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Minimal solutions of master equations for extended

mean field games
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Abstract

In an extended mean field game the vector field governing the flow of the population can

be different from that of the individual player at some mean field equilibrium. This new

class strictly includes the standard mean field games. It is well known that, without any

monotonicity conditions, mean field games typically contain multiple mean field equilibria

and the wellposedness of their corresponding master equations fails. In this paper, a partial

order for the set of probability measure flows is proposed to compare different mean field

equilibria. The minimal and maximal mean field equilibria under this partial order are con-

structed and satisfy the flow property. The corresponding value functions, however, are in

general discontinuous. We thus introduce a notion of weak-viscosity solutions for the master

equation and verify that the value functions are indeed weak-viscosity solutions. Moreover, a

comparison principle for weak-viscosity semi-solutions is established and thus these two value

functions serve as the minimal and maximal weak-viscosity solutions in appropriate sense. In

particular, when these two value functions coincide, the value function becomes the unique

weak-viscosity solution to the master equation. The novelties of the work persist even when

restricted to the standard mean field games.
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1 Introduction

In this paper we consider the following extended mean field game system: given µ ∈ P2(R
d),

∂tν(t, x)−
1

2
tr
(
∂xxν(t, x)) + div(ν(t, x)̂b(x, ∂xv(t, x), νt)

)
= 0, ν0 = µ;

∂tv(t, x) +
1

2
tr (∂xxv(t, x)) +H(x, ∂xv(t, x), νt) = 0, v(T, x) = G(x, νT ).

(1.1)

The master equation, see (2.12) below, is to characterize its decoupling field V in the sense that

v(t, x) = V (t, x, νt). (1.2)

The standard mean field game and its master equation correspond to the special case:

b̂(x, p, µ) = ∂pH(x, p, µ). (1.3)

Initiated independently by Caines-Huang-Malhamé [12] and Lasry-Lions [38], mean field

games (MFGs, for short) have received very strong attention and is by now a well-established

theory for the study of the asymptotic behavior of stochastic differential games with a large

number of players interacting in certain symmetric way. We refer to the monographs Carmona-

Delarue [17, 18] and the lecture note Cardaliaguet-Porretta [14] for a complete introduction of

recent progresses on the subject.

Extended MFGs were first introduced by Lions-Souganidis [41] to study a more general class

of MFGs where the vector field governing the flow of the population might be different from that

of the individual player at some mean field equilibrium (MFE, for short). Their motivation comes

from two folds. Firstly, the homogenization limit of a class of oscillatory classical MFGs is in

general not a classical MFG but an extended MFG. Secondly, extended MFGs arise naturally in

the optimal transportation-type control problems. More precisely, the Euler-Lagrange systems

of optimal transportation-type control problems are in general not of the classical MFG type

but of the extended MFG type. A new and meaningful monotonicity condition was proposed in

[41] to study the wellposedness of extended MFG systems, and their wellpoedness results were

further extended in Munõz [45]. In particular, the proposed monotonicity condition ensures the

uniqueness of MFE of extended MFGs.

It should be noted that [41, 45] consider extended MFG systems with local coupling, that

is, the data G,H, b̂ depend on ν(t, x), rather than νt. We instead study extended MFGs with

nonlocal coupling, as in (1.1), via the master equation (2.12). Our motivation for studying such

extended MFGs comes from the study of MFGs with a major player. These games consist of a

major player and infinite many homogeneous minor players where the major player can have a
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significant impact on the minor players while all the minor players as a whole can have an impact

on the major player. In this case, the value function of the major player will take the form

V0(t,X
0
t ,LXt|FX0

t

), (1.4)

where X0 and X stand for the major player’s state and the representative minor player’s state,

respectively. In particular, the measure variable L
Xt|FX0

t

is not the law of the major player’s

state X0
t . This is exactly in the spirit of the extended MFG. The local (in time) wellposedness

of the MFG systems for MFGs with a major player has been established in Cardaliaguet-Cirant-

Porretta [13]. Its global wellposedness has not been studied in the literature, to the best of our

knowledge, and we shall address it in our accompanying paper [44].

In the literature of standard MFGs, the global wellposedness of master equations requires

the uniqueness of MFE, typically under certain monotonicity conditions. See, e.g., Bertucci

[6], Bertucci-Cecchin [7], Cardaliaguet-Delarue-Lasry-Lions [15], Cardaliaguet-Souganidis [16],

Carmona-Delarue [18], Chassagneux-Crisan-Delarue [20], Lions [39], Mou-Zhang [42], for the well-

known Lasry-Lions monotonicity condition; Ahuja [1], Bensoussan-Graber-Yam [2, 3], Gangbo-

Meszaros [31], Gangbo-Meszaros-Mou-Zhang [32] for the displacement monotonicity condition;

and Mou-Zhang [43] for the anti-monotonicity condition. We emphasize that, all these mono-

tonicity conditions require the measure variable to be the law of the state process, and thus fail

automatically for value functions in the form (1.4). The works Graber-Meszaros [33, 34] proposed

a new type of monotonicity condition, which does not have this constraint. We should mention

the very recent work Bertucci-Lasry-Lions [10] concerning master equations for extended MFGs

with nonlocal coupling as in the present paper. It shows that the master equation admits at

most one global solution which is Lipschitz continuous in the measure variable. However, the

existence of such a solution requires additional structural conditions and remains open. More-

over, there are studies on master equations for finite state extended MFGs, see e.g. Bertucci [5]

and Bertucci-Lasry-Lions [8, 9]. We shall investigate the existence of global classical solutions of

master equations for extended MFGs in the accompanying paper [44].

In this paper we focus on extended MFGs and their master equations, with possibly multiple

MFEs. Our main idea is to introduce a partial order � for the set of probability measure flows,

in the spirit of stochastic dominance. This allows us to compare different MFEs, and we shall

construct the minimal/maximal MFE for extended MFGs under this partial order, following the

Knaster–Tarski fixed point theorem. To be precise, we shall construct MFEs ν and ν such that:

ν � ν∗ � ν, for all MFE ν∗. (1.5)

For this purpose, we shall assume the data G,H, b̂ are monotone in µ under the partial order �.

We emphasize that this type of monotonicity under � has a completely different nature from the
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various monotonicity conditions mentioned in the previous paragraph. Our approach is strongly

inspired by Dianetti-Ferrari-Fischer-Nendel [26, 27] and Dianetti [25] which obtained (1.5) under

the same partial order for standard MFGs. A similar idea has also been applied previously to

investigate MFGs of optimal stopping, see Carmona-Delarue-Lacker [19] and Bertucci [4].

We next establish the flow property of the minimal/maximal MFEs, which is crucial for

studying the dynamic value function and the master equation. That is, let νt,µ denote the

minimal MFE for the extended MFG on [t, T ] with initial distribution µ. Then, for any t0 < t1,

ν
t0,µ
t = ν

t1,ν
t0,µ
t1

t , t ≥ t1. (1.6)

This implies the following value function is time consistent:

V (t0, x, µ) = v(t0, x), where v solves the backward PDE in (1.1) with ν = νt0,µ. (1.7)

This function V is smooth in x, but is typically discontinuous in (t, µ), as we will see in Section 8

below. So a classical solution theory for the master equation is not viable under our conditions.

We thus turn to weak solutions, by adapting the notion of weak-viscosity solution proposed

in our previous paper [42]. We shall show that, by introducing V associated to the maximal

MFE, both V and V are weak-viscosity solutions of the master equation (2.12). Moreover, for

any weak-viscosity solution V , the spatial derivative ∂xV always stays between ∂xV and ∂xV

component wise. In this sense, V and V can be viewed as the minimal and maximal weak-

viscosity solution of the master equation. In particular, the weak-viscosity solution is unique

if and only if V = V . We would like to note that, the very recent work Lions-Seeger [40] has

used the same approach to establish the global well-posedness for linear and nonlinear finite

dimensional transport equations with coordinate-wise increasing velocity fields, and the theory

has also been applied to study MFGs in a finite state space.

We note that our consideration of ν and ν can be viewed as a special selection of MFEs. In

the literature there have been other selection criteria for standard MFGs with multiple MFEs,

see e.g. Delarure-Foguen Tchuendom [24], Cecchin-Dai Pra-Fisher-Pelino [21], Cecchin-Delaure

[22, 23]. In [24], three methods of selection, including the minimal cost, zero noise limit, N -

player limit selections, are considered for the linear quadratic MFGs. In particular, in this case

the master equation is reduced to a one dimensional PDE and the MFE selected by the last

two methods provides an entropy solution to this PDE. Similar results have been obtained for

two-state MFGs in [21]. In [22, 23] the authors established the global wellposedness of master

equations for potential MFGs with multiple MFEs. The potential game structure allows to link

the MFG to a mean field control problem in the sense that the selected MFE for the MFG is an

optimal strategy for the control problem. We would also like to mention that Iseri-Zhang [37]
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takes a different approach by investigating the set value of MFGs, namely the set of game values

over all MFEs, which satisfies the dynamic programming principle. Again our V and V can be

viewed as the minimal and maximal (in terms of ∂xV instead of V ) elements of the set value.

The rest of the paper is organized as follows. In Section 2 we introduce the problem, the

main results, and the assumptions. In Section 3 we investigate the backward PDE in (1.1)

for given ν. In Section 4 we construct the minimal MFE for the extended MFG. In Section

5 we study the basic properties of the value function V . In Section 6 we establish the weak-

viscosity solution theory. In Section 7 we present the results concerning the maximal MFE and

its corresponding value function V ; the results under an alternative set of monotonicity condition

under the partial order; as well as the extension of the current results to extended MFGs with

a common noise. Finally in Section 8 we solve an example explicitly, which in particular shows

that V is discontinuous in (t, µ).

2 The setting and the main results

Throughout the paper, we fix a finite time horizon [0, T ] and a filtered probability space (Ω,F ,F,P),

on which is defined a d-dimensional Brownian motion B. For any p ≥ 1, let Pp(R
d) denote the

set of probability measures on R
d with finite p-th moment, equipped with the p-Wasserstein

distance Wp. We assume F0 is rich enough to support any µ ∈ P2(R
d), and Ft := F0 ∨ FB

t . For

any p ≥ 1, G ⊂ F , and µ ∈ Pp(R
d), denote by L

p(G) the set of G-measurable and p-integrable

random variables ξ; and L
p(G;µ) the set of those ξ ∈ L

p(G) with Lξ = µ. For any t0 ∈ [0, T ],

denote Bt0
t := Bt − Bt0 , t ∈ [t0, T ], and F

t0 := {Ft}t0≤t≤T . Moreover, we denote 0 := (0, · · · , 0)
and 1 := (1, · · · , 1) with appropriate dimensions.

