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Abstract

Building upon the dynamic programming principle for set valued functions arising
from many applications, in this paper we propose a new notion of set valued PDEs.
The key component in the theory is a set valued It6 formula, characterizing the flows
on the surface of the dynamic sets. In the contexts of multivariate control problems, we
establish the wellposedness of the set valued HJB equations, which extends the standard
HJB equations in the scalar case to the multivariate case. As an application, a moving
scalarization for certain time inconsistent problems is constructed by using the classical

solution of the set valued HJB equation.
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1 Introduction

In this paper we consider set valued functions taking the form:
V:[0,T] x RY — 2B™,

That is, for each (t,z) € [0,T] x RY, the value V(t,z) is a subset of R™ satisfying ap-
propriate properties. Such set valued functions, or their variants, have appeared in many
applications, for example, stochastic viability problems (Aubin-Da Prato [2]), multivari-
ate super-hedging problems (Kabanov [14] and Bouchard-Touzi [5]), multivariate dynamic
risk measures (Feinstein-Rudloff [8]), time inconsistent optimization problems (Karman-
Ma-Zhang [15]), stochastic target problems (Soner-Touzi [20, 21]), and recently, nonzero
sum games with multiple equilibria (Feinstein-Rudloff-Zhang [10]), and mean field games
with multiple mean field equilibria (Iseri-Zhang [13]). Many of these problems were con-
sidered non-standard or even ill-posed in the literature, and overall we lacked convenient
mathematical tools to treat them. When viewed as set values, however, their value functions
(named set-value functions in the paper) enjoy many nice properties as the value function of
standard control problems, in particular the crucial dynamic programming principle, or say
the time consistency. Notice that, for a standard control problem, the combination of the
dynamic programming principle and the It6 formula leads to the popular PDE approach.

Then a natural question is:
can we characterize these set-value functions via set valued PDEs? (1.1)

This is exactly the goal of the present paper: to introduce the PDE approach and hence
recover the standard language for these challenging problems. To be precise, the main

contributions of this paper are as follows:

e Introduce derivatives for set valued functions and establish the set valued It6 formula.

e Propose a notion of set valued PDEs, and establish its wellposedness in the contexts

of multivariate stochastic control problems.

e As an important application, construct a so called moving scalarization for a time
inconsistent problem by using the classical solution of the corresponding set valued
PDE.

We hope this paper serves as the first step of our long term project on providing a convenient

tool and systematic study for multivariate problems, including games.



Our first main result is the set valued Ité formula, which roughly reads:
1
AV (t, X;) = [atv OV bt St (04aV 00 T) = KyC + g} dt + [axw n g} dB,, (1.2)

where dX; = bidt + 0:dB; is a diffusion. We refer to Theorem 3.1 below for the precise
meaning of the above formula. In particular, 9;V,9,V, 0.,V are derivatives of V defined
on Gy, the graph of V, which consists of all points (¢, x,y) where y lies on Vy(¢,x), the
boundary of V(t,z). The essence of the It6 formula is to characterize flows on the boundary
surface. Given the surface’s invariance under tangential deformations, a key feature of the
set valued It6 formula is the inclusion of arbitrary driving forces £ and ¢ on Gy, which take
values in the tangent space. This, along with the appropriate correction term Ky(, ensures
that the flows are not pushed away from the surface.

Our set valued HJB equation takes the following form: for some Hamiltonian function
hy and with appropriate terminal condition,

sauCp ny(t,z,y) - |0V(t,z,y) + hy(t,2,y,0:V,0.2V,a,()| =0, (t,z,y) € Gy, (1.3)
where a takes values in a control set, ( takes values in the tangent space, and ny is the unit
outward normal vector. This is derived by applying the above It6 formula on the dynamic
programming principle for the set-value function of the multivariate control problem. As
we see, the introduction of ¢ (and &) in (1.2) is crucial. We note that & disappears in the
equation since ny - & = 0. However, Ky( is nonlinear in { and thus ny - KCy( is an important
component in the equation. The equation (1.3) can be rewritten equivalently in terms of the
signed distance function ry, see (5.3) below. We emphasize that ny is part of the solution
here and the equation is satisfied only on the graph Gy, so the wellposedness of (1.3) has a
completely different nature than that of standard PDEs.

In the scalar case: m = 1, we can easily see that V(t,z) = [v(¢,x),v(t, z)], where v
and T are the value functions of the standard minimization and maximization problems,
respectively. In this case, ny = 1 or —1, and the tangent space is degenerate and thus
¢ = 0. Then (1.3) reduces exactly back to the standard HJB equations for v and ©. So
our set valued HJB equation is indeed a natural extension of the standard HJB equation to
the multivariate setting. Moreover, note that v and v are the boundaries of V in this case,
namely Vy(t,z) = {v(t,x),v(t,z)}, which inspires us to focus on the boundary surface V,
instead of on the whole set V. We would like to point that, again since £ = 0, ( = 0 in this
case, then (1.2) also reduces back to the standard It6 formula for v(¢, X;) and v(t, Xy).

Our main result of the paper is that the dynamic set-value function of the multivariate

stochastic control problem is the unique classical solution of the set valued HJB equation



(1.3), provided V has sufficient regularity. We thus obtain the positive answer to our
question (1.1) in this setting, which further opens the door to the PDE approach for more
general multivariate problems. Such PDE characterization helps to understand better the
structure and the nice properties of the dynamic set-value function. In particular, it helps to
construct (approximate) optimal controls with certain Markovian structure. Indeed, when
V is smooth, as in standard verification theorem we may use the optimal arguments (a*, (*)
of the Hamiltonian in (1.3) to construct an optimal control for a scalarized optimization
problem, as we will explain in the next paragraph.

As an important application of our wellposedness result, we construct the moving scalar-
ization for some time inconsistent problems, proposed by [15]' and Feinstein-Rudloff [9].
Note that we are in the multivariate setting and in general it is not feasible to optimize
the multiple objects simultaneously. In practice quite often one considers the scalarized
optimization problem: max,cy(g4,) ©(y), where ¢ : R™ — R. This scalarized problem,
unfortunately, is typically time inconsistent. The idea of a moving scalarization is to find
a dynamic scalarization function ®(t, X{o;y), with ®(0,z0;y) = ¢(y), such that the dy-
namic problem max,cv( x,) O(t, X 0,43 ¥) becomes time consistent. In Section 7 below we
shall investigate this interesting application. In particular, we shall construct a moving
scalarization for the mean variance problem explicitly.

At this point we would like to mention that the present paper considers classical solu-
tions only. In particular, this requires that the set-value V(¢,z) is non degenerate and its
boundary Vy(¢,x) is a smooth m — 1 dimensional manifold, namely the co-dimension is 1.
It is our strong interest to remove these constraints and study viscosity solutions of more
general set valued PDEs, thereby broadening the applicability of the theory. We shall leave

this important question to future research.

Some related literature. There is a large literature on set valued analysis, we refer
to the book Aubin-Frankowska [3] and the reference therein. However, our approach is
completely different from those in set valued analysis. We focus on the dynamics of the
boundary surface, rather than the dynamics of the whole set. Roughly speaking, we focus
only on those special selectors whose flow remains on the boundary. These selectors have
nice properties and are sufficient to characterize the whole sets. Moreover, the boundary
is essentially the frontier which has intrinsic optimality and thus is also important from
practical point of view. We shall mention the recent paper Ararat-Ma-Wu [1] on set valued

backward SDEs, which is highly relevant to our paper. Given our set valued function V(¢, x)

'n [15] it’s called dynamic utility function, instead of moving scalarization.



and a state process X (e.g. a Brownian motion), we may introduce a set valued process
Y: := V(¢, X;). In spirit the process Y should satisfy a set valued backward SDE. However,
besides that we employ completely different approaches, except in some simple cases our
set valued process Y does not satisfy the equation in [1]. That is, the objectives of the two
works are different. We should mention that the applications mentioned in the beginning
of this introduction fall into our framework, although technically our current results do not
cover many of them (which we intend to study in our future research).

Our approach is strongly motivated by the studies on surface evolution equations, see e.g.
Sethian [18], Evans-Spruck [7], Soner [19], Barles-Soner-Souganidis [4], and the monograph
Giga [11] and the references therein. These equations arise in various applications such
as evolutions of phase boundaries, crystal growths, image processing, and mean-curvature
flows, to mention a few. These works consider the dynamics of set valued function V(¢), more
precisely the boundary Vj(t), without the state variable z. In our terms, roughly speaking
these works study first order set valued ODEs, while we extend to second order set valued
PDEs. In particular, the set valued It6 formula is not involved there. Another difference
is, due to the nature of different applications, they study forward equations with initial
conditions while we study backward problems with terminal conditions. This difference
would be crucial when one concerns path dependent setting (not covered in this paper),
where one cannot do the time change freely due to the intrinsic adaptedness requirement.

Furthermore, within the surface evolution literature, our work is closely related to Soner-
Touzi [21] which studies stochastic target problems by using mean curvature type geometric
flows. In our contexts, their approach amounts to studying the following set-value function

via its signed distance function rg:

V(t) = {(z,y):z € Ry e V(t)}, and thus V(t) := {(z,y):z € Ry e Vi (t)}.

Clearly V and V are equivalent, with the same graph: G = Gy. The major difference here
is that, while ry and rg agree on the graph (both are 0 by definition), their derivatives
are different on the graph, and consequently, the equation derived in [21] is different from
our set valued HJB equation (1.3). In particular, in the scalar case: m = 1, as mentioned
(1.3) reduces back to the standard HJB equations, but the equation for rg; does not seem
to connect to the standard HJB equation directly. Moreover, the normal vector ng of V is
also different from ny, and does not serve as a moving scalarization as we discussed. We
shall provide more detailed discussions in Section 8.2 below.

Finally, we remark that there are some very interesting studies on (possibly discontin-

uous) viscosity solutions along this line, see e.g. [4], Chen-Giga-Goto [6], Soner-Touzi [20].



It will be interesting to explore these ideas in our setting.

The rest of the paper is organized as follows. In Section 2 we introduce the setting
and define the intrinsic derivatives of set valued functions. In Section 3 we prove the
crucial set valued It6 formula. In Section 4 we present the multivariate control problem. In
Section 5 we introduce the set valued HJB equation and show that the value function of
the multivariate control problem is a classical solution, and the uniqueness of the classical
solution is established in Section 6. Section 7 is devoted to the application of moving
scalarization. In particular we solve it explicitly for the mean variance problem. In Section
8 we offer further discussions, including an extension to the case that the terminal condition
is non-degenerate, and comparisons with [1] and [21]. Finally we complete some technical

proofs in Appendix.

2 Intrinsic derivatives of set valued functions

Throughout the paper all vectors are viewed as column vectors, - denotes the inner product,
and T,¢ denote the transpose and complement, respectively. We denote by V the gradient
operator, and for a function f : R? x R™ — R, we take the convention that the second
derivative Vay f(2,y) := [Op1yf, -+, Ozgyf] € R4,

2.1 Some basic materials

In this subsection we present some basic materials in geometry, which will be the starting
point of our set valued functions in this paper.
Let D' C 2R™ denote the space of closed set I in R™, and denote by D, and Dy, the

interior and the boundary of I, respectively. We equip Dj* with the metric:
d(D,D) := d(D, D) V d(Dy, Dy),

where d is the standard Hausdorff distance, i.e.

d(D,D) := (supd(y, D)) v (supd(§, D)), d(y,D) := inf |y - gl.

yeb F€ED S

Introduce the signed distance function of I: denoting by D¢ the complement of D,

L d(y7 ]Db)7 ye ]DC;
rp(y) = { Cd(w.Dy), yeD. (2.1)

It is obvious that

D,={yeR™:rp(y) <0}, Dy={yeR™:rp(y) =0},.



We next let Dy* denote the space of D € D" such that rp is twice continuously differ-
entiable with bounded derivatives on O¢(Dy) := {y € R™ : |rp(y)| < €} for some € > 0. We
remark that the boundary I, is a manifold without boundary, as regular as rp. For each

y € Dy, let np(y) € R™ denote the outward unit normal vector at y. It is clear that:

np(y) = Vyrp(y), y €Dy and  [Vyrp(y)| =1, y € O(Dy). (2:2)

Moreover, for any y € O¢(Dy), for possibly a smaller € > 0, let mp(y) denote the unique
projection of y on Dy, i.e. mp(y) € D, satisfies:

y =mp(y) + ro(y)np(mn(y)), y € O:(Dp). (2.3)

For any y € Dy, let Tp(y) denote the tangent space:

Tn(y) := {5 eER™: ¢ -np(y) = 0}, y € Dy.
For a function f : D, — R, we define its intrinsic derivative 0, f(y) € Tn(y) by:

lim 1) = 1) = 0y f(y) - 0'(0), for any smooth curve 6 : R — Dy, with 6(0) = y. (2.4)

e—0 £

Alternatively, for any smooth extension f: R™ — R, i.e. f: f on Dy, we have

~ ~ ~ -~

Oyf(y) = Vyf(y) — [Vyf(¥) - np(y)np(y) = Vyf(y) — np(y)np(y) "V, f(y). (2.5)

We emphasize that J, f(y) does not depend on the choice of the extension f
We also recall the shape operator d,np(y) = [0,nh(y), -, 9,0l (y)] € R™™, which
captures the curvatures of Dy at y.

2.2 Set valued functions

Consider a continuous function V : R — D5*. Denote

Vo(x) = (V(2))p, rv(z,y) =Tye)(y), nv(z,y) :=nye(y),

(2.6)
WV($7 y) =T () (y)7 TV(£7 y) = TV(LB) (y)7

and introduce the graph of V:

Gv :={(z,y) 1z € R,y € Vy(x)}.

When there is no confusion, for notational simplicity we may drop the subscript v in ry,
ny, my and denote them as r,n,7. We say V € C?(R; DY) if ry is twice continuously

differentiable with bounded derivatives on O.(Gy) for some € > 0.



Remark 2.1 (i) We note that our results in the paper will only involve ry and its deriva-
tives near Gy. For the convenience of our arguments, throughout the paper, we shall modify

ry outside of O-(Gy), so that the modified function Ty satisfies:
e Ty =ry on O (Gy);
e Ty € C?*(R x R™) with bounded derivatives;
o ty(z,y) < —§ for all (x,y) € V\O:(Gy) and vv(z,y) > § for all (z,y) € V\O:(Gy).

