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Abstract

Building upon the dynamic programming principle for set valued functions arising

from many applications, in this paper we propose a new notion of set valued PDEs. The

key component in the theory is a set valued Itô formula, characterizing the flows on the

boundary surface of the dynamic sets. In the contexts of multivariate control problems,

we establish the wellposedness of the set valued HJB equations, which extends the

standard HJB equations in the scalar case to the multivariate case. As an application,

a moving scalarization for certain time inconsistent problems is constructed by using

the classical solution of the set valued HJB equation.
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1 Introduction

In this paper we consider set valued functions taking the form:

V : [0, T ]× R
d → 2R

m

. (1.1)

That is, for each (t, x) ∈ [0, T ] × R
d, the value V(t, x) is a subset of R

m satisfying ap-

propriate properties. Such set valued functions, or their variants, have appeared in many

applications. These include, among many others, stochastic viability problems (Aubin-Da

Prato [2]), multivariate super-hedging problems (Kabanov [13] and Bouchard-Touzi [5]),

multivariate dynamic risk measures (Feinstein-Rudloff [8]), time inconsistent optimization

problems (Karman-Ma-Zhang [14]), stochastic target problems (Soner-Touzi [18, 19]), and

recently, nonzero sum games with multiple equilibria (Feinstein-Rudloff-Zhang [10]), and

mean field games with multiple mean field equilibria (İşeri-Zhang [12]). One crucial prop-

erty shared by these set valued functions is the dynamic programming principle, or say the

time consistency. Then a natural question is:

can we characterize the set valued function via a set valued PDE?

This is exactly the goal of the present paper. We shall propose a notion of set valued

PDEs. In the contexts of multivariate stochastic control problems as in [14], which includes

the time inconsistent problems such as the mean variance optimization problem, we shall

characterize the corresponding dynamic value function via a set valued HJB equation.

As in standard stochastic control theory, the key to derive the PDE from the dynamic

programming principle is the Itô formula. For this purpose, we first introduce appropriate

notions of intrinsic derivatives for set valued functions, through the signed distance function

r. Our approach builds on analyses on the boundary of V(t, x), denoted as Vb(t, x), which

is a surface and clearly determines the set V(t, x). So our derivatives, e.g. ∂xV(t, x), are

considered as functions on Vb(t, x), or equivalently, we write ∂xV(t, x, y) for (t, x, y) ∈ GV,

the graph of (t, x) 7→ Vb(t, x). It turns out that the first order derivatives ∂tV, ∂xV are

parallel to the normal vector n, but the second order derivative ∂xxV is not. Interestingly,

∂xxV is in general not symmetric, but its projection on the normal direction is.

The first main contribution of this paper is the set valued Itô formula, which roughly

reads: given a diffusion dXt = btdt+ σtdBt,

dV(t,Xt) =
[
∂tV+ ∂xV · b+ 1

2
tr (∂xxV : σσ⊤)−KVζ + ξ

]
dt+

[
∂xVσ + ζ

]
dBt. (1.2)

We refer to Theorem 3.1 below for the precise meaning of the above formula. The main

feature here is the involvement of arbitrary functions ξ and ζ, which takes values in the
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tangent space, and KVζ is an appropriate correction term. Note that the main point of the

above Itô formula is to characterize the flows on the boundary surface, the driving forces

ξ, ζ in the tangent directions will not push the flows away from the surface. Our proof of

the Itô formula relies heavily on the signed distance function r.

Applying the Itô formula on the dynamic programming principle for the set valued func-

tion of the multivariate stochastic control problem, we derive our set valued HJB equation

with terminal condition in the following form: for some Hamiltonian function hV,

sup
a,ζ

n(t, x, y) ·
[
∂tV(t, x, y) + hV(t, x, y, ∂xV, ∂xxV, a, ζ)

]
= 0, (t, x, y) ∈ GV, (1.3)

where a takes values in a control set, and ζ takes values in the tangent space. As we see, the

introduction of ζ (and ξ) in (1.2) is crucial. We note that ξ disappears in the equation since

n · ξ = 0. However, KVζ is nonlinear in ζ and thus n · KVζ is a crucial component in the

equation. The equation (1.3) can be rewritten equivalently in terms of the signed distance

function r, see (5.3) below. We emphasize that n = nV is part of the solution here and

the equation is satisfied only on the graph GV, so wellposedness of (1.3) has a completely

different nature than that of standard PDEs.

Our main result of the paper is that the dynamic value function of the multivariate

stochastic control problem is the unique classical solution of the set valued HJB equation

(1.3), provided V has sufficient regularity. Without surprise, the proof is based on the

dynamic programming principle and the main tool is our new Itô formula. Moreover, when

V is smooth, as in standard verification theorem we may use the optimal arguments (a∗, ζ∗)

of the Hamiltonian in (1.3) to construct the optimal controls, optimal in certain sense.

In the scalar case: m = 1, we can easily see that V(t, x) = [v(t, x), v(t, x)], where v, v are

the value functions of the standard minimization and maximization problems, respectively.

In this case, n = 1 or −1, and the tangent space is degenerate and thus ζ = 0. Then (1.3)

reduces exactly back to the standard HJB equation for v and v. So our set valued HJB

equation is indeed a natural extension of the standard HJB equation to the multivariate

setting. Moreover, noting again that v, v are the boundaries of V in the scalar case, this

partially justifies our focus on the boundary surface Vb rather than on the whole set V.

As an important application of our wellposedness result, we construct the moving scalar-

ization for some time inconsistent problems, proposed by [14]1 and Feinstein-Rudloff [9].

Note that we are in a multivariate setting and in general it is not feasible to optimize the

multidimensional objects simultaneously. In practice quite often one considers the scalar-

ized optimization problem: maxy∈V(0,x0) ϕ(y), where ϕ ∈ R
m → R. This scalarized problem,

1It’s called dynamic utility function in [14]
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unfortunately, is typically time inconsistent. The idea of a moving scalarization is to find a

dynamic scalarization function Φ(t,X[0,t]; y), with Φ(0, x0; y) = ϕ(y), such that the dynamic

problem maxy∈V(t,Xt)Φ(t,X[0,t]; y) becomes time consistent. In Section 7.1 below we solve

this problem when ϕ and hence Φ are linear.

At this point we would like to mention that the present paper considers classical solutions

only. In particular, this requires the set value V(t, x) is non degenerate and its boundary

Vb(t, x) is a smooth m − 1 dimensional manifold, namely the co-dimension is 1. Both the

regularity and the nondegeneracy requirements are serious constraints in applications, for

example they can hardly be satisfied for the set values of games in [10, 12]. It is our strong

interest to remove these constraints and study viscosity solutions of more general set valued

PDEs, so that we can apply our theory to more applications. We shall leave this important

question to future research.

Some related literature. There is a large literature on set valued analysis, we refer

to the book Aubin-Frankowska [3] and the reference therein. However, our approach is

completely different from those in set valued analysis. We focus on the dynamics of the

boundary surface, rather than the dynamics of the whole set. Roughly speaking, we focus

only on those special selectors whose flow remain on the boundary. These selectors have nice

properties and are sufficient to characterize the whole sets. In particular, we need to mention

the recent paper Ararat-Ma-Wu [1] on set valued backward SDE, which is highly relevant

to our paper. Given our set valued function V(t, x) and a state process X (e.g. a Brownian

motion), we may introduce a set valued process Yt := V(t,Xt). In spirit the process Y

should satisfy a set valued backward SDE. However, besides that we employ completely

different approaches technically, except in some simple cases our set valued process Y does

not satisfy the equation in [1]. That is, the objectives of the two works are different. We

should mention that the applications mentioned in the beginning of this introduction fall

into our framework, although technically our current results do not cover many of them.

Our approach is strongly motivated by the studies on surface evolution equations, see e.g.

Sethian [16], Evans-Spruck [7], Soner [17], Barles-Soner-Souganidis [4], and the monograph

Giga [11] and the references therein. These equations arise in various applications such

as evolutions of phase boundaries, crystal growths, image processing, and mean-curvature

flows, to mention a few. These works consider the dynamics of set valued function V(t), more

precisely the boundary Vb(t), without the state variable x. In our terms, roughly speaking

these works study first order set valued ODEs, while we extend to second order set valued

PDEs. In particular, the set valued Itô formula is not involved there. Another difference
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is, due to the nature of different applications, they study forward equations with initial

conditions while we study backward problems with terminal conditions. This difference

would be crucial when one concerns path dependent setting (not covered in this paper),

where one cannot do the time change freely due to the intrinsic adaptedness requirement.

Our work is closely related to Soner-Touzi [19] which studies stochastic target problems

by using mean curvature type geometric flows. In our contexts, their approach amounts to

studying the following set valued function via its signed distance function r̂:

V̂(t) :=
{
(x, y) : x ∈ R

d, y ∈ V(t)
}
, and thus V̂b(t) :=

{
(x, y) : x ∈ R

d, y ∈ Vb(t)
}
. (1.4)

Clearly V̂ and V are equivalent, with the same graph: G
V̂

= GV. The major difference

here is that, while r and r̂ agree on the graph (both are 0 by definition), their derivatives

are different on the graph, and consequently, the equation derived in [19] is different from

our set valued HJB equation 1.3. In particular, in the scalar case: m = 1, as mentioned

(1.3) reduces back to the standard HJB equations, but the equation for r̂ does not seem to

connect to the standard HJB equation directly. Moreover, the normal vector n̂ of V̂ is also

different from n, and does not serve as a moving scalarization as we discussed. We shall

provide more detailed discussions in Section 7.3 below.

Finally, we remark that there are some very interesting studies on (possibly discontin-

uous) viscosity solutions along this line, see e.g. [4], Chen-Giga-Goto [6], Soner-Touzi [18].

It will be interesting to explore these ideas in our setting.

The rest of the paper is organized as follows. In Section 2 we introduce the setting

and define the intrinsic derivatives of set valued functions. In Section 3 we prove the

crucial set valued Itô formula. In Section 4 we present the multivariate control problem. In

Section 5 we introduce the set valued HJB equation and show that the value function of

the multivariate control problem is a classical solution, and the uniqueness of the classical

solution is established in Section 6. In Section 7 we provide some further discussions,

including the application on moving scalarization, the comparisons with [19] and [1], as

well as an extension to the case that the terminal condition is non-degenerate. Finally we

complete some technical proofs in Appendix.

2 Intrinsic derivatives of set valued functions

Throughout the paper all vectors are viewed as column vectors, · denotes the inner product,
and ⊤,c denote the transpose and complement, respectively. We denote by ∇ the gradient
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operator, and for a function f : Rd × R
m → R, we take the convention that the second

derivative ∇xyf(x, y) := [∂x1yf, · · · , ∂xdyf ] ∈ R
m×d.

2.1 Some basic materials

In this subsection we present some basic materials in geometry, which will be the starting

point of our set valued functions in this paper.

Let Dm
0 ⊂ 2R

m
denote the space of closed set D in R

m, and denote by Do and Db the

interior and the boundary of D, respectively. We equip Dm
0 with the metric:

d(D, D̃) := d(D, D̃) ∨ d(Db, D̃b), (2.1)

where d is the standard Hausdorff distance, i.e.

d(D, D̃) :=
(
sup
y∈D

d(y, D̃)
)
∨
(
sup
ỹ∈D̃

d(ỹ,D)
)
, d(y, D̃) := inf

ỹ∈D̃
|y − ỹ|.

Introduce the signed distance function of D: denoting by D
c the complement of D,

rD(y) :=

{
d(y,Db), y ∈ D

c;

−d(y,Db), y ∈ D.
(2.2)

It is obvious that

Do = {y ∈ R
m : rD(y) < 0}, Db = {y ∈ R

m : rD(y) = 0}, . (2.3)

We next let Dm
2 denote the space of D ∈ Dm

0 such that rD is twice continuously differ-

entiable with bounded derivatives on Oε(Db) := {y ∈ R
m : |rD(y)| < ε} for some ε > 0. We

remark that the boundary Db is a manifold without boundary, as regular as rD. For each

y ∈ Db, let nD(y) ∈ R
m denote the outward unit normal vector at y. It is clear that:

nD(y) = ∇yrD(y), y ∈ Db and |∇yrD(y)| = 1, y ∈ Oε(Db). (2.4)

Moreover, for any y ∈ Oε(Db), for possibly a smaller ε > 0, let πD(y) denote the unique

projection of y on Db, i.e. πD(y) ∈ Db satisfies:

y = πD(y) + rD(y)nD(y), y ∈ Oε(Db). (2.5)

For any y ∈ Db, let TD(y) denote the tangent space:

TD(y) :=
{
ξ ∈ R

m : ξ · nD(y) = 0
}
, y ∈ Db. (2.6)
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For a function f : Db → R, we define its intrinsic derivative ∂yf(y) ∈ TD(y) by:

lim
ε→0

f(θ(ε))− f(y)

ε
= ∂yf(y) · θ′(0), for any smooth curve θ : R → Db with θ(0) = y. (2.7)

Alternatively, for any smooth extension f̂ : Rm → R, i.e. f̂ = f on Db, we have

∂yf(y) = ∇y f̂(y)− [∇yf̂(y) · nD(y)]nD(y) = ∇y f̂(y)− nD(y)nD(y)
⊤∇yf̂(y). (2.8)

We emphasize that ∂yf(y) does not depend on the choice of the extension f̂ .

We also recall the shape operator ∂ynD(y) = [∂yn
1
D
(y), · · · , ∂ynm

D
(y)] ∈ R

m×m, which

captures the curvatures of Db at y.

2.2 Set valued functions

Consider a continuous function V : R → Dm
2 . Denote

Vb(x) := (V(x))b, rV(x, y) := rV(x)(y), nV(x, y) := nV(x)(y),

πV(x, y) := πV(x)(y), TV(x, y) := TV(x)(y),
(2.9)

and introduce the graph of V:

GV :=
{
(x, y) : x ∈ R, y ∈ Vb(x)

}
. (2.10)

When there is no confusion, for notational simplicity we may drop the subscript V in rV,

nV, πV and denote them as r,n, π. We say V ∈ C2(R;Dm
2 ) if rV is twice continuously

differentiable with bounded derivatives on Oε(GV) for some ε > 0.

Remark 2.1 (i) We note that our results in the paper will only involve rV and its deriva-

tives near GV. For the convenience of our arguments, throughout the paper, we shall modify

rV outside of Oε(GV), so that the modified function r̂V satisfies:

• r̂V = rV on Oε(GV);

• r̂V ∈ C2(R × R
m) with bounded derivatives;

• r̂V(x, y) ≤ − ε
2 for all (x, y) ∈ V\Oε(GV) and r̂V(x, y) ≥ ε

2 for all (x, y) ∈ V
c\Oε(GV).

We emphasize that all our results will not rely on the choice of such a modification. For

notational simplicity, we may identify r̂V with rV.

(ii) We can then extend nV(x, y) := ∇yrV(x, y) to the whole space R×R
m, still denoted

as nV, such that nV is continuously differentiable with bounded derivatives.

(iii) Similarly we may extend πV outside of Oε(GV), still denoted as πV, such that
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• On Oε(GV), πV(x, y) is the original unique projection of y on Vb(x) such that the

counterpart of (2.5) holds true;

• πV(x, y) is jointly measurable and πV(x, y) ∈ Vb(x) for all (x, y) ∈ R× R
m;

• There exists a constant C = CV such that (modifying the extension of rV if needed)

|y − πV(x, y)| ≤ C|rV(x, y)|. (2.11)

We remark that (2.11) follows from (2.5) when (x, y) ∈ Oε(GV), and the existence of C for

arbitrary (x, y) is due to the fact that |rV(x, y)| ≥ ε
2 for (x, y) /∈ Oε(GV).

Fix x0 ∈ R. For each y ∈ Vb(x0), consider the ODE: in light of Remark 2.1,

Υy(x) = y −
∫ x

x0

∇xrV nV(x̃,Υ
y(x̃)) dx̃. (2.12)

Then clearly the above ODE has a unique solution.

Proposition 2.2 Assume V ∈ C2(R;Dm
2 ) and x0 ∈ R. Then, for any x ∈ R,

Vb(x) =
{
Υy(x) : y ∈ Vb(x0)

}
. (2.13)

Consequently, (2.12) involves rV and nV only on GV and thus does not depend on the

modification of rV.

Proof For notational simplicity, we drop the subscripts and denote r,n, π.

We first show that, for any y0 ∈ Vb(x0) and x > x0, Υ(x) := Υy0(x) ∈ Vb(x). Let ε > 0

be such that the original r in (2.2) is twice continuously differentiable on Oε(GV). Note

that (x0, y0) ∈ GV ⊂ Oε(GV). Denote

τ := inf
{
x > x0 : (x,Υ(x)) /∈ Oε(GV)

}
.

Then, for x ∈ [x0, τ), apply the chain rule we have

d

dx
r(x,Υ(x)) = ∇xr(x,Υ(x))−∇yr(x,Υ(x)) · [∇xr n(x,Υ(x))].

