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Short Communication: Is a Sophisticated Agent Always a Wise One?\ast 

Jianfeng Zhang\dagger 

Abstract. For time-inconsistent optimal control problems, a quite popular approach is the equilibrium ap-
proach, taken by sophisticated agents. In this short note, we construct a deterministic continuous-
time example where the unique equilibrium is dominated by another control. Therefore, in this
situation, it may not be wise to take the equilibrium strategy.
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1. Introduction. For time-inconsistent optimal control problems, different types of agents
would choose different strategies, for example, the precommitted strategy, the naive strategy,
and the equilibrium strategy; see, e.g., the survey paper by Strotz [14]. Among them, the
equilibrium approach by sophisticated agents has received very strong attention. In particular,
in the past decade, this approach has been extended to continuous-time models by many
authors; see, e.g., Bj\"ork, Khapko, and Murgoci [1], Bj\"ork, Murgoci, and Zhou [2], Ekeland and
Lazrak [4], and Yong [15], to mention a few. We also refer to the recent paper by Hern\'andez
and Possama\"{\i} [8] for a nice literature review. In this approach, the sophisticated agent will
play a game with (infinitely many) future selves, and the goal is to find an equilibrium which
is suboptimal and time consistent in a certain sense.

In this short note, we construct an example in the deterministic continuous-time framework
such that the unique equilibrium is not Pareto optimal. To be precise, our optimal control
problem has a unique equilibrium \alpha \ast , but we can construct another control \^\alpha such that

J(t, \^\alpha )<J(t,\alpha \ast ) for all t < T, and J(T, \^\alpha ) = J(T,\alpha \ast ),(1.1)

where J(t,\alpha ) is the dynamic cost function with control \alpha . This raises the serious question on
the rationale of using the equilibrium \alpha \ast .

In a noncooperative game, it is not surprising that an equilibrium may not be Pareto
optimal, for example, in the well-known prisoner's dilemma; cf. Nash [13, Example 2] and
Lacey [12]. In that case, since the players do not play cooperatively, typically due to lack
of mutual trust, they may still choose the equilibrium. For the sophisticated agent in our
time-inconsistent problem, however, the agent is ``playing"" the game with future selves, and
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there is no reason that the agent would ``play"" in a noncooperative way. In particular, in our
example, it is not rational or, say, not wise for the agent to choose \alpha \ast instead of \^\alpha . We shall
point out, though, that we are not claiming any optimality of the constructed \^\alpha .

It will be very interesting to explore possible alternative notions of equilibrium, or of
``good"" strategies, which we shall leave to future research. In our opinion, a good strategy in
a dynamic approach should satisfy at least two basic properties: (i) time consistency and (ii)
Pareto optimality. Time consistency has been a natural consideration for time-inconsistent
problems, as [14, p. 173] points out that when there is intertemporal conflict (namely, time
inconsistency), the player's problem ``is then to find the best plan among those that he will
actually follow."" Pareto optimality is a basic requirement in cooperative game theory; in fact,
it is exactly the core of the notion; cf. Gillies [6]. In this short note, we want to bring to
attention Pareto optimality, which seems less addressed for time-inconsistent problems. We
note that the precommitted strategy is by definition Pareto optimal but time inconsistent
(unless the original problem is time consistent) and that the equilibrium strategy is time
consistent but may not be Pareto optimal, as shown in this note. We also note that the naive
strategy, while less interesting and less popular in the literature, is also time consistent; see,
e.g., the recent paper by Chen and Zhou [3]. However, in the same spirit of Remark 2.4, we
can easily construct an example such that the naive strategy is not Pareto optimal.

We remark that the time consistency of strategies relies on the criterion we take; for
example, the equilibrium strategy and the naive strategy satisfy time consistency in different
senses. When exploring good alternative strategies, it will be a crucial and intrinsic component
to specify this criterion, which in practice relies on the agent's preference. We would also like
to mention the dynamic utility function in [11] and the moving scalarization in Feinstein and
Rudloff [5] (see also the recent paper \.I\c seri and Zhang [10]), where the precommitted strategy
satisfies both time consistency and Pareto optimality. In this approach, the utility function
for the subproblem over [t, T ] is modified and thus leads to a different function J(t,\alpha ) when
t > 0. Similarly, whether to use the dynamic utility function or the original utility function
relies on the agent's preference.

The rest of the paper is organized as follows. In section 2, we construct the example and
prove (1.1). In section 3, we verify that our example is indeed time inconsistent. Finally, in
section 4, we construct another example where the naive strategy is not Pareto optimal.

