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ABSTRACT

Jianfeng Zhang. Ph.D., Purdue University, August 2001. Some Fine Properties
of Backward Stochastic Di�erential Equations. Major Advisors: Jin Ma and Jim
Douglas.

In this thesis we investigate various properties of the martingale part, usually

denoted by Z, of the solution to a class of Backward Stochastic Di�erential Equations

(BSDEs, for short), with path-dependent terminals.

We �rst establish some Feynman-Kac type representation formulae for the process

Z for BSDEs with simple terminals. The main feature of these formulae is that they

do not involve the derivatives of the coeÆcients of the BSDEs, and the main device is

the Malliavin Calculus. We also provide a probabilistic approach towards the classical

solution to a nonlinear PDE.

By extending our representation formulae and using some approximating tech-

niques, we prove that, for a large class of BSDEs with path-dependent terminals, the

process Z is pathwisely c�adl�ag (right continuous with left limits), or even continuous.

Our proof of convergence relies heavily on the Meyer-Zheng tightness criterion.

Based on the above results, we propose a \two-step scheme" to numerically solve

BSDEs with path-dependent terminals. Our scheme (strongly) converges in L2, under

mild conditions, with rate of convergence
q

log n
n
.

Finally, with the same spirit but di�erent techniques, we extend our representation

formulae and path regularity results to models driven by L�evy processes, motivated

by questions arising in �nancial asset pricing theory where the market is incomplete.
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CHAPTER 1. INTRODUCTION

1.1 Problem Description

The motivation for studying Backward Stochastic Di�erential Equations (BSDEs,

for short) comes originally from stochastic optimal control theory, and the theory

can be traced back to Bismut [6] (1973) who studied the linear case. In 1990,

Pardoux-Peng [43] proved the well-posedness for nonlinear BSDEs. Since then, BS-

DEs have been extensively studied and used in many applied and theoretical areas,

particularly in Mathematical Finance. Moreover, initiated by Antonelli [1] (1993),

Forward-Backward Stochastic Di�erential Equations (FBSDEs) are also investigated

systematically, especially Ma-Protter-Yong [35] established the Four Step Scheme,

and Hu-Peng [26] and Yong [50] established the Method of Continuation. For the

theory and application of BSDEs and FBSDEs, we refer the readers to the books

of El Karoui-Mazliak [18], Ma-Yong [37], as well as Yong-Zhou [51]; and the survey

paper of El Karoui-Peng-Quenez [19].

Now let us turn into our speci�c subject. We begin with the following set-up.

Unless otherwise speci�ed, we let T > 0 be a �xed terminal time, and (
;F ;F;P)
be a complete �ltered probability space on which is de�ned a d-dimensional stan-

dard Brownian motion W , such that F = fFtg0�t�T is the natural �ltration of W ,

augmented by all the P-null sets.

A well-investigated class of decoupled FBSDEs is of the following form:8>><>>:
Xt = x +

Z t

0
b(Xs)ds+

Z t

0
�(Xs)dWs;

Yt = g(XT ) +
Z T

t
f(s; Ys; Zs)ds�

Z T

t
hZs; dWs i;

(1.1)

where all the coeÆcient functions are deterministic, and h �; � i denotes the inner prod-
uct in IRd. In one of their seminar works [44] (1992), Pardoux-Peng proved that,
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among other things, the adapted solution to the BSDE in (1.1) provided a probabilis-

tic representation to the viscosity solution to some nonlinear parabolic PDE, in the

spirit of the well known Feynman-Kac formula; On the other hand, they proved that

Yt and Zt can be expressed as deterministic functions of (t; Xt). This point of view

is essential in this thesis.

Although BSDEs have received intensive attention during the past decade, people

have much less knowledge of the process Z than that of Y . The main diÆculty for

studying Z lies in the fact that it is the \derivative" of Y , either in the sense of

Feynman-Kac formula (cf. e.g., [44] or [35]) or in the sense of Clark-Ocone formula

(cf. e.g., [42]). Consequently, Z does not behave as nicely as Y does. In practice,

however, Z is very useful. It is interpreted as the hedging strategy in Mathematical

Finance theory, for example. Due to the practical signi�cance and the theoretical

challenge, the process Z plays a special role in BSDEs theory.

My work mainly focuses on various properties of the process Z, in particular when

the terminal value of the BSDE is a true functional of the forward di�usion, motivated

by exotic options in Finance theory. Our goal is to �nd an eÆcient numerical method

for quite general BSDEs. Along the way getting there we also obtain some �ne

properties of the process Z, in particular some new representation formulae and some

path regularity results. These results are interesting in their own rights.

We begin by establishing some nonlinear Feynman-Kac type representation for-

mulae for the process Z, when the terminal of the BSDE is of the form g(XT ) for

some function g. Although Z is the \derivative" of Y , as mentioned above, our new

formulae do not involve the derivatives of the coeÆcients of the BSDE, and thus

hold true even when those coeÆcients are not di�erentiable. The main device of our

proof is an integration by parts formula of Malliavin Calculus. Such an idea was

recently employed in numerical �nance for computing various \greeks" of the mar-

ket (cf. Fourni�e, et al. [21]). Using the same idea we also provide a probabilistic

representation formula for the second order derivatives of the viscosity solution to a
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nonlinear PDE, and prove that, under certain conditions, that viscosity solution is in

fact the classical solution to the PDE.

We further extend our formulae to the case that the terminal of the BSDE depends

on �nite number of values of the forward di�usion X. Then by using some delicate

approximating techniques, especially the Meyer-Zheng pseudo-path topology as the

key device for proof of convergence, we may study the path regularity of Z, in the

case that the terminal of the BSDE is a true functional of X. We show that the

process Z admits a c�adl�ag version if the terminal of the BSDE is an \L1-Lipschitz"

functional of the forward di�usion, and Z is even continuous if the terminal is an

\L1-Lipschitz" functional.

It is worth pointing out here that the path regularity of the process Z has been

an open problem in BSDE literature for about a decade. In general the martingale

part of the solution to a BSDE is not regular in a pathwise manner. For example, if

we let � =
R T
0 hsdWs for any F-predictable process h, such that EfR T0 jhsj2dsg <1,

and let (Y; Z) be the F-adapted solution to the following simple BSDE:

Yt = � �
Z T

t
hZs; dWs i; t 2 [0; T ];

then by the uniqueness of martingale representation theorem (or by the uniqueness

of the adapted solution to a BSDE) we have Z = h, which has no path regularity in

general. But as we will prove in this thesis, the process Z does have path regularity

when the terminal of the BSDE is a \nice" functional of the forward di�usion X. Our

results will enable one to put the solution pair (Y; Z) in a canonical path space, such

as the well-known lD-space with Skorohod topology, which opens the door to many

further studies on BSDEs, especially to those concerning the solutions in a weak sense,

both theoretically and numerically.

The path regularity of Z also contributes greatly to our numerical scheme for

BSDEs with path-dependent terminals. To my knowledge, to date there are few

numerical methods for BSDEs in publication, and all the existing methods either

require high regularity of the coeÆcients (thus Z is \nice", see [44] or [35], for example)
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or lack a good rate of convergence (because Z is not \nice"). Relying heavily on our

regularity results of Z, our scheme improves in both aspects. To be more speci�c,

it converges strongly in L2 under certain mild conditions, with a rate of convergenceq
log n
n

for L1-Lipschitz terminals, and 1p
n
for L1-Lipschitz terminals. Another feature

of this new method is that both Y and Z are approximated by step processes, which

is also important in practice. But, although it is already an improvement compared

with some other methods, our scheme still faces the \high dimension" problem. That

is, in high dimensional case it also requires high computational cost.

Finally we investigate the case where the forward di�usion is driven by L�evy

processes, which leads to an incomplete �nancial market. In the same spirit but

with di�erent techniques from the Brownian case, we establish some representation

formulae for the risking minimizing hedging strategy (corresponding to the process

Z) when the terminal payo� is a \discrete functional" of the underlying assets prices,

and furthermore prove that that hedging strategy admits a c�agl�ad version for a quite

general class of path-dependent payo�s.

The rest of the thesis is organized as follows. In next section we present some

preliminaries. In Chapter 2 some nonlinear Feynman-Kac type representation formu-

lae are established and the relationship between PDEs and BSDEs is reinvestigated.

In Chapter 3 we prove the path regularity results, and in Chapter 4 we propose a

\two-step" scheme to numerically solve BSDEs with path-dependent terminals. The

last chapter deals with the L�evy case.

1.2 Preliminaries

In this section we list the notations used throughout the thesis and present some

useful results which are either standard or slight variations of the well-known results

in their own literature. We give only the statements for ready references.
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1.2.1 De�nitions and Notations

Recall that T > 0 is a �xed time and that (
;F ;F;P) is a complete probability
space on which is de�ned a d-dimensional Brownian motion W . Let X denote a

generic Banach space. In particular, X denotes a generic Euclidean space when

derivatives are involved, and regardless of their dimensions we denote h �; � i and j � j
to be the inner product and norm in all X 's, respectively. The following spaces will

be frequently used in the sequel:

� for 0 � s < t � T , lD[s; t] is the space of all c�adl�ag (right continuous with

left limits) vector functions ' : [s; t] 7! IRk, where k can be speci�ed from the

context. In particular, lD = lD[0; T ].

� for 0 � p < 1, Lp([0; T ];X ) is the space of all measurable functions ' :

[0; T ] 7! X such that
R T
0 j'(t)jpdtg < 1; and also, � 2 L1(F; [0; T ];X ) means

it is a process uniformly bounded in (t; !);

� for integers `, C`([0; T ];X1;X2) is the space of all continuous functions ' :

[0; T ] � X1 7! X2, such that ' is `�times di�erentiable with respect to the

spatial variables. In particular, C([0; T ];X1;X2)
4
= C0([0; T ];X1;X2).

� for integers `, C`
b([0; T ];X1;X2) is the subspace of C`([0; T ];X1;X2) such that

its element ' has uniformly bounded partial derivatives for all orders up to `.

� CL([0; T ];X1;X2) is the space of all continuous functions ' : [0; T ] � X1 7!
X2, such that ' is uniformly Lipschitz continuous with respect to the spatial

variables.

� C
1
2
L ([0; T ];X1;X2) is the subspace of CL([0; T ];X1;X2) such that its element '

is H�older-1
2
continuous with respect to time, with uniformly bounded Lipschitz

and H�older constants.

� for 0 � p <1, Lp(F; [0; T ];X ) is the space of all X -valued, F-adapted processes

� satisfying EfR T0 k�tkpXdtg <1.
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� C(F; [0; T ];X1;X2) is the space of all continuous F-adapted processes ' : 
 �
[0; T ]� X1 7! X2;

� CL(F; [0; T ];X1;X2) is the space of all F-adapted processes ' : 
� [0; T ]�X1 7!
X2, such that for a.s. !, '(!; :) 2 CL([0; T ];X1;X2) and the Lipschitz constants

are uniformly bounded for all !.

When the context is clear, for notational simplicity we often omit the time and space

parameters. For example, we write CL instead of CL([0; T ];X1;X2), and CL(F) instead

of CL(F; [0; T ];X1;X2), etc..

The main object of this thesis is the following decoupled FBSDE:8>><>>:
Xt = x +

Z t

0
b(s;Xs)ds+

Z t

0
�(s;Xs)dWs;

Yt = �(X) +
Z T

t
f(s;Xs; Ys; Zs)ds�

Z T

t
ZsdWs;

(1.2)

where b; �, and f are deterministic functions, taking values in IRd1 ; IRd1�d, and IR,

respectively, and � : lD 7! IR is a deterministic functional. We denote the solution to

(1.2) by �
4
= (X; Y; Z), where X is of dimension d1, Y is scalar, and Z is of dimension

d. For notational simplicity, we take the convention that X and b are column vectors

while Z is a row vector. Furthermore, for a scalar function ' on IRn, we denote

@x' = ( @'
@x1
; � � � ; @'

@xn
) as a row vector. Note that if ' = ('1; � � � ; 'm)T : IRn 7! IRm,

then @x' is a matrix whose j-th row is @x'
j.

In this thesis, we content ourselves with functionals � of the following four types.

De�nition 1.2.1 A functional � : lD 7! IR is called

� simple, if �(x) = g(x(T )), for 8x 2 lD;

� discrete, if �(x) = g(x(t0); � � � ;x(tn)), for 8x 2 lD, where 0 = t0 < � � � < tn = T ;

� L1-Lipschitz, if there exists a constant K such that

j�(x1)� �(x2)j � K sup
0�t�T

jx1(t)� x2(t)j; 8x1;x2 2 lD; (1.3)
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� L1-Lipschitz, if � satis�es the following estimate

j�(x1)� �(x2)j � K
Z T

0
jx1(t)� x2(t)jdt; 8x1;x2 2 lD: (1.4)

Remark 1.2.2 L1-Lipschitz implies L1-Lipschitz. If � is simple or discrete, then �

is L1-Lipschitz if and only if the corresponding g is a Lipschitz function.

1.2.2 Some Results of BSDEs

We begin with the well-posedness of a BSDE.

Theorem 1.2.3 [43] For 8� 2 L2(FT ) and 8f 2 CL(F), the following BSDE:

Yt = � +
Z T

t
f(s; Ys; Zs)ds�

Z T

t
ZsdWs;

has a unique solution (Y; Z) 2 C(F)� L2(F).

To see the relation between PDEs and BSDEs, we consider the following parabolic

PDE: 8><>: ut +
1
2
trf��Tuxxg+ bux + f(t; x; x; ux�) = 0;

u(T; x) = g(x);
(1.5)

and decoupled FBSDE:8>><>>:
X t;x

s = x +
Z s

t
b(r;X t;x

r )dr +
Z s

t
�(r;X t;x

r )dWr;

Y t;x
s = g(X t;x

T ) +
Z T

s
f(r;X t;x

r ; Y t;x
r ; Zt;x

r )dr �
Z T

s
Zt;x
r dWr;

8s 2 [t; T ]: (1.6)

Here the superscript t;x indicates the dependence of the solution on the initial date

and value (t; x), and it will be omitted when the context is clear. Our result is:

Theorem 1.2.4 [44] If the PDE (1.5) has a classical solution u, then Y t;x
s

4
=

u(s;X t;x
s ) and Zt;x

s
4
= ux(s;X

t;x
s )�(s;X t;x

s ) solve the BSDE in (1.6). On the other hand,

if b; �; f; g 2 CL, then (1.6) has an F-adapted solution and the function u(t; x)
4
= Y t;x

t

is the unique viscosity solution to the PDE (1.5).

The following two estimates are very useful in our future discussion.
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Lemma 1.2.5 [23] Suppose that eb; e� : 
�[0; T ]�X1 7! X2 are F-adapted processes

such that they are uniformly Lipschitz continuous with respect to x 2 X1, with a

common Lipschitz constant K > 0. We assume further that eb(t; 0); e�(t; 0) 2 L2(F).

Let X be the solution to the following SDE:

Xt = x +
Z t

0

eb(s;Xs)ds+
Z t

0
e�(s;Xs)dWs: (1.7)

Then for any p � 2, there exists a constant Cp > 0 depending only on p, T , and K,

such that

E
n
sup
0�t�T

jXtjp
o
� CpE

n
jxjp +

Z T

0

h
jeb(t; 0)jp + je�(t; 0)jpidto;

and

EfjXt �Xsjpg � CpE
n
jxjp + sup

0�t�T
jeb(t; 0)jp + sup

0�t�T
je�(t; 0)jpojt� sj p2 :

Lemma 1.2.6 [19] Assume that ef : 
� [0; T ]�X1 7! X2 is an F-adapted process

such that it is uniformly Lipschitz continuous with respect to x 2 X1, with a common

Lipschitz constant K > 0. We assume further that ef(t; 0; 0) 2 L2(F). For any

� 2 L2(FT ; IR), let (Y; Z) be the adapted solution to the BSDE:

Yt = � +
Z T

t

ef(s; Ys; Zs)ds�
Z T

t
ZsdWs: (1.8)

Then for any p � 2, there exists a constant Cp > 0 depending only on p; T , and K,

such that

E
n
sup
0�t�T

jYtjp +
� Z T

0
jZtj2dt

�p
2
o
� CpE

n
j�jp +

Z T

0
j ef(t; 0; 0)jpdto;

and

EfjYt � Ysjpg � CpE

(h
j�jp + sup

0�t�T
j ef(t; 0; 0)jpijt� sjp�1 +

� Z t

s
jZrj2dr

�p
2

)
:

We conclude this subsection with a stability result.
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Lemma 1.2.7 Let � = (X; Y; Z) denote the solution to FBSDE (1.7) and (1.8), and

�" = (X"; Y "; Z") denote the solution to a corresponding FBSDE with parameters

x"; eb"; e�"; ef " and �". Assume all the coeÆcients involved satisfy the conditions in

Lemmas 1.2.5 and 1.2.6. If for 8(t; x0),

lim
�!0

E
n
jx" � xj2 + jeb"(t; x0)� eb(t; x0)j2 + je�"(t; x0)� e�(t; x0)j2o = 0;

then

lim
�!0

E
n
sup
0�t�T

jX"
t �Xtj2

o
= 0:

If we assume further that, for 8(y0; z0),

lim
�!0

E
n
j�" � �j2 +

Z T

0
j ef "(t; y0; z0)� ef(t; y0; z0)j2dto = 0;

then

lim
�!0

E
n
sup
0�t�T

jY "
t � Ytj2 +

Z T

0
jZ"

t � Ztj2dt
o
= 0:

1.2.3 Motivation in Finance

Along its theoretical development, BSDEs have been applied to various areas,

especially in Mathematical Finance. In a �nancial derivative market, FBSDE (1.2)

has the following interpretation. The process X represents the underlying assets

price; �(X) is the terminal payo�; Y is the wealth process, or the security price; and

Z is the hedging strategy, or stock portfolio.

To see the connection between SDEs and �nance more speci�cally, let us consider

the standard Black-Schole market model:8>>>>>>>><>>>>>>>>:

dS0
t = S0

t rtdt; (Bond/Money Market)

S0
0 = s0;

dSit = Sitfbitdt+
Pd

j=1 �
ij
t dW

j
t g; (Stocks)

Si0 = si; i = 1; � � � ; d:

We adopt the following notations:

� S0
t , S

i
t|prices of bond/(i-th) stocks (per share) at time t;
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� rt|interest rate at time t;

� fbitgNi=1|appreciation rates of the market at time t;

� [�ijt ]|volatility matrix of the market at time t;

� Vt|dollar amount of the total wealth of an investor at time t;

� �it|dollars invested in i-th stock at time t, i = 1; � � � ; N ;

� Vt �
NX
i=1

�it|dollars in the bond at time t;

� Ct|cumulated consumption up to time t.

Then, V satis�es the SDE: for t 2 [0; T ],8><>: dVt = [rtVt + �t(bt � rt1)]dt+ �t�tdWt � dCt;

V0 = v:
(1.9)

where 1 = (1; � � � ; 1)T , � is a row vector and b is a column vector.

Note that (1.9) is a forward SDE, since the initial investment V0 is given. But

in derivative markets, for example in option markets, we do not know V0; instead,

we know the terminal payo� VT = �(S). Following are some typical options: Let q

denote the strike price,

� �(S) = (ST � q)+|European option;

� �(S) = (
1

T

Z T

0
Stdt� q)+|Asian option;

� �(S) = max
0�t�T

St|Look-back option;

� � = 1fST>qg|Digital option;

� � = (ST � q)+1fmax0�t�T St�hg| European barrier option;

� � = (S� � q)+|American option (� -stopping time).
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Among them, European options are extensively studied. My work is mainly mo-

tivated by Asian options and Look-back options which are path dependent, but are

continuous in the sense of L1-Lipschitz and L1-Lipschitz, respectively.

Given the terminal payo� �(S), the calculation of the option price and stock

portfolio leads to backward SDEs. To illustrate it, we take European option as an

example. De�ne the \fair price" of an option to be

p = inffv : 9(�; C); such that V v;�;C
T � �(S)g:

El Karoui-Peng-Quenez [19] showed that the fair price p of an European option and

the corresponding \hedging strategy" (�; C) can be determined as follows:

� C � 0;

� p = V0, and �t = (�1t ; � � � ; �Nt ), where (V; �) solves the BSDE:

Vt = � �
Z T

t

h
rsVs + �s(bs � rs1)

i
ds�

Z T

t
�s�sdWs: (1.10)

While obviously we may identify (X; Y ) with (S; V ), from (1.10) we see that Z rep-

resents ��. Since � is given by the underlying assets market, and we assume that �

is nondegenerate, we know that, in order to �nd �, it is equivalent to solve for Z.

1.2.4 Basics of Malliavin Calculus

In this subsection we review some basic facts of Malliavin calculus (also known as

anticipating stochastic calculus), especially those related to the SDEs. We refer the

readers to Nualart [42] for the basic theory and to Pardoux-Peng [44] for the results

related to BSDEs. To begin with, let S be the space of all random variables of the

form

� = F
� Z T

0
'1(t)dWt; � � � ;

Z T

0
'n(t)dWt

�
;

where F 2 C1
b (IRn) and '1; � � � ; 'n 2 L2([0; T ]; IRd). To simplify notations later, we

make the convention here that all 'i's are row vectors.
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We call a mapping D : S 7�! L2([0; T ] � 
) the derivative operator if for each

� 2 S and t 2 [0; T ],

Dt� =
nX
i=1

@F

@xi

� Z T

0
'1(t)dWt; � � � ;

Z T

0
'n(t)dWt

�
'i(t):

Next, we introduce a norm on S:

k�k21;2 = Ej�j2 + E
Z T

0
jDt�j2dt; 8� 2 S;

and we denote lD1;2 to be the completion of S in L2(
) under k � k1;2. It can be

shown (see, e.g., [42]) that D is a densely de�ned, closed linear operator from lD1;2 to

L2(
� [0; T ]) with domain lD1;2.

To apply the Malliavin calculus to SDEs, we consider FBSDE (1.6) on the subin-

terval [t; T ] � [0; T ]. The following variational equation of (1.6) will play an important

role in this thesis: for i = 1; � � � ; d1,8>>>>>>>><>>>>>>>>:

riXs = ei +
Z s

t
@xb(r;Xr)riXrdr +

dX
j=1

Z s

t
[@x�

j(r;Xr)]riXrdW
j
r ;

riYs = @xg(XT )riXT +
Z T

s
[@xf(r;�r)riXr + @yf(r;�r)riYr

+ h @zf(r;�r);riZr i]dr �
Z T

s
riZrdWr;

(1.11)

where ei = (0; � � � ; i1; � � � ; 0)T is the i-th coordinate vector of IRd1 ; �j(�) is the j-

th column of the matrix �(�). Note that we omitted the superscript t;x in (1.11).

Further, we denote

rX = (r1X; � � � ;rd1X); rY = (r1Y; � � � ;rd1Y ); rZ = ([r1Z]
T ; � � � ; [rd1Z]

T ):

Then, (rX;rY;rZ) 2 C(F; IRd1�d1) � C(F; IRd1) � L2(F; IRd�d1), and satisfy the

following FBSDE:8>>>>>>>><>>>>>>>>:

rXs = Id1 +
Z s

t
@xb(r;Xr)rXrdr +

dX
j=1

Z s

t
[@x�

j(r;Xr)]rXrdW
j
r ;

rYs = @xg(XT )rXT +
Z T

s
[@xf(r;�r)rXr + @yf(r;�r)rYr

+@zf(r;�r)rZr]dr �
� Z T

s
[rZr]

TdWr

�T
:

(1.12)
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Note that the d1 � d1-matrix-valued process rX satis�es the linear SDE above

and rXt = I, thus [rXs]
�1 exists for all s 2 [t; T ], P -a.s. Moreover, by applying

Itô's formula we may easily prove that [rXs]
�1 is the solution to the following SDE:

[rXs]
�1 = Id1 �

Z s

t
[rXr]

�1�@xb� dX
j=1

(@x�
j)2
�
(r;Xr)dr (1.13)

�
dX

j=1

Z s

t
[rXr]

�1@x�
j(r;Xr)dW

j
r :

The following lemma concerns the Malliavin derivatives of the solution (X; Y; Z) to

(1.6). Since the proof is standard and can be found in, e.g., Nualart [42] and Pardoux-

Peng [44], we omit it.

Lemma 1.2.8 Assume that b; �; f; g 2 C1
b . Then (X; Y; Z) 2 L2([0; T ]; lD1;2), and

there exists a version of (DsXr; DsYr; DsZr) that satis�es8>>>>><>>>>>:
DsXr = rXr[rXs]

�1�(s;Xs)1fs�rg;

DsYr = rYr[rXs]
�1�(s;Xs)1fs�rg;

DsZr = rZr[rXs]
�1�(s;Xs)1fs�rg;

(1.14)

where

DsXr
4
=

26664
DsX

1
r

...

DsX
d1
r

37775 ; and DsZr
4
=

26664
DsZ

1
r

...

DsZ
d
r

37775 :
To conclude this subsection let us introduce the notion of Skorohod integral (or

Hitsuda-Skorohod integral) which will be one of the key devices in this thesis. Recall

the derivative operator D is a closed, densely de�ned operator from L2(
) to L2(
�
[0; T ]), we can de�ne its adjoint operator Æ : Dom(Æ) � L2(
� [0; T ]; IRd) 7! L2(
; IR)

by

EfFÆ(u)g = E
Z T

0
DtFutdt; 8F 2 lD1;2; 8u 2 Dom(Æ); (1.15)

where Dom(Æ)
4
=
n
u 2 L2(
� [0; T ];

d

IR) : jEf
Z T

0
DtFutdtgj � CkFk1;2; 8F 2 lD1;2

o
.

The operator Æ is then called the Skorohod integral of the process u, and by a slight

abuse of notation, we still denote it as

Æ(u) =
Z T

0
hut; dWt i; u 2 Dom(Æ): (1.16)
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One should keep in mind that, if in the sequel the integrand of a stochastic integral

is not F-adapted, then it should always be understood as a Skorohod integral. On

the other hand, it can be shown that, if u 2 L2(F; [0; T ]; IRd), then u 2Dom(Æ), and
the Skorohod integral (1.16) coincides with the usual Itô integral. Furthermore, we

have the following important properties of such integrals (cf. [42]).

Lemma 1.2.9 Suppose that F 2 lD1;2. Then

(i) (Integration by parts formula): for any u = (u1; � � � ; un) 2 (Dom(Æ))n and

F 2 L2(FT ) such that Fu 2 L2([0; T ] � 
; IRn�d), one has Fu 2 (Dom(Æ))n, and it

holds that

� Z T

0
FuTt dWt

�T
= Æ(Fu) =

�
F
Z T

0
uTt dWt

�T � Z T

0
DtFutdt;

(ii) (Clark-Haussmann-Ocone formula):

F = EfFg+
Z T

0
EfDtF jFtgdWt:

1.2.5 Meyer-Zheng Tightness Criterion

In this subsection we introduce the notions of pseudo-path topology and quasi-

martingales (cf. Dellacherie-Meyer [15] or Meyer-Zheng [41]), adjusted to our setting.

To begin with, note that lD � L0([0; T ]). For any w 2 L0([0; T ]), we de�ne the

pseudo-path of w to be a probability measure on [0; T ]� �IR:

Pw(A)
4
=

1

T

Z T

0
1A(t; w(t))dt; 8A 2 B([0; T ]� �IR): (1.17)

It can be shown that the mapping  : w 7! Pw is 1-1 on L0([0; T ]). Thus we can

identify all w 2 L0([0; T ]) with its pseudo-path; and we denote all pseudo-paths by

	. In particular, using the mapping  the space lD can then be embedded into the

compact space P of all probability laws on the compact space [0; T ] � �IR (with the

Prohorov metric). Clearly, in this sense

lD � 	 � P : (1.18)
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The induced topology on 	 and lD are known as the pseudo-path topology or some-

times called Meyer-Zheng topology. The following characterization of the Meyer-

Zheng topology is worthing noting.

Lemma 1.2.10 (Meyer-Zheng [41, Lemma 1]) The pseudo-path topology on 	 is

equivalent to the convergence in measure.

Furthermore, it is known that (see, e.g., [41]) that 	 is a Polish space; and lD is a

Borel set in P. Consequently, we have

B(lD) = lD \ B(	) 4
= fA \ lD : A 2 B(	)g:

We now make the following observation. Denote M(lD) to be the space of all prob-

ability measures on lD, and M(	) be that of 	. Then, any probability measure

P 2 M(lD) induces a probability measure bP 2 M(	) by:

bP (A) = P (A \ lD); 8A 2 B(	): (1.19)

In this sense we then have M(lD) �M(	).

The most signi�cant application of the Meyer-Zheng topology is a tightness re-

sult for quasimartingales, which we now briey describe. Let X be an F-adapted,

c�adl�ag process de�ned on [0; T ], such that EjXtj <1 for all t � 0. For any partition

� : 0 = t0 < t1 < � � � < tn � T , let us de�ne

V �
T (X)

4
=

X
0�i<n

EfjEfXti+1 �Xti jFtigjg+ EfjXtnjg; (1.20)

and de�ne the conditional variation of X by VT (X)
4
= sup� V

�
T (X). If VT (X) < 1,

then X is called a quasimartingale 1. We have the following result.

Lemma 1.2.11 (Meyer-Zheng [41]) Let fPngn�1 �M(lD), such that under each Pn

the coordinate process Xt(!) = !(t), t 2 [0; T ], ! 2 lD, is a quasimartingale. Assume
1We should note that the quasimartingale in [41] is de�ned on [0;1]. However, it is fairly

easy to check that if X is a quasimartingale on [0; T ] as is de�ned above, then the process bXt =
Xt1[0;T )(t) + XT 1[T;1)(t), t 2 [0;1] is a quasimartingale in the sense of [41]. Furthermore, the
conditional variation VT (X) de�ned here, although looks slightly di�erent, is exactly the same as

V ( bX) de�ned in [41]. In other words, our quasimartingale is a \local" version of that in [41].
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that Vn(X), n � 1, the conditional variation of X under Pn's, are uniformly bounded

in n. Then there exists a subsequence fPnkg which converges weakly on lD to a law

P � 2 M(lD), and X is a quasimartingale under P �.
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CHAPTER 2. SOME NEW REPRESENTATION FORMULAE

In a recent paper [21] Fourni�e-Lasry-Lebuchoux-Lions-Touzi employed Malliavin

calculus in numerical �nance for computing various \greeks" of the market. In this

chapter we extend their idea to the nonlinear FBSDE (1.6) and establish a represen-

tation formula for Z without using the derivatives of f or g. In light of Theorem

1.2.4, this formula also represents the derivatives of the viscosity solution to PDE

(1.5). We extend the formula further for the second order derivatives. The results are

presented in x2 and x3, respectively. In x1 we prove some estimates involving X and

two auxiliary processes N and R. In x4, we conclude that actually we have obtained,
under certain conditions, the classical solution to PDE (1.5). Finally in x5, we extend
the formula in x2 to the case that the terminal of the BSDE is a discrete functional

of X.

Throughout the chapter, we shall often make use of the following Assumption:

Assumption 2.0.12 (i) The functions b; � 2 C1
b . We use a common constant K > 0

to denote all the Lipschitz constants, and assume

sup
0�t�T

n
jb(t; 0)j+ j�(t; 0)j

o
� K:

(ii) d1 = d. Moreover, we assume that � satis�es:

�(t; x)�T (t; x) � 1

K
Id; 8(t; x) 2 [0; T ]� IRd:

(iii) The functions f; g 2 CL. We use the same constant K to denote all the Lipschitz

constants, and assume

sup
0�t�T

jf(t; 0; 0; 0)j+ jg(0)j � K:
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Throughout the thesis, unless otherwise speci�ed, we shall use the following con-

ventions: (i) In what follows we denote C > 0 to be a generic constant depending

only on constants T and K, which is allowed to vary from line to line; (ii) Although

most of our results hold true in high dimensional case (as will be stated in the the-

orems), to simplify the presentation we will often prove the results only in the case

that d1 = d = 1.

2.1 Some Estimates for the Forward Di�usion

In this section we establish some useful estimates involving only the forward di�usion

X and two useful auxiliary processes N and R. Readers may consider them as

prerequisites for later sections. First we introduce N and R.

2.1.1 Processes N and R

For 8(t; x) 2 [0; T )� IRd, our objective process here is the forward di�usion X t;x:

X t;x
s = x+

Z s

t
b(r;X t;x

r )dr +
Z s

t
�(r;X t;x

r )dWr; (2.1)

and its gradient process rX t;x de�ned as in (1.12). As usual, we omit the supscript

t;x when there is no confusion.

We assume all the coeÆcients are smooth enough and de�ne the following pro-

cesses on (t; T ]:

�t;x
s

4
= ��1(s;Xs)rXs; N t;x

r
4
=

1

r � t

� Z r

t
�T
s dWs

�T
; (2.2)

and

Rt;x
r

4
= NT

r Nr � 1

r � t

Z r

t
D�N

T
r ��d� +rNT

r ; (2.3)

where D� is the Malliavin derivative operator and rNr is the gradient of N with

respect to x.