Recall (2.5) and denote π(x) := π(x,Υ(x)) ∈ Vb(x). By (2.4) we have

d

dx
r(x,Υ(x)) = ∇xr(x,Υ(x))

[
∇yr(x, π(x)) · n(x, π(x)) −∇yr(x,Υ(x)) · n(x,Υ(x))

]
.

Therefore, by (2.5) and the continuous differentiability of ∇yr and n, we have

d

dx
r(x,Υ(x)) = b̃(x)r(x,Υ(x)), x ∈ [x0, τ),
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for some appropriate continuous function b̃ : R → R. Note that r(x0,Υ(x0)) = r(x0, y0) = 0.

Then the above ODE implies r(x,Υ(x)) = 0 for all x ∈ [x0, τ), which in turn implies τ = ∞.

Thus r(x,Υ(x)) = 0 and hence Υ(x) ∈ Vb(x) for all x ≥ x0. This implies that {Υy(x) : y ∈
Vb(x0)} ⊂ Vb(x) for all x ≥ x0. Similarly we can show that {Υy(x) : y ∈ Vb(x0)} ⊂ Vb(x)

for all x ≤ x0, and hence for all x ∈ R.

On the other hand, for any y ∈ Vb(x), consider (2.12) starting from x:

Υ̃y(x′) = y −
∫ x′

x
∇xr n(x̃, Υ̃y(x̃))dx̃.

Then by the above result we have y0 := Υ̃y(x0) ∈ Vb(x0). By the wellposedness of the ODE

(2.12), one can easily show that Υ̃y(x′) = Υy0(x′) for all x′ ∈ R, and thus y = Υ̃y(x) =

Υy0(x). This proves the opposite inclusion in (2.13).

Remark 2.3 (i) Later on we will define ∂xV(x, y) = −∇xrVnV(x, y) for (x, y) ∈ GV, see

(2.23) below. Then (2.12) can be rewritten as

Υy(x) = y +

∫ x

x0

∂xV(x̃,Υ
y(x̃))dx̃. (2.14)

Thus (2.13) can be viewed as the fundamental theorem of calculus for set valued functions:

Vb(x) = Vb(x0) +

∫ x

x0

∂xV(x̃,Vb(x̃))dx̃. (2.15)

(ii) However, (2.15) should be interpreted as (2.14) and (2.13), rather than the meaning

in the standard set valued analysis, which roughly speaking considers

Υ̃(x) := y +

∫ x

x0

∂xV(x̃, γ̃(x̃))dx̃, ∀y ∈ Vb(x0), γ̃(x̃) ∈ Vb(x̃). (2.16)

The above Υ̃(x) is in general not in Vb(x). See also related discussion in Section 7.4 below.

(iii) The set valued Itô formula in the next section, which is one of the main results of

this paper, can be viewed as the stochastic version of Proposition 2.2.

The next result, although technically not used in this paper, is interesting in its own right.

We postpone its proof to Appendix.

Proposition 2.4 Assume V ∈ C2(R;Dm
2 ) and (x0, y0) ∈ GV. Then the curve Υ(x) :=

Υy0(x) determined by (2.12) is a local geodesic of the flow V in the following sense: for any

continuous curve θ(x) ∈ Vb(x) with θ(x0) = y0,

lim
x→x0

1

|x− x0|
[
LΥ(x0, x)− Lθ(x0, x)

]
≤ 0, (2.17)

where LΥ(x0, x) (resp. Lθ(x0, x)) denotes the length of Υ (resp. θ) between x0, x.
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Consider a function f : GV → R. For fixed x, the intrinsic derivative ∂yf(x, y) for

y ∈ Vb(x) is defined (2.7) or equivalently by (2.8). We next define the intrinsic derivative

of f with respect to x following the local geodesic Υ defined by (2.12):

∂xf(x0, y0) := lim
x→x0

f(x,Υy0(x))− f(x0, y0)

x− x0
, (x0, y0) ∈ GV. (2.18)

Equivalently, for any smooth extension f̂ of f , we have

∂xf(x0, y0) = lim
x→x0

f̂(x,Υy0(x))− f̂(x0, y0)

x− x0
= ∇xf̂(x0, y0)−∇xrV∇yf̂ · nV(x0, y0). (2.19)

Again, the right side above does not depend on the choice of the extension f̂ .

We say f ∈ C1(GV) if f has continuous intrinsic derivatives ∂yf and ∂xf . By (2.18), it

is obvious that ∂xf is linear on f , and the product rule and chain rule remain true:

∂x(fg) = g∂xf + f∂xg, for all f, g ∈ C1(GV);

∂x[f(g)] = f ′(g)∂xg, for all f ∈ C1(R;R), g ∈ C1(GV).
(2.20)

2.3 Intrinsic derivatives of set valued functions

We now extend all the analysis to functions V : [0, T ] × R
d → Dm

2 .2 Introduce Vb(t, x),

rV(t, x, y), nV(t, x, y), πV(t, x, y), TV(t, x, y) in an obvious manner as in (2.9) and denote

GV :=
{
(t, x, y) : (t, x) ∈ [0, T ]× R

d, y ∈ Vb(t, x)
}
. (2.21)

As before we may use the simplified notations r,n, π when there is no confusion, and we

will always use their modified version or extension as in Remark 2.1.

Recall (2.18) and (2.19) when V is defined on R. Now for our more general V and for any

function f : GV → R, we define its intrinsic partial derivatives ∂tf ∈ R, ∂xf ∈ R
d, ∂yf ∈ R

m,

and the higher order intrinsic derivatives in an obvious manner, for example, the second

order derivatives are defined as:

∂xixj
f := ∂xi

(∂xj
f). (2.22)

Moreover, for f : GV → R
n, we define its intrinsic derivatives component wise.

Finally, by considering the special function f0(x, y) := y and its natural extension

f̂0(x, y) = y, applying (2.19) component wise we define the intrinsic derivatives of V.

2In this and the next section we may allow infinite time horizon [0,∞). However, for later sections we

require T to be finite, so for simplicity we consider finite T here as well.
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Definition 2.5 For any (t, x, y) ∈ GV and by denoting f0(x, y) := y, define

∂tV(t, x, y) := ∂tf0(t, x, y) = −∇tr(t, x, y)n(t, x, y) ∈ R
m;

∂xi
V(t, x, y) := ∂xi

f0(t, x, y) = −∇xi
r(t, x, y)n(t, x, y) ∈ R

m, i = 1, · · · , d.
(2.23)

We recall Remark 2.3 and note that (2.19) becomes: for any f ∈ C1(GV),

∂tf = ∇tf̂ +∇yf̂ · ∂tV, ∂xi
f = ∇xi

f̂ +∇yf̂ · ∂xi
V, on GV. (2.24)

Note that ∂tV and ∂xV are functions on GV, then we may continue to define higher order

derivatives of V by applying (2.19) or (2.24) repeatedly.

Lemma 2.6 Assume rV ∈ C2([0, T ] × R
d;Dm

2 ). Then

∂xixj
V(t, x, y) = −∇xixj

r n(t, x, y)−∇xj
r ∂xi

n(t, x, y); (2.25)

∂xn
i = ∇xyir; ∂yn

i = ∇yiyr. (2.26)

The proof is quite straightforward, we thus postpone it to Appendix. Throughout the paper,

we shall take the notational convention:

∂xV := [∂x1V, · · · , ∂xd
V] ∈ R

m×d, ∂xxV
i := [∂x1xV

i, · · · , ∂xdxV
i] ∈ R

d×d;

∂xn = [∂x1n, · · · , ∂xd
n] ∈ R

m×d, ∂yn = [∂y1n, · · · , ∂ymn] ∈ R
m×m.

(2.27)

Remark 2.7 (i) At (t, x, y) ∈ GV, since |n|2 = 1, by (2.20) we have ∂xj
n · n = 0. That

is, ∂xj
n(t, x, y) ∈ TV(t, x, y). So (2.25) provides an orthogonal decomposition of ∂xxV . In

particular, unlike the first order derivatives in (2.23), ∂xixj
V is in general not parallel to n.

(ii) It is clear that

∂xxV · n :=
[
∂xixj

V · n
]
1≤i,j≤d

= −∇xxr ∈ R
d×d

is symmetric. However, in general ∂xxV is not symmetric:

∇xj
r∂xi

n 6= ∇xi
r∂xj

n, i 6= j.

(iii) ∂yn = ∇yyr ∈ R
m×m is symmetric. Moreover, since ∂yin · n = 0, we see that 0 is

an eigenvalue of ∂yn with eigenvector n.

Example 2.8 (i) Let w : [0, T ] × R
2 → R

2 and u : [0, T ] × R
2 → (0,∞) be continuously

differentiable. Set, with d = m = 2,

V(t, x) :=
{
y ∈ R

2 : |y − w(t, x)| ≤ u(t, x)
}
,

and thus Vb(t, x) =
{
y ∈ R

2 : |y − w(t, x)| = u(t, x)
}
.
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It is clear that

r(t, x, y) = |y −w(t, x)| − u(t, x), (t, x, y) ∈ [0, T ] × R
2 × R

2.

Then, for (t, x, y) near GV (so that |y − w(t, x)| > 0), by straightforward calculation,

∇tr = −(y − w) · ∇tw

|y − w| − ∇tu; ∇xi
r = −(y − w) · ∇xi

w

|y −w| − ∇xi
u; ∇yir =

yi − wi

|y − w| ;

∇xixj
r =

∇xi
w · ∇xj

w − (y − w) · ∇xixj
w

|y − w| − [(y − w) · ∇xi
w][(y − w) · ∇xj

w]

|y − w|3 −∇xixj
u;

∇xiyjr = − ∇xi
wj

|y − w| +
[(y − w) · ∇xi

w](yj − wj)

|y − w|3 , ∇yiyjr =
1{i=j}
|y − w| −

[yi − wi][yj − wj ]

|y − w|3 ,

Then, by (2.4), Definition 2.5, and Lemma 2.6, at (t, x, y) ∈ GV we have

n =
y − w

u
; ∂tV =

[
∇tw · n+∇tu

]
n; ∂xi

V =
[
∇xi

w · n+∇xi
u
]
n;

∂xi
n =

1

u

[
−∇xi

w + [n · ∇xi
w]n

]
, ∂yin

j =
1

u

[
1{i=j} − ninj

]
;

∂xixj
V = −

[1
u

[
∇xi

w · ∇xj
w − (∇xi

w · n)(∇xj
w · n)

]
−∇xixj

w · n−∇xixj
u
]
n

−1

u

[
∇xj

w · n+∇xj
u
][
∇xi

w − (∇xi
w · n)n

]
.

(2.28)

In particular, we see that in general ∂xixj
V 6= ∂xjxi

V for i 6= j.

(ii) Consider a special case that w = 0 and u satisfies the heat equation:

∇tu+
1

2
tr (∇xxu) = 0. (2.29)

Then by (2.28) we have ∂tV = ∇tu n, ∂xixj
V = ∇xixj

u n, on GV. Thus V satisfies the

following equation: ∂tV + 1
2tr (∂xxV) = 0, on GV. This clearly implies the following set

valued heat equation:

n ·
[
∂tV+

1

2
tr (∂xxV)

]
= 0, on GV. (2.30)

We remark that we assumed r had bounded derivatives on GV in all above analyses. For

our applications later, however, V(T, x) could be degenerate, in the sense that V(T, x) =

{g(x)} is a singleton and hence a degenerate manifold in R
m. Note that in (2.28), ∂xn, ∂yn,

and ∂xxV explode when u = 0. This motivates us to define the following space.

Definition 2.9 (i) We say V ∈ C1,2([0, T ]×R
d;Dm

2 ) if rV ∈ C2(Oε(GV);R) for some ε > 0

such that all the related derivatives are bounded and uniformly Lipschitz continuous in y.

Consequently, ∂tV, ∂xV, ∂xxV, ∂xn, ∂yn are bounded and uniformly Lipschitz continuous in

y on GV.

(ii) We say V ∈ C1,2([0, T )×R
d;Dm

2 ) if V ∈ C0([0, T ]×R
d;Dm

0 ), and V ∈ C1,2([0, T −
δ]× R

d;Dm
2 ) for all 0 < δ < T . Note that we do not require V(T, x) ∈ Dm

2 here.
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3 The set valued Itô formula

We first introduce the probabilistic setting. Let Ω := {ω ∈ C([0, T ],Rd) : ω0 = 0} be

the canonical space, B the canonical process, i.e. B(ω) = ω, P the Wiener measure,

i.e. B is an P-Brownian motion, and F = F
B the natural filtration generated by B. For

a generic Euclidian space E and p ≥ 1, let L
p
loc(E) denote the space of F-progressively

measurable E-valued processes θ such that
∫ T
0 |θt|pdt <∞, a.s., and L

p
loc(R

m;E) the space

of F-progressively measurable random fields ξ : (t, ω, y) ∈ [0, T ] × Ω × R
m → E such that

ξ(·, ·, 0) ∈ L
p
loc(E) and ξ is uniformly Lipschitz continuous in y.

Fix V ∈ C2([0, T ] × R
d;Dm

2 ) with corresponding ε > 0, and x0 ∈ R
d, b ∈ L

1
loc(R

d),

σ ∈ L
2
loc(R

d×d), ξ ∈ L
1
loc(R

m;Rm), ζ ∈ L
2
loc(R

m;Rm×d). Denote,

Xt := x0 +

∫ t

0
bsds+

∫ t

0
σsdBs, (3.1)

and introduce the (random) differential operators: recalling (2.27),

Lb,σ
V(t, ω, x, y) := ∂tV+ ∂xVb+

1

2
tr (σ⊤∂xxVσ); (3.2)

Kσ
Vζ(t, ω, x, y) := tr

(
ζ⊤∂xnσ +

1

2
ζ⊤∂ynζ

)
n. (3.3)

where tr (σ⊤∂xxVσ) ∈ R
m with i-th component tr (σ⊤∂xxViσ). Moreover, recalling Remark

2.1, we may extend the derivatives of V and n to [0, T ]× R
d × R

m.

We are now ready to establish the set valued Itô formula.

Theorem 3.1 Let V, x0, b, σ,X, ξ, ζ be as above. Assume, and for each i, ζi(t, ω, y) ∈
TV(t,Xt(ω), y) holds for all y ∈ Vb(t,Xt(ω)), for dt× dP-a.e. (t, ω). For each y ∈ R

m, let

Υy denote the unique strong solution of SDE: recalling Remark 2.1,

Υy
t = y +

∫ t

0

[
Lb,σ

V− κσVζ + ξ
]
(s,Xs,Υ

y
s)ds+

∫ t

0

[
∂xVσ + ζ

]
(s,Xs,Υ

y
s)dBs. (3.4)

(i) Assume ξt(y) ∈ TV(t,Xt, y), for all y ∈ Vb(t,Xt), for dt× dP-a.e. (t, ω). Then

{Υy
t : y ∈ Vb(0, x0)} ⊂ Vb(t,Xt) a.s., for all 0 ≤ t ≤ T .

In particular, in this case no extension is needed in (3.4).

Moreover, if Vb takes values in connected compact sets, then the equality holds:

{
Υy

t : y ∈ Vb(0, x0)
}
= Vb(t,Xt) a.s., for all 0 ≤ t ≤ T .

(ii) Assume ξt(y) ·nV(t,Xt, y) ≤ 0 for all y ∈ Vb(t,Xt(ω)), for dt×dP-a.e. (t, ω). Then

{Υy
t : y ∈ Vo(0, x0)} ⊂ Vo(t,Xt) a.s., for all 0 ≤ t ≤ T .
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(iii) Assume ξt(y) ·nV(t,Xt, y) ≥ 0 for all y ∈ Vb(t,Xt(ω)), for dt×dP-a.e. (t, ω). Then

{Υy
t : y ∈ V

c(0, x0)} ⊂ V
c(t,Xt) a.s., for all 0 ≤ t ≤ T .

Proof (i) Fix y0 ∈ Vb(0, x0) and denote Υ = Υy0 . Introduce

τ := inf
{
t ≥ 0 : (t,Xt,Υt) /∈ Oε(GV)

}
∧ T.

Since (0, x0, y0) ∈ GV, then τ > 0, and r is smooth on [0, τ ]. By the standard Itô’s formula,

dr(t,Xt,Υt) = Λ(t,Xt,Υt)dt+M(t,Xt,Υt)dBt, where (3.5)

Λ := ∇tr+∇xr · b+∇yr · (Lb,σ
V− κσVζ + ξ)

+
1

2
tr
(
σ⊤∇xxrσ + (∂xVσ + ζ)⊤∇yyr(∂xVσ + ζ)) + 2(∂xVσ + ζ)⊤∇xyrσ

)
;

M := ∇xr
⊤σ +∇yr

⊤(∂xVσ + ζ).