We emphasize that all our results will not rely on the choice of such a modification. For

notational simplicity, we may identify Ty with ry.

(i1) Similarly we may extend my outside of Oz(Gy), still denoted as Ty, such that

e On O.(Gy), my(x,y) is the original unique projection of y on Vy(x) such that the
counterpart of (2.3) holds true;

o y(z,y) is jointly measurable and wy(z,y) € Vi(x) for all (x,y) € R x R™;

o There ezists a constant C' = Cy such that (modifying the extension of rv if needed)

ly — mv(2,y)| < Clry(z,y)|. (2.7)

(iii) We can also extend ny to the whole space R x R™, still denoted as ny, such

that ny is continuously differentiable with bounded derivatives. Omne typical example is

ny(z,y) = Vyry(z,y). L

We remark that (2.7) follows from (2.3) when (z,y) € O:(Gvy), and the existence of C for
arbitrary (z,y) is due to the fact that |ry(z,y)| > § for (z,y) ¢ O-(Gv).
Fix zp € R. For each y € V(xq), consider the ODE: in light of Remark 2.1,

T(z) =y — / " Vary ny(3, TV (E)) di. (2.8)

0

Then clearly the above ODE has a unique solution.
Proposition 2.2 Assume V € C*(R; DY) and xo € R. Then, for any z € R,
Vo(z) = {TY(z) : y € Vy(z0)}. (2.9)

Consequently, (2.8) involves ry and ny only on Gy and thus does not depend on the modi-

fication of ry.



Proof For notational simplicity, we drop the subscripts and denote r,n, 7.

We first show that, for any yo € Vy(x¢) and z > xg, T(z) := Y% (z) € Vi(z). Let £ > 0
be such that the original r in (2.1) is twice continuously differentiable on O.(Gy). Note
that (zg,y0) € Gy C O:(Gy). Denote

7:=inf {z > zo: (z,T(z)) ¢ O:(Gv)}.
Then, for = € [zg,T), apply the chain rule we have
%r(az, Y(x)) = Vyr(z,Y(z)) — Vyr(z, Y(z)) - [Ver n(z, Y(z)))].

Recall (2.3) and denote 7(z) := 7(z, Y (z)) € Vy(z). By (2.2) we have

%r(x, Y(z)) = Vyr(z,Y(x)) [Vyr(:z:,w(:n)) ‘n(z,m(x)) — Vyr(z, T(z)) -n(z, T(x))]

Therefore, by (2.3) and the continuous differentiability of V,r and n, we have
d .
o7, T(2)) = b(a)r(z, T(2)), € [20,7),

for some appropriate continuous function b : R — R. Note that r(zq, T(z0)) = r(20, yo) = 0.
Then the above ODE implies r(z, Y(z)) = 0 for all € [z, 7), which in turn implies 7 = oco.
Thus r(z, Y(z)) = 0 and hence Y(z) € Vy(x) for all © > z(. This implies that {Y¥(x) : y €
Vip(zo)} C Vy(z) for all x > xg. Similarly we can show that {YY(z) : y € Vy(x0)} C V()
for all x < xg, and hence for all z € R.

On the other hand, for any y € Vj(z), consider (2.8) starting from x:

/

V(') =y — /r V,r n(z, TY(%))di.

Then by the above result we have yo := Y¥(xg) € Vj(z). By the wellposedness of the ODE
(2.8), one can easily show that T¥(z') = Y% (2/) for all 2/ € R, and thus y = T¥(x) = T¥(z).
This proves the opposite inclusion in (2.9). |

Remark 2.3 (i) Later on we will define 0;V(z,y) = —Vyryny(z,y) for (z,y) € Gy, see
(2.16) below. Then (2.8) can be rewritten as

TY(z) =y +/ 0,V (Z,YY(2))dz. (2.10)
o
Thus (2.9) can be viewed as the fundamental theorem of calculus for set valued functions:

Vi(z) = Vi(zo) + /x 0.V (z,Vy(Z))dz. (2.11)

9



(ii) However, (2.11) should be interpreted as (2.10) and (2.9), rather than the meaning

in the standard set valued analysis, which roughly speaking considers

T(z) =y + / " O.V(EA@)dE,  Vy € Vy(ao), 3 (F) € Vo).

The above Y(x) is in general not in Vy(z). See also related discussion in Section 8.3 below.

(iii) Let T € C*(R;R™) be such that Y(z) € Vy(z) for all z. Then, by (2.2),
0= %rw(x, T(@)) = Var(e, (@) + Vyrv(e, T(a) - 9, (x)
= V,ry(z, Y (z)) + ny(z, T(x)) - 0, ().

(iv) The set valued Ito formula in the next section, which is one of the main results of

(2.12)

this paper, can be viewed as the stochastic version of Proposition 2.2. |

The next result, although technically not used in this paper, is interesting in its own right.

We postpone its proof to Appendix.

Proposition 2.4 Assume V € C?(R; DY) and (z0,y0) € Gy. Then the curve Y(x) =
YTY(x) determined by (2.8) is a local geodesic of the flow V in the following sense: for any
continuous curve 0(z) € Vy(x) with 0(xo) = yo,

S 1
lim
T—x0 |x — ;U0|

[Ly (zo,2) — Lg(wo,z)] <0,

where Ly (xo,x) (resp. Lg(xo,x)) denotes the length of T (resp. ) between x, x.

Consider a function f : Gy — R. For fixed z, the intrinsic derivative 0, f(z,y) for
y € Vy(z) is defined (2.4) or equivalently by (2.5). We next define the intrinsic derivative
of f with respect to x following the local geodesic T defined by (2.8):

O f (0,90) := lim I, Tyo(;)_) ;Of(xo’ ) (20.50) € Gy. (2.13)

Equivalently, for any smooth extension fof f, we have

L Fla, 1% (z)) — f(wo,0)
Ouf(x0,y0) = lim PR—— (2.14)

= me(xo,yo) — ervvyf' ny (o, Yo)-

Again, the right side above does not depend on the choice of the extension f

We say f € C1(Gy) if f has continuous intrinsic derivatives ,f and 9, f. By (2.13), it

is obvious that J, f is linear on f, and the product rule and chain rule remain true:
0z(f9) = 90xf + fOzg, for all f,g € C'(Gv);
9:[f(9)) = ['(9)ug, for all f € C'(R;R),g € C'(Gv).

(2.15)

10



2.3 Intrinsic derivatives of set valued functions

We now extend all the analysis to functions V : [0,7] x R? — DI, In this and the next
section we may allow infinite time horizon [0, 00). However, for later sections we require T'
to be finite, so for simplicity we consider finite T" here as well. Introduce Vy(t, z), rv(t,z,y),

ny(t,z,y), mv(t,z,y), Ty(t,x,y) in an obvious manner as in (2.6) and denote
GV = {(t7$7y) : (t7$) € [07T] X Rday € Vb(t7$)}'

As before we may use the simplified notations r,n, 7 when there is no confusion, and we
will always use their modified version or extension as in Remark 2.1.

Recall (2.13) and (2.14) when V is defined on R. Now for our more general V and for any
function f : Gy — R, we define its intrinsic partial derivatives 9, f € R, d,f € R%, Oyf € R™,
and the higher order intrinsic derivatives in an obvious manner, for example, the second

order derivatives are defined as:

Moreover, for f: Gy — R™, we define its intrinsic derivatives component wise.
Finally, by considering the special function fy(z,y) := y and its natural extension

ﬁ)(m, y) =y, applying (2.14) component wise we define the intrinsic derivatives of V.
Definition 2.5 For any (t,z,y) € Gy and by denoting fo(xz,y) =y, define

8tV(t7x7y) = 8tf(](t,$,y) = _vtr(t7$7y)n(t7x7y) € Rma

(2.16)
Op, V(t,x,y) := 0Oy, fo(t,z,y) = =Vy,r(t,z,y)n(t,z,y) e R™, i=1,---,d.
We recall Remark 2.3 and note that (2.14) becomes: for any f € C!(Gy),
Of =Vif +Vyf 0N, 0pf=Vauf+Vyf 0.V, onGy. (2.17)

Note that 9,V and 0,V are functions on Gy, then we may continue to define higher order

derivatives of V by applying (2.14) or (2.17) repeatedly.
Lemma 2.6 Assume ry € C2([0,T] x R, D). Then

Orie; V(t,2,y) = =Vt n(t,x,y) — Vg, r Opn(t,z,y); (2.18)
8xni = nyir; 8yni = Vyl.yr, (219)

11



The proof is quite straightforward, we thus postpone it to Appendix. Throughout the paper,

we shall take the notational convention:
0,V :=10,V,---,0,,V] € R™xd 9 Vi = [axlxvi,--- ,Oxdei] e Rxd,

(2.20)
Oen = [y, -, 0p,m] ER™ 9n =[9,n, -8, n] € R™*".

Remark 2.7 (i) At (t,z,y) € Gy, since [n|> =1, by (2.15) we have 9;;n-n = 0. That
is, Op,n(t,r,y) € Ty(t,z,y). So (2.18) provides an orthogonal decomposition of Oy.V. In

particular, unlike the first order derivatives in (2.16), Oz,z; V is in general not parallel to n.

(i) 1t is clear that

OzzV 1= [0p,5,V - 1] —Vor € R4

1<ij<d —
is symmetric. However, in general 0.,V is not symmetric:

Vi, v0pn # Vi, x0pm, i # j.

(111) Oyn = Vyr € R™™ is symmetric. Moreover, since Oy,n-n = 0, we see that 0 is

an eigenvalue of Oyn with eigenvector n. |

Example 2.8 (i) Let w : [0,T] x R? — R? and u : [0,T] x R? — (0,00) be continuously
differentiable. Set, with d = m = 2,

V(t,x) = {y eR?: |y —w(t,z)| < u(t,x)},
and thus Vi(t,z) = {y e R* : |y —w(t, z)| = u(t,z)}.

It is clear that
r(t,z,y) =y —w(t,z)| —u(t,z), (t,x,y) € [0,T] x R* x R*.

Then, for (t,x,y) near Gy (so that |y —w(t,z)| > 0), by straightforward calculation,

Vr:_w_vu. \V/ r:_w_v u: vr:yi—wi.
! ly — wl ot ly — wl Yy —wl
v o Ve Vew—(y—w) - Vegw [y-w) Veullly—w) Vo] o
Tilj~ ’y_,w‘ ’y_w‘g Tz Wy
i ly — wl ly —wf? Ty — ) ly—wp® 7

12



Then, by (2.2), Definition 2.5, and Lemma 2.6, at (t,z,y) € Gy we have

n= %; oV = [Vtw -n+ Vtu]n; 0,V = [Vmiw -n+ inu] n;

1 o1

O, = " [ - Vaw+ [n-V,wn], 8,n 1oy — n'n’];

T (2.21)

1
[ijw -n+ iju] [inw — (Vyw- n)n].

u
In particular, we see that in general Oy, V # Op;2,V for i # j.

(i) Consider a special case that w =0 and u satisfies the heat equation:
1
Viu + §tr (Vggu) = 0.

Then by (2.21) we have O,V = Viu n, 03,2,V = Vyp,u n, on Gy. Thus V satisfies the
following equation: O,V + %tr (022V) = 0, on Gy. This clearly implies the following set

valued heat equation:
1
n- [(%V + étr (GMV)] =0, on Gy.

We remark that we assumed r had bounded derivatives on Gy in all above analyses. For
our applications later, however, V(T z) could be degenerate, in the sense that V(T',z) =
{g(z)} is a singleton and hence a degenerate manifold in R™. Note that in (2.21), 0,n, dyn,

and 0.,V explode when u = 0. This motivates us to define the following space.

Definition 2.9 (i) We say V € CY2([0, T] x R4, DY) if ry € C%(0:(Gy); R) for some e > 0
such that all the related derivatives are bounded and uniformly Lipschitz continuous in y.
Consequently, 0;V,0,V,0.,V, 0;n, Oyn are bounded and uniformly Lipschitz continuous in
y on Gy.

(i) We say V € C12([0,T) x RE D) if Ve CO([0,T] x RE: DY), and V € CH2([0, T —
§] x R4 D) for all 0 < 6 < T. Note that we do not require V(T,x) € DY here.

3 The set valued Ito formula

We first introduce the probabilistic setting. Let Q := {w € C([0,T],R%) : wo = 0} be
the canonical space, B the canonical process, i.e. B(w) = w, P the Wiener measure,

i.e. B is an P-Brownian motion, and F = F? the natural filtration generated by B. For

p
loc

measurable E-valued processes 6 such that fOT |0:[Pdt < oo, a.s., and L (R™; E) the space

loc

a generic Euclidian space F and p > 1, let L) (E) denote the space of F-progressively
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of F-progressively measurable random fields ¢ : (t,w,y) € [0,7] x Q x R™ — E such that
5('7 *y 0) € Lp

loc
Fix V € C?([0,T] x R DY) with corresponding € > 0, and 29 € RY, b € L} (R?),
ccl? R™ ¢cLl (R™R™), ¢elL? (R™R™*?). Denote,

loc loc loc

(E) and ¢ is uniformly Lipschitz continuous in y.

t t
X; = :170+/ bsds—l—/ 0sdBs,
0 0
and introduce the (random) differential operators: recalling (2.20),
1
LYV (t,w, z,y) == 8,V + 8, Vb + §tr (00,2 V0);
1
KG¢(tw, z,y) = tr (¢ Oyno + §CT8ynC) n.

where tr (07 0, Vo) € R™ with i-th component tr (¢ ' 8,, Vo). Moreover, recalling Remark
2.1, we may extend the derivatives of V and n to [0, 7] x R? x R™.

We are now ready to establish the set valued 1t6 formula.

Theorem 3.1 Let V,xz,b,0,X,&,( be as above. Assume, and for each i, (;(t,w,y) €
Ty (t, Xt (w),y) holds for all y € Vy(t, X¢(w)), for dt x dP-a.e. (t,w). For each y € R™, let
TY denote the unique strong solution of SDE: recalling Remark 2.1,

t t
Tyt / L9V — k3¢ + €] (5, X, TV)ds + / [0,V0 + ¢](s, Xo, TV)dB,.  (3.1)
0 0
(i) Assume &(y) € Ty(t, X¢,y), for all y € Vy(t, Xy), for dt x dP-a.e. (t,w). Then
{7 1y € Vy(0,20)} C Vy(t, Xy) a.s., forall0 <t <T.