2. An example. Set the time horizon [0, T ] with T = 1, and denote

tn := 1 - 2 - n and sn :=
1

4
[tn + 3tn+1], n\geq 0.(2.1)

The admissible control set \scrA consists of Borel-measurable functions \alpha : [0,1]\rightarrow [ - 1,1]. Con-
sider the following deterministic two-dimensional backward controlled system:

Y 1,\alpha 
t :=

\int T

t
\alpha sds, Y 2,\alpha 

t :=

\int T

t
c(s)\alpha sY

1,\alpha 
s ds, t\in [0, T ],

where c(t) :=

\infty \sum 
n=0

[\bfone [tn,sn)(t) + 6\bfone [sn,tn+1)(t)].
(2.2)
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Our time-inconsistent optimization problem is

Vt := inf
\alpha \in \scrA 

J(t,\alpha ), where J(t,\alpha ) := Y 2,\alpha 
t .(2.3)

We remark that besides the hyperbolic discounting, this type of multidimensional optimization
problem is also typically time inconsistent, which includes the well-known mean variance
optimization problem; see Karnam, Ma, and Zhang [11] for more discussion. We shall prove
rigorously the time inconsistency for this example in the next section, and here we focus on
the equilibrium approach and Pareto optimality.

We first recall the notion of equilibrium.

Definition 2.1. We say \alpha \ast \in \scrA is an equilibrium if, for any t\in [0, T ) and \alpha \in \scrA ,

lim
\delta \downarrow 0

1

\delta 
[J(t,\alpha \oplus t+\delta \alpha 

\ast ) - J(t,\alpha \ast )]\geq 0, where \alpha \oplus t+\delta \alpha 
\ast := \alpha \bfone [0,t+\delta ) + \alpha \ast \bfone [t+\delta ,T ].(2.4)

Proposition 2.2. \alpha \ast \equiv 0 is the unique equilibrium.

Proof. (i) We first show that \alpha \ast \equiv 0 is an equilibrium. Indeed, for any t \in [0, T ), by our
construction of c, there exists \delta t > 0 such that c(s) \equiv c(t) > 0 for all s \in [t, t+ \delta t]. Then, for
any 0< \delta \leq \delta t and any \alpha \in \scrA , denoting \alpha \delta := \alpha \otimes t+\delta \alpha 

\ast ,

Y 1,\alpha \delta 

s = \bfone [0,t+\delta ](s)

\int t+\delta 

s
\alpha rdr,(2.5)

J(t,\alpha \delta ) = Y 2,\alpha \delta 

t =

\int t+\delta 

t
c(s)\alpha sY

1,\alpha \delta 

s ds= c(t)

\int t+\delta 

t
\alpha s

\int t+\delta 

s
\alpha rdrds=

c(t)

2

\biggl( \int t+\delta 

t
\alpha rdr

\biggr) 2

\geq 0.

It is obvious that J(t,\alpha \ast ) = 0\leq J(t,\alpha \delta ). Then (2.4) holds true. In fact, \alpha \ast is an equilibrium
in a stronger sense, as in He and Jiang [7] and Huang and Zhou [9].

(ii) We next show the uniqueness. Let \alpha \ast \in \scrA be an arbitrary equilibrium. For any
t \in [0, T ) and \alpha \in \scrA , let \delta t > 0 and \alpha \delta be as in (i). Then, for any 0 < \delta \leq \delta t, noting that
| \alpha | , | \alpha \ast | \leq 1,

J(t,\alpha \delta ) - J(t,\alpha \ast ) = c(t)

\int t+\delta 

t
[\alpha sY

1,\alpha \delta 

s  - \alpha \ast 
sY

1,\alpha \ast 

s ]ds= c(t)Y 1,\alpha \ast 

t

\int t+\delta 

t
[\alpha s  - \alpha \ast 

s]ds+O(\delta 2).

(2.6)

Thus, by setting \alpha \equiv  - 1 when Y 1,\alpha \ast 

t > 0 and \alpha \equiv 1 when Y 1,\alpha \ast 

t < 0, it follows from (2.4) that

lim
\delta \downarrow 0

1

\delta 

\int t+\delta 

t
[ - 1 - \alpha \ast 

s]ds\geq 0 whenever Y 1,\alpha \ast 

t > 0,

lim
\delta \downarrow 0

1

\delta 

\int t+\delta 

t
[1 - \alpha \ast 

s]ds\leq 0 whenever Y 1,\alpha \ast 

t < 0.

