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Abstract. This paper is a continuation of our accompanying paper [M. Talbi, N. Touzi, and
J. Zhang, Dynamic Programming Equation for the Mean Field Optimal Stopping Problem, https://
arxiv.org/abs/2103.05736, 2021], where we characterized the mean field optimal stopping problem
by an obstacle equation on the Wasserstein space of probability measures, provided that the value
function is smooth. Our purpose here is to establish this characterization under weaker regularity
requirements. We shall define a notion of viscosity solutions for such an equation and prove existence,
stability, and the comparison principle.
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1. Introduction. In our previous paper [26], we characterized the so-called
mean field optimal stopping problem by a dynamic programming equation on the
Wasserstein space, which we call an obstacle equation on Wasserstein space by anal-
ogy with the equation corresponding to the standard optimal stopping problem (see,
e.g., El Karoui [10] or Shiryaev [25]). More precisely, we proved that the value func-
tion of our optimization problem is the unique solution of the obstacle equation on
the Wasserstein space, provided it has C1,2 regularity (in an appropriate sense). We
note that, besides its obvious connection with multiple stopping problems over a large
interacting particle system, this obstacle equation provides a convenient tool for many
time inconsistent optimal stopping problems. We also remark that our mean field op-
timal stopping problem has a structure quite different from the mean field games of
optimal stopping.

However, as in the case of the standard optimal stopping problems, one can
rarely expect a classical solution for the obstacle equations. In particular, the infinite
dimensionality of the space of measures makes the regularity requirement even harder
to meet. Our goal of this paper is thus to develop a viscosity solution theory for
the obstacle problem on the Wasserstein space, which as is well-known requires much
weaker regularities.

There have been some serious efforts on viscosity solutions of nonlinear par-
tial differential equations on the Wasserstein space. We first mention the paper by
Cardaliaguet and Quincampoix [3], which considered a first order Hamilton--Jacobi--
Isaacs equation on Wasserstein space arising from deterministic zero-sum games with
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VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1713

random initial conditions. The comparison principle for viscosity solutions was es-
tablished by combining the doubling variables argument with Ekeland's variational
principle. We may also mention the work of Gangbo, Nguyen, and Tudorascu [13]
and Jimenez, Marigonda, and Quincampoix [14], who also define a notion of viscosity
solutions for Hamilton--Jacobi equations by using subdifferentials. Another approach
followed by several authors (see, e.g., Pham and Wei [22]) consists in exploiting Li-
ons' idea [19] of lifting the functions on the Wasserstein space into functions on the
Hilbert space of random variables and then using the existing viscosity theory on
Hilbert spaces (see, e.g., Lions [16, 17, 18] and Fabbri, Gozzi, and Swiech [11]). More
recently, Cosso et al. [6] defined viscosity solutions for Hamilton--Jacobi equations by
requiring the global extrema on the Wasserstein space for the tangency property of
the test functions.

In the context of mean field control problems in a path dependent setting, Wu
and Zhang [27] proposed a notion of viscosity solutions for parabolic equations on
the Wasserstein space, inspired by Ekren, Keller, Ren, Touzi, and Zhang [7, 8, 9,
23]. Note that the natural idea which consists in taking Wasserstein balls for the
viscosity neighborhood (as in Carmona and Delarue [4]) leads to serious difficulties as
the Wasserstein ball is in general not compact. Instead, [27] restricted the viscosity
neighborhood of some point (t, \mu ) (where t is a time and \mu a measure) to the compact
set of all possible laws of the controlled state process starting from this point. Another
remarkable work by Burzoni et al. [2], in the context of mean field control of jump-
diffusions, restricted the viscosity neighborhood in another way, so as to guarantee
compactness. They proved a comparison result by the doubling variables argument.
To do this, they succeeded in constructing a smooth metric which serves as a test
function, but unfortunately restricts the scope of the method to the case when the
coefficients of the controlled dynamics do not depend on the space variable.

We shall follow the approach of [27]. We consider the joint law of (X\tau \wedge t,1\{ \tau \geq t\} )
as the variable of the value function, where X is the state process and \tau is the stop-
ping time. As in [27] we define viscosity solutions by using the set of such laws over
all stopping times \tau . This neighborhood set of laws, for a given initial condition,
is compact under Wasserstein distance and thus is desirable for the viscosity theory.
We show that, under natural conditions, the value function of the mean field optimal
stopping problem is indeed the unique viscosity solution of the corresponding obstacle
equation on Wasserstein space. We shall also establish the stability and the compar-
ison principle for the viscosity solutions. To prove the latter, one key ingredient is
a smooth mollifier for continuous functions on the Wasserstein space, introduced by
Mou and Zhang [20]. However, to obtain some uniform estimates of the smooth mol-
lifier which are needed in our proof of comparison principle, as in [20] we require the
coefficients to be Lipschitz continuous under the 1-Wasserstein distance, rather than
the more natural 2-Wasserstein distance.

As applications of our viscosity theory, we invest several time inconsistent optimal
stopping problems, including problems related to mean variance, probability distor-
tion, and expected shortfall. By considering the law (instead of the value) of the
stopped state process as the variable, we show that the value functions are indeed the
unique viscosity solution to the corresponding obstacle equation on the Wasserstein
space. Moreover, our results can be easily extended to the infinite horizon case.

The paper is organized as follows. In section 2, we present the mean field optimal
stopping problem, the corresponding dynamic programming equation, and some of its
elementary properties. Section 3 is the main section, where we propose our definition
of viscosity solutions and prove the main results. Section 4 is devoted to several
applications. Finally, we prove some technical results in the appendix.
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1714 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

Notation. We denote by \scrP (\Omega ,\scrF ) the set of probability measures on a measurable
space (\Omega ,\scrF ), and \scrP 2(\Omega ,\scrF ) := \{ m \in \scrP (\Omega ,\scrF ) :

\int 
\Omega 
d(x0, x)

2m(dx) < \infty \} for some
x0 \in \Omega , where d is a metric on \Omega . \scrP 2(\Omega ,\scrF ) is equipped with the corresponding
2-Wasserstein distance \scrW 2. When (\Omega ,\scrF ) = (\BbbR d,\scrB (\BbbR d)), we simply denote them as
\scrP (\BbbR d) and \scrP 2(\BbbR d). For a random variable Z and a probability \BbbP , we denote by
\BbbP Z := \BbbP \circ Z - 1 the law of Z under \BbbP . For vectors x, y \in \BbbR n and matrices A,B \in \BbbR n\times m,
denote x \cdot y :=

\sum n
i=1 xiyi and A : B := tr(AB\top ). We shall also write ``USC"" (resp.,

``LSC"") for ``upper (resp., lower) semicontinuous.""

2. The obstacle problem on Wasserstein space.

2.1. Formulation. Let T <\infty be fixed and \Omega := C0([ - 1, T ],\BbbR d)\times \BbbI 0([ - 1, T ])
be the canonical space, where

\bullet C0([ - 1, T ],\BbbR d) is the set of continuous paths from [ - 1, T ] to \BbbR d, constant on
[ - 1,0);

\bullet \BbbI 0([ - 1, T ]) is the set of nonincreasing and c\`adl\`ag maps from [ - 1, T ] to \{ 0,1\} ,
constant on [ - 1,0), and ending with value 0 at T .
We equip \Omega with the Skorokhod distance, under which it is a Polish space. Note that
the choice of the extension to  - 1 is arbitrary; the extension of time to the left of the
origin is only needed to allow for an immediate stop at time t= 0.

We denote Y := (X,I) the canonical process, with state space S := \BbbR d \times \{ 0,1\} ,
its canonical filtration \BbbF = \BbbF Y = (\scrF t)t\in [ - 1,T ], and the corresponding jump time of the
survival process I:

\tau := inf\{ t\geq 0 : It = 0\} so that It := I0 - 1t<\tau for all t\in [ - 1, T ].

By the c\`adl\`ag property of I, \tau is an \BbbF -stopping time.
Let (b, \sigma , f) : [0, T ] \times \BbbR d \times \scrP 2(S) \rightarrow \BbbR d \times \BbbR d\times d \times \BbbR with \sigma taking values in

nonnegative matrices, and g : \scrP 2(\BbbR d) \rightarrow \BbbR . In the following assumption, which will
always be in force throughout the paper, \scrP 2(S) is equipped with the \scrW 2 distance.

Assumption 2.1. (i) b, \sigma are continuous in t and uniformly Lipschitz continuous
in (x,m).
(ii) f is Borel measurable and has quadratic growth in x\in \BbbR d, and

F (t,m) :=

\int 
\BbbR d

f(t, x,m)m(dx,1) is continuous on [0, T ]\times \scrP 2(S).(2.1)

(iii) g is USC and locally bounded and is extended to \scrP 2(S) by g(m) := g(m(\cdot ,\{ 0,1\} )).
Introduce the dynamic value function

V (t,m) := sup
\BbbP \in \scrP (t,m)

\Bigl\{ \int T

t

F (r,\BbbP Yr
)dr+ g(\BbbP YT

)
\Bigr\} 
, (t,m)\in [0, T ]\times \scrP 2(S).(2.2)

Here \scrP (t,m) is the set of probability measures \BbbP on (\Omega ,\scrF T ) s.t. \BbbP Yt - =m, the paths
s\in [ - 1, t)\rightarrow Ys are constants, \BbbP -a.s., and the processes

M\cdot :=X\cdot  - 
\int \cdot 

t

b(r,Xr,\BbbP Yr
)Irdr and M\cdot M

\intercal 
\cdot  - 

\int \cdot 

t

\sigma 2(r,Xr,\BbbP Yr
)Irdr(2.3)

are \BbbP -martingales on [t, T ], that is, for some \BbbP -Brownian motion W \BbbP ,

Xs =Xt +

\int s

t

b(r,Xr,\BbbP Yr )Irdr+

\int s

t

\sigma (r,Xr,\BbbP Yr )IrdW
\BbbP 
r , Is = It - 1s<\tau , \BbbP -a.s.
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VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1715

A special element of \scrP (t,m) is \=\BbbP = \=\BbbP t,m under which X is unstopped. That is,

Xs =Xt +

\int s

t

b(r,Xr, \=\BbbP Yr
)Irdr+

\int s

t

\sigma (r,Xr, \=\BbbP Yr
)IrdW

\=\BbbP 
r , Is = It - 1[t,T )(s), \=\BbbP -a.s.

(2.4)

Note that Y\cdot = Y.\wedge \tau , and in particular YT = Y\tau , \BbbP -a.s. Moreover, from the definition
of F in (2.1), we have

\int T
t
F (r,\BbbP Yr

)dr=\BbbE \BbbP \int \tau 
t
f(r,Xr,\BbbP Yr

)dr.
We recall from our first paper [26] that \scrP (t,m) is compact under the Wasserstein

distance \scrW 2, and thus existence holds for the mean field optimal stopping problem
(2.2). Furthermore, we have the dynamic programming principle (DPP): for any
s\in [t, T ],

V (t,m) = sup
\BbbP \in \scrP (t,m)

\Bigl\{ \int s

t

F (r,\BbbP Yr
)dr+ V (s,\BbbP Ys - )

\Bigr\} 
(2.5)

= sup
\BbbP \in \scrP (t,m)

\Bigl\{ \int s

t

F (r,\BbbP Yr
)dr+ V (s,\BbbP Ys

)
\Bigr\} 
.

2.2. Differential calculus. We next recall some differential calculus tools on
the Wasserstein space. We say that a function u : \scrP 2(S)\rightarrow \BbbR has a functional linear
derivative \delta mu :\scrP 2(S)\times S\rightarrow \BbbR if

u(m\prime ) - u(m) =

\int 1

0

\int 
S

\delta mu(\lambda m
\prime + (1 - \lambda )m,y)(m\prime  - m)(dy)d\lambda for all m,m\prime \in \scrP 2(S),

\delta mu is continuous for the product topology, with \scrP 2(S) equipped with the 2-Wasserstein
distance, and has quadratic growth in x \in \BbbR d, locally uniformly in m \in \scrP 2(S), so as
to guarantee integrability in the last expression. As in [26], we denote

\delta mui(t,m,x) := \delta mu(t,m,x, i) for i\in \{ 0,1\} , DIu := \delta mu1  - \delta mu0,(2.6)

and we introduce the measure flow generator of X

\BbbL u(t,m) := \partial tu(t,m) +

\int 
\BbbR d

\scrL x\delta mu1(t,m,x)m(dx,1),

where \scrL x\delta mu1 := b \cdot \partial x\delta mu1 + 1
2\sigma 

2 : \partial 2xx\delta mu1.
(2.7)

Throughout this paper, we denote

Qt := [t, T )\times \scrP 2(S), and Qt := [t, T ]\times \scrP 2(S), t\in [0, T ).

Definition 2.2. Let C1,2
2 (Qt) be the set of functions u :Qt\rightarrow \BbbR s.t.

\bullet \partial tu, \delta mu,\partial x\delta mu1, \partial 2xx\delta mu1 exist and are continuous in all variables,
\bullet \partial 2xx\delta mu1 is bounded in x, locally uniformly in (t,m).