We claim that, when y ∈ Vb(t, x),

Λ(t,Xt, y) = n(t,Xt, y) · ξt(y), M(t,Xt, y) =
[
n · ζ1, · · · ,n · ζd

]
(t,Xt, y). (3.6)

Indeed, in this case we have ∇yr = n. Then by (2.23), (2.25), and (2.26) we have:

n · (Lb,σ
V− κσ

V
ζ + ξ) = −∇tr−∇xr · b− 1

2tr
(
σ⊤∇xxrσ + 2ζ⊤∇xyrσ + ζ⊤∇yyrζ

)
+ n · ξ;

(
∇yyr∂xV

)
ij
= ∇yiyr · ∂xj

V = −∇yiyr · ∇xj
rn = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ d;

(
(∂xV)

⊤∇xyr
)
ij
= ∂xi

V · ∇xjyr = −∇xi
rn · ∇xjyr = 0, 1 ≤ i, j ≤ d.

Here we used the facts ∂xi
n · n = 0, ∇yiyr · n = 0, ∇xiyr · n = 0. Plug these into the

expression of Λ in (3.5) we obtain Λ = n · ξ straightforwardly. Similarly,

M := ∇xr
⊤σ − n⊤[∇x1rn, · · · ,∇xd

rn]σ + n⊤ζ = n⊤ζ.

Thus (3.6) holds true.

Since ξ(t, y), ζi(t, y) ∈ TV(t,Xt, y), we have

Λ(t,Xt, y) =M(t,Xt, y) = 0, y ∈ Vb(t,Xt).

Now for any (t, x, y) ∈ Oε(GV), since π(t, x, y) ∈ Vb(t, x), then

Λ(t,Xt, π(t,Xt,Υt)) = 0, M(t,Xt, π(t,Xt,Υt)) = 0, 0 ≤ t ≤ τ.
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Note further that |Υt − π(t,Xt,Υt)| = |r(t,Xt,Υt)|. Then, by the desired regularity in

Definition 2.9 (i) we have

Λ(t,Xt,Υt) = Λ(t,Xt,Υt)− Λ(t,Xt, π(t,Xt,Υt)) = b̃tr(t,Xt,Υt);

M(t,Xt,Υt) =M(t,Xt,Υt)−M(t,Xt, π(t,Xt,Υt)) = σ̃tr(t,Xt,Υt);

where |b̃t| ≤ C[1 + |bt|+ |σt|2 + |ζt(0)|2], |σ̃t| ≤ C[|σt|+ |ζt(0)|].
(3.7)

In particular, b̃ ∈ L1
loc(R), σ̃ ∈ L2

loc(R
d). Note that (3.5) becomes:

dr(t,Xt,Υt) = b̃tr(t,Xt,Υt)dt+ σ̃tr(t,Xt,Υt)dBt, 0 ≤ t ≤ τ. (3.8)

Introduce

Γ̃t := exp
(
−

∫ t

0
σ̃s · dBs −

∫ t

0
[b̃s +

1

2
|σ̃s|2]ds

)
. (3.9)

Then, recalling r(0,X0,Υ0) = r(0, x0, y0) = 0, we have

r(t,Xt,Υt) = r(0,X0,Υ0)Γ̃t = 0, 0 ≤ t ≤ τ.

This implies τ = T , a.s. and thus Υt ∈ Vb(t,Xt), 0 ≤ t ≤ T , a.s.

Moreover, assume further that Vb takes values in connected, compact sets. Note that

y 7→ Υy
t is a homeomorphism almost surely (See Kunita [15]). In particular, it is continuous

and locally one-to-one. Since Vb(0, x0) is compact, it is mapped to a closed set in Vb(0, x0).

By invariance of domains for manifolds without boundaries , y 7→ Υy
t is an open mapping

in relative topologies of Vb(0, x0),Vb(t,X
0,x0
t ). Therefore, Vb(0, x0) maps to an open set in

Vb(t,X
0,x0
t ). This concludes the equality as we assumed connectedness.

(ii) In this case, by (3.6) we have

Λ(t,Xt, y) = n(t,Xt, y) · ξt(y) ≤ 0, M(t,Xt, y) = 0, for all y ∈ Vb(t,Xt). (3.10)

Fix y0 ∈ Vb(0, x0) and denote Υ = Υy0 . Let δ < ε
2 be small enough so that r(0, x0, y0) < −δ.

Introduce recursively a sequence of stopping times: τ0 := 0, and for n = 0, 1, · · · ,

τ2n+1 := inf
{
t > τ2n : r(t,Xt,Υt) = −δ

}
∧ T ;

τ2n+2 := inf
{
t > τ2n+1 : |r(t,Xt,Υt)| = 2δ

}
∧ T.

Since r(0, x0, y0) < −δ, it is clear that r(t,Xt,Υt) ≤ −δ, τ0 ≤ t ≤ τ1. Now for τ1 ≤ t ≤ τ2,

note that |r(t,Xt,Υt)| ≤ 2δ. Then by (3.10) and following the same arguments as in (3.8)

we derive: for τ1 ≤ t ≤ τ2 and denoting πt := π(t,Xt,Υt),

dr(t,Xt,Υt) =
[
b̃tr(t,Xt,Υt) + n(t,Xt, πt) · ξt(πt)

]
dt+ σ̃tr(t,Xt,Υt)dBt.

15



Since r(τ1,Xτ1 ,Υτ1) < 0 and n(t,Xt, πt) · ξt(πt) ≤ 0, we can easily see that r(t,Xt,Υt) < 0

for all τ1 ≤ t ≤ τ2. In particular, r(τ2,Xτ2 ,Υτ2) = −2δ < −δ on {τ2 < T}. Repeating the

arguments we see that r(t,Xt,Υt) < 0 for all 0 ≤ t ≤ τn and for all n.

It remains to show that τn = T for all n large, which clearly implies that r(t,Xt,Υt) < 0

for all 0 ≤ t ≤ T . Assume by contradiction that τn < T for all n. Then

r(τ2n+1,Xτ2n+1 ,Υτ2n+1) = −δ, r(τ2n+2,Xτ2n+2 ,Υτ2n+2) = −2δ, ∀n.

Denote τ∗ := lim
n→∞

τn. Sending n → ∞ at above and by the continuity of Xt and Υt, we

obtain r(τ∗,Xτ∗ ,Υτ∗) = −δ and r(τ∗,Xτ∗ ,Υτ∗) = −2δ, which is a desired contradiction.

(iii) follows from similar arguments as in (ii).

4 A multivariate control problem

Recall the canonical setting introduced in the beginning of Section 3. Given 0 ≤ t < T , we

shall also consider the shifted Brownian motion Bt
s := Bs − Bt, and the shifted filtration

F
t := F

Bt
on [t, T ]. For a generic Euclidian space E, let L

2(Ft, E) denote the set of

Ft-measurable square integrable E-valued random variables, and L
2(Ft, E) the set of Ft-

progressively measurable square integrable E-valued processes on [t, T ].

Let A be a domain in some Euclidean space. For each t ∈ [0, T ], our set of admissible

controls At consists of F
t-progressively measurable A-valued processes α. We remark that in

this paper we consider open loop controls, which is more convenient to study the regularities

and to construct desired approximations for our value functions. However, as in standard

stochastic control problems, one can easily see that the set values in this section will remain

the same if we consider appropriate closed loop controls.

Given (t, x) ∈ [0, T ] × R
d, consider the following controlled dynamics: for each α ∈ At,

Xt,x,α
s = x+

∫ s

t
b(r,Xt,x,α

r , αr)dr +

∫ s

t
σ(r,Xt,x,α

r , αr)dBr,

Y t,x,α
s = g(Xt,x,α

T ) +

∫ T

s
f(r,Xt,x,α

r , Y t,x,α
r , Zt,x,α

r , αr)dr −
∫ T

s
Zt,x,α
r dBr.

(4.1)

Here X,Y,Z take values in R
d,Rm,Rm×d, respectively, and b, σ, f, g are in appropriate di-

mensions and satisfy certain technical conditions which will be specified later. We emphasize

that Y is typically multiple dimensional: m > 1. Our set value is defined as:

V(t, x) := cl
{
Y t,x,α
t : α ∈ At

}
⊂ R

m. (4.2)

Here cl denotes the closure. Thus V is a set valued mapping [0, T ] × R
d → 2R

m
. We now

motivate this set valued function in the following remarks.
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Remark 4.1 In the scalar case: m = 1, consider the standard control problems:

v(t, x) := inf
α∈At

Y t,x,α
t , v(t, x) := inf

α∈At

Y t,x,α
t . (4.3)

Then it is obvious that

V(t, x) = [v(t, x), v(t, x)]. (4.4)

That is, the standard optimization problems are characterizing the boundary of our set valued

function. In this paper, we will characterize the boundary of V through a set valued HJB

equation, and thus we extend the scalar optimization problem to the multivariate setting.

Remark 4.2 The set valued functions can be used to analyze some time inconsistent opti-

mization problems. Consider the well known mean variance optimization problem:

V0 := sup
α∈A

[
E[X0,x0,α

T ]− λ

2
V ar(X0,x0,α

T )
]
, where Xt,x,α

s = x+

∫ s

t
αrdr +

∫ s

t
αrdBr. (4.5)

Here X,B,α are all scalar processes. Note that V ar(XT ) = E[|XT |2]− |E[XT ]|2. Introduce

V(t, x) := cl
{
Y t,x,α
t : α ∈ At

}
, where

Y t,x,α,1
s = Xt,x,α

T −
∫ T

s
Zt,x,α,1
r dBr, Y t,x,α,2

s = |Xt,x,α
T |2 −

∫ T

s
Zt,x,α,2
r dBr.

(4.6)

Then one can easily verify that

V0 := sup
y∈V(0,x0)

ϕ(y), where ϕ(y) := y1 +
λ

2
|y1|2 −

λ

2
y2. (4.7)

Our goal of this paper is to characterize the dynamic set valued function V. Provided we

know the set V(0, x0), it is trivial to solve the deterministic optimization problem (4.7). We

also refer to Section 7.1 below for the related time inconsistency issue.

Remark 4.3 (i) The problem (4.2) can also be viewed as a stochastic target problem:

V(t, x) = cl
{
y ∈ R

m : ∃α,Z such that Y t,x,y,α,Z
T = g(Xt,x,α

T ), a.s.
}
,

where Y t,x,y,α,Z
s = y −

∫ s

t
f(r,Xt,x,α

r , Y t,x,y,α,Z
r , Zr, αr)dr +

∫ s

t
ZrdBr.

(4.8)

(ii) Note that at above V(T, x) = {g(x)} is a singleton. In this respect we may easily

extend our setting to non-degenerate terminal G : Rd → Dm
0 . That is,

V(t, x) := cl
{
y ∈ R

m : ∃α,Z such that Y t,x,y,α,Z
T ∈ G(Xt,x,α

T ), a.s.
}
. (4.9)

All our results in this paper can be extended to this case as well, see Section 7.2 below.
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In the rest of this section, we establish the dynamic programming principle (DPP) for

V. For this purpose, we first specify the technical conditions on the coefficients.

Assumption 4.4 (i) (b, σ) : (t, x, a) ∈ [0, T ]×R
d×A→ (Rd,Rd×d) are bounded, uniformly

continuous in (t, a), and uniformly Lipschitz continuous in x.

(ii) f : (t, x, y, z, a) ∈ [0, T ] × R
d × R

m × R
m×d × A → R

m is uniformly continuous in

(t, x, a) and f(t, x, 0, 0, a) is bounded. Moreover, f is continuously differentiable in (y, z)

with ∇yf,∇zf bounded and uniformly Lipschitz continuous in (y, z).

(iii) g : x ∈ R
d → R

m is bounded and uniformly continuous in x.

It is clear that (4.1) is wellposed for any α ∈ At, and thus V is well defined by (4.2).

Now for 0 ≤ t < T , x ∈ R
d, Ft-stopping time τ ≥ t, φ ∈ L

2(F t
τ ,R

m), and α ∈ At, introduce:

Y τ,φ;t,x,α
s = φ+

∫ τ

s
f(r,Xt,x,α

r , Y τ,φ;t,x,α
r , Zτ,φ;t,x,α

r , αr)dr −
∫ τ

s
Zτ,φ;t,x,α
r dBr. (4.10)

We then have the crucial DPP.

Theorem 4.5 Let Assumption 4.4 hold and V be defined by (4.2). For any 0 ≤ t < T ,

x ∈ R
d, and any F

t-stopping time τ ≥ t, it holds

V(t, x) = cl
{
Y τ,φ;t,x,α
t : ∀α ∈ At, φ ∈ L

2(F t
τ ,R

m) s.t. φ ∈ V(τ,Xt,x,α
τ ) a.s.

}
. (4.11)

Proof Without loss of generality we prove (4.11) only at (t, x) = (0, x0), and for notational

simplicity we omit the superscripts 0,x0 . Denote the right side of (4.11) as Ṽ(0, x0).

Step 1. We first show that V(0, x0) ⊂ Ṽ(0, x0). Fix arbitrary y0 ∈ V(0, x0) and ε > 0.

By definition of V(0, x0) there exists α = αε ∈ A0 such that |y0−Y α
0 | ≤ ε. Denote φ := Y α

τ .

It is clear that Y α
0 = Y τ,φ;α

0 and thus |y0 − Y τ,φ;α
0 | ≤ ε. We claim that

φ ∈ V(τ,Xα
τ ) a.s. (4.12)

Then Y τ,φ;α
0 ∈ Ṽ(0, x0), and by the arbitrariness of ε > 0 we obtain y0 ∈ Ṽ(0, x0).

To see (4.12), we consider the shifted canonical space: Ωt := {ω ∈ C([t, T ],Rd) : ωt = 0}.
For any ω ∈ Ω, ω̃ ∈ Ωt, and ξ ∈ L

2(FT ), introduce

(ω ⊕t ω̃)s := ωs1[0,t) + (ωt + ω̃s)1[t,T ](s), ξt,ω(ω̃) := ξ(ω ⊕t ω̃). (4.13)

Then it is clear that ω ⊕t ω̃ ∈ Ω, and ξt,ω ∈ L
2(F t

T ) for a.e. ω ∈ Ω. In particular, for a.e.

ω ∈ Ω, we have αt,ω ∈ At, and by (4.1) and denoting ψα,t,ω := (ψ0,x0,α)t,ω for ψ = X,Y,Z,

Xα,τ,ω
s = Xα

τ (ω) +

∫ s

τ
b(r,Xα,τ,ω

r , ατ,ω
r )dr +

∫ s

τ
σ(r,Xα,τ,ω

r , ατ,ω
r )dBτ

r ,

Y α,τ,ω
s = g(Xα,τ,ω

T ) +

∫ T

s
f(r,Xα,τ,ω

r , Y α,τ,ω
r , Zα,τ,ω

r , ατ,ω
r )dr −

∫ T

s
Zα,τ,ω
r dBτ

r .

(4.14)
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This implies (4.12) immediately.

Step 2. We next prove the opposite inclusion: Ṽ(0, x0) ⊂ V(0, x0). Fix arbitrary

y0 ∈ Ṽ(0, x0) and ε > 0. By definition of Ṽ(0, x0) there exist α = αε ∈ A0 and φ = φε ∈
L
2(Fτ ,R

m) such that |y0 − Y τ,φ;α
0 | ≤ ε and P(E) = 1, where

E :=
{
ω ∈ Ω : φ(ω) ∈ V(τ(ω),Xα

τ (ω))
}
.

Our goal is to construct an α̂ ∈ A0 such that

∣∣Y α̂
0 − Y τ,φ;α

0

∣∣ ≤ Cε. (4.15)

Then |y0 − Y α̂
0 | ≤ ε+ Cε. Since Y α̂

0 ∈ V(0, x0) by definition, then y ∈ V(0, x0).

We construct α̂ by utilizing the desired regularities as in the standard literature. First

let 0 = t0 < · · · < tn = T be a partition such that ti − ti−1 ≤ ε2, i = 1, · · · , n, and let

{Om
j }j≥1 be a partition of Rm and {Od

k}k≥1 a partition of Rd such that the diameter of each

Om
j and Od

k is less than ε. We now denote

Eτ
i := {ti−1 < τ ≤ ti}, Eφ

j := {φ ∈ Om
j }, Eα

k := {Xα
τ ∈ Od

k},

τε :=

n∑

i=1

ti1Eτ
i
, Eθ := E ∩ Eτ

i ∩ Eφ
j ∩ Eα

k , where θ = i, j, k.
(4.16)

For any θ = (i, j, k) such that Eθ 6= ∅, choose ωθ ∈ Eθ such that

P
(
{τ > tθ} ∩ Eθ

)
≤ ε2P(Eθ), where tθ := τ(ωθ), xθ := Xα

tθ
(ωθ). (4.17)

Moreover, since φ(ωθ) ∈ V(tθ, xθ), choose α
θ ∈ Atθ such that

∣∣φ(ωθ)− Y tθ,xθ,α
θ

tθ

∣∣ ≤ ε. (4.18)

We then construct α̂ ∈ A0 by: denoting ωt
s := ωs − ωt, 0 ≤ t ≤ s ≤ T ,

α̂t(ω) := αt(ω)1[0,τε(ω))(t) + 1[τε(ω),T ](t)
[∑

θ

1Eθ
(ω)αθ

t (ω
tθ ) + a01Ec

]
, (4.19)

where the summations are over all θ = (i, j, k) with i = 1, · · · , n and j, k ≥ 1, and a0 ∈ A

is an arbitrary value.