2.1 The extended mean field game

First, given t0 ∈ [0, T ] and ν ∈ C([t0, T ];P2(R
d)), consider the following parabolic PDE on [t0, T ]:

∂tv(ν; t, x) +
1

2
tr (∂xxv(ν; t, x)) +H(x, ∂xv(ν; t, x), νt) = 0, v(ν;T, x) = G(x, νT ). (2.1)

Under certain technical conditions on H,G as we will specify later, the above PDE has a unique

classical solution v(ν; ·, ·). Next, given ξ ∈ L
2(Ft0), consider the following SDE on [t0, T ]:

X
t0,ξ,ν
t = ξ +

∫ t

t0

b̂
(
Xt0,ξ,ν

s , ∂xv(ν; s,X
t0,ξ,ν
s ), νs

)
ds+Bt0

t . (2.2)

It is clear that the mapping ξ 7→ LXt0,ξ,ν is law invariant. We then define the Nash field Φ for

the extended MFG as follows: for any (t0, µ) ∈ [0, T ] × P2(R
d) and ξ ∈ L

2(Ft0 ;µ),

Φ(t0, µ, ν) := {L
X

t0,ξ,ν
t

}t0≤t≤T , ∀ν ∈ C([t0, T ];P2(R
d)). (2.3)
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Definition 2.1 For any (t0, µ) ∈ [0, T ]× P2(R
d), we say ν∗ ∈ C([t0, T ];P2(R

d)) is a mean field

equilibrium (MFE) at (t0, µ) if it is a fixed point of the Nash field Φ(t0, µ, ·):

Φ(t0, µ, ν
∗) = ν∗. (2.4)

Remark 2.2 (i) The typical case is that H is a Hamiltonian and thus (2.1) is the HJB equation:

H(x, p, µ) := inf
a∈R

h(x, p, µ, a), where h(x, p, µ, a) := p · b0(x, a, µ) + f(x, a, µ). (2.5)

In this case, as in the standard theory we have a representation formula for v:

X
0,ν;t0,x,α
t = x+

∫ t

t0

b0(X
0,ν;t0,x,α
s , α(s,X0,ν;t0,x,α

s ), νs)ds +Bt0
t ;

J(ν; t0, x, α) := E

[
g(X0,ν;t0,x,α

T , νT ) +

∫ T

t0

f(X0,ν;t0,x,α
s , α(s,X0,ν;t0,x,α

s ), νs)ds
]
;

v(ν; t0, x) := inf
α∈At0

J(ν; t0, x, α)

(2.6)

where At0 denotes the appropriate set of admissible controls α : [t0, T ]× R
d → R

d.

(ii) In the case in which the Hamiltonian H has a minimizer a∗ = φ(x, p, µ), namely

H(x, p, µ) = h(x, p, µ, φ(x, p, µ)). (2.7)

By (2.5) one can easily check that

b0(x, φ(x, p, µ), µ) = ∂pH(x, p, µ), f(x, φ(x, p, µ), µ) = H(x, p, µ)− p · ∂pH(x, p, µ). (2.8)

(iii) Assuming (2.7) holds true, one typical case of b̂ is: for some appropriate function b,

b̂(x, p, µ) = b(x, φ(x, p, µ), µ).

When b = b0 or b̂(x, p, µ) = ∂pH(x, p, µ), the extended MFG becomes a standard MFG.

2.2 The master equation

When there is a unique MFE for each (t0, µ) ∈ [0, T ]×P2(R
d), denoted as (α∗(t0, µ; ·), ν∗(t0, µ)).

Then the game problem leads to the following value function:

V (t0, x, µ) := J(ν∗(t0, µ); t0, x, α
∗(t0, µ; ·)) for any x ∈ R

d. (2.9)
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Recall the extended MFG (2.1), (2.2), (2.3), and (2.4). In light of (2.6) and (2.8) we introduce the

following FBSDE system (the system does not require the structure in Remark 2.2 (i) though):

X
0,∗
t = x+

∫ t

t0

∂pH(X0,∗
s , ∂xV (s,X0,∗

s , ν∗s ), ν
∗
s )ds+Bt0

t ;

X∗
t = ξ +

∫ t

t0

b̂(X∗
s , ∂xV (s,X∗

s , ν
∗
s ), ν

∗
s )ds+Bt0

t ;

Y ∗
t = G(X0,∗

T , ν∗T )−
∫ T

t

Z∗
sdBs

+

∫ T

t

[
H(·)− ∂xV (s,X0,∗

s , ν∗s ) · ∂pH(·)
](

X0,∗
s , ∂xV (s,X0,∗

s , ν∗s ), ν
∗
s

)
ds;

where ν∗t := LX∗

t
.

(2.10)

In particular, we have

Y ∗
t = V

(
t,X

0,∗
t , ν∗t

)
= V

(
t,X

0,∗
t ,LX∗

t

)
. (2.11)

By applying the Itô’s formula (c.f. [11, 20]) and comparing it with (2.10), we derive the master

equation:

∂tV +
1

2
tr (∂xxV ) +H(x, ∂xV, µ) +MV = 0, V (T, x, µ) = G(x, µ), where

MV (t, x, µ) := tr
(∫

Rd

[1
2
∂x̃∂µV (t, x, µ, x̃) + ∂µV (t, x, µ, x̃)̂b⊤(x̃, ∂xV (t, x̃, µ), µ)

]
µ(dx̃)

)
.
(2.12)

Note that we may alternatively view V as the decoupling field of the following FBSDE system:

X 0,∗
t = x+Bt0

t ;

X ∗
t = ξ +

∫ t

t0

b̂(X∗
s , ∂xV (s,X∗

s , ν
∗
s ), ν

∗
s )ds +Bt0

t , where ν∗t := LX ∗

t
;

Y∗
t = G(X 0,∗

T , ν∗T ) +
∫ T

t

H
(
X 0,∗
s , ∂xV (s,X 0,∗

s , ν∗s ), ν
∗
s

)
ds −

∫ T

t

Z∗
sdBs;

in the sense Y∗
t = V (t,X 0,∗

t , ν∗t ).

(2.13)

Moreover, V also serves as the decoupling field of the extended MFG system, see (1.1) and (1.2).

The main feature here is that the measure variable ν∗t in (2.11) is the law of X∗
t , rather

than that of X0,∗
t . Consequently, the MV above involves the term ∂µV b̂⊤, instead of ∂µV b⊤0 =

∂µV ∂pH
⊤ as in the standard master equations. This feature appears naturally in MFG with a

major player, which is the main motivation of this paper and will be the subject of our accom-

panying paper [44]. We also refer to [41] for more applications of extended MFGs.

However, in general there could be multiple MFEs, which lead to multivalued functions. Our

goal in this paper is to construct the minimal/maximal MFE and to verify that their value

functions satisfy the master equation, in the sense of weak-viscosity solutions introduced in [42].
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2.3 The main results

The main results of this paper build on the following partial order � (or alternatively �).

Definition 2.3 For a generic dimension n and for i = 1, 2,

(i) for any xi = (xi1, · · · , xin) ∈ R
n, we say that x1 � x2 if x1j ≤ x2j for all j = 1, · · · , n;

(ii) for any µi ∈ P2(R
n), we say that µ1 � µ2 if there exist ξi ∈ L

2(F0;µi) s.t. ξ1 � ξ2 P-a.s.;

(iii) for any νi ∈ C([t0, T ];P2(R
n)), we say that ν1 � ν2 if ν1t � ν2t for all t ∈ [t0, T ].

We note that µ1 � µ2 is equivalent to the stochastic dominance. We say x1 � x2 if x2 � x1,

and a function ϕ : Rn → R
m is increasing (resp. decreasing) if ϕ(x1) � ϕ(x2) whenever x1 �

(resp. �) x2. Similarly we define the monotonicity of functions on P2(R
d) and C([t0, T ];P2(R

d)).

We first have the following simple proposition.

Proposition 2.4 Assume ϕ ∈ C1(P2(R
d)), namely it has a continuous Lions derivative ∂µϕ.

Then ϕ is increasing if and only if ∂µϕ(µ, x) � 0 for all (µ, x) ∈ P2(R
d)× R

d.

Proof. We first prove the if part. Assume ∂µϕ � 0. Let µ1, µ2 ∈ P2(R
d) be such that µ1 � µ2,

i.e. there exist ξi ∈ L
2(F0;µi), i = 1, 2, such that ξ1 � ξ2 P-a.s. Then

ϕ(µ2)− ϕ(µ1) =

∫ 1

0
E

[
∂µϕ

(
Lξ1+θ(ξ2−ξ1), ξ

1 + θ(ξ2 − ξ1)
)
· (ξ2 − ξ1)

]
dθ ≥ 0.

We next prove the only if part. Assume ϕ is increasing. For any µ ∈ P2(R
d), ξ ∈ L

2(F0;µ),

and η ∈ L
2(F0) such that η � 0, we have

0 ≤ lim
ε↓0

ϕ(Lξ+εη)− ϕ(µ)

ε
= E

[
∂µϕ(µ, ξ) · η

]
.

By the arbitrariness of η � 0, this implies that ∂µϕ(µ, ξ) � 0, P-a.s. That is ∂µϕ(µ, x) � 0, for

µ-a.e. x. Since ∂µϕ is continuous, we see that ∂µϕ(µ, x) � 0 for all (µ, x).

Remark 2.5 As we saw in [32], a smooth function U on R
d ×P2(R

d) satisfies the Lasry-Lions

monotonicity condition if and only if: for any µ ∈ P2(R
d), ξ ∈ L

2(F0;µ), η ∈ L
2(F0),

E

[
〈∂xµU(ξ, µ, ξ̃)η, η̃〉

]
≥ 0. (2.14)

We note that (2.14) is always under expectation, while in Proposition 2.4 we require ∂µϕ(µ, x) � 0

pointwisely. In this sense we are considering pointwise monotonicity in this paper. We shall

remark that (2.14) and the pointwise monotonicity of ∂xU(x, ·) do not imply each other.

Our main results consist of two parts, under the conditions specified in the next subsection.
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• First, given (t, µ) ∈ [0, T ] × P2(R
d), we will construct the minimal MFE νt,µ and the

maximal MFE νt,µ at (t, µ), in the sense that for any other MFE ν∗ at (t, µ) it holds:

νt,µ � ν∗ � νt,µ.

• Next, we define the dynamic value functions

V (t, x, µ) := v(νt,µ; t, x), V (t, x, µ) := v(νt,µ; t, x).