The following It\^o's formula is due to [26, section 3]: for any u \in C1,2
2 (Q0) and

\BbbP \in \scrP (0,m),

u(T,mT - ) = u(0,m) +
\int T
0
\BbbL u(s,ms)ds

+
\sum 
s\in J[0,T )(m)[u(s,ms) - u(s,ms - )]

+\BbbE \BbbP 
\Bigl[ \int 

Jc
[0,T )

(m)
DIu(s,ms,Xs)dIs

\Bigr] 
,

(2.8)

where m := \{ ms := \BbbP Ys\} s\in [ - 1,T ], J\BbbT (m) := \{ s \in \BbbT : ms \not = ms - \} , for all subsets
\BbbT \subset [0, T ], and Jc\BbbT (m) its complement set in \BbbT .
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1716 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

2.3. The dynamic programming equation. Given two probability measures
m,m\prime \in \scrP 2(S), we say that m\prime \preceq m if m\prime (\cdot ,1) is absolutely continuous w.r.t. m(\cdot ,1)
with density bounded by 1, i.e.,

m\prime (dx,1) = p(x)m(dx,1), and m\prime (dx,0) = [1 - p(x)]m(dx,1) +m(dx,0),(2.9)

for some measurable p : \BbbR d \rightarrow [0,1]. In other words, m\prime (dx,1) is obtained from
m by randomly stopping a proportion 1  - p(x) of the surviving particles. In our
context, mt - = \BbbP (Xt,It - ) and mt = \BbbP (Xt,It), with \BbbP \in \scrP (t,m), so that mt \preceq mt - with
conditional transition probability p(x) = pt(x) := \BbbP (It = 1 | Xt = x, It - = 1).

The following property (proved in Appendix A) will be used often in this paper.

Lemma 2.3. For an arbitrary m\in \scrP 2(S),
(i) the set \{ m\prime :m\prime \preceq m\} is compact,
(ii) any compact subset \scrK (m) \subset \{ m\prime : m\prime \preceq m\} has a smallest element for \preceq , i.e.,
there exists \=m\in \scrK (m) such that for all m\prime \in \scrK (m), we have that m\prime \preceq \=m implies that
m\prime = \=m.

The dynamic programming equation corresponding to our mean field optimal
stopping problem is the infinitesimal counterpart of the DPP (2.5) and is defined by

min
\Bigl\{ 

min
m\prime \in Cu(t,m)

\bigl[ 
 - (\BbbL u+ F )(t,m\prime )

\bigr] 
, (\BbbD Iu)\ast (t,m)

\Bigr\} 
= 0, (t,m)\in Q0,(2.10)

with boundary condition u| t=T = g. Here the function (\BbbD Iu)\ast is the LSC envelope of

\BbbD Iu : (t,m) \mapsto  - \rightarrow inf
x\in Supp(m(\cdot ,1))

DIu(t,m,x),

which is USC, but not continuous, in general, and the set

Cu(t,m) :=
\bigl\{ 
m\prime \preceq m : u(t,m\prime )\geq u(t,m)

\bigr\} 
, (t,m)\in Q0,

indicates the set of positions in Q0 which improve u by stopping the corresponding
particles.

For the purpose of the present paper, we note that this equation is slightly different
from the obstacle equation introduced in our previous work [26]:

- if u is a classical solution of (2.10), then it is nondecreasing for \preceq (see [26,
Lemma 4.3]), and thus Cu(t,m) is characterized by an equality, as in [26];

- despite the remaining differences, the two equations define the same solution,
but this does not seem to have an immediate proof; we emphasize, however, that the
equivalence between these two equations is a direct consequence of our uniqueness
result in [26, Theorem 4.5] and the comparison Theorem 3.13 below.

Our objective in this paper is to develop a notion of viscosity solution for this
equation which bypasses the strong regularity requirements of classical solutions. As
usual, we start by introducing the notions of the sub- and supersolutions.

Definition 2.4. Let u\in C1,2
2 (Q0).

(i) u is a classical supersolution of (2.10) if

min
\bigl\{ 
 - (\BbbL u+ F ), \BbbD Iu

\bigr\} 
(t,m)\geq 0 for all (t,m)\in Q0.(2.11)

(ii) u is a classical subsolution of (2.10) if

min
\bigl\{ 
 - (\BbbL u+ F ), (\BbbD Iu)\ast 

\bigr\} 
(t,m)\leq 0 for all (t,m)\in Q0 s.t. Cu(t,m) = \{ m\} .(2.12)

(iii) u is a classical solution of (2.10) if it is a classical supersolution and subsolution.
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VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1717

3. Viscosity solutions.

3.1. Definition and consistency. For \delta > 0 and (t,m)\in Q0, we introduce the
neighborhood

\scrN \delta (t,m) :=
\bigl\{ 
(s, \~m) : s\in [t, t+ \delta ],\BbbP \in \scrP (t,m), \~m\in \{ \BbbP Ys - ,\BbbP Ys

\} 
\bigr\} 
.

Note that, as the closure of a c\`adl\`ag \scrP 2(S)-valued graph, \scrN \delta (t,m) is compact, by the
compactnesses of [t, t+ \delta ], \scrP (t,m), and \{ (\BbbP Ys - ,\BbbP Ys

)\} s\in [t,t+\delta ] for any \BbbP \in \scrP (t,m).

Definition 3.1. Let u :Q0  - \rightarrow \BbbR . We say that u is \scrN -USC (resp., \scrN -LSC) if

u(t,m)\geq limsup
(s, \~m)\rightarrow (t,m)

u(s, \~m) (resp., u(t,m)

\leq lim inf
(s, \~m)\rightarrow (t,m)

u(s, \~m)) for all (t,m)\in Q0,

where the limits are sequences (tn,mn)\rightarrow (t,m) with (tn,mn)\in \scrN T - t(t,m).

Note that the standard \scrW 2-semicontinuity implies the \scrN -semicontinuity. For a
locally bounded function u :Q0  - \rightarrow \BbbR , we introduce its \scrN -LSC and \scrN -USC envelopes
relatively to \scrP (t,m), u\ast , and u

\ast , respectively:

u\ast (t,m) := lim inf
(s, \~m)\rightarrow (t,m)

u(s, \~m), u\ast (t,m) := limsup
(s, \~m)\rightarrow (t,m)

u(s, \~m),for all(t,m)\in Q0,

where the limits are taken on all sequences \{ tn,mn\} n\geq 1 converging to (t,m) with
(tn,mn)\in \scrN T - t(t,m) for all n. We then introduce the sets of test functions

\scrA u(t,m) :=
\Bigl\{ 
\varphi \in C1,2

2 (Qt) : (\varphi  - u\ast )(t,m) = max
\scrN \delta (t,m)

(\varphi  - u\ast ) for some \delta > 0
\Bigr\} 
,

\scrA u(t,m) :=
\Bigl\{ 
\varphi \in C1,2

2 (Qt) : (\varphi  - u\ast )(t,m) = min
\scrN \delta (t,m)

(\varphi  - u\ast ) for some \delta > 0
\Bigr\} 
.

Definition 3.2. Let u :Q0 \rightarrow \BbbR be locally bounded.
(i) u is a viscosity supersolution of (2.10) if, for any (t,m)\in Q0,

u\ast (t,m)\geq u\ast (t,m
\prime ) for all m\prime \preceq m and  - (\BbbL \varphi + F )(t,m)\geq 0 for all \varphi \in \scrA u(t,m).

(3.1)

(ii) u is a viscosity subsolution of (2.10) if, for any (t,m)\in Q0 s.t. Cu\ast (t,m) = \{ m\} ,

min\{  - (\BbbL \varphi + F ), (\BbbD I\varphi )\ast \} (t,m)\leq 0 for all \varphi \in \scrA u(t,m).(3.2)

(iii) u is a viscosity solution of (2.10) if it is a viscosity supersolution and subsolution.

Remark 3.3. Without loss of generality (w.l.o.g.), we may assume that the maxi-
mum in the definition of \scrA u(t,m) is strict. Indeed, for \varphi \in \scrA u(t,m), we set

\~\varphi (s, \~m) :=\varphi (s, \~m) - (s - t)2  - 
\bigl( 
\~m(\BbbR d,1) - m(\BbbR d,1)

\bigr) 2
for all (s, \~m)\in Qt.

It is obvious that \~\varphi \in C1,2
2 (Qt). As \~\varphi (s, \~m) = \~\varphi (t,m) if and only if s= t and \~m=m

(since \~m(\BbbR d,1) = m(\BbbR d,1), and observing that in this case \~m = \BbbP Yt \preceq m for some
\BbbP \in \scrP (t,m)), we deduce that \~\varphi \in \scrA u(t,m) and the maximum is strict. Moreover,
simple computations show that \partial t \~\varphi (t,m) = \partial t\varphi (t,m) and \BbbL \~\varphi (t,m) = \BbbL \varphi (t,m). An
analogous statement holds for \scrA u(t,m).

Our first result shows the consistency between classical and viscosity solutions.
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1718 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

Theorem 3.4. Let u \in C1,2
2 (Q0). Then u is a classical sub- (resp., super-)

solution of (2.10) if and only if it is a viscosity sub- (resp., super-) solution of (2.10).

Proof. (i) Let (t,m) \in Q0. If u is a viscosity super/subsolution, then given its
smoothness we have u\in \scrA u(t,m)\cap \scrA u(t,m), and we immediately deduce that u is a
classical super/subsolution. In particular, by [26, Lemma 4.3], u being nondecreasing
for \preceq implies that DIu\geq 0.
(ii) Assume u is a classical supersolution of (2.10). By (2.11) we see thatDIu\geq 0; then
by [26, Lemma 4.3] again we see that u is nondecreasing for \preceq . Now let \varphi \in \scrA u(t,m)
with corresponding \delta . Introduce \psi :=\varphi  - u and let \=\BbbP \in \scrP (t,m) be defined by (2.4) s.t.
X is unstopped under \=\BbbP . By the definition of \scrA u(t,m), we have \psi (t,m) \geq \psi (s, \=\BbbP Ys

)
for all s \in [t, t+ \delta ]. Applying It\^o's formula (2.8), since the jump terms are equal to

zero under \=\BbbP , we obtain  - 1
\delta 

\int t+\delta 
t

\BbbL \psi (s, \=\BbbP Ys)ds \geq 0. Sending \delta \rightarrow 0, by the continuity
of s \mapsto \rightarrow \=\BbbP Ys

we have  - \BbbL \psi (t,m)\geq 0, hence  - (\BbbL \varphi + F )(t,m)\geq  - (\BbbL u+ F )(t,m)\geq 0 by
the supersolution property of u.

Assume now that u is a classical subsolution. Let \varphi \in \scrA u(t,m) with corresponding
\delta , and assume that (\BbbD I)\ast \varphi (t,m)> 0 and Cu(t,m) = \{ m\} . By definition of \scrA u(t,m),
we have

[\varphi  - u](t,m)\leq [\varphi  - u](s,\BbbP Ys
) for all s\in [t, t+ \delta ],\BbbP \in \scrP (t,m).(3.3)

Set s = t in (3.3); then it follows from the arbitrariness of \BbbP \in \scrP (t,m) that [\varphi  - 
u](t,m) \leq [\varphi  - u](t,m\prime ) for all m\prime \preceq m. Following the arguments of [26, Lemma
4.3], we deduce from above that DI [\varphi  - u](t,m, \cdot ) \leq 0, and therefore (\BbbD Iu)\ast (t,m) \geq 
(\BbbD I\varphi )\ast (t,m)> 0. The subsolution property of u then implies that - (\BbbL u+F )(t,m)\leq 0.
Using It\^o's formula (2.8) under \=\BbbP again on [t, t+ \delta ], we get from (3.3) that  - (\BbbL \varphi +
F )(t,m)\leq  - (\BbbL u+ F )(t,m)\leq 0.

3.2. Some regularity results. In this subsection, we present some regularity
results which will be used in the rest of this section. Since our main focus is the
viscosity properties, we postpone their proofs to Appendix A.

Lemma 3.5. Under Assumption 2.1, the value function V is USC under \scrW 2.

Theorem 3.6. (i) Assume f and g are uniformly continuous in (t, x,m), under
\scrW 2 for m; then V is continuous on Q0, under \scrW 2 for m.
(ii) Assume further that b, \sigma are uniformly Lipschitz continuous in m under \scrW 1, and
f, g are uniformly continuous in m under \scrW 1; then V is also continuous in m under
\scrW 1.

Even for the standard optimal stopping problems, one can hardly expect the value
function to be smooth. We next establish a regularity result for the value function
when X is unstopped. For (t,m)\in Q0, let \=\BbbP t,m \in \scrP (t,m) be as by (2.4), and define

U(t,m) := g(\=\BbbP t,mYT
) +

\int T

t

F (r, \=\BbbP t,mYr
)dr.(3.4)

Lemma 3.7. For \varphi = b, \sigma , f, g, assume \varphi is continuous in t and \partial x\varphi , \delta m\varphi ,\partial x\delta m\varphi ,
\partial 2xx\delta m\varphi exist and are continuous and bounded and that, for \varphi = b, \sigma , all the derivatives
of \varphi are Lipschitz up to order 2. Then U \in C1,2(Q0) with bounded \partial x\delta mU,\partial xx\delta mU and
in particular U \in C1,2

2 (Q0). Moreover, if b, \sigma , f, g are uniformly Lipschitz continuous
in m under \scrW 1 with a Lipschitz constant L, then U is uniformly Lipschitz continuous
in m under \scrW 1 with a Lipschitz constant CL.
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VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1719

Finally, we introduce a smooth mollifier for functions on the Wasserstein space.