Step 3. We now verify (4.15). First, for any θ = (i, j, k) such that Eθ 6= ∅, a.s. on Eθ

we have τε = ti ≥ tθ and, denoting (Xθ, Y θ, Zθ) := (Xtθ ,xθ,α
θ
, Y tθ ,xθ,α

θ
, Ztθ ,xθ,α

θ
),

Xα̂
t = Xα

tθ
+

∫ t

tθ

b(s,Xα̂
s , αs)ds+

∫ t

tθ

σ(s,Xα̂
s , αs)dBs, t ∈ [tθ, ti],

Xα̂
t = Xα̂

ti +

∫ t

ti

b(s,Xα̂
s , α

θ
s(B

tθ ))ds +

∫ t

ti

σ(s,Xα̂
s , α

θ
s(B

tθ ))dBs, t ∈ [ti, T ],

Xθ
t = xθ +

∫ t

tθ

b(s,Xθ
s , α

θ
s(B

tθ ))ds +

∫ t

tθ

σ(s,Xθ
s , α

θ
s(B

tθ ))dBs, t ∈ [tθ, T ].
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Since b, σ are bounded, and |Xα
tθ
− xθ| ≤ ε, ti − tθ ≤ ε2, by standard SDE estimates we get

EFtθ

[
sup

tθ≤t≤ti

|Xα̂
t −Xθ

t |2
]
≤ Cε2, and then EFtθ

[
sup

ti≤t≤T
|Xα̂

t −Xθ
t |2

]
≤ Cε2. (4.20)

Similarly, note that

Y α̂
t = g(Xα̂

T ) +

∫ T

t
f(s,Xα̂

s , Y
α̂
s , Z

α̂
s , α

θ
s(B

tθ))ds −
∫ T

t
Z α̂
s dBs, t ∈ [ti, T ],

Y α̂
t = Y α̂

ti +

∫ ti

t
f(s,Xα̂

s , Y
α̂
s , Z

α̂
s , αs)ds −

∫ ti

t
Z α̂
s dBs, t ∈ [tθ, ti],

Y θ
t = g(Xθ

T ) +

∫ T

t
f(s,Xθ

s , Y
θ
s , Z

θ
s , α

θ
s(B

tθ))ds −
∫ T

t
Zθ
sdBs, t ∈ [tθ, T ].

Then, by (4.20) and standard BSDE estimates we have

EFtθ

[
sup

ti≤t≤T
|Y α̂

t − Y θ
t |2

]
≤ Cε2, and then EFtθ

[
sup

tθ≤t≤ti

|Y α̂
t − Y θ

t |2
]
≤ Cε2.

In particular, this implies that

|Y α̂
tθ
− Y θ

tθ
| ≤ Cε, a.s. on Eθ. (4.21)

By Assumption 4.4, one can easily see that Y θ, Y α̂ are bounded. Consider the BSDE:

Ỹ θ
t = Y θ

tθ
+

∫ tθ

t
f(s, xθ, Ỹ

θ
s , Z̃

θ
s , a0)ds −

∫ tθ

t
Z̃θ
sdBs, t ∈ [ti−1, tθ]. (4.22)

Note that Y θ
tθ

is deterministic, then so is Ỹ θ
t and thus Z̃θ

t = 0. Therefore,

sup
ti−1≤t≤tθ

|Ỹ θ
t − Y θ

tθ
| ≤

∫ tθ

ti−1

|f(s, xθ, Ỹ θ
s , 0, a0)|ds ≤ C(ti − ti−1) ≤ Cε2.

Moreover, note that Eθ ∈ Fτ and

Y α̂
t = Y α̂

tθ
+

∫ tθ

t
f(s,Xα̂

s , Y
α̂
s , Z

α̂
s , αs)ds −

∫ tθ

t
Z α̂
s dBs, t ∈ [ti−1, tθ].

Compare this with (4.22), by (4.21) and standard BSDE estimate we have

EFτ

[
sup

τ≤t≤tθ

|Y α̂
t − Ỹ θ

t |2
]
≤ Cε2, a.s. on {τ ≤ tθ} ∩ Eθ.

Then

|Y α̂
τ − Y θ

tθ
| ≤ |Y α̂

τ − Ỹ θ
τ |+ |Ỹ θ

τ − Y θ
tθ
| ≤ Cε, a.s. on {τ ≤ tθ} ∩ Eθ. (4.23)

This, together with (4.16) and (4.18), implies that, for a.e. ω ∈ {τ ≤ tθ} ∩ Eθ,

|Y α̂
τ (ω)− φ(ω)| ≤ |Y α̂

τ (ω)− Y θ
tθ
|+ |Y θ

tθ
− φ(ωθ)|+ |φ(ωθ)− φ(ω)| ≤ Cε.
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Note that {Eθ} form a partition of E and P(E) = 1, then by (4.17) we have

P
(
|Y α̂

τ − φ| > Cε
)
≤

∑

θ

P
(
{τ > tθ} ∩ Eθ

)
≤

∑

θ

ε2P(Eθ) = ε2.

Note again that Y α̂ and φ are bounded. Then

E
[
|Y α̂

τ − φ|2
]
≤ Cε2 + CP

(
|Y α̂

τ − φ| > Cε
)
≤ Cε2. (4.24)

Finally, note that Y α̂
t = Y

τ,Y α̂
τ ;α

t , 0 ≤ t ≤ τ . Then, by (4.24) and standard BSDE

estimates we have

E

[
sup

0≤t≤τ
|Y α̂

t − Y τ,φ;α
t |2

]
≤ Cε2.

This clearly implies (4.15) and hence completes the proof.

5 Set valued HJB equations

We now derive the set valued HJB equation for V from the DPP (4.11). Introduce the

Hamiltonian: for (t, x, y) ∈ GV, z ∈ R
m×d, γ ∈ (Rd×d)m, a ∈ A, ζ ∈ (TV(t, x, y))

d,

KV(t, x, y, a, ζ) := tr
(
ζ⊤∂xnV(t, x, y)σ(t, x, a) +

1

2
ζ⊤∂ynV(t, x, y)ζ

)
nV(t, x, y);

h0V(t, x, y, z, γ, a, ζ) := zb(t, x, a) +
1

2
tr (σ⊤γσ(t, x, a)) −KV(t, x, y, a, ζ);

hV(t, x, y, z, γ, a, ζ) := h0V(t, x, y, z, γ, a, ζ) + f
(
t, x, y, zσ(t, x, a) + ζ, a

)
;

HV(t, x, y, z, γ) := sup
a∈A,ζ∈(TV(t,x,y))d

nV(t, x, y) · hV(t, x, y, z, γ, a, ζ);

(5.1)

where tr (σ⊤γσ) ∈ R
m with i-th component tr (σ⊤γiσ). Then our set valued HJB equation

takes the form:

LV(t, x, y) = 0, ∀(t, x, y) ∈ GV, where

LV(t, x, y) := ∂tV(t, x, y) · nV(t, x, y) +HV(t, x, y, ∂xV(t, x, y), ∂xxV(t, x, y)).
(5.2)

Equivalently, by (2.4), (2.23), (2.25), (2.26), we may rewrite the above equation:

∇trV + inf
a∈A,ζ∈(TV(t,x,y))d

[
∇xrV · b+ 1

2
tr
(
σ⊤∇xxrVσ + 2ζ⊤∇xyrVσ + ζ⊤∇yyrVζ

)

−∇yrV · f(t, x, y,−∇yrV(∇xrV)
⊤σ + ζ, a)

]
= 0, (t, x, y) ∈ GV.

(5.3)
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Remark 5.1 (i) For the scalar case as in Remark 4.1, by (4.4) we have

Vb(t, x) = {v(t, x), v(t, x)}, n(t, x, v(t, x)) = −1, n(t, x, v(t, x)) = 1,

TV(t, x, v(t, x)) = TV(t, x, v(t, x)) = 0.

In the neighborhood of y = v(t, x), we have rV(t, x, y) = v(t, x)−y and n(t, x, v(t, x)) = −1.

Then (5.3) reduces to the standard HJB equation for v:

∇tv + inf
a∈A

[
∇xv · b+

1

2
tr
(
σ⊤∇xxvσ + f(t, x, v, (∇xv)

⊤σ, a)
]
= 0.

Similarly, in the neighborhood of y = v(t, x), we have rV(t, x, y) = y−v(t, x) and n(t, x, v(t, x)) =

1. Then (5.3) reduces to the standard HJB equation for v:

∇tv + sup
a∈A

[
∇xv · b+

1

2
tr
(
σ⊤∇xxvσ + f(t, x, v, (∇xv)

⊤σ, a)
]
= 0.

(ii) Although rV is scalar, we emphasize that (5.3) holds true only on GV, and the set

GV is in turn determined by the solution rV. So (5.3) is actually quite involved, and we can

not apply the standard PDE theory on it.

(iii) It is clear that V(T, x) = {g(x)} is degenerate, so we do not require the smoothness

of V at T . See Definition 2.9 and the paragraph above it.

Remark 5.2 Note that KV relies on ζ quadratically, and the space of ζ is typically un-

bounded, so in general HV could blow up and then the set valued PDE is not well defined.

(i) In the scalar case: m = 1, we have TV(t, x, y) = {0} for all (t, x, y) ∈ GV. Then this

issue is trivial. Indeed, in this case the set valued PDE reduces back to the standard HJB

equations, as we saw in Remark 5.1 (i).

(ii) For m ≥ 2, recall Remark 2.7 (iii) that ∂ynV = ∇yyrV is symmetric and 0 is an

eigenvalue with eigenvector n. At any fixed (t, x, y) ∈ GV, let λ1 ≤ · · · ≤ λm−1 be the other

eigenvalues. When f has linear growth in z, which is implied by the Lipschitz continuity,

and λ1 > 0, then clearly HV <∞. In this case V(t, x) is strictly convex.

(iii) When f has linear growth in z, one may easily derive from HV <∞ that λ1 ≥ 0. So,

unfortunately, our classical solution V has to be convex. Thus one should explore appropriate

notions of weak solutions in the noncovex case, which we will leave to future research.

(iv) When f has quadratic growth, this convexity is not required, as we will see in

Example 5.3 below. We shall remark though such quadratic growth violates Assumption 4.4,

which is assumed for technical reasons and can be weakened.
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Example 5.3 Consider a deterministic example where f, g and hence V are independent

of x. Set m = 2, A = {a ∈ R
2 : |a| ≤ 1}, g = 0, and f = (f1, f2) are specified at below:

f1(a, y) = a1, f2(a, y) =
2y1y2a1
1 + y21

+ (1 + y21)a2.

Then V(t) can be solved explicitly and is nonconvex when T − t > 1√
2
:

Vb(t) =
{
Y(t, θ) : ∀θ ∈ [0, 2π]

}
, where

Y1(t, θ) := (T − t) cos θ, Y2(t, θ) := (T − t)
[
1 + (T − t)2 cos2 θ

]
sin θ.

(5.4)

We postpone its proof to Appendix.

We now turn to the wellposedness of (5.2). We first define classical solutions rigorously.

Definition 5.4 (i) Let C1,2
0 ([0, T ) × R

d;Dm
2 ) denote the set of V ∈ C1,2([0, T ) × R

d;Dm
2 )

such that, for any T0 < T , the eigenvalue λ1 of ∂yn(t, x, y) in Remark 5.2 (ii) has a lower

bound cT0 > 0 for all (t, x) ∈ [0, T0]× R
d, y ∈ Vb(t, x). That is,

tr
(
ζ⊤∂ynV(t, x, y)ζ

)
≥ cT0 |ζ|2 ∀(t, x) ∈ [0, T0]× R

d, y ∈ Vb(t, x), ζ ∈ TV(t, x, y). (5.5)

This implies that HV(·, ∂xV, ∂xxV) is finite and uniformly continuous whenever t ≤ T0.

(ii) We say V ∈ C1,2
0 ([0, T ) × R

d;Dm
2 ) is a classical solution to (5.2) if it satisfies (5.2)

for all (t, x) ∈ [0, T ) × R
d and y ∈ Vb(t, x).

We shall provide an example in Example 6.2 below. We next establish a crucial estimate,

whose proof is postponed to Appendix.

Lemma 5.5 Let Assumption 4.4 hold and V be defined by (4.2). Assume V ∈ C1,2
0 ([0, T )×

R
d;Dm

2 ). Fix T0 < T and x0 ∈ R
d. Let ε, δ > 0 and α ∈ A0 be such that |rV(0, x0, Y α

0 )| ≤ ε,

where (Xα, Y α, Zα) = (X0,x0,α, Y 0,x0,α, Z0,x0,α) are defined by (4.1). Then there exists a

constant CT0 , which may depend on T0 but is independent of ε, δ, α, such that

P

(
sup

0≤t≤T0

|rV(t,Xα
t , Y

α
t )| ≥ δ

)
≤ CT0

√
ε

δ
. (5.6)

In particular, if Y α
0 ∈ Vb(0, x0), then Y

α
t ∈ Vb(t,X

α
t ), 0 ≤ t ≤ T , a.s.

The main result of this section is the following theorem.

Theorem 5.6 Let Assumption 4.4 hold and V be defined by (4.2). Assume V ∈ C1,2
0 ([0, T )×

R
d;Dm

2 ). Then V is a classical solution of (5.2) with terminal condition V(T, x) = {g(x)}.
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Proof It is clear that V(T, x) = {g(x)}. Without loss of generality, we shall verify (5.2)

only at a fixed (0, x0, y0) ∈ GV, and for notational simplicity, in this proof we omit the

supscripts 0,x0,y0 and the subscript V in r,n, π. We proceed in two steps.

Step 1. We first show that LV(0, x0, y0) ≤ 0. For this purpose, we fix an arbitrary a ∈ A

and let Xa := X0,x0,α be defined by (4.1) for constant control process α ≡ a. Moreover, we

fix arbitrary ξ, ζi : [0, T ]×Ω×R
m → R

m, i = 1, · · · , d, which are F-progressively measurable,

bounded, continuous in t, uniformly Lipschitz continuous in y, and ξ(t, ω, y), ζi(t, ω, y) ∈
TV(t,X

a
t (ω), y) for all y ∈ Vb(t,X

a
t (ω)), for dt× dP-a.e. (t, ω). Denote ζ = (ζ1, · · · , ζd) and

consider the SDE:

Υa,ξ,ζ
t = y0 +

∫ t

0

[
∂tV+ h0V(·, ∂xV, ∂xxV, a, ζs) + ξ

]
(s,Xa

s ,Υ
a,ξ,ζ
s )ds

+

∫ t

0
[∂xVσ(·, a) + ζ

]
(s,Xa

s ,Υ
a,ξ,ζ
s )dBs.

(5.7)

Applying the Itô formula Theorem 3.1 we have Υa,ξ,ζ
t ∈ Vb(t,X

a
t ), for all 0 ≤ t < T .

Now for any δ > 0 small, consider the BSDE (4.10) with terminal condition (δ,Υa,ξ,ζ
δ ):

Y δ,a,ξ,ζ
t = Υa,ξ,ζ

δ +

∫ δ

t
f(s,Xa

s , Y
δ,a,ξ,ζ
s , Zδ,a,ξ,ζ

s , a)ds −
∫ δ

t
Zδ,a,ξ,ζ
s dBs, 0 ≤ t ≤ δ. (5.8)

Since Υa,ξ,ζ
δ ∈ Vb(δ,X

a
δ ), by the DPP (4.11) we see that Y δ,a,ξ,ζ

0 ∈ V(0, x0). Denote

∆Y δ
t := Y δ,a,ξ,ζ

t −Υa,ξ,ζ
t , ∆Zδ

t := Zδ,a,ξ,ζ
t − [∂xVσ(·, αt) + ζ

]
(t,Xa

t ,Υ
a,ξ,ζ
t ).

Then, by (5.7) and (5.8) we have

∆Y δ
t =

∫ δ

t

[
∂tV+ hV(·, ∂xV, ∂xxV, a, ζ) + ξ

]
(s,Xa

s ,Υ
a,ξ,ζ
s )ds −

∫ δ

t
∆Zδ

sdBs

+

∫ δ

t

[
f(s,Xa

s , Y
δ,a,ξ,ζ
s , Zδ,a,ξ,ζ

s , a)− f(s,Xa
s , Y

δ,a,ξ,ζ
s −∆Y δ

s , Z
δ,a,ξ,ζ
s −∆Zδ

s , a)
]
ds

=

∫ δ

t

[
∂tV+ hV(·, ∂xV, ∂xxV, a, ζ) + ξ

]
(s,Xa

s ,Υ
a,ξ,ζ
s )ds −

∫ δ

t
∆Zδ

sdBs

+

∫ δ

t

[
b̃s∆Y

δ
s + σ̃s∆Z

δ
s

]
ds,

where b̃, σ̃ are appropriate F-progressively measurable bounded processes. Then, for the Γ̃

defined by (3.9), we have

Γ̃t∆Y
δ
t =

∫ δ

t
Γ̃s

[
∂tV+ hV(·, ∂xV, ∂xxV, a, ζ) + ξ

]
(s,Xa

s ,Υ
a,ξ,ζ
s )ds

−
∫ δ

t
Γ̃s

[
∆Zδ

s +∆Y δ
t σ̃

]
· dBs.
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In particular,

∆Y δ
0 = E

[ ∫ δ

0
Γ̃s

[
∂tV+ hV(·, ∂xV, ∂xxV, a, ζ) + ξ

]
(s,Xa

s ,Υ
a,ξ,ζ
s )ds

]
. (5.9)

Given our conditions, it is clear that |∆Y δ
0 | ≤ Cδ, which implies that lim

δ→0
Y δ,α,ξ,ζ
0 = y0.