In particular, in this case no extension is needed in (3.1).

Moreover, if Vi, takes values in connected compact sets, then the equality holds:
{YV:yeVy(0,20)} =Vy(t,Xy) as., for all 0 <t <T.

(ii) Assume &(y) -ny(t, X¢,y) <0 for ally € Vy(t, X (w)), for dt x dP-a.e. (t,w). Then
{Y7 1y € Vy(0,20)} CVo(t, Xy) as., for all0 <t <T.

(iii) Assume &(y) ny(t, Xy, y) > 0 for ally € Vy(t, X (w)), for dt x dP-a.e. (t,w). Then

{7 1y € V(0,20)} C VE(t, X3) a.s., for all0 <t <T.
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Proof (i) Fix yo € Vi(0,20) and denote T = Y¥. Introduce
Ti=inf {t > 0: (t, Xs, T¢) ¢ O(Gy)} AT.
Since (0, xg,yo) € Gy, then 7 > 0, and r is smooth on [0, 7]. By the standard 1t6’s formula,

dr(t, Xt, Tt) = A(t, Xt, Tt)dt + M(t, Xt, Tt)dBt, where (32)
A:=Vir +V,r-b+ V,r- (LYY — k3¢ +€)

+%tr (JTerJ + (0:Vo + ¢) 'Vyyr(0:Vo 4 ¢)) + 20, Vo + C)Tvxyra);

M:=V,r'o+ Ver(amVa + Q).
We claim that, when y € Vi (¢, z),
A(t, Xi,y) = n(t, Xe,y) - &(y), M(t, X, y)=[n-C,- - on- Gt X, y). (3.3)
Indeed, in this case we have V,r = n. Then by (2.16), (2.18), and (2.19) we have:
n- (L%V = kGC+E) = —Vir = Vor-b— Str (0" Vyuro +2¢"Vyyro + (TVyr¢) +n- &
<Vyyr8xV)ij =Vyyr- 0, V=-V,,r-Vyrn=0, 1<i<m,1<j<4d;
((axV)Tvxyr) =0V Vayr= —Varn Voyr=0, 1<ij<d

Here we used the facts ;;n-n = 0, Vy,ur-n = 0, V,,,r-n = 0. Plug these into the
expression of A in (3.2) we obtain A = n - £ straightforwardly. Similarly,

M: =V, o—n'[Vyrn, -,V rmjo+n'¢=n'(.

Thus (3.3) holds true.
Since f(t, y)7 CZ (t7 y) € TV(ta Xt, y)7 we have

A(taXtvy) :M(t7Xtay) =0, vy GVb(t7Xt)‘
Now for any (t,z,y) € O-(Gy), since 7(t,z,y) € Vy(t,z), then
A(t,Xt,ﬂ'(t,Xt,Tt)) :O, M(t,Xt,ﬂ'(t,Xt,Tt)) :O, OStST

Note further that |Y; — 7(¢, X¢, T¢)| = |r(t, X¢, Tt)|. Then, by the desired regularity in
Definition 2.9 (i) we have

A(tht7 Tt) = A(tht7 Tt) - A(tht77T(t7Xt7 Tt)) = Btr(t7Xt7 Tt)7
M(t7Xt7 Tt) = M(taXt7 Tt) - M(taXtaﬂ-(uXh Tt)) - &tr(taXta Tt)? (34)
where by < C[1+ [be| + |ou|* + G (0)]*),  15¢] < Cllow| + ¢ (0)]].
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In particular, b € L} (R), 6 € L2 (R%). Note that (3.2) becomes:

loc loc
dI‘(t, Xt, Tt) = Btr(t, Xt, Tt)dt + 6tr(t, Xt, Tt)dBt, 0 <t<T. (35)
Introduce
t ¢
~ - 1
o= exp ( - / 5o dB. — / by + 515 Pds). (3.6)
0 0 2
Then, recalling r(0, Xo, To) = r(0, zo,y0) = 0, we have
r(t,X;, Yy) =r(0,Xo, Yo)ly =0, 0<t<T

This implies 7 = T', a.s. and thus T; € Vy(¢,X;), 0 <t < T, as.

Moreover, assume further that V, takes values in connected, compact sets. Note that
y + Y7 is a homeomorphism almost surely (See Kunita [16]). In particular, it is continuous
and locally one-to-one. Since V3(0, o) is compact, it is mapped to a closed set in V;,(0, zg).
By invariance of domains for manifolds without boundaries, y — Y is an open mapping
in relative topologies of V,(0, xq),Vy(t, Xl? 0). Therefore, V,(0,9) maps to an open set in
Vi (t, Xt0 "0). This concludes the equality as we assumed connectedness.

(ii) In this case, by (3.3) we have
A(ta Xt7 y) = n(ta Xta y) : é.t(y) < 07 M(t7 Xt7 y) = 07 for all ye Vb(t7 Xt) (37)

Fix yo € Vy(0,20) and denote T = Y¥. Let 0 < § be small enough so that r(0, 29, yo) < —0.

Introduce recursively a sequence of stopping times: 79 := 0, and for n =0,1,-- -,

Tont1 := inf {t > Ton tr(t, Xy, Ty) = —5} ANT;
Toan+2 ‘= inf {t > Top41 - ’I‘(t,Xt,Tt)‘ = 2(5} ANT.

Since r(0, g, yo) < —0, it is clear that r(¢, Xy, Ty) < =6, 790 <t < 1. Now for 1 <t < 79,
note that |r(t, Xy, T¢)| < 2. Then by (3.7) and following the same arguments as in (3.5)

we derive: for 71 <t < 75 and denoting m; := w(t, Xy, T¢),
dr(t, Xt, Tt) = [gtr(t, Xt, Tt) + n(t, Xt, 7Tt) . St(ﬂ-t)] dt + &tr(t, Xt, Tt)dBt

Since r(11, X+, Tr,) < 0 and n(t, Xy, m) - £&(m) < 0, we can easily see that r(t, Xy, Ty) <0
for all 7y <t < 7. In particular, r(7e, X,,,Y;,) = —20 < —d on {72 < T'}. Repeating the
arguments we see that r(¢, X;, T;) < 0 for all 0 < ¢ < 7, and for all n.

It remains to show that 7,, = T for all n large, which clearly implies that r(¢, X¢, T;) < 0

for all 0 <t < T. Assume by contradiction that 7,, < T for all n. Then
r(T2n+17X72n+17T7—27L+1) = —9, r(T2n+2vXT2n+2’ T7'2n+2) = —20, Vn.
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Denote 7, := li_}rn Tn. Sending n — oo at above and by the continuity of X; and Yy, we
n o

obtain r(7y, X;,, T, ) = —d and r(7., X;,, T, ) = —24, which is a desired contradiction.

(iii) follows from similar arguments as in (ii). [ |

4 A multivariate control problem

Recall the canonical setting introduced in the beginning of Section 3. Given 0 <t < T, we
shall also consider the shifted Brownian motion B! := Bs; — B;, and the shifted filtration
Ft := FB' on [t,T]. For a generic Euclidean space E, let L2(F;, E) denote the set of
Fi-measurable square integrable E-valued random variables, and L2(F!, E) the set of F'-
progressively measurable square integrable E-valued processes on [t, T].

Let A be a domain in some Euclidean space. For each t € [0,7T], our set of admissible
controls A; consists of F'-progressively measurable A-valued processes o. We remark that in
this paper we consider open loop controls, which is more convenient to study the regularities
and to construct desired approximations for our value functions. However, as in standard
stochastic control problems, one can easily see that the set values in this section will remain
the same if we consider appropriate closed loop controls.

Given (t,z) € [0,T] x RY, consider the following controlled dynamics: for each o € Ay,

s s
Xboo — x—i—/ b(r, XL% a,)dr +/ o(r, X" a,)dB,,
t t 4.1
tx,o t,z,a T t,r,x t,x,a 7t T,0 r t,x, ( )
}/:97 ’ _g(XT )+ f(ra)(r7 ’ 7}/;“7 ’ 7Zr7 ’ 7a7’)dr_ Zr7 ' dBT
s

s

Here X,Y, Z take values in R% R™ R™*¢ respectively, and b, o, f, g are in appropriate di-
mensions and satisfy certain technical conditions which will be specified later. We emphasize

that Y is typically multiple dimensional: m > 1. Our set-value is defined as:
V(t,z) = cl{ YVt a € A} CR™. (4.2)

Here cl denotes the closure. Thus V is a set valued mapping [0, 7] x R? — 2R™  We now

motivate this set-value function in the following remarks.

Remark 4.1 In the scalar case: m = 1, consider the standard control problems:

ut,z) = inf YU ot @) = sup VO
acAs aeAs

Then it is obvious that
V(t,z) = [v(t, z),v(t, o). (4.3)
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That is, the standard optimization problems are characterizing the boundary of our set-value
function. In this paper, we will characterize the boundary of V through a set valued HJB
equation, and thus we extend the scalar optimization problem to the multivariate setting.

Remark 4.2 The set valued functions can be used to analyze some time inconsistent opti-
mization problems. Consider the well known mean variance optimization problem:
A
Vo := sup [E[X%xo’a] - =
acA s 2 R
where X0 = ¢ +/ a,dr +/ o,dB,.
t t

V(2] B

Here X, B, a are all scalar processes. Note that Var(Xt) = E[|X7|?] — |E[X7]|>. Introduce

V(t,x) := cl{Ytt’m’a ca€ Ay, where

T T (4.5)
Yt,m,a,l _ Xt7SC7Oé o / Zt,x,a,ldB Yt,m,a,Q _ ’Xt,l‘,a’2 o / Zt,m,a,2dB
s - T T T s - T s T
S S
Then one can easily verify that
Al 9 A
Vo= sup @ly), where o(y) :=yi+ Slnl” = Sy (4.6)

yGV(O,xo)
Our goal of this paper is to characterize the dynamic set-value function V. In fact, in
this special case we can solve V explicitly, following the calculation in Pedersen-Peskir [17,

Theorem 3,Part 2] *:

(y1 — we=(T=1))?
1— e—(T—t)

V(t) = {(n,92) sy € Ry > e T 022 4 3-8 (4.8)

Then, given the set V(0,x), it is trivial to solve the deterministic optimization problem

(4.6):

1
Vo =x0+ —[el —1], with optimal arguments in (4.6):

A 2 T A a2 LT (4.9)
yp =20+ <let — 1],y =yt + et —1].
A A
We also refer to Section 7 below for the related time inconsistency issue. |

2In the mean variance portfolio selection literature, including [17], typically one uses geometric Brownian

motion setting and the controlled dynamics (the wealth process) becomes: with u denoting the control,
Xbow = :c+/ uTX:'x'“dr—i—/ u X" dB,. (4.7)
¢ ¢

Clearly, this is equivalent to our formulation by setting & = uX and then X“®" = X%®%. Moreover, as
already observed in [17], the optimal u} explodes when Xb®" = 0. Our a* always exists however, as implied

by [17].
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Remark 4.3 (i) The problem (4.2) can also be viewed as a stochastic target problem:

V(t,z) = cl{y € R™ : 3a, Z such that V"% = g(X5"), a.s.},
i (4.10)
where Ym0 =y - / Flo, Xpme Yimved, 7, ap)dr + / Z,dB,.
t t

(ii) Note that at above V(T,z) = {g(x)} is a singleton. In this respect we may easily

extend our setting to non-degenerate terminal G : R? — Dy*. That is,
V(t,z) :=cl{y € R™: 3o, Z such that thyaz € G(X txo‘ ), a.s.}. (4.11)

All our results in this paper can be extended to this case as well, see Section 8.1 below. M

In the rest of this section, we establish the dynamic programming principle (DPP) for

V. For this purpose, we first specify the technical conditions on the coefficients.

Assumption 4.4 (i) (b,0) : (t,2,a) € [0,T] xR x A — (R%, R¥*) are bounded, uniformly
continuous in (t,a), and uniformly Lipschitz continuous in x.

(i) f: (t,x,y,2z,a) € [0,T] x R* x R™ x R™*4 x A — R™ is uniformly continuous in
(t,z,a) and f(t,z,0,0,a) is bounded. Moreover, f is continuously differentiable in (y,z)
with Vy f, V. f bounded and uniformly Lipschitz continuous in (y, z).

(iii) g : © € RT — R™ is bounded and uniformly continuous in x.

It is clear that (4.1) is wellposed for any o € Ay, and thus V is well defined by (4.2).
Now for 0 <t < T, x € R? F-stopping time 7 > t, ¢ € L%(F!,R™), and o € Ay, introduce:

Y377¢;t7m7a — ¢ + / f(;,a’ X;E’x’a’ Y;T7¢);t7m7a’ Z:,¢;t,$,a’ Oér)dT‘ _ / Z;—7¢;t7x7adBr. (4‘12)
S

s

We then have the crucial DPP.

Theorem 4.5 Let Assumption /j.4 hold and V be defined by (4.2). For any 0 <t < T,
z € R, and any Ft-stopping time T > t, it holds

V(t,x) = {79 Va € Ay, ¢ € LA(FLR™) st ¢ € V(r, XE%%) a.s. ). (4.13)

Proof Without loss of generality we prove (4.13) only at (¢, ) = (0, z), and for notational
simplicity we omit the superscripts %#°. Denote the right side of (4.13) as V(0, z).

Step 1. We first show that V(0,z0) C V(0,z¢). Fix arbitrary yo € V(0,20) and € > 0.
By definition of V(0, z¢) there exists a = a® € Ay such that |yo — Y| < e. Denote ¢ := Y.
It is clear that Y = YOT’@O‘ and thus |yo — YOT’@O‘| < e. We claim that

¢ € V(r, X?) a.s. (4.14)
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Then Y(]T’(b;a € V(0, ), and by the arbitrariness of ¢ > 0 we obtain y € V(0,z0).
To see (4.14), we consider the shifted canonical space: Q; := {w € C([t, T],R?%) : w; = 0}.
For any w € Q,& € 4, and ¢ € L?(Fr), introduce

(WDt @), 1= wslio) + (wi + <:)s)l[t,T](S)y @) = E(w e ).

Then it is clear that w ©; @ € €, and &b € ]Lz(f}) for a.e. w € Q. In particular, for a.e.
w € €, we have o € Ay, and by (4.1) and denoting @t := (p%%0:2)tw for ¢ = XY, Z,

s

S
X7 = X3) 4 [ b Xp ol [ o(r XPT 7By,

T T
Ve g 4 [ pn X Yo, zpr apyir - [ zpmeaB.
s S

This implies (4.14) immediately.