Lemma 3.8. (i) Let U : \scrP 2(S) \rightarrow \BbbR be continuous. There exists \{ Un\} n\geq 1 in
C\infty (\scrP 2(S)) such that limn\rightarrow \infty supm\in \scrM | Un(m) - U(m)| = 0 for any compact set \scrM \subset 
\scrP 2(S). (ii) Let U : \scrP 1(S) \rightarrow \BbbR be continuous under \scrW 1. There exists \{ Un\} n\geq 1

in C\infty (\scrP 2(S)) \cap C0(\scrP 1(S)) such that limn\rightarrow \infty supm\in \scrM | Un(m)  - U(m)| = 0 for any
compact set \scrM \subset \scrP 1(S). (iii) Assume further that U is Lipschitz continuous under
\scrW 1; then we may choose \{ Un\} n\geq 1 to be Lipschitz continuous under \scrW 1, uniformly
in n.

The mollifier is adopted from Mou and Zhang [20]. Note that the extension of
the state space from \BbbR d in [20] to S here is straightforward. We remark that if U is
Lipschitz continuous under \scrW 2, in general the Lipschitz continuity of Un under \scrW 2

is not uniform in n.

3.3. Viscosity property. We first need a simple lemma whose proof is post-
poned to Appendix A.

Lemma 3.9. (i) Let v :\scrP 2(S) - \rightarrow \BbbR be \scrN -LSC, and m\in \scrP 2(S) s.t. v(m)\geq v(m\prime )
for all m\prime \preceq m with continuous conditional transition probability. Then v(m)\geq v(m\prime )
for all m\prime \preceq m.
(ii) Let \varphi \in C0(Q0,\BbbR ) admit a continuous linear functional derivative \delta m\varphi . Assume
we have (\BbbD I\varphi )\ast (t,m)> 0 for some (t,m) \in Q0. Then \varphi is nondecreasing for \preceq in a
neighborhood of (t,m).

Theorem 3.10. The value function V is a viscosity solution of (2.10).

Proof. First, by Lemma 3.5, V inherits the local boundedness of g.
(i) We first verify the viscosity supersolution property. Fix (t,m) and \varphi \in \scrA V (t,m).
We may assume w.l.o.g. that [V\ast  - \varphi ](t,m) = 0. Let \delta > 0 and (tn,mn)n\geq 1 \in \scrN \delta (t,m)
converging to (t,m) s.t. V (tn,mn)  - \rightarrow 

n\rightarrow \infty 
V\ast (t,m), and denote \eta n := [V  - \varphi ](tn,mn)\geq 0,

as V \geq V\ast . Thus, we have \eta n  - \rightarrow 
n\rightarrow \infty 

0. By the DPP (2.5), we have

\eta n +\varphi (tn,mn) = V (tn,mn)\geq 
\int sn

tn

F (r, \=\BbbP mn

Yr
)dr+ V (sn, \=\BbbP 

mn

Ysn
)

\geq 
\int sn

tn

F (r, \=\BbbP mn

Yr
)dr+ V\ast (sn, \=\BbbP 

mn

Ysn
)\geq 

\int sn

tn

F (r, \=\BbbP mn

Yr
)dr+\varphi (sn, \=\BbbP 

mn

Ysn
),

where \=\BbbP mn := \=\BbbP tn,mn \in \scrP (tn,mn) is defined by (2.4) such that X is unstopped,
and sn := tn + hn with hn :=

\surd 
\eta n \vee n - 1. Thus, by It\^o's formula, the above gives

hn+
1
hn

\int sn
tn

 - (\BbbL \varphi +F )(r, \=\BbbP mn

Yr
)dr\geq 0. Send n\rightarrow \infty ; since hn - \rightarrow 0, we obtain  - (\BbbL \varphi +

F )(t,m)\geq 0.
We now prove the remaining part of the supersolution property. Let m\prime \preceq m

with transition probability p. By Lemma 3.9(i), we may assume w.l.o.g. that p is
continuous. For all n \geq 1, define m\prime 

n \preceq mn as the measure obtained from mn by
applying the same p. Given the continuity of p and the compactness \scrN \delta (t,m), we see

by (2.9) that \scrW 2(m
\prime 
n,m

\prime )  - \rightarrow 
n\rightarrow \infty 

0. Let \=\BbbP mn,m
\prime 
n \in \scrP (tn,mn) be s.t. \=\BbbP mn,m

\prime 
n

Ytn
=m\prime 

n, and

Is = Itn ,
\=\BbbP mn,m

\prime 
n -a.s. for all s\geq tn. By (2.5),

V (tn,mn)\geq 
\int s

tn

F (r, \=\BbbP mn,m
\prime 
n

Yr
)dr+ V

\bigl( 
s, \=\BbbP mn,m

\prime 
n

Ys

\bigr) 
for all s\geq tn and n\geq 1.(3.5)

Taking s= tn and lim infn\rightarrow \infty in (3.5), we obtain V\ast (t,m)\geq V\ast (t,m
\prime ) as V (tn,mn)\rightarrow 

V\ast (t,m).
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1720 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

(ii) We next verify the viscosity subsolution property. Let (t,m) and \varphi \in \scrA V (t,m)
be s.t. CV \ast (t,m) = \{ m\} and (\BbbD I\varphi )\ast (t,m) > 0. We may assume w.l.o.g. that [V \ast  - 
\varphi ](t,m) = 0. Let \delta > 0 and (tn,mn)n\geq 1 \in \scrN \delta (t,m) converging to (t,m) such that
V (tn,mn)  - \rightarrow 

n\rightarrow \infty 
V \ast (t,m), and denote  - \eta n := [V  - \varphi ](tn,mn) \leq 0. Thus \eta n  - \rightarrow 

n\rightarrow \infty 
0.

For n\geq 1, since g is USC and \scrP (tn,mn) is compact, there exists \BbbP n,\ast \in \scrP (tn,mn) s.t.

V (tn,mn) =
\int T
tn
F (r,\BbbP n,\ast Yr

)dr+ g(\BbbP n,\ast YT
). By DPP, we have

V (tn,mn)\geq 
\int sn

tn

F (r,\BbbP n,\ast Yr
)dr+ V (sn,\BbbP n,\ast Ysn

)\geq 
\int T

tn

F (r,\BbbP n,\ast Yr
)dr+ g(\BbbP n,\ast YT

),

where sn := tn + hn with hn :=
\surd 
\eta n \vee n - 1, and thus,

V (tn,mn) =

\int sn

tn

F (r,\BbbP n,\ast Yr
)dr+ V (sn,\BbbP n,\ast Ysn

).(3.6)

Noting that \BbbP n,\ast \in \scrP (tn,mn) \subset \scrP (t,m) for all n, and \scrP (t,m) is compact, we may
extract a subsequence (still denoted the same) s.t. \BbbP n,\ast  - \rightarrow 

n\rightarrow \infty 
\BbbP \ast for some \BbbP \ast \in \scrP (t,m).

As the trajectories r \mapsto \rightarrow \BbbP n,\ast Yr
are c\`adl\`ag and sn \downarrow t, this implies \scrW 2(\BbbP n,\ast Ysn

,m\ast )  - \rightarrow 
n\rightarrow \infty 

0,

where m\ast := \BbbP \ast 
Yt

\preceq m as \BbbP \ast \in \scrP (t,m). Thus, taking the limsupn\rightarrow \infty in (3.6) and
recalling V (tn,mn)\rightarrow V \ast (t,m), we have V \ast (t,m) \leq V \ast (t,m\ast ). As CV \ast (t,m) = \{ m\} ,
we obtain m\ast =m. Moreover, (3.6) also implies that

 - \eta n +\varphi (tn,mn)\leq 
\int sn

tn

F (r,\BbbP n,\ast Yr
)dr+\varphi (sn,\BbbP n,\ast Ysn - 

) for all n\geq 1.(3.7)

Let \scrB \scrW 2
(m,\delta ) denote the \scrW 2 ball centered in m, with radius \delta . By Lemma 3.9(ii),

the fact that (\BbbD I\varphi )\ast (t,m)> 0 implies that \varphi is (strictly) increasing for \preceq on [t, t+\delta )\times 
\scrB \scrW 2(m,\delta ) for a possibly smaller \delta > 0. By convergence to (t,m), we have \{ \BbbP n,\ast Yr

, t \leq 
r \leq sn\} \subset \scrB \scrW 2

(m,\delta ) for n large. Then DI\varphi (r,\BbbP n,\ast Yr - 
, \cdot )\geq 0 and \varphi (r,\BbbP n,\ast Yr - 

)\geq \varphi (r,\BbbP n,\ast Yr
)

for t \leq r \leq sn. Using the fact that the trajectories are c\`adl\`ag, by applying It\^o's
formula on (3.7) we obtain  - (\BbbL \varphi + F )(t,m)\leq 0.

3.4. Stability.
Theorem 3.11. Let \{ F\varepsilon \} \varepsilon >0 be a family of functions from Q0 to \BbbR such that

F\varepsilon  - \rightarrow 
\varepsilon \rightarrow 0

F uniformly on compact subsets of Q0, and let \{ u\varepsilon \} \varepsilon >0 and \{ v\varepsilon \} \varepsilon >0 be two

families of viscosity subsolutions and supersolutions of (2.10) with F\varepsilon instead of F ,
respectively. Assume that the following relaxed semilimits are finite:

u(t,m) := limsup
(\varepsilon ,s, \~m)\rightarrow (0,t,m)

u\varepsilon (s, \~m), and v(t,m) := lim inf
(\varepsilon ,s, \~m)\rightarrow (0,t,m)

v\varepsilon (s, \~m),(t,m)\in Q0,

where the limits are sequences (\varepsilon n, tn,mn) \rightarrow (0, t,m) with (tn,mn) \in \scrN T - t(t,m).
Then u (resp., v) is an \scrN -USC (resp., \scrN -LSC) viscosity subsolution (resp., superso-
lution) of (2.10).

Proof. (i) We prove the stability of the supersolution first. Observe that we may
assume w.l.o.g. that v\varepsilon is \scrN -LSC as v(t,m) = lim inf(\varepsilon ,s, \~m)\rightarrow (0,t,m)(v\varepsilon )\ast (s, \~m). Also
note that v is clearly \scrN -LSC in the sense of Definition 3.1.

Fix (t,m)\in Q0, and \varphi \in \scrA v(t,m) with corresponding \delta , and s.t. (t,m) is a strict
maximizer of \varphi  - v on \scrN \delta (t,m); see Remark 3.3. By definition, there exists a sequence
(\varepsilon n, tn,mn) \rightarrow (0, t,m) s.t. v\varepsilon n(tn,mn) \rightarrow v(t,m). Note that (tn,mn) \in \scrN \delta (t,m) for
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VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1721

all n large; then we can find \delta \prime < \delta s.t. \scrN \delta \prime (tn,mn) \subset \scrN \delta (t,m). Let (\^tn, \^mn) be a
maximizer of \varphi  - v\varepsilon n on \scrN \delta \prime (tn,mn). We first note that

(\^tn, \^mn)  - \rightarrow 
n\rightarrow \infty 

(t,m).(3.8)

Indeed, (\^tn, \^mn)\in \scrN \delta \prime (tn,mn)\subset \scrN \delta (t,m) for all n. Thus, by compactness, there exists
a subsequence (still named \^mn) converging to some (\^t, \^m)\in \scrN \delta (t,m). Observing that

[\varphi  - v](t,m) = lim
n\rightarrow \infty 

[\varphi  - v\varepsilon n ](tn,mn)\leq lim inf
n\rightarrow \infty 

[\varphi  - v\varepsilon n ](\^tn, \^mn)

\leq limsup
n\rightarrow \infty 

[\varphi  - v\varepsilon n ](\^tn, \^mn)\leq [\varphi  - v](\^t, \^m),

we conclude from the fact that (t,m) is a strict maximizer of \varphi  - v on \scrN \delta (t,m) that
(\^t, \^m) = (t,m), and thus (3.8) holds true. Then, given that (tn,mn) and (\^tn, \^mn)
have the same limit, we have \scrN \delta \prime \prime (\^tn, \^mn)\subset \scrN \delta \prime (tn,mn) for some \delta \prime \prime < \delta \prime and n large
enough. Then, as (\^tn, \^mn) is also a maximizer on \scrN \delta \prime \prime (\^tn, \^mn), the supersolution
property implies  - (\BbbL \varphi +F\varepsilon n)(\^tn, \^mn)\geq 0 for n large enough, and we derive the first
part of the supersolution property of v by sending n\rightarrow \infty .