Since Y δ,a,ξ,ζ
0 ∈ V0(0, x0) and y0 ∈ Vb(0, x0), then

lim
δ→0

1

δ

[
n(0, x0, y0) ·∆Y δ

0

]
≤ 0. (5.10)

Now by (5.9) and the desired continuity of Γ̃s,X
a
s ,Υ

a,ξ,ζ
s , ξs in s as well as the desired

regularity of all the involved functions in (x, y), we have

0 ≥ lim
δ→0

1

δ
E

[
n(0, x0, y0) ·

∫ δ

0
Γ̃s

[
∂tV+ hV(·, ∂xV, ∂xxV, a, ζ) + ξ

]
(s,Xa

s ,Υ
a,ξ,ζ
s )ds

]

= lim
δ→0

1

δ

[
n(0, x0, y0) ·

∫ δ

0

[
∂tV+ hV(·, ∂xV, ∂xxV, a, ζ) + ξ

]
(0, x0, y0)ds

]

= n(0, x0, y0) ·
[
∂tV+ hV(·, ∂xV, ∂xxV, a, ζ)

]
(0, x0, y0),

where the last equality is due to the assumption ξ ∈ TV. Now by the arbitrariness of a, ζ

we obtain LV(0, x0, y0) ≤ 0.

Step 2. We next show that LV(0, x0, y0) ≥ 0. For this purpose, fix T0 < T , and

throughout this proof, the generic constant C may depend on T0. Since V ∈ C1,2([0, T0]×
R
d;Dm

2 ), there exists ε0 > 0 such that r ∈ C2(OT0
ε0 (GV)), where O

T0
ε0 (GV) := {(t, x, y) ∈

[0, T0] × R
d × R

m : |r(t, x, y)| ≤ ε0}. Fix a sufficiently small constant ε > 0. Since y0 ∈
Vb(0, x0), there exists α = αε ∈ A0 such that

π(0, x0, Y
α
0 ) = y0 and |y0 − Y α

0 | ≤ ε4,

where (Xα, Y α, Zα) = (X0,x0,α, Y 0,x0,α, Z0,x0,α) are defined by (4.1). Define

τ := τε,α := inf{t > 0 : |r(t,Xα
t , Y

α
t )| ≥ ε2} ∧ T0. (5.11)

By Lemma 5.5 we have

P(τ < T0) ≤ P
(

sup
0≤t≤T0

|r(t,Xα
t , Y

α
t )| ≥ ε2

)
≤ C

√
ε4

ε2
= Cε. (5.12)

Step 2.1. Introduce two random fields:

ζt(y) := Zα
t − ∂xVσ(t,X

α
t , y, αt), ξt(y) := −

[
∂tV+ hV(·, ∂xV, ∂xxV, αt, ζt)

]
(t,Xα

t , y).(5.13)
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Then we may rewrite the BSDE for (Y α, Zα) forwardly:

Y α
t = Y α

0 +

∫ t

0

[
∂tV+ h0V(·, ∂xV, ∂xxV, αt, ζt) + ξ

]
(s,Xα

s , Y
α
s )ds

+

∫ t

0

[
∂xVσ(·, αs) + ζ

]
(s,Xα

s , Y
α
s )dBs.

We remark that, if Y α
t ∈ Vb(t,X

α
t ) and ζt(Y

α
t ), ξt(Y

α
t ) are in the tangent space TV(t,X

α
t , Y

α
t ),

then LV(t,Xα
t , Y

α
t ) ≥ −n(t,Xα

t , Y
α
t ) · ξt(Y α

t ) = 0, which is the desired inequality. In this

and the next substep, we shall prove these properties in approximate sense.

Denote παt := π(t,Xα
t , Y

α
t ). By (3.5) and (3.6), similarly to (3.7) and (3.8) we have,

dr(t,Xα
t , Y

α
t ) =

[
r(t,Xα

t , Y
α
t )b̃t − n · ξ(t,Xα

t , π
α
t )
]
dt

+
[
r(t,Xα

t , Y
α
t )σ̃t − n⊤ζ(t,Xα

t , π
α
t )
]
dBt, 0 ≤ t ≤ τ,

(5.14)

where b̃, σ̃ are F-progressively measurable and satisfy: for some constant C = CT0 ,

|σ̃t| ≤ C, |b̃t| ≤ C
[
1 + |Zα

t |
]
. (5.15)

Recall the process Γ̃ defined in (3.9), we have

r(0, x0, Y
α
0 )− Γ̃τr(τ,X

α
τ , Y

α
τ ) =

∫ τ

0
Γ̃sn · ξ(s,Xα

s , π
α
s )ds +

∫ τ

0
Γ̃sn

⊤ζ(s,Xα
s , π

α
s )dBs. (5.16)

Moreover, by Assumption 4.4 one can easily see that Y α is bounded, then
∫ τ∧·
0 Zα

s dBs is a

BMO martingale, and thus there exist c0, C > 0, such that (c.f. [20, Section 7.2])

E

[
exp

(
c0

∫ τ

0
|Zα

s |2ds
)]

≤ C <∞. (5.17)

In particular, this implies that, for any p ≥ 1, there exists a constant Cp > 0 such that

E

[
sup

0≤t≤τ

[
|Γ̃t|p + |Γ̃t|−p

]]
≤ Cp. (5.18)

Applying the standard Itô formula on |Γ̃tr(t,X
α
t , Y

α
t )|2, by (5.14) we have

E

[ ∫ τ

0
|Γ̃sn

T ζ(s,Xα
s , π

α
s )|2ds

]

= E

[
|Γ̃τr(τ,X

α
τ , Y

α
τ )|2 − |r(0, x0, Y α

0 )|2 + 2

∫ τ

0
Γ̃2
sr(s,X

α
s , Y

α
s )n · ξ(s,Xα

s , π
α
s )ds

]

≤ Cε4 + Cε2E

[
sup

0≤t≤τ
|Γ̃t|2

∫ τ

0
[1 + |Zα

s |2]ds
]
≤ Cε2. (5.19)
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Step 2.2. Denote

ζ̂s := ζs(π
α
s )− nn⊤ζs(π

α
s ) ∈

(
TV(s,X

α
s , π

α
s )
)d
;

ξ̂s := −
[
∂tV+ hV(·, ∂xV, ∂xxV, αs, ζ̂s)

]
(s,Xα

s , π
α
s ).

(5.20)

By (5.2), (5.3), and by Step 1, we have

0 ≤ −LV(s,Xα
s , π

α
s ) ≤ n(s,Xα

s , π
α
s ) · ξ̂s. (5.21)

Then, by taking expectation on both sides of (5.16) we have

−E

[ ∫ τ

0
Γ̃sLV(s,Xα

s , π
α
s )ds

]
≤ E

[ ∫ τ

0
Γ̃sn(s,X

α
s , π

α
s ) · ξ̂sds

]

≤ E

[ ∫ τ

0
Γ̃sn(s,X

α
s , π

α
s ) · ξsds

]
+ E

[ ∫ τ

0
Γ̃s|ξs − ξ̂s|ds

]

= E

[
r(0, x0, Y

α
0 )− Γ̃τr(τ,X

α
τ , Y

α
τ )

]
+ E

[ ∫ τ

0
Γ̃s|ξs − ξ̂s|ds

]
.

Recall Remark 2.7 (iii), we see that tr
(
(nn⊤ζ)⊤∂yn(nn

⊤ζ)
)
= 0. Then, by (5.2),

|ξs − ξ̂s| ≤ C|n⊤ζ(s,Xα
s , π

α
s )|,

and thus, by (5.19),

−E

[ ∫ τ

0
Γ̃sLV(s,Xα

s , π
α
s )ds

]
≤ E

[ ∫ τ

0
Γ̃sn(s,X

α
s , π

α
s ) · ξ̂sds

]

≤ E

[
r(0, x0, Y

α
0 )− Γ̃τr(τ,X

α
τ , Y

α
τ )

]
+ CE

[ ∫ τ

0
Γ̃s|n⊤ζ(s,Xα

s , π
α
s )|ds

]

≤ Cε2 + C

(
E

[ ∫ τ

0
|Γ̃sn

⊤ζ(s,Xα
s , π

α
s )|2ds

])1/2

≤ Cε. (5.22)

Step 2.3. Fix another small constant δ > 0. Since LV ≤ 0, by (5.12) we have

−LV(0, x0, y0) = E

[
− 1

δ

∫ τ∧δ

0
LV(0, x0, y0)ds −

(δ − τ)+

δ
LV(0, x0, y0)

]

= −1

δ
E

[ ∫ τ∧δ

0
Γ̃sLV(s,Xα

s , π
α
s )ds

]
− LV(0, x0, y0)E

[
(1− τ

δ
)1{τ<δ}

]

+
1

δ
E

[ ∫ τ∧δ

0

[
Γ̃sLV(s,Xα

s , π
α
s )− LV(0, x0, y0)

]
ds
]

≤ Cε

δ
+ E

[
sup

0≤t≤τ∧δ

∣∣Γ̃tLV(t,Xα
t , π

α
t )− LV(0, x0, y0)

∣∣
]
.

Since V ∈ C1,2([0, T0] × R
d;Dm

2 ), HV is bounded and uniform continuous. Then, for some

modulus of continuity function ρ we have

−LV(0, x0, y0) ≤
Cε

δ
+ CE

[
sup

0≤t≤τ∧δ

[
|Γ̃t − 1|+ ρ

(
δ + |Xα

t − x0|+ |παt − y0|
)]]

. (5.23)
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Recall (3.9), (5.15), and (5.18), we have

E

[
sup

0≤t≤τ∧δ
|Γ̃t − 1|

]
≤ E

[
sup

0≤t≤τ∧δ

[
(Γ̃t + 1)(|

∫ t

0
σ̃s · dBs|+

∫ t

0
[|b̃s|+

1

2
|σ̃s|2]ds

)]

≤ C
√
δ + C

(
E

[( ∫ τ∧δ

0
|Zα

t |dt
)2]) 1

2 ≤ C
√
δ + C

√
δ
(
E

[ ∫ T

0
|Zα

t |2dt
]) 1

2 ≤ C
√
δ;

E

[
sup

0≤t≤τ∧δ
|Xα

t − x0|
]
≤ C

√
δ;

E

[
sup

0≤t≤τ∧δ
|παt − y0|

]
≤ Cε2 + E

[
sup

0≤t≤τ∧δ
|Y α

t − y0|
]

≤ C[ε2 +
√
δ] + CE

[( ∫ τ∧δ

0
|Zα

t |2dt
) 1

2

]
.

Then (5.23) implies

−LV(0, x0, y0) ≤ C
[ε
δ
+

√
δ
]
+ Cρ(δ + δ

1
3 ) +

C

δ
1
3

E

[
sup

0≤t≤τ∧δ
[|Xα

t − x0|+ |παt − y0|]
]

≤ C
[ε
δ
+

√
δ + ρ(δ + δ

1
3 ) +

ε2 +
√
δ

δ
1
3

]
+
C

δ
1
3

E

[( ∫ τ∧δ

0
|Zα

t |2dt
) 1

2

]
. (5.24)

Step 2.4. Recall (5.5) and (5.21). Then by (5.22) we have

Cε ≥ E

[ ∫ τ∧δ

0
Γ̃sn(s,X

α
s , π

α
s ) · ξ̂sds

]
≥ E

[ ∫ τ∧δ

0
Γ̃s

[cT0

2
|ζ̂s|2 − C|ζ̂s| − C

]
ds
]
.

This, together with (5.18), implies that

E

[ ∫ τ∧δ

0
Γ̃s|ζ̂s|2ds

]
≤ C[ε+ δ]. (5.25)

By (5.13) and (5.20) we have

|Zα
t | ≤ |ζt(παt )|+ C ≤ |ζ̂t|+ |n · ζ(t,Xα

t , π
α
t )|+ C.

Then, by (5.19), (5.25), and (5.18), we have

E

[( ∫ τ∧δ

0
|Zα

t |2dt
) 1

2

]
≤ C

√
δ + CE

[( ∫ τ∧δ

0
[|ζ̂t|2 + |n · ζ(t,Xα

t , π
α
t )|2]dt

) 1
2

]

≤ C
√
δ + CE

[(
sup

0≤t≤τ
Γ̃−1
t

∫ τ

0
Γ̃t|ζ̂t|2dt

) 1
2 +

(
sup

0≤t≤τ
Γ̃−2
t

∫ τ

0
Γ̃2
t |n · ζ(t,Xα

t , π
α
t )|2]dt

) 1
2

]

≤ C
√
δ + C

(
E

[ ∫ τ

0
Γ̃t|ζ̂t|2dt+

∫ τ

0
Γ̃2
t |n · ζ(t,Xα

t , π
α
t )|2dt

]) 1
2

≤ C
√
δ + C

(
ε+ δ + ε2

) 1
2 ≤ C[

√
ε+

√
δ].

Plug this into (5.24), we get

−LV(0, x0, y0) ≤ C
[ε
δ
+

√
δ + ρ(δ + δ

1
3 ) +

ε2 +
√
δ

δ
1
3

]
+
C

δ
1
3

[
√
ε+

√
δ].

By first send ε→ 0 and then δ → 0, we obtain −LV(0, x0, y0) ≤ 0.
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6 The uniqueness of the classical solution

We now turn to the uniqueness of the classical solution, including the verification result.

Theorem 6.1 Let Assumption 4.4 hold and V be defined by (4.2).

(i) Assume U ∈ C1,2
0 ([0, T ) × Rd;Dm

2 ) is a classical solution of (5.2) with terminal

condition V(T, x) = {g(x)}. Then U = V, and consequently (5.2) has a unique classical

solution with terminal condition {g(x)}.
(ii) Assume further that the Hamiltonian HU(·, ∂xU, ∂xxU) has an optimal argument:

a∗ = IU1 (t, x, y) ∈ A, ζ∗ = IU2 (t, x, y) ∈ (TU(t, x, y))
d. (6.1)

Moreover, recall Remark 2.1 and denote

ĨU3 (t, x, y) := −
[
∂tU+ hU(·, ∂xU, ∂xxU, IU1 , IU2 )

]
(t, x, y);

IU3 (t, x, y) := ĨU3 (t, x, y) − [nU · ĨU3 ]nU(t, x, y);
(6.2)

and assume, for given (0, x0, y0) ∈ GU, the following SDE has a strong solution:

X∗
t = x0 +

∫ t

0
b(·, IU1 )(s,X∗

s ,Υ
∗
s)ds +

∫ t

0
σ(·, IU1 )(s,X∗

s ,Υ
∗
s)dBs;

Υ∗
t = y0 +

∫ t

0

[
∂tU+ h0U(·, ∂xU, ∂xxU, IU1 , IU2 ) + IU3

]
(s,X∗

s ,Υ
∗
s)ds

+

∫ t

0
[∂xVσ(·, IU1 ) + IU2 ](s,X

∗
s ,Υ

∗
s)dBs.

(6.3)

Then, for α∗
t := IU1 (t,X

∗
t ,Υ

∗
t ), we have Y 0,x0,α∗

t = Υ∗
t ∈ Vb(t,X

∗
t ), 0 ≤ t ≤ T , a.s. In

particular, Y 0,x0,α∗

0 = y0.

Proof We proceed in three steps. Denote Tδ := T − δ for δ > 0 small.

Step 1. We first show that V(0, x0) ⊂ U(0, x0). By the same arguments, we can also

show that V(t, x) ⊂ U(t, x) for all (t, x) ∈ [0, T ) × R
d.

Fix δ > 0 small and α ∈ A0. Denote (Xα, Y α, Zα) := (X0,x0,α, Y 0,x0,α, Z0,x0,α). Since

V(T, x) = {g(x)} = U(T, x), by Assumption 4.4 and the continuity of U, there exists

φδ ∈ L
2(FTδ

) such that φδ ∈ Ub(Tδ,X
α
Tδ
), a.s. and

E
[
|Y α

Tδ
− φδ|2

]
≤ CE

[
|Y α

Tδ
− g(Xα

T )|2 + |g(Xα
T )− g(Xα

Tδ
)|2 + |φδ − g(Xα

Tδ
)|2

]
→ 0, (6.4)

as δ → 0. Recall (4.10) and set (Y α,δ, Zα,δ) := (Y Tδ,φδ;0,x0,α, ZTδ,φδ;0,x0,α). Then by the

standard BSDE estimates we have

lim
δ→0

|Y α,δ
0 − Y α

0 | = 0. (6.5)
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As in (3.5), by standard Itô’s formula, we have

drU(t,X
α
t , Y

α,δ
t ) = Λ(t,Xα

t , Y
α,δ
t , Zα,δ

t , αt)dt+ Z̃α,δ
t dBt, where

Λ := ∇trU +∇xrU · b−∇yrU · f +
1

2
tr
(
σ⊤∇xxrUσ + 2z⊤∇xyrUσ + z⊤∇yyrUz

)
;

Z̃α,δ := ∇xrUσ +∇yrUZ
α,δ.