We shall show that they are weak-viscosity solutions of the master equation (2.12) such

that ∂xV and ∂xV satisfy certain minimal/maximal property.

Since the analyses are similar, in the paper we will focus only on νt,µ and V (t, x, µ), and we will

present the results concerning νt,µ and V (t, x, µ) in Section 7.1 below.

2.4 The assumptions

We first introduce some technical assumptions on the coefficients, which are more or less standard

in the literature. Denote, for any R > 0,

OR := {p ∈ R
d : |p| < R}, ∀R > 0. (2.15)

Assumption 2.6 (i) G ∈ C0(Rd ×P2(R
d)) and H ∈ C0(R2d ×P2(R

d)) are functions satisfying

G(·, µ) ∈ C2(Rd) and H(·, ·, µ) ∈ C2(Rd × R
d) for each µ ∈ P2(R

d);

(ii) there exist constants LG
0 , L

H
0 , and LH(R) for each R > 0, such that

|∂xG(x, µ)|, |∂xxG(x, µ)| ≤ LG
0 , and |∂xH(x, p, µ)| ≤ LH

0 [1 + |p|], for all (x, p, µ);

|∂pH|, |∂xxH|, |∂xpH|, |∂ppH| ≤ LH(R) on R
d ×OR × P2(R

d);

(iii) for each R > 0 and any compact set K ⊂ P2(R
d), ∂xG, ∂xxG are uniformly continuous in

(x, µ) on R
d × K, and ∂xH, ∂pH, ∂xxH, ∂xpH, ∂ppH are uniformly continuous in (x, p, µ) on

R
d ×OR ×K.

Assumption 2.7 Assume that b̂(·, ·, µ) ∈ C1(Rd×R
d) for each µ ∈ P2(R

d), and for each R > 0

and any compact set K ⊂ P2(R
d), b̂, ∂xb̂, ∂pb̂ are bounded with bound Lb̂(R) and b̂ is uniformly

continuous in µ on R
d ×OR ×K.

The following pointwise monotonicity condition under partial order � is crucial.

Assumption 2.8 (i) ∂xG is increasing in (x, µ);

(ii) ∂xH is increasing in (x, µ), ∂pH is increasing in (p, µ), and ∂xipjH ≥ 0 for all i 6= j (which

is slightly weaker than that ∂pH is increasing in x);

(iii) b̂ is increasing in (p, µ) and ∂xj
b̂i ≥ 0 for all i 6= j.

9



Alternatively, we may replace the above assumption with the following monotonicities.

Assumption 2.9 (i) ∂xG is decreasing in (x, µ);

(ii) ∂xH is decreasing in (x, µ), ∂pH is increasing in (p, µ), and ∂xipjH ≥ 0 for all i 6= j;

(iii) b̂ is decreasing in p, increasing in µ, and ∂xi
b̂j ≥ 0 for all i 6= j.

In the paper we will focus only on the analyses under Assumption 2.8. The corresponding results

under Assumption 2.9 are essentially the same, with obvious changes, so we will present them in

Section 7.2 without proofs.

2.5 Some preliminary comparison results

In this subsection we present two well known comparison results for multidimensional SDEs and

BSDEs, which will play an important role in the paper. The proofs are rather standard, and we

refer to [36] for further discussions on the BSDE case.

Lemma 2.10 Consider the following two n-dimensional SDE systems: for k = 1, 2,

X
k,i
t = ξik +

∫ t

0
bik(s,X

k
s )ds+Bi

t , i = 1, · · · , n, (2.16)

where ξik ∈ L
2(F0) and bik : [0, T ] × Ω× R

n → R is F-progressively measurable. Assume

(i) for k = 1, 2, bk is uniformly Lipschitz continuous in x and E[
∫ T

0 |bk(t, 0)|2dt] < ∞;

(ii) bi1 (or bi2) is increasing in xj for any i 6= j, and ξ1 � ξ2 and b1 � b2.

Then X1
t � X2

t , 0 ≤ t ≤ T , P-a.s.

Lemma 2.11 Consider the following two n-dimensional BSDE systems: for k = 1, 2,

Y
k,i
t = ξik +

∫ T

t

f i
k(s, Y

k
s , Z

k,i
s )ds −

∫ T

t

Zk,i
s · dBs, i = 1, · · · , n, (2.17)

where ξik ∈ L
2(FT ) and f i

k : [0, T ] × Ω× R
n × R

d → R
d is F-progressively measurable. Assume

(i) for k = 1, 2, fk is uniformly Lipschitz continuous in (y, z) and E[
∫ T

0 |fk(t, 0, 0)|2dt] < ∞;

(ii) f i
1 (or f i

2) is increasing in yj for any i 6= j, and ξ1 � ξ2 and f1 � f2.

Then Y 1
t � Y 2

t , 0 ≤ t ≤ T , P-a.s.

3 The PDE (2.1)

In this section we focus on the properties of the solution v for the PDE (2.1). The following lemma

is more or less standard. For the sake of completeness, we sketch a proof here. In particular, our

probabilistic arguments will remain valid for the common noise case which will be discussed in

Section 7.3 below.
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Lemma 3.1 Let Assumption 2.6 hold.

(i) For any given ν ∈ C([0, T ];P2(R
d)), the equation (2.1) admits a unique classical solution v,

and there exist constants C1, C2 > 0, depending on T , d, LG
0 , LH

0 , and the function LH , but

independent of ν, such that

|∂xv| ≤ C1 and |∂xxv| ≤ C2; (3.1)

(ii) for any compact set K ⊂ P2(R
d), there exists a modulus of continuity function ρK such that:

for any ν, ν1, ν2 ∈ C([0, T ];P2(R
d)) satisfying νt, ν

1
t , ν

2
t ∈ K for all t,

|∂xv(ν1; t, x)− ∂xv(ν
2; t, x)| ≤ ρK

(
sup

t≤s≤T

W2(ν
1
s , ν

2
s )
)
; (3.2)

|∂xv(ν; t1, x)− ∂xv(ν; t2, x)| ≤ ρK(t2 − t1), ∀0 ≤ t1 < t2 ≤ T. (3.3)

Proof. First it follows from [32, Proposition 6.1] that the following function v(ν; t, x) satisfies

(3.1): denoting X
t,x
s := x+Bt

s, t ≤ s ≤ T ,

v(ν; t, x) := Y
t,x,ν
t , where

Y t,x,ν
s = G(Xt,x

T , νT ) +

∫ T

s

H(Xt,x
r , Zt,x,ν

r , νr)dr −
∫ T

s

Zt,x,ν
r · dBr, t ≤ s ≤ T.

(3.4)

In particular, we have

|Zt,x,ν
s | = |∂xv(ν; s,Xt,x

s )| ≤ C1. (3.5)

We note that the assumptions in the statement of [32, Proposition 6.1] involve the derivatives of

G and H with respect to µ as well, but they are never used in that proof.

We next prove (3.2). Fix K and let ρ0K denote the common modulus of continuity function

of ∂xG, ∂xxG on R
d ×K and that of ∂xH, ∂pH, ∂xxH, ∂xpH, ∂ppH on R

d ×OC1 ×K for the C1 in

(3.1) or (3.5). By standard arguments we have

∂xv(ν; t, x) = ∇xY
t,x,ν
t , ∂xxv(ν; t, x) = ∇2

xxY
t,x,ν
t , (3.6)

where ∇xY
t,x,ν ∈ R

d and ∇2
xxY

t,x,ν ∈ R
d×d satisfy the following linear BSDEs on [t, T ]:

∇xi
Y t,x,ν
s = ∂xi

G(Xt,x
T , νT )−

∫ T

s

∇xi
Zt,x,ν
r · dBr

+

∫ T

s

[∂xi
H + ∂pH∇xi

Zt,x,ν
r ](Xt,x

r ,∇xY
t,x,ν
r , νr)dr,

(3.7)

∇xixj
Y t,x,ν
s = ∂xixj

G(Xt,x
T , νT )−

∫ T

s

∇xixj
Zt,x,ν
r · dBs

+

∫ T

s

[
∂xixj

H +

d∑

k=1

[∂xipkH∇xjxk
Y t,x,ν
r + ∂xjpkH∇xixk

Y t,x,ν
r ]

+

d∑

k,l=1

[∇xjxk
Y t,x,ν
r ∂pkplH∇xixl

Y t,x,ν
r ] + ∂pH∇xixj

Zt,x,ν
r

]
(Xt,x

r ,∇xY
t,x,ν
r , νr)dr.

(3.8)
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Here we used the fact that Zt,x,ν
r = ∂xv(ν; r,X

t,x
r ) = ∇xY

t,x,ν
r . Recall (3.5) again, then we may

rewrite (3.7) as:

∇xi
Y t,x,ν
s = ∂xi

G(Xt,x
T , νT )−

∫ T

s

∇xi
Zt,x,ν
r · dBr

+

∫ T

s

[
∂xi

H + ∂pH(−C1 ∨ ∇xi
Zt,x,ν
r ∧ C1)

]
(Xt,x

r ,∇xY
t,x,ν
r , νr)dr,

where the truncation is in the component wise sense. Note that the generator of the above BSDE

is Lipschitz continuous. Then, by the standard BSDE estimates (cf. [48, Chapter 4]) we can

easily obtain (3.2). Similarly, we can show that ∂xv and ∂xxv are uniformly continuous in x, with

a possibly different modulus of continuity function ρ.

Moreover, for any t1 < t2, note that ∇xY
t1,x,ν
t2

= ∂xv(ν; t2,X
t1,x
t2

) and thus, by (3.7),

∂xv(ν; t1, x) = ∇xY
t1,x,ν
t1

= ∂xv(ν; t2,X
t1,x
t2

) +

∫ t2

t1

[∂xH + ∂pH∇xZ
t,x,ν
r ](Xt,x

r , Zt,x,ν
r , νr)dr −

∫ t2

t1

∇xZ
t,x,ν
r · dBr.

Then, noting that |∇xZ
t,x,ν
r | = |∂xxv(ν, r,Xt,x

r )| ≤ C2, one can easily prove (3.3), for a possibly

different ρK . Similarly ∂xv and ∂xxv are also uniformly continuous in t. Moreover, since G and

H are continuous, by (3.4) one can easily show that v is also continuous in t. Then by (3.4)

clearly v(ν; ·, ·) is the unique classical solution of (2.1).

Proposition 3.2 Under Assumptions 2.6 and 2.8 (i)-(ii), ∂xv is increasing in (x, ν).