We now prove that v is increasing for \preceq . By Lemma 3.9(i), it suffices to prove that
v(t,m)\geq v(t,m\prime ) for a givenm\prime \preceq m with continuous conditional transition probability
p. We define for all n the measure m\prime 

n \preceq mn, obtained from mn by applying p. As
\scrW 2(mn,m)  - \rightarrow 

n\rightarrow \infty 
0 and p is continuous, similarly to the proof of Theorem 3.10, we

see that \scrW 2(m
\prime 
n,m

\prime )  - \rightarrow 
n\rightarrow \infty 

0. Moreover, by the supersolution property of v\varepsilon n , we have

v\varepsilon n(tn,mn) \geq v\varepsilon n(tn,m
\prime 
n) for all n \geq 1, and we conclude by taking the lim inf that

v(t,m)\geq v(t,m\prime ), as the left-hand side of the inequality converges.
(ii) We now prove the stability of the subsolution. Similarly to (i), we may assume
that \{ u\varepsilon \} \varepsilon >0 is a family of \scrN -USC viscosity subsolutions of (2.10), and observe that
u is clearly \scrN -USC. Let (t,m) and \varphi \in \scrA u(t,m) be such that (t,m) is a strict local
minimizer of \varphi  - u. Assume that Cu(t,m) = \{ m\} and (\BbbD I\varphi )\ast (t,m) > 0. Following
the same argument as in the previous step, replacing maximizers with minimizers, we
may construct (\^tn, \^mn), converging to some (\^t, \^m), and satisfying the inequalities

[\varphi  - u](t,m)\geq limsup
n\rightarrow \infty 

[\varphi  - u\varepsilon n ](\^tn, \^mn)\geq lim inf
n\rightarrow \infty 

[\varphi  - u\varepsilon n ](\^tn, \^mn)\geq [\varphi  - u](\^t, \^m).

By the strict minimum property of (t,m), this again implies that (\^t, \^m) = (t,m), and
limn\rightarrow \infty u\varepsilon n(\^tn, \^mn) = u(t,m). By Lemma 2.3, we may now take

m\ast 
n \in argmin

\preceq 
Cu\varepsilon n

(\^tn, \^mn).

By compactness, there is a subsequence \{ m\ast 
n\} n\geq 1 converging to some m\ast . As

u\varepsilon n(\^tn, \^mn)\leq u\varepsilon n(\^tn,m
\ast 
n) for all n, by definition of Cu\varepsilon n

(\^tn, \^mn), taking the lim sup
implies u(t,m)\leq u(t,m\ast ), hence m\ast =m as Cu(t,m) = \{ m\} . As (\BbbD I\varphi )\ast (t,m)> 0, \^mn

and m\ast 
n are both in a neighborhood where \varphi is strictly increasing for n large enough,

and thus [\varphi  - u\varepsilon n ](\^tn, \^mn) \geq [\varphi  - u\varepsilon n ](\^tn,m
\ast 
n), which implies equality by definition

of (\^tn, \^mn) and the fact that (\^tn,m
\ast 
n) \in \scrN \delta \prime \prime (\^tn, \^mn). Then \varphi \in \scrA u\varepsilon n(\^tn,m\ast 

n). As
Cu\varepsilon n

(\^tn,m
\ast 
n) = \{ m\ast 

n\} , the viscosity subsolution implies  - (\BbbL \varphi + F\varepsilon n)(\^tn,m
\ast 
n) \leq 0 for

n large enough, and we conclude by letting n - \rightarrow \infty .

Remark 3.12. A natural extension of the stability result is to allow the pertur-
bation of b and \sigma . However, this would change the definition of \scrP (t,m) in (2.3),
and therefore our viscosity neighborhoods \scrN \delta (t,m). Although we expect the stability
property to remain true, this would require extending \scrP (t,m) in some sense, which
would go beyond the scope of the present paper.
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1722 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

3.5. Comparison.
Theorem 3.13. (i) Let u be an \scrN -USC viscosity subsolution of (2.10) satisfying

u| t=T \leq g. Assume further that f is uniformly continuous in (t, x,m) under \scrW 2.
Then u\leq V .
(ii) Let v be an \scrN -LSC viscosity supersolution of (2.10) satisfying v| t=T \geq g. Assume
further that b, \sigma , f , g can be extended to \scrP 1(S) under \scrW 1 continuously, b is uniformly
Lipschitz continuous in (x,m) under \scrW 1, and \sigma has the regularity required in Lemma
3.7. Then v\geq V .

Proof. (i) We first compare V and u. Assume by contradiction that u(t,m) >
V (t,m) for some (t,m). Then, for \varepsilon > 0 small enough,

u(t,m) - \varphi \varepsilon (t,m)> sup
\BbbP \in \scrP (t,m)

\Bigl\{ \int T

t

F (r,\BbbP Yr
)dr+ g(\BbbP YT

)
\Bigr\} 
,(3.9)

where \varphi \varepsilon (s, \~m) := \varepsilon [(T  - t) +m(\BbbR d,1)]. Let (t\ast ,\BbbP \ast ) be s.t.

(u - \varphi \varepsilon )(t
\ast ,m\ast ) +

\int t\ast 

t

F (r,\BbbP \ast 
Yr
)dr(3.10)

= max
(s,m, \BbbP ) \in \scrN T - t(t,m) \times \scrP (t,m) :

m \in \{ \BbbP Ys - , \BbbP Ys
\} 

\Bigl\{ 
(u - \varphi \varepsilon )(s,m) +

\int s

t

F (r,\BbbP Yr
)dr

\Bigr\} 
,

where m\ast is the optimal argument in \{ \BbbP \ast 
Yt\ast  - 

,\BbbP \ast 
Yt\ast 

\} . Clearly t\ast <T . Indeed, if t\ast = T ,
then (T,m\ast )\in \scrN T - t(t,m), and by (3.10) and (3.9) we have

u(T,m\ast ) - \varepsilon m\ast (\BbbR d,1) +
\int T

t

F (r,\BbbP \ast 
Yr
)dr\geq (u - \varphi \varepsilon )(t,m)

> sup
\BbbP \in \scrP (t,m)

\Bigl\{ \int T

t

F (r,\BbbP Yr
)dr+ g(\BbbP YT

)
\Bigr\} 
\geq 
\int T

t

F (r,\BbbP \ast 
Yr
)dr+ u(T,m\ast ),

as u(T, \cdot ) \leq g. This is the desired contradiction. Moreover, by Lemma 2.3, we may
choose m\ast to be the smallest one which keeps the same value (u - \varphi \varepsilon )(t

\ast ,m\ast ). Note

that this change is only at t\ast and thus has no impact on the value of
\int t\ast 
t
F (r,\BbbP \ast 

Yr
)dr.

Then

(u - \varphi \varepsilon )(t
\ast ,m\ast )> (u - \varphi \varepsilon )(t

\ast ,m\prime ) for all m\ast \not =m\prime \preceq m\ast .(3.11)

Furthermore, we note that since m \mapsto \rightarrow m(\BbbR d,1) is increasing, by (3.11) actually we
have

u(t\ast ,m\ast )>u(t\ast ,m\prime ) for all m\ast \not =m\prime \preceq m\ast , namely Cu(t
\ast ,m\ast ) = \{ m\ast \} .(3.12)

Next, let f+, f - denote the positive and negative parts of f , respectively, and \rho 0
the modulus of continuity function of f . Introduce

f+(s,x, \~m) := f+(s,x, \~m) - \rho 0
\bigl( \bigm| \bigm| \~m(\BbbR d,1) - m\ast (\BbbR d,1)

\bigm| \bigm| 1
2
\bigr) 
;

f
 - 
(s,x, \~m) := f - (s,x, \~m) + \rho 0

\bigl( \bigm| \bigm| \~m(\BbbR d,1) - m\ast (\BbbR d,1)
\bigm| \bigm| 1
2
\bigr) 
.

It is clear that f+, f
 - 

are also uniformly continuous in (s,x, \~m) (under \scrW 2). For

\varepsilon > 0, by Lemma 3.8(i) let f+
n
, f

 - 
n be a smooth mollifier (under \scrW 2) such that

| f+
n
 - f+| \leq \varepsilon 

6
, | f - n  - f

 - | \leq \varepsilon 

6
on \scrP (t\ast ,m\ast ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

9/
23

 to
 1

32
.1

74
.2

55
.3

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1723

Then, for all (s, \~m)\in \scrN T - t\ast (t
\ast ,m\ast ) with corresponding \BbbP \in \scrP (t\ast ,m\ast ), and t\ast \leq r < s,

considering the case \~m= \BbbP Ys - , we have

\BbbE \BbbP 
\Bigl[ \bigm| \bigm| \bigm| f+(s,Xs,\BbbP (Xs,Ir))Is -  - f+(s,Xs, \~m)Is - 

\bigm| \bigm| \bigm| \Bigr] \leq \rho 0

\Bigl( 
\scrW 2

\bigl( 
\BbbP (Xs,Ir),\BbbP (Xs,Is - )

\bigr) \Bigr) 
\leq \rho 0

\Bigl( \sqrt{} 
\BbbE \BbbP [| Ir  - Is - | 2]

\Bigr) 
\leq \rho 0

\Bigl( \sqrt{} 
\BbbE \BbbP [| It\ast  - Is - | 2]

\Bigr) 
= \rho 0

\bigl( \bigm| \bigm| \~m(\BbbR d,1) - m\ast (\BbbR d,1)
\bigm| \bigm| 1
2
\bigr) 
.

Then \BbbE \BbbP [f+(s,Xs,\BbbP (Xs,Ir ))Is - )] \geq \BbbE \BbbP [f+(s,Xs, \~m)Is - ] and, similarly,\BbbE \BbbP [f - (t\ast ,Xt\ast ,

\BbbP (Xs,Ir))It\ast ]\leq \BbbE \BbbP [f
 - 
(t\ast ,Xt\ast , \~m)It\ast ]. Thus, by (2.1) and the regularity of f , we have

F (r,\BbbP Yr
) =\BbbE \BbbP 

\Bigl[ 
f(r,Xr,\BbbP Yr

)Ir

\Bigr] 
=\BbbE \BbbP 

\Bigl[ 
f+(r,Xr,\BbbP Yr

)Ir  - f - (r,Xr,\BbbP Yr
)Ir

\Bigr] 
\geq \BbbE \BbbP 

\Bigl[ 
f+(r,Xr,\BbbP Yr

)Is -  - f - (r,Xr,\BbbP Yr
)It\ast 

\Bigr] 
\geq \BbbE \BbbP 

\Bigl[ 
f+(s,Xs,\BbbP (Xs,Ir ))Is -  - f - (t\ast ,Xt\ast ,\BbbP (Xs,Ir))It\ast 

\Bigr] 
 - \rho (s - t\ast )

\geq \BbbE \BbbP 
\Bigl[ 
f+(s,Xs, \~m)Is -  - f

 - 
(t\ast ,Xt\ast , \~m)It\ast 

\Bigr] 
 - \rho (s - t\ast )

\geq \BbbE \BbbP 
\Bigl[ 
f+
n
(s,Xs, \~m)Is -  - f

 - 
n (t

\ast ,Xt\ast , \~m)It\ast 
\Bigr] 
 - \varepsilon 

3
 - \rho (s - t\ast )

for some modulus of continuity \rho which can be chosen to be smooth on (0,\infty ). That
is,

F (r,\BbbP Yr )\geq 
\int 
f+
n
(s,x, \~m)i \~m(dx,di) - 

\int 
f
 - 
n (t

\ast , x, \~m)i m\ast (dx,di) - \varepsilon 

3
 - \rho (s - t\ast ).

In the case \~m = \BbbP Ys , following similar arguments we see the above still holds true.
Denote

\phi n\varepsilon (s, \~m) :=

\int 
f+n (s,x, \~m)i \~m(dx,di) - 

\int 
f - n (t\ast , x, \~m)i m\ast (dx,di),

\psi n\varepsilon (s, \~m) :=\varphi \varepsilon (s, \~m) - (s - t\ast )

\biggl[ 
\phi n\varepsilon (s, \~m) - \varepsilon 

3
 - \rho (s - t\ast )

\biggr] 
,

which are obviously in C1,2
2 (Q0). Then, by (3.10),

(u - \psi n\varepsilon )(t
\ast ,m\ast ) = (u - \varphi \varepsilon )(t

\ast ,m\ast )\geq (u - \varphi \varepsilon )(s, \~m) +

\int s

t\ast 
F (r,\BbbP Yr

)dr

\geq (u - \varphi \varepsilon )(s, \~m) + (s - t\ast )

\biggl[ 
\phi n\varepsilon (s, \~m) - \varepsilon 

3
 - \rho (s - t\ast )

\biggr] 
= (u - \psi n\varepsilon )(s, \~m).