Note that in (2.3) D�Nr and rNr are somewhat complicated. We aim to ex-

press them by other simpler terms. To simplify the presentation, we assume d = 1,
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consequently (1.12) becomes:

rX t;x
s = 1 +

Z s

t
@xb(r;X

t;x
r )rX t;x

r dr +
Z s

t
[@x�(r;X

t;x
r )]rX t;x

r dWr: (2.4)

Recalling (2.2) we know that

rNr =
1

r � t

Z r

t
r�sdWs; D�Nr =

1

r � t

h Z r

�
D��sdWs + ��

i
: (2.5)

Applying the Itô's formula on
� Z r

t
��dW�

�2
we have

N2
r �

1

(r � t)2

Z r

t
�2
�d� =

2

(r � t)2

Z r

t
(� � t)N���dW� : (2.6)

Using (2.5) and (2.6) we may rewrite (2.3) as:

Rr =
1

(r � t)2

h
2
Z r

t
(� � t)N���dW� �

Z r

t
��

� Z r

�
D��sdWs

�
d�
i

+
1

r � t

Z r

t
r�sdWs

=
1

(r � t)2

h
2
Z r

t
(� � t)N���dW� �

Z r

t

� Z s

t
��D��sd�

�
dWs

i
(2.7)

+
1

r � t

Z r

t
r�sdWs;

thanks to Fubini's theorem.

So it suÆces to simplify ��D��s and r�s. To this end we apply the chain rule

on �s = ��1(s;Xs)rXs. Then

D��s = (��2�x)(s;Xs)(rXs)
2��1� + ��1(s;Xs)D�rXs

= ��2
s�x(s;Xs)�

�1
� + ��1(s;Xs)D�rXs; (2.8)

and

r�s = �(��2�x)(s;Xs)(rXs)
2+��1(s;Xs)r2Xs = ��2

s�x(s;Xs)+�
�1(s;Xs)r2Xs:

(2.9)

By (2.4) we know that D�rXs satis�es the following SDE:

d(D�rXs) =
h
bx(s;Xs)D�rXs + bxx(s;Xs)(rXs)

2��1�
i
ds

+
h
�x(s;Xs)D�rXs + �xx(s;Xs)(rXs)

2��1�
i
dWs: (2.10)
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Then by recalling (1.13) and applying the Itô's formula we have

d
�
D�rXs[rXs]

�1� = rXs�
�1
�

h
(bxx � �x�xx)(s;Xs)ds+ �xx(s;Xs)dWs

i
: (2.11)

De�ne

�r
4
=
Z r

t
rXs

h
(bxx � �x�xx)(s;Xs)ds+ �xx(s;Xs)dWs

i
: (2.12)

Note that D�rX� = �x(�;X� )rX� , (2.11) leads to

D�rXs[rXs]
�1 = �x(�;X� ) + ��1� (�s � �� ): (2.13)

Therefore we may rewrite (2.8) as

D��s = ��2
s�x(s;Xs)�

�1
� + �s�x(�;X� ) + �s�

�1
� (�s � �� ): (2.14)

Moreover, since r2Xt = 0 and r2Xs satis�es the following SDE:

d(r2Xs) =
h
bx(s;Xs)r2Xs + bxx(s;Xs)(rXs)

2
i
ds

+
h
�x(s;Xs)r2Xs + �xx(s;Xs)(rXs)

2
i
dWs; (2.15)

Using analogous arguments one can show that

r2Xs[rXs]
�1 = �s; (2.16)

and

r�s = ��2
s�x(s;Xs) + �s�s: (2.17)

Combined with (2.14) and (2.17), now (2.7) can be rewritten as

Rr =
1

(r � t)2

h
2
Z r

t
(� � t)N���dW�

�
Z r

t
�s

h
� �s�x(s;Xs)(s� t) +

Z s

t
�x(�;X� )��d� + �s(s� t)�

Z s

t
��d�

i
dWs

i
+

1

r � t

Z r

t
�s

h
� �s�x(s;Xs) + �s

i
dWs

Thus we have

Rr =
1

(r � t)2

Z r

t
�s

h
2(s� t)Ns + (r � s)��s +

Z s

t

���d�
i
dWs; (2.18)

where

��s
4
= ��s�x(s;Xs) + �s; (2.19)

and �; N and � are as de�ned in (2.12) and (2.2).
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2.1.2 Lp-norm Estimates for N and R

In this subsection we give the Lp-norm estimates for processes N and R. To

facilitate our proof, we need a seemingly simple technical lemma.

Lemma 2.1.1 Let � and � be two F-predictable process with good enough inte-

grability. Then for 8p � 1, their exists a constant Cp, depending only on p, such

that

k
Z r

t
�sdskp � (r � t) sup

t�s�r
k�skp; (2.20)

and

k
Z r

t
�sdWskp � Cp

p
r � t sup

t�s�r
k�skp: (2.21)

Consequently, we have

k
Z r

t
�s�sdskp � (r � t) sup

t�s�r
[k�sk2pk�sk2p];

k
Z r

t
�s�sdWskp � Cp

p
r � t sup

t�s�r
[k�sk2pk�sk2p]:

(2.22)

Proof. By H�older inequality we have

j
Z r

t
�sdsj �

� Z r

t
j�sjpds

� 1
p (r � t)1�

1
p :

Thus

E
n��� Z r

t
�sds

���po � (r � t)p�1
Z r

t
Efj�sjpgds � (r � t)p sup

t�s�r
k�skpp;

which clearly implies (2.20).

Moreover, applying the Burkholder-Davis-Gundy inequality and then using (2.20)

we get

E
n��� Z r

t
�sdWs

���po � CpE
n� Z r

t
j�sj2ds

�p
2
o
� Cp(r � t)

p
2 sup
t�s�r

k�sk
p
2
p ;

which proves (2.21).

Finally, note that k�s�skp � k�sk2pk�sk2p, we infer (2.22) from (2.20) and (2.21).

Next theorem gives the Lp estimates for all the processes involved in (2.18).
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Theorem 2.1.2 Assume that (i) and (ii) of Assumption 2.0.12 hold. Let �; N;�; ��

and R be de�ned as in previous section. Then for 8p � 2, there exists a constant Cp,

depending only on T;K and p, such that, for 8r 2 (t; T ],

sup
t�s�T

kXskp � Cp(1 + jxj); sup
t�s�T

krXskp � Cp;

sup
t�s�T

k�skp � Cp; kNrkp � Cpp
r � t

:
(2.23)

Moreover, if we assume b; � 2 C2
b , then it holds that

k�rkp � Cp

p
r � t; k��rkp � Cp; kRrkp � Cp

r � t
: (2.24)

Proof. First applying Lemma 1.2.5 on (2.1) and (2.4) we easily get the estimates

for X and rX, and then that for � in virtue of the assumption that ��T � 1
K
Id.

Applying Lemma 2.1.1 we prove the estimate for N .

If b; � 2 C2
b , applying Lemma 2.1.1 again we get

k�rkp � Cp

p
r � t sup

t�s�r
krXskp � Cp

p
r � t;

k��rkp � k�rkp + k�rkp � Cp;

kRrkp � Cp

(r � t)2
p
r � t sup

t�s�r
k�sk2p

h
(s� t)kNsk2p

+(r � s)k��sk2p + (s� t) sup
t���s

k���k2p
i

� Cp

(r � t)
3
2

sup
t�s�r

h
(s� t)

1p
s� t

+ (r � s) + (s� t)
i
� Cp

r � t
;

which completes the proof.

2.1.3 Sensitivity of N and R on (t; x)

Now given 0 � t1 < t2 < T and x1; x2 2 IRd, denote �'
4
= '1 � '2 and

'i
4
= 'ti;xi; i = 1; 2; for any process ' with parameters (t; x). We have the following

estimates.

Theorem 2.1.3 Assume (i) and (ii) of Assumption 2.0.12 hold. Then for 8p � 1,

there exists a constant Cp, depending only on T;K and p, such that

sup
t2�s�T

k�Xskp � Cp

h
(1 + jx1j)

p
t2 � t1 + jx1 � x2j

i
; (2.25)
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and

k�Nrkp � Cpp
r � t2

h
(1 + jx1j)

s
t2 � t1
r � t1

+ jx1 � x2j+ k�bxk2p +��xk2pk
i
; (2.26)

where for ' = bx; �x,

k�'k2p =
�
E
n Z T

t2
j'(r;X1

r )� '(r;X2
r )j2pdr

o� 1
2p :

Moreover, if b; � 2 C2
b , then

k�Nrkp � Cpp
r � t2

h
(1 + jx1j)

s
t2 � t1
r � t1

+ jx1 � x2j
i
; (2.27)

and

k�Rrkp � Cp

r � t2

h
(1 + jx1j)

s
t2 � t1
r � t1

+ jx1 � x2j+ k�bxxk4p + k��xxk4p
i
: (2.28)

Proof. First, by SDE (2.1) we know that

�Xs = X1
t2 � x2 +

Z s

t2

ebr�Xrdr +
Z s

t2

e�r�XrdWr; (2.29)

where e' 4
= �'

�X
for ' = b; �. Since b and � are Lipschitz continuous, we know that

jebj+ je�j � K. Applying Lemma 1.2.5 twice we infer from (2.29) that

k�Xskp � CpkX1
t2
� x2kp � Cp

h
kX1

t2
�X1

t1
kp + jx1 � x2j

i
� Cp

h
(1 + jx1j)

p
t2 � t1 + jx1 � x2j

i
;

which proves (2.25).

Next, to prove (2.26) we establish some estimates for �rX and �� �rst. By

(2.4) we have

�rXs = rX1
t2
� 1 +

Z s

t2

h
bx(r;X

1
r )�rXr +�bx(r)rX2

r

i
dr

+
Z s

t2

h
�x(r;X

1
r )�rXr +��x(r)rX2

r

i
dWr: (2.30)

Applying Lemma 1.2.5 three times we get from (2.30) that

k�rXskpp � CpE
n
jrX1

t2 � 1jp +
Z s

t2

h
j�bx(r)rX2

r jp + j��x(r)rX2
r jp
i
dr
o

� Cp

h
(t2 � t1)

p
2 +

�
k�bxkp2p + k��xkp2p

�� Z T

t2
EjrX2

r j2pdr
�1
2
i

� Cp

h
(t2 � t1)

p
2 + k�bxkp2p + k��xkp2p

i
;
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which implies that

k�rXskp � Cp

hp
t2 � t1 + k�bxk2p + k��xk2p

i
: (2.31)

Moreover, note that

��s =
g��1(s)(�Xs)rX1

s + ��1(s;X2
s )�rXs:

Using (2.23, (2.25) and (2.31) we have

k��skp � Cp

h
k�Xsk2pkrX1

sk2p + k�rXskp
i

� Cp

h
(1 + jx1j)

p
t2 � t1 + jx1 � x2j+ k�bxk2p + k��xk2p

i
: (2.32)

Now we are ready to prove (2.26). To this end we �rst note that

�Nr =
1

r � t1

Z r

t1
�1
sdWs � 1

r � t2

Z r

t2
�2
sdWs

=
1

r � t1

Z t2

t1
�1
sdWs +

� 1

r � t1
� 1

r � t2

� Z r

t2
�1
sdWs +

1

r � t2

Z r

t2
��sdWs:

Apply Lemma 2.1.1, we have

k�Nrkp � Cp

h 1

r � t1

p
t2 � t1 sup

t1�s�t2
k�1

skp +
t2 � t1

(r � t1)(r � t2)

p
r � t2 sup

t2�s�r
k�1

sk
i

+
1

r � t2

p
r � t2 sup

t2�s�r
k��skp

i
which, combined with (2.23) and (2.32), implies (2.26).

Now we assume that b; � 2 C2
b . Then

j�bx(s)j+ j��x(s)j � 2Kj�Xsj; (2.33)

thus combining (2.33) and (2.25) we can easily get (2.27).

It remains to prove (2.28). We shall prove the estimates for � and �� �rst. Applying

Lemma 2.1.1 and recalling (2.33), by some direct calculation we have

k��rk � Cp

hp
t2 � t1 sup

t1�s�t2
krX1

skp +
p
r � t2 sup

t2�s�r
k�rXskp

+
p
r � t2 sup

t2�s�r
krX1

sk2p
�
k�bxxk2p + k��xxk2p + k��xk2p

�i
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� Cp

hp
t2 � t1 +

p
r � t2

�p
t2 � t1 + k�bxk2p + k��xk2p

�
(2.34)

+
p
r � t2

�
k�bxxk2p + k��xxk2p

�i
� Cp

hp
t2 � t1 +

p
r � t2

�
sup

t2�s�T
k�Xsk2p + k�bxxk2p + k��xxk2p

�i
� Cp

h
(1 + jx1j)

p
t2 � t1 +

p
r � t2

�
jx1 � x2j+ k�bxxk2p + k��xxk2p

�i
:

Moreover, recalling (2.19) we have

k���skp � k��skp + k�1
sk2pk��x(s)k2p + k��skp (2.35)

� Cp

h
(1 + jx1j)

p
t2 � t1 + jx1 � x2j+

p
r � t2

�
k�bxxk2p + k��xxk2p

�i
:

Finally, we analyze �R. Recall (2.18), it holds that

�Rr = R1
r �R2

r

=
1

(r � t1)2

h Z t2

t1
�1
s

h
2(s� t1)N

1
s + (r � s)��1s +

Z s

t1

��1�d�
i
dWs

+
Z r

t2
�1
s

h
2(t2 � t1)N

1
s +

Z t2

t1

��1�d�
i
dWs

+
Z r

t2
�1
s

h
2(s� t2)N

1
s + (r � s)��1s +

Z s

t2

��1�d�
i
dWs

i
� 1

(r � t2)2

Z r

t2
�2
s

h
2(s� t2)N

2
s + (r � s)��2s +

Z s

t2

��2�d�
i
dWs

i
=

1

(r � t1)2

Z t2

t1
�1
s

h
2(s� t1)N

1
s + (r � s)��1s +

Z s

t1

��1�d�
i
dWs

+
1

(r � t1)2

Z r

t2
�1
s

h
2(t2 � t1)N

1
s +

Z t2

t1

��1�d�
i
dWs

+
� 1

(r � t1)2
� 1

(r � t2)2

� Z r

t2
�1
s

h
2(s� t2)N

1
s + (r � s)��1s +

Z s

t2

��1�d�
i
dWs

+
1

(r � t2)2

Z r

t2
��s

h
2(s� t2)N

1
s + (r � s)��1s +

Z s

t2

��1�d�
i
dWs

i
1

(r � t2)2

Z r

t2
�2
s

h
2(s� t2)�Ns + (r � s)���s +

Z s

t2
����d�

i
dWs

Applying Lemma 2.1.1 several times and using the estimates established at above we

have

k�Rrkp � Cp

(r � t1)2
p
t2 � t1 sup

t1�s�t2
k�1

sk2p
h
(s� t1)kN1

s k2p

+(r � s)k��1sk2p + (s� t1) sup
t1���s

k��1�k2p
i
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+
Cp

(r � t1)2
p
r � t2 sup

t2�s�r
k�1

sk2p
h
(t2 � t1)kN1

s k2p + (t2 � t1) sup
t1���t2

k��1�k2p
i

+
Cp(t2 � t1)

(r � t1)(r � t2)2
p
r � t2 sup

t2�s�r
k�1

sk2p
h
(s� t2)kN1

s k2p

+(r � s)k��1sk2p + (s� t2) sup
t2���s

k��1�k2p
i

+
Cp

(r � t2)2
p
r � t2 sup

t2�s�r
k��sk2p

h
(s� t2)kN1

s k2p

+(r � s)k��1sk2p + (s� t2) sup
t2���s

k��1�k2p
i

+
Cp

(r � t2)2
p
r � t2 sup

t2�s�r
k�2

sk2p
h
(s� t2)k�Nsk2p

+(r � s)k���sk2p + (s� t2) sup
t2���s

k����k2p
i

� Cp

npt2 � t1
(r � t1)2

hp
t2 � t1 + r � t1

i
+

p
r � t2

(r � t1)2

hp
t2 � t1 + (t2 � t1)

i
+

t2 � t1

(r � t1)(r � t2)
3
2

h r � t2p
t2 � t1

+ r � t2
i

+
1

(r � t2)
3
2

sup
t2�s�r

k��sk2p
hp
r � t2 + r � t2

i
+

1

(r � t2)
3
2

(r � t2) sup
t2�s�r

h
k�Nsk2p + k���sk2p

io

� Cp

r � t2

hst2 � t1
r � t1

+ sup
t2�s�r

�
k��sk2p + k�Nsk2p + k���sk2p

�i
� Cp

r � t2

h
(1 + jx1j)

s
t2 � t1
r � t1

+ jx1 � x2j+ k�bxxk4p + k��xxk4p
i
;

which completes the proof for (2.28), whence the theorem.

2.2 First Order Representation Formulae

Since b; � 2 C1
b , we may de�ne8><>: u(t; x)

4
= E

n
g(X t;x

T ) +
R T
t f(r;�

t;x
r )dr

o
;

v(t; x)
4
= E

n
g(X t;x

T )N t;x
T +

R T
t f(r;�

t;x
r )N t;x

r dr
o
:

(2.36)

Recalling (1.6) obviously it holds that

u(t; x) = Y t;x
t : (2.37)

To see the relation between Z and v, let us �rst assume f and g are also smooth.
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Theorem 2.2.1 Assume Assumption 2.0.12 holds and that f; g 2 C1
b . Let �t;x =

(X t;x; Y t;x; Zt;x) denote the solution to FBSDE (1.6). Then u 2 C1, and for 8(t; x) 2
[0; T ]� IRd and 8s 2 [t; T ), it holds that

(1) jv(t; x)j � C, where C depends on T and K;

(2) Zt;x
s = v(s;X t;x

s )�(s;X t;x
s );

(3) ux(t; x) = v(t; x).

Proof. As usual, we prove only the case d = 1, and we shall drop the superscript t;x

when there is no confusion.

Note that by Lemma 1.2.8, for any r 2 (t; T ), Xr; Yr; Zr 2 lD1;2 and DsYr = 0

whenever s > r. Since

Yt = g(XT ) +
Z T

t
f(r;�r)dr �

Z T

t
ZrdWr;

applying Ds to the both sides for s > t we get

0 = @xgDsXT +
Z T

s
[fx(r)DsXr + fy(r)DsYr + fz(r)DsZr] dr � Zs �

Z T

s
DsZrdWr;

which, combined with Lemma 1.2.8, implies that

Zs =
h
@xgrXT +

Z T

s
[fx(r)rXr + fy(r)rYr + fz(r)rZr]dr �

Z T

s
rZrdWr

i
��1s :

Taking conditional expectation Ef� jFsg on both sides we then get

Zs = Es;Xs

n
@xgrXT +

Z T

s
[fx(r)rXr + fy(r)rYr + fz(r)rZr] dr

o
��1s : (2.38)

Denote

�v(t; x)
4
= Et;x

n
@xgrXT +

Z T

s
[fx(r)rXr + fy(r)rYr + fz(r)rZr] dr: (2.39)

By Lemmas 1.2.5 and 1.2.6 we know that j�v(t; x)j � C. By Markovian property,

we may easily check that r�s;Xt;x
s

r = r�t;x
r [rX t;x

s ]�1. Thus (2.38) leads to that

Zt;x
s = �v(s;X t;x

s )�(s;X t;x
s ). Consequently, to prove the theorem it suÆces to show

that v = �v = ux.
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To this end we note that the arguments above imply that

jZsj � C(1 + jXsj): (2.40)

By chain rule for the Malliavin derivative operator and Lemma 1.2.8, for any s < � � r

one has

D�f(r;�r) = [fx(r)rXr + fy(r)rYr + fz(r)rZr]�
�1
� ;

which implies that

fx(r)rXr + fy(r)rYr + fz(r)rZr =
1

r � s

Z r

s
D�f(r;�r)��d�: (2.41)

Recalling (2.40) and Lemma 1.2.6, one may easily check that

sup
t�s�T

k�t;x
s k4 � C; (2.42)

which, combined with (2.23), clearly implies that E
n R T

s jf(r;�r)N
s
r jdr

o
<1. There-

fore, using the integration by parts formula in Lemma 1.16 and recalling the de�nition

of process N (2.2) we derive from (2.41) that, for t < s < r < T ,

Es;Xs ffx(r)rXr + fy(r)rYr + fz(r)rZrg = Es;Xs

�
1

r � s

Z r

s
D�f(r;�r)��d�

�
= Es;Xs

�
1

r � s
f(r;�r)

Z r

s
��dW�

���Fs

�
= Es;Xs ff(r;�r)N

s
r grXs: (2.43)

Similarly we may obtain

Es;Xs

n
@xgrXT

o
= Es;Xs

n
g(XT )N

s
T

o
rXs: (2.44)

Combining (2.38), (2.43) and (2.44) we prove that �v = v, whence (1) and (2).

It remains to prove (3). Recalling (2.37) and (1.11) we know that u is di�erentiable

with respect to x, and

ux(t; x) = rY t;x
t = Et;x

n
@xgrXT

+
Z T

t
[fx(r)rXr + fy(r)rYr + fz(r)rZr] dr

o
= �v(t; x) = v(t; x):

That proves (3), whence the theorem.
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Now we assume that f and g are Lipschitz continuous only. Let f " and g" be

smooth moli�ers of f and g, respectively, such that the �rst derivatives of f " and

g" are uniformly bounded by K. Let (Y "; Z") be the solution to the corresponding

BSDE, and de�ne (u"; v") in a similar manner. Then we have

Lemma 2.2.2 Assume Assumption 2.0.12 holds. Then for (u; v) and (u"; v") de�ned

as above and for 8(t; x), we have

lim
�!0

u"(t; x) = u(t; x); lim
�!0

v"(t; x) = v(t; x):

Proof. Note that u(t; x) = Y t;x
t , then Lemma 1.2.7 obviously implies that

lim
�!0

u"(t; x) = u(t; x): (2.45)

To prove the convergence of v", recalling (2.23) and applying the H�older inequality

we get

jv"(t; x)� v(t; x)j =
���En[g"(XT )� g(XT )]NT +

Z T

t
[f "(r;�"

r)� f(r;�r)]Nrdr
o���

� kg" � gk1kNTk1 + kf " � fk1
Z T

t
kNrk1dr + C

Z T

t
k�"

r ��rk2kNrk2dr

� C
h
kg" � gk1 + kf " � fk1 +

Z T

t

k�"
r � �rk2p
r � t

dr
i
: (2.46)

Clearly it holds that

lim
�!0

h
kg" � gk1 + kf " � fk1

i
= 0: (2.47)

By Lemma 1.2.7 we know lim
�!0

Z T

t
k�"

r � �rk2dr = 0; thus, for dt-a.s r 2 [t; T ],

lim
�!0

k�"
r � �rk2 = 0: (2.48)

By (2.42) we know that sup
t�r�T

k�"
rk2 is uniformly bounded, which further implies that

esssup
t�r�T

k�rk2 <1. So we may apply the Dominated Convergence Theorem and get

lim
�!0

Z T

t

k�"
r ��rk2p
r � t

dr = 0;

which, combined with (2.46) and (2.47), proves the Lemma.

Applying Lemma 1.2.5 and (1) and (3) of Theorem 2.2.4, we get the following

Corollary.
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Corollary 2.2.3 Assume Assumption 2.0.12 holds. Then for 8(r; x) 2 [t; T ] � IRd

and 8p � 2, there exists a constant Cp, depending only on T;K and p such that

kZt;x
r kp � Cp(1 + jxj):

Our main result of this section is the following theorem.

Theorem 2.2.4 Assume Assumption 2.0.12 holds. Then for 8(t; x) 2 [0; T ) � IRd,

we have

(1) jv(t; x)j � C, where C depends on T and K;

(2) v is continuous;

(3) Zt;x
s = v(s;X t;x

s )�(s;X t;x
s );

(4) ux(t; x) = v(t; x);

(5) if we assume further that g 2 C1
b , then 1)-4) hold true on [0; T ] � Rd, and

v(T; x) = @xg(x):

Proof. As in Lemma 2.2.2, we have (f "; g") and de�ne (u"; v").

(1) The result follows directly from (1) of Theorem 2.2.1 and Lemma 2.2.2.

(2) Let 0 � t1 < t2 < T and x1; x2 2 IRd. For � = X;�; N , denote �i
4
= �ti;xi

for i = 1; 2, and ��r
4
= �1r � �2r for r 2 [t2; T ]. Then by (2.23), Corollary 2.2.3 and

Lemma 1.2.6, we have

jv(t1; x1)� v(t2; x2)j
=
���E (g(X1

T )N
1
T +

Z T

t1
f(r;�1

r)N
1
r dr � g(X2

T )N
2
T �

Z T

t2
f(r;�2

r)N
2
r dr

) ���
� E

n
jg(X1

T )� g(X2
T )jjN2

T j+ jg(X1
T )jj�NT j+

Z t2

t1
jf(r;�1

r)jjN1
r jdr

+
Z T

t2

h
jf(r;�1

r)� f(r;�2
r)jjN2

r j+ jf(r;�1
r)jj�Nrj

i
dr
o

(2.49)

� C
n
k�XTk2kN2

Tk2 + kg(X1
T )k2k�NTk2 +

Z t2

t1
kf(r;�1

r)k2kN1
r k2dr

+
Z T

t2

h
k��rk2kN2

r k2 + kf(r;�1
r)k2k�Nrk2

i
dr
o

� C
hk�XTk2p

T � t2
+
Z t2

t1

drp
r � t1

+
Z T

t2

k��rk2p
r � t2

dr + k�NTk2 +
Z T

t2
k�Nrk2dr

i
:
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Recalling FBSDE (1.6) we subtract two equations and know that, for s 2 [t2; T ], ��

satis�es the following BSDE:

�Ys = eg�XT +
Z T

s

h efx(r)�Xr + efy(r)�Yr + efz(r)�Zr

i
dr �

Z T

s
�ZrdWr; (2.50)

where e@' are the corresponding di�erence quotients, for ' = b; �; f and g. Recalling

(2.25) and applying Lemma 1.2.6 we have

sup
t2�s�T

[k�Xsk2+k�Ysk2]+
Z T

t2
k�Zsk2ds � C

h
(1+ jx1j2)jt2� t1j+ jx1�x2j2

i
: (2.51)

Again, since k�k2, whence k��k2, is uniformly bounded, applying the Dominated

Convergence Theorem we see that, as j(t1; x1)� (t2; x2)j ! 0,

k�XTk2p
T � t2

+
Z t2

t1

drp
r � t1

+
Z T

t2

k��rk2p
r � t2

dr! 0: (2.52)

Moreover, as j(t1; x1) � (t2; x2)j ! 0, since k�bxk4 + k��xk4 ! 0, applying the

Dominated Convergence Theorem again we get from (2.26) that

k�NTk2 +
Z T

t2
k�Nrk2dr! 0;

which, combined with (2.49) and (2.52), implies that

jv(t1; x1)� v(t2; x2)j ! 0;

whence (2).

(3) By Theorem 2.2.1, we have

Z"
s = v"(s;Xs)�(s;Xs):

Then (2.48) and Lemma 2.2.2 imply that

Zs = v(s;Xs)�(s;Xs); ds� dP a:e:

That is, v(s;Xs)�(s;Xs) is a version of Z. So we may choose Z as this version and

then the result follows.
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(4) Apply Theorem 2.2.1 again, we have

u"(t; x) = u"(t; 0) +
Z x

0
v"(t; y)dy:

Using Lemma 2.2.2 and applying the Dominated Convergence Theorem, thanks to

(1), we obtain that

u(t; x) = u(t; 0) +
Z x

0
v(t; y)dy;

which proves (4) due to (2).

5) If g 2 C1
b , then

v(t; x) = E

(
@xg(X

t;x
T )rX t;x

T +
Z T

t
f(r;X t;x

r ; Y t;x
r ; Zt;x

r )N t;x
r dr

)
: (2.53)

Since XT;x
T = x and rXT;x

T = 1, we have

lim
t"T

v(t; x) = @xg(x):

What left is trivial now.

2.3 Second Order Representation Formulae

In this section we shall establish a probabilistic formula for uxx. Recalling (2.18) we

de�ne

w(t; x)
4
= E

n
g(X t;x

T )Rt;x
T +

Z T

t
[f(r;�t;x

r )� f(r; �t;xr )]Rt;x
r dr

o
; (2.54)

where

�r
4
= (x; u(r; x); v(r; x)�(r; x)); (2.55)

We aim to show that uxx = w(t; x). Recalling (2.24) we note that (2.54) involves

some singularity. To estimate the integrand we need a technical lemma.

Lemma 2.3.1 Assume that Assumption 2.0.12 holds and that b; � 2 C2
b . Then for

8� 2 (0; 1
2
), 8t 2 [0; T ), v is �-H�older continuous with respect to x. To be precise,

there exists a constant C�, depending only on T;K and �, such that

jv(t; x+ Æ)� v(t; x)j � C�(1 + jxj)p
T � t

jÆj�:
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Proof. For 8p > 2, let q < 2 be its conjugate. Denote �Æ'r
4
= 'x+Ær � 'xr for

' = X;N;�. Recall (2.36) and apply H�older inequality, we get

jv(t; x+ Æ)� v(t; x)j
� E

n
j�ÆXT jjNx

T j+ jg(Xx+Æ
T )jj�ÆNT j

+
Z T

t

h
j�Æ�rjjNrj+ jf(r;�x+Æ

r )jj�ÆNrj
i
dr
o

� E
n
k�ÆXTkpkNx

Tkq + kg(Xx+Æ
T )kpk�ÆNTkq (2.56)

+
�
E
n Z T

t
j�Æ�rjpdr

o� 1
p
�
E
n Z T

t
jNrjqdr

o�1
q

+
�
E
n Z T

t
jf(r;�x+Æ

r )jpdr
o� 1

p
�
E
n Z T

t
j�ÆNrjqdr

o�1
q
o
:

Apply Corollary 2.2.3, Lemmas (1.2.5) and (1.2.6), we know that k�x+Æ
r kp � Cp(1 +

jxj). Recalling (2.23) we infer from (2.56) that

jv(t; x+ Æ)� v(t; x)j � Cp

h 1p
T � t

k�ÆXTkp + (1 + jxj)k�ÆNTkq

+
�
E
n Z T

t
j�Æ�rjpdr

o� 1
p + (1 + jxj)

�
E
n Z T

t
j�ÆNrjqdr

o� 1
q
i
: (2.57)

Note that

�Æ' = Æ
Z 1

0
r't;x+�Æd�: (2.58)

Applying Lemmas (1.2.5) and (1.2.6) we can easily get

sup
t�r�T

h
krXrkp + krYrkp

i
+
�
E

(Z T

t
jrZrj2dr

)� 1
2 � Cp;

Thus by applying Lemma 2.1.1 we get

sup
t�r�T

h
k�ÆXrkp + k�ÆYrkp

i
+
�
E

(Z T

t
j�ÆZrj2dr

)�1
2 � CpÆ; (2.59)

which, combined with Corollary 2.2.3, implies that

E

(Z T

t
j�ÆZrjpdr

)
= E

(Z T

t
j�ÆZrjj�ÆZrjp�1dr

)
(2.60)

�
 
E

(Z T

t
j�ÆZrj2dr

)! 1
2
 
E

(Z T

t
j�ÆZrj2(p�1)dr

)!1
2

� Cp(1 + jxjp�1)Æ:
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Moreover, recalling (2.5) and (2.17) and applying Lemma 2.1.1 we have

krNrkq � Cpp
r � t

sup
t�s�r

h
k�2

skq + k�sk2qk�sk2q
i
� Cpp

r � t
; (2.61)

which, Combined with (2.58), implies that

k�ÆNrkq � CpÆp
r � t

: (2.62)

Now combine (2.59), (2.60) and (2.62), and note that q < 2, we deduce from (2.57)

that

jv(t; x+ Æ)� v(t; x)j
� Cp

h Æp
T � t

+
(1 + jxj)Æp

T � t
+ (1 + jxj p�1p )Æ

1
p + (1 + jxj)Æ

� Z T

t

dr

(r � t)
q
2

� 1
q
i

� Cp(1 + jxj)p
T � t

Æ
1
p :

That is, v is 1
p
�H�older continuous with respect to x for 8p > 2.

Next result gives the estimate for w.

Lemma 2.3.2 Assume that Assumption 2.0.12 holds and that b; � 2 C2
b . Then for

8� > 0, there exists a constant C�, depending only on T;K and �, such that

jw(t; x)j � C�(1 + jxj2+�)p
T � t

:

Proof. Without lose of generality, we assume � < 1
2
.