Proof. First we may rewrite (3.8) as: omitting t,x,ν for notational simplicity,

∇xixj
Ys = ∂xixj

G(XT , νT )−
∫ T

s

∇xixj
Zr · dBr

+

∫ T

s

[
f0
(
r, (∇xkxl

Yr)(k,l)6=(i,j)

)
+ Γr∇xixj

Yr + ∂pH(Xr,∇xYr, νr)∇xixj
Zr

]
dr, where

Γr :=
[
∂xipiH + ∂xjpjH +

∑

l 6=j

∂piplH∇xixl
Yr +

∑

k 6=i

∂pkpjH∇xjxk
Yr

]
(Xr,∇xYr, νr),

f0
(
r, (yk,l)(k,l)6=(i,j)

)
:=

[
∂xixj

H +
∑

k 6=i

∂xipkHyjk +
∑

k 6=j

∂xjpkHyik

+
∑

k 6=i,l 6=j

∂pkplH[(−C2) ∨ yj,k ∧ C2][(−C2) ∨ yi,l ∧ C2]
]
(Xr,∇xYr, νr).

(3.9)

Here the constant C2 is from (3.1) and we used (3.6). We may view (3.9) as a d2-dimensional

BSDE system, with index (i, j) and solution {(∇xixj
Y,∇xixj

Z)}(i,j), where Γ is viewed as a given
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coefficient. We next introduce two d2-dimensional BSDE systems, again with index (i, j):

Y 1,(i,j)
s = −

∫ T

s

Z1,(i,j)
r · dBr +

∫ T

s

[
ΓrY

1,(i,j)
r + ∂pH(Xr,∇xYr, νr)Z

1,(i,j)
r

]
dr;

Y 2,(i,j)
s = ∂xixj

G(XT , νT )−
∫ T

s

Z2,(i,j)
r · dBr

+

∫ T

s

[
f0
(
r, {(Y 2,(k,l)

r )+}(k,l)6=(i,j)

)
+ ΓrY

2,(i,j)
r + ∂pH(Xr,∇xYr, νr)Z

2,(i,j)
r

]
dr.

By Assumption 2.8 (i)-(ii), we have for all (i, j) and r ∈ [t, T ]

∂xixj
G(XT , νT ) ≥ 0, f0

(
r, {(yk,l)+}(k,l)6=(i,j)

)
≥ 0.

Note that f0 is increasing in {(yk,l)+}(k,l)6=(i,j), and it is obvious that Y
1,(i,j)
s ≡ 0. Then it

follows from Lemma 2.11 that Y
2,(i,j)
s ≥ Y

1,(i,j)
s = 0, and thus f0

(
r, {(Y 2,(k,l)

r )+}(k,l)6=(i,j)

)
=

f0
(
r, {Y 2,(k,l)

r }(k,l)6=(i,j)

)
. This implies that

{
Y 2,(i,j), Z2,(i,j)

}
(i,j)

satisfies BSDE system (3.9).

Then ∂xixj
v(ν; t, x) = ∇xixj

Yt = Y
2,(i,j)
t ≥ 0. That is, ∂xv is increasing in x.

Similarly, given ν1, ν2 ∈ C([0, T ];P2(R
d)) such that ν1 � ν2, omit t,x and denote, for θ ∈ [0, 1],

∇̄xi
Ys := ∇xi

Y ν2

s −∇xi
Y ν1

s , ∇̄xi
Zs := ∇xi

Zν2

s −∇xi
Zν1

s , ∇xY
θ
s := (1− θ)∇xY

ν2

s + θ∇xY
ν1

s .

Note that ∇xi
Z =

(
∇xix1Y, · · · ,∇xixd

Y )⊤. By (3.7) we have

∇̄xi
Ys = [∂xi

G(XT , ν
2
T )− ∂xi

G(XT , ν
1
T )]−

∫ T

s

∇̄xi
Zr · dBr

+

∫ T

s

[
γ̄r + f̄0

(
r, {∇̄xj

Yr}j 6=i

)
+ Γ̄r∇̄xi

Yr + ∂pH(Xr,∇xY
ν1

r , ν1r )∇̄xi
Zr

]
dr, where

Γ̄r :=

∫ 1

0

[
∂xipiH +

d∑

k=1

∂pipkH∇xixk
Y ν2

r

]
(Xr,∇xY

θ, ν1)dθ,

f̄0
(
r, {yj}j 6=i

)
:=

∑

j 6=i

∫ 1

0

[
∂xipjH +

d∑

k=1

∂pjpkH∇xixk
Y ν2

r

]
(Xr,∇xY

θ, ν1)dθ yj

γ̄r := [∂xi
H(Xr,∇xY

ν2

r , ν2r )− ∂xi
H(Xr,∇xY

ν2

r , ν1r )]

+
d∑

k=1

[∂pkH(Xr,∇xY
ν2

r , ν2r )− ∂pkH(Xr,∇xY
ν2

r , ν1r )]∇xixk
Y ν2

r .

(3.10)

Note that ∇xixk
Y ν2

r = ∂xixk
v(ν2; r,Xr) ≥ 0. Then, by Assumption 2.8 (i)-(ii) we see that f̄0 is

increasing in {yj}j 6=i and, for all i and r ∈ [t, T ],

[∂xi
G(XT , ν

2
T )− ∂xi

G(XT , ν
1
T )] ≥ 0, γ̄r ≥ 0.

Now compare (3.10) with the following d-dimensional linear BSDE system:

Ȳ i
s = −

∫ T

s

Z̄i
r · dBr +

∫ T

s

[
f̄0
(
r, {Y j

r }j 6=i

)
+ Γ̄rȲ

i
r + ∂pH(Xr,∇xY

ν1

r , ν1r )Z̄
i
r

]
dr. (3.11)
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It follows from Lemma 2.11 again that ∇̄xi
Ys ≥ Ȳ i

s for all i. From (3.11) it is obvious that

Ȳ i
s ≡ 0. Then

∂xi
v(ν2; t, x)− ∂xi

v(ν1; t, x) = ∇̄xi
Yt = Ȳ i

s ≥ 0.

That is, ∂xv is increasing in ν.

4 The minimal MFE

In this section we construct the minimal MFE for the extended MFG. We first establish the

pointwise monotonicity of the Nash field Φ.

Theorem 4.1 Let Assumptions 2.6, 2.7, and 2.8 hold. Then for any t0 ∈ [0, T ], Φ(t0, ·, ·) is

increasing in (µ, ν).

Proof. Let µ1, µ2 ∈ P2(R
d) and ν1, ν2 ∈ C([t0, T ];P2(R

d)) be such that µ1 � µ2, ν
1 � ν2, and

ξ1 ∈ L
2(Ft0 ;µ1), ξ2 ∈ L

2(Ft0 ;µ2) be such that ξ1 ≤ ξ2. For k = 1, 2, we have

X
t0,ξk,ν

k

t = ξk +

∫ t

t0

b̂(Xt0,ξk,ν
k

s , ∂xv(ν
k; s,Xt0,ξk,ν

k

s ), νks )ds +Bt0
t .

Denote bk(s, x) := b̂(x, ∂xv(ν
k; s, x), νks ), k = 1, 2. By Lemma 3.1 bk satisfies Lemma 2.10 (i).

Moreover, by Assumption 2.8 (iii) and Proposition 3.2 we see that b1 � b2 and

∂xj
bik(s, x) =

[
∂xj

b̂i + ∂pb̂
i · ∂xjxv

]
(x, ∂xv(ν

k; s, x), νks ) ≥ 0, i 6= j.

Since ξ1 � ξ2, then by Lemma 2.10 we have X
t0,ξ1,ν

1

t � X
t0,ξ2,ν

2

t , t0 ≤ t ≤ T , P-a.s. This implies

that Φ(t0, µ1, ν
1) � Φ(t0, µ2, ν

2).

We now construct the minimal MFE by Picard iteration, following the standard procedure

in Knaster-Tarski fixed point theorem. Fix (t0, µ) ∈ [0, T ] × P2(R
d) and ξ ∈ L

2(Ft0 ;µ). Recall

Assumption 2.7 and (3.1), we set

X
t0,ξ,0
t := ξ − Lb̂(C1)1+Bt0

t , X
t0,ξ,0
t := ξ + Lb̂(C1)1+Bt0

t , (4.1)

and, for n = 0, · · · ,

X
t0,ξ,n+1
t = ξ +

∫ t

t0

b̂(X t0,ξ,n+1
s , ∂xv(LXt0,ξ,n ; s,X

t0,ξ,n+1
s ),L

X
t0,ξ,n
s

)ds+Bt0
t . (4.2)

We then have the first main result of the paper.
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Theorem 4.2 Let Assumptions 2.6, 2.7, and 2.8 hold. Then for any (t0, µ) ∈ [0, T ] × P2(R
d)

and ξ ∈ L
2(Ft0 ;µ), there exists a process Xt0,ξ on [t0, T ] such that

(i) X
t0,ξ,n
t � X

t0,ξ,n+1
t , ∀n, t, P-a.s. with limn→∞ E[supt0≤t≤T |X t0,ξ,n

t −X
t0,ξ
t |2] = 0;

(ii) νt0,µ := LXt0,ξ is an MFE of the extended MFG at (t0, µ);

(iii) for any MFE ν∗ of the extended MFG at (t0, µ), we have νt0,µ � ν∗. That is, νt0,µ is the

minimal MFE.

Proof. For notational simplicity we omit t0,ξ and t0,µ.

First, by Assumption 2.7 and (3.1), b̂(X1
s, ∂xv(LX0 ; s,X1

s),LX0
s
) � −Lb̂(C1)1. Then X0

t �
X1

t , t0 ≤ t ≤ T , P-a.s. and thus LX0 � LX1 . Applying Theorem 4.1 repeatedly, we see that

Xn is increasing in n, and thus we may define X := limn→∞Xn. Moreover, following similar

arguments one can easily see that Xn
t � X

0
t , t0 ≤ t ≤ T , P-a.s. for all n. Then it follows from

the dominated convergence theorem that limn→∞ E[|Xn
t −Xt|2] = 0, for any t.

Next, by Assumption 2.7 and (3.1) we see that b̂(·, ∂xv(·), ·) is bounded by Lb̂(C1). Then it

follows from [47, Lemma 4.1] that the set ∪n≥1{LXn
t
}0≤t≤T is precompact. Now send n → ∞ in

(4.2), by the desired continuity of b̂ in Assumption 2.7 and that of ∂xv in Lemma 3.1, we have

Xt = ξ +

∫ t

t0

b̂(Xs, ∂xv(LX ; s,Xs),LXs
)ds+Bt0

t . (4.3)

This implies that ν := LX is an MFE of the extended MFG at (t0, µ). Moreover, compare this

with (4.2), one can easily see that limn→∞ E[supt0≤t≤T |Xn
t −Xt|2] = 0.