(2.7)

We recall again that | \alpha \ast | \leq 1 and that Y 1,\alpha \ast 

t is continuous in t. Then clearly

\alpha \ast 
t = - 1 for Leb-a.e. t\in \{ s\in [0, T ] : Y 1,\alpha \ast 

s > 0\} ,
\alpha \ast 
t = 1 for Leb-a.e. t\in \{ s\in [0, T ] : Y 1,\alpha \ast 

s < 0\} .(2.8)
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Note further that \int T

0
\alpha \ast 
tY

1,\alpha \ast 

t dt=
1

2

\biggl( \int T

0
\alpha \ast 
t dt

\biggr) 2

\geq 0.(2.9)

This, together with (2.8), implies that Y 1,\alpha \ast 

t \equiv 0 for all t\in [0,1]. Therefore, \alpha \ast \equiv 0.

Proposition 2.3. The following \^\alpha dominates \alpha \ast \equiv 0 in the sense of (1.1):

\^\alpha t :=

\infty \sum 
n=0

\Bigl[ 
\bfone [tn,sn)(t) - \bfone [sn,tn+1)(t)

\Bigr] 
.(2.10)

Proof. First, we note that

sn  - tn =
3

2n+3
, tn+1  - sn =

1

2n+3
.

For any n and t\in [sn, tn+1), we have

Y 1,\^\alpha 
t = - (tn+1  - t) +

\infty \sum 
m=n+1

[(sm  - tm) - (tm+1  - sm)] = - (tn+1  - t) +

\infty \sum 
m=n+1

1

2m+2

=
1

2n+2
 - (tn+1  - t)\geq 1

2n+2
 - (tn+1  - sn) =

1

2n+3
> 0,(2.11)

and for t\in [tn, sn),

Y 1,\^\alpha 
t = Y 1,\^\alpha 

sn + (sn  - t) =
1

2n+3
+ (sn  - t)> 0.(2.12)

Then, for any n, recalling the c(t) in (2.2) and \^\alpha in (2.10),

Y 2,\^\alpha 
tn =

\infty \sum 
m=n

\biggl[ \int sm

tm

Y 1,\^\alpha 
t dt - 6

\int tm+1

sm

Y 1,\^\alpha 
t dt

\biggr] 
=

\infty \sum 
m=n

\biggl[ \int sm

tm

\biggl[ 
1

2m+3
+ (sm  - t)

\biggr] 
dt - 6

\int tm+1

sm

\biggl[ 
1

2m+2
 - (tm+1  - t)

\biggr] 
dt

\biggr] 

=

\infty \sum 
m=n

\Biggl[ \Biggl[ 
1

2m+3
\times 3

2m+3
+

1

2

\biggl( 
3

2m+3

\biggr) 2
\Biggr] 
 - 6

\Biggl[ 
1

2m+2
\times 1

2m+3
 - 1

2

\biggl( 
1

2m+3

\biggr) 2
\Biggr] \Biggr] 

= - 
\infty \sum 

m=n

3

22m+7
= - 1

22n+5
< 0.(2.13)

Recall by (2.11), (2.12) that Y 1,\alpha 
t > 0 for all t < T . Then, for each n,

t\in [tn, sn) : Y 2,\^\alpha 
t = Y 2,\^\alpha 

tn  - 
\int t

tn

Y 1,\^\alpha 
s ds\leq Y 2,\^\alpha 

tn < 0,

t\in [sn, tn+1) : Y 2,\^\alpha 
t = Y 2,\^\alpha 

tn+1
 - 6

\int tn+1

t
Y 1,\^\alpha 
s ds\leq Y 2,\^\alpha 

tn+1
< 0.

(2.14)

Since J(t,\alpha \ast ) = 0, this proves (1.1) immediately.
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Remark 2.4. In a discrete-time setting, 0 = t0 < \cdot \cdot \cdot < tn = T . By the definition of
equilibrium, we must have J(tn - 1, \alpha 

\ast ) \leq J(tn - 1, \alpha ), so there is no \^\alpha satisfying (1.1) at tn - 1.
However, following the same spirit, one can easily construct examples such that J(ti, \^\alpha ) <
J(ti, \alpha 

\ast ) for all i= 0, \cdot \cdot \cdot , n - 2. Here in the continuous-time model, the ``last"" step vanishes,
and thus the strict inequality holds for all t < T .

3. Time inconsistency. We now show that the dynamic optimization problem (2.3) is
time inconsistent. We first note that (2.3) admits an optimal control for any fixed t.

Proposition 3.1. For any t\in [0, T ), the Vt in (2.3) has an optimal control \=\alpha \ast \in \scrA .

Before we prove this result, we use it to show the time inconsistency.