First, recall that EfRTg = 0, we have

���Efg(X t;x
T )Rt;x

T g
��� = ���En[g(X t;x

T )� g(x)]Rt;x
T

o��� � CkX t;x
T � xk2kRt;x

T k2: (2.63)

Next, applying Theorem 2.2.4 and Lemma 2.3.1 we get

jf(r;�r)� f(r; �r)j � C
h
jXr � xj+ jYr � u(r; x)j+ jZr � v(r; x)�(r; x)j

i
= C

h
jXr � xj + ju(r;Xr)� u(r; x)j+ jv(r;Xr)�(r;Xr)� v(r; x)�(r; x)j

i
� C�

h
jXr � xj + jXr � xj+ 1 + jxjp

T � r
j�(r; x)jjXr � xj� + jv(r;Xr)jjXr � xj

i
(2.64)

� C�

h
jXr � xj + 1 + jxj2p

T � r
jXr � xj�

i
:
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Thus���En[f(r;�r)� f(r; �r)]Rr

o��� � C�

h
kXr � xk2 + 1 + jxj2p

T � r
kXr � xk�2

i
kRrk2: (2.65)

Finally, apply Lemma 1.2.5 and recall (2.24), (2.63) and (2.65) lead to that

jw(t; x)j � Ca

h
(1 + jxj)

p
T � t

T � t
+
Z T

t

h
(1 + jxj)pr � t+

1 + jxj2+�p
T � r

(r � t)
�
2

i dr

r � t

� C�(1 + jxj2+�)
h 1p

T � t
+
Z T

t

drp
T � r(r � t)1�

�
2

i
� C�(1 + jxj2+�)p

T � t
;

which proves the lemma.

Now we establish the formula for FBSDEs with smooth coeÆcients .

Theorem 2.3.3 Assume that Assumption 2.0.12 holds, and that b; � 2 C2
b and f; g 2

C1
b . If we assume further that w is continuous with respect to x, then we have

w(t; x) = vx(t; x) = uxx(t; x):

Proof. Recall that

v(t; x) = Efg(XT )NTg+
Z T

t
Eff(r;�r)Nrgdr:

Since all the coeÆcients are smooth, we may di�erentiate the right side formally with

respect to x and denote

�w(t; x) = E
n
gx(XT )rXTNT + g(XT )rNT

o
(2.66)

+
Z T

t
E
n
[(fxrXr + fyrYr + fzrZr)Nr + f(r;�r)rNr]

o
dr:

We should mention here that the integrand in the right side of (2.66) involves some

singularity. We shall prove that it is indeed integrable and that w = �w = vx.

To this end we use the Malliavin calculus again. For t � � � r, the chain rule

implies that

D� (f(r;�r)Nr) = [fxD�Xr + fyD�Yr + fzD�Zr]Nr + f(r;�r)D�Nr;

which, combined with (1.14), implies that

[fxrXr + fyrYr + fzrZr]Nr = D� (f(r;�r)Nr)�� � f(r;�r)D�Nr�� :
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Integrating both sides over [t; r] and dividing by r � t we get

[fxrXr + fyrYr + fzrZr]Nr =
1

r � t

Z r

t
[D� (f(r;�r)Nr)�� � f(r;�r)D�Nr�� ]d�;

Now using the integration by parts formula in Lemma 1.16 we obtain that

Ef[fxrXr + fyrYr + fzrZr]Nrg
=

1

r � t
E
�
f(r;�r)Nr

Z r

t
��dW� � f(r;�r)

Z r

t
D�Nr��d�

�
;

which, combined with (2.3), implies that

Ef[fxrXr + fyrYr + fzrZr]Nr + f(r;�r)rNrg
= E

n
f(r;�r)

h
N2
r �

1

r � t

Z r

t
D�Nr��d� +rNr

io
(2.67)

= Eff(r;�r)Rrg:

Similarly, we have

Ef@xg(XT )rXTNT + g(XT )rNTg = Efg(XT )RTg: (2.68)

Note that EfRrg = 0, combining (2.66), (2.67) and (2.68) we obtain

�w(t; x) = Efg(XT )RTg+
Z T

t
Ef[f(r;�r)� f(r; �r)]Rrgdr: (2.69)

Recalling (2.65) we know the integrand in the right side of (2.69) is absolutely inte-

grable. Consequently, by Fubini's theorem we know that �w = w.

Moreover, by the de�nition of �w we have

v(t; x)� v(t; 0)

= E
n
g(Xx

T )N
x
T � g(X0

T )N
0
T

o
+
Z T

t
E
n
f(r;�x

r)N
x
r � f(r;�0

r)N
0
r

o
dr

= E
n Z x

0
[gx(X

y
T )N

y
T + g(Xy

T )rNy
T ]dy

o
+
Z T

t
E
n Z x

0

h
f(r;�y

r)rNy
r

+
�
fx(r;�

y
r)rXy

r + fy(r;�
y
r)rY y

r + fz(r;�
y
r)rZy

r

�
Ny
r

i
dy
o
dr: (2.70)

Recalling (2.63), (2.65) and applying the Fubini's theorem we get

v(t; x)� v(t; 0) =
Z x

0
�w(t; y)dy =

Z x

0
w(t; y)dy:
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Since we assume w is continuous with respect to x, we conclude that vx = �w = w,

which completes the proof.

In order to investigate the Lipschitz case, we need the following convergence result

of w.

Lemma 2.3.4 Assume that Assumption 2.0.12 holds and that b; � 2 C2
b . Let (f

"; g")

be smooth moli�ers of (f; g). De�ne all the involving terms for " in a similar manner.

Then we have

lim
�!0

w"(t; x) = w(t; x):

Proof. First by recalling (2.24) we know that

jw"(t; x)� w(t; x)j � E
n
jg"(XT )� g(XT )jjRT j

+
Z T

t
jf "(r;�"

r)� f "(r; �"r)� f(r;�r) + f(r; �r)jjRrjdr
o

(2.71)

� C
hkg" � gk1

T � t
+
Z T

t

1

r � t
kf "(r;�"

r)� f "(r; �"r)� f(r;�r) + f(r; �r)k2dr
i

Take � = 1
4
, by (2.64) and Lemma 1.2.5 we get

kf "(r;�"
r)� f "(r; �"r)� f(r;�r) + f(r; �r)k2 � C(1 + jxj 94 )(r � t)

1
8p

T � r
: (2.72)

Note that Z T

t

1

r � t

(r � t)
1
8p

T � r
dr <1:

Apply Lemma 1.2.7 and the Dominated Convergence Theorem, we prove the result

from (2.71).

Theorem 2.3.5 Assume that Assumption 2.0.12 holds, and that b; � 2 C2
b . Then

for 8� > 0, there exists a constant C�, depending only on T;K and �, such that the

following results hold true in [0; T )� IRd :

(1) jw(t; x)j � C�
1+jxj2+�p

T�t ;

(2) w is continuous;

(3) uxx(t; x) = vx(t; x) = w(t; x);

(4) If furthermore we assume that g 2 C2
b , then (2) and (3) hold true on [0; T ]�R;

jw(t; x)j � C�(1 + jxj4+�) and w(T; x) = gxx(x).
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Proof. (1) follows directly from Lemma 2.3.2.

(2) For 0 � t1 < t2 < T , denote

e�1r 4
=
�
X1

t2 ; u(r;X
1
t2); v(r;X

1
t2)�(r;X

1
t2)
�
:

In light of (2.64) we can analogously prove that, for t2 � r < T ,

ke�1r��1rk2 � C(1+jx1j2+�)(t2 � t1)
�
2p

T � r
; k�1

r� e�1rk2 � C(1+jx1j2+�)(r � t2)
�
2p

T � r
: (2.73)

Then, by denoting 'i
4
= 'ti;xi; i = 1; 2 and �'

4
= '1 � '2 for ' = �; R, we have

jw(t1; x1)� w(t2; x2)j � E
n
jg(X1

T )R
1
T � g(X2

T )R
2
T j

+
Z t2

t1
jf(r;�1

r)� f(r; �1r)jjR1
rjdr +

Z T

t2
jf(r; e�1r)� f(r; �1r)jjR1

rjdr

+
Z T

t2

���[f(r;�1
r)� f(r; e�1r ]R1

r � [f(r;�2
r)� f(r; �2r)]R

2
r

���dro
� CE

n
j�XT jjR2

T j+ jg(X1
T )jj�RT j+

Z t2

t1
j�1

r � �1r jjR1
rjdr (2.74)

+
Z T

t2
je�1r � �1r jjR1

rjdr +
Z T

t2
jf(r;�1

r)� f(r; e�1r)jj�Rrjdr

+
Z T

t2
jf(r;�1

r)� f(r; e�1r)� f(r;�2
r) + f(�2r)jjR2

rjdr
o

� C
h
k�XTk2kR2

Tk2 + kg(X1
T )k2k�RTk2 +

Z t2

t1
k�1

r � �1rk2kR1
rk2

+
Z T

t2
ke�1r � �1rk2kR1

rk2dr +
Z T

t2
k�1

r � e�1rk2k�Rrk2dr

+
Z T

t2
kf(r;�1

r)� f(r; e�1r)� f(r;�2
r) + f(r; �2r)k2kR2

rk2dr
i

Now choose � = 1
4
and let C(x) be a constant depending on T;K and x, which is

allowed to vary line by line. Recalling (2.24), (2.23), (2.64) and (2.73), (2.74) leads

to that

jw(t1; x1)� w(t2; x2)j � C(x1)
hk�XTk2
T � t2

+ k�RTk2 +
Z t2

t1

(r � t1)
1
8p

T � r

dr

r � t1

+
Z T

t2

(t2 � t1)
1
8p

T � r

dr

r � t1
+
Z T

t2

(r � t2)
1
8p

T � r
k�Rrk2dr

+
Z T

t2

1

r � t2
kf(r;�1

r)� f(r; e�1r)� f(r;�2
r) + f(r; �2r)k2dr

i
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� C(x1)

T � t2

h
k�XTk2 + k�RTk2 + (t2 � t1)

1
8 (2.75)

+(t2 � t1)
1
8 j log(t2 � t1)j+

Z T

t2

(r � t2)
1
8p

T � r
k�Rrk2dr

+
Z T

t2
kf(r;�1

r)� f(r; e�1r)� f(r;�2
r) + f(r; �2r)k2

dr

r � t2

i
:

Let j(t1; x1)� (t2; x2)j ! 0, recalling (2.25) we have

�XT ! 0: (2.76)

Then by Lemma 1.2.7 we can easily prove that

kf(r;�1
r)� f(r; e�1r)� f(r;�2

r) + f(r; �2r)k2 � C
h
k��rk2 + ke�1r � �2rk2

i
! 0: (2.77)

Moreover, recalling (2.28) we have

k�RTk2 +
Z T

t2

(r � t2)
1
8p

T � r
k�Rrk2dr! 0: (2.78)

Finally, note that

kf(r;�1
r)�f(r; e�1r)�f(r;�2

r)+f(r; �
2
r)k2 � C[k�1

r� e�1rk2+k�2
r��2rk2] � C

(r � t2)
1
8p

T � r
;

then, combined with (2.77), the Dominated Convergence Theorem implies thatZ T

t2

1

r � t2
kf(r;�1

r)� f(r; e�1r)� f(r;�2
r) + f(r; �2r)k2dr

�
! 0: (2.79)

Combining (2.76), (2.78) and (2.79), we conclude from (2.75) that w is continuous.

(3) For any �xed t < T , by (2) and Theorem 2.3.3 we know that v"x(t; x) = w"(t; x).

Applying Lemmas 2.2.2 and 2.3.4, we get

v(t; x) = lim
�!0

v"(t; x) = lim
�!0

[v"(t; 0) +
Z x

0
w"(t; y)dy] = v(t; 0) +

Z x

0
w(t; y)dy;

thanks to (1) and the Dominated Convergence Theorem. Since w is continuous, we

get vx(t; x) = w(t; x).

(4) If g 2 C2
b , then we can easily prove that, for t < T ,

w(t; x) = E
n
gxx(X

t;x
T )(rX t;x

T )2+ gx(X
t;x
T )r2X t;x

T +
Z T

t

h
f(r;�t;x

r )� f(r; �t;xr )
i
Rt;x
r dr

o
:

(2.80)
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(2.16) obviously implies that

lim
t"T

E
n
gxx(X

t;x
T )(rX t;x

T )2 + gx(X
t;x
T )r2X t;x

T

o
= gxx(x):

Therefore, to prove limt"T w(t; x) = gxx(x); it suÆces to show that

lim
t"T

E
n Z T

t

h
f(r;�t;x

r )� f(r; �t;xr )
i
Rt;x
r dr

o
= 0: (2.81)

To this end we note that, by (1) and (3) of this theorem, we may improve the

result of Lemma 2.3.1 now. Actually we have

jv(t; x+ Æ)� v(t; x)j � C�(1 + jxj2+�)p
T � t

Æ:

Then by similar arguments as those in (2.64) we get

kf(r;�t;x
r )� f(r; �t;xr )k2 � C�(1 + jxj4+�)

s
r � t

T � r
;

where C� is independent of t. Thus we have

Z T

t
kf(r;�t;x

r )� f(r; �t;xr )k2kRt;x
r k2dr � C�(1 + jxj4+�)

Z T

t

s
r � t

T � r

dr

r � t

= C�(1 + jxj4+�)
Z 1

0

drq
r(1� r)

= C�(1 + jxj4+�) <1:

Then using (2.80) we can easily get

jw(t; x)j � C�(1 + jxj4+�): (2.82)

By (2.82) we may repeat the above procedure again and get the following estimates:

jv(t; x+ Æ)� v(t; x)j � C�(1 + jxj4+�)Æ;
kf(r;�t;x

r )� f(r; �t;xr )k2 � C�(1 + jxj5+�)pr � t;Z T

t
kf(r;�t;x

r )� f(r; �t;xr )k2kRt;x
r k2dr

� C�(1 + jxj5+�)
Z T

t

p
r � t

r � t
dr = C�(1 + jxj5+�)pT � t:

Now (2.81) follows directly from the last inequality at above.
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2.4 BSDEs and Quasi-linear Parabolic PDEs

As a corollary to the results of the previous sections, we establish the following

theorem relating SDEs with PDEs:

Theorem 2.4.1 Assume that Assumption 2.0.12 holds and that b; � 2 C1
b . Then the

viscosity solution u to PDE (1.5) is in C1
b and juxj � C for some constant C depending

only on T and K. If we assume further that b; � 2 C2
b , then u is a classical solution to

(1.5) such that juxx(t; x)j � C�p
T � t

(1 + jxj2+�) for 8� > 0, where C� depends only

on T;K and �. Furthermore, if g 2 C2
b , then juxx(t; x)j � Ca(1 + jxj4+�).

Proof. Let u(t; x) = Y t;x
t . By Theorem 1.2.4 we know that u is the viscosity solution

to (1.5). If b; � 2 C1
b , applying Theorem 2.2.4 we know u 2 C1

b and juxj � C.

If b; � 2 C2
b , by Theorem 2.3.5, it suÆces to prove that ut exists and satis�es PDE

(1.5). Denote

�(t; x)
4
=

1

2
w(t; x)�2(t; x) + v(t; x)b(t; x) + f(t; x; u(t; x); v(t; x)�(t; x)):

Then � is continuous, and for � > 0, we have

j�(t; x)j � C�

h1 + jxj2+�
T � t

(1 + jxj2) + (1 + jxj) + (1 + jxj)
i
� C

1 + jxj4+�
T � t

:

Let f " and g" be smooth moli�ers of f and g, respectively. As " ! 0, we have

�"(t; x)! �(t; x) for � = u; v; w, whence for � = �. By Pardoux-Peng [44], u" is the

classical solution of the corresponding PDE, that is

u"t + �" = 0:

Therefore,

u"(t; x) = u"(0; x)�
Z t

0
�"(s; x)ds:

Let "! 0, since

j�"(s; x)j � C�
1 + jxj4+�
T � s

� C�
1 + jxj4+�
T � t

;
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applying the Dominated Convergence Theorem we have

u(t; x) = u(0; x)�
Z t

0
�(s; x)ds:

Note that � is continuous, so u is di�erentiable with respect to t, and

ut(t; x) = ��(t; x):

That completes the proof.

Remark 2.4.2 The existence of the classical solution under such conditions seems

classical in the literature of PDEs, but I cannot �nd a simple proof of it. We are

presenting here a nice probabilistic proof, of intrinsic interest.

2.5 Extension to Discrete Functional Case

In this section we extend our representation formula, (3) of theorem 2.2.4, to BS-

DEs with discrete functional terminals. We shall prove a new representation theorem

for the process Z, and we will extend the path regularity result to such a case. This

is a key step towards our study of BSDEs with L1-Lipschitz functional terminals.

Our main result is the following.

Theorem 2.5.1 Let � = (X; Y; Z) be the solution to the FBSDE:8>><>>:
Xt = x +

Z t

0
b(s;Xs)ds+

Z t

0
�(s;Xs)dWs;

Yt = g(Xt0; � � � ; Xtn) +
Z T

t
f(s;�s)ds�

Z T

t
ZsdWs;

(2.83)

where 0 = t0 < � � � < tn = T is a partition of [0; T ]. Assume Assumption 2.0.12

holds. Then in each interval (ti�1; ti), i = 1; � � � ; n, the following identity holds for

8s 2 (ti�1; ti):

Zs = E
n
g(Xt0; :::; Xtn)N

s
ti
+
Z T

s
f(r;�r)N

s
r^tidr

���Fs

o
�(s;Xs); (2.84)

where

N s
t =

1

t� s

�Z t

s
[��1(r;Xs)rXr]

TdWr

�T
:



43

Furthermore, there exists a version of process Z that enjoys the following properties:

(i) the mapping s 7! Zs is a.s. continuous on each interval (ti�1; ti), i = 1; � � � ; n;
(ii) both limits Zti�

4
= lims " ti Zs and Zti+

4
= lims # ti Zs exist;

(iii) for 8p > 2, there exists a constant Cp > 0 depending only on T , K and p

such that

E fj�Zti jpg � Cp(1 + jxjp) <1: (2.85)

Consequently, the process Z has both c�adl�ag and c�agl�ad versions, with discontinuities

t0; � � � ; tn and jump sizes satisfying (2.85).

Proof. As before we will consider only the case d = 1; and we assume �rst that

f; g 2 C1
b .

Let us �rst establish the identity (2.84). We �x an arbitrary index i and consider

the interval (ti�1; ti). Note that by using the similar arguments as those in the proof

of Theorem 2.2.1 or in Pardoux-Peng [44], it can be veri�ed that, for any � 2 (ti�1; ti),

Y� ; Z� 2 lD1;2; and for all ti�1 < s � � < ti,

DsY� =
X
j�i

@jgDsXtj +
Z T

�
[fx(r)DsXr + fy(r)DsYr + fz(r)DsZr] dr �

Z T

�
DsZrdWr;

(2.86)

where @jg
4
= @xjg(Xt0 ; :::; Xtn), j = 1; � � � ; n; and D is the Malliavin derivative opera-

tor. For notational simplicity here and in the sequel we denote '(r) = '(r;�(r)) for

' = fx; fy; fz, respectively.

Next, by virtue of Lemma 1.2.8 and the uniqueness of the adapted solution to

BSDEs we have, for ti�1 < s � � < ti,

DsX� = rX��
�1
s ; DsY� = riY��

�1
s ; DsZ� = riZ��

�1
s ; (2.87)

where � is as de�ned in (2.2) and (riY;riZ) denotes the adapted solution to the

following BSDE for � 2 [ti�1; T ]:

riY� =
X
j�i

@jgrXtj +
Z T

�

h
fx(r)rXr + fy(r)riYr + fz(r)riZr

i
dr �

Z T

�
riZrdWr:

(2.88)
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On the other hand, since DsY� = 0 whenever s > � and

Yti�1 = g(Xt0; :::; Xtn) +
Z T

ti�1
f(r;�r)dr �

Z T

ti�1
ZrdWr;

applying Ds to the both sides for s > ti�1 we get

0 =
X
j�i

@jgDsXtj +
Z T

s
[fx(r)DsXr + fy(r)DsYr + fz(r)DsZr] dr

�Zs �
Z T

s
DsZrdWr: (2.89)

Combining (2.89) with (2.87) and (2.88) we obtain

Zs =
X
j�i

@jgDsXtj +
Z T

s
[fx(r)DsXr + fy(r)DsYr + fz(r)DsZr]dr �

Z T

s
DsZrdWr

=
nX
j�i

@jgrXtj +
Z T

s
[fx(r)rXr + fy(r)riYr + fz(r)riZr]dr

�
Z T

s
riZrdWr

o
��1s (2.90)

= riYs�
�1
s ; ti�1 < s < ti:

Taking conditional expectation Ef� jFsg on the both sides of (2.90) we then get

Zs = E
nX
j�i

@jgrXtj +
Z T

s

h
fx(r)rXr + fy(r)riYr + fz(r)riZr

i
dr
���Fs

o
��1s : (2.91)

The rest of the proof is similar to that of Theorem 2.2.4. First we note that by

chain rule for the anticipating derivative operator and the relation (2.87), for any

ti�1 < � � ti and � < r one has

D�f(Xr; Yr; Zr) = [fx(r)rXr + fy(r)riYr + fz(r)riZr][rX� ]
�1�(�;X� ): (2.92)

We consider the following two cases:

(a) ti�1 < r � ti. In this case we derive from (2.92) that

fx(r)rXr + fy(r)riYr + fz(r)riZr =
1

r � s

Z r

s
D�f(r;�r)�

�1(�;X� )rX�d�; (2.93)

for ti�1 < s < r � ti. Therefore, using the integration by parts formula for anticipat-

ing integrals and recalling the de�nition of process N (2.2) we have

E
n
fx(r)rXr + fy(r)riYr + fz(r)riZr

���Fs

o
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= E
�

1

r � s

Z r

s
f(r;�r)�

�1(�;X�)rX�D�d�
���Fs

�
= E

�
1

r � s
f(r;�r)

Z r

s
��1(�;X�)rX�dW�

���Fs

�
(2.94)

= E
n
f(r;�r)N

s
r

���Fs

o
rXs:

(b) ti < r. In this case we see that (2.92) is still true, but (2.93) should be replaced

by

fx(r)rXr+fy(r)riYr+fz(r)riZr =
1

ti � s

Z ti

s
D�f(r;�r)�

�1(�;X� )rX�d�;

for ti�1 < s < ti < r. Consequently, (2.94) is changed to

E
n
fx(r)rXr + fy(r)riYr + fz(r)riZr

���Fs

o
= E

n 1

ti � s

Z ti

s
��1(�;X� )rX�D�f(r;�r)d�

���Fs

o
= E

n
f(r;�r)N

s
ti

���Fs

o
rXs: (2.95)

Combining (2.94) and (2.95) we see that for all s 2 (ti�1; ti) it holds that

E
n Z T

s
[fx(r)rXr+fy(r)riYr+fz(r)riZr]dr

���Fs

o
= E

n Z T

s
f(r;�r)N

s
r^tidr

���Fs

o
rXs:

(2.96)

On the other hand, we note that for any � 2 (ti�1; ti) it holds that

D�g(Xt0; � � � ; Xtn) =
X
j�i

@jgD�Xtj =
nX
j�i

@jgrXtj

o
��1� ;

which implies that for any s 2 (ti�1; ti),

X
j�i

@jgrXtj =
1

ti � s

Z ti

s
D�g(Xt0; � � � ; Xtn)��d�:

Thus, using integration by parts again we have

E
nX
j�i

@jgrXtj jFs

o
= E

n 1

ti � s
g(Xt0; � � � ; Xtn)

Z ti

s
��dW�

���Fs

o
= Efg(Xt0 ; � � � ; Xtn)N

s
ti
jFsgrXs: (2.97)

Plugging (2.96) and (2.97) into (2.91) we obtain (2.84) for s 2 (ti�1; ti).
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It is clear now that to prove the theorem we need only prove properties (i)|(iii),

which we will do. Note that (i) and (ii) are obvious, in light of Theorem 2.2.4, with

T there being replaced by ti, for each i, and thanks to the representation (2.84).

Therefore we shall only check (iii).

To this end, let �Zti = Zti+ � Zti�. From (2.90) it is easily seen that

Zti� = riYti[rXti ]
�1�(ti; Xti); Zti+ = ri+1Yti [rXti ]

�1�(ti; Xti):

Denoting �is
4
= �(ri+1Ys �riYs), i = 1; � � � ; n, we then have

�Zti = (ri+1Yti �riYti)[rXti ]
�1�(ti; Xti) = ��iti [rXti ]

�1�(ti; Xti); (2.98)

Further, let us denote �is
4
= �(ri+1Zs �riZs). Then (2.88) leads to that

�is = @igrXti +
Z T

s

h
fy(r)�

i
r + fz(r)�

i
r

i
dr �

Z T

s
�irdWr; s 2 [t; T ]: (2.99)

In other words, (�i; �i) is the adapted solution to the linear BSDE (2.99). Therefore,

by Lemma 1.2.6 we know that 8p > 0 there exists a Cp > 0 such that E
n
j�iti jp

o
� Cp.

Recall (2.23), it is readily seen that (2.85) follows from (2.98). This proves (iii).

Finally, we note that when f and g are only Lipschitz, (2.84) still holds, modulo

a standard approximation same as that in Theorem 2.2.4. Thus the properties (i)

and (ii) are obvious. To see (iii) we should note that the standard approximation

yields that �Z"
ti
! �Zti a.s. So if (2.85) holds for �Z"

ti
, then letting " ! 0 we see

that (2.85) remains true for �Zti , thanks to the Fatou's lemma. The proof is now

complete.
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CHAPTER 3. PATH REGULARITY FOR SOLUTIONS OF BSDES

In this chapter we shall study FBSDE (1.2), where the terminal � of the BSDE is

a true functional, and prove the path regularity of the process Z. More precisely, we

show that if the terminal � is an L1-Lipschitz functional, then the process Z admits

a c�adl�ag version. Moreover, if the functional � is L1-Lipschitz, then Z will admit

even an almost surely continuous version. To ensure our results hold true, we shall

use the following assumption similar to Assumption 2.0.12:

Assumption 3.0.2 (i) The functions b; � 2 C1
b and f 2 CL. We use a common

constant K > 0 to denote all the Lipschitz constants, and assume

sup
0�t�T

n
jb(t; 0)j+ j�(t; 0)j+ jf(t; 0; 0; 0)j

o
+ j�(0)j � K:

(ii) d1 = d. Moreover, we assume that � satis�es:

�(t; x)�T (t; x) � 1

K
Id; 8(t; x) 2 [0; T ]� IRd:

The rest of the chapter is organized as follows. In x1 we study the case that � is

a discrete functional and establish a crucial estimate on the conditional variation of

Z. In x2 we study the case that � is an L1-Lipschitz functional; and in x3 we extend
the result to the L1-Lipschitz case and prove a much stronger result. Finally in x4
we establish an L2 type regularity result for the process Z, which plays an important

role in the numerical scheme proposed in next chapter.

3.1 Discrete Functional Case Revisited

Before we begin our investigation, let us �rst recall a path regularity result we

derived in Theorem 2.5.1. The main purpose of this chapter is to generalize that
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result to the case where the terminal value �(X) of the BSDE is an L1-Lipschitz

functional of X. Our plan is to approximate an L1-Lipschitz functional � by a

sequence of discrete functionals, and try to prove that the paths of the martingale

part of the solution under study is a limit of the sequence corresponding solutions of

BSDEs with discrete functional terminal, on the path space(!), from which the path

regularity will follow. In this section we shall establish some further properties of the

adapted solution to BSDEs with discrete functional terminal values, which is critical

for proving the convergence of the sequence corresponding solutions of BSDEs.

To this end, we �x a partition � : 0 = t0 < t1 < � � � < tn = T and assume

�(X) = g(Xt0 ; � � � ; Xtn). Recalling (2.88) we denote

r�Ys =
nX
i=1

riYs1[ti�1;ti)(s) +rnYT�1fTg(s); s 2 [0; T ]; (3.1)

Then r�Y is a c�adl�ag process.

For application convenience, we shall rewrite r�Y in another form. Note that for

each i (2.88) is linear. Let (0; �0) and (j; �j), j = 1; � � � ; n be the adapted solutions

of the BSDEs

0t =
Z T

t

h
fx(r)rXr + fy(r)

0
r + fz(r)�

0
r

i
dr �

n Z T

t
�0rdWr

oT
;

jt = @jgrXtj +
Z T

t

h
fy(r)

j
r + fz(r)�

j
r

i
dr �

n Z T

t
�jrdWr

oT
;

(3.2)

respectively, we have the following decomposition:

riYs = 0s +
X
j�i

js; s 2 [ti�1; ti): (3.3)

We may simplify (3.3) further. Let us de�ne, for any � 2 L1(F; [0; T ]) and � 2
L2(F; [0; T ]; IRd) (viewed as row vector!),

�s
t(�)

4
= exp

n Z t

s
�(r)dr

o
; s; t 2 [0; T ]; (3.4)

Est (�) 4
= exp

n Z t

s
�(r)dWr � 1

2

Z s

t
j�(r)j2dr

o
; s; t 2 [0; T ]: (3.5)

(E t(�) is known as the Dol�ean-Dade stochastic exponential of �.) Then it is easily

checked that, for any p > 0, one has

[Est (�)]p = Est (p�)�s
t

�p(p� 1)

2
j�j2

�
; (3.6)
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and

[Est (�)]�1 = Est (��)�s
t

�
j�j2

�
: (3.7)

In particular, we denote, for s; t 2 [0; T ],

�s
t = �s

t (�fy); M s
t = Est (fz); (3.8)

and if there is no danger of confusion, we denote �� = �0
� and M� = M0

� . Since fz

is uniformly bounded, by Girsanov's Theorem (see, e.g., [32]) we know that M is a

P -martingale on [0; T ], and fWt
4
= Wt�

R t
0 fz(r)dr, t 2 [0; T ] is an F-Brownian motion

on the new probability space (
;F ; eP ), where eP is de�ned by deP
dP

= MT . Moreover,

noting that fy and fz are uniformly bounded, by virtue of (3.6) and (3.7) one can

deduce easily from (3.8) that, for 8p � 1, there exists a constant Cp depending only

on T;K and p, such that8>>>>><>>>>>:
sup
0�t�T

[j�tjp + j��1t jp] � Cp; Ef sup
0�t�T

[jMtjp + jM�1
t jp]g � Cp;

j�t � �sjp + j��1t � ��1s jp � Cpjt� sjp;
EfjMt �Msjp + jM�1

t �M�1
s jpg � Cpjt� sj p2 :

(3.9)

Now we de�ne8>><>>:
e�0 4
=
Z T

0
fx(r)rXr�

�1
r dr; e�0t 4

= �0t �
�1
t ; e0t 4

= 0t�
�1
t +

Z t

0
fx(r)rXr�

�1
r dr;

e�i 4= @ig
�rXsi�

�1
T ; e� it 4

= � it�
�1
t ; eit 4

= it�
�1
t :

(3.10)

Then, using integration by parts and equation (3.2) we have, for i = 0; 1; � � � ; n,

eit = e�i � n Z T

t

e� irdfWr

oT
; t 2 [0; T ]: (3.11)

Therefore, by the Bayes rule (see, e.g., [32, Lemma 3.5.3]) we have, for t 2 [0; T ] and

i = 1; � � � ; n,8><>:
it = eit�t = eEfe�ijFtg�t = EfMT

e�ijFtgM�1
t �t = �itM

�1
t �t;

0t = e0t�t �
Z t

0
fx(r)rXr�

�1
t dr�t = �0tM

�1
t �t �

Z t

0
fx(r)rXr�

�1
r dr�t;

(3.12)

where for i = 0; 1; � � � ; n,

�it
4
= EfMT

e�ijFtg = EfMT
e�ig+ Z t

0
�irdWr: (3.13)
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Note that the boundedness of fz and (3.6) imply that MT 2 Lp(
) and rX 2
Lp(F;C([0; T ]; IRd�d)) for all p � 2. Therefore for each p � 1, (3.15) leads to

E
n nX
j=1

jMT
e�jjop � CE

n
jMT jp sup

0�t�T
jrXtjp

o
� C: (3.14)

In particular, for each j, MT
e�j 2 L2(FT ). So (3.13) makes sense.

Note that we have already proved the following lemma.

Lemma 3.1.1 Assume �(X) = g(Xt0 ; � � � ; Xtn) in (1.2) for some partition � : 0 =

t0 < � � � < tn. Assume (i) of Assumption 3.0.2 holds, and that f; g 2 C1
b , then we

have

riYt = (�0t +
X
j�i

�jt )M
�1
t �t �

Z t

0
fx(r)rXr�

�1
r dr�t:

The following result is essential.

Theorem 3.1.2 Assume all the conditions of Lemma 3.1.1 hold; and that for the

same constant K > 0, it holds for all x = (x0; � � � ; xn) 2 IRd1(n+1) that

nX
i=0

j@xig(x)j � K: (3.15)

Then, there exists a constant C > 0, depending on T and K, but independent of the

partition �, such that

nX
i=1

E
n���E nr�Yti�1 �r�Yti

���Fti�1

o ���o+ Efjr�YT jg � C: (3.16)

Proof. Again we assume d1 = d = 1 for simplicity.