Step 2. We next prove the opposite inclusion: V(0,z) C V(0,z0). Fix arbitrary
yo € V(0,20) and € > 0. By definition of V(0,z¢) there exist & = af € Ay and ¢ = ¢° €
L2(F,,R™) such that |yo — Y **| < ¢ and P(E) = 1, where

E:={weQ:¢w)eV(rw),X(w))}.
Our goal is to construct an & € Ag such that
Y — Y% < Ce. (4.15)

Then |yp — Y§| < e+ Ce. Since Y € V(0,z¢) by definition, then y € V(0,z0).

We construct & by utilizing the desired regularities as in the standard literature. First
let 0 =ty < --- < t, =T be a partition such that t; —t,_1 < 2,4 = 1,--- ,n, and let
{O7"}j>1 be a partition of R™ and {O¢} > a partition of R? such that the diameter of each

O;” and O,‘f is less than €. We now denote

Ef ={ti1<7<t}, E{:={pcOl}, Ep:={X2eO0}}

n
=Y tilpr, Ep=ENE NE]NEf, whered =i,j k. (4.16)
i=1
For any 6 = (i, j, k) such that Ey # ), choose w? € Ey such that
P({r > tg} N Ey) < ’P(Ey), where tg:= r(w?), zg:= X, (W"). (4.17)
Moreover, since ¢(w?) € V(tg,x4), choose o’ € Ay, such that
|p(w?) — Yoo | < e, (4.18)
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We then construct & € Ag by: denoting w’ :=ws —w;, 0 <t <s < T,

i (w) = (W)L 7 (w)) (B) + Ljr),r [Z 1g, (w)af (') + aolEc],

where the summations are over all § = (i,j,k) withi=1,--- ;n and j,k > 1, and ap € A
is an arbitrary value.

Step 3. We now verify (4.15). First, for any 6 = (i, j, k) such that Ey # (), a.s. on Ey
we have 7. = t; >ty and, denoting (X%, Y? 729 .= (Xt‘)’xe’ae, Yt‘)’m‘)’ae, Zt‘)’m‘)’ae),

t t
X=X+ /b(s X¢ as)ds+/ o(s, X% as)dBs, t€ [tg,ti],

to

t
Xt - Xt / b Sy Xa Bte))d8+/t 0-(87X;i7ag(Bt6))stv te [tiaT]7

t
Xf:xg—l—/ b(s, XY, S(Bte))ds—l—/ o(s, X%, a%(B%))dB,, te€ [ty,T].

to to

Since b, o are bounded, and |X{ —xg| < ¢, t; —tp < €2, by standard SDE estimates we get
Er, [ sup |X?—Xf|2} < Ce?, and then Egz, [ sup | X — X0)?| < Ce2 (4.19)
o Lig<i<t; oLy <t<r

Similarly, note that
~ T ~ ~ ~ T ~
g0+ [ f6XEYE 28 al(B s - [ Z8dB., te 6.1,
t t
R . ti R . R t; R
YO = YOt [ f(s X8 YR, 20, 0)ds —/ Z8dB,, t € [to,ti],
t t
T T
= 9(X7) + / fls, XYY, 24, af(BY))ds — / ZdBs, t€ [ty T).
t t
Then, by (4.19) and standard BSDE estimates we have

Er, [ sup |V — Yfﬂ < Ce%,  and then Er, [ sup Y2 — Y72 < Ce%
t; <t<T tg<t<i;

In particular, this implies that
\Y;‘;‘ — Y;Z\ < (Ce, as. on Ey. (4.20)

By Assumption 4.4, one can easily see that Y, Y® are bounded. Consider the BSDE:

. to o~ to
Ve =v? +/ f(s,29,Y0, 29 ag)ds — / Z%dB,, t € [ti_1,te). (4.21)
t t
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Note that Ytg is deterministic, then so is YY and thus Z¢ = 0. Therefore,

- to N
sup Y — Y;g] < / |f(s,29,Y2,0,a0)|ds < C(t; — t;_1) < Ce2.
ti—1

ti—1<t<tg

Moreover, note that Fy € F, and
. . to C to
Yo=Y+ [ f(s, X8, Y2, 78 ag)ds — / Z94B,, t€ [ti_1.tg)-
t t
Compare this with (4.21), by (4.20) and standard BSDE estimate we have
E]:T[ sup |V;& — 57;9\2] < Ce? as. on {1 <ty}N Ey.
T<t<tg

Then

Y2 -V < Y2 =Y+ |V - Y| < Ce, as. on{r<ty}nEy
This, together with (4.16) and (4.18), implies that, for a.e. w € {17 <tp} N Ey,

Y (w) = o(w)] < |V (w) = Yig| + 1Y — d(w”)] +[6(w”) — d(w)]| < Ce.

Note that {Ey} form a partition of E and P(F) = 1, then by (4.17) we have

PV — ¢ > Ce) <Y P({r >tg} N Ey) < Y P(Ey) =&,
0 0

Note again that Y% and ¢ are bounded. Then
E[|YY - ¢?] < Ce? + CP([Y? — ¢| > Ce) < Ce™ (4.22)

Finally, note that Y, = tT’YTa;a, 0 <t < 7. Then, by (4.22) and standard BSDE

estimates we have

E[ sup |}/tol _}/tT,d);a|2:| < 062.
0<t<r

This clearly implies (4.15) and hence completes the proof. |

5 Set valued HJB equations

We now derive the set valued HIB equation for V from the DPP (4.13). Introduce the
Hamiltonian: for (t,z,y) € Gy, z € R™*? ~ € (R>*H™ ac A, ¢ € (Ty(t,z,y))?,
1
ICV(t,x,y,a, C) =tr (CTaan(t7x7y)0-(t7x7a) + §<TaynV(t7x7y)C) nV(t7$7y);
1

hV(taxayazafﬁ a, C) = hg/(taxay72777 a, C) + f(taxayazo-(t7x7a) + C,CL);

Hy(t,x,y,2,7) = sup ny(t,z,y) - hy(t,z,y, 2,7, a,Q);
A€ A CE(Ty (t,a,y))
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where tr (0 yo) € R™ with i-th component tr (6" v’c). Then our set valued HJB equation

takes the form:

LV(t,x,y) =0, V(t,z,y) € Gy, where

(5.2)
‘CV(tv z, y) = atV(tv €, y) : l'lV(t, €, y) + HV(t7 z,Y, 8xV(t7 z, y)7 8wwV(t7 €, y))
Equivalently, by (2.2), (2.16), (2.18), (2.19), we may rewrite the above equation:
Viry + inf Vary - b+ 1tr (UTerVU + 2CTnyrVa + CTVyerC)
a€A,Ce(Ty (ta,y))? 2 (5.3)

_ver : f(tv z,Y, _ver(ver)TU + Cv (l)] = 07 (t7 z, y) € GV-
Remark 5.1 (i) For the scalar case as in Remark 4.1, by (4.3) we have

Vi(t,z) = {v(t,x),v(t,z)}, n(t,z,v(tz))=-1, n(tz0(tx)) =1,
Ty(t,z,v(t,x)) = Ty(t,z,0(t,x)) = 0.

In the neighborhood of y = v(t, z), we have ry(t,x,y) = v(t,x) —y and n(t,z,v(t,x)) = —1.
Then (5.3) reduces to the standard HJB equation for v:

. 1 T T _
Vi + ;Ielfx [ny b+ 5‘51‘ (0 Vazvo + f(t,z,v, (V) ' o, a)] =0.

Similarly, in the neighborhood of y = v(t,z), we have ry(t,z,y) =y —0(t,z) and
n(t,z,v(t,x)) = 1. Then (5.3) reduces to the standard HJB equation for v:

1
VU + sup [Vxﬁ b+ itr (UTVMEU + f(t,z,7, (V;ﬁ)Ta, a)] =0.
acA

(ii) Although rv is scalar, we emphasize that (5.3) holds true only on Gy, and the set
Gy is in turn determined by the solution ry. So (5.3) is actually quite involved, and we can
not apply the standard PDE theory on it.

(i) It is clear that V(T,z) = {g(x)} is degenerate, so we do not require the smoothness

of V at T. See Definition 2.9 and the paragraph above it. |

Remark 5.2 Note that Ky relies on  quadratically, and the space of ¢ is typically un-
bounded, so in general Hy could blow up and then the set valued PDE is not well defined.
(i) In the scalar case: m =1, we have Ty(t,z,y) = {0} for all (t,z,y) € Gy. Then this
1ssue 18 trivial. Indeed, in this case the set valued PDE reduces back to the standard HJB
equations, as we saw in Remark 5.1 (i).
(it) For m > 2, recall Remark 2.7 (ii) that Oyny = V,ry is symmetric and 0 is an

eigenvalue with eigenvector n. At any fived (t,x,y) € Gy, let Ay < -+ < A1 be the other
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etgenvalues. When f has linear growth in z, which is implied by the Lipschitz continuity,
and \1 > 0, then clearly Hy < oo. In this case V(t,x) is strictly convex.

(iii) When f has linear growth in z, one may easily derive from Hy < oo that Ay > 0. So,
unfortunately, our classical solution V has to be convex. Thus one should explore appropriate
notions of weak solutions in the noncovexr case, which we will leave to future research.

(iv) When f has quadratic growth, this convezity is not required, as we will see in
Ezample 5.3 below. We shall remark though such quadratic growth violates Assumption 4.4,

which is assumed for technical reasons and can be weakened. |

Example 5.3 Consider a deterministic example where f,g and hence V are independent
of v. Setm=2, A={a€R?:|a| <1}, g =0, and f = (f1, f2) are specified at below:

2y1y2a1

+ (1 +y?)as.

fila,y) = a1,  fa(a,y) =
Then V(t) can be solved explicitly and is nonconver when T —t > %:

Vi(t) = {y(t,ﬁ) Vo € [0,271]}, where
(5.4)
Vi(t,0) := (T —t)cos, Wa(t,0):=(T—t)[1+(T - t)? cos® 0] sin6.

We postpone its proof to Appendix.

We now turn to the wellposedness of (5.2). We first define classical solutions rigorously.

Definition 5.4 (i) Let Cy%([0,T) x R%: DY) denote the set of Ve CH2([0,T) x R%: DY)
such that, for any To < T, the eigenvalue A1 of Oyn(t,x,y) in Remark 5.2 (ii) has a lower
bound cr, > 0 for all (t,z) € [0,Tp] x R, y € Vy(t,z). That is,

tr <§T8ynv(t,a;,y)§> > CTO’CP V(t,a:) € [OaTO] X Rday € Vb(tax)7g € TV(taxay)(55)

This implies that Hy(-,0,;V, 0., V) is finite and uniformly continuous whenever t < Tj.
(ii) We say V € CS’Q([O,T) x R%: D) is a classical solution to (5.2) if it satisfies (5.2)
for all (t,z) € [0,T) x R? and y € Vy(t, ).

We shall provide an example in Example 6.4 below. We next establish a crucial estimate,

whose proof is postponed to Appendix.

Lemma 5.5 Let Assumption 4./ hold and V be defined by (4.2). Assume V € 05’2([0,T) X
R4 D). Fiz Ty < T and 9 € RY. Lete,8 > 0 and a € Ag be such that |ry(0, 29, V)| < &,
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where (X, Y%, Z%) = (X%zoa yOzoa 70200 gre defined by (4.1). Then there erists a

constant Cr,, which may depend on Ty but is independent of €,6, o, such that

g
P s et XV 2 6) < O (56)

0<t<Tp

In particular, if Y§* € Vy(0,20), then Y, € Vy(t, X5*), 0<t <T, a.s.
The main result of this section is the following theorem.

Theorem 5.6 Let Assumption 4./ hold and V be defined by (4.2). AssumeV € Cy([0,T)x
RY: D). Then V is a classical solution of (5.2) with terminal condition V(T,z) = {g(x)}.

Proof It is clear that V(T,z) = {g(x)}. Without loss of generality, we shall verify (5.2)
only at a fixed (0,z0,y9) € Gy, and for notational simplicity, in this proof we omit the
supscripts %*0:¥0 and the subscript v in r,n, 7. We proceed in two steps.

Step 1. We first show that £LV(0, g, yo) < 0. For this purpose, we fix an arbitrary a € A
and let X® := X%%0:% he defined by (4.1) for constant control process a = a. Moreover, we
fix arbitrary &, ¢; : [0, T] x QxR™ — R™ i =1,--- ,d, which are F-progressively measurable,
bounded, continuous in ¢, uniformly Lipschitz continuous in y, and &(t,w,y), (;(t,w,y) €
Ty(t, Xf(w),y) for all y € Vy(t, X{(w)), for dt x dP-a.e. (t,w). Denote ¢ = (¢1,--- ,(yq) and
consider the SDE:

t
T;/Lva =Y+ /0 [agV + hg/(, amV, 8xxV7 a, <s) + g] (37 Xg) ’rg«,f,C)ds

t (5.7)
+/ [0,V (-, a) + (] (s, X2, Y24)dB,.
0

Applying the It6 formula Theorem 3.1 we have Tf’g’c € Vy(t, X7), forall0 <t < T.
Now for any § > 0 small, consider the BSDE (4.12) with terminal condition (9, Tg’g’c):

4 4
Yt&a,E,C _ Tg,E,C _|_/ f(s,Xg,Ys‘s’“’f’C, Zg’“’f’g,a)ds _/ Zg,a,&Cst’ 0<t<3é. (5.8)
t t

Since Tg,i,c € Vi (0, X§), by the DPP (4.13) we see that YOJ’CL’E’C € V(0,zp). Denote

AYD = YR xS AZD = 205 — [0,Vo () + ¢t X TS0,
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Then, by (5.7) and (5.8) we have
1)
AY? = / [atv+ hy (-, 0.V, 0.4V, a, ) +g] (5, X% Y0 ds — / AZ3dB,
t
é
+ / £, X2, Y308 Z006C ) — f(s, X0, VI = AYS, Z096€ — AZ8, a)| ds
t
é é
= / [@V + hV('a amVa ammV7 a, C) + f] (Sv ng T?&C)ds - / AngBs
t t
5 ~
v / [bSAY£ + &SAZ§] ds,
t

where b, 5 are appropriate F-progressively measurable bounded processes. Then, for the T'
defined by (3.6), we have

raYy - / P[0V + 1. 0,V, 00,7, ,0) + €] (5, X2, T2 ds
/ [, [AZ) + AY5] - dB,.
In particular,
6 ~
AY = E[ / Lo [0V + hy (-, 0.V, 052V, a, ) + €] (s, X&, YLEC)ds . (5.9)
0

Given our conditions, it is clear that \AYO‘;\ < C§, which implies that %in% Yo‘s"’“f’C = 7.
_>
Since YOJ’CL’E’C € Vo(0,z0) and yo € V(0,2z0), then

i 5

Now by (5.9) and the desired continuity of fs,Xg,T§’€’<,§8 in s as well as the desired

regularity of all the involved functions in (z,y), we have

1 6 _
0 > lim ~E |:1’l(0, zo, yO) ' / Fs |:8tV + hV('v a:EV7 8wa7 a, C) + £i| (87 ng T?&C)ds}
5—00 0

| g
= lim S [n(O, o, yo) . / |:8tv + hV('a axv7 8Z‘Z‘V7 a, C) + §:| (07 Zo, yO)dS]
0

6—0

= n(07 Zo, yO) : |:atV + hV('7 8Z‘V7 a:c:cV7 a, C) (07 Zo, y0)7

where the last equality is due to the assumption £ € Ty. Now by the arbitrariness of a, ¢
we obtain LV(0, zg,y0) < 0.