Denote

πα,δt := πU(t,X
α
t , Y

α,δ
t ), ζα,δt := Zα,δ

t − nUn
⊤
UZ

α,δ
t .

Then, by (3.6) and since U is a classical solution of (5.2), we have

Λ(t,Xα
t , π

α,δ
t , ∂xUσ + ζα,δt , αt) = −nU ·

[
∂tU+ hU

(
t,Xα

t , π
α,δ
t , ∂xU, ∂xxU, αt, ζ

α,δ
t

)]
≥ 0.

Note that, for appropriate processes b̃, σ̃,

Λ(t,Xα
t , Y

α,δ
t , Zα,δ

t , αt)− Λ(t,Xα
t , π

α,δ
t , ∂xUσ + ζα,δt , αt) = −

[
b̃trU + σ̃tZ̃

α,δ
t

]
.

Here, due to the regularity of U ∈ C1,2([0, Tδ ]×R
d;Dm

2 ), as in (3.7) there exists a constant

Cδ > 0, which may depend on δ, such that for 0 ≤ t ≤ Tδ,

|b̃t| ≤ Cδ[1 + |Zα,δ
t |2], |σ̃t| ≤ Cδ[1 + |Zα,δ

t |].

Then, for the Γ̃ in (3.9) we have

d
(
Γ̃trU(t,X

α
t , Y

α,δ
t )

)
= Γ̃tΛ(t,X

α
t , π

α,δ
t , ∂xUσ + ζα,δt , αt)dt+ Γ̃t(Z̃t − rUσ̃t)dBt.

Since r(Tδ ,X
α
Tδ
, Y α,δ

Tδ
) = 0, a.s. then,

rU(0, x0, Y
α,δ
0 ) = −E

[ ∫ Tδ

0
Γ̃tΛ(t,X

α
t , π

α,δ
t , ∂xUσ + ζα,δt , αt)

]
≤ 0.

That is, Y α,δ
0 ∈ U(0, x0). Send δ → 0, by (6.5) and the closedness of U(0, x0), we have

Y α
0 ∈ U(0, x0). Moreover, since α ∈ A0 is arbitrary, we obtain V(0, x0) ⊂ U(0, x0).

Step 2. We next prove (ii) and show that in this case U(0, x0) ⊂ V(0, x0). Indeed,

consider an arbitrary y0 ∈ Ub(0, x0). First by the Itô formula Theorem 3.1 we see that

Υ∗
t ∈ Vb(t,X

∗
t ), 0 ≤ t ≤ T , a.s. In particular, this implies Υ∗

T = g(X∗
T ). Note that, by the

optimality of IU1 , I
U
2 , we have

hU(·, ∂xU, ∂xxU, IU1 , IU2 )(s,X∗
s ,Υ

∗
s) = HU(·, ∂xU, ∂xxU, IU1 , IU2 )(s,X∗

s ,Υ
∗
s).
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Since U satisfies the PDE 5.2, we have

nU · ĨU3 (s,X∗
s ,Υ

∗
s) = 0;

[
∂tU+ h0U(·, ∂xU, ∂xxU, IU1 , IU2 ) + IU3

]
(s,X∗

s ,Υ
∗
s) = −f(·, ∂xVσ(·, IU1 ) + IU2 , I

U

1 )(s,X
∗
s ,Υ

∗
s).

This implies that Y 0,x0,α∗

t = Υ∗
t . In particular, y0 = Υ∗

0 = Y 0,x0,α∗

0 ∈ V(0, x0). Thus

Ub(0, x0) ⊂ V(0, x0), which implies that U(0, x0) ⊂ V(0, x0)

Step 3. We now prove U(0, x0) ⊂ V(0, x0) in the general case, without assuming the

additional conditions in (ii). Fix (0, x0, y0) ∈ GU and δ > 0. Since U ∈ C1,2([0, Tδ ],R
d;Dm

2 ),

we assume rU is smooth in OT0
ε0 (GU) for some ε0 > 0. In the rest of this proof, let Cδ be

a generic constant which may depend on δ, more precisely on the cTδ
in (5.5) and the

regularity of U on [0, Tδ ]× R
d.

Since U satisfies (5.2), by (5.5) there exist ā0 ∈ A and ζ̄0 ∈ (TU(0, x0, y0))
d such that

|ζ̄0| ≤ Cδ and 0 ≤ −nU ·
[
∂tU+ hU(·, ∂xU, ∂xxU, ā0, ζ̄0)

]
(0, x0, y0) < δ. (6.6)

Set τ0 := 0, α1
t ≡ ā0, 0 ≤ t ≤ Tδ, and define

X1
t = x0 +

∫ t

0
b(s,X1

s , α
1
s)ds +

∫ t

0
σ(s,X1

s , α
1
s)dBs, 0 ≤ t ≤ Tδ.

Introduce the random fields (ξ1, ζ1) : [0, Tδ ]×Ω×R
m → (Rm,Rm×d): recalling Remark 2.1,

ζ1t (y) := ζ̄0 − nUn
⊤
U ζ̄

0(t,X1
t , y), ξ1t (y) := ξ̃1t (y)− [nU · ξ̃1t ]nU(t,X

1
t , y),

where ξ̃1t (y) := −
[
∂tU+ hU(·, ∂xU, ∂xxU, α1, ζ1)

]
(t,X1

t , y).
(6.7)

Then ξ1t (y) ∈ TU(t,X
1
t , y), ζ

1
t (y) ∈ (TU(t,X

1
t , y))

d, ∀y ∈ Ub(t,X
1
t ), and ξ

1, ζ1 are uniformly

Lipschitz continuous in y, with the Lipschitz constant depending on δ. Consider the SDE:

Υ1
t = y0 +

∫ t

0

[
∂tU+ h0U(·, ∂xU, ∂xxU, α1

s, ζ
1
s ) + ξ1

]
(s,X1

s ,Υ
1
s)ds

+

∫ t

0

[
∂xU(s,X

1
s ,Υ

1
s)σ(s,X

1
s , α

1
s) + ζ1s (Υ

1
s)
]
dBs.

(6.8)

By the Itô formula Theorem 3.1, Υ1
t ∈ Ub(t,X

1
t ), 0 ≤ t ≤ Tδ. Note that (6.6) implies

nU(0,X
1
0 ,Υ

1
0) · ξ̃10(Υ1

0) ≤ ε, and by our construction, α1, ζ1 and hence ξ̃1 are continuous in

t. We then set

τ1 := inf
{
t > τ0 : nU(t,X

1
t ,Υ

1
t ) · ξ̃1t (Υ1

t ) ≥ 2δ
}
∧ Tδ.

Next, on {τ1 < Tδ}, by measurable selection theorem, there exist Fτ1-measurable random

variables ᾱ1
τ1 ∈ A and ζ̄1τ1 ∈ (TV(τ1,X

1
τ1 ,Υ

1
τ1))

d such that

|ζ̄1τ1 | ≤ Cδ and 0 ≤ −nU ·
[
∂tU+ hU(·, ∂xU, ∂xxU, ᾱ1

τ1 , ζ̄
1
τ1)

]
(τ1,X

1
τ1 ,Υ

1
τ1) < δ.
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Set α2
t ≡ ᾱ1

τ1 , τ1 ≤ t ≤ Tδ, and define

X2
t = X1

τ1 +

∫ t

τ1

b(s,X2
s , α

2
s)ds +

∫ t

τ1

σ(s,X2
s , α

2
s)dBs, τ1 ≤ t ≤ Tδ.

Similarly introduce, for τ1 ≤ t ≤ Tδ,

ζ2t (y) := ζ̄1τ1 − nUn
⊤
U ζ̄

1
τ1(t,X

2
t , y), ξ2t (y) := ξ̃2t (y)− [nU · ξ̃2t ]nU(t,X

2
t , y),

where ξ̃2t (y) := −
[
∂tU+ hU(·, ∂xU, ∂xxU, α2, ζ2)

]
(t,X2

t , y),
(6.9)

and consider the SDE:

Υ2
t = Υ1

τ1 +

∫ t

τ1

[
∂tU+ h0U(·, ∂xU, ∂xxU, α2

s, ζ
2
s ) + ξ2

]
(s,X2

s ,Υ
2
s)ds

+

∫ t

τ1

[
∂xU(s,X

2
s ,Υ

2
s)σ(s,X

2
s , α

2
s) + ζ2s (Υ

2
s)
]
dBs.

(6.10)

Then Υ2
t ∈ Ub(t,X

2
t ), τ1 ≤ t ≤ Tδ, and we may set

τ2 := inf
{
t > τ1 : nU(t,X

2
t ,Υ

2
t ) · ξ̃2t (Υ2

t ) ≥ 2δ
}
∧ Tδ.

Repeat the arguments, we obtain a sequence (τn, α
n, ζn, ξ̃n, ξn,Xn,Υn), n ≥ 0, satisfying

the desired properties. We first show that τn = Tδ for n large enough, a.s. Indeed, on

Eδ := ∩n≥1{τn < Tδ}, we have,

nU(τn,Xτn ,Υτn) · ξ̃nτn(Υτn) ≤ δ, nU(τn+1,Xτn+1 ,Υτn+1) · ξ̃nτn+1
(Υτn+1) = 2δ, ∀n.

Then, for any n,

δP(Eδ) ≤ E

[∣∣∣nU(τn+1,Xτn+1 ,Υτn+1) · ξ̃nτn+1
(Υτn+1)− nU(τn,Xτn ,Υτn) · ξ̃nτn(Υτn)

∣∣∣
]
.

Send n→ ∞, by the desired regularity and in particular |ζ| ≤ Cδ, we obtain P(Eδ) = 0.

We now define

(αt, ζt, ξ̃t, ξt,Xt,Υt) := (αn
t , ζ

n
t ,X

n
t ,Υ

n
t , ξ

n
t ), t ∈ [τn, τn+1), n = 0, 1, · · · .

Note that XTδ
:= limt↑Tδ

Xt and ΥTδ
:= limt↑Tδ

Υt are well defined. Define

Zt := ∂xU(t,Xt,Υt)σ(t,Xt, αt) + ζt(Υt), ηt := [nU · ξ̃t]nU(t,Xt,Υt), 0 ≤ t < Tδ.

Then, |η| ≤ 2δ, and by (5.1) and (6.8) we have

Υt = y0 −
∫ t

0

[
f(s,Xs,Υs, Zs, αs) + ηs

]
ds +

∫ t

0
ZsdBs, 0 ≤ t ≤ Tδ.
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Equivalently, we may rewrite it backwardly:

Υt = ΥTδ
+

∫ Tδ

t

[
f(s,Xs,Υs, Zs, αs) + ηs

]
ds −

∫ Tδ

t
ZsdBs, 0 ≤ t ≤ Tδ. (6.11)

Compare this with (4.10), by standard BSDE estimates we have

∣∣y0 − Y
Tδ,ΥTδ

;0,x0,α

0

∣∣2 =
∣∣Υ0 − Y

Tδ,ΥTδ
;0,x0,α

0

∣∣2 ≤ CE

[ ∫ Tδ

0
|ηs|2ds

]
≤ Cδ2. (6.12)

Finally, fix an arbitrary a∗ ∈ A, and extend α with αt ≡ a∗, t ∈ [Tδ, T ]. Since V(T, x) =

{g(x)} = U(T, x), by Assumption 4.4 and the continuity of U, similarly to (6.4) we have

E
[
|Y α

Tδ
−ΥTδ

|2
]
≤ CE

[
|Y α

Tδ
− g(Xα

T )|2 + |g(Xα
T )− g(Xα

Tδ
)|2 + |ΥTδ

− g(Xα
Tδ
)|2

]
≤ ρ(δ),

for some modulus of continuity function ρ, independent of α. Then, by standard BSDE

estimates again,

∣∣Y Tδ,ΥTδ
;0,x0,α

0 − Y α
0

∣∣2 =
∣∣Y Tδ,ΥTδ

;0,x0,α

0 − Y
Tδ ,Y

α
Tδ

;0,x0,α

0

∣∣2 ≤ E
[
|Y α

Tδ
−ΥTδ

|2
]
≤ ρ(δ).

Combine this with (6.12), we have

|y0 − Y α
0 | ≤ Cδ +

√
ρ(δ).

Since Y α
0 ∈ V(0, x0) and δ > 0 is arbitrary, we obtain y0 ∈ V(0, x0).

We conclude this section with a simple example where V is indeed a classical solution.

Example 6.2 Set d = 1, m = 2, A = {a ∈ R
2 : |a| ≤ 1}, and

b = 0, σ = 1, f = f0(t, x) + a,

where f0 and g are smooth and bounded. Then it is straightforward to check that

V(t, x) =
{
y ∈ R

2 : |y − w(t, x)| ≤ T − t
}
,

where w = (w1, w2)
⊤ is the classical solution to the following heat equations:

∇twi +
1

2
∇xxwi + f0i = 0, wi(T, x) = gi(x), i = 1, 2.

We shall prove in Appendix that V ∈ C1,2
0 ([0, T ) × R;D2

2), and the conditions in Theorem

6.1 (ii) hold true. Then it follows from Theorems 5.6 and 6.1 that V is the unique classical

solution of the HJB equation (5.3).
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7 Further discussions

7.1 An application: the moving scalarization

Recall Remark 4.2, in particular (4.5) and (4.7) for the mean variance optimization problem.

This problem is time inconsistent in the following sense. Consider the general setting (4.1)

and (4.2). Given (0, x0) and ϕ ∈ C(Rm;R), let α∗
[0,T ] be an optimal control for the problem

V0 := sup
α∈A0

ϕ(Y 0,x0,α
0 ) = sup

y∈V(0,x0)
ϕ(y). (7.1)

If we follow α∗ on [0, t] and denote X∗
t := X0,x0,α∗

t . Then α∗
[t,T ] is not optimal for the

optimization problem at t: by using the notations heuristically,

sup
α[t,T ]

ϕ
(
Y

t,X∗

t ,α[t,T ]

t

)
= sup

y∈V(t,X∗

t )
ϕ(y). (7.2)

It was proposed in [14] to find a so called dynamic utility function Φ(t,x[0,t], y) such that

Φ(0, x0, y) = ϕ(y) and α∗
[t,T ] remains optimal for the alternative optimization problem

sup
α[t,T ]

Φ
(
t,X∗

[0,t], Y
t,X∗

t ,α[t,T ]

t

)
= sup

y∈V(t,X∗

t )
Φ
(
t,X∗

[0,t], y
)
. (7.3)

When ϕ is linear: ϕ(y) = λ0 · y for some λ0 ∈ R
m, we require Φ to be linear as well:

Φ(t,x[0,t], y) = Λ(t,x[0,t]) · y. This Λ is exactly the moving scalarization proposed in [9].

That is, we want to find Λ such that Λ(0, x0) = λ0 and α∗
[t,T ] is optimal for the problem:

sup
α[t,T ]

Λ(t,X∗
[0,t]) · Y

t,X∗

t ,α[t,T ]

t = sup
y∈V(t,X∗

t )
Λ(t,X∗

[0,t]) · y. (7.4)

Our set valued HJB equation provides a solution to this interesting problem, provided

that (5.2) is wellposed in the sense of Theorem 6.1 (ii) and V(t, x) is strictly convex. Consider

a slightly more general setting by letting λ : Rd → R
m be such that λ(x0) = λ0. Assume

without loss of generality that |λ(x)| = 1 for all x ∈ R
d. Since V(0, x) is compact and

strict convex, we may find a unique optimal argument yλ(x) ∈ Vb(0, x) for the problem:

V (0, x) := supy∈V(0,x) λ(x) · y. Recalling U = V, we construct X∗,Υ∗, α∗ as in Theorem 6.1

(ii) with initial data (0, x, yλ(x)) ∈ GV. Assume further that σ ∈ R
d is nondegenerate, then

F
X∗

= F
B. Thus Υ∗ is FX∗

-progressively measurable and hence there exists Λ such that

Λ(t,X∗
[0,t]) = nV(t,X

∗
t ,Υ

∗
t ). (7.5)

We argue that this Λ is a desired moving scalarization.
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First, since λ(x) · yλ(x) = supy∈V(0,x) λ(x) · y and |λ(x)| = 1, we see that

λ(x) = nV(0, x, yλ(x)) = Λ(0, x).