Finally, for any MFE ν∗ of the extended MFG at (t0, µ), consider the related SDE system:

X∗
t = ξ +

∫ t

t0

b̂(X∗
s , ∂xv(ν

∗; s,X∗
s ), ν

∗
s )ds+Bt0

t . (4.4)

Since ν∗ is an MFE, we have ν∗ = LX∗ . Again since b̂(X∗
s , ∂xv(ν

∗; s,X∗
s ), ν

∗
s ) � −Lb̂(C1)1, we

have X0
t � X∗

t , t0 ≤ t ≤ T , P-a.s. Applying Theorem 4.1 repeatedly, we see that Xn
t � X∗

t ,

t0 ≤ t ≤ T , P-a.s. for all n. Then Xt � X∗
t , t0 ≤ t ≤ T , P-a.s. and thus ν � ν∗.

We conclude this section with the following crucial flow property.

Proposition 4.3 Let Assumptions 2.6, 2.7, and 2.8 hold. Then, for any (t0, µ) ∈ [0, T ]×P2(R
d),

ν
t0,µ
t = ν

t1,ν
t0,µ
t1

t , for all t0 ≤ t1 ≤ t ≤ T. (4.5)

Proof. Let ξ ∈ L
2(Ft0 ;µ). Then ν

t0,µ
t = L

X
t0,ξ
t

, ∀t ≥ t0, where X t0,ξ satisfies (4.3). Note that

X
t0,ξ
t = X

t0,ξ
t1

+

∫ t

t1

b̂(X t0,ξ
s , ∂xv(LXt0,ξ ; s,X

t0,ξ
s ),L

X
t0,ξ
s

)ds+Bt1
t , t ≥ t1.
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We see that νt0,µ is an MFE of the extended MFG at (t1,LX
t0,ξ
t1

) = (t1, ν
t0,µ
t1

). Then by Theorem

4.2 (iii) we have ν
t1,ν

t0,µ
t1

t � ν
t0,µ
t , for all t ≥ t1.

On the other hand, for the Picard iteration in (4.1) and (4.2), by Theorem 4.2 (i) we have

X
t0,ξ,n
t1

� X
t0,ξ
t1

=: ξ1, for all n. By (4.1) it is clear that X t0,ξ,0
t � X

t1,ξ1,0
t for all t ≥ t1. Note that

X
t0,ξ,1
t = X

t0,ξ,0
t1

+

∫ t

t1

b̂(X t0,ξ,1
s , ∂xv(LXt0,ξ,0 ; s,X

t0,ξ,1
s ),L

X
t0,ξ,0
s

)ds+Bt1
t .

Since X
t0,ξ,1
t1

� ξ1, by Theorem 4.1 we see that X
t0,ξ,1
t � X

t1,ξ1,1
t , t ≥ t1, P-a.s. Repeat the

arguments, we obtain X
t0,ξ,n
t � X

t1,ξ1,n
t . Send n → ∞, by Theorem 4.2 (i) we have Xt0,ξ

t � X
t1,ξ1
t ,

t ≥ t1, P-a.s. That is, ν
t0,µ
t � ν

t1,ν
t0,µ
t1

t , for all t ≥ t1. Then we must have the equality.

5 The corresponding value function

In this section we investigate the dynamic value function corresponding to the minimal MFE:

V (t, x, µ) := v(νt,µ; t, x). (5.1)

The following properties are immediate.

Proposition 5.1 Let Assumptions 2.6, 2.7, and 2.8 hold.

(i) For any (t, µ) ∈ [0, T ]×P2(R
d), V (t, ·, µ) ∈ C2(Rd) with |∂xV | ≤ C1 and |∂xxV | ≤ C2 for the

C1, C2 in (3.1);

(ii) for any t ∈ [0, T ], ∂xV (t, ·, ·) is increasing in (x, µ).

Proof. (i) is a direct consequence of Lemma 3.1 (i).

(ii) Assume x1 � x2, µ1 � µ2 and let ξi ∈ L(Ft0 , µi), i = 1, 2, be such that ξ1 � ξ2. Then

X
t0,ξ1,0
t � X

t0,ξ2,0
t for all t0 ≤ t ≤ T . Apply Theorem 4.1 repeatedly, we have X

t0,ξ1,n
t � X

t0,ξ2,n
t ,

t0 ≤ t ≤ T , P-a.s. for all n. Then X
t0,ξ1
t � X

t0,ξ2
t , t0 ≤ t ≤ T , P-a.s. and hence νt0,µ1 � νt0,µ2 .

Since ∂xV (t, x, µ) = ∂xv(ν
t,µ; t, x), then it follows from Proposition 3.2 that ∂xV (t, x1, µ1) �

∂xV (t, x2, µ2).

However, as we will see in Section 8 below, in general V is discontinuous in (t, µ). At below

we show that ∂xV is lower semi-continuous in µ in the following sense.

Definition 5.2 (i) Let µn, µ ∈ P2(R
d), n ≥ 1. We say that µn ↑ µ (resp. µn ↓ µ) if µn �

(resp. �) µn+1 for all n and limn→∞W2(µn, µ) = 0;

(ii) we say a function U : P2(R
d) → R

d is lower semi-continuous (resp. upper semi-continuous)

if lim
n→∞

U(µn) � U(µ) (resp. lim
n→∞

U(µn) � U(µ)) whenever lim
n→∞

W2(µn, µ) = 0.
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Here lim and lim are taken component wise. We then have the semi-continuity of V in (t, µ).

Proposition 5.3 Let Assumptions 2.6, 2.7, and 2.8 hold. Then

(i) for any (tk, µk) → (t, µ), we have limn→∞ ∂xV (tk, x, µk) � ∂xV (t, x, µ), i.e. ∂xV is lower

semi-continuous in (t, µ). Moreover, if µk ↑ µ, then limk→∞ ∂xV (t, x, µk) = ∂xV (t, x, µ);

(ii) for any x ∈ R
d and ν ∈ C([0, T ];P2(R

d)), the mapping t 7→ ∂xV (t, x, νt) is lower semi-

continuous, and in particular it is Borel measurable.

Proof. (i) Fix x and let (tk, µk) → (t, µ), with ξk ∈ L
2(Ftk ;µk), ξ ∈ L

2(Ft;µ). Denote

εk := |tk − t|+W2(µk, µ) and t̂k := tk ∨ t. Then, by Proposition 3.2 and (3.3) we have

∂xV (tk, x, µk) = ∂xv(ν
tk ,µk ; tk, x) � ∂xv(LXtk,ξk,n ; tk, x) � ∂xv(LX

tk,ξk,n

[t̂k,T ]

; t̂k, x)− ρ(εk).

Recall (4.1) and (4.2). It is clear that supt̂k≤s≤T W2(LX
tk,ξk,0
s

,LXt,ξ,0
s

) ≤ εk +
√
εk. Similarly

to the arguments in Theorem 4.2, we may utilize the locally uniform regularity in Assump-

tion 2.7 with R = C1 and with appropriate compact set K. Then, by Lemma 3.1 and sta-

bility of SDEs, one can easily show that there exists a modulus of continuity function ρ1 such

that supt̂k≤s≤T W2(LX
tk,ξk,1
s

,LXt,ξ,1
s

) ≤ ρ1(εk). Moreover, by Lemma 3.1 and (4.2) again, we

can show by induction on n that there exists a modulus of continuity function ρn such that

supt̂k≤s≤T W2(LX
tk,ξk,n
s

,LXt,ξ,n
s

) ≤ ρn(εk). Then, by (3.2) and (3.3) we have, for each n, k,

∂xV (tk, x, µk) � ∂xv(LX
t,ξ,n

[t̂k,T ]

; t̂k, x)− ρ(ρn(εk))− ρ(εk) � ∂xv(LXt,ξ,n ; t, x) − ρ(ρn(εk))− 2ρ(εk).

Send k → ∞, we have limk→∞ ∂xV (tk, x, µk) � ∂xv(LXt,ξ,n ; t, x). Now send n → ∞, by (3.2)

again we have

lim
k→∞

∂xV (tk, x, µk) � ∂xv(LXt,ξ ; t, x) = ∂xV (t, x, µ).

Moreover, if µk ↑ µ, by Proposition 5.1 we have ∂xV (t, x, µk) � ∂xV (t, x, µ), then the above

inequality implies limk→∞ ∂xV (t, x, µk) = ∂xV (t, x, µ).

(ii) For tk → t, since νtk → νt, then limk→∞ ∂xV (tk, x, νtk ) � ∂xV (t, x, νt). This proves the

claimed lower semi-continuity, which implies further the Borel measurability.

Definition 5.4 Let C2 denote the set of functions V : [0, T ] ×R
d × P2(R

d) → R satisfying:

(i) V (t, ·, µ) ∈ C2(Rd) for each (t, µ), and ∂xV, ∂xxV are uniformly bounded;

(ii) for any x ∈ R
d and ν ∈ C([0, T ];P2(R

d)), the mapping t 7→ ∂xV (t, x, νt) is Borel measurable.

Then it is clear that V ∈ C2. The following lemma will be important in the next section.
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Lemma 5.5 Let Assumptions 2.7 and 2.8 (iii) hold and V ∈ C2. Assume further that ∂xV is

increasing in µ and lower or upper semi-continuous in µ. Then, for any (t0, µ) ∈ [0, T ]×P2(R
d)

and ξ ∈ L
2(Ft0 ;µ), the following McKean-Vlasov SDE has a strong solution:

X
t0,ξ
t = ξ +

∫ t

t0

b̂
(
Xt0,ξ

s , ∂xV (s,Xt0,ξ
s ,L

X
t0,ξ
s

),L
X

t0,ξ
s

)
ds +Bt0

t . (5.2)

Equivalently, the following Fokker-Planck equation has a weak solution ν(t, x):

∂tν(t, x)−
1

2
tr (∂xxν(t, x)) + div(ν(t, x)̂b(x, ∂xV (t, x, νt), νt)) = 0, νt0 = µ. (5.3)

Proof. We shall only prove the case that ∂xV is lower semi-continuous in µ. The upper semi-

continuous case can be proved similarly, in the same spirit as we construct the maximal MFE in

Subsection 7.1 below.