First note that (3.15) implies that j@xngj � K. Thus by (3.1) we have

Efjr�YT jg = Efj@ngrXT jg � KEfjrXT jg � C:

Next, using (3.1) and (3.3) we see that for each i,

r�Yti�1 �r�Yti = riYti�1 �ri+1Yti =
�
0ti�1 +

X
j�i

jti�1

�
�
�
0ti +

X
j�i+1

jti

�
= [0ti�1 � 0ti] + iti +

X
j�i

h
jti�1 � jti

i
: (3.17)
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Now let us denote the �rst term of the left hand side of (3.16) by I and show that

I � C as well. First note that

I � E
n nX
i=1

���En0ti�1 � 0ti

���Fti�1

o���o + E
n nX
i=1

���Eniti ���Fti�1

o���o
+E

n nX
i=1

���X
j�i

E
n
jti�1 � jti

���Fti�1

o���o (3.18)

= I1 + I2 + I3;

where Ii, i = 1; 2; 3 are de�ned in the obvious way. We now estimate I1{I3 separately.

First, by de�nition (3.2) we have

I1 = E
n nX
i=1

���En Z ti

ti�1

h
fx(r)rXr + fy(r)

0
r + fz(r)�

0
r

i
dr
���Fti�1

o���o
�

nX
i=1

E
n Z ti

ti�1
jfx(r)rXr + fy(r)

0
r + fz(r)�

0
r jdr

o
(3.19)

= E
n Z T

0
jfx(r)rXr + fy(r)

0
r + fz(r)�

0
r jdr

o
� CE

n Z T

0
(1 + jrXrj2 + j0r j2 + j�0r j2)dr

o
:

Recalling (2.23) and applying Lemmas 1.2.5 and 1.2.6 to SDE (3.2) we conclude that

I1 � C.

Now, recall (3.12), (3.10) and the boundedness of fy (whence both �� and ��1� ),

we obtain that

I2 =
nX
i=1

E
���EfitijFti�1g

��� = nX
i=1

E
���Efe�iM ti

T �ti jFti�1g
��� � nX

i=1

Efje�iM ti
T �ti jg

= E
n nX
i=1

j@igrXti�
�1
T M ti

T �ti j
o
� CE

n
sup
0�t�T

jM t
TrXtj

o
� C: (3.20)

Here we have used the assumption (3.15), as well as the fact that both M and rX
are continuous, square-integrable processes.

The estimate for I3 is a little more involved. First, from (3.8), (3.7), and (3.12)

we see that

Efjti�1 � jtijFti�1g = Efe�j[M ti�1
T �ti�1 �M ti

T �ti ]jFti�1g
= Efe�jM ti

T (�ti�1 � �ti)jFti�1g+ Efe�j�ti�1(M
ti�1
T �M ti

T )jFti�1g:
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Thus

I3 = E
n nX
i=1

���X
j�i

E
n
jti�1 � jti

���Fti�1

o ���o

�
nX
i=1

X
j�i

Efje�jjjM ti
T jj�ti�1 � �tijg+

nX
i=1

E
n���X

j�i
Efe�j�ti�1(M

ti�1
T �M ti

T )
���Fti�1g

���o
= I13 + I23 ;

where I13 and I
2
3 are de�ned in the obvious way.

Again, using the boundedness of fy we have

j�ti�1 � �ti j = j�ti�1 j
�����exp n�

Z ti

ti�1
fy(r)dr

o
� 1

����� � C

�����
Z ti

ti�1
fy(r)dr

����� � C(ti � ti�1):

(3.21)

Moreover, by assumption (3.15) we have

X
j�i

je�jj � nX
j=0

j@jgrXtj�
�1
T j � C max

0�i�n
jrXti j � C max

0�t�T
jrXtj: (3.22)

Thus, combining (3.21) and (3.22) we get

I13 =
nX
i=1

E
n
jM ti

T jj�ti�1 � �tij
�X
j�i

je�jj�o

� C
nX
i=1

E
n
jM ti

T j sup
0�t�T

jrXtj
o
(ti � ti�1) (3.23)

� CE
n
sup
0�t�T

jM t
T j2 + sup

0�t�T
jrXtj2

o nX
i=1

(ti � ti�1) � C:

We now turn to I23 . To this end we de�ne fMt = E0t (�fz), t 2 [0; T ] (compare to

M� in (3.8)!). Again, the boundedness of fz renders fM a P -martingale, and by (3.7)

we have

M�1
t = fMt�t(jfzj2) 4

= fMt
e�t; t 2 [0; T ]; (3.24)

where e�t
4
= �t(jfzj2). Now by de�nition of (3.8) we have

M
ti�1
T �M ti

T =MTfM�1
ti�1

�M�1
ti
]g =MTffMti�1

e�ti�1 � fMti
e�tig:

Thus we see that the I23 can be written as

I23 =
nX
i=1

E
n���X

j�i
Efe�jMT�ti�1(

fMti�1
e�ti�1 � fMti

e�ti)jFti�1g
���o
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�
nX
i=1

E
n���X

j�i
Efe�jMT�ti�1

e�ti�1(
fMti�1 � fMti)jFti�1g

���o (3.25)

+
nX
i=1

E
n���X

j�i
Efe�jMT�ti�1

fMti(
e�ti�1 � e�ti)jFti�1g

���o:
Similar to (3.23) we can show that

nX
i=1

E
n���X

j�i
Efe�jMT�ti�1

fMti(
e�ti�1 � e�ti)jFti�1g

���o � C; (3.26)

thanks to the boundedness of fz. Thus it remains to prove that the �rst term on

the right hand side of (3.25) is bounded as well. Recall (3.13) and note that fM is a

P -martingale as well, it is easily checked that,

nX
i=1

E
���X
j�i

Efe�jMT�ti�1
e�ti�1(

fMti�1 � fMti)jFti�1g
���

=
nX
i=1

E
n
j�ti�1

e�ti�1 j
���X
j�i

Efe�jMT (fMti�1 � fMti)jFti�1g
���o

� CE
n nX
i=1

���EnhX
j�i

(�jti � �jti�1)
i
(fMti�1 � fMti)jFti�1g

���o (3.27)

� CE
n nX
i=1

���X
j�i

(�jti � �jti�1)
���2 + nX

i=1

(fMti�1 � fMti)
2
o
:

Now, using Itô's formula one shows that the exponential martingale fM satis�es

E(fMti�1 � fMti)
2 = E

Z ti

ti�1
jfz(r)fMrj2dr � C(ti � ti�1);

and thus we have
nX
i=1

Ej(fMti�1 � fMti)j2 � C: (3.28)

On the other hand, since

nX
i=1

E
n���X

j�i
(�jti � �jti�1)

���2o = nX
i=1

X
j1;j2�i

E
n
(�j1ti � �j1ti�1)(�

j2
ti � �j2ti�1)

o

=
nX
i=1

X
j1;j2�i

E
n Z ti

ti�1
�j1t �

j2
t dt

o
=

nX
j1;j2=1

X
i�j1^j2

E
n Z ti

ti�1
�j1t �

j2
t dt

o
(3.29)

=
nX

j1;j2=1

E
n Z tj1^j2

0
�j1t �

j2
t dt

o
=

nX
j1;j2=1

E
n�
�j1tj1^j2 � �j10

��
�j2tj1^j2 � �j20

�o
:
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Let us de�ne, for each j, a positive martingale associated to �j:

j�jjt = EfjMT
e�jjjFtg; t 2 [0; T ];

then j�jt � �j0j � j�jjt , t 2 [0; T ], j = 1; � � � ; n, such that

nX
j1;j2=1

E
n�
�j1tj1^j2 � �j10

��
�j2tj1^j2 � �j20

�o
� 2

X
j1�j2

Efj�jj1tj1 j�j
j2
tj1
g

= 2
nX

j1=1

E
n
j�jj1tj1

nX
j2=j1

j�jj2tj1
o
� 2

nX
j1=1

E
n
j�jj1tj1

nX
j2=1

j�jj2tj1
o

= 2
nX

j1=1

E
n
jMT �j1j

nX
j2=1

j�jj2tj1
o
� 2

nX
j1=1

EfjMT �j1j sup
0�t�T

nX
j2=1

j�jj2t g (3.30)

� E
n� nX

j=1

jMT
e�jj�2 + �

sup
0�t�T

nX
j=1

j�jjt
�2o � CE

n nX
j=1

jMT
e�jjo2:

Here for the last inequality above we used Doob's inequality (applied to to the mar-

tingale
Pn

j=1 j�jj). Now by (3.14) we see that (3.30) and (3.29) yield that

nX
i=1

E
��� nX
j�i

(�jti � �jti�1)
���2 � CE

n nX
j=1

jMT
e�jjo2 � C: (3.31)

Plugging (3.31) and (3.28) into (3.27), then combining with (3.26) and (3.25) we

obtain that I23 � C. This, together with (3.23), shows that I3 � C, and hence I � C.

The proof is now complete.

Remark 3.1.3 We should point out that the generic constant C in (3.16) is inde-

pendent of n and the choice of the partition �. This will be crucial in our future

discussion.

3.2 L1-Lipschitz Functional Case

We are now ready to study the path regularity of the adapted solution to the

FBSDE (1.2) where � is a functional on lD satisfying the L1-Lipschitz condition

(1.3).

Our �rst step is to approximate a functional � satisfying (1.3) by a sequence of

discrete functionals satisfying (3.15). We proceed as follows. For any partition � :
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0 = t0 < t1 < ::: < tn = T , we de�ne a mapping '� : C([0; T ]; IR
d1) 7! C([0; T ]; IRd1)

by x 7! '�(x)
4
= x�, where

x�(t)
4
=

1

ti � ti�1
[(ti � t)x(ti�1) + (t� ti�1)x(ti)]; t 2 [ti�1; ti]: (3.32)

Denote j�j = max
1�i�n

jti � ti�1j to be the mesh size of the partition �. Then, using the

uniform continuity of x it is easy to see that lim
j�j!0

sup
0�t�T

jx�(t) � x(t)j = 0. Next, for

the given functional � we de�ne a new functional �� as

��(x)
4
= �(x�); 8x 2 C([0; T ]; IRd1): (3.33)

then by assumption (1.3), one has

lim
j�j!0

j��(x)� �(x)j � K lim
j�j!0

sup
0�t�T

jx�(t)� x(t)j = 0; 8x 2 C([0; T ]; IRd1): (3.34)

Now let X be the forward part of the solution to (1.2), and denote ��
4
= ��(X).

Then (3.34) implies that �� ! �(X), P -a.s., as j�j ! 0. Moreover, if we denote

X�
� (!)

4
= '�(X)�(!), then (1.3) leads to

j��(X)j � C
n
j�(0)j+ sup

0�s�T
jX�

s j
o
� C

n
j�(0)j+ sup

0�s�T
jXsj

o
:

Thus, by the Dominated Convergence Theorem we see that

lim
j�j!0

Ej��(X)� �(X)j2 = 0: (3.35)

Consequently, Theorem 1.2.7 tells us that, if one denotes (Y �; Z�) to be the backward

part of the adapted solution to the FBSDE (1.2) with the terminal �(X) being

replaced by ��(X), then it holds that

E
n
sup
0�t�T

jY �
t � Ytj2 +

Z T

0
jZ�

t � Ztj2dt
o
! 0; as j�j ! 0: (3.36)

To construct the desired family of discrete functional, we make a further reduction.

For the given partition � we de�ne a mapping  � : C([0; T ]; IR
d1) 7! IRd1(n+1) by

 �(x) = (x(t0);x(t1); � � � ;x(tn)); 8x 2 C([0; T ]; IRd1): (3.37)

Denote C�([0; T ]; IR
d1) = fx� : x 2 C([0; T ]; IRd1)g, then C�([0; T ]; IR

d1) is a sub-

space of C([0; T ]; IRd1), and  � is a 1� 1 correspondence between C�([0; T ]; IR
d1) and

IRd1(n+1). We have the following lemma.
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Lemma 3.2.1 Suppose that � is an L1-Lipschitz functional satisfying condition

(1.3). Let � = f�g be a family of partitions of [0; T ]. Then there exists a family of

discrete functionals fg� : � 2 �g such that

(i) for each � 2 �, denoting n = #� � 1 (where #� denotes the number of

partition points in �), g� 2 C1
b (IRd1(n+1)), and satis�es (3.15), with constant K being

the same as that in (1.3).

(ii) for any x 2 C([0; T ]; IRd1), it holds that

lim
j�j!0

jg�( �(x))� ��(x)j = 0: (3.38)

Proof. Let � and � 2 � be given. De�ne G�
4
= � Æ  �1� , and denote n = #� � 1.

Then it is easily checked that G� is a mapping from IRd1(n+1) to IR, such that

G�(x(t0); x(t1); � � � ; x(tn)) = G�( �(x)) = �(x�); 8x 2 C([0; T ]; IRd1): (3.39)

Since � satis�es (1.3), one can easily check that

jG�(x0; x1; � � � ; xn)�G�(y0; y1; � � � ; yn)j � K max
0�i�n

jxi � yij:

That is, G� is (uniform) Lipschitz continuous with Lipschitz constant K being the

same as that in (1.3).

Now let � 2 C1
0 (IRd1(n+1)) be such that � � 0 and

Z
IRd1(n+1)

�(z)dz = 1. For �xed

� and " > 0 we de�ne

G"
�(x) =

Z
IRd1(n+1)

G�(x� "z)�(z)dz;

Then G"
� 2 C1

b (IRd1(n+1)), such that sup
x2IRd1(n+1)

jG"
�(x)�G�(x)j ! 0, as "! 0. Next,

for each � 2 � choose "(�) such that

sup
(x0;x1;���;xn)

jG"(�)
� (x0; x1; � � � ; xn)�G�(x0; x1; � � � ; xn)j < j�j; (3.40)

and de�ne g� = G"(�)
� . Then, clearly g� 2 C1

b (IRd1(n+1)); and by de�nitions of G"(�)
� ,

G�, and (3.39), for any x 2 C([0; T ]; IRd1) we have

jg�( �(x))���(x)j = jG"(�)
� ( �(x))�G�( �(x))j � sup

x2IRd1(n+1)
jG"(�)

� (x)�G�(x)j � j�j:
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Namely (3.38) holds, proving (ii).

We now show that g� satis�es (3.15). Indeed, denoting Æj(x) = sgn (@jg�(x)),

x = (x0; x1; � � � ; xn) (same for z 2 IRd1(n+1)), we have

nX
j=0

j@jg�(x0; :::; xn)j =
nX
j=0

@jg�(x0; :::; xn)Æj = lim
h!0

1

h
(g�(x + hÆ)� g�(x))

= lim
h!0

1

h

Z
IRd1(n+1)

n
G�(x� "(�)z + hÆ)�G�(x� "(�)z)

o
�(z)dz

= lim
h!0

1

h

Z
IRd1(n+1)

h
� Æ  �1� (x� "(�)z + hÆ)� � Æ  �1� (x� "(�)z)

i
�(z)dz (3.41)

� lim
h!0

1

h

Z
IRd1(n+1)

K sup
0�s�T

j[ �1� (x� "(�)z + hÆ)�  �1� (x� "(�)z)](s)j�(z)dz

= lim
h!0

1

h

Z
IRd1(n+1)

K max
0�j�n

jhÆjj�(z)dz = K:

This proves (i), whence the lemma.

We now give the main result of this section.

Theorem 3.2.2 Assume Assumption 3.0.2 holds and that � satis�es the L1 Lips-

chitz condition (1.3). Let (X; Y; Z) be the (unique) adapted solution of (1.2), then Z

admits a c�adl�ag version.

Proof. Let � = f�g be the family of all partitions of [0; T ]; and let fg�; � 2 �g be
the family of discrete functionals constructed in Lemma 3.2.1. Further, let ff"; " > 0g
be a family of moli�ers of f , that is f" 2 C1

b such that

sup
(t;x;y;z)

jf"(t; x; y; z)� f(t; x; y; z)j ! 0; as "! 0: (3.42)

Let "(�) be the one chosen in (3.40), and de�ne f� = f"(�). Then it is clear that

f�(t; x; y; z)! f(t; x; y; z), as j�j ! 0, uniformly in (t; x; y; z).

Now let us consider the following FBSDE: for each � : 0 = t0 < t1 < � � � < tn = T ,

Y �
t = �� +

Z T

t
f�(r;Xr; Y

�
r ; Z

�
r )dr �

Z T

t
Z�
r dWr; t 2 [0; T ]; (3.43)

where �� = g�(Xt0 ; :::; Xtn). Since each g� satis�es (3.15) with the same constant

K > 0 of (1.3), we see that

j��j2 = jg�(Xt0 ; � � � ; Xtn j2 � 2
�
j�(0)j2 +K2 max

0�i�n
jXti j2 � C

�
1 + sup

0�t�T
jXtj2

�
:
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Further, similar to the derivation of (3.35) (recall the notations there), we now apply

Lemma 3.2.1 to get, P -almost surely,

j�� � �(X)j � jg�( �(X))� ��(X)j+ j��(X)� �(X)j ! 0;

as j�j ! 0. Therefore, the Dominated Convergence Theorem leads to Ef�� �
�(X)j2g ! 0, as j�j ! 0. Now taking (3.42) into account and applying Theorem

1.2.7, we have

E

(
sup
0�t�T

sup
0�t�T

jY �
t � Ytj2 +

Z T

0
jZ�

t � Ztj2dt
)
! 0; as j�j ! 0: (3.44)

We now analyze the family fZ�g. First, recall from Theorem 2.5.1 we know that

each Z� has a c�adl�ag version. We shall always take such version from now on. Second,

each Z� has the following representation:

Z�
t = r�Y �

t [rXt]
�1�(t; Xt); t 2 [0; T ]; (3.45)

where r�Y � is de�ned similar to (3.1), with Y being replaced by Y �, and riY �

satis�es the following BSDE:

riY �
t =

X
j�i

@jg�rXtj +
Z T

t

h
@xf�(r)rXr + @yf�(r)riY �

r + @zf�(r)riZ�
r

i
dr

�
n Z T

t
riZ�

r dWr

oT
; t 2 [ti�1; T ]; i = 1; � � � ; n: (3.46)

We shall prove that the family fr�Y �g is tight. To this end, �x � 2 �, and let

b� : 0 = s0 < ::: < sm = T be any partition of [0; T ]. We shall estimate the conditional

variation of r�Y � (see (1.20)):

Vb�(r�Y �) =
mX
i=1

EfjEfr�Y �
si
�r�Y �

si�1
jFsi�1gjg+ Efjr�Y �

T jg: (3.47)

To begin with, we note that for any process A, V�(A) � V�0(A) if � � �0, here

the inclusion means all partition points of � are contained in �0. Indeed, for any

r1 < r2 < r3 one has

EfjEfAr3 � Ar1 jFr1gjg
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� EfjEfAr3 � Ar2 jFr1gjg+ EfjEfAr2 � Ar1 jFr1gjg
= EfjEfEfAr3 � Ar2jFr2gjFr1gjg+ EfjEfAr2 � Ar1 jFr1gjg
� EfjEfAr3 � Ar2 jFr2gjg+ EfjEfAr2 � Ar1 jFr1gjg:

Namely, the conditional variation increases as the partition gets �ner. Therefore

without loss of generality we may assume that � � b� (otherwise we simply consider

�[ b�). To be more precise, let us assume that ti = s`i , for i = 0; :::; n. We now recast

the BSDE (3.43) as follows. De�ne a discrete functional egb� : IRd1(m+1) 7! IR by

egb�(x0; x1:::; xm) = g�(x`0 ; ::::; x`n);

then egb�(Xs0; :::; Xsm) = g�(Xt0 ; :::; Xtn) = ��, and (Y �; Z�) can be viewed as the

solution of the BSDE

Y �
s = egb�(Xs0; :::; Xsm) +

Z T

s
f�(r;Xr; Y

�
r ; Z

�
r )dr �

Z T

s
Z�
r dWr: (3.48)

Furthermore, since @xj egb�(x0; � � � ; xm) = 0, if j =2 f`0; � � � ; `ng, we see that
mX
k=0

j@kegb�(x0; � � � ; xm)j = nX
i=0

j@ig�(x`0 ; � � � ; x`n)j � K;

thanks to Lemma 3.2.1. Thus egb� satis�es (3.15) as well. We now apply Theorem

3.1.2 to (Y �; Z�) (regarded as the solution to BSDE (3.48)!) to get that

mX
k=1

E
n���Enrb�Y �

sk
�rb�Y �

sk�1

���Fsk�1

o���o + Ejrb�Y �
T j � C; (3.49)

where C > 0 is a constant independent of the choice of partition b�,
rb�Y �

t =
mX
k=1

crkY �
t 1[sk�1;sk)(t) + @xm egb�(Xs0; � � � ; Xsm)rXT1fTg(t); t 2 [0; T ];

and

crkY �
t =

X
j�k

@jegb�rXsj +
Z T

t

h
@xf�(r)rXr + @yf�(r)crkY �

r + @zf�(r)crkZ�
r

i
dr

�
n Z T

t

crkZ�
r dWr

oT
; t 2 [sk�1; T ]; k = 1; � � � ; m: (3.50)
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Now note that @jegb�(x0; � � � ; xm) = 0 for j =2 fl0; � � � ; lng. For any [sk�1; sk) � [ti�1; ti)

we have X
j�k

@jegb�rXsj =
X
j�i

@jg�rXtj :

Thus, by the uniqueness of the solution to BSDE (3.46) we have crkY �
s = riY �

s ,

8s 2 [sk�1; sk) � [ti�1; ti). In other words, we have rb�Y �
t = r�Y �

t , t 2 [0; T ], and

(3.49) becomes Vb�(r�Y �) � C. Since C is independent of b� and �, and both �

and b� are arbitrarily chosen, we obtain that sup�2� V (r�Y �) � C. Consequently,

all r�Y �'s are quasi-martingales; and the family fr�Y �g is tight, thanks to Lemma
1.2.11.

Note that so far we have not used (ii) of Assumption 3.0.2 yet. Now we shall

use it to obtain a (strong) L2 limit of fr�Y �g. Denote eZ� = r�Y � and eZt =

Zt�
�1(t; Xt)rXt. Since eZ� satis�es (3.45) and rX 2 Lp(F;C([0; T ]; IRd1)) for all

p � 2, using (3.44) and the H�older inequality we have, for any 1 < q < 2,

E
n Z T

0
jr�Y �

t � eZtjqdt
o
� E

n Z T

0
j(Z�

t � Zt)�
�1(t; Xt)rXtjqdt

o
! 0; (3.51)

as j�j ! 0. Therefore, we can �nd a sequence f�kg such that outside an exceptional

P -null set, for all ! 2 
, one has
R T
0 j eZ�k

t (!) � eZt(!)jqdt ! 0, as k ! 1. Thus,

as functions in L0([0; T ]), eZ�k(!) converges to eZ(!) in measure. Applying Lemma

1.2.10, we see that, as 	-valued random variables eZ�k converges to eZ in Meyer-Zheng

pseudo-path topology, P -a.s., and hence convergence in law. Denote the law of eZ�k

by P k, and that of eZ by P 0.

On the other hand, since f eZ�kg are quasimartingales with uniformly bounded con-
ditional variations, by Lemma 1.2.11 we know that, possibly along a subsequence,P k

converges weakly to a probability law P � 2 M(lD). Let bP � 2 M(	) be the extension

of P � in the sense of (1.19). The uniqueness of the weak limit then implies thatbP �(A) = P 0(A), 8A 2 B(	). Since lD 2 B(	), from (1.19), the de�nition of P �, and

the equality above we see that

1 = P �(lD) = bP �(lD) = P 0(lD) = Pf eZ 2 lDg:
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In other words, eZ, whence Z, has paths in lD almost surely. This proves the theorem.

Remark 3.2.3 Note that in the proof we required � to be invertible only because

we need a strong limit of eZ�. If we assume that � is Lipschitz with respect to t, then

in light of Lemma 3.4.4 as we will see in x4, one can prove directly that fZ�g itself is
tight under Meyer-Zheng pseudo-path topology. So the result of Theorem 3.2.2 still

holds true if we replace (ii) of Assumption 3.0.2 by (ii'): � is uniformly Lipschitz with

respect to time t.

The following corollary is an extension of Corollary 2.2.3.

Corollary 3.2.4 Assume (i) of Assumption 3.0.2 holds and that � satis�es the L1-

Lipschitz condition (1.3). Then for 8p � 1, there exists a constant Cp depending only

on T;K and p, such that

sup
0�t�T

kZtkp � Cp(1 + jxj):

Proof. First applying Lemma 1.2.6 on (3.46) we have, for 8t 2 [ti�1; ti),

E
n
jriY �

t jp
o
� CpE

n
jX
j�i

@jg�rXtj jp +
Z T

t
j@xf�(r)rXrjpdr

o
:

Note that g� satis�es (3.15), recalling (2.23) we have

E
n
jriY �

t jp
o
� Cp(1 + jxjp)E

n
sup

0�r�T
jrXrjp

o
� Cp(1 + jxjp);

which, combined with (3.45), implies that

kZ�
t kp � Cp(1 + jxj); 8t 2 [0; T ]: (3.52)

By (3.44), we know that for dt-a.s. t, Z�
t ! Zt, P-a.s.. Applying the Fatou's

lemma on (3.52) we get that

kZtkp � Cp(1 + jxj); dt� a:s:t 2 [0; T ]: (3.53)

By virtue of Theorem 3.2.2, Z is a.s. c�adl�ag , then by applying the Fatou's lemma

again (3.53) proves the result.
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3.3 L1-Lipschitz Functional Case

In this section we consider the FBSDE (1.2) where � is an L1-Lipschitz functional.

Note that an L1-Lipschitz functional is always L1-Lipschitz. Therefore if (X; Y; Z)

is the solution to (1.2) with � satisfying (1.4), then Z at least has a c�adl�ag version.

The main purpose of this section is to prove the following stronger result.

Theorem 3.3.1 Assume Assumption 3.0.2 holds true; and that � satis�es the L1-

Lipschitz condition (1.4). Let (X; Y; Z) be the (unique) adapted solution of the

FBSDE (1.2), then Z has a continuous version.

The proof of Theorem 3.3.1 is quite lengthy, we shall split it into several lemmas.

We begin with some preparations. Let � = f�g be a family of partitions of [0; T ].

For a given partition �, let (Y �; Z�) be the solution to the BSDE (3.43). Recall the

process eZt
4
= Zt�

�1(t; Xt)rXt. Since Z has a continuous version if and only if eZ
does, it would suÆce to prove that eZ has a continuous version, which we shall do in

the sequel.

Let us �rst give a lemma which is a re�nement of Lemma 3.2.1, under the con-

dition (1.4). Recall the mappings '� (or x�) and  � de�ned by (3.32) and (3.37),

respectively, for a given partition � 2 �.

Lemma 3.3.2 Assume that � : C([0; T ]; IRd1) 7! IR satis�es the L1-Lipschitz con-

dition (1.4). Then there exists a family of discrete functionals fg� : � 2 �g such

that

(i) for each � 2 �, g� 2 C1
b (IRd1(n+1)), where n = #� � 1;

(ii) for each � 2 �, 0 � s1 < s2 � T , and x 2 C([0; T ]; IRd1), it holds thatX
s1<tj�s2

tj2�

j@jg�( �(x�))j � 2K(js2 � s1j+ j�j); (3.54)

where K is the constant in (1.4);

(iii) for any x 2 C([0; T ]; IRd1), it holds that

lim
j�j!0

jg�( �(x�))� �(x�)j = 0: (3.55)
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Proof. Let � and � 2 � be given. We construct the family fg�g as the same

as those in Lemma 3.2.1. That is, G�
4
= � Æ  �1� , and g� = G"(�)

� , where G"
� 2

C1
b (IRd(n+1)) is the moli�er of G�, and "(�) is chosen so that (3.55) holds.

Since the condition (1.4) implies (1.3), (i) and (iii) follow from Lemma 3.2.1, and

we need only check (ii). To do this let 0 � s1 < s2 � T , and x;y 2 C([0; T ]; IRd1) be

given. Assume that s1 2 [tj1�1; tj1) and s2 2 [tj2�1; tj2), for some 1 � j1 � j2 � n.

Thus

jtj2 � tj1�1j � (js2 � s1j+ 2j�j) � 2(js2 � s1j+ j�j): (3.56)

Next, for each j we denote

Æj =

8><>: sgn [@jg�( �(x�))] j1 � j < j2;

0 otherwise,
(3.57)

and Æ�
4
= (Æ0; � � � ; Æn), �Æ� 4

=  �1� (Æ�). Notice that both  � (whence  �1� ) and '� are

linear mappings, and that �Æ�(s) = 0, for s =2 [tj1�1; tj2 ], then similar to (3.41) we have

(with " = "(�))

X
s1<tj�s2

j@jg�( �(x�))j =
nX
j=0

@jg�( �(x�))Æj

= lim
h!0

1

h
(g�( �(x�) + hÆ�)� g�( �(x�)))

= lim
h!0

1

h

Z
IRd1(n+1)

h
�(x� � " �1� (z) + h�Æ�)� �(x� � " �1� (z))

i
�(z)dz

� lim
h!0

1

h

Z
IRd1(n+1)

K
Z T

0

h
hj�Æ�(s)j

i
ds�(z)dz

=
Z
IRd1(n+1)

K
Z tj2

tj1�1
j �1� (Æ�)(s)jds�(z)dz � Kmax

j
jÆjjjtj2 � tj1�1j

� 2K(js2 � s1j+ j�j);

thanks to (3.56). This proves (ii), whence the lemma.

We now take a closer look at the process eZ� = r�Y �. Let us introduce some

notations similar to those used in x2. De�ne8>><>>:
�;0s =

Z T

s
[@xf�(r)rXr + @yf�(r)

�;0
r + @zf��

�;0
r ]dr �

n Z T

s
��;0r dWr

oT
;

�;is = @xig�rXti +
Z T

s
[@yf�(r)

�;i
r + @zf�(r)�

�;i
r ]dr �

n Z T

s
��;ir dWr

oT
:

(3.58)
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Then, using the linearity of the BSDE (3.1) we see that riY � can be written as

riY �
s = �;0s +

X
j�i

�;js ; s 2 [ti�1; T ]; i = 1; � � � ; n: (3.59)

Now let us recall the \exponentials" � and E de�ned by (3.4) and (3.5). We

denote, for a given � 2 �, ��
t

4
= �0

t (�@yf�) and M�
t

4
= E0t (@zf�), t 2 [0; T ]. Since

f� 2 C0;1
b ([0; T ] � IRd1 � IR� IRd), we may assume without loss of generality that

(@xf�; @yf�; @zf�) is uniformly bounded. Thus by the Girsanov theorem, M� is a

martingale; and the process W �
t = Wt �

R t
0 [@zf�(r)]

Tdr, t 2 [0; T ], is a Brownian

motion on the new probability space (
;F ; P �), where dP�

dP
=M�

T .

Now, using integration by parts we have

[��
t ]
�1�;0t =

Z T

t
[��

r ]
�1@xf�(r)rXrdr �

n Z T

t
[��

r ]
�1��;0r dWr

oT
(3.60)

4
= ��;0T � ��;0t �

n Z T

t
[��

r ]
�1��;0dWr

oT
; t 2 [0; T ];

where

��;0t
4
=
Z t

0
[��

r ]
�1@xf�(r)rXrdr; t 2 [0; T ]: (3.61)

Taking conditional expectation E�f�jFtg on both sides of (3.60) and using the Bayes

rule we have

[��
t ]
�1�;0t = E�f��;0T jFtg � ��;0t = EfM�

T�
�;0
T jFtg[M�

t ]
�1 � ��;0t : (3.62)

Similarly, for each i we have

[��
t ]
�1�;it = E�f[��

T ]
�1@ig�rXti jFtg = EfM�

T�
�;i
ti jFtg[M�

t ]
�1; (3.63)

where

��;it
4
= [��

T ]
�1@ig�rXt: (3.64)

Therefore (3.59) can be written as

riY �
t = ��

t [[�
�
t ]
�1�;0t +

X
j�i

[��
t ]
�1�;jt ] (3.65)

= ��
t

n
EfM�

T [�
�;0
T +

X
j�i

��;jtj ]jFtg[M�
t ]
�1 � ��;0t

o
= Ef��

i jFtg��
t [M

�
t ]
�1 � ��

t �
�;0
t ; t 2 [ti�1; T ];
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where

��
i
4
=M�

T [�
�;0
T +

X
j�i

��;jtj ]; i = 0; 1; � � � ; n:

Consequently, we have

r�Y �
t = E

n nX
i=1

��
i 1[ti�1;ti)(t)

���Ft

o
��
t [M

�
t ]
�1 � ��

t �
�;0
t

= E
n
��
t

���Ft

o
��
t [M

�
t ]
�1 � ��

t �
�;0
t ; t 2 [0; T ); (3.66)

where, for t 2 [0; T ),

��
t
4
=

nX
i=1

��
i 1[ti�1;ti)(t) =M�

T [�
�;0
T +

nX
i=1

X
j�i

��;jtj 1[ti�1;ti)(t)]

=M�
T [�

�;0
T +

nX
j=1

X
i�j

��;jtj 1[ti�1;ti)(t)] =M�
T [�

�;0
T +

nX
j=1

��;jtj 1[0;tj)(t)]:

For notational convenience we shall denote f�� : � 2 �g be a family of generic

random variables that may depend on the partition �, such that for all p � 2,

sup
�2�

Ej��jp � Cp; (3.67)

for some constant Cp > 0. Note that all C, Cp, and � are allowed to vary from

line to line. Moreover, from now on we shall �x a sequence f�ng � � such that

limn!1 j�nj ! 0; and denote 	n 4
= 	�n, where 	 = �;M; fM;�,...,etc. Furthermore,

we denote eZn = r�nY �n, fn = f�n, �
n;0 = ��n;0, �n;i = ��n;i, and �n = ��n . We have

the following lemma.