Next, from the construction in Theorem 6.1 (ii), it is clear that Υ∗
t = Y

t,X∗

t ,α
∗

[t,T ]

t . Then,

since V(t,X∗
t ) is convex, by (7.5) we see that

Λ(t,X∗
[0,t]) · Y

t,X∗

t ,α
∗

[t,T ]

t = Λ(t,X∗
[0,t]) ·Υ∗

t

= sup
y∈V(t,X∗

t )
Λ(t,X∗

[0,t]) · y = sup
α[t,T ]

Λ(t,X∗
[0,t]) · Y

t,X∗

t ,α[t,T ]

t .

This exactly means α∗
[t,T ] is an optimal control for the dynamic optimization problem (7.4).

We remark that the mapping Λ : [0, T ] × C([0, T ];Rd) → R
m, which is path dependent

in an adapted way, is time consistent in the following sense. Consider the problem at time

0 with initial condition (x, λ). Let X∗ and Λ be as above, but denoted as X0,x,λ,∗ and

Λ0,λ to indicate their dependence on the initial conditions. Now fix 0 < t < T , consider

the problem on [t, T ] with initial condition X0,x,λ,∗
[0,t] and Λ0,λ(t, ·), we can easily see that

the moving scalarization we find following the same procedure coincides with the original

Λ found at time 0:

X
t,X0,x,λ,∗

[0,t]
,Λ0,λ(t,·)

s = X0,x,λ,∗
s , Λt,Λ0,λ(t,·)(s, ·) = Λ0,λ(s, ·), t ≤ s ≤ T. (7.6)

Remark 7.1 When V(t,X∗
t ) is nonconvex, as in Example 5.3, the Λ in (7.5) can be viewed

as a local asymptotic moving scalarization in the following sense:

Λ(t,X∗
[0,t]) ·Υ∗

t ≥ Λ(t,X∗
[0,t]) · y − o(|y −Υ∗

t |), ∀y ∈ V(t,X∗
t ); or equivalently,

Λ(t,X∗
[0,t])·Y

t,X∗

t ,α
∗

[t,T ]

t ≥ Λ(t,X∗
[0,t])·Y

t,X∗

t ,α[t,T ]

t − o
(∣∣Y t,X∗

t ,α[t,T ]

t − Y
t,X∗

t ,α
∗

[t,T ]

t

∣∣),∀α[t,T ].
(7.7)

Remark 7.2 When the ϕ in (7.1) is nonlinear, since V(0, x0) is compact, one may still

find an optimal argument yλ(x0) ∈ V(0, x0) for the problem in the right side of (7.1). We

emphasize that it is possible that yλ(x0) ∈ Vo(0, x0) and yλ(x0) may not be unique. Fix an

arbitrary α0 ∈ A0 and Z0, for example α0 ≡ a0 for some a0 ∈ A and Z0 ≡ 0. Denote

X0 := X0,x0,α0
and

Y 0
t = yλ(x0)−

∫ t

0
f(s,X0

s , Y
0
s , Z

0
s , α

0
s)ds +

∫ t

0
Z0
sdBs,

τ0 := inf
{
t ≥ 0 : (t,X0

t , Y
0
t ) ∈ GV

}
.

(7.8)

It is clear that τ0 ≤ T and (τ,X0
τ , Y

0
τ ) ∈ GV. Applying Theorem 6.1 (ii) on (τ,X0

τ , Y
0
τ )

(assuming all the conditions are satisfied) and following the measurable selection theorem
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we may construct α∗ on [τ0, T ] with initial condition (τ,X0
τ , Y

0
τ ). Then one can easily see

that α0 ⊗τ0 α
∗ is an optimal argument for the left side of 7.1. That is, Theorem 6.1 (ii)

can help us to construct an optimal control for (7.1) even when ϕ is nonlinear. However,

in this case it is not clear how to construct naturally a (nonlinear) moving scalarization Φ

as in (7.3). In particular, when ϕ has certain structure, for example the linear quadratic

structure for the mean variance problem in Remark 4.2, we may expect Φ to have the same

structure as well, which will add the difficulty for constructing a desired Φ.

7.2 The case with nondegenerate terminal

As pointed out in Remark 4.3 (ii), given a general G : Rd → Dm
0 , we may define V by (4.9).

This is equivalent to

V(t, x) = cl
{
Y T,φ;t,x,α
t : α ∈ At, φ ∈ L

2(F t
T ) s.t. φ ∈ G(Xt,x,α

T ), a.s.
}
. (7.9)

Then we have

Theorem 7.3 Let Assumption 4.4 (i), (ii) hold, and G is bounded and continuous. Assume

the V defined by (4.9) or (7.9) is in C1,2
0 ([0, T ) × R

d;Dm
2 ). Then V is the unique classical

solution of the HJB equation (5.2) with terminal condition V(T, x) = G(x).

The proof is essentially the same as in the previous sections, we thus omit it. In particular,

when G(x) ∈ Dm
2 and V ∈ C1,2([0, T ]× R

d;Dm
2 ), the proof is actually slightly easier.

7.3 Comparison with Soner-Touzi [19]

In the contexts of stochastic target problem, [19] derived a geometric equation to charac-

terize the reachable set of the problem. This work is very closely related to our problem.

In this subsection we provide some detailed analyses on the connection and the differences

between the two works. We shall introduce their approach, but in our contexts and using

our notations, and all the discussions are heuristic.

We first note that, the stochastic target problem (4.8) (or the more general one (4.9))

can be rewritten equivalently as:

V̂(t) :=
{
(x, y) ∈ R

d+m : ∃(α,Z) such that Y t,x,y,α,Z
T = g(Xt,x,α

T ), a.s.
}
. (7.10)

Here (Xt,x,α, Y t,x,y,α,Z) becomes a d+m-dimensional controlled state process with control

(α,Z). It is clear that V̂ and our V are equivalent in the following sense:

V̂(t) =
{
(x, y) : x ∈ R

d, y ∈ V(t, x)
}
, V̂b(t) =

{
(x, y) : x ∈ R

d, y ∈ Vb(t, x)
}
;

and V(t, x) =
{
y : (x, y) ∈ V̂(t)

}
, Vb(t) =

{
y : (x, y) ∈ V̂b(t)

}
.

(7.11)

36



Then G
V̂
= GV. Naturally we may define, for some ε > 0,

n
V̂
(t, x, y) := n

V̂(t)
(x, y) ∈ R

d+m, (t, x, y) ∈ G
V̂
;

r
V̂
(t, x, y) := r

V̂(t)
(x, y) ∈ R, (t, x, y) ∈ Oε(GV̂

).
(7.12)

The work [19] characterized the square of the distance function3 η(t, x, y) := 1
2 |rV̂(t, x, y)|2

by the following PDE: denoting ŷ := (x, y) and noting the time change in [19],

∇ŷ∇tη(t, ŷ) +∇ŷ

[
F (t, ŷ,∇ŷη(t, ŷ),∇ŷŷη(t, ŷ))

]
= 0, (t, ŷ) ∈ G

V̂
, where

F (t, ŷ,∇ŷη,∇ŷŷη) := inf
(a,z)∈N (t,ŷ,∇ŷη)

[
b(t, x, a) · ∇xη(t, ŷ)− f(t, ŷ, z, a) · ∇yη(t, ŷ)

+
1

2
tr
(
σ⊤(t, x, a)∇xxη(t, ŷ)σ(t, x, a) + 2z⊤∇xyη(t, ŷ)σ(t, x, z) + z⊤∇yyη(t, ŷ)z

)]
,

N (t, ŷ,∇ŷη) :=
{
(a, z) : [σ⊤(t, x, a), z⊤]⊤[σ⊤(t, x, a), z⊤]∇ŷη(t, ŷ) = 0.

(7.13)

We first note that V̂ is a function of t only, and thus it does not lead to the set valued

Itô formula as V(t, x) does. While this may seem to be technically easier, the set valued

Itô formula has independent interest and is one of the main contributions of this paper.

For example, it provides microstructure of the flow on the boundary surface, as we see in

Theorem 6.1 (ii). We note that (7.13) holds only on G
V̂
, so it is also not a standard PDE.

The major difference is that, as we see in Example 7.4 below,

r
V̂
(t, x, y) 6= rV(t, x, y). (7.14)

In general, recalling (7.11) we have

|r
V̂
(t, x, y)|2 = inf

(x̃,ỹ)∈V̂b(t)

[
|x− x̃|2 + |y − ỹ|2

]
= inf

x̃∈Rd
inf

ỹ∈Vb(t,x̃)

[
|x− x̃|2 + |y − ỹ|2

]

= inf
x̃∈Rd

[
|x− x̃|2 + |rV(t, x̃, y)|2

]
≤ |rV(t, x, y)|2

(7.15)

Example 7.4 Set d = m = 1 and consider time invariant set values:

V(x) = [x− 1, x+ 1] ⊂ R, V̂ := {(x, y) : x ∈ R, y ∈ [x− 1, x+ 1]} ⊂ R
2.

Clearly Vb(x) = {x− 1, x+ 1}. One can easily verify that,

rV(x, y) = y − (x+ 1), for y ≈ x+ 1; and rV(x, y) = (x− 1)− y, for y ≈ x− 1;

r
V̂
(x, y) =

y − (x+ 1)√
2

, for y ≈ x+ 1; and r
V̂
(x, y) =

(x− 1)− y√
2

, for y ≈ x− 1.

We also observe directly from above that, although rV = r
V̂
= 0 on GV = G

V̂
, their deriva-

tives are in general not equal.

3The main reason to consider the squared function is that, in the degenerate case r
V̂
is typically not

smooth while |r
V̂
|2 is. In the nondegenerate case as in this paper, actually one may study r

V̂
directly.
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Consequently, although both (5.3) and (7.13) characterize the same set GV = G
V̂
,

the two equations are fundamentally different. This is partially explained by the above

observation that rV and r
V̂
have different derivatives on GV. At below we provide more

detailed calculation for the set valued heat equation in Example 2.8 (ii), but with d = m = 1.

Example 7.5 Set d = m = 1, b = 0, σ = 1, f = 0, and the terminal G(x) = [−ψ(x), ψ(x)],
where ψ : R → (0,∞) is smooth. Then, similar to Example 2.8 (ii), we see that

V(t, x) = [−u(t, x), u(t, x)], Vb(t, x) = {−u(t, x), u(t, x)},

where u is the unique classical solution of the heat equation

∂tu+
1

2
∂xxu = 0, u(T, x) = ψ(x). (7.16)

We shall prove in Appendix that r̂ := r
V̂
satisfies the following equation:

∇tr̂+
1

2

[
∇xxr̂− 2∇xy r̂

∇xr̂

∇yr̂
+∇yyr̂

∣∣∇xr̂

∇y r̂

∣∣2
]
= 0, on G

V̂
. (7.17)

In this scalar case, by Remark 5.1 (i) we see that the set valued HJB equation (5.3)

reduces back to the standard PDE for v(t, x) = u(t, x) and v(t, x) = −u(t, x), both of which

identify with the heat equation (7.16). So (5.3) is indeed a natural extension of the HJB

equation to the multivariate case. The equation (7.17), however, is quite different from

(7.16). So in this sense, it is more natural to study (5.3) than to study (7.13).

Another advantage of (5.3) is that, as we saw in Section 7.1, the normal vector nV(t,X
∗
t ,Υ

∗
t )

provides naturally a moving scalarization for the time inconsistent multivariate optimiza-

tion problem. The vector n
V̂
(at certain optimal paths) does not serve for this purpose. In

fact, n
V̂
∈ R

d+m, while a moving scalarization Λ is by nature m-dimensional.

Finally, we remark that [19, Theorem 2.1] showed that V̂ is the unique classical solution

of (7.13) under the existence of optimal controls, in the same spirit of our Theorem 6.1 (ii).

We instead proved the existence and uniqueness under weak conditions in Theorems 5.6

and 6.1 (i).

7.4 Comparison with Ararat-Ma-Wu [1]

Mainly motivated by dynamic set valued risk measures for multi-asset or network-based

financial models, [1] studied the following set valued BSDE:

Yt = E

[
G(BT ) +

∫ T

t
F(s,Bs,Ys)ds

∣∣Ft

]
. (7.18)
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Here, denoting by Dm
cc the space of convex compact sets D ∈ Dm

0 , the terminal G : Rd → Dm
cc,

and the driver F : [0, T ] × R
d × Dm

cc → Dm
cc (abusing the notation F here). We note that

[1] actually allows G and F to depend on the paths of B. By relying on the sophisticated

set valued stochastic analysis, especially the Hukuhara difference, [1] established the well-

posedness of the above set valued BSDE. The general case that F depends on Z, and the

martingale representation with the term ZtdBt seems to be a quite remote goal.

Formally, the set valued BSDE (7.18) is associated with our set valued HJB equation

(5.2) in the case x0 = 0, b = 0, σ = 0, f = f(t, x, y, a). Then Xt = Bt, and we may

naturally define

Yt := V(t, Bt), F(t, x,D) :=
{
f(t, x, y, a) : y ∈ D, a ∈ A

}
. (7.19)

In the linear case: f = f(t, x, a) and thus F(t, x) =
{
f(t, x, a) : a ∈ A

}
, the random set

valued process Yt := V(t, Bt) indeed satisfies (7.18) in the sense of [1].

However, when f depends on y, the Y,F in (7.19) do not satisfy (7.18). That is, (7.18)

is not the stochastic counterpart of (5.2). The reason is the same as in Remark 2.3 (ii). In

(4.1), the Y in the left side and that in the right side of the BSDE are required to be the

same process. In (7.18), however, one allows to consider different selectors for the Y in the

left side and that in the right side of the equation.

8 Appendix

Proof of Proposition 2.4. Again we denote r,n for notational simplicity. We prove

it only for x > x0. Fix x1 > x0. Without loss of generality, we assume θ is absolutely

continuous in x ∈ [x0, x1] with appropriate derivative function θ′, as otherwise the length

of θ would be ∞. Thus we have

θ(x) = y0 −
∫ x

x0

θ′(x̃)dx̃,

Note that r(x, θ(x)) = 0. Then, for Lebesgue-a.e. x,

0 =
d

dx
r(x, θ(x)) = ∇xr(x, θ(x))−∇yr(x, θ(x)) · θ′(x) = ∇xr(x, θ(x))− n(x, θ(x)) · θ′(x),

and thus

ζ(x) := θ′(x)−∇xrn(x, θ(x)) ∈ TV(x, θ(x)).

39



Therefore,

Lθ(x0, x1) =

∫ x1

x0

√
1 + |θ′(x)|2 dx =

∫ x1

x0

√
1 +

∣∣∇xrn(x, θ(x)) + ζ(x)
∣∣2 dx

=

∫ x1

x0

√
1 +

∣∣∇xr(x, θ(x))
∣∣2 + |ζ(x)|2 dx ≥

∫ x1

x0

√
1 +

∣∣∇xr(x, θ(x))
∣∣2 dx

This implies that

lim
x1↓x0

1

x1 − x0

[
LΥ(x0, x1)− Lθ(x0, x1)

]

≤ lim
x1↓x0

1

x1 − x0

[ ∫ x1

x0

√
1 +

∣∣∇xr(x,Υ(x))
∣∣2 dx−

∫ x1

x0

√
1 +

∣∣∇xr(x, θ(x))
∣∣2 dx

]

≤ lim
x1↓x0

1

x1 − x0

[ ∫ x1

x0

∣∣
√

1 +
∣∣∇xr(x,Υ(x))

∣∣2 −
√

1 +
∣∣∇xr(x0, y0)

∣∣2∣∣ dx

+

∫ x1

x0

∣∣
√

1 +
∣∣∇xr(x, θ(x))

∣∣2 −
√

1 +
∣∣∇xr(x0, y0)

∣∣2∣∣ dx
]
= 0.

Proof of Lemma 2.6. Recall (2.4) and consider the natural extension n̂ = ∇yr. By

(2.23), (2.20), and (2.19) we have, for i, j = 1, · · · , d, and (t, x, y) ∈ GV,

∂xixj
V(t, x, y) = −∂xi

(
∇xj

rn
)
(t, x, y) = −

[
∂xi

(∇xj
r)n+∇xj

r∂xi
n
]
(t, x, y)

= −
[
∇xixj

r+∇xi
r∇xjyr · n

]
n(t, x, y) −∇xj

r∂xi
n(t, x, y). (8.1)

Recall (2.4), at (t, x, y) ∈ Oε(GV) we have

∇xjyr · ∇yr =
1

2
∇xj

(
|∇yr|2

)
= 0.

In particular, ∇xjyr · n(t, x, y) = 0 for (t, x, y) ∈ GV. Plugging this into (8.1) we obtain

(2.25) immediately.

Moreover, again considering the extension n̂i = ∇yir, by (2.19) and (2.8) we have

∂xn
i = ∇xyir−∇xr(∇yiyr · n), ∂yn

i = ∇yiyr − (∇yiyr · n)n.

Similarly, by (2.4) we have ∇yiyr · n = 0, which implies (2.26) immediately.

Proof of Example 5.3. We first prove (5.4). Denote

f̃1(a, y) := a1, f̃2(a, y) := a2, Ỹ α
t =

∫ T

t
f̃(αs, Ỹ

α
s )ds.