Recall (4.1) and (4.2). Denote Xt0,ξ,0 := X t0,ξ,0, with possibly a larger C1 which is an upper

bound of |∂xV |, and for n = 0, 1, · · · ,

X
t0,ξ,n+1
t = ξ +

∫ t

t0

b̂(Xt0,ξ,n+1
s , ∂xV (s,Xt0,ξ,n+1

s ,L
X

t0,ξ,n
s

),L
X

t0,ξ,n
s

)ds+Bt0
t . (5.4)

Since ∂xV is increasing in µ and by Assumption 2.8 (iii), it is clear that Xt0,ξ,n is increasing in n,

and X
t0,ξ,n
t ≤ X

t0,ξ,0
t for all t ∈ [t0, T ]. Then there exists Xt0,ξ such that lim

n→∞
sup

t0≤t≤T

E[|Xt0,ξ,n
t −

X
t0,ξ
t |2] = 0. Note that, since ∂xV is increasing and lower semi-continuous in µ, and LXt0,ξ,n ↑

LXt0,ξ , as in Proposition 5.3 (i) we have lim
n→∞

∂xV (t, x,L
X

t0,ξ,n
t

) = ∂xV (t, x,L
X

t0,ξ
t

). Then by

sending n → ∞ in (5.4) we see that Xt0,ξ satisfies (5.2).

6 Weak-viscosity solutions to the master equation

6.1 Viscosity solution to PDE system

Differentiate (2.1) formally in x, we obtain the following system of PDEs: for i = 1, · · · , d,

∂tu
i(t, x) +

1

2
tr (∂xxu

i(t, x)) + ∂xi
H(x, u(t, x), νt) + ∂pH(x, u(t, x), νt) · ∂xui(t, x) = 0. (6.1)

Definition 6.1 Fix ν ∈ C([0, T ] × P2(R
d)) and consider u : [0, T ] × R

d → R
d such that both u

and ∂xu are bounded. We say that u is a viscosity subsolution (resp. supersolution, solution) of

the PDE system (6.1) if, for each i and for given u−i := (u1, · · · , ui−1, ui+1, · · · , ud), the function

ui is a viscosity subsolution (resp. supersolution, solution) to the PDE (6.1) for fixed i in the

standard sense.
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Lemma 6.2 Let Assumption 2.6 hold true. Fix ν ∈ C([0, T ];P2(R
d)) and let v(ν; ·, ·) be the

unique classical solution of the PDE (2.1). Then u(t, x) := ∂xv(ν; t, x) is a viscosity solution to

the PDE system (6.1).

Proof. Recall (3.6) and (3.7). Note that∇xY
t,x,ν
s = u(s,Xt,x

s ). Then, for fixed i, (3.7) becomes:

∇xi
Y t,x,ν
s = ∂xi

G(Xt,x
T , νT ) +

∫ T

s

[∂xi
H + ∂pH∇xi

Zt,x,ν
r ](Xt,x

r , u−i(r,Xt,x
r ),∇xi

Y t,x,ν
r , νr)dr

−
∫ T

s

∇xi
Zt,x,ν
r · dBr.

Then by the standard BSDE theory we see that ui(t, x) = ∇xi
Y

t,x,ν
t is a viscosity solution to the

PDE (6.1) for each fixed i.

The next comparison principle is more or less standard, see e.g. [35] in slightly different

contexts. We nevertheless sketch a proof for completeness.

Lemma 6.3 Let Assumptions 2.6 and 2.8 (i)-(ii) hold true, and fix ν ∈ C([0, T ];P2(R
d)). Let

u be as in Lemma 6.2, and u and u be a viscosity subsolution and a viscosity supersolution,

respectively, to the PDE system (6.1) in the sense of Definition 6.1. If u(T, x) � ∂xG(x, νT ) �
u(T, x) for all x ∈ R

d, then u � u � u on [0, T ]× R
d.

Proof. We shall prove only u � u. The inequality u � u can be proved similarly.

Fix (t, x) and denote Xs := x+ Bt
s. For a possibly larger C1 such that |u| ≤ C1, recall (3.7)

and introduce the following linear BSDEs recursively: ∇iY
0 := C1, and for n ≥ 0,

∇iY
n+1
s = ∂xi

G(XT , νT )−
∫ T

s

∇iZ
n+1
r · dBr

+

∫ T

s

[
∂xi

H(Xr,∇−iY n
r ,∇iY

n+1
r , νr) + ∂pH(Xr,∇Y n

r , νr) · ∇iZ
n+1
r

]
dr.

(6.2)

That is, ∇Y n+1
s = un+1(s,Xs), where ui0 ≡ C1, and for n ≥ 0 and for given un, the function

uin+1 is the unique viscosity solution to the following PDE:

∂tu
i
n+1(t, x) +

1

2
tr (∂xxu

i
n+1(t, x)) + ∂xi

H(x, u−i
n (t, x), uin+1(t, x), νt)

+∂pH(x, un(t, x), νt) · ∂xuin+1(t, x) = 0, uin+1(T, x) = ∂xi
G(x, νT ).

(6.3)

Recall (3.7). One can easily show that limn→∞ supt≤s≤T E[|∇Y n
s − ∇xY

t,x,ν
s |2] = 0, and thus

limn→∞ un = u. Moreover, similar (actually easier) to the proof of Proposition 3.2, we can prove

by induction on n that un is increasing in x for all n. We claim that

u � un, for all n. (6.4)

Then, by sending n → ∞, we obtain u � u.
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To see (6.4), first, since ui0 ≡ C1 ≥ ui, it holds true for n = 0. Assume it holds true for n,

and we shall verify it for n+ 1. By Assumption 2.8 (ii) and ∂xu
i
n+1 � 0, we see that

∂xi
H(x, u−i

n (t, x), uin+1(t, x), νt) + ∂pH(x, un(t, x), νt) · ∂xuin+1(t, x)

≥ ∂xi
H(x, u−i(t, x), uin+1(t, x), νt) + ∂pH(x, u(t, x), νt) · ∂xuin+1(t, x).

Then uin+1 is a viscosity supersolution of the following PDE:

∂tu
i
n+1(t, x) +

1

2
tr (∂xxu

i
n+1(t, x)) + ∂xi

H(x, u−i(t, x), uin+1(t, x), νt)

+∂pH(x, u(t, x), νt) · ∂xuin+1(t, x) ≤ 0, uin+1(T, x) = ∂xi
G(x, νT ).

(6.5)

Notice that ui is a viscosity subsolution of the above PDE. Then by the standard comparison

principle we obtain ui ≤ uin+1. This proves (6.4) for n+ 1, and hence u � u.

6.2 Weak-viscosity solutions to the master equation

We now introduce a notion of weak-viscosity solution to the master equation (2.12), adapted

from [42]. Recall Definition 5.4.

Definition 6.4 We say that V ∈ C2 is a weak-viscosity subsolution (resp. supersolution, so-

lution) of the master equation (2.12) if, for any (t0, µ) ∈ [0, T ] × P2(R
d), the Fokker-Planck

equation (5.3) has a weak solution ν such that the function u(t, x) := ∂xV (t, x, νt) is a viscosity

subsolution (resp. supersolution, solution) to the PDE system (6.1) on [t0, T ] in the sense of

Definition 6.1 and satisfies u(T, x) � (resp. �, =)∂xG(x, νT ).

We first have the following simple result.

Proposition 6.5 Let Assumptions 2.6, 2.7, and 2.8 (i)-(ii) hold. Assume V ∈ C2 is a weak-

viscosity solution of the master equation (2.12). Then, for any (t0, µ) ∈ [0, T ]×P2(R
d), the ν in

Definition 6.4 is an MFE of the extended MFG at (t0, µ).

Proof. First by Lemma 3.1 let v(ν; ·, ·) be the classical solution of the PDE (2.1). Then

by Lemma 6.2 ũ := ∂xv(ν; ·, ·) is a viscosity solution of the PDE system (6.1) in the sense of

Definition 6.1 with ũ(T, x) = ∂xG(x, νT ). Now by Definition 6.4 and the comparison principle in

Lemma 6.3, we have ∂xv(ν; t, x) = ∂xV (t, x, νt). This identifies (5.3) and (2.2) with νt = L
X

t0,ξ,ν
t

,

except that one is in PDE form while the other is in SDE form. Thus ν = Φ(t0, µ, ν), namely ν

is an MFE at (t0, µ).

Remark 6.6 Alternatively, we may call V ∈ C2 a weak-viscosity solution of the master equation

(2.12) if it is both a weak-viscosity subsolution and a weak-viscosity supersolution of (2.12),
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where the weak-viscosity subsolution and supersolution are defined in Definition 6.4. Under this

alternative definition, we may use one ν for the subsolution property and another different ν

(and hence a different u) for the supersolution property. So this is weaker than Definition 6.4,

in particular, a weak-viscosity solution in this alternative sense does not necessarily provide an

MFE as in Proposition 6.5.

Our second main result of the paper is the following.

Theorem 6.7 Let Assumptions 2.6, 2.7, and 2.8 hold.

(i) V is a weak-viscosity solution to the master equation (2.12);

(ii) for any weak-viscosity supersolution V to the master equation (2.12), we have

∂xV � ∂xV. (6.6)

Proof. (i) Fix (t0, µ) ∈ [0, T ]×P2(R
d). By Theorem 4.2 and in particular (4.3) we see that νt0,µ

is a weak solution to the Fokker-Planck equation (5.3) with V = V . Moreover, by Proposition

4.3 we have

u(t, x) := ∂xV (t, x, νt0,µt ) = ∂xv(ν
t,ν

t0,µ
t ; t, x) = ∂xv(ν

t0,µ; t, x).

Then by Lemma 6.2 u is a viscosity solution to the PDE system (6.1) with νt = ν
t0,µ
t . Moreover,

u(T, x) = ∂xG(x, νt0,µT ). Therefore, V is a weak-viscosity solution to the master equation (2.12).

(ii) Let V be an arbitrary weak-viscosity supersolution to the master equation (2.12). For

any (t0, µ) ∈ [0, T ] × P2(R
d), let ν, u be as in Definition 6.4. Then, for any ξ ∈ L

2(Ft0 ;µ), the

McKean-Vlasov SDE (5.2) has a strong solution Xt0,ξ with ν = LXt0,ξ . Recall (4.1) and (4.2).