Lemma 3.3.3 There exists a family of positive random variables f�ngn�1 satisfying
(3.67) such that for all stopping time �� 2 [0; T ], it holds that [Mn

�� ]
�1 � �n and

j�n
�� j � �n, n � 1, P -a.s. Furthermore, for all 0 � s1 < s2 � T ,

j[Mn
s1]

�1 � [Mn
s2 ]

�1j+ j�n
s1 � �n

s2 j � �n(js1 � s2j 13 + j�nj); n � 1: (3.68)

Proof. First, note that (3.9) implies that [Mn
�� ]
�1 � �n. Second, for each n and

any p � 2, by (3.61) and (3.64),8>>><>>>:
Ej�n;0T jp � CpE

n Z T

0
j[�n

r ]
�1@xfn(r)rXrjpdr

o
� CpE

n
sup
0�t�T

jrXtjp
o
;

E
n
sup
t2[0;T ]

���X
j�1

�n;jtnj
1[0;tn

j
)(t)

���po � CpE
nX
j�1

j@jg�rXtnj
j
op � CpE

n
sup
t2[0;T ]

jrXtjp
o
;

(3.69)
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thanks to the assumption (1.4) (whence (2.97)). Combining this with (3.9) we see

that (3.67) yields j�n
�� j � �n.

To estimate j[Mn
s1
]�1 � [Mn

s2
]�1j we recall from (3.24) that

[Mn
t ]
�1 = fMn

t �
n
t (�j@zfnj2);

where fMn
�

4
= E0� (�@zfn) is a P -martingale, thanks to the boundedness of @zfn. Now

de�ne fM�
n = sup

0�r1<r2�T

jfMn
r2
� fMn

r1
j

(r2 � r1)
1
3

:

Using (3.6) it is easy to show that the exponential martingale fMn satis�es, for any

p � 1, that EfjfMn
r2 � fMn

r1 j2pg � Cjr2 � r1jp. Therefore, applying Theorem 1.2.1 of

[47] one shows that fM�
n 2 Lp(
) for all p � 1. Consequently,

j[Mn
s1]

�1 � [Mn
s2 ]

�1j
� j[�n

s1
(�j@zfnj2)� �n

s2
(�j@zfnj2)]fMn

s1
j+ j�n

s2
(�j@zfnj2)[fMn

s1
� fMn

s2
]j

� �n[js1 � s2j+ js1 � s2j 13 ] � �njs1 � s2j 13 :

Next, recalling the de�nitions (3.64) and (3.67), we apply Lemma 3.3.2 to get

j�n
s1
� �n

s2
j � jMn

T j
nX
j=1

j[�n
T ]
�1@jgnrXtj j1(s1;s2](tj)j

� �n sup
0�t�T

jrXtj(js1 � s2j+ j�nj) � �n(js1 � s2j+ j�nj):

Combining the above we derive (3.68).

Finally, we give a seemingly simple lemma to facilitate our argument in the proof

of Theorem 3.3.1.

Lemma 3.3.4 Let f�ngn�1; f�ngn�1 � L1(
) be two sequences such that

(i) j�nj � �n, 8n, P -a.s.;
(ii) lim

n!1 �n = � and lim
n!1 �n = �, both weakly in L1(
).

Then it holds P -almost surely that j�j � �.



67

Proof. Denote D
4
= f! : j�j � � > 0g and � 4

= sgn f�g. Then �1D 2 L1(
), and

Efj�j1Dg = Ef��1Dg = lim
n!1Ef�n�1Dg

� lim
n!1

Efj�nj1Dg � lim
n!1Ef�n1Dg = Ef�1Dg:

That is, Ef[j�j � �]1Dg � 0. By de�nition of the set D we see that P (D) = 0 must

hold, proving the lemma.

Proof of Theorem 3.3.1. As we pointed out before, we need only show that eZ has

a continuous version on [0; T ]. Note that Z has a c�adl�ag version, so does eZ. We will

take such a version of eZ from now on.

We �rst prove that eZ is a.s. continuous on [0; T1], for all T1 < T . Since eZ is

already c�adl�ag , we need only show that for all stopping time � 2 (0; T1], it holds thateZ�� = eZ� (cf. [48] or [15]). To this end, we �rst recall that (3.51) implies that for all

1 < q < 2, Z T

0
E
n
j eZn

r � eZrjq
o
dr! 0; as n!1:

thus for any stopping time �� such that 0 < �� � T1, a.s., we have

E
n Z T�T1

0
j eZn

��+r � eZ��+rjqdr
o
= E

n Z T�(T1���)

��
j eZn

r � eZrjqdr
o

� E
n Z T

0
j eZn

r � eZrjqdr
o
! 0; as n!1:

In other words, for a.e. r 2 [0; T � T1], one has

E
n
j eZn

��+r � eZ��+rjq
o
! 0; as n!1: (3.70)

Next, we note that F is a Brownian �ltration, whence quasi-left continuous. Thus

every stopping time � > 0 is accessible. To wit, there exists a sequence of stopping

times f�kg such that �k < � , and �k " � , as k ! 1. Now setting �� = �0
4
= � and

�k, k = 1; 2; � � �, respectively. Taking away a countable union of null sets, we see that

(3.70) should hold for �k, k = 0; 1; � � �, for a.e. r 2 [0; T � T1]. Now let us choose

rm # 0 such that (3.70) holds for all k;m.
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Since @yf�n and @zf�n are bounded, using de�nitions of �n and �n;0 one derives

that, for all k and m,8>><>>:
j�n;0�k+rm � �n;0�+rmj � C sup

0�t�T
jrXtjj� � �kj;

j�n
�k+rm

� �n
�+rmj � Cj�k � � j:

Thus, denoting �(�; t)
4
= � +Ef�jFtg, (�; t) 2 L2(
)� [0; T ], e�n

s
4
= �n

s [�
n
sM

n
s ]
�1, and

applying Lemma 3.3.3 we derive from (3.66) that���[ eZn
�k+rm

� eZn
�+rm ]� [Efe�n

�+rmjF�k+rmg � Efe�n
�+rmjF�+rmg]

���
� E

n
je�n

�k+rm
� e�n

�+rmj
���F�k+rm

o
+ j�n

�k+rm
�n;0�k+rm � �n

�+rm�
n;0
�+rmj

� E
n
j�n

�k+rm
� �n

�+rmj�n
�k+rm

[Mn
�k+rm

]�1
���F�k+rm

o
+E

n
j�n

�+rmjj�n
�k+rm

� �n
�+rmj[Mn

�k+rm
]�1
���F�k+rm

o
(3.71)

+E
n
j�n

�+rmj�n
�+rmj[Mn

�k+rm
]�1 � [Mn

�+rm ]
�1j
���F�k+rm

o
+j�n

�k+rm
jj�n;0�k+rm � �n;0�+rm j+ j�n

�k+rm
� �n

�+rmj
���Fn;0

�+rm

���
� �(�n(j�k � � j 13 + j�nj); �k + rm):

To analyze (3.71) we observe that Lemma 3.3.3 implies that for any stopping time

�� 2 (0; T ], the sequence fe�n
�� gn�1 is bounded (uniformly in ��) in L2(
), thus it is

weakly relatively compact in L2(
), and so is in L1(
). Consequently, possibly along

a subsequence, may assume itself, it holds that8><>: limn!1 e�n
�+rm = e�m 2 L1(
); weakly in L1(
);

limm!1 e�m = e� 2 L1(
); weakly in L1(
):
(3.72)

An elementary calculation then shows that, for �xed k and m,8><>:
lim
n!1Efe�n

�+rm jF�k+rmg = Efe�mjF�k+rmg; weakly inL1(
);

lim
n!1Efe�n

�+rm jF�+rmg = Efe�mjF�+rmg; weakly in L1(
):
(3.73)

Similarly, since by (3.67) f�ng is also bounded in L2(
), we can also conclude that

�n ! � 2 L2(
), weakly in L1(
) (!), as n!1. Therefore,8><>:
lim
n!1�n(j�k � � j 13 + j�nj) = �j�k � � j 13 ;
lim
n!1Ef�n(j�k � � j 13 + j�nj)jF�k+rmg = Ef�j�k � � j 13 jF�k+rmg;
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both weakly in L1(
). Let us now denote

An
k;m

4
= [ eZn

�k+rm
� eZn

�+rm]� [Efe�n
�+rmjF�k+rmg � Efe�n

�+rmjF�+rmg];
Bn
k;m

4
= �(�n(j�k � � j 13 + j�nj); �k + rm):

Then (3.71) shows that jAn
k;mj � Bn

k;m, P -a.s. Further, by (3.51) (or (3.70)) and (3.73)

we see that, as n!1,8><>: An
k;m ! Ak;m

4
= [ eZ�k+rm � eZ�+rm ]� [Efe�mjF�k+rmg � Efe�mjF�+rmg];

Bn
k;m ! Bk;m

4
= �(�j�k � � j 13 ; �k + rm);

(3.74)

both weakly in L1(
). Applying Lemma 3.3.4 we obtain that

j[ eZ�k+rm� eZ�+rm ]� [Efe�mjF�k+rmg�Efe�mjF�+rmg]j � �(�j���kj 13 ; �k+rm); (3.75)

To complete the proof we need to send m!1 in (3.75) and apply Lemma 3.3.4

again. To this end, for any � 2 L1(
) we let �0 = Ef�jF�g and �m = Ef�jF�+rmg.
Then using the right-continuity of the �ltration F and the Dominated Convergence

Theorem one has k�m � �0kL2(
) ! 0, as m ! 1. Note that fe�mg is bounded in

L2(
) and converges weakly in L1(
) (see (3.72)), we see that for any � 2 L1(
), it

holds that ���E n[Efe�mjF�+rmg � Efe�jF�g]�
o ��� = jEfe�m�m � e��0gj

� jEf[e�m � e�]�0gj+ jEfe�m[�m � �0]gj
� jEf[e�m � e�]�0gj+ ke�mkL2(
)k�m � �0kL2(
) ! 0; as m!1:

That is, Efe�mjF�+rmg ! Efe�jF�g, weakly in L1(
), as m!1. Similarly, we have

Efe�mjF�k+rmg ! Efe�jF�kg, and Ef�j���kj
1
3 jF�k+rmg ! Ef�j���kj 13 jF�kg, weakly

in L1(
), as m!1. Furthermore, we de�ne for each integer ` � 1 a set


`
4
=
n
! 2 
 : sup

0�r�r1
[j eZ�k+r � eZ�k j+ j eZ�+r � eZ� j] � `

o
;

where r1 � rm # 0, as m ! 1. Then 
` " 
, as ` ! 1, modulo a P -null set; and

for each `, Dominated Convergence Theorem yields that

1
`Ak;m ! 1
`
n
[ eZ�k � eZ� ]� [Efe�jF�kg � Efe�jF�g]

o
; weakly in L1(
):
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(see (3.74) for de�nition of Ak;m). Since (3.75) implies that j1
`Ak;mj � �(�j� �
�kj 13 ; �k + rm), we can now send m ! 1 in (3.75) and apply Lemma 3.3.4 again to

get

���1
`n[ eZ�k � eZ� ]� [Efe�jF�kg � Efe�jF�g]
o��� � �(�j�k � � j 13 ; �k); P -a.s. (3.76)

Finally, �rst letting `!1 and then taking expectation and letting k !1 on both

sides of (3.76), using the fact that F is quasi-left continuous, and applying Fatou's

Lemma, we conclude that Ej eZ�� � eZ� j � 0. That is, eZ�� = eZ� , P -a.s. Since �

is arbitrary, eZ (whence Z) is continuous on [0; T1], for all T1 < T . That is, Z is

continuous on [0; T ). De�ning ZT = ZT�, we see that Z is continuous on [0; T ]. The

proof is complete.

The following theorem is a direct consequence of Theorem 3.2.2 and Theorem

3.3.1.

Theorem 3.3.5 Assume Assumption 3.0.2 holds true; and for some 0 � t1 < t2 � T ,

� satis�es that

j�(x1)� �(x2)j � L

 Z t2

t1
jx1(t)� x2(t)jdt+ sup

t2[0;T ]n(t1;t2)
jx1(t)� x2(t)j

!
:

Then Z has a version that is c�adl�ag on [0; T ] and continuous in [t1; t2).

Proof. By Theorem 3.2.2, Z is c�adl�ag . Restricting the stopping time � in (t1; t2) and

following the same argument as that of Theorem 3.3.1 one shows that Z is continuous

in [t1; t2).

In particular, we have the following result proved in Theorem 2.2.4.

Corollary 3.3.6 Assume Assumption 3.0.2 holds true; and that �(X) = g(XT ),

then Z is continuous on [0; T ].

Proof. By Theorem 3.3.5 we know that Z is c�adl�ag on [0; T ] and continuous in [0; T ).

Letting ZT = ZT�, we see that Z is indeed continuous on [0; T ].
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3.4 L2-Type Regularity

In this section we shall establish an L2-type regularity result for solutions to

FBSDE (1.2), which is the base for the convergence of a numerical scheme we will

propose in next chapter. In the sequel we shall use the following assumption:

Assumption 3.4.1 The functions b; �; f 2 C
1
2
L . We use a common constant K > 0

to denote all the Lipschitz constants, and assume that

sup
0�t�T

n
jb(t; 0)j+ j�(t; 0)j+ jf(t; 0; 0; 0)j

o
+ j�(0)j � K:

Let �0 : 0 = t0 < � � � < tn = T be any given partition of [0; T ], and denote

(X; Y; Z) as the adapted solution to FBSDE (1.2). For 8t 2 [ti�1; ti), we shall use

(Xti�1 ; Yti�1) to approximate (Xt; Yt). However, we use Z�0;1
ti�1 , rather than Zti�1 to

approximate Zt, where Z
�0;1
ti�1 is de�ned as follows.

Z�0;1
ti�1

4
=

1

�ti
E
n Z ti

ti�1
Zrdr

���Fti�1

o
: (3.77)

This Z�0;1
ti�1 is special in the following sense.

Lemma 3.4.2 Let � 2 L2(F), and for 0 � s < t � T de�ne

�0
4
=

1

t� s
E
n Z t

s
�rdr

���Fs

o
:

Then �0 2 Fti�1 , and for 8� 2 Fti�1 , it holds that

E
n Z t

s
j�r � �0j2dr

o
� E

n Z t

s
j�r � �j2dr

o
:

Proof. Denote ��
4
=
R t
s �rdr. The Lemma is a direct consequence of the fact that

Var
�
��
���Fti�1

�
� Ef(�� � �)2jFsg;

for 8� 2 L2(Fs).

Our main result is
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Theorem 3.4.3 Assume that Assumption 3.4.1 holds; and that � satis�es the L1

Lipschitz condition (1.3). Then we have the following estimate:

max
1�i�n

sup
t2[ti�1;ti)

E
n
jXt �Xti�1 j2 + jYt � Yti�1 j2

o
+

nX
i=1

E
n Z ti

ti�1
jZt � Z�0;1

ti�1 j2dt
o
� Cj�0j;

(3.78)

where C is a constant depending only on T;K and x, but independent of the partition

�0.

To prove the theorem, we need a technical lemma.

Lemma 3.4.4 Let �jt = �j +
Z t

0
�jrdWr, j = 1; � � � ; n. Assume that �j 2 L2(F), and

� 2 L2(F). Then

E
n nX
i=1

Z ti

ti�1
jX
j�i

�jrj2dr�ti�1

o
� 2E

n�
sup
0�t�T

nX
j=1

j�jt j
�2
��T
o
;

where ��t
4
= sup

0�s�t
j�sj.

Proof. By Itô's formula we have

E
n Z ti

ti�1
�j1r �

j2
r dr

���Fti�1

o
= E

n
�j1ti �

j2
ti � �j1ti�1�

j2
ti�1

���Fti�1

o
:

Note that ��ti�1 2 Fti�1 , it holds obviously that

E
n Z ti

ti�1
�j1r �

j2
r dr�

�
ti�1

o
= E

n
(�j1ti �

j2
ti � �j1ti�1�

j2
ti�1)�

�
ti�1

o
:

Since ��t is increasing, by some simple calculation and applying the Abel transforma-

tion one can show that

E
n nX
i=1

Z ti

ti�1
jX
j�i

�jrj2dr�ti�1

o
� E

n nX
i=1

Z ti

ti�1
jX
j�i

�jrj2dr��ti�1
o

= E
n nX
i=1

X
j1;j2�i

Z ti

ti�1
�j1r �

j2
r dr�

�
ti�1

o
= E

n nX
i=1

X
j1;j2�i

(�j1ti �
j2
ti � �j1ti�1�

j2
ti�1)�

�
ti�1

o

= E
n nX
j1;j2=1

X
i�j1^j2

�j1ti �
j2
ti (�

�
ti�1

� ��ti) +
nX

j1;j2=1

�j1T �
j2
T �

�
T �

nX
j1;j2=1

�j1�j2�
�
0

o

� E
n nX
j1;j2=1

nX
i=1

j�j1ti �j2ti j(��ti � ��ti�1) +
nX

j1;j2=1

j�j1T �j2T j��T +
nX

j1;j2=1

j�j10 �j20 j��0
o
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= E
n nX
i=1

(
nX
j=1

j�jti j)2(��ti � ��ti�1) + (
nX
j=1

j�jT j)2��T + (
nX
j=1

j�j0j)2��0
o

� E
n
sup
0�t�T

(
nX
j=1

j�jti j)2
nX
i=1

(��ti � ��ti�1) + (
nX
j=1

j�jT j)2��T + (
nX
j=1

j�j0j)2��0
o

� 2E
n
sup
0�t�T

(
nX
j=1

j�jt j)2��T
o
:

This proves the lemma.

Let �n = � and �j = 0 for j = 1; � � � ; n � 1. Then the following result is a direct

consequence of Lemma 3.4.4.

Corollary 3.4.5 If � = � +
R t
0 �rdWr, and �;� 2 L2(F), then

E
n nX
i=1

Z ti

ti�1
j�rj2dr�ti�1

o
� 2E

n
sup
0�t�T

j�tj2��T
o
:

Proof of Theorem. For 8i and 8t 2 [ti�1; ti), applying Lemma 1.2.5 we have

EfjXt � Xti�1 j2g � C�ti. Recalling Corollary 3.2.4 and applying Lemma 1.2.6 we

get EfjYt � Yti�1 j2g � C�ti.

The estimate for Z is a little involved. First we assume that b; �; f 2 C1. Let

� : 0 = s0 < � � � < sm = T be any partition of [0; T ] �ner than �0, and without lose

of generality, we assume ti = sli, for i = 1; � � � ; n. Since � satis�es the L1-Lipschitz

condition (1.3), by virtue of Lemma 3.2.1, one can �nd g� 2 C1(IRm+1) satisfying

(3.15) and (3.38). Let (Y �; Z�) denote the adapted solution to the following BSDE:

Y �
t = g�(Xs0; � � � ; Xsm) +

Z T

t
f(r;Xr; Y

�
r ; X

�
r )dr �

Z T

t
Z�
r dWr: (3.79)

Applying the Dominated Convergence Theorem one can easily show that

lim
j�j!0

E
n

sup
1�j�m

sup
t2[sj�1;sj)

jXt �Xsj�1j2
o
= 0: (3.80)

(Actually as we will see in x4.2, the left side of (3.80) converges with a rate of con-

vergence j�j log 1
j�j .) Now by (1.3) and (3.38), applying Theorem 1.2.7 we know that

lim
j�j!0

E
n
sup
0�t�T

jY �
t � Ytj2 +

Z T

0
jZ�

t � Ztj2dt
o
= 0: (3.81)
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Recalling (3.77) and applying Lemma 3.4.2 we have

nX
i=1

E
n Z ti

ti�1
jZt � Z�0;1

ti�1 j2dt
o
�

nX
i=1

E
n Z ti

ti�1
jZt � Z�

ti�1
j2dt

o
� 2

nX
i=1

E
n Z ti

ti�1
[jZt � Z�

t j2 + jZ�
t � Z�

ti�1
j2]dt

o
: (3.82)

By (3.81) and (3.82), to prove the theorem it suÆces to show that

nX
i=1

E
n Z ti

ti�1
jZ�

t � Z�
ti�1

j2]dt
o
� Cj�0j; (3.83)

where C is independent of � or �0.

To this end we apply Lemma 3.1.1 and recall the processes de�ned in the para-

graphs before the lemma, by (3.45) we obtain

Z�
t =

h
(�0t +

X
j�i

�jt )M
�1
t �

Z t

0
fx(r)rXr�

�1
r dr

i
�t[rXt]

�1�(t; Xt): (3.84)

Therefore,

jZ�
t � Z�

ti0�1
j � I1t + I2t + I3t ; (3.85)

where 8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

I1t
4
=
���[�0t +X

j�i
�jt ]� [�0ti0�1 +

X
j�li0�1+1

�jti0�1 ]
����

���M�1
ti0�1

�ti0�1
[rXti0�1

]�1�(ti0�1; Xti0�1
)
���

I2t
4
=
����0t +X

j�i
�jt
������M�1

t �t[rXt]
�1�(t; Xt)

�M�1
ti0�1

�ti0�1
[rXti0�1

]�1�(ti0�1; Xti0�1
)
���

I3t
4
=
��� Z t

0
fx(r)rXr�

�1
r dr�t[rXt]

�1�(t; Xt)

�
Z ti0�1

0
fx(r)rXr�

�1
r dr�ti0�1

[rXti0�1
]�1�(ti0�1; Xti0�1

)
���:

(3.86)

Recalling (3.9) and applying Lemmas 1.2.5 and 1.2.6 one can easily show that

EfjI3t j2g � Cj�0j: (3.87)

Recalling (3.13) and (3.15) we have

j�0t +
X
j�i

�jt j � CE
n
sup
0�t�T

jrXtj
���Ft

o
:
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Thus by using Lemmas 1.2.5 and 1.2.6 one can similarly show that

EfjI2t j2g � Cj�0j: (3.88)

It remains to estimate I1t . To this end we denote

�t
4
= sup

0�s�t
f1 + jXsj+ jrXsj+ j[rXs]

�1j+ jM�1
s jg:

Noting that � is bounded and that �ti0�1 2 Fti0�1
, by (3.13) we have

EfjI1t j2g � CE
n
�6ti0�1

���[�0t +X
j�i

�jt ]� [�0ti0�1 +
X
j�i

�jti0�1]
���2o

� CE
n
�6ti0�1

h
j�0t � �0ti0�1 j

2 + j X
li0�1+1�j<i

�jt j2 + j X
j�li0�1+1

(�jt � �jti0�1)j
2
io

= CE
n
�6ti0�1 jEf

X
li0�1+1�j<i

�jT
���Ftgj2

+�6ti0�1E
n
j�0t � �0ti0�1 j

2 + j X
j�li0�1+1

(�jt � �jti0�1)j
2
���Fti0�1

oo
(3.89)

� CE
n
�6ti0�1

h
j X
li0�1+1�j<i

�jT j2 +
Z t

ti0�1
j�0r j2dr +

Z t

ti0�1
j X
j�li0�1+1

�jrj2dr
io

� CE
n
�6ti0�1

h
j X
li0�1+1�j�li0

�jT j2 +
Z ti0

ti0�1
j�0r j2dr +

Z ti0

ti0�1
j X
j�li0�1+1

�jrj2dr
io
:

Applying Lemma 3.4.4 and Corollary 3.4.5, (3.89) leads to that

nX
i=1

E
n Z ti

ti�1
jI1t j2dt

o
�

nX
i=1

C�tiE
n
�6T (

X
li�1+1�j�li

j�jT j)2

+�6ti�1

h Z ti

ti�1
j�0r j2dr +

Z ti

ti�1
jX
k�i

(
X

lk�1+1�j�lk
�jr)j2dr

io

� Cj�0jE
n
�6T
h nX
i=1

(
X

li�1+1�j�li
j�jT j)2 (3.90)

+ sup
0�t�T

j�0t j2 +
�
sup
0�t�T

nX
k=1

j X
lk�1+1�j�lk

�jt j
�2io

� Cj�0jE
n
�6T
�
sup
0�t�T

mX
j=0

j�jt j
�2o � Cj�0jE

n
�12T +

�
sup
0�t�T

mX
j=0

j�jt j
�4o

:

Recalling (3.13), (3.10) and (3.8) we have

mX
j=0

j�jt j �
mX
j=0

E
n
jMT

e�jj���Ft

o
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� E
n
jMT

Z T

0
fx(r)rXr�

�1
r drj+ jMT�

�1
T j

mX
j=1

jg�jrXsj j
���Ft

o
(3.91)

� CE
n
MT sup

0�s�T
jrXsj

���Ft

o
;

where the last inequality is due to (3.15) and the fact that ��1 and fx are uniformly

bounded. Applying Doob's inequality (3.91) leads to

E
n
( sup
0�t�T

mX
j=0

j�jt j)4
o
� CE

n
sup
0�t�T

���EnMT sup
0�s�T

jrXsj
���Ft

o���4o
� C sup

0�t�T
E
n���EnMT sup

0�s�T
jrXsj

���Ft

o���4o � CE
n
M4

T sup
0�t�T

jrXtj4
o
: (3.92)

Now by Lemmas 1.2.5, 1.2.6 and (3.9) we know

E
n
�12T +M4

T sup
0�t�T

jrXtj4
o
� C;

which, together with (3.90), implies that

nX
i=1

E
n Z ti

ti�1
jI1t j2dt

o
� Cj�0j: (3.93)

Combining (3.93), (3.88) and (3.87), we infer (3.83) from (3.85). This, together with

(3.82) and (3.38), leads to

nX
i=1

E
n Z ti

ti�1
jZt � Z�0;1

ti�1 j2dt
o
� Cj�0j;

which ends the proof for the smooth case.

In general case, let b"; �" and f " be moli�ers of b; � and f , respectively, and let

(X"; Y "; Z") be the solution triple to the corresponding FBSDE (1.2) modi�ed in an

obvious way. Then by the above arguments we have

nX
i=1

E
n Z ti

ti�1
jZ"

t � Z";�0;1
ti�1 j2dt

o
� Cj�0j: (3.94)

Therefore, using Lemma 3.4.2 we have

nX
i=1

E
n Z ti

ti�1
jZt � Z�0;1

ti�1 j2dt
o
�

nX
i=1

E
n Z ti

ti�1
jZt � Z";�0;1

ti�1 j2dt
o

(3.95)

� 2
nX
i=1

E
n Z ti

ti�1
[jZt � Z"

t j2 + jZ"
t � Z";�0;1

ti�1 j2]dt
o
� CE

n Z T

0
jZt � Z"

t j2dt+ j�0j
o
:
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Applying Theorem 1.2.7 we have

lim
�!0

E
n Z T

0
jZ"

t � Ztj2dt
o
= 0;

which, combined with (3.95), proves the theorem.
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CHAPTER 4. NUMERICAL METHODS FOR BSDES

4.1 Introduction

In this chapter we shall turn to the numerical part for the following BSDE:8>><>>:
Xt = x +

Z t

0
b(s;Xs)ds+

Z t

0
�(s;Xs)dWs;

Yt = � +
Z T

t
f(s;Xs; Ys; Zs)ds�

Z T

t
ZsdWs:

(4.1)

Some numerical methods for approximating solutions to BSDEs have already been

developed. Based on a four step algorithm developed by Ma-Protter-Yong [35] to solve

more general FBSDEs, Douglas-Ma-Protter built a numerical scheme by solving an

associated (deterministic) PDE. The rate of convergence turns out to be as good as

that for the solution of a simple SDE. However, their method requires high regularity

on the coeÆcients (C1+�=2;2+�), and the terminal value � of the BSDE must be in the

form g(XT ). By using a random time discretization Bally [3] presented a scheme which

allows � to depend fully on the history of the driving Brownian motion, and requires

only Lipschitz continuity on the coeÆcients. But his scheme actually calculates a

sequence of functions, and thus requires a further approximation to give an actual

implementation. Moreover, using this scheme one needs approximate integrals of

dimension equal to the partition size, which is always very high. In his Ph.D. thesis

[9], Chevance proposed a scheme which can be implemented in practice. But only

Y is approximated in his scheme, and the regularity assumptions are very strong

(C4). Recently, Ma-Protter-San Mart�in-Torres [34] developed a method which allows

� be to quite general and requires the coeÆcients to be only Lipschitz continuous.

However, they got only weak convergence result.

In this chapter we shall propose a new numerical method for FBSDEs (4.1) where

the terminal � = �(X) is an L1-Lipschitz functional. We �rst note that, for practical
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reasons, people need approximate the solutions of BSDEs by step processes (adapted

and piecewise constant processes). One of the major diÆculties to get such a good

approximation is the regularity of the process Z. In fact, all the existing methods

either require high regularity assumptions (e.g. [35], [9]) so that the process Z is

\nice", or lack a good rate of convergence (e.g. [3], [34]) because Z is not \nice".

Relying heavily on our new regularity results, Theorem 3.4.3, our scheme converges

strongly in L2, under mild conditions. It turns out that, if � is an L1-Lipschitz

functional, then the asymptotic rate of convergence is
q

log n
n
, which is the best rate

we can get in this case, and is new, to my best knowledge, in the literature of BSDEs.

Moreover, if we assume that � is an L1-Lipschitz functional, or is of the form g(XT ),

then the rate of convergence will be 1p
n
, which coincides with the result of [17].

Note that in our case the triple (X; Y; Z) is not Markovian. To actually compute

the approximating step processes, we would encounter a \high dimension problem",

as always seen in numerical schemes for BSDEs with path-dependent terminals (e.g.

[3]). To avoid it, we assume further that � is constructible, which, in essence, adds a

state variable and assumes that (�:(X); X; Y; Z) is Markovian, where �t(X) is de�ned

in an appropriate way so that �T (X) = �(X). Some similar idea was exploited by

many others, see Bj�ork [7] and Dai-Jiang [14], for example. We should point out here

that in mathematical �nance theory, most contingent claims (Asian, Lookback, etc.)

are constructible functionals of the underlying assets price process. With this kind of

Markovian property, we may try to calculate two deterministic functions u and v, as

done in [35], such that Yt = u(t;�t(X); Xt) and Zt = v(t;�t(X); Xt)�(t; Xt). It turns

out that to obtain u and v we need only approximate integrals whose dimension is

independent of the partition size.

The rest of the chapter is organized as follows. In x2 we review the Euler scheme

for the forward di�usion X. In x3 we approximate (Y; Z) in a special case where the

generator f is independent of z. In x4 we study the general case. In the last section

we present explicitly our numerical scheme.
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4.2 Euler Scheme for a Forward SDE Revisited

In this section, we briey review the Euler scheme for the forward di�usion X.

Let � : 0 = t0 < t1 < � � � < tn = T be a partition of [0; T ]. De�ne �(t)
4
= ti�1, for

t 2 [ti�1; ti). Let X� be the solution of the following FSDE:

X�
t = x+

Z t

0
b(�(r); X�

�(r))dr +
Z t

0
�(�(r); X�

�(r))dWr; (4.2)

and X̂� be the corresponding step process de�ned as follows:

X̂�
t
4
= X�

�(t): (4.3)

By standard arguments we can easily show that:

Lemma 4.2.1 Assume that b and � satisfy the conditions in Assumption 3.4.1. Then

for X and X� de�ned as in (4.1) and (4.2), respectively, there exists a constant C,

depending only on T and K, such that:

Ef sup
0�t�T

[jX�
t j4g � C(1 + jxj4); Ef sup

0�t�T
[jXt �X�

t j2g � C(1 + jxj2)j�j:

Now we are ready for the estimates involving X̂�.

Theorem 4.2.2 Assume that b and � satisfy the conditions in Assumption 3.4.1.

Then then there exists a constant C, depending only on T and K, such that the

following estimates hold:

sup
0�t�T

E
n
jXt�X̂�

t j2
o
� C(1+ jxj2)j�j; E

n
sup
0�t�T

jXt�X̂�
t j2
o
� C(1+ jxj2)j�j log 1

j�j :

Proof. To simplify the presentation, without loss of generality we assume d1 = 1.

First, for t 2 [ti�1; ti), we can rewrite (4.2) as

X�
t = X�

ti�1
+ b(ti�1; X�

ti�1
)(t� ti�1) + �(ti�1; X�

ti�1
)(Wt �Wti�1): (4.4)

Thus

E
n
jXt � X̂�

t j2
o
= E

n
jXt �X�

ti�1
j2
o

� 2E
n
jXt �Xti�1 j2 + jXti�1 �X�

ti�1
j2
o
� C(1 + jxj2)j�j;
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thanks to Lemmas 1.2.5 and 4.2.1.