Then one can easily check that

Ṽ (t) :=
{
Ỹ α
t : α ∈ At

}
=

{
ỹ ∈ R

2 : |ỹ| ≤ T − t
}
,

Ṽb(t) :=
{
ỹ ∈ R

2 : |ỹ| = T − t
}
=

{
(T − t)

(
cos θ, sin θ

)⊤
: θ ∈ [0, 2π)

}
.

(8.2)
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Consider a function ψ : R2 → R
2 and set

Y α
t := ψ(Ỹ α

t ), where ψ1(ỹ) := ỹ1, ψ2(ỹ) := [1 + |ỹ1|2]ỹ2.

Then we have

dY α,1
t = dỸ α,1

t = −α1
t dt = −f1(αt, Y

α
t )dt;

dY α,2
t = 2Ỹ α,1

t Ỹ α,2
t dỸ α,1

t + [1 + |Ỹ α,1
t |2]dỸ α,2

t = −
[
2Ỹ α,1

t Ỹ α,2
t α1

t + [1 + |Ỹ α,1
t |2]α2

t

]
dt

= −
[ 2Y α,1

t Y α,2
t

1 + |Y α,1
t |2

α1
t + [1 + |Y α,1

t |2]α2
t

]
dt = −f2(αt, Y

α
t )dt.

That is, Y α satisfies (4.1) for given f . Therefore, V(t) =
{
ψ(ỹ) : ỹ ∈ Ṽ(t)

}
. Note further

that ψ1(ỹ1) = ỹ1, and ψ2 is strictly increasing in ỹ2. It is clear that

Vb(t) =
{
ψ(ỹ) : ỹ ∈ Ṽb(t)

}
.

Plug (8.2) into it, we obtain (5.4) immediately.

We next analyze the convexity of V(t). Assume for simplicity that t = 0. Note that

Ṽb(0) =
{(
y1,

√
T 2 − |y1|2

)
,
(
y1,−

√
T 2 − |y1|2

)
: |y1| ≤ T

}
;

Vb(0) =
{(
y1, ϕ(y1)

)
,
(
y1,−ϕ(y1)

)
: |y1| ≤ T

}
, where ϕ(y1) := [1 + |y1|2]

√
T 2 − |y1|2.

One may compute straightforwardly that:

ϕ”(y1) =
6|y1|4 − 9T 2|y1|2 + 2T 4 − T 2

(T 2 − |y1|2)
3
2

, |y1| < T.

Note that

sup
|y1|<T

[
6|y1|4 − 9T 2|y1|2

]
= 0.

So when T ≤ 1√
2
and thus 2T 4 − T 2 ≤ 0, we have ϕ”(y1) ≤ 0 for |y1| < T , and in this case

V(0) is indeed convex. However, when T > 1√
2
, we find that ϕ”(y1) < 0 for |y1| ≈ T , but

ϕ”(0) = 2T 4−T 2

T 3 > 0, then V(0) is nonconvex.

Proof of Lemma 5.5. Denote

τδ := inf{t ≥ 0 : |r(t,Xα
t , Y

α
t )| ≥ δ} ∧ T,

and consider the linear BSDE with solution pair (κ, β):

κt = 1{τδ≤T0} −
∫ τδ

t
βsdBs, 0 ≤ t ≤ τ, (8.3)
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where κ ∈ R, β ∈ R
1×d. It is clear that |κ| ≤ 1 and

∫ ·
0 βsdBs is an BMO martingale. Thus,

E

[
exp

(
c0

∫ T

0
|βt|2dt

)]
≤ C0 <∞, for some c0, C0 > 0. (8.4)

For n ≥ 1, we truncate β by n and denote it as βn. Define

κnt := κ0 +

∫ t

0
βns dBs.

Then it is obvious that, for any p ≥ 1,

E
[

sup
0≤t≤τδ

|κnt |p
]
≤ Cp <∞; and cnp :=

(
E
[

sup
0≤t≤T0

|κnt − κt|p
]) 1

p → 0, as n→ ∞. (8.5)

Introduce two random fields νn(t, ω, y) and ρn(t, ω, y):

νnij(t, y) := −
m∑

k=1

∫ 1

0
∇zkjf

i(t,Xα
t , Y

α
t , Z

α
t + θyβnt , αt)ykdθ;

ρni (t, y) := −
∫ 1

0

[
∇yf

i · y + tr ((∂zf
i)⊤νn(t, y))

]

(
t,Xα

t , Y
α
t + θκnt y, Z

α
t + yβnt + θκnt ν

n(t, y), αt

)
dθ;

where νn = [νnij]1≤i≤m,1≤j≤d ∈ R
m×d, ρn = [ρni ]1≤i≤m ∈ R

m. One can easily verify that

νn(t, y)βnt := f(t,Xα
t , Y

α
t , Z

α
t , αt)− f(t,Xα

t , Y
α
t , Z

α
t + yβnt , αt);

κnt ρ
n(t, y) := f(t,Xα

t , Y
α
t , Z

α
t + yβnt , αt)− f(t,Xα

t , Y
α
t + κnt y, Z

α
t + yβnt + κnt ν(t, y), αt).

Moreover, by Assumption 4.4 (ii) we have

|νn(t, y)| ≤ C|y|, |ρn(t, y)| ≤ C|y|;
|νn(t, y)− νn(t, ỹ)| ≤ Cn

[
1 + |y|

]
|y − ỹ|,

|ρn(t, y)− ρn(t, ỹ)| ≤ Cn

[
1 + |y|+ |κnt |+ |κnt ||y|2

]
|y − ỹ|.

(8.6)

Next, consider the following SDE:

ηnt := λnV(0, x0, π(0, x0, Y
α
0 )) +

∫ t

0
ρn(s, ηns )ds +

∫ t

0
νn(s, ηns )dBs, (8.7)

where λ > 0 is a small number which will be determined later. By the standard stopping

arguments for stochastic Lipschitz continuous coefficients, and by the uniform linear growth

in the first line of (8.6), the above SDE is wellposed, and for any p ≥ 1,

E

[
sup

0≤t≤T0

|ηnt |p
]
≤ Cp|λ|p, (8.8)

where Cp does not depend on n.
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Denote

Ỹ n
t := Y α

t + κnt η
n
t , Z̃n

t := Zt + κnt ν
n
t + ηnt β

n
t .

Then by the standard Itô formula we have

Ỹ n
t = Y α

τδ
+ κnτδη

n
τδ
+

∫ τδ

t
f(s,Xα

s , Ỹ
n
s , Z̃

n
s , αs)ds −

∫ τδ

t
Z̃n
s dBs. (8.9)

Moreover, introduce the BSDE

Ŷ n
t = Y α

τδ
+ κnτδη

n
τδ
1{|κn

τδ
|≤2,|ηnτδ |<

δ
2

} +

∫ τδ

t
f(s,Xα

s , Ŷ
n
s , Ẑ

n
s , αs)ds −

∫ τδ

t
Ẑn
s dBs.

By (8.5), (8.8), and noting that |κτδ | ≤ 1, it follows from standard BSDE estimates that

|Ŷ n
0 − Ỹ n

0 |2 ≤ CE

[∣∣κnτδη
n
τδ

∣∣2[1{|κn
τδ

−κτδ
|>1

} + 1{|ηnτδ |≥
δ
2

}]
]

≤ CE

[∣∣κnτδη
n
τδ

∣∣2|κnτδ − κτδ |+
1

δ2
|κnτδ |

2|ηnτδ |
4
]
≤ Ccn2 + C

|λ|4
δ2

.

Thus

|Ŷ n
0 − Ỹ n

0 | ≤ C
[√

cn2 +
|λ|2
δ

]
. (8.10)

Note that

Ŷ n
τδ

= Y α
τδ
+ κnτδη

n
τδ
1{|κn

τδ
|≤2,|ηnτδ |<

δ
2

}.

On {|κnτδ | ≤ 2, |ηnτδ | < δ
2}c, we have Ŷ n

τδ
= Y α

τδ
∈ V(τδ,X

α
τδ
). On {|κnτδ | ≤ 2, |ηnτδ | < δ

2}, noting
again that Y α

τδ
∈ V(τδ,X

α
τδ
), we have rV(τδ,X

α
τδ
, Y α

τδ
) = −δ and |κnτδηnτδ | ≤ δ, then Ŷ n

τδ
=

Y α
τδ
+ κnτδη

n
τδ

∈ V(τδ,X
α
τδ
). So in both cases Ŷ n

τδ
∈ V(τδ,X

α
τδ
). Then by DPP (4.11) we have

Ŷ n
0 ∈ V(0, x0). Thus, by (8.10),

rV(0, x0, Ỹ
n
0 ) ≤ |Ỹ n

0 − Ŷ n
0 | ≤ C

[√
cn2 +

|λ|2
δ

]
.

On the other hand, note that Ỹ n
0 = Y α

0 + κ0λnV(0, x0, π(0, x0, Y
α
0 )), for κ0λ small we have

rV(0, x0, Ỹ
n
0 ) = rV(0, x0, Y

α
0 ) + κ0λ.

Thus

κ0λ = rV(0, x0, Ỹ
n
0 )− rV(0, x0, Y

α
0 ) ≤ C

[√
cn2 +

|λ|2
δ

]
+ ε.

Send n→ ∞ and set λ :=
√
εδ, we obtain (5.6):

P(τδ ≤ T0) = κ0 ≤ C
λ

δ
+
ε

λ
= C

√
ε

δ
.
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Finally, if Y α
0 ∈ Vb(0, x0), then ε = 0. We see that P(τδ ≤ T0) = 0 for all δ > 0 and

all T0 < T . This implies immediately that Y α
t ∈ Vb(t,X

α
t ), 0 ≤ t < T , a.s. Moreover, note

that Y α
T = g(Xα

T ) and V(T, x) = {g(x)}, we have Y α
T ∈ Vb(T,X

α
T ) as well.

Proof of Example 6.2. As usual we drop the subscript V in r and n.

(i) We first show that V ∈ C1,2
0 ([0, T ) × R;D2

2). Fix δ > 0 and denote Tδ := T − δ. By

Example 2.8 we have, with u(t, x) = T − t ≥ δ there for t ∈ [0, Tδ ],

r(t, x, y) = |y − w(t, x)| − (T − t).

Then it is clear that V ∈ C1,2([0, Tδ ]×R;D2
2). By (2.28), for |y −w(t, x)| = T − t, we have

n =
y − w

T − t
; ∂tV =

[
∇tw · n− 1

]
n; ∂xV =

[
∇xw · n

]
n;

∂xn =
1

T − t

[
−∇xw + [n · ∇xw]n

]
, ∂yn =

1

T − t

[
I2×2 − nn⊤];

∂xxV = − 1

T − t

[[
|∇xw|2 −∇xxw · n+ |∇xw · n|2

]
n+ [∇xw · n]

[
∇xw − (∇xw · n)n

]]
.

In particular, cT0 = 1
T in (5.5), and thus V ∈ C1,2

0 ([0, T ) × R;D2
2).

(ii) We next verify the conditions in Theorem 6.1 (ii). For any a ∈ A and ζ ∈ TV(t, x, y),

by (5.1) we have: at (t, x, y) ∈ GV,

h0V(t, x, y, ∂xV, ∂xxV, a, ζ) =
1

2
∂xxV−

[
ζ · ∂xn+

1

2
ζ⊤∂ynζ

]
n

= − 1

2(T − t)

[[
|∇xw|2 −∇xxw · n+ |∇xw · n|2

]
n+ [∇xw · n]

[
∇xw − (∇xw · n)n

]]

− 1

T − t

[
− ζ · ∇xw +

1

2
|ζ|2

]
n.

Thus

n · hV(t, x, y, ∂xV, ∂xxV, a, ζ) = n · h0V(t, x, y, ∂xV, ∂xxV, a, ζ) + n · [f0(t, x) + a]

= − 1

2(T − t)

[
|∇xw|2 −∇xxw · n+ |∇xw · n|2 − 2ζ · ∇xw + |ζ|2

]
+ n ·

[
f0 + a

]

= − 1

2(T − t)

[
|ζ −∇xw|2 −∇xxw · n+ |∇xw · n|2

]
+ n ·

[
f0 + a

]
.

Recall |a| ≤ 1, then clearly the optimal arguments are:

a∗ = IV1 (t, x, y) := n(t, x, y), ζ∗ = IV2 (t, x, y) := ∇xw − [∇xw · n]n.
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Together with (6.2), this implies further that

ĨV3 := −
[
∂tV+ h0V(·, ∂xV, ∂xxV, IV1 , IV2 ) + f0 + IV1

]

= −
[
∇tw · n− 1

]
n+

1

T − t

[
− ζ · ∇xw +

1

2
|ζ|2

]
n− [f0 + n]

+
1

2(T − t)

[[
|∇xw|2 −∇xxw · n+ |∇xw · n|2

]
n+ [∇xw · n]

[
∇xw − (∇xw · n)n

]]
;

IV3 := −f0 + [n · f0]n+
1

2(T − t)
[∇xw · n]

[
∇xw − (∇xw · n)n

]
.

Plug IV1 , I
V
2 , I

V
3 into (6.3), clearly the resulted SDE is wellposed.

Proof of Example 7.5. We now compute the equation (7.13) in this case. First,

N (t, x, y,∇xη,∇yη) =
{
(a, z) : [1, z]⊤[∇xη + z∇yη] = 0

}

=
{
(a, z) : z = −∇xη

∇yη

}
=

{(
a,−∇xr̂(t, x, y)

∇y r̂(t, x, y)

)}
.

Then, recalling η = 1
2 |̂r|2,

F =
1

2

[
∇xxη − 2∇xyη

∇xr̂

∇y r̂
+∇yyη

∣∣∇xr̂

∇yr̂

∣∣2
]
(t, x, y)

=
1

2

[
r̂∇xxr̂+ |∇xr̂|2 − 2[̂r∇xyr̂+∇xr̂∇y r̂]

∇xr̂

∇yr̂
+ [̂r∇yyr̂+ |∇y r̂|2]

∣∣∇xr̂

∇y r̂

∣∣2
]
(t, x, y)

=
1

2
r̂
[
∇xxr̂− 2∇xyr̂

∇xr̂

∇y r̂
+∇yy r̂

∣∣∇xr̂

∇yr̂

∣∣2
]
(t, x, y).

Note further that r̂ = 0 on GV. Then, for (t, x, y) ∈ GV, we have

∇xF =
1

2
∇xr̂

[
∇xxr̂− 2∇xyr̂

∇xr̂

∇yr̂
+∇yyr̂

∣∣∇xr̂

∇yr̂

∣∣2
]
(t, x, y);

∇yF =
1

2
∇y r̂

[
∇xxr̂− 2∇xy r̂

∇xr̂

∇yr̂
+∇yy r̂

∣∣∇xr̂

∇yr̂

∣∣2
]
(t, x, y).

On the other hand, note that ∇tη = r̂∇tr̂. Then, again at (t, x, y) ∈ GV,

∇x∇tη = ∇xr̂∇tr̂, ∇y∇tη = ∇yr̂∇tr̂.

Plug these into (7.13), we obtain (7.17) immediately.
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[12] İşeri M. and Zhang J., Set values for mean field games, preprint, arXiv:2107.01661.

[13] Kabanov, Y., Hedging and liquidation under transaction costs in currency markets.

Finance and Stochastics, 3, 237-248, (1999).

[14] Karnam, C.; Ma, J.; and Zhang, J. Dynamic Approaches for Some Time Inconsistent

Optimization Problems, Annals of Applied Probability, 27, 3435-3477, (2017).

[15] Kunita, H., Stochastic differential equations and stochastic flows of diffeomorphisms,

Springer Berlin Heidelberg (1984), 143–303.

46

http://arxiv.org/abs/2107.01661


[16] Sethian J. A., Curvature and the evolution of fronts, Communications in Mathematical

Physics, 101, 487-499, (1985).

[17] Soner H. M., Motion of a set by the curvature of its boundary, Journal of Differential

Equations, 101, 313-372, (1993).

[18] Soner H. M. and Touzi N., Dynamic programming for stochastic target problems and

geometric flows, Journal of the European Mathematical Society, 4, 201-236 (2002).

[19] Soner H. M. and Touzi N., A stochastic representation for mean curvature type geo-

metric flows, The Annals of Probability, Vol. 31 No. 3, (2003).

[20] Zhang, J., Backward Stochastic Differential Equations – from linear to fully nonlinear

theory, Probability Theory and Stochastic Modeling 86, Springer, New York, 2017.

47


	Introduction
	Intrinsic derivatives of set valued functions
	Some basic materials
	Set valued functions
	Intrinsic derivatives of set valued functions

	The set valued Itô formula
	A multivariate control problem
	Set valued HJB equations
	The uniqueness of the classical solution
	Further discussions
	An application: the moving scalarization
	The case with nondegenerate terminal
	Comparison with Soner-Touzi ST2003
	Comparison with Ararat-Ma-Wu AMW

	Appendix