Step 2. We next show that £V(0,z¢,y9) > 0. For this purpose, fix Ty < T, and
throughout this proof, the generic constant C' may depend on Tp. Since V € CH2([0, Tp] x
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R% DY), there exists g9 > 0 such that r € C*(02(Gy)), where OT(Gy) := {(t,z,y) €
[0,Ty] x RY x R™ : |r(t,z,y)| < o}. Fix a sufficiently small constant ¢ > 0. Since yo €
Vi(0,zg), there exists « = a® € Ap such that

7r(07$07}/0a) =yo and |y0 - }/(]a| < 647
where (X, Y Z%) = (X%%0.a yO@o.a 70:20,.0) are defined by (4.1). Define
Ti=Te o = inf{t > 0: [r(t, X7, V™) > %} A To.

By Lemma 5.5 we have

4
P(r < Ty) <P( sup |r(t, X7, Y,)| > &%) < O/ 55 = Ce. (5.10)
0<t<Ty €

Step 2.1. Introduce two random fields:
Ct(y) = Z? - a:vvo-(tv Xtav Y, at)v
(5.11)
ft(y) = [atV + hV('7 8Z‘V7 81‘1‘V7 Oy, Ct)] (t7 X?u y)

Then we may rewrite the BSDE for (Y%, Z%) forwardly:
t
Ve = Ve [ [0 H 0.0V an ) + €] (5, X2, Y s
0
t
+/ [0,V (-, as) + ] (s, X2, Y )dBs.
0

We remark that, if V;* € Vi, (¢, X7*) and ((Y;*), & (YY) are in the tangent space Ty (¢, X, Y,%),
then LV(t, X/, Y,®) > —n(t, X7, YY) - &(YY) = 0, which is the desired inequality. In this
and the next substep, we shall prove these properties in approximate sense.

Denote 7§ := 7(t, X§*, Y,®). By (3.2) and (3.3), similarly to (3.4) and (3.5) we have,

dr(t, X7, Y1) = [r(t, X0, V)b —n- €1, X7 mp) | de

(5.12)
+ [r(t,X;’,Yﬂ)&t - nTg(t,Xg,w?)}dBt, 0<t<T,
where b, & are F-progressively measurable and satisfy: for some constant C' = Cry,
¢ < C, b < C[L+ 28], (5.13)

Recall the process I defined in (3.6), we have

r(0, 29, Y) — Tpr(r, X2,Y,%) :/ Den-&(s, X&, 7%)ds +/ Lon'¢(s, X2, 7%)dB;. (5.14)
0 0
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Moreover, by Assumption 4.4 one can easily see that Y is bounded, then fOT/\' Z3dB; is a
BMO martingale, and thus there exist ¢y, C' > 0, such that (c.f. [22, Section 7.2])

.
E[exp (co/ |Z§‘|2ds)] <C < o0.
0
In particular, this implies that, for any p > 1, there exists a constant C},, > 0 such that
E[ sup [Tl + \fty—l’]] <C,. (5.15)
o<t<r
Applying the standard Ité formula on |Tir(t, X, Y;*)|?, by (5.12) we have
T
B [ [Ran"¢(s. X3 7]
0
.
= E[IFx(r, X2, ¥R — (0,20, Y + 2/ F2p(s, X2, Y )n - (s, X2, 7%)ds
0

< Cet +052E[ sup |ft|2/ 1+ |Z§|2]ds} < Cet (5.16)
o<t<r 0

Step 2.2. Denote
A «a «a a _oy\d
Cs := Cs(ﬂ-s) _nnTCS(ﬂ-s) € (TV(S7X5 y g )) ;
. . (5.17)
fs = [atV + hV('7 8Z‘V7 ax:cV7 Qg, CS)] (Sa X;xu ﬂ-?)
By (5.2), (5.3), and by Step 1, we have
0<—LV(s, X 7%) <n(s, X, 72) - . (5.18)

sy s s s

Then, by taking expectation on both sides of (5.14) we have
—E[/ fsﬁV(s,X;’,W?)ds] < E[/ f‘sn(s,X;x,ﬂ?)-fsds]
0 0

<B[ [ Tanls,x2n) -] + B[ [ Tl - &as]

0 0

E [r(O, w0, V&) — Dyr(r, X2, Yf)} + IE[/O T.le, — §s|ds} .
Recall Remark 2.7 (iii), we see that tr ((nnTC)TGyn(nnTC)) = 0. Then, by (5.2),
€ = &| < Cln"¢(s, X7, 70,
and thus, by (5.16),
—E[/OT fscws,xg,w;’)ds} < E[/OT [on(s, X2, 7%) - fsds]

<E [r(o, w0, Y&) — Tor(r, X2, Yf)} + CE[/T fynT¢(s, X2, w?)\ds]
0

r 1/2
<Ce g 0(1@[/ |rsnTg(s,Xg,7rg)|2dsD < Ce. (5.19)
0
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Step 2.3. Fix another small constant § > 0. Since LV < 0, by (5.10) we have

MEV(O, o, yo)]

1)
_£V(07 zo, yO) = ]E - % / ‘CV(()) Zo, yO)dS - 5
0

% [/ V(s, XS, )ds] —ﬁV(OaSEo’yo)E[(l - %)1{T<5}]
+2E [/ [TV (s, X, 73) — £V(0, 70, 30)]ds]

Ce
ST E[ sup ‘FtﬁV(t X7, ) — EV(O,xo,yO)‘].
0<t<TAS

Since V € C12([0, Tp] x R DY), Hy is bounded and uniform continuous. Then, for some

modulus of continuity function p we have
Ce ~ o o
—LV(0,z0,y0) < 5 T CE[ sup [|Ty — 1]+ p(6 + | X" — @o| + |7f — yo\)]]. (5.20)

0<t<TAS

Recall (3.6), (5.13), and (5.15), we have
_ _ t t 1 5
E| suwp [Ty—1] <E[ swp [(Fv+ 1><|/ G, - dB| +/ o] + 5155 ?)ds) |
0 0

0<t<TAd 0<t<TAd
< OV5 + 0(1@[(/M6 |Z§‘|dt)2D% <OV6+ c\/S(E[/T |Z§‘|2dtD% < OV,
0 0

E[ sup | X} —1170@ < CV§;
0<t<TAd

E[ sup |nf—yol| < C2+E[ sup |V —yol]
0<t<TA 0<t<TAS

TAS 1
< C[2 + 3] + CE[(/ 2¢Par) ).
0
Then (5.20) implies

e 1 C o fe
—LV(0,20,30) < C|z+ V0| +Cp(0+0%) + <E[ sup [IX7 —wol + [’ — ol

J3 0<t<TAS
€ +\/_ ]

(53

c 1 TN ) 1

< ClS4VEtpo+08)+ E[(/ ¢ Par)?]. (5.21)
0 53 0

Step 2.4. Recall (5.5) and (5.18). Then by (5.19) we have

cesEl [ Funs, x0x) - euds] > E[ [ T IRIGP - CIE — Cld
€2 [0 sn(s, X, mg) - & 3]_ [0 S[2|CS| |Cs] ]3]

This, together with (5.15), implies that
TAS
E[/ .l Pds| < Ol + 4] (5.22)
0
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By (5.11) and (5.17) we have
1221 < 1G(rf)| + C < 1G] + - (8, XFmf)| + C.
Then, by (5.16), (5.22), and (5.15), we have

TAO

E[(/OTA6|Z§“|2dt)§] gO\/S+OE[(/O [IC}I?+In-C(t,X?,w;*)P]dt)ﬂ

30\/3+0E[( sup f;l/ ToICoPdt)® + ( sup f;2/ [0 (¢, X7, p)|Pdt)
0 0<t<t 0

o<t<r
T T _ 1
30\/3+0<E[/ Ft|§t|2dt+/ Ff|n-§(t,Xta,7rf‘)|2dt]>2
0 0
<CVE+C(e+0+22)2 < ClE+ Vi),

[NIE

]

Plug this into (5.21), we get

24Ve1 C
—ﬁV(U,xo,yo)SC[%+\/5+p(6+5%)+6 ;rl\q —1[\[+\f]
3 03
By first send € — 0 and then § — 0, we obtain —LV(0, zg, y9) < 0. m

6 The uniqueness of the classical solution

We now turn to the uniqueness of the classical solution, including the verification result.

Theorem 6.1 Let Assumption 4./ hold and V be defined by (4.2).

(i) Assume U € Cé’z([O,T) x R%: D) is a classical solution of (5.2) with terminal
condition V(T,x) = {g(z)}. Then U =V, and consequently (5.2) has a unique classical
solution with terminal condition {g(z)}.

(ii) Assume further that the Hamiltonian Hy(-,0,U, 05, U) has an optimal argument:

at =17 (tz,y) € A, =1Ltz e (']I‘U(t,a;,y))d.
Moreover, recall Remark 2.1 and denote

I~3U(t7 x, y) = = |:8tU + hU(’u QJU, a:c:ctua IP7 [gj)] (t7 x, y)7

(6.1)
It 2,y) o= I3 (t,2,9) — [y - I ny(t, 2, 9);
and assume, for given (0,x0,y0) € Gu, the following SDE has a strong solution:
¢
X —:E0+/ b(-, I7) (s X;,T:)d8+/ o(- I7)(s, X2, Y1)dBs;

0

T; = yo +/ [attUJrhO(-,axtU, 0. U, I7, 1Y) +[§,,U} (s, X2, T%)ds (6.2)

0

t
+/ 0,Uc (-, 1Y) + IV](s, X, T*)dB,.
0
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Then, for af = IY(t, X}, Y}), we have Yto’xo’a* =T e Vy(t,X/), 0 <t <T, as. In
particular, Yoo’mo’a* = 1.

Remark 6.2 From Step 2 in the proof, especially (6.6) below, we see that (6.2) actually

becomes the following simpler and more natural SDE:

t t
X7 =m0+ / (-, 1) (s, X7, X7)ds + / o (- IV)(s, X7, T%)dB,:
0 0
t
i = yo - / £, 0,Ua( 1Y) + IV, 1) (s, X2, Y5)ds (6.3)
0

t
+ [ 0o 1) + 1)(s, X, T2)dB. -
0

Remark 6.3 (i) Under the setting of above (ii), the o is an optimal argument (at least
locally) for the scalarized optimization problem: SUDqe A, n(0, zg, yo) - Yoo’xo’a. We refer to
Subsection 7 below for more detailed analysis along this line.

(ii) When o is nondegenerate, by (6.3) we have
t
Y=ot [ (1000 1) + o )] 5,0, TN
0
t
- / |:f(7 8wUU('7 IF) + Igjv IP) + [OIUO-(v IP) + Igj] O-_lb('v IP)] (87 X:7 T:)dS
0

Then we may write Y} as a function of X[*Em, thus as a closed loop control of = a*(t, X[*O,t])
1s path dependent. Such path dependence appears often in multivariate setting. However,
we note that (X*,Y*) is jointly Markovian, so by adding the state T*, the optimal control
a* becomes Markovian. Therefore, the above verification theorem does help to construct

Markovian optimal controls in this sense. |

Proof of Theorem 6.1. We proceed in three steps. Denote Ts := T — § for § > 0 small.
Step 1. We first show that V(0,z9) C U(0,x9). By the same arguments, we can also
show that V(¢,z) C U(t,z) for all (t,z) € [0,T) x R%
Fix § > 0 small and a € Ag. Denote (X%, Y%, Z%) := (X%« yOzo.a 70.20.0) = Gince
V(T,z) = {g9(z)} = U(T,z), by Assumption 4.4 and the continuity of U, there exists
¢s € L2(Fry) such that ¢5 € [Ub(T(;,X%&), a.s. and

E[|VE — ¢5°] < CE[|YA — g(X2)* + |g(X§) — g(X3)|* + |ds — 9(X$,)[?] — 0,(6.4)

as & — 0. Recall (4.12) and set (Y9, Z2%0) = (YTs:#5:0m0.0  7T5:65:0,:20,0)  Then by the

standard BSDE estimates we have

lim Y57 — Y| = 0. (6.5)
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As in (3.2), by standard It6’s formula, we have

dry(t, X, Yta’é) = A(t, X[, Yta’(s, Zta’(s, oy )dt + Zf’5dBt, where

1
A:=Viry+Vury-b—Vyry - f + §tr (UTerUa + 22TnyrUa + zTVyyrUz);
Za,& = V,ryo + Vyr[UZa’é.

Denote
7=y (t, X0, Y,™0), ¢ = 2 — npnf, 2.
Then, by (3.3) and since U is a classical solution of (5.2), we have
Alt, X2, 78 8,U0 + ¢, o) = —ny - [atw + hy (X2, 780, 0,U, 05U, o, g*";)] > 0.
Note that, for appropriate processes b, 5,
a a,0 a0 a a0 a,d 7 ~ Ha,d
A(t7 Xt 7}/15 ) Zt 7at) - A(t7 Xt ) T 76mUO- + <t 7at) == [th'U + UtZt ]

Here, due to the regularity of U € C12([0,Ts] x R DY), as in (3.4) there exists a constant
Cs > 0, which may depend on 9§, such that for 0 <t < Ty,

by < Cs[1+ 120012, |64] < Cs[1 + | 2]
Then, for the T in (3.6) we have
d<ftrU(t, X, Yﬁv%) = T At X2, 700, 0,U0 + ¢, op)dt + T4(Z, — rué,)dBy.