Next, by (4.4) again we have

sup
0�t�T

jXt � X̂�
t j � sup

0�t�T
jXt �X�

t j+ max
1�i�n

sup
ti�1�t<ti

jX�
t �X�

ti�1
j

� sup
0�t�T

jXt �X�
t j+ max

1�i�n
jb(ti�1; X�

ti�1
)j�ti (4.5)

+ max
1�i�n

j�(ti�1; X�
ti�1

)j sup
ti�1�t<ti

jWt �Wti�1 j;

Now using Lemmas 1.2.5 and 4.2.1, we infer from (4.5) that

E
n
sup
0�t�T

jXt � X̂�
t j2
o
� CE

n
sup
0�t�T

jXt �X�
t j2

+j�j2 max
1�i�n

jb(ti�1; X�
ti�1

)j2 + max
1�i�n

j�(ti�1; X�
ti�1

)j2 max
1�i�n

sup
ti�1�t<ti

jWt �Wti�1 j2
o

� C(1 + jxj2)
h
j�j+

s
E
n
max
1�i�n

sup
ti�1�t<ti

jWt �Wti�1 j4
oi

(4.6)

Note that

sup
ti�1�t<ti

jWt �Wti�1 j � sup
ti�1�t<ti

(Wt �Wti�1) + sup
ti�1�t<ti

(Wti�1 �Wt);

and that both sup
ti�1�t<ti

(Wt �Wti�1) and sup
ti�1�t<ti

(Wti�1 �Wt) are equal to
p
�tijW1j

in distribution (see [47], for example), then (4.6) leads to

E
n
sup
0�t�T

jXt � X̂�
t j2
o
� C(1 + jxj2)

h
j�j+

r
E
n
max
1�i�n

(�ti)2N4
i

oi
; (4.7)

where Ni � N(0; 1) are i.i.d.. Denote C"
4
= 2" log 1

"
, and note that

Cj�j
�ti

� 2 log 1
j�j , we

have

E
n
max
1�i�n

(�ti)
2N4

i

o
= E

n
max
1�i�n

(�ti)
2N4

i 1fmaxi�tiN2
i
�Cj�jg

o
+ E

n
max
1�i�n

(�ti)
2N4

i 1fmaxi�tiN2
i
�Cj�jg

o
� C2

j�j +
nX
i=1

(�ti)
2E
n
N4
i 1fN2

i
�Cj�j

�ti
g

o
� C2

j�j + T j�jE
n
N41fN2�2 log 1

j�j
g
o
; (4.8)

where N � N(0; 1). By direct calculation we get, for 8a � 1,

E
n
N41fN2>ag

o
=

1p
2�

Z 1
p
a
y4 exp(�y

2

2
)dy
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=
1p
2�

h
(
p
a3 +

p
a) exp(�a

2
) +

Z 1
p
a
exp(�y

2

2
)dy

i
� C

h
(
p
a3 +

p
a) exp(�a

2
) +

1p
a

Z 1
p
a
y exp(�y

2

2
)dy

i
(4.9)

= C[
p
a3 +

p
a +

1p
a
] exp(�a

2
) � C

p
a3 exp(�a

2
);

Take a = 2 log 1
j�j and assume � �ne enough so that a � 1, and plug (4.9) into (4.8),

we obtain that

E
n

max
0�i�n�1

(�ti)
2N4

i

o
� C2

j�j + Cj�j(log 1

j�j)
3
2 exp(� log

1

j�j) � Cj�j2(log 1

j�j)
2;

which, together with (4.7), proves the theorem.

Remark 4.2.3 We should note here that j�j log 1
j�j is the best asymptotic error in

this case (see [2], Proposition 1, for example).

The following result is a direct consequence of Theorem 4.2.2.

Corollary 4.2.4 Assume all the conditions in Theorem 4.2.2 hold. If � : lD 7! IR

satis�es the L1 Lipschitz condition (1.3), then

E
n
j�(X)� �(X̂�)j2

o
� C(1 + jxj2)j�j log 1

j�j :

Moreover, if � satis�es the L1 Lipschitz condition (1.4), then

E
n
j�(X)� �(X̂�)j2

o
� C(1 + jxj2)j�j:

4.3 A Special Case

In this section, we consider a special case where f is independent of z, that is, the

BSDE in (4.1) becomes

Yt = � +
Z T

t
f(r;Xr; Yr)dr �

Z T

t
ZrdWr: (4.10)

We propose the following discretization procedure. For any partition � : 0 = t0 <

� � � < tn = T , de�ne the approximating pairs (Y �; Z�) inductively:8><>:
Y �
tn = ��;

Y �
t = Y �

ti
+ f(ti; X

�
ti
; Y �

ti
)�ti �

Z ti

t
Z�
r dWr; t 2 [ti�1; ti);

(4.11)



83

where �� 2 L2(FT ). We should point out here that the family f(Y �; Z�)g is di�erent
from that in (3.79).

Theorem 4.3.1 Assume that Assumption 3.4.1 holds, and that f is independent of

z. Then the following estimate holds:

sup
0�t�T

EfjYt�Y �
t j2gg+E

n Z T

0
jZr�Z�

r j2dr
o
� C

h
(1+jxj2+Efj�j2g)j�j+Efj����j2g

i
;

where C depends only on T and K.

Proof. As often done in BSDE theory, we shall apply the Gronwall Inequality to prove

the estimate.

Denote

Ii�1
4
= E

n
jYti�1 � Y �

ti�1
j2 +

Z ti

ti�1
jZr � Z�

r j2dr
o
: (4.12)

By (4.10) and (4.11) we have

Yti�1 � Y �
ti�1

+
Z ti

ti�1
(Zr �Z�

r )dWr = Yti +
Z ti

ti�1
f(r;Xr; Yr)dr� Y �

ti
� f(ti; X

�
ti
; Y �

ti
)�ti:

Square both sides and take expectation, and note that Yti�1 � Y �
ti�1

is uncorrelated

with
Z ti

ti�1
(Zr � Z�

r )dWr, we get

Ii�1 = E
nh
(Yti � Y �

ti
) +

Z ti

ti�1
(f(r;Xr; Yr)� f(ti; X

�
ti
; Y �

ti
))dr

i2o
� E

nh
jYti � Y �

ti
j+

Z ti

ti�1
jf(r;Xr; Yr)� f(ti; X

�
ti
; Y �

ti
)jdr

i2o
� E

nh
jYti � Y �

ti
j+ C

Z ti

ti�1

�p
ti � r + jXr �X�

ti
j+ jYr � Y �

ti
j
�
dr
i2o

(4.13)

� E
nh
jYti � Y �

ti
j+ C

Z ti

ti�1

�p
ti � r

+[jXr �Xti j+ jXti �X�
ti
j] + [jYr � Yti j+ jYti � Y �

ti
]
�
dr
i2o

= E
nh
(1 + C�ti)jYti � Y �

ti
j

+C
Z ti

ti�1

�p
ti � r + jXr �Xti j+ jXti �X�

ti
j+ jYr � Yti j

�
dr
i2o

:

Note that, for j�j � 1,

(a + b)2 = a2 + b2 + 2ab � a2 + b2 +�tia
2 +

1

4�ti
b2 � (1 + �ti)a

2 +
2

�ti
b2;
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applying the H�older Inequality (4.13) leads to

Ii�1 � E
n
(1 + C�ti)

2jYti � Y �
ti
j2

+
C

�ti

h Z ti

ti�1

�p
ti � r + jXr �Xti j+ jXti �X�

ti
j+ jYr � Ytij

�
dr
i2o

� (1 + C�ti)EfjYti � Y �
ti
j2g (4.14)

+CE
n Z ti

ti�1

�
(ti � r) + jXti �X�

ti
j2 + jXr �Xti j2 + jYr � Yti j2

�
dr
o

� (1 + C�ti)EfjYti � Y �
ti
j2g

+Cj�j
h
(1 + jxj2 + Efj�j2g)�ti +

Z ti

ti�1
EfjZrj2gdr

i
;

thanks to Lemmas 1.2.5, 1.2.6 and 4.2.1. Since EfjYti�1 � Y �
ti�1

j2g � Ii�1; applying

the Gronwall Inequality we deduce from (4.14) that

max
0�i�n

EfjYti � Y �
ti
j2g � CEfjYT � Y �

T j2g+ Cj�j
h
1 + jxj2 + Efj�j2g+

Z T

0
EjZrj2dr

i
:

(4.15)

Since YT = � and Y �
T = ��, applying Lemma 1.2.6 (4.15) implies that

max
0�i�n

EfjYti � Y �
ti
j2g � C

h
(1 + jxj2 + Ej�j2)j�j+ Efj� � ��j2g

i
: (4.16)

Then, for t 2 (ti�1; ti), using (4.16) and Lemmas 1.2.5, 1.2.6 and 4.2.1 we get

EfjYt � Y �
t j2g � E

n
jYti +

Z ti

t
f(r;Xr; Yr)dr � Y �

ti
� f(ti; X

�
ti
; Y �

ti
)�tij2

o
� CE

n
jYti � Y �

ti
j2 + j�tij2 sup

0�r�T
jf(r;Xr; Yr)j2

+j�tij2jf(ti; X�
ti
; Y �

ti
)� f(ti; X

�
ti
; Y �

ti
)j2
o

� CE
n
jYti � Y �

ti
j2 + j�tij2 sup

0�r�T
(1 + jXrj2 + jYrj2) + jXti �X�

ti
j2 + jYti � Y �

ti
j2
o

(4.17)

� C
h
(1 + jxj2 + Ej�j2)j�j+ Efj� � ��j2g

i
:

Moreover, (4.14) and (4.16) imply that

E
n
jYti�1 � Y �

ti�1
j2 +

Z ti

ti�1
jZr � Z�

r j2dr
o
� EfjYti � Y �

ti
j2g

+C�ti
h
(1 + jxj2 + Ej�j2)j�j+ Efj� � ��j2g

i
+ Cj�j

Z ti

ti�1
EfZ2

rgdr:
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Summing over i from 1 to n we get

E
n nX
i=1

jYti�1 � Y �
ti�1

j2 +
Z T

0
jZr � Z�

r j2dr
o

�
nX
i=1

EfjYti � Y �
ti
j2g+ Cj�j

h
1 + jxj2 + Ej�j2 +

Z T

0
EjZrj2dr

i
+ CEfj� � ��j2g

�
nX
i=1

EfjYti � Y �
ti
j2g+ C

h
(1 + jxj2 + Ej�j2)j�j+ Efj� � ��j2g

i
; (4.18)

thanks to Lemma 1.2.6 again. Subtract both sides by
n�1X
i=1

EfjYti�Y �
ti
j2g, (4.18) leads

to

E
n Z T

0
jZr � Z�

r j2dr
o

� EfjYtn � Y �
tn j2g+ C

h
(1 + jxj2 + Ej�j2)j�j+ Efj� � ��j2g

i
� C

h
(1 + jxj2 + Ej�j2)j�j+ Efj� � ��j2g

i
;

which, combined with (4.17), proves the theorem.

Now let us de�ne two step processes:

bY �
t

4
= Y �

ti�1
; bZ�

t
4
= bZ�;1

ti�1 ; for t 2 [ti�1; ti);

where bZ�;1
ti�1

4
=

1

�ti
E
n Z ti

ti�1
Z�
r dr

���Fti�1

o
: (4.19)

Then we have the following theorem.

Theorem 4.3.2 Assume that all the conditions in Theorem 4.3.1 hold; and that

� = �(X) where � satis�es the L1 Lipschitz condition (1.3). Then we have the

following estimate:

sup
0�t�T

EfjYt � bY �
t j2gg+ E

n Z T

0
jZr � bZ�

r j2dr
o
� C

h
(1 + jxj2)j�j+ Efj� � ��j2g

i
:

Proof. First, by Theorems 3.4.3 and 4.3.1 we have, for 8t 2 [ti�1; ti),

EfjYt � bY �
t j2g � 2E

n
jYt � Yti�1 j2 + jYti�1 � Y �

ti�1
j2
o

� C
h
(1 + jxj2 + Ej�j2)j�j+ Efj� � ��j2g

i
: (4.20)
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Now let us estimate the process Z � Ẑ�. Recall (3.77) and apply Lemma 3.4.2,

we get

E
n Z T

0
jZt � bZ�

t j2dt
o
� 2E

n Z T

0
jZt � Z�

t j2dt+
nX
i=1

Z ti

ti�1
jZ�

t � bZ�;1
ti�1 j2dt

o
� 2E

n Z T

0
jZt � Z�

t j2dt+
nX
i=1

Z ti

ti�1
jZ�

t � Z�;1
ti�1 j2dt

o
� 2E

n Z T

0
jZt � Z�

t j2dt+
nX
i=1

Z ti

ti�1
2[jZ�

t � Ztj2 + jZt � Z�;1
ti�1 j2]dt

o
(4.21)

� CE
n Z T

0
jZt � Z�

t j2dt+
nX
i=1

Z ti

ti�1
jZt � Z�;1

ti�1 j2]dt
o

� C
h
(1 + jxj2 + Ej�j2)j�j+ Efj� � ��j2g

i
;

thanks to Theorems 4.3.1 and 3.4.3.

Finally, since � satis�es (1.3), applying Lemma 1.2.5 we have

Ej�j2 = Efj�(X)j2g � 2Efj�(X)� �(0)j2 + j�(0)j2g
� CEf1 + sup

0�t�T
jXtj2g � C(1 + jxj2); (4.22)

which, combined with (4.20) and (4.21), proves the theorem.

4.4 Two-Step Scheme for the General Case

In this section, we shall investigate the general case (4.1). In this case, the one-

step discretization procedure (as that in x3) does not work. In fact, if we de�ne, for

t 2 [ti�1; ti),

Y �
t = Y �

ti
+ f(ti; X

�
ti
; Y �

ti
; eZ�

ti
)�ti �

Z ti

t
Z�
r dWr;

where eZ�
ti
is some random variable determined by Z� over [ti; T ], then we will have

trouble to estimate the term EfR titi�1 jZt � eZ�
ti
j2dtg involved when we try to estimate

Ii�1 as in (4.13), consequently we will not be able to apply the Gronwall Inequality. It

turns out that the term eZ�
ti
needs to be Fti�1-measurable, so that in our estimate it will

contribute to Ii�1, rather than Ii. In light of this, we propose a two-step discretization

procedure for the general case, which will enable us to apply the Gronwall Inequality
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again. To be more precise, for any partition � : 0 = t0 < � � � < tn = T , we de�ne two

pairs of processes ( eY �; eZ�) and (Y �; Z�) inductively:8>>>>><>>>>>:
Y �
tn = ��; Z�

tn = 0;eY �
t = Y �

ti
+ f(ti; X

�
ti
; Y �

ti
; bZ�;1

ti )�ti �
Z ti

t

eZ�
r dWr;

Y �
t = Y �

ti
+ f(ti; X

�
ti
; Y �

ti
; eZ�;1

ti�1)�ti �
Z ti

t
Z�
r dWr;

for t 2 [ti�1; ti); (4.23)

where �� 2 L2(FT ) and

bZ�;1
tn

4
= 0; bZ�;1

ti�1

4
=

1

�ti
E
n Z ti

ti�1
Z�
t dt

���Fti�1

o
; eZ�;1

ti�1

4
=

1

�ti
E
n Z ti

ti�1

eZ�
t dt

���Fti�1

o
:

(4.24)

Note that in the last equation of (4.23), the term eZ�
ti�1

is Fti�1-measurable. Our

result is:

Theorem 4.4.1 Assume that Assumption 3.4.1 holds. Then it holds that

max
0�i�n

EfjYti � Y �
ti
j2gg+ E

n Z T

0
jZr � Z�

r j2dr
o

� C
h
(1 + jxj2 + Efj�j2g)j�j+ Efj� � ��j2g

i
: (4.25)

Proof. We explore some idea used to prove the well-posedness of BSDEs.

For any constant � > 0, by (4.1), (4.23), and applying the Itô's formula we have

d
h
e�t(Yt � Y �

t )
2
i

= �e�t(Yt � Y �
t )

2dt+ e�t(Zt � Z�
t )

2dt

�2e�t(Yt � Y �
t )f(t;�t)dt+ 2e�t(Yt � Y �

t )(Zt � Z�
t )dWt:

Integrate both sides over [ti�1; ti), we get

e��ti jYti � Y �
ti
� f(ti; X

�
ti
; Y �

ti
; eZ�;1

ti�1)�tij2 � jYti�1 � Y �
ti�1

j2

= �
Z ti

ti�1
e�(t�ti�1)(Yt � Y �

t )
2dt+

Z ti

ti�1
e�(t�ti�1)(Zt � Z�

t )
2dt

�2
Z ti

ti�1
e�(t�ti�1)(Yt � Y �

t )f(t;�t)dt+ 2
Z ti

ti�1
e�(t�ti�1)(Yt � Y �

t )(Zt � Z�
t )dWt:

Thus, by simply rearranging the terms we obtain

E
n
jYti�1 � Y �

ti�1
j2 + �

Z ti

ti�1
e�(t�ti�1)(Yt � Y �

t )
2dt+

Z ti

ti�1
e�(t�ti�1)(Zt � Z�

t )
2dt
o
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= E
n
e��ti jYti � Y �

ti
� f(ti; X

�
ti
; Y �

ti
; eZ�;1

ti�1)�tij2

+2
Z ti

ti�1
e�(t�ti�1)(Yt � Y �

t )f(t;�t)dt
o

= E
n
e��ti jYti � Y �

ti
j2 + e��ti jf(ti; X�

ti
; Y �

ti
; eZ�;1

ti�1)j2j�tij2 (4.26)

�2e��ti(Yti � Y �
ti
)f(ti; X

�
ti
; Y �

ti
; eZ�;1

ti�1)�ti + 2
Z ti

ti�1
e�(t�ti�1)(Yt � Y �

t )f(t;�t)dt
o

= E
n
e��ti jYti � Y �

ti
j2 + I1 + I2 + I3

o
;

where8>>>>>><>>>>>>:

I1
4
= e��ti jf(ti; X�

ti
; Y �

ti
; eZ�;1

ti�1)j2j�tij2;
I2

4
= 2

Z ti

ti�1
[e�(t�ti�1) � e��ti ]dt(Yti � Y �

ti
)f(ti; X

�
ti
; Y �

ti
; eZ�;1

ti�1);

I3
4
= 2

Z ti

ti�1
e�(t�ti�1)

h
(Yt � Y �

t )f(t;�t)� (Yti � Y �
ti
)f(ti; X

�
ti
; Y �

ti
; eZ�;1

ti�1)
i
dt:

(4.27)

We now estimate I1� I3 separately. First, by using Lemmas 4.2.1, 1.2.5 and 1.2.6 we
note that

E
n
jf(ti; X�

ti
; Y �

ti
; eZ�;1

ti�1)j2
o
� CE

n
1 + jX�

ti
j2 + jY �

ti
j2 + j eZ�;1

ti�1 j2
o

� CE
n
1 + jX�

ti
j2 + jYti j2 + jYti � Y �

ti
j2 + j eZ�;1

ti�1j2
o

(4.28)

� CE
n
1 + jxj2 + j�j2 + jYti � Y �

ti
j2 + j eZ�;1

ti�1 j2
o
:

Thus we have

EfjI1jg � Cj�tij2E
n
1 + jxj2 + j�j2 + jYti � Y �

ti
j2 + j eZ�;1

ti�1 j2
o
: (4.29)

Since je�(t�ti�1) � e��ti j � e��ti�ti, we get

EfjI2jg � CE
n
e��ti j�tij2jYti � Y �

ti
jjf(ti; X�

ti
; Y �

ti
; eZ�;1

ti�1)j
o

� Ce��ti j�tij2E
n
jYti � Y �

ti
j2 + jf(ti; X�

ti
; Y �

ti
; eZ�;1

ti�1)j2
o

� Ce��ti j�tij2E
n
1 + jxj2 + j�j2 + jYti � Y �

ti
j2 + j eZ�;1

ti�1 j2
o
; (4.30)

thanks to (4.28).

It remains to estimate I3, which is a little involved. Note that (4.27) leads to

jI3j � Ce��ti
Z ti

ti�1

���(Yt � Y �
t )� (Yti � Y �

ti
)
������f(ti; X�

ti
; Y �

ti
; eZ�;1

ti�1)
���dt
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+Ce��ti
Z ti

ti�1

���Yt � Y �
t

������f(t;�t)� f(ti; X
�
ti
; Y �

ti
; eZ�;1

ti�1)
���dt (4.31)

= I13 + I23 ;

where I13 and I23 are de�ned in an obvious way. Now let us estimate I23 �rst. Since

f 2 C
1
2
L , we have

E
n���f(t;�t)� f(ti; X

�
ti
; Y �

ti
; eZ�;1

ti�1)
���2o

� CE
n
�ti + jXt �X�

ti
j2 + jYt � Y �

ti
j2 + jZt � eZ�;1

ti�1 j2
o

� CE
n
�ti + jXt �Xti j2 + jXti �X�

ti
j2 (4.32)

+jYt � Ytij2 + jYti � Y �
ti
j2 + jZt � eZ�;1

ti�1 j2
o

� CE
n
(1 + jxj2 + j�j2)j�j+

Z ti

ti�1
Z2
rdr + jYti � Y �

ti
j2 + jZt � eZ�;1

ti�1 j2
o
;

thanks to Lemmas 1.2.5, 1.2.6 and 4.2.1. Recall (3.77) and apply Lemma 3.4.2, we

have

E
n Z ti

ti�1
jZt � eZ�;1

ti�1 j2dt
o
� CE

n Z ti

ti�1

h
jZt � eZ�

t j2 + j eZ�
t � eZ�;1

ti�1 j2
i
dt
o

� CE
n Z ti

ti�1

h
jZt � Z�

t j2 + jZ�
t � eZ�

t j2 + j eZ�
t � Z�;1

ti�1 j2
i
dt
o

(4.33)

� CE
n Z ti

ti�1

h
jZt � Z�

t j2 + jZ�
t � eZ�

t j2 + j eZ�
t � Ztj2 + jZt � Z�;1

ti�1 j2
i
dt
o

� CE
n Z ti

ti�1

h
jZt � Z�

t j2 + jZ�
t � eZ�

t j2 + jZt � Z�;1
ti�1 j2

i
dt
o
:

By (4.23) one can easily get

E
n Z ti

ti�1
jZ�

t � eZ�
t j2dt

o
� CEfj bZ�;1

ti � eZ�;1
ti�1 j2g�t2i � CEfj bZ�;1

ti j2+j eZ�;1
ti�1 j2g�t2i : (4.34)

Plug (4.34) into (4.33), we have

E
n Z ti

ti�1
jZt � eZ�;1

ti�1 j2dt
o

� CE
n
j�tij2

h
j bZ�;1

ti j2 + j eZ�;1
ti�1 j2

i
+
Z ti

ti�1

h
jZt � Z�

t j2 + jZt � Z�;1
ti�1 j2

i
dt
o
:(4.35)

Then plug (4.35) into (4.32), we get

E
n Z ti

ti�1

���f(t;�t)� f(ti; X
�
ti
; Y �

ti
; eZ�;1

ti�1)
���2dto
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� CE
n
�ti

h
(1 + jxj2 + j�j2)j�j+

Z ti

ti�1
Z2
rdr

i
+�tijYti � Y �

ti
j2 (4.36)

+j�tij2
h
j bZ�;1

ti j2 + j eZ�;1
ti�1 j2

i
+
Z ti

ti�1

h
jZt � Z�

t j2 + jZt � Z�;1
ti�1 j2

i
dt
o
:

Note that for 80 < " < 1; ab � 1
4"
a2 + "b2, we deduce from (4.30) and (4.36) that

EfjI23 jg � CE
n Z ti

ti�1

h
e2��ti"�1jYt � Y �

t j2 + "
���f(t;�t)� f(ti; X

�
ti
; Y �

ti
; eZ�;1

ti�1)
���2idto

� Ce2��ti"�1E
n Z ti

ti�1
jYt � Y �

t j2dt
o

(4.37)

+CE
n
�ti

h
(1 + jxj2 + j�j2)j�j+

Z ti

ti�1
Z2
rdr

i
+
Z ti

ti�1
jZt � �Z�;1

ti�1 j2dt
o

+CE
n
�tijYti � Y �

ti
j2 + j�tij2

h
j bZ�;1

ti j2 + j eZ�;1
ti�1 j2

i
+ "

Z ti

ti�1
jZt � Z�

t j2dt
o
:

We now estimate I13 . By (1.2) and (4.23) we have

j(Yti � Y �
ti
)� (Yt � Y �

t )j
� j

Z ti

t
f(r;�r)drj+ j

Z ti

t
(Zr � Z�

r )dWrj+ jf(ti; X�
ti
; Y �

ti
; eZ�;1

ti�1)j�ti

�
Z ti

ti�1

���f(r;�r)� f(ti; X
�
ti
; Y �

ti
; eZ�;1

ti�1)
���dr

+j
Z ti

t
(Zr � Z�

r )dWrj+ 2jf(ti; X�
ti
; Y �

ti
; eZ�;1

ti�1)j�ti:

Thus, using (4.36) and (4.28) we obtain

E
n
j(Yti � Y �

ti
)� (Yt � Y �

t )j2
o

� CE
n
�ti

Z ti

ti�1

���f(r;�r)� f(ti; X
�
ti
; Y �

ti
; eZ�;1

ti�1)
���2dr

+
Z ti

ti�1
jZr � Z�

r j2dr + jf(ti; X�
ti
; Y �

ti
; eZ�;1

ti�1)j2j�tij2
o

� CE
n
j�tij2

h
(1 + jxj2 + j�j2)j�j+

Z ti

ti�1
Z2
rdr

i
+ j�tij2jYti � Y �

ti
j2 (4.38)

+j�tij3
h
j bZ�;1

ti j2 + j eZ�;1
ti�1 j2

i
+�ti

Z ti

ti�1

h
jZt � Z�

t j2 + jZt � Z�;1
ti�1 j2

i
dt

+
Z ti

ti�1
jZr � Z�

r j2dr + j�tij2
h
1 + jxj2 + j�j2 + jYti � Y �

ti
j2 + j eZ�;1

ti�1 j2
io

� CE
n
�ti

h
(1 + jxj2 + j�j2)j�j+

Z ti

ti�1
Z2
rdr

i
+�tijYti � Y �

ti
j2

+j�tij2
h
j bZ�;1

ti j2 + j eZ�;1
ti�1 j2

i
+
Z ti

ti�1

h
jZt � Z�

t j2 + jZt � �Z�;1
ti�1 j2

i
dt:
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Therefore, note that ab � "
�ti
a2 + �ti

4"
b2, (4.31), (4.38) and (4.28) imply that

EfjI13 jg � C
"

�ti

Z ti

ti�1
E
n
j(Yti � Y �

ti
)� (Yt � Y �

t )j2
o
dt

+Ce2��ti j�tij2"�1E
n
jf(ti; X�

ti
; Y �

ti
; eZ�;1

ti�1)j2
o

� C"E
n
�ti

h
(1 + jxj2 + j�j)j�j+

Z ti

ti�1
Z2
rdr

i
+
Z ti

ti�1
jZt � Z�;1

ti�1 j2dt

+�tijYti � Y �
ti
j2 + j�tij2

h
j bZ�;1

ti j2 + j eZ�;1
ti�1 j2

i
+
Z ti

ti�1
jZt � Z�

t j2dt
o

(4.39)

+e2��ti j�tij2"�1E
n
1 + jxj2 + j�j2 + jYti � Y �

ti
j2 + j eZ�;1

ti�1 j2
o

� C"E
n Z ti

ti�1
jZt � Z�

t j2dt
o
+ Ce2��ti"�1E

n
�ti

h
(1 + jxj2 + j�j2)j�j+

Z ti

ti�1
Z2
rdr

i
+
Z ti

ti�1
jZt � Z�;1

ti�1 j2dt+�tijYti � Y �
ti
j2 + j�tij2

h
j bZ�;1

ti j2 + j eZ�;1
ti�1 j2

io
:

Combined with (4.39) and (4.37), (4.31) leads to

EfI3g � C"E
n Z ti

ti�1
jZt � Z�

t j2dt
o

+Ce2��ti"�1E
n
�ti

h
(1 + jxj2 + j�j2)j�j+

Z ti

ti�1
Z2
rdr

i
+
Z ti

ti�1
jZt � Z�;1

ti�1 j2dt(4.40)

+�tijYti � Y �
ti
j2 + j�tij2

h
j bZ�;1

ti j2 + j eZ�;1
ti�1 j2

i
+
Z ti

ti�1
jYt � Y �

t j2dt
o
:

Now plug (4.29), (4.30) and (4.40) into (4.26), we obtain

E
n
jYti�1 � Y �

ti�1
j2 + �

Z ti

ti�1
jYt � Y �

t j2dt+
Z ti

ti�1
jZt � Z�

t j2dt
o

� E
n
jYti�1 � Y �

ti�1
j2 + �

Z ti

ti�1
e�(t�ti�1)(Yt � Y �

t )
2dt+

Z ti

ti�1
e�(t�ti�1)(Zt � Z�

t )
2dt
o

� e2��tiE
n
(1 + C"�1�ti)jYti � Y �

ti
j2 + C"

Z ti

ti�1
jZt � Z�

t j2dt (4.41)

+C"�1
h Z ti

ti�1
jYt � Y �

t j2dt+�ti
h
(1 + jxj2 + j�j2)j�j+

Z ti

ti�1
Z2
rdr

i
+
Z ti

ti�1
jZt � Z�;1

ti�1 j2dt+ j�tij2
h
j bZ�;1

ti j2 + j eZ�;1
ti�1 j2

io
:

Denote the constant C above as C1. Choose "
4
= 1

2C1e2
(so that C1e

2" = 1
2
), �

4
= C1e2

"
,

and assume � �ne enough so that j�j � 1
�
= 1

2C2
1e

4 , and note that e2��ti � 1 + C�ti

for some constant C, then (4.41) leads to

E
n
jYti�1 � Y �

ti�1
j2 + 1

2

Z ti

ti�1
jZt � Z�

t j2dt
o
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� E
n
(1 + C�ti)jYti � Y �

ti
j2 + Cj�tij2

h
j bZ�;1

ti j2 + j eZ�;1
ti�1 j2

i
(4.42)

C
h
�ti

h
(1 + jxj2 + j�j2)j�j+

Z ti

ti�1
Z2
rdr

i
+
Z ti

ti�1
jZt � Z�;1

ti�1 j2dt
io
:

Now we need estimate j�tij2Efj bZ�;1
ti j2 + j eZ�;1

ti�1 j2g. To this end we recall (4.24). It

follows that

j�tij2E
n
j bZ�;1

ti j2 + j eZ�;1
ti�1j2

o
� E

n��� Z ti+1

ti
Z�
t dt

���2 + ��� Z ti

ti�1

eZ�
t dt

���2o
� E

n
�ti+1

Z ti+1

ti
jZ�

t j2dt+�ti

Z ti

ti�1
j eZ�

t j2dt
o

� CE
n
�ti+1

Z ti+1

ti

h
jZt � Z�

t j2 + jZtj2
i
dt (4.43)

+�ti

Z ti

ti�1

h
j eZ�

t � Z�
t j2 + jZ�

t � Ztj2 + jZtj2
i
dt
o

� CE
n
(�ti _�ti+1)

Z ti+1

ti�1

h
jZt � Z�

t j2 + jZtj2
i
dt +�ti

Z ti

ti�1
j eZ�

t � Z�
t j2
o
:

Denote the constant C in the above as C2. Choose � �ne enough so that C2j�j � 1
2
.

Then (4.34) and (4.43) imply that

E
n Z ti

ti�1
j eZ�

t � Z�
t j2
o
� C(�ti _�ti+1)E

n Z ti+1

ti�1

h
jZt � Z�

t j2 + jZtj2
i
dt
o
:

Plugging this into (4.43) we have

j�tij2E
n
j bZ�;1

ti j2 + j eZ�;1
ti�1 j2

o
� C(�ti _�ti+1)E

n Z ti+1

ti�1

h
jZt � Z�

t j2 + jZtj2
i
dt
o
:

Again, denote C3 as the product of the constant C in the above and the C in (4.42),

and assume � �ne enough so that C3j�j � 1
4
, (4.42) leads to

E
n
jYti�1 � Y �

ti�1
j2 + 1

4

Z ti

ti�1
jZt � Z�

t j2dt
o

� E
n
(1 + C�ti)jYti � Y �

ti
j2 + C(�ti _�ti+1)

Z ti+1

ti
jZt � Z�

t j2dt (4.44)

+Cj�j
h
(1 + jxj2 + j�j2)�ti +

Z ti+1

ti�1
jZrj2dr

i
+ C

Z ti

ti�1
jZt � Z�;1

ti�1 j2dt
o
:

At last we can apply the Gronwall inequality again. From (4.44) we conclude that,

for j�j � min( 1
2C2

1e
4 ;

1
2C2

; 1
4C3

),

E
n
jYti�1 � Y �

ti�1
j2 + 1

4

Z ti

ti�1
jZt � Z�

t j2dt
o
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� CE
nh
j�j(1 + jxj2 + j�j2 +

Z T

0
jZrj2dr) +

nX
i=1

Z ti

ti�1
jZt � Z�;1

ti�1 j2dt
io

(4.45)

� C
h
(1 + jxj2 + Ej�j2)j�j+ Efj� � ��j2g

i
thanks to Theorem 3.4.3 and (4.22).