Thus \psi n\varepsilon \in \scrA u(t\ast ,m\ast ). Note that

[\BbbL \psi n\varepsilon + F ](t\ast ,m\ast ) =
\Bigl[ 
\BbbL \varphi \varepsilon  - \phi n\varepsilon +

\varepsilon 

3
+ F

\Bigr] 
(t\ast ,m\ast ) = - \varepsilon  - \phi n\varepsilon (t

\ast ,m\ast ) +
\varepsilon 

3
+ F (t\ast ,m\ast )

= - 2\varepsilon 

3
+

\int \bigl[ 
f+
n
(t\ast , x,m\ast ) - f

 - 
n (t

\ast , x,m\ast )
\bigr] 
i m\ast (dx,di) + F (t\ast ,m\ast )

\leq  - \varepsilon 
3
+

\int \bigl[ 
f+(t\ast , x,m\ast ) - f

 - 
(t\ast , x,m\ast )

\bigr] 
i m\ast (dx,di) + F (t\ast ,m\ast )

\leq  - \varepsilon 
3
+

\int \bigl[ 
f+(t\ast , x,m\ast ) - f - (t\ast , x,m\ast )

\bigr] 
i m\ast (dx,di) + F (t\ast ,m\ast ) = - \varepsilon 

3
< 0;

(DI\psi 
n
\varepsilon )(s, \~m) = \varepsilon  - (s - t\ast )(DI\phi 

n
\varepsilon )(s, \~m), and thus (DI\psi 

n
\varepsilon )\ast (t

\ast ,m\ast ) = \varepsilon > 0.
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1724 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

Recalling (3.12), this contradicts the viscosity subsolution property of u.

(ii) We next compare V and v. Fix \varepsilon > 0. For each n \geq 1, denote ti := t
(n)
i := iT

n ,
0 \leq i \leq n. First, note that, for (t,m) \in Q0, it follows from the continuity of the
coefficients that

V (t,m) := lim
n\rightarrow \infty 

Vn(t,m), where

Vn(t,m) := sup
\BbbP \in \scrP n(t,m)

\Bigl\{ \int T

t

F (r,\BbbP Yr )dr+ g(\BbbP YT
)
\Bigr\} 
,

\scrP n(t,m) :=
\Bigl\{ 
\BbbP \in \scrP (t,m) : \tau takes values in \{ t1, . . . , tn\} \cap [t, T ],\BbbP -a.s.

\Bigr\} 
.

Step 1: We show that (Vn  - v)(tn - 1, \cdot ) \leq \varepsilon 
n . Assume to the contrary that there

exists mn - 1 such that (Vn - v)(tn - 1,mn - 1)>
\varepsilon 
n . By the definition of \scrP n(tn - 1,mn - 1),

we have Vn(t,m) =
\int T
t
F (r, \=\BbbP t,mYr

)dr + g(\=\BbbP t,mYT
), t \in (tn - 1, T ], where \=\BbbP t,m \in \scrP (t,m) is

defined by (2.4).
Let \delta 1, \delta 2 > 0 be small numbers which will be specified later. Applying Lemma

3.8(ii), (iii), let (gk, fk, bk) be the smooth mollifier of (g, f, b) (under \scrW 1), where bk
is also mollified in (t, x) in a standard way, such that \| gk  - g\| \infty + \| fk  - f\| \infty \leq \delta 1,
\| bk - b\| \infty \leq \delta 2, and gk is Lipschitz continuous under \scrW 1 with a Lipschitz constant Lk
depending on k, and bk is uniformly Lipschitz continuous in (x,m) under \scrW 1 with a
Lipschitz constant L independent of k. By otherwise choosing a larger L we assume
\sigma is also uniformly Lipschitz continuous in (x,m) under \scrW 1 with Lipschitz constant
L. Let Uk1,k2 be defined by (3.4) corresponding to (bk2 , \sigma , gk1 , fk1). Then, by Lemma
3.7,

\partial tU
k1,k2(t,m) +

\int 
\BbbR d

\Bigl[ 
bk2 \cdot \partial x\delta mU

k1,k2
1 +

1

2
\sigma 2 : \partial 2xx\delta mU

k1,k2
1 + fk1

\Bigr] 
m(dx,1) = 0,

(3.13)

and Uk1,k2 is Lipschitz continuous in m under \scrW 1 with a Lipschitz constant CL,Lk1

independent of k2. Here, \delta mU
k1,k2
1 is in the sense of (2.6). This, in particular, implies

| \partial x\delta mUk1,k21 | \leq CL,Lk1
for all k2. Then, we deduce from (3.13) that

\bigm| \bigm| \bigm| (\BbbL Uk1,k2 + Fk1)(t,m)
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \int (b - bk2) \cdot \partial x\delta mU

k1,k2
1 m(dx,1)

\bigm| \bigm| \bigm| \leq CL,Lk1
\delta 2 for all k2 \geq 1,

(3.14)

where Fk1(t,m) :=
\int 
\BbbR d fk1(t, x,m)m(dx,1) as in (2.1). Moreover, since

Uk1,k2(t,m) = gk1(
\=\BbbP t,m,k2YT

) +

\int T

t

Fk1(r,
\=\BbbP t,m,k2Yr

)dr,

where \=\BbbP t,m,k2 is s.t. X is unstopped with drift coefficient bk2 instead of b, one can
easily show that\bigm| \bigm| \bigm| \bigm| \bigm| Uk1,k2(t,m) - 

\biggl( 
g(\=\BbbP t,mYT

) +

\int T

t

F (r, \=\BbbP t,mYr
)dr

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \leq C[\delta 1 + \delta 2]\leq 
\varepsilon 

4n

for \delta 1, \delta 2 small enough. Then

Vn(tn - 1,mn - 1) = sup
m\prime \preceq mn - 1

\Bigl\{ \int T

tn - 1

F (r, \=\BbbP tn - 1,m
\prime 

Yr
)dr+ g(\=\BbbP tn - 1,m

\prime 

YT
)
\Bigr\} 

\leq sup
m\prime \preceq mn - 1

Uk1,k2(tn - 1,m
\prime ) +

\varepsilon 

4n
.
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VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1725

By the supersolution property, v is nondecreasing for \preceq , hence

\varepsilon 

n
\leq (Vn  - v)(tn - 1,mn - 1)\leq sup

m\prime \preceq mn - 1

(Uk1,k2  - v)(tn - 1,m
\prime ) +

\varepsilon 

4n
.

This implies that

max
(s, \~m)\in \scrN T

n
(tn - 1,mn - 1)

\Bigl\{ 
(Uk1,k2  - v)(s, \~m) - T  - s

n

\Bigr\} 
\geq 3\varepsilon 

4n
 - T

n2
\geq \varepsilon 

2n
(3.15)

for n sufficiently large. Note that (Uk1,k2  - v)(T,\BbbP YT
) \leq (gk1  - g)(\BbbP YT

) \leq \varepsilon 
4n for

all \BbbP \in \scrP (tn - 1,mn - 1) and v is \scrN -LSC; then by compactness of \scrN T
n
(tn - 1,mn - 1)

there exists an optimal argument (t\ast ,m\ast ), t\ast < T , to the above maximum. Thus
\varphi (s, \~m) :=Uk1,k2(s, \~m) - T - s

n \in \scrA v(t\ast ,m\ast ), and therefore,

0\leq  - (\BbbL \varphi + F )(t\ast ,m\ast ) = - (\BbbL Uk1,k2 + Fk1)(t
\ast ,m\ast ) + (Fk1  - F )(t\ast ,m\ast ) - 1

n

\leq CL,Lk1
\delta 2 + (Fk1  - F )(t\ast ,m\ast ) - 1

n
,

where the last inequality is thanks to (3.14). Fixing k1 so that (Fk1  - F )(t\ast ,m\ast )\leq 1
2n

and setting \delta 2 small enough, we obtain the desired contradiction.
Step 2: We show that (Vn  - v)(tn - 2, \cdot )\leq 2\varepsilon 

n . Assume to the contrary that there
exists mn - 2 such that (Vn  - v)(tn - 2,mn - 2)>

2\varepsilon 
n . By the DPP, we have

Vn(tn - 2,mn - 2) = sup
\BbbP \in \scrP n(tn - 2,mn - 2)

\Bigl\{ \int tn - 1

tn - 2

F (r,\BbbP Yr
)dr+ Vn(tn - 1,\BbbP Y(tn - 1) - )

\Bigr\} 
,

Observe the fact that v being a viscosity supersolution of (2.10) also implies that v+ \varepsilon 
n

is a viscosity supersolution. Moreover, by Step 1, we have (v+ \varepsilon 
n )(tn - 1, \cdot )\geq Vn(tn - 1, \cdot ).

Thus, using the same procedure as in Step 1 (where Vn replaces g on (tn - 2, tn - 1]), it
follows that \Bigl( 

Vn  - 
\Bigl( 
v+

\varepsilon 

n

\Bigr) \Bigr) 
(tn - 2, \cdot )\leq 

\varepsilon 

n
.

Finally, by backward induction, we have (Vn  - v)(tn - j , \cdot ) \leq j\varepsilon 
n for all j \in \{ 0, . . . , n\} ,

and thus (Vn - v)(t, \cdot )\leq \varepsilon , which implies by the arbitrariness of n and \varepsilon that v\geq V .

3.6. Infinite horizon case. As in [26, section 6.1], we may formulate the prob-
lem in infinite horizon (i.e., in the case T =\infty ) by replacing Assumption 2.1 with the
following conditions.

Assumption 3.14. (i) Assumption 2.1 holds true on [0,\infty );
(ii)

\int \infty 
0

supm\in \scrP 2(S) | F (t,m)| dt <\infty ;
(iii) for any (t,m) and \BbbP \in \scrP (t,m), X\infty := limt\rightarrow \infty Xt exists, \BbbP -a.s.

We remark that one sufficient condition of (ii) above is that | f(t, x,m)| \leq Ce - \lambda t

for some constants C,\lambda > 0, and a special case of (iii) is

d= 1, b= b0x, \sigma = \sigma 0x, b0  - 
1

2
\sigma 2
0 < 0;(3.16)

see, e.g., Pedersen and Peskir [21] and Xu and Zhou [28]. The last condition implies

that, under \=\BbbP t,m in (2.4), the unstopped process X is a geometric Brownian motion
vanishing at infinity.
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1726 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

Assumption 3.14 allows us to include the case \tau = \infty in our framework and to
preserve the compactness of \scrP (t,m) in the infinite horizon setting, so that all our
previous results extend immediately.

Remark 3.15. A study of the general infinite horizon would of course be of very
relevant interest. In standard optimal stopping, this is addressed by adding a dis-
count factor to the reward function \BbbE [e - r\tau \psi (X\tau )], assuming F = 0 for simplicity.
However, embedding this in our formulation is more involved as \BbbE [e - r\tau \psi (X\tau )] =

\BbbE [e - r
\int T
0
Isds\psi (X\tau )], which is a function of the joint law of X\infty and the path of I. We

therefore leave it for further research.

4. Examples. In this section we revisit the three examples studied in [26] and
add a new example concerning probability distortion. Note that in [26] we assumed
that the value functions are smooth, which is hard to verify. In this section we show
that they are the unique continuous viscosity solution of the corresponding obstacle
problem. Note that we shall allow both T <\infty and T =\infty , and correspondingly we
always assume Assumption 2.1 or 3.14, and we shall report the detailed arguments in
the case T <\infty only. Moreover, for simplicity in this section we always assume f = 0.

4.1. Connection with standard optimal stopping. Assume for this example
that b and \sigma do not depend on the measure variable m. For a measurable function
\psi :\BbbR d\rightarrow \BbbR , we define the optimal stopping problem

V (t,m) := sup
\BbbP \in \scrP (t,m)

\BbbE \BbbP 
\Bigl[ 
\psi (XT )

\Bigr] 
,(t,m)\in Q0.(4.1)

That is, g(\mu ) :=
\int 
\BbbR d \psi (x)\mu (dx) for \mu \in \scrP 2(\BbbR d). We also introduce v(t, x) := V (t, \delta (x,1)),

which is related to the standard obstacle problem: recalling (2.7),

min\{  - (\partial t +\scrL )v, v - \psi \} = 0, v(T, \cdot ) =\psi , where \scrL v := b \cdot \partial xv+
1

2
\sigma 2 : \partial 2xxv.

(4.2)

Proposition 4.1. Assume b, \sigma do not depend on m, \sigma satisfies the regularities
required in Lemma 3.7, and \psi is uniformly continuous. Then V is the unique con-
tinuous viscosity solution of the corresponding obstacle equation (2.10), and it holds
that

V (t,m) =

\int 
S

\bigl[ 
v(t, x)i+\psi (x)(1 - i)

\bigr] 
m(dx,di).(4.3)

Moreover, there exists a pure strategy optimal stopping time.

Proof. First, by the uniform continuity of \psi one can easily show that g is uniformly
continuous in m under \scrW 1. Then by Theorem 3.6 V is continuous in t and uniformly
continuous in m under \scrW 1. Thus it follows from Theorems 3.10 and 3.13 that V is
the unique viscosity solution of (2.10).

It remains to verify (4.3). Let \BbbP \ast \in \scrP (t,m) be such that

\tau = inf\{ s\geq t : v(s,Xs) =\psi (Xs)\} , \BbbP \ast -a.s. on \{ It - = 1\} .(4.4)

By the standard optimal stopping problem (see, e.g., Karatzas and Shreve [15, Ap-
pendix D]), v is continuous and \BbbP \ast is optimal. Then by (4.1) we derive (4.3):

V (t,m) =

\int 
\BbbR d

\psi (x)m(dx,0) +

\int 
\BbbR d

\BbbE \BbbP \ast 
\Bigl[ 
\psi (XT )

\bigm| \bigm| Xt = x
\Bigr] 
m(dx,1)

=

\int 
\BbbR d

\psi (x)m(dx,0)+

\int 
\BbbR d

v(t, x)m(dx,1).
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VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1727

Moreover, clearly the optimal stopping time determined by (4.4) is a pure strategy.