Since I'(T(;,X%S,Y;;’é) =0, a.s. then,

Ts
ry(0, 2o, Y0) = —E[ / CA(t, X2, 720 0,Uo + ¢ )| < 0.
0

That is, YOO"6 € U(0,zp). Send 6 — 0, by (6.5) and the closedness of U(0,zg), we have
Yyt € U(0,z0). Moreover, since o € Ay is arbitrary, we obtain V(0,zq) C U(0, z).

Step 2. We next prove (ii) and show that in this case U(0,z) C V(0,z¢). Indeed,
consider an arbitrary yo € Uy(0,2¢). First by the It6 formula Theorem 3.1 we see that
T; € Vy(t,X[), 0 <t <T,as. In particular, this implies Y7, = g(X7). Note that, by the

optimality of I }J , Igj , we have

ho (- 8;U, 0, U, 1Y, 15 ) (5, X3, 03) = Hu(-, 0:U, 05U, 1Y, 15)) (5, X, Y3).
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Since U satisfies the PDE 5.2 and by (5.1), at (s, X, T%) € Gy we have

ny - I3y = 0; U+ h{(-,0,U, 0., U, IV, 1) + 1Y = — (-, 0, U (-, IY) + I, 1Y) (6.6)
This implies that Yto’mo’a* = Y. In particular, yo = T§ = Yoo’mo’a* € V(0,z9). Thus
Uy(0,20) C V(0,z0), which implies that U(0,zq) C V(0, o).

Step 3. We now prove U(0,zg) C V(0,z¢) in the general case, without assuming the
additional conditions in (ii). Fix (0,20,%0) € Gy and § > 0. Since U € C1%([0, T3], RY; DY),
we assume ry is smooth in OET(;) (Gp) for some gy > 0. In the rest of this proof, let Cs be
a generic constant which may depend on ¢, more precisely on the ¢z, in (5.5) and the
regularity of U on [0, T5] x R

Since U satisfies (5.2), by (5.5) there exist ag € A and ¢° € (Ty(0, g, y0))¢ such that

C°l < Cs5 and 0 < —ny- [0U + hy(-, .U, 922U, a0, ¢°)] (0, 20, 50) < 6. (6.7)
Set 19 := 0, a} = g, 0 <t < Ty, and define
X! =z + /Ot b(s, X1 al)ds + /Ota(s,X;,a;)st, 0<t<Ts.
Recal Remark 2.1 and introduce random fields (¢!, ¢1) : [0, T5] x Q x R™ — (R™, R™*4):
G () =" —nun O, XY y), & (y) =& (y) — [nw - & nu(t, X}, y),
where gtl(y) = — [&U + hy(-, 0. U, U, ot {1)] (t,th,y).
Then &/ (y) € Tu(t, X}, y), ¢} (y) € (Tu(t, X}, y))% Vy € Up(t, X}), and ¢',¢* are uniformly

Lipschitz continuous in y, with a Lipschitz constant depending on . Consider the SDE:

t
Ti =0+ /? |00 + B (0,0, 05,0, 0}, ¢) + €' (s, X2, 1) ds 65)
6.8
+/ [axw(s,xg,rg)a(s,xg,a;)+g;(T;)}dBS.
0

By the Ité formula Theorem 3.1, Y} € Uy(t,X}), 0 < ¢t < T5. Note that (6.7) implies
ny(0, X§, T8) - €4(T}) < &, and by our construction, o', ¢! and hence €' are continuous in

t. We then set
71 = inf {t > 79 : ny(t, X}, T7) - i) > 25} N Ts.

Next, on {7; < Tj}, by measurable selection theorem, there exist F;, -measurable random
variables al € A and ¢}, € (Tv(r, X}, YL ))4 such that

T1?

|_T11| <Cs and 0<-ny-[0U+ hy(-,0,U,8,,U, 5&1, C_il)] (t1, X2

T

Ti) <.
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Set af = dll, 7 <t < Ty, and define

t t
X? =X} +/ b(s,Xg,ag)der/ o(s, X% a?)dB,, ™ <t<T;.

T1 T1

Similarly introduce, for 7y <t < Ty,

Ctz(y) = C_il - nUnI[—gé_&l (tv th’ y)a th(y) = th(y) - [nU : gtz]nU(t’ Xt27 y)7
where &7(y) = —[0,U+ hy(-,8,U, 85, U, &2, )] (¢, X7, y),

and consider the SDE:

t
T2 =1L + / [@U + BY(-, 8, U, 950U, a2, C2) + 52} (s, X2, T2)ds

T1

t
+/ [axw(s,xg,rg)a(s,xg,ag)+g§(T§)}dBS.

1

Then Y7 € Uy(t, X?), 11 <t < Tj, and we may set
o i=inf {t > 7 : ny(t, X2,Y2) . 2(1?) > 25} N Ts.

Repeat the arguments, we obtain a sequence (7,,, @™, (", £ en Xn, T™), n > 0, satisfying
the desired properties. We first show that 7, = Ts for n large enough, a.s. Indeed, on

Es := Np>1{m < Ts}, we have,

nU(Tn7 XTn7 TTn) : g;r'Ln(TTn) S 57 n[[_](Tn_l’_l, XTn+1 ) TT7L+1) ' 577'24»1 (T7n+1) = 257 \v/n

Then, for any n,

T7n+1) ' ~77'7;1+1 (TTnJrl) - nU(TTHXTn? TTn) : ~77?:,L(T7'n)

Tn+419

SP(E;) < EHnU(TnH,X

]

Send n — oo, by the desired regularity and in particular |(| < Cy, we obtain P(Es) = 0.

We now define
(at7Ctaéta€taXt7Tt) = (o, ¢ X Y&, tE [Ty Tg)n=0,1,--- .
Note that X7, := limy7y Xy and Y7y := limygy Ty are well defined. Define
Zy = 0,U(t, Xy, To)o(t, Xy, o0) + G(Te),  me = [y - &Iny(t, X, Ty), 0<t< Ty

Then, || < 24§, and by (5.1) and (6.8) we have

t t
thyo—/ [f(s,Xs,Ts,Zs,as)—1—775]613—1—/ ZsdBg, 0<t<Ty.
0 0
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Equivalently, we may rewrite it backwardly:

Ts Ts
T, =Tr, +/ [f(s,Xs,Ts,Zs,as) + ns}ds - / Z.dBs, 0<t<Ts.
t t

Compare this with (4.12), by standard BSDE estimates we have

Ts,Y15;0,%0,0 Ts,Y15;0,%0,0

Ts
0=, P=t-Y P < o[ [Tmpas) <ot 69)

Finally, fix an arbitrary a. € A, and extend « with ay = ax, t € [Ts,T]. Since V(T,x) =
{9(x)} = U(T, z), by Assumption 4.4 and the continuity of U, similarly to (6.4) we have

E[|V#, = Tr,[2] < CE|IVE — g(X)1* + 19(X8) — 9(X8,) + 7, — 9(X8,)P] < p(0),

for some modulus of continuity function p, independent of a. Then, by standard BSDE

estimates again,

T5,Y15;0,20,0 T5,Y1y;0,20,0

|Y0 _Yoaf = |Y0

Ts ,Y,F& ;0,20,00

~Y * <E[IYE - Tr 2] < p(6).

Combine this with (6.9), we have

lyo — Y& < C6 4+ /p(0).

Since Y§* € V(0,z0) and 0 > 0 is arbitrary, we obtain yo € V(0, zo). [ |

We conclude this section with a simple example where V is indeed a classical solution.
Example 6.4 Setd=1,m=2, A={a€R?: |a| <1}, and
b=0, o=1, f=f%4z)+a,
where fO and g are smooth and bounded. Then it is straightforward to check that
V(t, z) = {y ER?: |y —w(t,x) <T — t},
where w = (wy,ws) | is the classical solution to the following heat equations:
Vews 4 5V + [0 =0, wi(lx) = gila), =12

We shall prove in Appendiz that V € 05’2([0,T) x R; D2), and the conditions in Theorem
6.1 (ii) hold true. Then it follows from Theorems 5.6 and 6.1 that V is the unique classical
solution of the HJB equation (5.3).
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7 An application: the moving scalarization

Recall Remark 4.2, in particular (4.4) and (4.6) for the mean variance optimization problem.
This problem is time inconsistent in the following sense. Consider the general setting (4.1)

and (4.2). Given (0,z9) and ¢ € C(R™;R), let ajy ) be an optimal control for the problem

Vo= sup o(Yg""") = sup  o(y). (7.1)
acAp y€eV(0,20)
If we follow o on [0,#] and denote X; := X" Then af, 7y s not optimal for the

optimization problem at ¢: by using the notations heuristically,

sup (‘D(}/:7X;<7a[t,T]) = sup  oly).
e, 7] yeV(t, X))

It was proposed in [15] to find a so called dynamic utility function ®(¢,x4,y) such that
®(0,z0,y) = ¢(y) and a’[kt 7] remains optimal for the alternative optimization problem

* t,X{ o s *
sup 0] (t, X[O,t} N }/t . T]) = sup @ (t7 X[(],t] ) y) . (72)
t,1] yeV(t,X7)

In Subsection 7.2 below we will find such an ® for the mean variance problem explicitly. In

the next subsection we first consider the case that ¢ is linear.

7.1 The linear scalarization

When ¢ is linear: ¢(y) = Ao - y for some Ay € R™, we require ¢ to be linear as well:
(t,xp04,y) = At,X[04) - y- This A is exactly the moving scalarization proposed in [9].
That is, we want to find A such that A(0,z¢) = g and a’[kt 7] is optimal for the problem:

* X, *
sup A(t,X[O,t]) Y, T = sup A(t7X[o,t]) Y. (7.3)
Q[¢,T) yeV(t,X;)

Our set valued HJB equation provides a solution to this interesting problem, provided
that (5.2) is wellposed in the sense of Theorem 6.1 (ii) and V (¢, x) is strictly convex. Consider
a slightly more general setting by letting A : R? — R™ be such that A(zg) = A\g. Assume
without loss of generality that [A(x)| = 1 for all z € RY. Since V(0,) is compact and
strict convex, we may find a unique optimal argument y)(x) € V;(0,x) for the problem:
V(0,2) := supyey(o,z) A(®) - y. Recalling U =V, we construct X*, T*,a” as in Theorem 6.1
(ii) with initial data (0, x,yx(x)) € Gy. Assume further that o € R? is nondegenerate, then

as in Remark 6.3 (ii) T* is FX -progressively measurable and hence there exists A such that
At Xy ) = no(t, X7, 7). (7.4)
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We argue that this A is a desired moving scalarization.

First, since A(z) - yA(7) = supyey(o0) A(®) - y and [A(z)| = 1, we see that

Az) = ny(0,z,yx(z)) = A0, 2).

* *
t, X[,

Next, from the construction in Theorem 6.1 (ii), it is clear that Y} =Y, 7] Then,

since V(t, X[) is convex, by (7.4) we see that

A(t. X X Yt’Xt*’art,T] = A(t. X* LT
( ) [O,t}) t ( ) [O,t}) t

* * t,X*7Oé R
= sup A(hXf) -y = sup At Xy ) - ¥y

yeV(t,X}) [t,7)

This exactly means af‘t 7] is an optimal control for the dynamic optimization problem (7.3).

We remark that the mapping A : [0, 7] x C(]0,T];R?) — R™, which is path dependent
in an adapted way, is time consistent in the following sense. Consider the problem at time
0 with initial condition (z,A). Let X* and A be as above, but denoted as X%%** and
A% to indicate their dependence on the initial conditions. Now fix 0 < ¢t < T, consider
the problem on [t,T] with initial condition X[OO’%’A’* and A%A(¢,-), we can easily see that
the moving scalarization we find following the same procedure coincides with the original

A found at time O:

tyxoyzyAy*yAO’/\(tV)

Xs 0.4 = X;),m,)\,*’ At’AoyA(t")(Sv ) = AOJ\(Sv ')7 t<s< T.

Remark 7.1 When V(t, X}) is nonconvez, as in Example 5.3, the A in (7.4) can be viewed

as a local asymptotic moving scalarization in the following sense:

At X ) TP 2 A, X )y —o(ly = T]), Yy € V(t, X{); or equivalently,

LXE e, t,X{ o T 6X5al,

X/, af "
At X )Y, T > A X ) Y, o(|Y, -Y,

) s Va[t,T] .
|

Remark 7.2 (i) When the ¢ in (7.1) is nonlinear, since V(0,x¢) is compact, one may
still find an optimal argument yo € V(0,xzq) for the problem in the right side of (7.1). We
emphasize that it is possible that yo € V,(0,20) and it may not be unique. Fix an arbitrary
ab e Ay and Z°, for example o = ag € A and Z° = 0. Denote X° := X0@0:a” gng

t t
Y= [ £ X002 alyds + [ 2B,
0 0
To:=1inf {t > 0: (t, X}, Y) € Gy}.
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It is clear that 79 < T and (1, X2,Y?) € Gy. Applying Theorem 6.1 (i) on (1, X2, YY)
(assuming all the conditions are satisfied) and following the measurable selection theorem
we may construct o* on 1o, T] with initial condition (1, X2, Y?). Then one can easily see
that o ®,, a* is an optimal argument for the left side of (7.1). That is, Theorem 6.1 (ii)
can help us to construct an optimal control for (7.1) even when ¢ is nonlinear. However,
in this case it is not clear how to construct naturally a (nonlinear) moving scalarization ®
as in (7.2). In particular, when ¢ has certain structure, for example the linear quadratic
structure for the mean variance problem in Remark 4.2, we may expect ® to have the same
structure as well, which will add the difficulty for constructing a desired .