Now using (4.45) and (4.44) we obtain that

E
n
jYti�1 � Y �

ti�1
j2 + 1

4

Z ti

ti�1
(Zt � Z�

t )
2dt
o

� EfjYti � Y �
ti
j2g+ Cj�j

h
(1 + jxj2 + j�j2)j�j+ Efj� � ��j2g

i
(4.46)

+CE
n
j�j
h
(1 + jxj2 + j�j2)�ti +

Z ti+1

ti�1
Z2
rdr

i
+
Z ti

ti�1
jZt � Z�;1

ti�1 j2dt
o
:

Summing (4.46) over i and apply Theorem 3.4.3 again, we can easily get

E
n Z T

0
jZt � Z�

t j2dt
o
� C

h
(1 + jxj2 + j�j2)j�j+ Efj� � ��j2g

i
; (4.47)

which, together with (4.45), proves the theorem.

Now let us de�ne a step approximation of (Y; Z):

bY �
tn = Y �

tn ;
bZ�
tn = Z�

tn ;
bY �
t = Y �

ti�1
; bZ�

t = bZ�;1
ti�1 :

Then we have the following theorem.

Theorem 4.4.2 Assume that all the conditions in Theorem 4.4.1 hold; and that

� = �(X) where � satis�es the L1 Lipschitz condition (1.3). Then

sup
0�t�T

EfjYt � bY �
t j2g+ E

n Z T

0
jZr � bZ�

r j2dr
o
� C

h
(1 + jxj2)j�j+ Efj� � ��j2g

i
:

Proof. First, for 8t 2 [ti�1; ti), applying Theorem 4.4.1, Lemma 1.2.6, and Corollary

3.2.4, we have

EfjYt � bY �
t j2g = EfjYt � Y �

ti�1
j2g � 2EfjYt � Yti�1 j2 + jYti�1 � Y �

ti�1
j2g

� C
h
(1 + jxj2 + j�j2)j�j+ Efj� � ��j2g

i
: (4.48)
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On the other hand, using Lemma 3.4.2 we have

E
n Z T

0
jZt � bZ�

t j2dt
o
=

nX
i=1

E
n Z ti

ti�1
jZt � bZ�;1

ti�1 j2dt
o

� C
nX
i=1

E
n Z ti

ti�1

h
jZt � Z�

t j2 + jZ�
t � bZ�;1

ti�1 j2
i
dt
o

� C
nX
i=1

E
n Z ti

ti�1

h
jZt � Z�

t j2 + jZ�
t � Z�;1

ti�1 j2
i
dt
o

(4.49)

� C
nX
i=1

E
n Z ti

ti�1

h
jZt � Z�

t j2 + jZt � Z�;1
ti�1 j2

i
dt
o

� C
h
(1 + jxj2 + j�j2)j�j+ Efj� � ��j2g

i
;

where the last inequality is due to Theorems 4.4.1 and 3.4.3. Now recall (4.22), (4.48)

and (4.49) clearly prove the theorem.

4.5 Explicit Numerical Schemes

In this section we propose numerical schemes based on the results of previous

sections. For � = �(X), naturally one would like to choose �� = �(X̂�) in (4.11)

and (4.23), where X̂� is as de�ned in (4.3). Note that we have to compute the

values �(X̂�) for all possible choices of the high dimensional vector (X�
t0 ; � � � ; X�

tn).

That is, if we partition the state space into M parts, then there are at least Mn+1

values involved in the scheme, which is beyond our computational resources in most

cases. Therefore, to make our scheme implementable, the following restriction on �

is important.

De�nition 4.5.1 A functional � : lD[0; T ] 7! IRk, for some positive integer k,

is called constructible with construction ' if there exist �t : lD[0; t] 7! IRk and

's;t : IR
k�lD[s; t] 7! IRk, for 0 � s < t � T , such that:

(i) �T = �, and �t(x) = �t(x1[0;t));

(ii) �t(x) = 's;t(�s(x);x1[s;t));

(iii) All 's;t satisfy the L1-Lipschitz condition (1.3) with uniformly Lipschitz con-

dition.
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Remark 4.5.2 Clearly � also satis�es the L1-Lipschitz condition (1.3).

Remark 4.5.3 In general f�t(X)g0�t�T is not Markovian. But since X is Marko-

vian, by (ii) we can easily see that f(�t(X); Xt)g0�t�T is Markovian.

Remark 4.5.4 �(x) =
Z T

0
x(t)dt is constructible. Actually we may de�ne

�t(x)
4
=
Z t

0
x(r)dr; 's;t(a;x)

4
= a+

Z t

s
x(r)dr:

�(x) = sup
0�t�T

x(t) is also constructible. We may de�ne

�t(x) = sup
0�r�t

x(r); 's;t(a;x)
4
= a _ sup

s�r�t
x(r):

Remark 4.5.5 In the sequel, we would abuse the notation ' in the sense that

's;t(a; x)
4
= 's;t(a; x1[s;t)); 8(a; x) 2 IRk � IRd1 :

For 0 � s < t � T , de�ne

Xs;x
t

4
= x+ b(s; x)(t� s) + �(s; x)(Wt �Ws): (4.50)

Recalling (4.2) one can easily see that

X�
ti
= X

ti�1;X
�
ti�1

ti : (4.51)

To facilitate our proof, we need the following lemma.

Lemma 4.5.6 Assume that g is a Lipschitz continuous function, and that g(WT ) =

Efg(WT )g+
Z T

0
�tdWt. Then �t is a martingale, and �0 =

1
T
Efg(WT )WTg:

Proof. Since g is Lipschitz, by [42] we know there exists � 2 L2(FT ) such that

�t = Ef�jFtg, thus �t is a martingale. The formula for �0 is due to Theorem 2.2.4 by

considering X as W itself.

Now we are ready for the main theorems of this section.
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Theorem 4.5.7 Let � = g(�(X); XT ) and �� = g(�(X̂�); X̂�
T ), and (Y; Z) and

(Y �; Z�) are solutions to BSDEs (4.10) and (4.11), respectively. Assume that As-

sumption 3.4.1 holds, g is Lipschitz continuous and that � is constructible with

construction '. De�ne, for 8(a; x) 2 IRk+d1, where k is the dimension of the range of

�, 8>>>>>>>><>>>>>>>>:

u�n(a; x)
4
= g(a; x); v�n(a; x)

4
= 0;

U�
i (a; x; !)

4
= u�i ('ti�1;ti(a; x); X

ti�1;x
ti );

u�i�1(a; x)
4
= E

n
U�
i (a; x) + f(ti; X

ti�1;x
ti ; U�

i (a; x))�ti
o
;

v�i�1(a; x)
4
= E

n
Wti

�Wti�1

�ti

h
U�
i (a; x) + f(ti; X

ti�1;x
ti ; U�

i (a; x))�ti
io
:

(4.52)

Then we have

bY �
ti
= Y �

ti
= u�i (�ti(X̂

�); X̂�
ti
); bZ�

ti
= Z�

ti
= v�i (�ti(X̂

�); X̂�
ti
); (4.53)

and

sup
0�t�T

EfjYt � bY �
t j2g+ E

n Z T

0
jZt � bZ�

t j2dt
o
� C(1 + jxj2)j�j log 1

j�j : (4.54)

Moreover, if � satis�es the L1 Lipschitz condition (1.4), then we have

sup
0�t�T

EfjYt � bY �
t j2g+ E

n Z T

0
jZt � bZ�

t j2dt
o
� C(1 + jxj2)j�j: (4.55)

Remark 4.5.8 By (4.50) and (4.52), to calculate (u�i�1; v
�
i�1) from (u�i ; v

�
i ) we need

only approximate d-dimensional integrals.

Proof of Theorem. By Theorem 4.3.1 and Theorem 4.2.2, it suÆces to prove

(4.53). We would also show simultaneously that u�i is Lipschitz. We proceed both by

induction. For i = n obviously (4.53) holds true and u�n is Lipschitz.

Assume that for i both results hold true. By (ii) of De�nition 4.5.1 and by recalling

Remark 4.5.5 we have

�ti(X̂
�) = 'ti�1;ti(�ti�1(X̂

�); X̂�
ti�1

);
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Recall further (4.51), we get U�
i (�ti�1(X̂

�); X̂�
ti�1

) = Y �
ti
: Thus we may rewrite (4.11)

as:

Y �
t = U�

i (�ti�1(X̂
�); X̂�

ti�1
) + f(ti; X

ti�1;x
ti ; U�

i (a; x))�ti �
Z ti

t
Z�
r dWr; (4.56)

which obviously implies that

Y �
ti�1

= u�i�1(�ti�1(X̂
�); X̂�

ti�1
); (4.57)

thanks to (4.52). Moreover, since u�i is Lipschitz, Lemma 4.5.6 leads to that the

process fZ�
r gti�1�r<ti is a martingale. Recalling (4.19) we have

bZ�
ti�1

= bZ�;1
ti�1 = Z�

ti�1
:

Now applying Lemma 4.5.6 again we obtain

Z�
ti�1

= v�i�1(�ti�1(X̂
�); X̂�

ti�1
):

Finally, by (iii) of De�nition 4.5.1, we can easily show that u�i�1 is also Lipschitz

continuous. This �nishes the induction and thus proves the theorem.

In general case, we have a similar result:

Theorem 4.5.9 Let � = g(�(X); XT ) and �� = g(�(X̂�); X̂�
T ), and (Y; Z) and

(Y �; Z�) are solutions to BSDEs (1.2) and (4.23), respectively. Assume that As-

sumption 3.4.1 holds, g is Lipschitz continuous and that � is constructible with

construction '. De�ne, for 8(a; x) 2 IRk+d1 ,8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

u�n(a; x)
4
= g(a; x); v�n(a; x)

4
= 0; ev�n(a; x) 4

= 0;

ev�i�1(a; x) 4
= E

nWti �Wti�1

�ti

h
u�i ('ti�1;ti(a; x); X

ti�1;x
ti )

+f(ti; X
ti�1;x
ti ; u�i ('ti�1;ti(a; x); X

ti�1;x
ti ); v�i ('ti�1;ti(a; x); X

ti�1;x
ti ))�ti

io
;

U�
i (a; x; !)

4
= u�i ('ti�1;ti(a; x); X

ti�1;x
ti );

u�i�1(a; x)
4
= EfU�

i (a; x) + f(ti; X
ti�1;x
ti ; U�

i (a; x); ev�i�1(a; x))�tig;
v�i�1(a; x)

4
= EfWti �Wti�1

�ti

h
U�
i (a; x) + f(ti; X

ti�1;x
ti ; U�

i (a; x); ev�i�1(a; x))�tiig:
(4.58)
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Then we have

bY �
ti
= Y �

ti
= u�i (�ti(X̂

�); X̂�
ti
); bZ�

ti
= Z�

ti
= v�i (�ti(X̂

�); X̂�
ti
); (4.59)

and

sup
0�t�T

EfjYt � bY �
t j2g+ E

n Z T

0
jZt � bZ�

t j2dt
o
� C(1 + jxj2)j�j log 1

j�j : (4.60)

Moreover, if � satis�es the L1 Lipschitz condition (1.4), then we have

sup
0�t�T

EfjYt � bY �
t j2g+ E

n Z T

0
jZt � bZ�

t j2dt
o
� C(1 + jxj2)j�j: (4.61)

Proof. This proof is a line by line analogy of that for Theorem 4.5.7, except that

here our induction assumption is that (4.59) holds true and that u�i ; v
�
i and ev�i are all

Lipschitz continuous.

Remark 4.5.10 In Theorems 4.5.7 and 4.5.9, if we assume that � = g(XT ), then

we may consider � as a constant functional. In this case, 's;t are also constant

functionals, thus (4.52) becomes8>>>>><>>>>>:
u�n(x)

4
= g(x); v�n(x)

4
= 0;

u�i�1(x) = Efu�i (X ti�1;x
ti ) + f(ti; X

ti�1;x
ti ; u�i (X

ti�1;x
ti ))�tig;

v�i�1(x)
4
= EfWti

�Wti�1

�ti

h
u�i (X

ti�1;x
ti ) + f(ti; X

ti�1;x
ti ; u�i (X

ti�1;x
ti ))�ti

i
g;

(4.62)

and (4.58) becomes8>>>>>>>>>>>>><>>>>>>>>>>>>>:

u�n(x)
4
= g(x); v�n(x)

4
= 0; ev�n(x) 4

= 0;

ev�i�1(x) 4
= E

nWti �Wti�1

�ti

h
u�i (X

ti�1;x
ti )

+f(ti; X
ti�1;x
ti ; u�i (X

ti�1;x
ti ); v�i (X

ti�1;x
ti ))�ti

io
;

u�i�1(x) = E
n
u�i (X

ti�1;x
ti ) + f(ti; X

ti�1;x
ti ; u�i (X

ti�1;x
ti ); ev�i�1(x))�tio;

v�i�1(x)
4
= E

nWti �Wti�1

�ti

h
u�i (X

ti�1;x
ti ) + f(ti; X

ti�1;x
ti ; u�i (X

ti�1;x
ti ); ev�i�1(x))�tiio:

(4.63)

In both cases, we still have

bY �
ti
= Y �

ti
= u�i (X̂

�
ti
); bZ�

ti
= Z�

ti
= v�i (X̂

�
ti
);
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and since Efjg(XT ) � g(X̂�
T )j2g � C(1 + jxj2)j�j, we conclude that the rate of con-

vergence in (4.54) and (4.60) becomes C(1 + jxj2)j�j, which coincides with the result

of [37].
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CHAPTER 5. EXTENSIONS TO INCOMPLETE MARKETS DRIVEN

BY LEVY PROCESSES

5.1 Introduction

A. Background. The problems addressed in this chapter are motivated by ques-

tions arising in Financial Asset Pricing Theory where the market is not complete.

The framework is as follows: let X = (Xt)t�0 be a semimartingale representing the

price process of a risky asset. Under the standard assumption of the absence of arbi-

trage opportunities, there exists a probability measure P �, equivalent to the original

probability measure P (the \objective" probability), such that X is a P �-local mar-

tingale (technically one requires X only to be a P �-sigma-martingale ; see [16]). P �

is known as the risk neutral measure.

Let us assume that X is in fact a P �-martingale in L2, for 0 � t � T , as is often

the case. For a non-redundant contingent claim H 2 L2(FT ; dP
�) we have a unique

decomposition:

H = � +
Z T

0
�Hs dXs +NT ; (5.1)

where N is an L2(dP �) martingale strongly orthogonal to X. (The decomposition

(5.1) is called the Kunita-Watanabe L2-martingale decomposition; see [15] or [46] for

background.) Let (�t)0�t�T be an (optional) strategy devoted to the trading of a

risk-free savings account, whose price is �xed at 1. The value of the portfolio at time

t is then

Vt = �tXt + �t;

and the cost up to time t is

Ct = Vt �
Z t

0
�sdXs:
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We require VT = H. A strategy (�; �) is self-�nancing if (Ct)t�0 is constant, and it is

mean-self-�nancing if EfCT �CtjFtg = 0; that is, if C is a martingale. If we wish to

minimize the remaining risk after time t, we then wish to minimize the quantity

Ef(CT � Ct)
2jFtg; (5.2)

interpreting risk in the L2, or \squared error", sense. H. F�ollmer and M. Schweizer

[20] have shown that the strategy

(�t; �t) = (�Ht ; Vt �
Z t

0
�Hs dXs)

is optimal in the sense that it minimizes the risk quantity (5.2).

Therefore, at least in this special case where X is an L2-martingale under the

risk-neutral measure and H 2 L2(FT ; dP
�), the hedging strategy �H of (5.1), while

of necessity not perfect replication, is nevertheless optimal under squared error loss.

Several issues arise immediately: (1) when are there formulae to describe �H

analogous to those available in the traditional Black-Scholes paradigm? (2) when

formulae are not available, what can one infer about �H? In particular, when can one

be assured of path regularity of �H?

Issue (1) above is addressed in [30], where it is shown that if there is an underlying

quasi-left continuous strong Markov process Y = (
;F ; (Ft); P
�
y ; Y ) and if X is an

L2-martingale under each P �
y and if H = g(YT ) for an appropriate class of functions

g, then there is an explicit formula for �. (Note that \explicit" in the preceding

sentence can mean di�erent things to di�erent people.) The results from [30] are

perhaps the most interesting when Y = X and X is the solution of a stochastic

di�erential equation driven by a L�evy martingale.

Issue (2) above is the topic of this paper. For most contingent claims it is not

possible to obtain explicit formulas for �H . Instead here we are concerned with when

the processes �H{which are a priori assumed to be only predictably measurable {

have regular sample paths. In particular by \regular" we mean that it is at least

left continuous with right limits, known by its French acronym c�agl�ad . When �H
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can be shown to have c�agl�ad paths it is useful for two reasons: (a) approximations

of �H will converge to it in a Skorohod-type topology; and (b) one can approximateR
�Hs dXs with Riemann-type sums and have convergence uniformly in probability (or

even almost surely if the partition size shrinks quickly). The importance of part (b)

in Finance has been emphasized, for example, in [49].

B. New Results. We assume that under the risk neutral measure P � we have a

Wiener process W and a compensated Poisson random measure e�(drdz) = �(drdz)�
drF (dz), where F is a L�evy measure. We further assume that

R
IR z

2F (dz) < 1, so

that the process

Zt =Wt +
Z t

0

Z
IR
ze�(drdz)

is a L�evy process with EfZtg = 0 and EfZ2
t g < 1, 0 � t � T . (Thus Z is an

L2(dP �) martingale. Our price process X satis�es

Xt = y +
Z t

0
�(r;Xr)dWr +

Z t

0

Z
IR
b(r;Xr�)ze�(drdz) (5.3)

and thus is also an L2(dP �) martingale with mild hypotheses on � and b.

A contingent claim H 2 FT can be assumed to be of the form H = �(Xs; s �
T ), where � is a functional mapping lD to IR, where lD is the Skorohod space of

c�adl�ag (right continuous with left limits) functions. We �nd hypotheses on � such

that �H is c�agl�ad . In Chapter 3 we used the L1-Lipschitz condition to study the path

regularity problem for the solutions to backward SDEs driven by Brownian motions.

This chapter in a sense extends the result there to the L�evy case. Some examples of

path-dependent options covered by our results include, but are not limited to,

(i) �(X)T =
1

T

Z T

0
Xsds (Asian option);

(ii) �(X)T = g( sup
0�t�T

h(t; Xt)) (Lookback option);

(iii) �(X)T = g(
Z T

0
h(s;Xs�)dXs); or

(iv) �(X) = g(�1(X); � � � ;�n(X)), where g is Lipschitz and �i's are of any of the

forms (i){(iii). (For example, if g(x) = (K � x)+, then g combined with (i) gives an

Asian Option.)
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We remark that to justify the price equation (5.3) one should note that in almost

all of the existing theory of Financial Asset Pricing, the price process is assumed to

be Markov under the risk neutral measure. (The price process need not be Markov

under the objective measure however.) E. C� inlar and J. Jacod [11] have shown that

all \reasonable" strong Markov martingale processes are solutions of equations of the

form

Xt = y +
Z t

0
�(r;Xr)dWr +

Z t

0
b(r;Xr�; z)e�(drdz): (5.4)

Thus our assumption merely restricts the general case by assuming b(r; x; z) is of the

form b(r; x)z, as well as some restrictions on the integrability of the coeÆcients.

A simple way in which our model might arise is if the objective price process X

is modeled as a geometric L�evy process:

dXt = �tXt�dZt + btXtdt; (5.5)

where Z is an L2 L�evy martingale under P . Since L�evy processes give rise to incom-

plete markets, we have to choose an equivalent risk neutral measure P � in a natural

way. We can do this using the idea of F�ollmer and Schweitzer [20]: an equivalent

risk neutral probability P � is minimal if any square-integrable P -martingale M or-

thogonal to Z is also a P �-martingale. T. Chan [8] has shown, under some restrictive

assumptions, that if U satis�es

dUt = 1 + UttdWt;

where  can be taken to be non-random if � and b are non-random, then dP � = UTdP ,

and thus it follows that under this P � the process X of (5.5) satis�es (5.3). That is,

the drift is removed by the canonical risk neutral minimal martingale measure, and

the price process has the desired form under P �.

5.2 Preliminaries

First we note that in this chapter some notations may have di�erent meanings

from those in previous chapters.
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Throughout this chapter we assume that (
;F ; P ; fFtg0�t�T ) is a complete �ltered
probability space satisfying the usual hypotheses (see, e.g., [46]), and T > 0 is a �xed

time duration. We denote F
4
= fFtgt�0 and assume F is quasi-left continuous. Let

W be an F-adapted Brownian motion, and � be a random measure generated by an

F-adapted L�evy process (see, e.g., [31]). Let �(dtdz) = dtF (dz) be the (non-random)

compensator of �, and denote e� = � � �. We assume that F integrates z2, and by

rescaling we may assume without loss of generality that
R
IR z

2F (dz) = 1.

In what follows we denote lD
4
= lD[0; T ] to be the space of all c�adl�ag functions on

[0; T ]; and C0;1
b ([0; T ]� IR) to be the space of all continuous functions on [0; T ]� IR

that are continuously di�erentiable with bounded derivatives in the spatial variable

x. To simplify the presentation, we assume all the processes are 1-dimensional, but

all the results in this chapter can be extended to higher dimensional cases without

substantial diÆculties.

For (s; y) 2 [0; T )� IR, let us consider a local martingale, fXs;y
t gs�t�T , de�ned as

the (unique) solution to the following stochastic di�erential equation:

Xt = y +
Z t

s
�(r;Xr�)dWr +

Z t

s

Z
IR
b(r;Xr�)ze�(drdz); s � t � T: (5.6)

We assume that the coeÆcients � and b satisfy the following standing assumptions:

(A1) (i) The functions �; b 2 C0;1
b ([0; T ]� IR), such that �2(t; x) 6= 0, for all (t; x);

and

(ii) There exists a constant K > 0 such that8>><>>:
sup
0�t�T

[j�(t; 0)j+ jb(t; 0)j] � K;

j�0x(t; x)j+ jb0x(t; x)j � K:
(5.7)

Here and in the sequel we denote �0x and b
0
x to be the partial derivatives of � and

b, respectively, with respect to the spatial variable x.

We �rst give two lemmas. Since the proofs are more or less standard (see, e.g.,

[30]), we omit them. The �rst lemma shows that the assumption (A1), together with

the requirement that
R
z2F (dz) < 1, renders X a martingale rather than a local

martingale.
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Lemma 5.2.1 Assume (A1). Then for any 0 � s < t � T , there exists a constant

C > 0 depending only on K and T , such that

Ef sup
s�t�T

jXs;y
t j2g � C(1 + jyj2); (5.8)

and

Ef sup
s�r�t

jXs;y
r � yj2g � C(1 + jyj2)(t� s): (5.9)

Consequently, for any (s; y) 2 [0; T ]� IR, Xs;y
� is a true martingale de�ned on [s; T ].

Furthermore, one has

dhXs;y; Xs;y it = (�2 + b2)(t; Xs;y
t� )dt; t 2 [s; T ]: (5.10)

Throughout the chapter, unless otherwise speci�ed, we denote C > 0 to be a

generic constant depending only on K and T , which may vary from line to line.

The following variational process rX, de�ned in Lemma 5.2.2, is important in the

chapter.

Lemma 5.2.2 Assume (A1), and let � and � be two F-predictable processes that

are bounded by K. For each 0 � s < T , let Y s
� be the solution to the following

(linear) SDE:

Y s
t = 1 +

Z t

s
�rY

s
r�dWr +

Z t

s

Z
IR
�rY

s
r�ze�(drdz): (5.11)

Then it holds that

E

(
sup
s�t�T

jY s
t j2
)
� C: (5.12)

In particular, if �t = �0x(t; X
s;y
t ) and �t = b0x(t; X

s;y
t ), then we denote the solution to

(5.11) by Y
4
= rX, which satis�es the following relation:

E
����1
h
(Xs;x+h

t �Xs;x
t )�rXs;x

t

���2�! 0; as h! 0:

We note that sometimes the notion of \di�erence quotient" of X will also be used:

for any y; h 2 IR and t 2 [s; T ],

�hX
s;y
t

4
=

1

h
[Xs;y+h

t �Xs;y
t ]:
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The following identity is then obvious:

sup
s�t�T

jXs;y1
t �Xs;y2

t j = jy1 � y2j sup
s�t�T

j�y1�y2X
s;y2
t j: (5.13)

Now let � : lD 7! IR be a functional such that Ej�(X)j2 < 1. We consider the

following F-martingale:

Mt
4
= Ef�(X)jFtg; t � 0: (5.14)

By martingale theory, there exists an F�predictable process, �, such that

Mt = � +
Z t

0
�sdXs +Nt; (5.15)

where � = M0 and N is an F-martingale that is orthogonal to X (i.e., [N;X] is

an F-martingale. For more on this theory, consult Dellacherie-Meyer [15] or Protter

[46]). One of the main purposes of this paper is to �nd conditions on �, so that � has

c�agl�ad paths.

To this end, let us introduce a functional ' which plays an important role in the

sequel. De�ne ' : lD� [0; T ]� IR 7! IR as follows

'(x; t; y) = Ef�(x1[0;t) +X t;y1[t;T ])g; (x; t; y) 2 lD� [0; T ]� IR : (5.16)

We note that if �(X) = g(XT ), then '(x; t; y) = PT�tg(y), where (Pt) is the transition

semi-group of the strong Markov process X.

5.3 Discrete Case Revisited

In this section we look at the special case where � is a discrete functional, say

�(x) = g(xt0 ; � � � ;xtn);

where � : 0 = t0 < t1 < � � � < tn = T is a partition of [0; T ] and g 2 C1
b (IR

n+1).

We note that such a case was also studied by Jacod-M�el�eard-Protter [30], but we

shall give a slightly di�erent formula that is more useful for our future discussion.

We assume that all the (�rst order) partial derivatives of g, denoted by @ig (= @xig),
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i = 0; 1; � � � ; n, are bounded by a common constant K > 0. Recall the function '

de�ned by (5.16). Clearly, for t 2 (ti�1; ti] and x 2 lD,

'(x; t; y) = E
n
g
�
x(t0); � � � ;x(ti�1); X t;y

ti ; � � � ; X t;y
tn

�o
: (5.17)

Since X is Markovian, it can be shown that the martingale de�ned by (5.14) can be

written as

Mt = '(X; t; Xt) = lim
ti�1<u<t

u#ti�1

'(X1[0;u); t; Xt);

where the second equality holds true for t 2 (ti�1; ti]. Note that by (5.15) we have

dMt = �tdXt + dNt: (5.18)

We shall follow the idea of [30] to identify �. To this end, we de�ne a function

� : [0; T ]� IRi by

�(t; x1; � � � ; xi�1; y) = E
n
g(x1; � � � ; xi�1; X t;y

ti ; �; X t;y
tn )
o
:

Clearly, we have '(X; t; Xt) = �(t; Xt0 ; � � � ; Xti�1 ; Xt) and (suppressing all variables)

@t' = @t�, @y' = @y�. We shall �rst assume that that � 2 C1;2((ti�1; ti]� IRi). Also,

when the context is clear, we shall simply write �(t; y) = �(t; Xt0 ; � � � ; Xti�1 ; y) for

notational convenience.

Now, for j = 1; � � � ; i � 1, we de�ne Xj
t � Xtj , for all t � ti�1 � tj. Then,

applying Itô's formula over [ti�1; ti], and noting that dXj
s � 0, j = 1; � � � ; i � 1 and

d hXj; Y i � 0, for Y = X;X1; � � � ; X i�1, and t � ti�1, we get:

dMt = d�(t; X1
t ; � � � ; X i

t ; Xt)

= @t�(t; Xt�)dt+ @y�(t; Xt�)dXt +
1

2
@yy�(t; Xt�)�2(t; Xt�)dt (5.19)

+
Z
IR

h
�(t; Xt� + b(t; Xt�)z)� �(t; Xt�)� @y�(t; Xt�)b(t; Xt�)z

i
�(dt; dz):

Since M is a martingale, the �nite variation terms on the right side of (5.19) must

equal 0; and an argument analogous to that in [30] then shows that

dMt = @y�(t; Xt�)dXt +
Z
IR

h
�(t; Xt� + b(t; Xt�)z)� �(t; Xt�)

�@y�(t; Xt�)b(t; Xt�)z
ie�(dtdz) (5.20)

= (@y��)(t; Xt�)dWt +
Z
IR
[�(t; Xt� + b(t; Xt�)z)� �(t; Xt�)]e�(dtdz):



108

Since X and N are orthogonal, by combining (5.10), (5.18) and (5.20) we have

d hM;X i
t

= �t(�
2 + b2)(t; Xt�)dt

=
h
(@y��

2)(t; Xt�) + b(t; Xt�)
Z
IR
z�t(z)F (dz)

i
dt;

where

�t(z)
4
= '(X; t;Xt� + b(t; Xt�)z)� '(X; t;Xt�): (5.21)

Consequently, one has, for t 2 (ti�1; ti),

�t =
(@y��

2)(t; Xt�) + b(t; Xt�)
R
IR z�t(z)F (dz)

(�2 + b2)(t; Xt�)
: (5.22)

Now we are ready to prove the following theorem.

Theorem 5.3.1 Assume (A1), and assume that the function g is continuously dif-

ferentiable with bounded derivatives. Then it holds that

�t =
�2(t; Xt�)[rXt�]�1�1t� + �2t

(�2 + b2)(t; Xt�)
(5.23)

is c�agl�ad , where 8>>><>>>:
�1t

4
= E

nX
tj>t

@jg(Xt0 ; � � � ; Xtn)rXtj

���Ft

o
;

�2t
4
= b(t; Xt�)

Z
IR
z�t(z)F (dz);

(5.24)

and � is de�ned by (5.21).

Proof. Recall that �(dt; dx) = dtF (dx). Assume �rst that F has compact support,

that �, b are in�nitely di�erentiable with bounded derivatives of all orders, and that g

is bounded, and twice continuously di�erentiable with bounded derivatives. Following

the argument of Lemma 5.1 in [30] we know that in each subinterval (ti�1; ti), � 2
C1;2((ti�1; ti) � IR). Then following the same argument as before we see that (5.22)

must hold for t 2 (ti�1; ti). Now using (5.17) we derive that

@y�(t; Xt) = [rXt]
�1E

nX
j�i

gj(Xt0 ; � � � ; Xtn)rXtj

���Ft

o
= [rXt]

�1�1t :
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Noting that @y� is continuous, and taking left limits on both sides above we obtain

(5.23) on (ti�1; ti).

To show that � is c�agl�ad we �rst observe from (5.24) that �1 is obviously c�adl�ag ,

hence the mapping t 7! �2(t; Xt�)[rXt�]�1�1t� is c�agl�ad . Furthermore, from (5.21)

we see that the process � is c�agl�ad . Also, applying Lemma 5.2.2 one shows that

j�xj � C for some constant C > 0. Thus,

j�t(z)j � Cjb(t; Xt�)jjzj � C(1 + sup
0�s�T

jXsj)jzj:

Now a simple application of the Dominated Convergence Theorem shows that �2,

de�ned by (5.24), is also c�agl�ad . Therefore so is �.

It remains to remove the extra assumptions made on F , g, � and b. Here we

can follow closely the approximation techniques of [30]. We leave it to the interested

readers. The proof is now complete.

For future applications, we now extend Theorem 5.3.1 slightly:

Theorem 5.3.2 If g is continuously di�erentiable, and further it is of linear growth

and all its partial derivatives composed with X, @ig(Xt0; � � � ; Xtn), are square inte-

grable, then (5.23) holds and � is c�agl�ad .

Proof. Let f�mg � C1
0(IR

n+1) be a sequence of truncation functions satisfying 0 �
�m � 1; j@i�mj � 1; and

�m(x0; � � � ; xn) =
8><>: 1; j(x0; � � � ; xn)j � m;

0; j(x0; � � � ; xn)j � m + 1:

De�ne �m : lD 7! IR by

�m(x) = (g�m)(x(t0); � � � ;x(tn)): (5.25)

Then clearly �m has compact support with all derivatives bounded. Applying Theo-

rem 5.3.1 we have

�m(X) = �m +
Z T

0
�mt dXt +Nm

T ;
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where �m is c�agl�ad and satis�es, for t 2 (ti�1; ti],

�mt (�
2 + b2)(t; Xt�) = �2(t; Xt�)(rXt�)�1�

m;1
t� + �m;2

t ; a.s.

Here �m;1, �m;2 are de�ned in the same way as those in (5.24), as well as (5.21),

with g being replaced by g�m. Since g is of linear growth, and @jg(Xt0; � � �Xtn)'s are

all square-integrable, letting m ! 0 on both sides above and applying Lebesgue's

dominated convergence theorem, one concludes that (5.23) holds and � is c�agl�ad .