We remark that, by utilizing (4.3), it is possible to prove the uniqueness of the vis-
cosity solution under weaker requirement on \sigma . We leave the details to the interested
reader.

4.2. A generalization of the mean variance problem. Consider the optimal
stopping problem:

V (t,m) := sup
\BbbP \in \scrP (t,m)

\varphi 
\Bigl( 
\BbbE \BbbP [\psi (XT )]

\Bigr) 
,(4.5)

where \psi :\BbbR d\rightarrow \BbbR k for some k\geq 1 and \varphi :\BbbR k \rightarrow \BbbR . That is, g(\mu ) =\varphi (
\int 
\BbbR d \psi (x)\mu (dx)).

Proposition 4.2. Let b, \sigma satisfy the conditions in Theorem 3.13(ii), \psi be uni-
formly continuous, and \varphi be continuous. Assume further that either \psi is bounded or
\varphi is uniformly continuous. Then V is the unique continuous viscosity solution of the
corresponding obstacle equation (2.10).

Proof. Note that when | \psi | \leq C, we have | \BbbE \BbbP [\psi (XT )]| \leq C and thus in (4.5)
we may replace \varphi with the truncated function \varphi C(z) := \varphi ( C

| z| \vee C z), z \in \BbbR k, which is
uniformly continuous. Then in both cases, we may assume w.l.o.g. that \varphi is uniformly
continuous, and therefore, g is uniformly continuous in \mu under \scrW 1. Then the result
follows from Theorems 3.6, 3.10, and 3.13.

Remark 4.3. (i) In the case that \varphi is convex, \varphi (z) := sup\alpha [\alpha z  - \varphi \ast (\alpha )], we have

V (t,m) = sup
\alpha 

[V\alpha (t,m) - \varphi \ast (\alpha )], where V\alpha (t,m) := sup
\BbbP \in \scrP (t,m)

\BbbE \BbbP [\alpha \cdot \psi (XT )].

Let \alpha \ast (t,m) be the optimal argument; then the optimal \BbbP \ast for V\alpha \ast (t,m)(t,m) is also
optimal for V (t,m), and thus by Proposition 4.1 there exists a pure optimal strategy
for V (t,m).

Moreover, let \BbbP \ast be the optimal control for V (0,m) and V\alpha \ast (0,m)(0,m) as above,
and denote m\ast 

t := \BbbP \ast 
Yt
. Then, by the DPP for V and for V\alpha \ast (0,m), we have

V (t,m\ast 
t - ) = V (0,m) = V\alpha \ast (0,m)(0,m) - \varphi \ast (\alpha \ast (0,m))

= V\alpha \ast (0,m)(t,m
\ast 
t - ) - \varphi \ast (\alpha \ast (0,m)).

That is, \alpha \ast (0,m) is optimal for sup\alpha [V\alpha (t,m
\ast 
t - ) - \varphi \ast (\alpha )] or, say, \alpha \ast (t,m\ast 

t - ) = \alpha \ast (0,m)
for all t.
(ii) A more special case is the mean variance problem: for some constant \lambda > 0,

d= 1, k= 2, \psi 1(x) = x, \psi 2(x) = x2, \varphi (z1, z2) = z1 +
\lambda 

2
z21  - 

\lambda 

2
z2.(4.6)

In the homogeneous case (3.16) with T = \infty , Pedersen and Peskir [21] solved the
problem V (\delta (x,1)) and the optimal stopping time is a pure strategy. We are in a much
more general framework. However, we should point out that (4.6) does not satisfy the
technical conditions in Proposition 4.2.

4.3. Expected shortfall. Let d = 1, and fix some \alpha \in (0,1); we consider the
mean field optimal stopping problem

V (t,m) := inf
\BbbP \in \scrP (t,m)

ES\BbbP \alpha (XT ) for all (t,m)\in Q0,
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1728 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

where ES\BbbP \alpha denotes the expected shortfall under \BbbP , i.e., for any r.v. Z with law \mu ,

g(\mu ) := ES\BbbP \alpha (Z) :=
1

\alpha 

\int \alpha 

0

q\gamma (Z)d\gamma = inf
\beta \in \BbbR 

\Bigl\{ 
\beta +

1

1 - \alpha 

\int 
\BbbR 
(x - \beta )+\mu (dx)

\Bigr\} 
,(4.7)

where q\gamma (Z) := inf\{ z : \mu (Z \leq z)>\gamma \} .

Here the second equality has been established by Rockafellar and Uryasev [24].

Proposition 4.4. V is the unique continuous viscosity solution of the corre-
sponding equation.

Proof. Clearly, x \mapsto \rightarrow (x  - \beta )+ is Lipschitz continuous with Lipschitz constant
1. By (4.7), this implies that g is Lipschitz continuous, and, given our assumptions
on the coefficients, we conclude similarly to Proposition 4.2 that the required claim
follows.

Note further that

V (t,m) = inf
\beta \in \BbbR 

\Bigl\{ 
\beta +

1

1 - \alpha 
V\beta (t,m)

\Bigr\} 
, where V\beta (t,m) := inf

\BbbP \in \scrP (t,m)
\BbbE \BbbP [(XT  - \beta )+].

One can easily show that lim\beta \rightarrow \infty [\beta + 1
1 - \alpha V\beta (t,m)] = lim\beta \rightarrow  - \infty [\beta + 1

1 - \alpha V\beta (t,m)] =\infty ,
where the second equality is due to \alpha \in (0,1). Then there exists optimal \beta \ast =
\beta \ast (t,m) \in \BbbR such that V (t,m) = \beta \ast + 1

1 - \alpha V\beta \ast (t,m). Therefore, similar to Remark
4.3(i), V (t,m) and V\beta \ast (t,m) share an optimal \BbbP \ast \in \scrP (t,m), which is a pure optimal
strategy as in Proposition 4.1.

Moreover, in the homogeneous case with (3.16) and T =\infty , one can easily show
that V and V\beta are independent of t, and V\beta (m) = \beta  - m(\BbbR +,1)+

\int \infty 
0

(x - \beta )+m(dx,0)
whenever m(\BbbR +,\{ 0,1\} ) = 1.

4.4. Probability distortion. Consider the following optimal stopping problem
under probability distortion:

V (t,m) := sup
\BbbP \in \scrP (t,m)

\int \infty 

0

\varphi 
\bigl( 
\BbbP (\psi (XT )\geq z)

\bigr) 
dz,(4.8)

where \psi :\BbbR d\rightarrow [0,\infty ) is a utility function, \varphi : [0,1]\rightarrow [0,1] is a probability distortion
function \varphi (0) = 0,\varphi (1) = 1, and \varphi is strictly increasing. That is, g(\mu ) =

\int \infty 
0
\varphi (\mu (\{ \psi \geq 

z\} ))dz.
Proposition 4.5. Let b, \sigma satisfy the conditions in Theorem 3.13(ii), \varphi be a

uniformly Lipschitz continuous probability distortion function, and \psi be uniformly
continuous. Then V is the unique continuous viscosity solution of the corresponding
obstacle equation (2.10).

Proof. As in the previous examples, it suffices to show that g is uniformly contin-
uous in m under \scrW 1. Assume arbitrary \mu 1, \mu 2 \in \scrP 2(\BbbR d) and, for i = 1,2, let \xi i be a
random variable on (\Omega ,\scrF ,\BbbP ) such that \BbbP \xi i = \mu i and \BbbE \BbbP [| \xi 1  - \xi 2| ] =\scrW 1(\mu 1, \mu 2). Then\bigm| \bigm| g(\mu 1) - g(\mu 2)

\bigm| \bigm| \leq \int \infty 

0

\bigm| \bigm| \bigm| \varphi \bigl( \BbbP (\psi (\xi 1)\geq z)
\bigr) 
 - \varphi 

\bigl( 
\BbbP (\psi (\xi 2)\geq z)

\bigr) \bigm| \bigm| \bigm| dz
\leq C

\int \infty 

0

\BbbE \BbbP 
\Bigl[ \bigm| \bigm| 1\{ \psi (\xi 1)\geq z\}  - 1\{ \psi (\xi 2)\geq z\} 

\bigm| \bigm| \Bigr] dz =C\BbbE \BbbP 
\Bigl[ \bigm| \bigm| \psi (\xi 1) - \psi (\xi 2)

\bigm| \bigm| \Bigr] .
Since \psi is uniformly continuous, we see that g is uniformly continuous in \mu 
under \scrW 1.
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VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1729

Remark 4.6. (i) In the homogeneous case (3.16) with T =\infty , Xu and Zhou [28]
solved the optimal stopping problem V (\delta (x,1)) for appropriate \varphi ,\psi , and the optimal
stopping time is a pure strategy.
(ii) The mean variance and probability distortion problems are typically viewed as
time inconsistent, as the DPP does not hold for value function v(t, x) := V (t, \delta (x,1)).
However, we emphasize that, by viewing m as our variable, V satisfies the DPP and
the problem is hence time consistent.

Appendix A. Technical results.

Proof of Lemma 2.3. (i) The set \{ m\prime : m\prime \preceq m\} is in continuous bijection with
the compact set \{ \^m \in \scrP 2(S\times \{ 0,1\} ) : \^m \circ (x, i) - 1 =m\} , with (x, i, i\prime ) the projection
coordinates on S \times \{ 0,1\} . This shows the compactness of \{ m\prime : m\prime \preceq m\} . (ii) As
the map m\prime \in \scrK (m) \mapsto  - \rightarrow m\prime (\BbbR d,1) is continuous and \scrK (m) is compact, there exists
\=m \in \scrK (m) s.t. \=m \in argminm\prime \in \scrK (m)m

\prime (\BbbR d,1). Let m\prime \in \scrK (m) be such that m\prime \preceq \=m
with some corresponding transition probability p; see the definition in (2.9). Then,
clearly m\prime (\BbbR d,1) \leq \=m(\BbbR d,1) and thus equality holds by minimality of \=m(\BbbR d,1). As
p\leq 1, we conclude that m\prime = \=m.

Proof of Lemma 3.5. For each (t,m)\in Q0 and \BbbP \in \scrP (t,m), we extend \BbbP to (\Omega ,\scrF T )
as follows: denote \^\BbbP \in \^\scrP (t,m), Xs = Xr, Is = It - , s \in [ - 1, t), \^\BbbP -a.s. We prove the
lemma in two steps.

Step 1. For any compact \scrM \subset \scrP 2(S), denote \^\scrP \scrM :=
\bigcup 

(t,m)\in [0,T ]\times \scrM 
\^\scrP (t,m). For

each (t,m), \BbbP \in \scrP (t,m), and R > 1, following the proof of [26, Proposition 2.2] we
have

\BbbE \^\BbbP \bigl[ | X\ast 
T | 2

\bigr] 
\leq C

\int 
\BbbR d

| x| 2m(dx,\{ 0,1\} );

\BbbE \^\BbbP \bigl[ | X\ast 
T | 21\{ | X\ast 

T | \geq R\} 
\bigr] 
\leq C

\int 
S

[1 + | x| 2]
\Bigl[ 
1\{ | x| \geq 

\surd 
R - 1\} +

1\surd 
R

\Bigr] 
m(dx,\{ 0,1\} ),

where X\ast 
T := sup0\leq s\leq T | Xs| . By the compactness of \scrM , one can easily see that

sup
\^\BbbP \in \^\scrP \scrM 

\BbbE \^\BbbP \bigl[ | X\ast 
T | 2

\bigr] 
<\infty , lim

R\rightarrow \infty 
sup

\^\BbbP \in \^\scrP \scrM 

\BbbE \^\BbbP \bigl[ | X\ast 
T | 21\{ | X\ast 

T | \geq R\} 
\bigr] 
= 0.

Then the set \^\scrP \scrM is compact. That is, for any (tn,mn) \in [0, T ] \times \scrM and \BbbP n \in 
\scrP (tn,mn), there exists a subsequence, still denoted the same, such that \^\BbbP 

n
\rightarrow \^\BbbP 

\ast 

under \scrW 2, for some \BbbP \ast \in \scrP 2(\Omega ,\scrF T ).
We may assume w.l.o.g. that (tn,mn) \rightarrow (t\ast ,m\ast ) under \scrW 2 for some (t\ast ,m\ast ) \in 

[0, T ] \times \scrM . We next show that \^\BbbP 
\ast 
\in \^\scrP (t\ast ,m\ast ). Indeed, for any \delta > 0, we have

t\ast  - \delta < tn < t\ast + \delta for all n large enough. By the required convergence, it is obvious
that Xs = Xt\ast  - \delta , Is = It\ast  - \delta , s \leq t\ast  - \delta , \^\BbbP 

\ast 
-a.s., and \^\BbbP 

\ast 
Yt - \delta 

= m\ast . Thus, by sending

\delta \rightarrow 0, Xs = Xt\ast , Is = It\ast  - , s < t\ast , \^\BbbP 
\ast 
-a.s. and \^\BbbP 

\ast 
Yt\ast  - 

= m\ast . Here we used the fact
that X has continuous paths. Moreover, following the arguments in [26, Proposition

2.2] again, we see that the processes M and MM\top in (2.3) are \^\BbbP 
\ast 
-martingales on

[t\ast + \delta ,T ] for all \delta > 0, and hence also on [t\ast , T ] (again since X is continuous). That

is, \^\BbbP 
\ast 
\in \^\scrP (t\ast ,m\ast ).