It is clear that X
t0,ξ,0
t � X

t0,ξ
t for all t ∈ [t0, T ]. Denote νt0,µ,0 := LXt0,ξ,0 � ν. Note that

∂xv(ν
t0,µ,0; ·, ·) is a viscosity solution to the PDE system (6.1) with νt0,µ,0 and by Proposition 3.2

∂xv is increasing in x. Then by Assumption 2.8 (ii) one can easily see that ∂xv(ν
t0,µ,0; ·, ·) is a

viscosity subsolution to the PDE system (6.1) with ν. Moreover, by Assumption 2.8 (i),

∂xv(ν
t0,µ,0;T, x) = ∂xG(x, νt0,µ,0T ) � ∂xG(x, νT ) � u(T, x),

Since u is a viscosity supersolution of this system, then by the comparison principle Lemma 6.3,

we have ∂xv(ν
t0,µ,0; t, x) � u(t, x) = ∂xV (t, x, νt) for all (t, x). Denote

b(t, x) := b̂(x, ∂xv(ν
t0,µ,0; t, x), νt0,µ,0), b(t, x) := b̂(x, ∂xV (t, x, νt); νt).

By Assumption 2.8 (iii) one can easily see that b � b, and ∂xj
bi ≥ 0 for all i 6= j. Then, comparing

(4.2) and (5.2), it follows from Lemma 2.10 that X t0,ξ,1
t � X

t0,ξ
t , t0 ≤ t ≤ T , P-a.s. Repeat the
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arguments we can show thatX t0,ξ,n
t � X

t0,ξ
t , t0 ≤ t ≤ T , P-a.s. and ∂xv(LXt0,ξ,n ; t, x) � u(t, x) for

all n. Send n → ∞, by Theorem 4.2 and Lemma 3.1 (ii) we see that Xt0,ξ
t � X

t0,ξ
t , t0 ≤ t ≤ T ,

P-a.s. and ∂xv(ν
t0,µ; t, x) � u(t, x). Therefore, ∂xV (t0, x, µ) = ∂xv(ν

t0,µ; t0, x) � u(t0, x) =

∂xV (t0, x, µ). Since (t0, x, µ) is arbitrary, we conclude the proof.

7 Some extensions

7.1 The maximal case

Similarly to Section 4, we can construct the maximal MFE as follows. Fix (t0, µ) ∈ [0, T ]×P2(R
d)

and ξ ∈ L
2(Ft0 ;µ). Let X

t0,ξ,0 be defined by (4.1), and for n ≥ 0,

X
t0,ξ,n+1
t = ξ +

∫ t

t0

b̂(X
t0,ξ,n+1
s , ∂xv(LX

t0,ξ,n ; s,X
t0,ξ,n+1
s ),L

X
t0,ξ,n
s

)ds+Bt0
t . (7.1)

Then, as in Theorem 4.2 and Proposition 4.3, we have the following results.

Theorem 7.1 Let Assumptions 2.6, 2.7, and 2.8 hold. Then for any (t0, µ) ∈ [0, T ] × P2(R
d)

and ξ ∈ L
2(Ft0 ;µ), there exists a process X

t0,ξ on [t0, T ] such that

(i) X
t0,ξ,n+1
t � X

t0,ξ,n

t , ∀n, t, P-a.s. with limn→∞ E[supt0≤t≤T |X t0,ξ,n

t −X
t0,ξ

t |2] = 0;

(ii) νt0,µ := L
X

t0,ξ is an MFE of the extended MFG at (t0, µ) and satisfies the flow property:

ν
t0,µ
t = ν

t1,ν
t0,µ
t1

t , for all t0 < t1 ≤ t ≤ T ; (7.2)

(iii) for any MFE ν∗ of the extended MFG at (t0, µ), we have νt0,µ � ν∗. That is, νt0,µ is the

maximal MFE.

We next define

V (t, x, µ) := v(νt,µ; t, x). (7.3)

Theorem 7.2 Let Assumptions 2.6, 2.7, and 2.8 hold.

(i) V ∈ C2, ∂xV is increasing in (x, µ) and upper semi-continuous in (t, µ). Moreover, if µk ↓ µ,

then limk→∞ ∂xV (t, x, µk) = ∂xV (t, x, µ);

(ii) V is a weak-viscosity solution to the master equation (2.12);

(iii) for any weak-viscosity subsolution V to the master equation (2.12), we have

∂xV � ∂xV . (7.4)

The following result is an immediate consequence of Theorems 6.7 and 7.2.

Corollary 7.3 Let Assumptions 2.6, 2.7, and 2.8 hold. If V = V on [0, T ]×R
d ×P2(R

d), then

the master equation (2.12) admits a unique weak-viscosity solution V := V = V .
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7.2 The decreasing case

In this subsection we replace Assumption 2.8 with Assumption 2.9.

Theorem 7.4 Let Assumptions 2.6, 2.7, and 2.9 hold true.

(i) ∂xv is decreasing in (x, ν), and Φ in increasing in (µ, ν);

(ii) for any (t0, µ) ∈ [0, T ] × P2(R
d), there exist MFEs νt0,µ and νt0,µ of the extended MFG at

(t0, µ) such that, for any other MFE ν∗ of the extended MFG at (t0, µ), we have ν
t0,µ � ν∗ � νt0,µ;

(iii) the minimal MFE νt0,µ and the maximal MFE νt0,µ satisfy the flow property (4.5) and (7.2).

Again we define the value functions:

V (t, x, µ) := v(νt,µ; t, x), V (t, x, µ) := v(νt,µ; t, x). (7.5)

Theorem 7.5 Let Assumptions 2.6, 2.7, and 2.9 hold.

(i) V , V ∈ C2, ∂xV is decreasing in (x, µ) and upper semi-continuous in (t, µ), and ∂xV is

decreasing in (x, µ) and lower semi-continuous in (t, µ);

(ii) V , V are weak-viscosity solutions to the master equation (2.12);

(iii) for any weak-viscosity subsolution V1 and weak-viscosity supersolution V2 to the master

equation (2.12), we have

∂xV � ∂xV1, ∂xV � ∂xV2. (7.6)

(iv) If V = V on [0, T ] × R
d × P2(R

d), then the master equation (2.12) admits a unique weak-

viscosity solution V := V = V .

7.3 The common noise case

In this subsection we study the extended mean field game with a common noise. We shall only

consider the problem under Assumption 2.8. The case under Assumption 2.9 is similar.

Let B0 be the common noise which is independent of F, β ≥ 0 be a constant and β̂2 := 1+β2.

For any t0 ∈ [0, T ], denote B
0,t0
t := B0

t − B0
t0
, t ∈ [t0, T ] and F

0,t0 := {FB0,t0

t }t0≤t≤T . Let

C(F0,t0 ;P2(R
d)) denote the set of stochastic measure flow ν : [t0, T ] × Ω → P2(R

d) which is

F
0,t0-progressively measurable and continuous in t. Given any ν ∈ C(F0,t0 ;P2(R

d)), consider the

following backward stochastic PDE on [t0, T ]:

dv(ν; t, x) = z(ν; t, x) · dB0
t −

[
tr
( β̂2

2
∂xxv(ν; t, x) + β∂xz

⊤(ν; t, x)
)
+H(x, ∂xv(ν; t, x), νt)

]
dt,

v(ν;T, x) = G(x, νT ), (7.7)
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where the solution pair (v, z) is F
0,t0-progressively measurable. Given ξ ∈ L

2(Ft0), we still use

Xt0,ξ,ν to denote the strong solution to the following SDE on [t0, T ]:

X
t0,ξ,ν
t = ξ +

∫ t

t0

b̂
(
Xt0,ξ,ν

s , ∂xv(ν; s,X
t0,ξ,ν
s ), νs

)
ds+Bt0

t + βB
0,t0
t . (7.8)

Introduce the Nash field Φ on C(F0,t0 ;P2(R
d)): for any (t0, µ) ∈ [0, T ]×P2(R

d) and ξ ∈ L
2(Ft0 ;µ),

Φ(t0, µ, ν) := {L
X

t0,ξ,ν
t |F0,t0

t

}t0≤t≤T , ∀ν ∈ C(F0,t0 ;P2(R
d)). (7.9)

Fix (t0, µ), define MFE as a fixed point of Φ(t0, µ, ·). Then the corresponding master equation

becomes second order:

∂tV +
1

2
tr (∂xxV ) +H(x, ∂xV, µ) +MV = 0, V (T, x, µ) = G(x, µ), where

MV (t, x, µ) := tr
(∫

Rd

[ β̂2

2
∂x̃∂µV (t, x, µ, x̃) + ∂µV (t, x, µ, x̃)̂b⊤(x̃, ∂xV (t, x̃, µ), µ)

+β2∂x∂µV (t, x, µ, x̃) +
β2

2

∫

Rd

∂µµV (t, x, µ, x̄, x̃)µ(dx̄)
]
µ(dx̃)

)
.

(7.10)

Theorem 7.6 Let Assumptions 2.6, 2.7, and 2.8 hold true.

(i) ∂xv is increasing in (x, ν), and Φ in increasing in (µ, ν);

(ii) for any (t0, µ) ∈ [0, T ] × P2(R
d), there exist MFEs νt0,µ and νt0,µ of the extended MFG at

(t0, µ) such that νt0,µ � ν∗ � νt0,µ for all other MFE ν∗ of the extended MFG at (t0, µ);

(iii) the minimal MFE νt0,µ and the maximal MFE νt0,µ satisfy the flow property (4.5) and (7.2),

respectively, P-a.s.

Here, for any νi ∈ C(F0,t0 ;P2(R
n)), i = 1, 2, the partial order ν1 � ν2 is extended naturally:

ν1t � ν2t for all t ∈ [t0, T ], a.s. The monotonicity of ∂xv in (x, ν) is also in obvious sense.

Define the value functions corresponding to the minimal and maximal MFEs respectively:

V (t, x, µ) := v(νt,µ; t, x), V (t, x, µ) := v(νt,µ; t, x). (7.11)

We note that V and V are F0,t
t -measurable and hence are actually deterministic.

Theorem 7.7 Let Assumptions 2.6, 2.7, and 2.8 hold. Then V , V ∈ C2, ∂xV is increasing

in (x, µ) and lower semi-continuous in (t, µ), and ∂xV is increasing in (x, µ) and upper semi-

continuous in (t, µ).

We may continue to study weak-viscosity solution of the master equation (7.10) as in Section 6.

In this case the PDE (6.1) becomes a backward SPDE (7.7), which can be viewed as a path depen-

dent PDE, see e.g. Zhang [48, Chapter 11]. However, in this case u(t, x, ω) := ∂xV (t, x, νt0,µt (ω))
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is in general discontinuous in (t, ω), thus the viscosity theory for path dependent PDEs in Ekren-

Touzi-Zhang [28, 29] and Zhou [49] cannot be applied here. One possibility is to adapt the

viscosity solution for backward SPDEs in Qiu [46], which does not require the regularity in ω.

On the other hand, we note that the value function (1.4) for the MFG with a major player

will have the same regularity issue, even when there is no common noise. So we shall leave the

systematic investigation of this issue to a future research.