(ii) For some nonlinear o, it is possible to linearize it through certain transformation.
Indeed, let ¢ be a diffeomorphism® on R™ and set V(t,x) := {1(y) : y € V(t,z)}. Then

sup @(y)= sup @(7), where @) := (¥ 1(§)).
yeV(t,x) gev(t,z)

If one can choose ¢ such that @ is linear, then one can apply the analysis in this subsection
to find a linear moving scalarization ® for V, which leads to a desired nonlinear moving

scalarization for the original V: ®(t, X[’a t],y) = P(t, X[’a t],i/)(y)). We remark that X*
stands for X" for some optimal control a*, so it remains the same after the transformation.

However, in this case ny(t, X}, X}) does not lead to a desired moving scalarization. |

7.2 The mean variance problem

In this subsection we find a desired moving scalarization for the mean variance problem in
Remark 4.2, by employing the idea in Remark 7.2 (ii). We first remark that in this case V
is not bounded. However, since V is explicit as in (4.8), we may still apply the results in
Theorem 6.1 (ii).

Theorem 7.3 Consider the optimization problem (4.4) and introduce:

Al vx € C([0,T],R) s.t. sup [x¢ — %] < 1eT (7.5)
el — A(x¢ — %o) T ogth TR '

A(t,x0,) =

Then the following dynamic mean variance problem is time consistent:

A(t,Xﬁm)

> Var(X%|}'t)}. (7.6)

V; := ess sup {E[X%U:t] -

$We refer to [12, Theorem A] for a characterization of diffeomorphisms.
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Here X* is the optimal trajectory for (4.4) and it satisfies supg<;<p[X; — wo] < xe', a.s.

Moreover, the optimal control and the optimal value are®:

1
0F = T+ 3 (7.7)
V=11 + e )X+ 30— e Mag + 551 — 7).

Proof In light of Remark 7.2 (ii), we introduce an obvious diffeomorphism

Py y2) = (Y1, 52) = (y1,y2 — [y l*). (7.8)

Then, by (4.8) we have

Vt,2) = {o) 1y e Vo) } = {w52) sy € R 2 61D — )

Vo(t, ) = {(y17g2) ty1 €R G2 = 1 (t)(y1 — 117)2}7 where ¢1(t) := ﬁ-

Note that V is convex, so the concern in Remark 7.1 is irrelevant and we are indeed finding
true moving scalarization. We shall denote § = (y1,92), and for g € Vb(t,x), clearly it
suffices to specify y;. Moreover, recall (4.5) and denote Y := (V) = (Y',Y?), by Itd

formula we have

T T T
tr,a,l _ iz, t,x,a,l tx,on2 t,x,c,1)2 ~t,x,0,2
Y, = ¢ —/ Zbe 1B, V! _/ | Zb®e| dr—/ Zb52B,.

That is, in light of (4.1) and denoting zZ = (z1, Z2),
f(t2,5,2,0) = (0,]z*) " (7.10)

Given (7.9), one can easily compute that

fl(t,l‘,g) = Il@(t,l‘,g) = i [ihl] (t7$7g)7 (t7$7g) € Gﬁn

where  ¢o(t,z,9) == 201(t)(y1 — x), ¢3:= /14 [¢a]?.

(7.11)

Next, fix (t,z,7) € Gy and set Y(z') := (y1,¢1(t)(y1 — x’)2)T, ' € R. Clearly T(2') €
Vy(2') for all 2’ and 4T (2") = (0, —p2(t,z,7))". Then by (2.16) and (2.12) we have

P2
-1

0,9(t.2.9) = ((0.~¢2)" - B)a(t.z.9) = % [

po ] (t,z,7).

“The optimal control o* is the same as the static optimal control in [17, Theorem 3.3 (A)], with the
correspondence o = X;ui(t,X;). However, our V; is neither equal to the static optimal value nor to the

dynamic optimal value in [17, Theorem 3.3], except that at ¢ = 0 it is equal to the static optimal value there.
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The right side of above and (7.11) provide natural extensions of fi and 9,V on [0, T] x R x R2.
Then by (2.5) and (2.14) we may compute straightforwardly that, at (t,z,7) € Gg,

1

o 201 | —2¢2 _ 2 - 29

OpaV = Oy , Ojn = — .
95 [1—|¢2|2], ho 3 [¢2] o 3 b [1 ¢2}

Moreover, as the tangent space is one dimensional, it is clear that

1
C € T@(th?g) — ElCO € R such that C = CO [
2_

Then, recalling (5.1) and (7.10), we may compute straightforwardly that
n-he(t,z, 7,0, @' 0.2V, a, ¢)

=n- [aa V4 2 amV+ (0,]a(8,V)1 + ¢1]%) ] [aCTﬁwﬁ + %CTagﬁC

L, b 18 2, o1
¢3 3% o gt a5 G
—Lar g+ 25 e 2B g

This is quadratic in (a, (p), and one may obtain immediately the optimal arguments:

@ =y = Uta®) - 2),
Gt ) b b)) [1 (7.12)
Co = 26102 and thus I, =(* = 35 ¢2] ‘

We next derive (6.2) for V, with the solution denoted as (X*, T*) = (X*, T T*2).
Since by Theorem 6.1 we have TF € Vu(t,X}), it suffices to specify the equations for
(X*,T*1). Note that, with (-); denoting the first component,

¢35 (L+61) L 92(d1 - ¢3)
3 2¢1 20163

Note further that f; = 0. Then, by recalling (6.3) in Remark 6.2 and (4.9), we have

(0:5o (. 1}) + 1) (t2.5) = = a1y ).

X¢ =$o+/t(1+¢1( )(Te! —X*)dSJr/Ot(l+<251(8))(TZ’1 — X{)dBs;

(7.13)
/qsl )(TEE — X7)dB,.

* 1
Ttl—xo-i-)\

Thus:
. 1 t t
X = T U= [ a) - Xods - [ (1 - XDaB.. (1)
0 0
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Clearly we can solve this and hence (7.13) explicitly. More relevantly for the moving scalar-

ization, as in Remark 6.3 (ii) we may rewrite (7.14) as

. 1 t 1
Tt’l—X;*:—[eT—l]—/ dX* /¢1 )(THT = X¥)ds.
0

A L+ (s
Then, denoting I'; := elo ¢1(5)ds — %7
LYt — X)) = l[eT —1] - /tridx* = 1[ T—1] - /t(l — e T)dX;
(T =X = 3 0 1+ 61(5) A 0 )
1
_ X[eT — -1 =—e DX+ (1 —e .
Thus
* * 1 - *
- X7 = 7 )~ (1 TG~ o). (715)

By abusing the notation A with the previous subsection, our goal in this subsection is

to find a moving scalarization A; := A(t, X[, ,) such that the following dynamic problem

[0,¢]

A
sup (y1 - —tg2) is time consistent. (7.16)
gev(t,Xx;) 2

From the analysis in the previous subsection, this implies that ( ,—%)T is parallel to

n(t, X;,Yy). By (7.11), this implies that —% = Wm Thus, by (7.15),

2 el—t 1 Ael—t
At X ) = Ay = = = .
(8 Xjo.) = Ae Go(t, X7 07) it - Xy el = MX; - X))

This proves (7.5). We remark that, by (7.14) clearly Y;'' — X7 > 0, then it follows from
(7.15) that supg<;<7[X] — 0] < e, a.s.
For the original V, by (7.16) the following dynamic problem is time consistent:

A(t, X5 4) A(t, X5 )
— 5l - 5

sup  D(t, X[Oﬂ y), where @(t,Xﬁm,y) =y + B

yeV(t,X;) 2 vz
This is clearly equivalent to the time consistency of the dynamic problem (7.6).
Finally, plugging (7.15) into the first line of (7.12), we obtain the expression of a* in
(7.7) immediately. Moreover, by (7.9), (7.5), and (7.15) we have
e L SIS A s
213! - X;) S

=y X))+ X = A+ D)X+ 31— ez + gu — 7T,

This proves (7.7), and completes the proof of the theorem. |
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8 Further discussions

8.1 The case with nondegenerate terminal
As pointed out in Remark 4.3 (ii), given a general G : RY — DF', we may define V by (4.11).
This is equivalent to

V(t,z) = d{Y," 9 o€ A, ¢ € LA(FL) st ¢ € G(XE™), as. ), (8.1)

Then we have

Theorem 8.1 Let Assumption 4.4 (i), (i) hold, and G is bounded and continuous. Assume
the V defined by (4.11) or (8.1) is in Cé’z([O,T) x R%: D). Then V is the unique classical
solution of the HJIB equation (5.2) with terminal condition V(T,x) = G(x).

The proof is essentially the same as in the previous sections, we thus omit it. In particular,
when G(x) € DJ* and V € C12([0,T] x R4 D), the proof is actually slightly easier.

8.2 Comparison with Soner-Touzi [21]

In the contexts of stochastic target problem, [21] derived a geometric equation to charac-
terize the reachable set of the problem. This work is very closely related to our problem.
In this subsection we provide some detailed analyses on the connection and the differences
between the two works. We shall introduce their approach, but in our contexts and using
our notations, and all the discussions are heuristic.

We first note that, the stochastic target problem (4.10) (or the more general one (4.11))

can be rewritten equivalently as:
V(t) := {(m,y) € R™ : 3(a, Z) such that Y;’m’y’a’z = g(erp’x’a), a.s.}.

Here (X®@ Y4%:9:%2) becomes a d + m-dimensional controlled state process with control

(o, Z). Tt is clear that V and our V are equivalent in the following sense:
V()= {(w,y) e Ry € V(t,iﬂ)}, Vi(t) = {(2,) : z € RY y € Vi(t,2)};

and V(t,z) ={y: ( B} Vet)={y: (x,y) € Vy(1)}.

(8.2)

Then Gg = Gy. Naturally we may define, for some € > 0,

ng(t,,y) == ng, (2,y) €RT™, (t,2,y) € Gg;
r@l(t7$7y) = r@l(t) (ﬂj‘,y) € Rv (t7x7y) € O&(G§\7)
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The work [21] characterized the square of the distance function 7n(t,z,y) := %|r@(t,x,y)|2

by the following PDE: denoting ¢ := (x,y) and noting the time change in [21],
ngtn(ty g) + VQ |:F(t7 ga vﬁn(ta y)a Vggn(t7 g)):| = 07 (t7 g) € G@y where

F(t,9,Vn,Vim) = inf b(t,x,a) -Vun(t,g) — f(t,9,z,a) - Vyn(t,q
(t, 9, Vgn, Vggn) (a’z)eN(t’g’vgn)[( ) - Van(t§) = f (8,9, 2 ) - Vyn(t,9) s

btr (07 (,0)Vaan(t, D)o (t,7, ) + 22T Vayn(t, §)o(t, 7,2) + = Vygn(t,9)7)].
N5, Vgm) i={(@,2) [0 (t2,), 2 T] 0T (t,a), 29 g(t, §) = 0.

g,lS

is. In the nondegenerate case as in this paper, actually one

The main reason to consider the squared function is that, in the degenerate case r
typically not smooth while |r§,|2
may study rg directly.

We first note that V is a function of ¢ only, and thus it does not lead to the set valued
It6 formula as V(¢,z) does. While this may seem to be technically easier, the set valued
1t6 formula has independent interest and is one of the main contributions of this paper.
For example, it provides microstructure of the flow on the boundary surface, as we see in
Theorem 6.1 (ii). We note that (8.3) holds only on Gy, so it is also not a standard PDE.

The major difference is that, as we see in Example 8.2 below,

ri}(ta €T, y) 7é rV(ta €T, y)
In general, recalling (8.2) we have

ro(t,z,y))2= inf [lz—FP+ly—g2] = inf inf [lz— 32+ |y— g
v (#,9)€V (t) [ } R4 GEV,(t,3) [ }

= jnf U.Z' - ‘%‘2 + ‘rV(ta‘%vy)P] < \rV(t,x,y)P
zeRd

Example 8.2 Set d =m =1 and consider time invariant set values:
V(z)=[x—1,z+1] CR, V= {(z,y):x €Ry € [x — 1,z + 1]} C R
Clearly Vy(x) = {x — 1,2 + 1}. One can easily verify that,

ry(z,y) =y —(z+1), forymz+1; and ry(z,y)=(x—-1)—y, forymaz-1

y—(z+1) (z—-1)—y
ro(z,y) =————=, foryx=ax+1;, and ro(x,y)=—-">=, foryx=uz—1.

We also observe directly from above that, although rv =rg =0 on Gy = Gg, their deriva-

tives are in general not equal.
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Consequently, although both (5.3) and (8.3) characterize the same set Gy = Gg, the

v
two equations are fundamentally different. This is partially explained by the above obser-
vation that ry and rg have different derivatives on Gy. At below we provide more detailed

calculation for the set valued heat equation in Example 2.8 (ii), but with d = m = 1.

Example 8.3 Setd=m=1,b=0,0 =1, f =0, and the terminal G(z) = [—¢(x),¥(x)],
where ¥ : R — (0,00) is smooth. Then, similar to Example 2.8 (ii), we see that

V(t,z) = [—u(t,x),u(t,x)], Vu(t,z)={—u(t,z),u(t,z)},
where u is the unique classical solution of the heat equation
1
Opu + §8mu =0, u(T, x)=1(x). (8.4)

We shall prove in Appendiz that T := rg satisfies the following equation:

Vit g [Vaat - zvzy?g—; + vyyﬂg—; =0, oncy (85)

In this scalar case, by Remark 5.1 (i) we see that the set valued HIB equation (5.3)
reduces back to the standard PDE for (¢, z) = u(t,z) and v(t,z) = —u(t, z), both of which
identify with the heat equation (8.4). So (5.3) is indeed a natural extension of the HJB
equation to the multivariate case. The equation (8.5), however, is quite different from (8.4).
So in this sense, it is more natural to study (5.3) than to study (8.3).

Another advantage of (5.3) is that, as we saw in Section 7, the normal vector ny (¢, X}, T7)
provides naturally a moving scalarization for the time inconsistent multivariate optimiza-
tion problem. The vector ng (at certain optimal paths) does not serve for this purpose. In
fact, ng € R ™ while a moving scalarization A is by nature m-dimensional.

Finally, we remark that [21, Theorem 2.1] showed that V is the unique classical solution
of (8.3) under the existence of optimal controls, in the same spirit of our Theorem 6.1 (ii).
We instead proved the existence and uniqueness under weak conditions in Theorems 5.6
and 6.1 (i).