Step 2. We now show that V is USC. Fix (t,m) and choose (tn,mn)\rightarrow (t,m) such
that limn\rightarrow \infty V (tn,mn) = limsup(\~t, \~m)\rightarrow (t,m)V (\~t, \~m). For each n, let \BbbP n \in \scrP (tn,mn)

be optimal: V (tn,mn) =
\int T
tn
F (r,\BbbP nYr

)dr + g(\BbbP nYT
). Note that \scrM := \{ m,mn, n\geq 1\} \subset 
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1730 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

\scrP 2(S) is compact. By Step 1, we may assume w.l.o.g. that \^\BbbP 
n
\rightarrow \^\BbbP \in \^\scrP (t,m). Then,

since F is continuous and g is USC in m, we have

lim
n\rightarrow \infty 

V (tn,mn) = lim
n\rightarrow \infty 

\Bigl[ \int T

tn

F (r, \^\BbbP 
n

Yr
)dr+ g(\^\BbbP 

n

YT
)
\Bigr] 

\leq 
\int T

t

F (r, \^\BbbP Yr )dr+ g(\^\BbbP YT
)\leq V (t,m).

This means that V is USC.

Proof of Theorem 3.6. (i) follows similar but easier arguments than (ii), so we
prove (ii) only. Let \rho 0 denote the modulus of continuity of f, g under \scrW 1. We proceed
in two steps.

Step 1. Fix t\in [0, T ] andm, \~m\in \scrP 2(S). For any \BbbP \in \scrP (t,m), by possibly enlarging
the space, there exists ( \~Xt, \~It - ) on the space (\Omega ,\scrF ,\BbbP ) such that

\BbbP ( \~Xt,\~It - ) = \~m, \BbbE \BbbP 
\Bigl[ 
| \~Xt  - Xt| + | \~It -  - It - | 

\Bigr] 
=\scrW 1(m, \~m).

Consider the following SDE on the space (\Omega ,\scrF ,\BbbP ): for \~Y := ( \~X, \~I),

\~Xs = \~Xt +

\int s

t

b(r, \~Xr,\BbbP \~Yr
)\~Irdr+

\int s

t

\sigma (r, \~Xr,\BbbP \~Yr)
)\~IrdW

\BbbP 
r , \~Ir := Ir \~It - , \BbbP -a.s.

(A.1)

Denote \Delta Y := \~Y  - Y . Note that Ir = IrIt - , then

sup
t\leq r\leq T

| \Delta Ir| = Ir| \Delta It - | \leq | \Delta It - | , and thus \BbbE \BbbP 
\Bigl[ 

sup
t\leq r\leq T

| \Delta Ir| 
\Bigr] 
\leq \scrW 1(m, \~m).(A.2)

Moreover, for \varphi = b, \sigma , by the desired Lipschitz continuity under \scrW 1, we have\bigm| \bigm| \bigm| \varphi (r, \~Xr,\BbbP \~Yr)
)\~Ir  - \varphi (r,Xr,\BbbP Yr )Ir

\bigm| \bigm| \bigm| \leq C
\Bigl[ 
| \Delta Xr| +\scrW 1(\BbbP \~Yr

,\BbbP Yr )
\Bigr] 
+C[1 + | Xr| ]| \Delta It - | .

By standard estimates, one can show that

\BbbE \BbbP 
t

\Bigl[ 
sup
t\leq s\leq T

| Xs| 2
\Bigr] 
\leq C[1 + | Xt| 2];

\BbbE \BbbP 
t

\Bigl[ 
| \Delta Xs| 2

\Bigr] 
\leq C

\int T

s

\scrW 2
1 (\BbbP \~Yr

,\BbbP Yr
)dr+C| \Delta Xt| 2 +C sup

t\leq s\leq T
\BbbE \BbbP 
t [1 + | Xs| 2]| \Delta It - | 2;

\BbbE \BbbP 
t

\bigl[ 
| \Delta Xs| 

\bigr] 
\leq C

\Bigl( \int T

s

\scrW 2
1 (\BbbP \~Yr

,\BbbP Yr )dr
\Bigr) 1

2

+C| \Delta Xt| +C[1 + | Xt| ]| \Delta It - | .

(A.3)

This implies that

\BbbE \BbbP \bigl[ | \Delta Xs| 
\bigr] 
\leq C

\Bigl( \int T

s

\scrW 2
1 (\BbbP \~Yr

,\BbbP Yr
)dr

\Bigr) 1
2

+C\BbbE \BbbP 
\Bigl[ 
| \Delta Xt| + [1 + | Xt| ]| \Delta It - | 

\Bigr] 
;

\scrW 2
1 (\BbbP \~Ys

,\BbbP Ys
)\leq C

\int T

s

\scrW 2
1 (\BbbP \~Yr

,\BbbP Yr
)dr+C

\Bigl( 
\BbbE \BbbP 

\Bigl[ 
| \Delta Xt| + [1 + | Xt| ]| \Delta It - | 

\Bigr] \Bigr) 2

.

By Gronwall's inequality we have, for any R> 0,

sup
t\leq s\leq T

\scrW 1(\BbbP \~Ys
,\BbbP Ys

)\leq C\BbbE \BbbP 
\Bigl[ 
| \Delta Xt| + [1 + | Xt| ]| \Delta It - | 

\Bigr] 
\leq CR\scrW 1(m, \~m) +C\BbbE \BbbP 

\Bigl[ 
| Xt| 1\{ | Xt| \geq R\} 

\Bigr] 
=: \delta R.(A.4)
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VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1731

Notice that \~\BbbP := \BbbP \circ ( \~X,I) - 1 \in \scrP (t, \~m). Then\int T

t

\^F (r,\BbbP Yr
)dr+ g(\BbbP YT

) - V (t, \~m)

\leq 
\int T

t

\BbbE \BbbP \bigl[ f(r,Xr,\BbbP Yr )Ir  - f(r, \~Xr,\BbbP \~Yr
)\~Ir

\bigr] 
dr+

\bigl[ 
g(\BbbP YT

) - g(\BbbP \~YT
)
\bigr] (A.5)

\leq \rho 0

\Bigl( 
\scrW 1(\BbbP \~YT

,\BbbP YT
)
\Bigr) 
+

\int T

t

\BbbE \BbbP 
\Bigl[ 
\rho 0
\bigl( 
| \Delta Xr| ) + \rho 0

\bigl( 
\scrW 1(\BbbP \~Yr

,\BbbP Yr )
\bigr) 
+ | f(r,Xr,\BbbP Yr )| | \Delta Ir| 

\Bigr] 
.

The uniform regularity of f implies that

| f(r,Xr,\BbbP Yr
)| \leq | f(r,0,\BbbP Yr

)| +C| Xr| \leq Cm[1 + | Xr| ],

where the constant Cm may depend on m. Then, by (A.2), (A.3), and (A.4), we have

\BbbE \BbbP 
\Bigl[ 
| f(r,Xr,\BbbP Yr

)| | \Delta Ir| 
\Bigr] 
\leq Cm\BbbE \BbbP 

\Bigl[ 
[1 + | Xr| ]| \Delta It - | 

\Bigr] 
\leq Cm\BbbE \BbbP 

\Bigl[ 
| \Delta It - | + \rho 0(\delta R) + | \Delta Xt| + [1 + | Xt| ]| \Delta It - | 

\Bigr] 
\leq Cm[\scrW 1(m, \~m) + \rho 0(\delta R)

\bigr] 
.

Plugging this into (A.5), we have\int T

t

\^F (r,\BbbP Yr )dr+ g(\BbbP YT
) - V (t, \~m)

\leq Cm
\bigl[ 
\scrW 1(m, \~m) + \rho 0(\delta R)

\bigr] 
+

\int T

t

\BbbE \BbbP \bigl[ \rho 0(| \Delta Xr| )]dr.

Since \BbbP \in \scrP (t,m) is arbitrary, for some appropriate modulus of continuity \rho we have
V (t,m) - V (t, \~m)\leq Cm\rho (\delta R). Switching m, \~m, and noticing that we may still use Xt

in \delta R, we have

| V (t,m) - V (t, \~m)| \leq Cm\rho (\delta R).(A.6)

Fixing m and send \~m\rightarrow m under \scrW 1, we see that

limsup
\~m\rightarrow m

| V (t,m) - V (t, \~m)| \leq Cm\rho 
\Bigl( 
C\BbbE \BbbP [| Xt| 1\{ | Xt| \geq R\} ]

\Bigr) 
for any R> 0. Now sending R\rightarrow \infty , we see that lim \~m\rightarrow m V (t, \~m) = V (t,m).

Step 2. Let t < \~t and m\in \scrP 2(S). By DPP we have

V (t,m) = sup
\BbbP \in \scrP (t,m)

\Bigl\{ \int \~t

t

F (r,\BbbP Yr )dr+ V (\~t,\BbbP Y\~t - )
\Bigr\} 

(A.7)

= sup
\BbbP \in \scrP (t,m)

\Bigl\{ \int \~t

t

F (r,\BbbP Yr
)dr+ V (\~t,\BbbP Y\~t

)
\Bigr\} 
,

V (\~t,m) = sup
m\prime \preceq m

V (\~t,m\prime ).

First, for any \BbbP \in \scrP (t,m), note that m\prime := \BbbP \circ (Xt, I\~t - )
 - 1 \preceq m; then

V (\~t,\BbbP Y\~t - ) - V (\~t,m)\leq V (\~t,\BbbP (X\~t,I\~t - )) - V (\~t,\BbbP (Xt,I\~t - ))\leq Cm\rho (\delta R),
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1732 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

thanks to (A.6) and (A.4), where, following similar arguments as in Step 1,

\delta R :=CR\BbbE \BbbP [| X\~t  - Xt| ] +C\BbbE \BbbP 
\Bigl[ 
| Xt| 1\{ | Xt| \geq R\} 

\Bigr] 
(A.8)

\leq CR\BbbE \BbbP [1 + | Xt| ]
\sqrt{} 

\~t - t+C\BbbE \BbbP \bigl[ | Xt| 1\{ | Xt| \geq R\} 
\bigr] 
.

Since \BbbP \in \scrP (t,m) is arbitrary, by (A.7) we have

V (t,m) - V (\~t,m)\leq sup
\BbbP \in \scrP (t,m)

\int \~t

t

F (r,\BbbP Yr )dr+Cm\rho (\delta R)\leq Cm\rho (\delta R).

Next, for m\prime \preceq m, choose \BbbP \in \scrP (t,m) s.t. Is = It - , t\leq s < \~t, and \BbbP \circ (Xt, I\~t)
 - 1 =

m\prime . Then

V (\~t,m\prime ) - V (t,m)\leq V (\~t,\BbbP (Xt,I\~t)
) - V (\~t,\BbbP (X\~t,I\~t)

) - 
\int \~t

t

F (r,\BbbP Yr
)dr\leq Cm\rho (\delta R).

Since m\prime \preceq m is arbitrary, by (A.7) we have

V (\~t,m) - V (t,m)\leq Cm\rho (\delta R), and thus
\bigm| \bigm| V (t,m) - V (\~t,m)

\bigm| \bigm| \leq Cm\rho (\delta R).

This, together with (A.8), implies the desired regularity immediately.

Proof of Lemma 3.7. We shall apply the results in Buckdahn et al. [1]. For
this purpose, we extend functions on \scrP 2(S) to \scrP 2(\BbbR d \times \BbbR ). Let \phi : \BbbR \rightarrow \BbbR be a
smooth function with bounded derivatives s.t. 0 \leq \phi \leq 1, \phi (0) = 0, \phi (1) = 1, and
\Phi : \^m\in \scrP 2(\BbbR d \times \BbbR ) \mapsto \rightarrow m\in \scrP 2(S), with

m(A,1) :=

\int 
\BbbR 
\phi (y) \^m(A,dy), m(A,0) :=

\int 
\BbbR 
[1 - \phi (y)] \^m(A,dy) for all A\in \scrB (\BbbR d).

Now for \varphi = b, \sigma , f, g, define \^\varphi (t, x, \^m) := \varphi (t, x,\Phi ( \^m)). \^\varphi inherits the regularity of \varphi 
on \scrP 2(\BbbR d \times \BbbR ).

Next, fix a filtered probability space (\^\Omega , \^\scrF T , \^\BbbF , \^\BbbP ) on which is defined a d-dimensional
Brownian motion W . For any (t, \^m), let \xi \in \BbbL 2(\scrF t;\BbbR d), \eta \in \BbbL 2(\scrF t;\BbbR ) be such that
\^\BbbP (\xi ,\eta ) = \^m. Consider the following SDE on [t, T ] with solution \^Y = ( \^X, \^I):

\^Xs = \xi +

\int s

t

\^b(r, \^Xr, \^\BbbP \^Yr
)\phi (\^Ir)dr+

\int s

t

\^\sigma (r, \^Xr, \^\BbbP \^Yr
)\phi (\^Ir)dWr;

\^Is = \eta 1[t,T )(s), \^\BbbP -a.s.