8 An example

In this section we solve an example completely. In particular, we shall show that V is in general

discontinuous in (t, µ). Set d = 1 and denote

m(µ) :=

∫

R

xµ(dx).

Consider the example:

G(x, µ) := xm(µ), H(x, p, µ) :=
p2

2
, b̂(x, p, µ) := b̂(p) :=





−2, p < −2;

2p +
1

2
p2, −2 ≤ p < 0;

2p − 1

2
p2, 0 ≤ p < 2;

2, p ≥ 2.

(8.1)

One can easily verify that Assumptions 2.6, 2.7, and 2.8 hold true. Moreover, (2.1) becomes

∂tv(ν; t, x) +
1

2
tr (∂xxv(ν; t, x)) +

|∂xv(ν; t, x)|2
2

= 0, v(ν;T, x) = G(x, νT ) = xm(νT ).

It admits a unique solution:

v(ν; t, x) = xm(νT ) +
1

2
(T − t)|m(νT )|2. (8.2)

Then ∂xv(ν; t, x) = m(νT ) and thus (2.2) becomes:

X
t0,ξ,ν
t = ξ + b̂(m(νT ))(t− t0) +Bt0

t . (8.3)

Note that Φ depends on ν only through m(νT ). Introduce the following operator:

Φ̂(t0, µ, p) := E

[
ξ + b̂(p)(T − t0) +Bt0

T

]
= m(µ) + b̂(p)(T − t0), p ∈ R. (8.4)

One can easily see that ν∗ is an MFE at (t0, µ) if and only if p∗ := m(ν∗T ) is a fixed point of Φ̂:

p∗ = Φ̂(t0, µ, p
∗) = m(µ) + b̂(p∗)(T − t0), or equivalently, b̂(p∗) =

p∗ −m(µ)

T − t0
. (8.5)
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Then, by (8.3) and (8.2), the corresponding MFE and value are:

X
t0,ξ,p

∗

t = ξ + b̂(p∗)(t− t0) +Bt0
t , v(p∗; t, x) = xp∗ +

1

2
(T − t)|p∗|2. (8.6)

Note that one side of (8.5) is piecewise quadratic, and the other side is linear. By elementary

calculation we solve (8.5) in four cases. Denote

λ :=
1

T − t0
, m1 := 2− 2

λ
, m2 :=

λ

2
+

2

λ
− 2;

φ−(λ,m) :=
√

(λ− 2)2 − 2λm, φ+(λ,m) :=
√

(λ− 2)2 + 2λm
(8.7)

Case 1. λ ≥ 2. In this case m1 > 0, and there is a unique fixed point p∗:

p∗ =





m(µ)− 2
λ
, if m(µ) < −m1;

λ− 2− φ−(λ,m(µ)), if −m1 ≤ m(µ) < 0;

2− λ+ φ+(λ,m(µ)), if 0 ≤ m(µ) < m1;

m(µ) + 2
λ
, if m(µ) ≥ m1.

(8.8)

Case 2. 4−2
√
2 < λ < 2. In this case 0 < m2 < m1. We solve the problem in three subcases.

Case 2.1. |m(µ)| > m2. In this case there is a unique fixed point:

p∗ =





m(µ)− 2
λ
, if m(µ) < −m1;

λ− 2− φ−(λ,m(µ)), if −m1 ≤ m(µ) < −m2;

2− λ+ φ+(λ,m(µ)), if m2 < m(µ) < m1;

m(µ) + 2
λ
, if m(µ) ≥ m1.

(8.9)

Case 2.2. |m(µ)| = m2. In this case there are two fixed points:

p∗ = λ− 2− φ−(λ,m(µ)) or p∗ = 2− λ, if m(µ) = −m2;

p∗ = λ− 2 or p∗ = 2− λ+ φ+(λ,m(µ)), if m(µ) = m2.
(8.10)

Case 2.3. |m(µ)| < m2. In this case there are three fixed points:

p∗ = λ− 2− φ−(λ,m(µ)) or p∗ = 2− λ± φ+(λ,m(µ)), if −m2 < m(µ) ≤ 0;

p∗ = λ− 2± φ−(λ,m(µ)) or p∗ = 2− λ+ φ+(λ,m(µ)), if 0 < m(µ) < m2.
(8.11)

Case 3. 1 < λ ≤ 4−2
√
2. In this case 0 < m1 ≤ m2. We solve the problem in three subcases.

Case 3.1. |m(µ)| > m2. In this case there is a unique fixed point:

p∗ =





m(µ)− 2
λ
, if m(µ) < −m2;

m(µ) + 2
λ
, if m(µ) > m2.

(8.12)
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Case 3.2. |m(µ)| = m2. In this case there are two fixed points:

p∗ = m(µ)− 2

λ
or p∗ = 2− λ, if m(µ) = −m2;

p∗ = λ− 2 or p∗ = m(µ) +
2

λ
, if m(µ) = m2.

(8.13)

Case 3.3. |m(µ)| < m2. In this case there are three fixed points:

p∗ = m(µ)− 2

λ
or p∗ = 2− λ± φ+(λ,m(µ)), if −m2 < m(µ) ≤ −m1;

p∗ = λ− 2− φ−(λ,m(µ)) or p∗ = 2− λ± φ+(λ,m(µ)), if −m1 < m(µ) ≤ 0;

p∗ = λ− 2± φ−(λ,m(µ)) or p∗ = 2− λ+ φ+(λ,m(µ)), if 0 < m(µ) ≤ m1;

p∗ = λ− 2± φ−(λ,m(µ)) or p∗ = m(µ) +
2

λ
, if m1 < m(µ) < m2;

(8.14)

Case 4. 0 < λ ≤ 1. In this case 0 ≤ −m1 < m2. We solve the problem in three subcases.

Case 4.1. |m(µ)| > m2. In this case there is a unique fixed point:

p∗ =





m(µ)− 2
λ
, if m(µ) < −m2;

m(µ) + 2
λ
, if m(µ) > m2.

(8.15)

Case 4.2. |m(µ)| = m2. In this case there are two fixed points:

p∗ = m(µ)− 2

λ
or p∗ = 2− λ, if m(µ) = −m2;

p∗ = λ− 2 or p∗ = m(µ) +
2

λ
, if m(µ) = m2.

(8.16)

Case 4.3. |m(µ)| < m2. In this case there are three fixed points:

p∗ = m(µ)− 2

λ
or p∗ = 2− λ± φ+(λ,m(µ)), if −m2 < m(µ) ≤ m1;

p∗ = m(µ)± 2

λ
, or p∗ = 2− λ− φ+(λ,m(µ)), if m1 ≤ m(µ) < 0;

p∗ = m(µ)± 2

λ
, or p∗ = λ− 2 + φ−(λ,m(µ)), if 0 ≤ m(µ) ≤ −m1;

p∗ = λ− 2± φ−(λ,m(µ)) or p∗ = m(µ) +
2

λ
, if −m1 < m(µ) < m2.

(8.17)

Put all the cases together, we find that the minimal p∗, denoted as pt0,µ, is:

pt0,µ :=





m(µ)− 2

λ
, if λ > 0,m(µ) ≤ −m1;

λ− 2− φ−(λ,m(µ)), if λ ≥ 2,−m1 ≤ m(µ) < 0,

or 0 < λ < 2,−m1 < m(µ) ≤ m2;

2− λ+ φ+(λ,m(µ)), if λ ≥ 2, 0 ≤ m(µ) < m1,

or 4− 2
√
2 < λ < 2,m2 < m(µ) < m1;

m(µ) +
2

λ
, if λ > 4− 2

√
2,m(µ) ≥ m1,

or 0 < λ ≤ 4− 2
√
2,m(µ) > m2.

(8.18)
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By (8.6), we then have the minimal MFE and the corresponding value function:

X
t0,ξ
t = ξ + b̂(pt0,µ)(t− t0) +Bt0

t , V (t0, x, µ) = xpt0,µ +
1

2
(T − t0)|pt0,µ|2. (8.19)

Similarly, we find that the maximal p∗, denoted as pt0,µ, is:

pt0,µ :=





m(µ)− 2

λ
, if λ > 4− 2

√
2,m(µ) < −m1,

or 0 < λ ≤ 4− 2
√
2,m(µ) < −m2;

λ− 2− φ−(λ,m(µ)), if λ ≥ 2,−m1 ≤ m(µ) < 0,

or 4− 2
√
2 < λ < 2,−m1 ≤ m(µ) < −m2;

2− λ+ φ+(λ,m(µ)), if λ ≥ 2, 0 ≤ m(µ) < m1,

or 0 < λ < 2,−m2 ≤ m(µ) < m1;

m(µ) +
2

λ
, if λ > 0,m(µ) ≥ m1;

(8.20)

and the maximal MFE and the corresponding value function are:

X
t0,ξ
t = ξ + b̂(pt0,µ)(t− t0) +Bt0

t , V (t0, x, µ) = xpt0,µ +
1

2
(T − t0)|pt0,µ|2. (8.21)

We note that, when λ > 2, namely T − t < 1
2 , p

t,µ is smooth in (t, µ) and actually in this case

V = V is a classical solution of the master equation (2.12). This is consistent with the standard

result that the master equation admits a unique classical solution over small time interval.

However, for 4− 2
√
2 < λ < 2, namely 1

2 < T − t < 1
4−2

√
2
, we have

lim
m(µ)↑m2

pt,µ = λ− 2− φ−(λ,m2) =
1

T − t
− 2;

lim
m(µ)↓m2

pt,µ = 2− λ+ φ+(λ,m2) = (1 +
√
2)(2− 1

T − t
);

(8.22)

That is, ∂xV (t, x, µ) = pt,µ is discontinuous in µ when 1
2 < T − t < 1

4−2
√
2
and m(µ) = m2.

Similarly, when m(µ) = 1
20 , we see that m2 > m(µ) if T − t > 5

8 and m2 < m(µ) if T − t > 1
8 .

Then, by (8.22) we have

lim
t↑(T− 5

8
)
pt,µ =

1

T − (T − 5
8)

− 2 = −2

5
, lim

t↓(T− 5
8
)
pt,µ = (1 +

√
2)(2− 1

T − (T − 5
8 )

) =
2(1 +

√
2)

5
.

That is, ∂xV (t, x, µ) = pt,µ is discontinuous in t at t = 1
8 and m(µ) = 1

20 .
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[31] Gangbo, W. and Mészáros, A.R., Global well-posedness of master equations for deterministic

displacement convex potential mean field games, Comm. Pures Appl. Math. 75 (2022), no.

12, 2685–2801.
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