8.3 Comparison with Ararat-Ma-Wu [1]

Mainly motivated by dynamic set valued risk measures for multi-asset or network-based

financial models, [1] studied the following set valued BSDE:
T
Y, = E[G(BT) + / F(s,Bs,\ys)ds\ft] (8.6)
t
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Here, denoting by D7 the space of convex compact sets D € Df*, the terminal G : R¢ — D7,
and the driver F : [0,7] x RY x D — D™ (abusing the notation F here). We note that
[1] actually allows G and F to depend on the paths of B. By relying on the sophisticated
set valued stochastic analysis, especially the Hukuhara difference, [1] established the well-
posedness of the above set valued BSDE. The general case that F depends on Z, and the
martingale representation with the term Z;dB; seems to be a quite remote goal.

Formally, the set valued BSDE (8.6) is associated with our set valued HJB equation
(5.2) in the case 29 = 0, b =0, 0 =0, f = f(t,z,y,a). Then X; = B, and we may

naturally define
Yy :=V(t,By), F(t,z,D):={f(t,z,y,a):ycD,ac A}. (8.7)

In the linear case: f = f(t,x,a) and thus F(t,z) = {f(t,:n,a) ta € A}, the random set
valued process Y, := V(¢, B;) indeed satisfies (8.6) in the sense of [1].

However, when f depends on y, the Y,F in (8.7) do not satisfy (8.6). That is, (8.6) is
not the stochastic counterpart of (5.2). The reason is the same as in Remark 2.3 (ii). In
(4.1), the Y in the left side and that in the right side of the BSDE are required to be the
same process. In (8.6), however, one allows to consider different selectors for the Y in the

left side and that in the right side of the equation.

A Some technical proofs

Proof of Proposition 2.4. Again we denote r,n for notational simplicity. We prove
it only for x > zg. Fix x1 > zg. Without loss of generality, we assume 6 is absolutely
continuous in x € [zg,x1] with appropriate derivative function ', as otherwise the length

of # would be co. Thus we have
) = [ v@as
o
Note that r(x,0(x)) = 0. Then, for Lebesgue-a.e. z,
0= %f(% 0(z)) = Vor(z,0(x)) — Vyr(z,0(z)) - 0'(z) = Vor(z,0(z)) — n(z,0(z)) - 0 (z),
and thus

((z) =0 (x) — Vern(z,0(x)) € Ty(x,0(x)).
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Therefore,

Lo(zg,x1) = /I1 V1410 (2)|? do = /I1 \/1 + |Vorn(z,0(x)) + C(m)|2 dx
— /wl \/1 + |er(:n,9(x))‘2 +[¢(x)|? dx > /ml \/1 + ‘er($,9($))|2 dz

This implies that

lim
z1dxo T1 — X

< lim ! {/:1 \/1+‘er(:£,1'($))‘2 da:—/:l \/1+‘er(:£,9(3;))|2 daz}

{LT(wo,l’l) - Le(wo,wl)]

z1dro 1 — T0

< lim 1 [/m |\/1 + |er(:17,'f(:17))|2 — \/1 + |er(x0,y0)‘2‘ dx

z1dxo T1 — T

+/:1 |\/1 T |er(x,9(x))‘2 - \/1 + |er(a:o,yo)|2| dx] = 0. -

Proof of Lemma 2.6. Recall (2.2) and consider the natural extension n = V,r. By
(2.16), (2.15), and (2.14) we have, for i,j = 1,--- ,d, and (¢, z,y) € Gy,

Ova,V(t,x,y) = =04 (Varm)(t, 3,y) = — [8%(ijr)n + Vg, 10| (t,7,y)
= — [Vmixjr + Vg,V yr - n} n(t,r,y) — Vg,roy,n(t,z,y). (A1)
Recall (2.2), at (t,z,y) € O-(Gy) we have

1
—V,, (IVyr]?) =0.

Vit - Vyr = 5

In particular, V, ,r-n(t,z,y) = 0 for (t,r,y) € Gy. Plugging this into (A.1) we obtain
(2.18) immediately.

Moreover, again considering the extension n’ = V,,r, by (2.14) and (2.5) we have
Opn' = Vit — Vor(Vy,r - 1), oyn' = V.7 — (Vy,yr - n)n.
Similarly, by (2.2) we have V,,,r - n = 0, which implies (2.19) immediately. [ |

Proof of Example 5.3. We first prove (5.4). Denote

T ~ ~
fila,y) :==a1,  fala,y) :=az, Y Z/ flas, Y¥)ds.
¢
Then one can easily check that

V) ={YV ae A}t ={geR?:|j| <T -t}

T (A2)
Vy(t) ={geR?*: |j| =T —t} = {(T —t)(cosf,sinf) :6¢€[0,2m)}.
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Consider a function 1 : R? — R? and set

Y= 9(Y®), where ¢1(9) =1, ¢2(9) = [1+|51]%]72.
Then we have
dY = VSt = —ajdt = — fi(y, Y, dt;
AV = 2T VPRV 4 (1 [ PV = - [pX TR0 ) 4 (14 (T P} de

2Y ta’lita’z 1 127 2
SR ot S N S QI VL a}dt—— oy, Y2)dt.
[1 |Y;ta7l|2 ¢+ Y oy falaw, V)

That is, Y* satisfies (4.1) for given f. Therefore, V(¢) = {4(5) : § € V(t)}. Note further
that 11 (1) = 91, and 19 is strictly increasing in . It is clear that

Vi(t) = {¥(9) : 5 € Vo(1) }.

Plug (A.2) into it, we obtain (5.4) immediately.
We next analyze the convexity of V(¢). Assume for simplicity that ¢ = 0. Note that

Vi (0) = {(yl, VT2 = nl?), (Y1, —VT? = [y1?) « || < T};
Vy(0) = {(yl,w(yl)), (y1, —e(y1)) : | < T}, where o(y1) == [1+ |y1[*]v/T? — [y .

One may compute straightforwardly that:

6y [t = 9Ty |? + 2T — T2
- 3
(T? — |y1]?)2

©"(y1) ;| <T.

Note that

sup [6]y1|* — 97|y |°] = 0.

ly1|<T
So when T' < % and thus 27% — T2 < 0, we have ¢”(y;) < 0 for |y1| < T, and in this case
V(0) is indeed convex. However, when T' > %, we find that ¢”(y1) < 0 for |y1| = T, but
©"(0) = 2T;7§T2 > 0, then V(0) is nonconvex. [ |

Proof of Lemma 5.5. Denote
Ts:=1inf{t > 0:|r(t, X", V)| > 6} AT,
and consider the linear BSDE with solution pair (k, 3):

75
Kt = 1<y — /t BsdBs, 0<t<T,
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where x € R, 3 € R'¥4, Tt is clear that |x| < 1 and Jo BsdBs is an BMO martingale. Thus,

T
E[exp (Co/ |6t|2dt)] < Cy < oo, for some ¢y, Cy > 0.
0

For n > 1, we truncate 5 by n and denote it as 8". Define

t
Ky = Ko —I—/ B dBs.
0

Then it is obvious that, for any p > 1,

1

E[ sup [s}7[P] <Cp <oo; and ¢ = <E[ sup |ky —/it|p]>p — 0, asn — o00. (A.3)
0<t<7s 0<t<Tp

Introduce two random fields v (t,w,y) and p"(t,w,y):

m 1

Vinj(t’y) = _Z/O Vijfz(taXféaY;a,Zix+9315f,04t)ykd93
k=1
1

) = = [ (Vs (@)

(¢, X9, Y, + 0k}y, Z2 + yBy + Oxpv" (L, y), ) dO;

xd
Rmxa,

where V" = [V?j]lgigm,lgjgd € p" = [pli<i<m € R™. One can easily verify that

VAt y) B = f (XD Y 2 on) — F(GXE Y 20+ yB au)s
H?pn(t7y) = f(t7Xt(x7§/;a7Z£x + y/Btnvat) - f(t7X?7Y:‘,a + H??J? ZI? + yﬂ? + H?V(tay)7at)'

Moreover, by Assumption 4.4 (ii) we have

" (t,y) < Clyl, [p"(t,y)| < Clyl;
W (t,y) —v"(t,9)| < Cu L+ |yl ly — 3l (A.4)

10" (t,y) — p" (6, 9)| < Co[1+ [y| + [&7] + |62y [*] |y — F-

Next, consider the following SDE:

t t
ny = Any(0, zg, 7(0, zg, Y5¥)) +/ p"(s,m)ds +/ v (s,ny)dBs,
0 0

where A > 0 is a small number which will be determined later. By the standard stopping
arguments for stochastic Lipschitz continuous coefficients, and by the uniform linear growth

in the first line of (A.4), the above SDE is wellposed, and for any p > 1,

E[ sup [n["] < Gylap, (A.5)
0<t<Typ

where C), does not depend on n.
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Denote
V= VP R, 2P = T s Ry
Then by the standard It6 formula we have
Ve = v+ [ f6, X200 2 ds - [ Z2ap,
Moreover, introduce the BSDE
T =Y R o ) /;5 F(s, X0V, 27 0g)ds — /;5 ZmaB,.

By (A.3), (A.5), and noting that |x.,| < 1, it follows from standard BSDE estimates that

) ~ 2
% -¥5F < OBy oy * i ma)]

n._nl|2 . n 1 n n n A 4
< CE|:|/{T5T}T5| |K’7'5 - ’{7'5| + §|K’7-5|2|7775|4:| < CCQ + C%
Thus
An Ve () n ‘)\‘2
Y] —Yo\gc[\/cﬁ—é |- (A.6)
Note that

on o yo n . n

Y7'5 — Y7'5 + HTénTé1{‘/@7@6‘S2,‘7’]7@6|<g}'

On {|s7] < 2,|n7| < §}°, we have Y = Y& € V(75, X5,). On {|sf,| <2, i7,| < 5}, noting
again that Y3 € V(75, X5\), we have ry(75, X5, YY) = —0 and |s} 07| < 0, then YTZ =

Yo+ ket € V(rs, X2 ). So in both cases Y € V(75, X3 ). Then by DPP (4.13) we have

s

Y{ € V(0,0). Thus, by (A.6),
ry(0,20,Yg") < [V§' — V7' < C[V/e5 + %]
On the other hand, note that Y = Y§* + koAny (0, zo, w(0, 2o, Y")), for koA small we have
ryv(0, 2o, YI') = ry(0, 2, Y) + Ko
Thus

AP

HQ)\ = I‘V(O,xo,?on) — rV(O,azo,Yb‘l) S C[\/CEL + T] + €.

Send n — oo and set \ := /3, we obtain (5.6):

A e €
P(T(SSTO):KOSCS—FX:C\/E
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Finally, if Yi* € V4(0,20), then ¢ = 0. We see that P(15 < Tp) = 0 for all § > 0 and
all To < T. This implies immediately that Y,* € V(¢, Xf*), 0 <t < T, a.s. Moreover, note
that Y = ¢(X¢) and V(T,z) = {g(z)}, we have Y € V,(T, X%) as well. |

Proof of Example 6.4. As usual we drop the subscript y in r and n.
(i) We first show that V € C01’2([O,T) x R;D3). Fix § > 0 and denote Ts := T — 6. By
Example 2.8 we have, with u(t,z) =T —t > § there for t € [0, T5],

r(t, z,y) = |y —wt,x)| — (T = 1).

Then it is clear that V € C12(]0,T5] x R; D3). By (2.21), for |y — w(t,z)| = T —t, we have

n= QTJZ’_ut); oV = [Vtw'n— 1]n; 0,V = [wa'n]n;
1 1
O,n =7 [- Vew+ [n-Vywn], dyn= T [Ioxo — nnT];
OV = —%[UV w|? = Vyew -0+ |Vyw-n)*n+ [Vyw - n][Vow — (wa-n)n]}.

In particular, ez, = 4 in (5.5), and thus V € Cy2([0,T) x R; D).
(ii) We next verify the conditions in Theorem 6.1 (ii). For any a € A and ¢ € Ty(¢,x,y),
by (5.1) we have: at (t,z,y) € Gy,

D (62,9, 0, 0V, 0,€) = 30V — [ Om + 1Ty m

= —ﬁ [[|wa|2 — Vaw n+ [Vyw - nf!|n + [Vw - n] [Vew — (Vew - n)n]]
1 1
7| ¢ Ve 5l

Thus

n-hy(t,x,y,0,V,0:,V,a,() =n- hg,(t,a:,y, 0,V,0::V,a,{)+n- [fo(t,a:) + ]
B N ; no )
I S 5 . s o

Recall |a| < 1, then clearly the optimal arguments are:

a* = IY(t,aj,y) =n(t,x,y), ("= I;j(t,x,y) = V,w — [V,w - njn.
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Together with (6.1), this implies further that
V= [atV FR(, 0.V, 05V, IV, IV) + O + I}'}
1 1 9 0
[Vtw n— 1]n+T—_[ C‘V:cw"‘i‘d ]n_ [f* +n]
1 2
m [[|Vmw| —Vizw-n+ |Vyw - n| ]n + [V,w - 1] [Vmw — (Vyw - n)nH;

I ==—f"+Mn fn

_|_

1

+ m[vmw ‘1] [V,w — (Vyw - n)n].

Plug I}, 1), I into (6.2), clearly the resulted SDE is wellposed. |
1>42,43

Proof of Example 8.3. We now compute the equation (8.3) in this case. First,

VT
V,r

N(t.2,y,Van, Vyn) = {(a,2) : [1,2]" [Van + 2V11] = 0}

= {(a,2):z= (a, Vy?(t,a:,y))}'
Then, recalling n = %|’f|2,
1 V.r
Fo= 5[V =2V T Vil o \ | t,2.y)
1 v,r VT 2
= 5{1‘ e 4 |V, T —2[eryr+V TV, r]Vyr [EV,, T+ |V, v, }(t,a:,y)
1
2

=)

~ V.r
Vel — 2V T=—= + V,, T ‘V r‘ ](t x,y).
y

Note further that ¥ = 0 on Gy. Then, for (¢,z,y) € Gy, we have

_V,r
v,r
_V,r
V,r

1_ . VaT 2
V. F = var [Vmcr - 2vmyr =+ vyy ‘ Vy | :| (t’ L5 y);

1 V.r
V,F = ivyr[vmr IV 4y T + VT ‘vyr| | t,2,y).
On the other hand, note that Vyn =TV,r. Then, again at (¢,z,y) € Gy,

V.V = V. IVE, V,Vin = V,FVF.

Plug these into (8.3), we obtain (8.5) immediately. [ |
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