Proposition 3.2. The dynamic problem (2.3) is time inconsistent.

Proof. Assume by contradiction that (2.3) is time consistent. Then there exists \=\alpha \ast \in \scrA ,
which is optimal for all t \in [0, T ). By Definition 2.1, this \=\alpha \ast is an equilibrium, and thus, by
Proposition 2.2, we must have \=\alpha \ast \equiv 0. However, by Proposition 2.3, we see that \alpha \ast \equiv 0 is not
optimal for all t < T , which is the desired contradiction.

Proof of Proposition 3.1. Without loss of generality, we prove the result only at t= 0. Let
\scrX denote the set of functions X : [0, T ]\rightarrow \BbbR such that

| Xt  - Xs| \leq | t - s| and XT = 0,(3.1)

and we equip \scrX with the uniform norm. Then the set \scrX is compact, and \alpha \in \scrA has one-to-one
correspondence with X \in \scrX in the sense that Xt =

\int T
t \alpha sds and \alpha t = - X \prime 

t. Therefore,

V0 = inf
X\in \scrX 

\biggl[ 
 - 
\int T

0
c(t)XtX

\prime 
tdt

\biggr] 
= - sup

X\in \scrX 
F\infty (X), where

Fn(x) :=

\int tn

0
c(t)XtX

\prime 
tdt, F\infty (X) :=

\int T

0
c(t)XtX

\prime 
tdt.

(3.2)

Note that

Fn(X) =

n - 1\sum 
m=0

\biggl[ 
c(tm)

\int sm

tm

XtX
\prime 
tdt+ c(sm)

\int tm+1

sm

XtX
\prime 
tdt

\biggr] 

=

n - 1\sum 
m=0

\biggl[ 
c(tm)

2
(X2

sm  - X2
tm) +

c(sm)

2
(X2

tm+1
 - X2

sm)

\biggr] 
.(3.3)

It is obvious that Fn is continuous in X. Moreover,

sup
X\in \scrX 

| F\infty (X) - Fn(X)| \leq 
\int T

tn

c(t)| X \prime 
t| 
\int T

t
| X \prime 

s| dsdt

\leq 
\int T

tn

c(t)(T  - t)dt\leq C

22n
\rightarrow 0 as n\rightarrow \infty .

(3.4)

Then F\infty is also continuous, and thus, by the compactness of \scrX , there exists X\ast \in \scrX such
that F\infty (X\ast ) = supX\in \scrX F\infty (X). Therefore, \=\alpha \ast 

t := - d
dtX

\ast 
t is an optimal control for V0.
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4. Nonoptimality of the naive strategy. In this section, we investigate briefly the naive
strategy, which is much less popular in the literature. It is well understood that a naive
strategy may not be optimal, except in the last step in a discrete-time model, as in Remark 2.4.
We now provide an example in a continuous-time framework such that the naive strategy is
Pareto dominated by another strategy.

Let \scrA consist of Borel-measurable functions \alpha : [0, T ]\rightarrow \BbbR . Consider

Vt := inf
\alpha \in \scrA 

J(t,\alpha ), where J(t,\alpha ) :=

\int T

t
| \alpha s  - K(t, s)| ds, K(t, s) := 2(s - t).(4.1)

It is obvious that, for each t \in [0, T ], the optimization problem (4.1) on [t, T ] has a unique
optimal control \alpha t

s :=K(t, s), s\in [t, T ]. In particular, for t1 < t2,

\alpha t1
s =K(t1, s) \not =K(t2, s) = \alpha t2

s , s\geq t2.(4.2)

That is, the dynamic problem (4.1) is time inconsistent. The naive strategy is defined as

\alpha \ast 
t := \alpha t

t =K(t, t) = 0, 0\leq t\leq T,(4.3)

and thus

J(t,\alpha \ast ) =

\int T

t
| \alpha \ast 

s  - K(t, s)| ds=
\int T

t
2(s - t)ds= (T  - t)2.(4.4)

We now set

\^\alpha t := T  - t, 0\leq t\leq T.(4.5)

Then, for any 0\leq t\leq T ,

J(t, \^\alpha ) =

\int T

t
| \^\alpha s  - K(t, s)| ds=

\int T

t
| T + 2t - 3s| ds=

\int T - t

0
| T  - t - 3s| ds= 5

6
(T  - t)2.(4.6)

Thus, \^\alpha Pareto dominates the naive strategy \alpha \ast in the sense of (1.1).

Acknowledgments. The author would like to thank Jiongmin Yong for very helpful dis-
cussions and two anonymous referees for their inspiring comments.
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