We then define, recalling (2.1),

\^U(t, \^m) := \^g(\^\BbbP \^YT
) +

\int T

t

\^F (r, \^\BbbP Yr )dr, where \^F (r, \^m) :=

\int 
\BbbR d+1

\^f(r,x, \^m)i \^m(dx,di).

We remark that, since b and \sigma are not necessarily bounded, the coefficients of the
SDE for \^X are not Lipschitz continuous in \^I. However, since \^I is already given, such
Lipschitz continuity is not needed. In particular, we can apply [1, Lemmas 6.2 and
7.1] so that \partial t \^U,\partial \^m

\^U,\partial \^y \^m
\^U exist and are continuous and bounded. Here \partial \^m

\^U is
the Lions derivative and satisfies \partial \^m

\^U(t, \^m, \^y) := \partial \^y\delta \^m \^U(t, \^m, \^y); see, e.g., Carmona
and Delarue [5, Volume 1, Chapter 5]. We also remark that in [1] the function \^U
takes the form \^U(t, x, \^m) while here \^U does not have the x-variable. Moreover, note
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VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1733

that each m\in \scrP (S) can be viewed as an element of \scrP (\BbbR d\times \BbbR ) with support included
in S. Since \phi (0) = 0, \phi (1) = 1, one can easily see that U(t,m) = \^U(t,m). Then clearly
U \in C1,2

2 (Q0). Finally, the \scrW 1 Lipschitz continuity of U follows arguments similar to
that of Theorem 3.6, and we thus omit the proof here.

Proof of Lemma 3.8. (ii) and (iii) follow directly from [20, Theorem 3.1], after
the straightforward extension to \scrP 2(S), as we will do next. Thus we shall only prove
(i). For ease of presentation, we assume d= 1.

Fixing n\geq 1, we construct Un as follows. First, let Hn, \phi 
n
j \in C\infty (\BbbR ), j \in \BbbZ , satisfy

0\leq Hn \leq 1, Supp(Hn)\subset 
\biggl[ 
 - 3n

2
,
3n

2

\biggr] 
, Hn(x) = 1 for | x| \leq n, | \partial xHn| \leq 

3

n
;

0\leq \phi nj \leq 1, Supp(\phi nj )\subset 
\biggl[ 
j  - 1

n
,
j + 1

n

\biggr] 
, \phi nj (x) + \phi nj+1(x) = 1 for all x\in 

\biggl[ 
j

n
,
j + 1

n

\biggr] 
.

See [27, (3.3)] for a construction of \phi nj . Next, for each j \in \BbbZ , define

\psi nj (\mu ) :=

\int 
\BbbR 
\phi nj (x)Hn(x)\mu (dx) + 1\{ j=0\} 

\int 
\BbbR 
[1 - Hn(x)]\mu (dx)(A.9)

for all finite measure \mu on \BbbR . We emphasize that, slightly different from [27], here the
\mu will be m(\cdot , i) whose total measure is less than 1 and thus it is not a probability
measure. Note that \psi nj \geq 0 and

\sum 
j\in \BbbZ \psi 

n
j = \mu (\BbbR ). Moreover, denote \BbbZ n := \{ j \in \BbbZ :

| j| \leq 2n2\} with size Nn := 4n2 + 1, and

\Delta n :=
\Bigl\{ 
\vec{}z = \{ zj\} j\in \BbbZ n

: | zj | \leq N - 3
n for all j \not = 0, and z0 := - 

\sum 
j\in \BbbZ n\setminus \{ 0\} 

zj

\Bigr\} 
.

We now define, for each \vec{}z \in \Delta n and m\in \scrP 2(S), i= 0,1,

mn(dx, i,\vec{}z) :=
\sum 
j\in \BbbZ n

\^\psi nj (m(\cdot , i), \vec{}z)\delta j
n
(dx), \^\psi nj (\mu ,\vec{}z)(A.10)

:=
Nn

Nn + 1

\Bigl[ 
\psi nj (\mu ) + \mu (\BbbR )

\Bigl[ 1

N2
n

+ zj

\Bigr] \Bigr] 
.

Note that | z0| \leq N - 2
n , and thus \^\psi nj (\mu ,\vec{}z)\geq 0. One may easily verify that\sum 

j\in \BbbZ n

\^\psi nj (\mu ,\vec{}z) =
Nn

Nn + 1

\Bigl[ \sum 
j\in \BbbZ n

\psi nj (\mu ) +
\mu (\BbbR )
Nn

\Bigr] 
=

Nn
Nn + 1

\Bigl[ 
\mu (\BbbR ) +

\mu (\BbbR )
Nn

\Bigr] 
= \mu (\BbbR );

mn(\BbbR , i, \vec{}z) =
\sum 
j\in \BbbZ n

\^\psi nj (m(\cdot , i), \vec{}z) =m(\BbbR , i), and thus mn(S, \vec{}z) = 1.

In particular, this implies that mn(\cdot , \vec{}z) \in \scrP 2(S) for every \vec{}z \in \Delta n, where the square
integrability follows from the fact that Supp(mn(\cdot , \vec{}z)) is finite. Finally, let \zeta n be a
smooth density function with support \Delta n, and we construct

Un(m) :=

\int 
\Delta n

U(mn(\cdot , \vec{}z))\zeta n(\vec{}z)d\vec{}z, m\in \scrP 2(S).(A.11)

The smoothness of Un follows from the same arguments as in [20, Theorem 3.1].
However, we note that [20] uses the \scrW 1-distance and requires \scrM to be a compact
subset of \scrP 1(S). This is mainly for the uniform Lipschitz continuity of Un which holds
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1734 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

only under \scrW 1. Here we provide a proof for the uniform convergence of Un under
\scrW 2. We first show that

\scrM :=
\Bigl\{ 
mn(\cdot , \vec{}z) :m\in \scrM , n\geq 1, \vec{}z \in \Delta n

\Bigr\} 
\subset \scrP 2(S) is compact.(A.12)

Indeed, fix R> 0. Denote \BbbZ Rn := \{ j \in \BbbZ n : | j| \geq nR\} for n> R
2 . Then\int 

\{ | x| >R\} 
| x| 2mn(dx, i,\vec{}z) =

\sum 
j\in \BbbZ R

n

j2

n2
\^\psi n\vec{}j (m(\cdot , i), \vec{}z)

=
\sum 
j\in \BbbZ R

n

j2

n2
Nn

Nn + 1

\Bigl[ 
\psi nj (m(\cdot , i)) +m(\BbbR , i)

\Bigl[ 1

N2
n

+ zj

\Bigr] \Bigr] 
.

From the construction of \psi \vec{}j , one can easily verify that

\sum 
\vec{}j\in \BbbZ R

n

j2

n2
\psi nj (m(\cdot , i))\leq 2

\int 
\{ | x| >R\} 

| x| 2m(dx, i).

Moreover, note that | zj | \leq N - 3
n for all j \in \BbbZ Rn . Then, for n> R

2 ,\int 
\{ | x| >R\} 

| x| 2mn(dx, i,\vec{}z)\leq 2

\int 
\{ | x| >R\} 

| x| 2m(dx, i) +
\sum 
j\in \BbbZ R

n

j2

n2
m(\BbbR , i)

C

N2
n

\leq 2

\int 
\{ | x| >R\} 

| x| 2m(dx, i) +
Cm(\BbbR , i)
Nn

\leq 2

\int 
\{ | x| >R\} 

| x| 2m(dx, i) +
Cm(\BbbR d, i)

R2
.

On the other hand, when n< R
2 , we have

\int 
\{ | x| >R\} | x| 

2mn(dx, i,\vec{}z) = 0. Thus,

sup
m\in \scrM ,n\geq 1,\vec{}z\in \Delta n

\sum 
i=0,1

\int 
\{ | x| >R\} 

| x| 2mn(dx, i,\vec{}z)\leq 2 sup
m\in \scrM 

\sum 
i=0,1

\int 
\{ | x| >R\} 

| x| 2m(dx, i) +
C

R2
.

Since \scrM \subset \scrP 2(S) is compact, we have limR\rightarrow \infty supm\in \scrM 
\sum 
i=0,1

\int 
\{ | x| >R\} | x| 

2m(dx, i) =
0. Then

lim
R\rightarrow \infty 

sup
m\in \scrM ,n\geq 1,\vec{}z\in \Delta n

\sum 
i=0,1

\int 
\{ | x| >R\} 

| x| 2mn(dx, i,\vec{}z) = 0.

This proves that \scrM is uniformly square integrable, and therefore compact in \scrP 2(S).
Next, note that \scrM is also compact in \scrP 1(S); by [20, (3.15)] we have

lim
n\rightarrow \infty 

sup
m\in \scrM ,\vec{}z\in \Delta n

\scrW 1(mn(\cdot , \vec{}z),m) = 0.(A.13)

Then, for any R> 0,

\scrW 2
2 (mn(\cdot , \vec{}z),m)\leq R\scrW 1(mn(\cdot , \vec{}z),m) +C

\sum 
i=0,1

\int 
| x| \geq R

2

| x| 2
\bigl[ 
mn(dx, i,\vec{}z) +m(dx, i)

\bigr] 
.

This, together with the uniform integrability of \scrM and (A.13), implies immediately
that

lim
n\rightarrow \infty 

sup
m\in \scrM ,\vec{}z\in \Delta n

\scrW 2(mn(\cdot , \vec{}z),m) = 0.(A.14)
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VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1735

Finally, by the compactness (A.12), we see that U is uniformly continuous on \scrM .
Then it follows from (A.11) and (A.14) that limn\rightarrow \infty supm\in \scrM | Un(m) - U(m)| = 0.

Remark A.1. While not used in the paper, the following property is interesting
in its own right: if U is monotone under \preceq , then so is the Un constructed in (A.11).
Indeed, assume U is increasing, and let m\prime \preceq m with transition probability p. For
each \vec{}z \in \Delta n, by (A.9) and (A.10), it is clear that

0< \^\psi nj (m
\prime (\cdot ,1), \vec{}z)\leq \^\psi nj (m(\cdot ,1), \vec{}z), and thus

\^pj(\vec{}z) := \^\psi n\vec{}j (m
\prime (\cdot ,1), \vec{}z) / \^\psi nj (m

\prime (\cdot ,1), \vec{}z)\in (0,1].

Since m\prime (dx,\{ 0,1\} ) = m(dx,\{ 0,1\} ), it is also obvious that
\sum 
i=0,1

\^\psi nj (m
\prime (\cdot , i), \vec{}z) =\sum 

i=0,1
\^\psi nj (m(\cdot , i), \vec{}z). Then m\prime 

n(\cdot , \vec{}z)\leq mn(\cdot , \vec{}z) for each \vec{}z \in \Delta n, with transition prob-

ability \^p(\cdot , \vec{}z) satisfying \^p( jn , \vec{}z) = \^pj(\vec{}z) for all j \in \BbbZ n. Then, since U is increasing, by
(A.11) we see that Un(m

\prime )\leq Un(m).

Proof of Lemma 3.9. (i) Let m\prime \preceq m with transition probability p. As m is a
probability measure on (S,\scrB (S)), it is a Radon measure. Then, by Lusin's theorem
(see Folland [12, 7.10]), we may find for all k\geq 1 a continuous pk :\BbbR d  - \rightarrow [0,1] s.t.

m
\bigl( 
\{ x : p(x) \not = pk(x)\} ,\{ 0,1\} 

\bigr) 
\leq 1

k
.

Let \{ m\prime 
k\} k\geq 1 be the measures obtained fromm by applying the transition probabilities

\{ pk\} k\geq 1, and \phi a bounded and continuous function. Then\bigm| \bigm| \bigm| \int 
\BbbR d

\phi (x)pk(x)m(dx,1) - 
\int 
\BbbR d

\phi (x)p(x)m(dx,1)
\bigm| \bigm| \bigm| \leq 2

k
\| \phi \| \infty ,

and thus m\prime 
k(dx,1) converges weakly to m\prime (dx,1). We do similarly with m\prime 

k(dx,0),
and thus m\prime 

k converges weakly to m\prime . As \{ m\prime 
k\} k\geq 1 is uniformly integrable, we have

limk\rightarrow \infty \scrW 2(m
\prime 
k,m

\prime ) = 0. As v is nondecreasing for \preceq , we have v(m)\geq v(m\prime 
k) for all

k\geq 1. Then, as v is \scrN -LSC, we have v(m)\geq lim infk\rightarrow \infty v(m\prime 
k)\geq v(m\prime ).

(ii) As (\BbbD I\varphi )\ast is LSC, there exists \delta > 0 s.t. (\BbbD I\varphi )\ast \geq 0 on [t, t+ \delta ]\times \scrB \scrW 2
(m,\delta ). Let

(s,m0), (s,m1) be in this neighborhood, s.t. m1 \preceq m0 with transition probability p.
Then, we have

\varphi (s,m0) - \varphi (s,m1) =

\int 1

0

\int 
\BbbR d

DI\varphi (t, \lambda m0 + (1 - \lambda )m1, x)(1 - p(x))m(dx,1)d\lambda .

By convexity of \scrB \scrW 2
(m,\delta ), we have DI\varphi (t, \lambda m0+(1 - \lambda )m1, \cdot )\geq 0, hence the desired

result.
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