5.4 L1-Lipschitz Functional Case

5.4.1 General Result

In this subsection we present our �rst path regularity result, under a rather general

condition on the functional �, say � satis�es the L1-Lipschitz condition (1.3). Two

important cases under such an assumption will be studied separately in the next

subsection.

We �rst give a lemma that shows the implication of (1.3) on the function ' de�ned

by (5.16).

Lemma 5.4.1 Suppose that � satis�es (1.3), and let ' be de�ned by (5.16). Then

there exists a constant C > 0, depending only on the time duration T and the

constants K in (A1) and L in (1.3), such that for any x;x1;x2 2 lD and y; y1; y2 2 IR,8>><>>:
j'(x1; t; y)� '(x2; t; y)j � C sup

0�s<t
jx1(s)� x2(s)j;

j'(x; t; y1)� '(x; t; y2)j � Cjy1 � y2j:
(5.26)

Proof. First note that, by (5.16) and (1.3),

j'(x1; t; y)� '(x2; t; y)j � E
n
j�(x11[0;t) +X t;y1[t;T ])� �(x21[0;t) +X t;y1[t;T ])j

o
� Lk[x11[0;t) +X t;y1[t;T ]]� [x21[0;t) +X t;y1[t;T ]]k1 = L sup

0�s<t
jx1(s)� x2(s)j:

Similarly, for any x 2 lD and y1; y2 2 IR,

j'(x; t; y1)� '(x; t; y2)j � E
n
j�(x1[0;t) +X t;y11[t;T ])� �(x1[0;t) +X t;y21[t;T ])j

o
� LE

n
sup
t�s�T

jX t;y1
s �X t;y2

s j
o
= Ljy1 � y2jE

n
sup
t�s�T

j�y1�y2X
t;y2
s j

o
� Cjy1 � y2j;
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thanks to (5.13) and Lemma 5.2.2. This completes the proof.

In light of the idea in Chapter 3 for the Brownian case, we shall approximate

the functional � by a sequence of discrete functionals, which we now describe. For

any partition � : 0 = t0 < t1 < ::: < tn = T , we de�ne a mapping � : lD 7! lD by

x 7! �(x)
4
= x�, where

x�(t)
4
=

nX
i=1

x(ti)1[ti�1;ti)(t) + x(T )1fTg(t): (5.27)

Denote j�j = maxi jti+1 � tij to be the mesh size of the partition �. Then, using the

right continuity of x it is easily seen that

lim
j�j!0

jx�(t)� x(t)j = 0: (5.28)

The following lemma is a slight variation of Lemma 3.2.1. We shall state it without

proof.

Lemma 5.4.2 Suppose that � satis�es (1.3). Let � = f�g be a family of partitions
of [0; T ]. Then there exists a family of discrete functionals fg� : � 2 �g such that

(i) for each � 2 �, g� 2 C1
b (IR

n+1), and satis�es

nX
i=0

jg�i (x0; � � � ; xn)j � K: (5.29)

with constant K being the same as that in (1.3).

(ii) for any x 2 lD, it holds that

jg�(x(t0); � � � ;x(tn))� �(x�)j � j�j: (5.30)

Our main theorem of this section is the following.

Theorem 5.4.3 Assume (A1), and that � satis�es (1.3). Assume further that the

function ' de�ned by (5.16) is c�agl�ad with respect to t, for each �xed (x; y) 2 lD� IR,

and that

lim
j�j!0

j�(x�)� �(x)j = 0; 8x 2 lD; (5.31)

where x� is de�ned by (5.27). Then � in (5.15) admits a c�agl�ad version.
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Proof. Let the partition � : 0 = t0 < t1 < � � � < tn = T be given. For (x; t; y) 2
lD� [0; T )� IR, de�ne

��(x)
4
= g�(x(t0); � � � ;x(tn)); '�(x; t; y)

4
= Ef��(x1[0;t) +X t;y1[t;T ])g: (5.32)

where g� is the approximation of g given by Lemma 5.4.2. By (5.30) and (1.3),

j��(x)j � j�(x�)j+ j�j � C
�
1 + sup

0�t�T
jx(t)j

�
: (5.33)

Applying Lemma 5.2.1 and the Dominated Convergence Theorem we derive from

(5.30) and (5.31) that

lim
j�j!0

Ej��(X)� �(X)j2 = 0: (5.34)

Now Theorem 5.3.1 tells us that in the following representation

��(X) = �� +
Z T

0
��t dXt +N�

T : (5.35)

the process �� is c�agl�ad ; and it has an explicit form:

��t (�
2 + b2)(t; Xt�) = �2(t; Xt�)(rXt�)

�1��;1t� + ��;2t ; (5.36)

where8>>><>>>:
��;1t

4
= E

n nX
tj>t

g�j (Xt0 ; � � � ; Xtn)rXtj

���Ft

o
; 8t 2 (ti�1; ti];

��;2t
4
= b(t; Xt�)

Z
IR
('�(X; t;Xt� + b(t; Xt�)z)� '�(X; t;Xt�))zF (dz):

(5.37)

Further, by virtue of (5.34), we see that as j�j ! 0 we must have �� ! � and

E
n Z T

0
j��t � �tj2(�2 + b2)(t; Xt�)dt

o
! 0: (5.38)

To show that � has a c�agl�ad version, it suÆces to show that there exist c�agl�ad pro-

cesses �1 and �2 such that � has the explicit form:

�t(�
2 + b2)(t; Xt�) = �2(t; Xt�)(rXt�)�1�1t + �2t ; a.s. (5.39)

To this end, we note that from (5.32) and (5.29) one has

j'�(X; t;Xt� + b(t; Xt�)z)� '�(X; t;Xt�)j
� CE

n
sup
t�s�T

jX t;Xt�+b(t;Xt�)z
s �X t;Xt�

s j
���Ft

o
= CE

n
jb(t; Xt�)zj sup

t�s�T
j�b(t;Xt�)zXsj

���Ft

o
� Cjb(t; Xt�)jjzj:
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where the last inequality is due to Lemma 5.2.1. Thus if we de�ne

�2t
4
= b(t; Xt�)

Z
IR
('(X; t;Xt� + b(t; Xt�)z)� '(X; t;Xt�))zF (dz); (5.40)

and note that
R
IR F (dz)z

2 = 1, then by applying the Dominated Convergence Theo-

rem, we derive from (5.31) that

lim
j�j!0

Ef
Z T

0
j��;2t � �2t jdtg = 0: (5.41)

Therefore, possibly along a subsequence, ��;2 ! �2 as j�j ! 0, in measure, a.s. Now

since ' is c�agl�ad in t, we see that so is �2.

It remains to identify �1 and show it has a c�agl�ad version. We shall make use of

Meyer-Zheng's tightness criterion again. First, combining (5.36), (5.38), and (5.41)

we see that, possibly along a subsequence, one has

��;1t� ! �1t
4
=
�t(�

2 + b2)(t; Xt�)� �2t
�2(t; Xt�)[rXt�]�1

; asj�j ! 0; (5.42)

and the convergence is in measure, a.s.

On the other hand, let �0 : 0 = s0 < � � � < sm = T be any partition of [0; T ] that

is �ner than �. We assume that ti = sli , i = 1; 2; � � � ; n. Then,
mX
j=1

EfjEf��;1sj
� ��;1sj�1

jFsj�1gjg =
nX
i=1

liX
j=li�1+1

EfjEf��;1sj
� ��;1sj�1

jFsj�1gjg

=
nX
i=1

E
n
jEfg�i rXti jFti�1gj

o
� E

n nX
i=1

jg�i rXti j
o

(5.43)

� CE
n
sup
0�t�T

jrXtj
o
� C:

thanks to (5.29). Therefore, the processes ��;1's all have bounded conditional varia-

tion, and hence they are all quasimartingales as de�ned in x1.3.4. Furthermore, we
note that the uniform bound of these conditional variations are indeed independent of

the choice of �. Consequently, applying the Meyer-Zheng theorem (Lemma 1.2.11),

there exists a c�adl�ag process e�1 such that the c�adl�ag version of ��;1 converges to e�1
weakly under the Meyer-Zheng topology, as j�j ! 0. Note that the Meyer-Zheng

(pseudo-path) topology is equivalent to convergence in measure (see, e.g., Lemma



114

1.2.10 or [41]), so if by a slight abuse of notation we denote the c�agl�ad version of e�1
by itself, then the uniqueness of the limit shows that e�1t = �1t , a.s., 8t. In other words,
�1, whence �, has a c�agl�ad version. This completes the proof.

5.4.2 Two SuÆcient Conditions

One of the main di�erences between the L�evy case and the Brownian case is

that the L1-Lipschitz condition alone does not guarantee the path regularity of the

process �. In fact, in Theorem 5.4.3 we required an extra assumption on the mapping

t 7! '(x; t; y), which is not easy to verify in general. In this section we consider

two cases where the functional � satis�es some stronger \Lipschitz" conditions so

that the extra assumption can either be removed or be replaced by a more easily

veri�able one. These two cases are mainly motivated by connections to �nance. The

�rst one corresponds to the \Asian Option", while the second one corresponds to the

\Lookback Option". At the end of the section we shall give an example to show that

there exists a non-regular � even though � satis�es the L1-Lipschitz condition.

Theorem 5.4.4 Suppose that � satis�es the L1-Lipschitz condition (1.4), then the

process � in the representation (5.15) admits a c�agl�ad version.

Proof. It is clear that the L1-Lipschitz condition (1.4) implies the L1-Lipschitz

condition (1.3). Thus, by Theorem 5.4.3, it suÆces to prove that ' is c�agl�ad and that

(5.31) holds.

Note that for any x 2 lD, it holds that kx�k1 � kxk1 <1. Then, by (1.4) and

the Dominated Convergence Theorem, we have

j�(x�)� �(x)j � L
Z T

0
jx�(t)� x(t)jdt! 0; as j�j ! 0; (5.44)

thanks to (5.28). Furthermore, by Lemma 5.2.1 one has, for 0 � t1 < t2 � T ,

j'(x; t1; y)� '(x; t2; y)j
� E

n����(x1[0;t1) +X t1;y1[t1;T ])� �(x1[0;t2) +X t2;y1[t2;T ])j
o
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� CE
n Z t2

t1
jX t1;y

s � x(s)jds+
Z T

t2
jX t1;y

s �X t2;y
s jds

o
(5.45)

� CE
n

sup
t1�s�t2

(jX t1;y
s j+ jx(s)j)(t2 � t1) + jX t1;y

t2 � yj sup
t2�s�T

j�Xt;y
t2
�yX

t2;y
s j

o
� C(1 + jyj+ kxk1)(t2 � t1)

1
2 :

Therefore, ' is continuous, which, together with (5.44), enables us to apply Theorem

5.4.3 to conclude that � has a c�agl�ad version.

The second case, motivated by the Lookback option, is a little more involved.

Theorem 5.4.5 If �(x) = g( sup
0�t�T

h(t;x(t))), where g and h(t; �) are uniformly Lips-
chitz with a common constant K, and h(�; x) is continuous for all x. Then, � in (5.15)
admits a c�agl�ad version.

Proof. That � satis�es (1.3) is obvious. So again we need to show only that ' is

c�agl�ad in t, and (5.31) holds.

First �x x 2 lD and let � : 0 = t0 < � � � < tn = T be any partition. Since g is

Lipschitz, we have

j�(x�)� �(x)j � C
��� sup
0�t�T

h(t;x�(t))� sup
0�t�T

h(t;x(t))
���

� C
�
sup
0�t�T

h(t;x(t))�max
i
h(ti;x(ti))

�
(5.46)

+Cmax
i

sup
ti�1�t<ti

jh(t;x(ti))� h(ti;x(ti))j:

For any " > 0, choose t" 2 [0; T ] such that

sup
0�t�T

h(t;x(t)) � h(t";x(t")) + ":

Now for each i we have

jh(t";x(t"))� h(ti;x(ti))j � jh(ti;x(t"))� h(t";x(t"))j+ Cjx(ti)� x(t")j;

and, thanks to the continuity of h,

h(t";x(t")) � lim
j�j!0

max
i
h(ti;x(ti)):
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Since " is arbitrary, we deduce that

sup
0�t�T

h(t;x(t)) � lim
j�j!0

max
i
h(ti;x(ti)): (5.47)

Furthermore, since x 2 lD, it is bounded on [0; T ]. Let jx(t)j � K for some constant

K > 0. Also, since h is continuous, it is uniformly continuous on [0; T ] � [�K;K].

Thus we have

lim
j�j!0

max
i

sup
ti�1�t<ti

jh(t;x(ti))� h(ti;x(ti))j = 0: (5.48)

Combining (5.47) and (5.48) we derive from (5.46) that

lim
j�j!0

j�(x�)� �(x)j = 0: (5.49)

It remains to show ' is c�agl�ad in t. To do this we observe that, for �xed x, y, and

any 0 � t1 < t2 � T ,

j'(x; t1; y)� '(x; t2; y)j
=

���En�(x1[0;t1) +X t1;y1[t1;T ])� �(x1[0;t2) +X t2;y1[t2;T ])
o���

� CE
n��� sup

0�s<t1
h(s;x(s)) _ sup

t1�s�T
h(s;X t1;y

s )

� sup
0�s<t2

h(s;x(s)) _ sup
t2�s�T

h(s;X t2;y
s )

���o
� CE

n
j sup
0�s<t1

h(s;x(s))� sup
0�s<t2

h(s;x(s))j

+j sup
t1�s�T

h(s;X t1;y
s )� sup

t2�s�T
h(s;X t2;y

s )j
o

� CE
n

sup
t1�s<t2

jh(s;x(s))� h(t1;x(t1�))j

+ sup
t1�s<t2

jh(s;X t1;y
s )� h(t2; y)j+ sup

t2�s�T
jh(s;X t1;y

s )� h(s;X t2;y
s )j

o
� CE

n
sup

t1�s<t2
jh(s;x(t1�))� h(t1;x(t1�))j

+ sup
t1�s<t2

jx(s)� x(t1�)j+ sup
t1�s<t2

jh(s; y)� h(t2; y)j

+ sup
t1�s<t2

jX t1;y
s � yj+ jX t1;y

t2 � yj sup
t2�s�T

j�Xt;y
t2
�yX

t2;y
s j

o
� C

h
sup

t1�s<t2
jh(s;x(t1�))� h(t1;x(t1�))j+ sup

t1�s<t2
jx(s)� x(t1�)j

+ sup
t1�s<t2

jh(s; y)� h(t2; y)j+ (t2 � t1)
1
2

i
: (5.50)
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thanks to Lemma 5.2.1 and Lemma 5.2.2. Now �x t0 2 (0; T ). For 8" > 0, since x is

c�adl�ag , there exists Æ > 0 such that,8><>: jx(t)� x(t0�)j � "; 8t 2 (t0 � Æ; t0);

jx(t)� x(t0)j � "; 8t 2 (t0; t0 + Æ):
(5.51)

Thus 8><>: supt�s<t0 jx(s)� x(t�)j � 2"; 8t 2 (t0 � Æ; t0);

supt1�s<t2 jx(s)� x(t1�)j � 2"; 8t0 < t1 < t2 < t0 + Æ:
(5.52)

which, combined with (5.50) and the fact that h is locally uniformly continuous,

clearly implies that ' is c�agl�ad .

5.4.3 A Counterexample

To conclude this section we give an example which shows that in general the

L1-Lipschitz condition (1.3) alone does not guarantee that � is c�agl�ad .

Example 5.4.6 Let Xt = Nt� t, where N is the standard Poisson process. (That is,

� = 0; b = 1 and F (dz) = Æf1g(dz).) Let A 2 B([0; T ]) such that A is dense in [0; T ]

and 0 < jAj < T , where jAj denotes the Lebesgue measure of A. De�ne � : lD 7! IR

by �(x) = supt2A j�x(t)j. Now consider the equation:

Mt = 1�
Z t

0
Ms�1A(s)dXs:

By the Dol�eans-Dade Exponential Formula (cf. Protter [46]) we have

Mt = exp
n
�
Z t

0
1A(s)dXs

oY
s�t

[(1� 1A(s)�Xs)e
1A(s)�Xs ] (5.53)

= exp
n
�X

s�t
1A(s)�Ns + jA \ [0; t]j

o
[
Y
s�t

(1� 1A(s)�Ns)] expf
X
s�t

1A(s)�Nsg

= ejA\[0;t]j
Y
s�t

(1� 1A(s)�Ns):

Since �(N) only takes values 0 or 1, and if �(N) = 0, then for all s 2 A, �Ns = 0,

thus 1A(s)�Ns = 0 for all s 2 [0; T ], hence MT = ejAj, thanks to (5.53). On the other
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hand, if �(N) = 1, then there exists s 2 A such that �Ns = 1, again by (5.53), we

have MT = 0. So

MT = ejAj1f�(N)=0g = ejAj(1� �(N)):

then

�(X) = �(N) = 1� e�jAjMT = 1� e�jAj +
Z T

0
e�jAjMt�1A(t)dXt: (5.54)

Hence

�t = e�jAjMt�1A(t)

which clearly is not c�agl�ad .

5.5 Stochastic Integral Case

In this section we consider the case where �(X) = g
� R T

0 h(t; Xt�)dXt

�
. Note that

in this case �(X) no longer depends on X in a path by path manner, and none of

the \Lipschitz conditions" studied in the previous sections is satis�ed. Let us �rst

modify the function '. Observe that in this case

�(X1[0;t) +X t;y1[t;T ])

= g
� Z t�

0
h(s;Xs�)dXs + h(t; Xt�)(y �Xt�) +

Z T

t
h(s;X t;y

s�)dX
t;y
s

�
;

we shall introduce the following two new functions  : 
� IR2�[0; T ]� IR 7! IR, and

' : IR2�[0; T ]� IR 7! IR.8>><>>:
 (a; x; t; y)

4
= a+ h(t; x)(y � x) +

Z T

t
h(s; ; X t;y

s�)dX
t;y
s ;

'(a; x; t; y)
4
= Efg( (a; x; t; y))g:

(5.55)

The following theorem is an extension of Theorem 5.4.5.

Theorem 5.5.1 Suppose that �(X) = g
� R T

0 h(t; Xt�)dXt

�
, where g and h satisfy

(i) h is bounded;

(ii) for �xed x, h(�; x) is c�agl�ad ;

(iii) for �xed t, g and h(t; �) are uniformly Lipschitz continuous with Lipschitz

constant K,
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Then, � admits a c�agl�ad version.

Proof. We follow the similar line of the proof of Theorem 5.4.5, but make necessary

adjustments. First let us assume that g and h(t; �) are continuously di�erentiable for
�xed t, and that h0x(�; x) is c�agl�ad for �xed x. We de�ne an approximating discrete

functional as follows. For � : 0 = t0 < � � � < tn = T , de�ne

��(X) = eg(Xt0 ; � � � ; Xtn)
4
= g

� nX
i=1

h(ti�1; Xti�1)(Xti �Xti�1)
�
; (5.56)

Note that X is a martingale, one has

Efj��(X)� �(X)j2g
= E

n���g� nX
i=1

h(ti�1; Xti�1)(Xti �Xti�1)
�
� g

� nX
i=1

Z ti

ti�1
h(s;Xs�)dXs

����2o
� CE

n��� nX
i=1

�
h(ti�1; Xti�1)(Xti �Xti�1)�

Z ti

ti�1
h(s;Xs�)dXs

����2o
= CE

n nX
i=1

���h(ti�1; Xti�1)(Xti �Xti�1)�
Z ti

ti�1
h(s;Xs�)dXs)

���2o (5.57)

� CE
n nX
i=1

Z ti

ti�1
jh(s;Xs�)� h(ti�1; Xti�1)j2(�2 + b2)(s;Xs�)ds

o
A simple application of the Dominated Convergence Theorem then gives that

lim
j�j!0

Efj��(X)� �(X)j2g = 0: (5.58)

Next, note that by the martingale representation theorem we have8>><>>:
��(X) = �� +

Z T

0
��t dt+N�

T ;

�(X) = � +
Z T

0
�tdt+NT ;

and by (5.58) we have

lim
j�j!0

E
n Z T

0
j��t � �tj2(�2 + b2)(t; Xt�)dt

o
= 0: (5.59)

Furthermore, by Theorem 5.3.2 we know that �� admits a c�agl�ad version and has an

explicit formula. We want to show that � also has a c�agl�ad version and to identify
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its explicit form. To this end, let us introduce two functions corresponding to those

in (5.55): for t 2 (ti�1; ti],8>><>>:
 �(a; x; t; y)

4
= a+ h(ti�1; x)(X

t;y
ti � x) +

X
j>i

h(tj�1; X
t;y
tj�1)(X

t;y
tj �X t;y

tj�1);

'�(a; x; t; y)
4
= Efg( �(a; x; t; y))g:

(5.60)

Then, it is easily seen that

��(X1[0;t) +X t;y1[t;T ]) = g
�
 �
�X
j<i

h(tj�1; Xtj�1); Xtj�1 ; t; y
��
; (5.61)

and by Theorem 5.3.2 �� can be written explicitly as:

��t =
�2(t; Xt�)(rXt�)�1�

�;1
t + ��;2t

(�2 + b2)(t; Xt�)
; (5.62)

where, for t 2 (ti�1; ti],8>>><>>>:
��;1t

4
= @y'

�
�X
j<i

h(tj�1; Xtj�1)(Xtj �Xtj�1); Xti�1 ; t; Xt�
�
;

��;2t
4
= b(t; Xt�)

Z
IR
z��

t (z)F (dz):

(5.63)

and

��
t (z)

4
= '�

�X
j<i

h(tj�1; Xtj�1)(Xtj �Xtj�1); Xti�1 ; t; Xt� + b(t; Xt�)z
�

�'�
�X
j<i

h(tj�1; Xtj�1)(Xtj �Xtj�1); Xti�1 ; t; Xt�
�
: (5.64)

To identify the limit of f��g, we �rst note that (5.55) and (5.60) yield that8>>>>>><>>>>>>:
@y (a; x; t; y) = h(t; x) +

Z T

t
h0x(s;X

t;y
s�)rX t;y

s�dX
t;y
s

+
Z T

t
h(s;X t;y

s�)drX t;y
s ;

@y'(a; x; t; y) = E
n
g0( (a; x; t; y))@y (a; x; t; y)

o
:

(5.65)

and8>>>>>>><>>>>>>>:

@y 
�(a; x; t; y) = h(ti�1; x)rX t;y

ti +
X
j>i

h0x(tj�1; X
t;y
tj�1)rX t;y

tj�1(X
t;y
tj �X t;y

tj�1)

+
X
j>i

h(tj�1; X
t;y
tj�1)(rX t;y

tj �rX t;y
tj�1);

@y'
�(a; x; t; y) = Efg0( �(a; x; t; y))@y 

�(a; x; t; y))g:
(5.66)
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Since h(�; x) and h0x(�; x) are both bounded and left continuous, applying the

Burkholder-Davis-Gundy inequality and the Dominated Convergence Theorem we

obtain that8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

lim
j�j!0

E
n��� X

tj�t
h(tj; X

t;y
tj )(X

t;y
tj+1 �X t;y

tj )�
Z T

t
h(s;X t;y

s�)dX
t;y
s

���o = 0;

lim
j�j!0

E
n��� X

tj�t
h(tj; X

t;y
tj )(rX t;y

tj+1 �rX t;y
tj )�

Z T

t
h(s;X t;y

s�)drX t;y
s

���o = 0;

lim
j�j!0

E
n��� X

tj�t
h0x(tj; X

t;y
tj )rX t;y

ti (X
t;y
tj+1 �rX t;y

tj )

�
Z T

t
h0x(s;X

t;y
s�)rX t;y

s�dX
t;y
s

���o = 0;

(5.67)

Now if a� ! a and x� ! x as j�j ! 0, then (5.67) implies that8>><>>:
lim
j�j!0

Efj �(a�; x�; t; y)�  (a; x; t; y)jg = 0;

lim
j�j!0

Efj@y �(a�; x�; t; y)� @y (a; x; t; y)jg = 0:
(5.68)

Further, note that

jg0( �(a; x; t; y)) �
y (a; x; t; y)� g0( (a; x; t; y))@y (a; x; t; y)j

� jg0( �(a; x; t; y))� g0( (a; x; t; y))jj@y (a; x; t; y)j
+Cj@y �(a; x; t; y)� @y (a; x; t; y)j;

applying the Dominated Convergence Theorem we then conclude that8>><>>:
lim
j�j!0

j'�(a�; x�; t; y)� '(a; x; t; y)j = 0;

lim
j�j!0

j@y'�(a�; x�; t; y)� @y'(a; x; t; y)j = 0:
(5.69)

Now note that, possibly along a subsequence we must have that, for each t 2 [0; T ],

X
j<i

h(tj�1; Xtj�1)(Xtj �Xtj�1)!
Z t�

0
h(s;Xs�)dXs; a.s.,

and Xti�1 ! Xt�, a.s., as j�j ! 0. Thus, applying the Dominated Convergence

Theorem if necessary, we derive from (5.63) that, for all t 2 [0; T ]

��;1t ! �1; ��;2t ! �2t ; asj�j ! 0;
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thanks to (5.69), where8>><>>:
�1t

4
= @y'

� Z t�

0
h(s;Xs�)dXs; Xt�; t; Xt�);

�2t
4
= b(t; Xt�)

Z
IR
�t(z)zF (dz);

(5.70)

and

�t(z)
4
= '

� Z t�

0
h(s;Xs�)dXs; Xt�; t; Xt� + b(t; Xt�)z

�
�'

� Z t�

0
h(s;Xs�dXs; Xt�; t; Xt�):

Furthermore, (5.59) implies that

�t =
�2(t; Xt�)�1t + �2t
(�2 + b2)(t; Xt�)

; dP � dt-a.e.: (5.71)

It remains to show that both �1 and �2 have c�agl�ad version. To see this, note

that X is driven by a L�evy process, which has no �xed jump time. Namely, for every

t 2 [0; T ], one has Xt = Xt�, a.s. and rXt = rXt�, a.s. Recalling (5.55) and (5.65),

we see that, for each t 2 [0; T ], it holds almost surely that

�1t = @y'
� Z t�

0
h(s;Xs�)dXs; Xt�; t; Xt

�
= E

n
g0(
Z T

0
h(s;Xs�)dXs)[h(t; Xt�) + [rXt�]

�1
Z T

t
h0x(s;Xs�)rXs�dXs

+[rXt�]�1
Z T

t
h(s;Xs�)drXs]

���Ft

o
=

h
h(t; Xt�)� [rXt�]�1

Z t�

0
h0x(s;Xs�)rXs�dXs (5.72)

�[rXt�]�1
Z t�

0
h(s;Xs�)drXs

i
� E
n
g0
� Z T

0
h(s;Xs�)dXs

����Ft

o
+[rXt�]�1E

n
g0
� Z T

0
h(s;Xs�)dXs

�
�
h Z T

0
h0x(s;Xs�)rXs�dXs

+
Z T

0
h(s;Xs�)drXs

i���Ft

o
;

which clearly has a c�agl�ad version, thanks to the assumption that h is c�agl�ad with

respect to t.

Furthermore, using (5.55) and (5.65) again we have8>>>>><>>>>>:
j@a'(a; x; t; y)j � C;

j@x'(a; x; t; y)j � C(1 + jy � xj);
j@y'(a; x; t; y)j � C(1 + jyj);

(5.73)
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and for 0 � t1 < t2 � T , denoting X i = X ti;y, i = 1; 2, we have

j'(a; x; t1; y)� '(a; x; t2; y)j � CEfj (a; x; t1; y)�  (a; x; t2; y)jg
� CE

n
jh(t1; x)� h(t2; x)jjy � xj+ j

Z t2

t1
h(s;X1

s�)dX
1
s j

+
��� Z T

t2
[h(s;X1

s�)�(s;X
1
s�)� h(s;X2

s�)�(s;X
2
s�)]dWs

���
+
��� Z T

t2

Z
IR
[h(s;X1

s�)b(s;X
1
s�)� h(s;X2

s�)b(s;X
2
s�)]ze�(ds; dz)���o

� C
h
jh(t1; x)� h(t2; x)jjy � xj+ (1 + jyj)(t2 � t1)

1=2 (5.74)

+E
n� Z T

t2
jh(s;X1

s�)�(s;X
1
s�)� h(s;X2

s�)�(s;X
2
s�)j2ds

�1
2
o

+E
n Z T

t2

Z
IR
jh(s;X1

s�)b(s;X
1
s�)� h(s;X2

s�)b(s;X
2
s�)jjzjF (dz)ds

oi
� C

h
jh(t1; x)� h(t2; x)jjy � xj+ (1 + jyj)(t2 � t1)

1
2

+E
� Z T

t2
jX1

s� �X2
s�j2ds

�1
2 + E

n� Z T

t2
jX1

s� �X2
s�j2ds

�1
2
�
1 + sup

t2�s�T
jX2

s j
�o

+E
n Z T

t2
jX1

s� �X2
s�jds+ E

n� Z T

t2
jX1

s� �X2
s�jds

��
1 + sup

t2�s�T
jX2

s j
�oi

� C
h
jh(t1; x)� h(t2; x)jjy � xj+ (1 + jyj2)(t2 � t1)

1
2

i
;

where C > 0 is again some generic constant that is allowed to vary from line to line.

This shows that ' is c�agl�ad with respect to t. Combining this with (5.73) and (5.63)

we see that �2, whence �, is c�agl�ad .

In the general case that g and h(t; �) are only Lipschitz continuous, we can again

choose g" and h" to be the smooth moli�ers with respect to the spatial variable x,

and follow the standard arguments to show that

lim
"!0

E

(Z T

0
j�"t � �tj2(�2 + b2)(t; Xt�)dt

)
= 0: (5.75)

Next, since (h")0x(�; x) is c�agl�ad for each x, using an argument similar to our previous

one, we see that there exists a c�agl�ad process �" of the form:

�"t =
�2(t; Xt�)�

";1
t + �";2t

(�2 + b2)(t; Xt�)
; (5.76)

where �";1 and �";2 are de�ned in a by now obvious way, and such that

lim
"!0

E
n Z T

0
j�";2t � �2t j2(�2 + b2)(t; Xt�)dt

o
= 0; (5.77)
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where �2 is de�ned by (5.70). It is not too hard to show, as we did before, that �2 is

again c�agl�ad . De�ne, in light of (5.76),

�1t
4
=
�t(�

2 + b2)(t; Xt�)� �2t
�2(t; Xt�)

:

It suÆces to show that �1 is c�agl�ad . To this end we denote, by (5.72),

A"
t

4
= �";1t+rXt � h"(t+; Xt)E

n
(g")0(

Z T

0
h"(s;Xs�)dXs)

���Ft

o
= E

n
(g")0(

Z T

0
h"(s;Xs�)dXs)

h Z T

t
(h")0x(s;Xs�)rXs�dXs (5.78)

+
Z T

t
h"(s;Xs�)drXs

i���Ft

o

For any � > 0, de�ne 
�
4
= f! : sup

t
fjrXtj + 1

�2(t; Xt)
g � �g. From (5.75) and

(5.77) we know that

E
n
1
�

Z T

0
j�";1t rXt� � �1trXt�jdt

o
� E

n
1
�

Z T

0

h�2 + b2

�2
j�"t � �tjjrXt�j+ jrXt�j

�2
j�";2t � �2t j

i
dt
o

� C(�)
�
E
n
1
�

Z T

0
[j�"t � �tj2 + j�";2t � �2t j2

i
(�2 + b2)(t; Xt�)dt

o�1
2 ! 0; as "! 0:

That is,

lim
"!0

�";1� rX�� = �1�rX��; strongly in L1(
� � [0; T ]): (5.79)

Now denote G" 4
= (g")

0(
R T
0 h

"(s;Xs�)dXs). Since it is uniformly bounded, there exists

G 2 L2(
) such that, possibly along a subsequence, G" converges to G weakly in

L2(
). Noting that h"'s are uniformly bounded and converge to h uniformly, we can

easily derive

lim
"!0

h"(�+; X�)EfG"jF�g = h(�+; X�)EfGjF�g; weakly in L2(
� [0; T ]);

which, together with (5.79), implies that

lim
"!0

A"
�� = A0

� ; weakly in L1(
� � [0; T ]); (5.80)

where A0
t
4
= �1trXt� � h(t; Xt�)EfGjFtg�, t 2 [0; T ]. Now by Mazur's theorem (cf.

e.g., [25]), there exists a sequence fBn;�g, where each Bn;� is a convex combinations of
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A", such that Bn;� converges to A0 strongly in L1(
�� [0; T ]). Since 
� " 
, a simple
diagonalization procedure shows that there exists a sequence fBng, where each Bn is

a convex combination of Bn;�'s (hence still a convex combination of A"'s!), such that

Bn converges to A0, strongly in L1(
� � [0; T ]) for all �, as n ! 1. Consequently,

for a.s. ! 2 
, Bn(!) converges to A0(!) in measure. On the other hand, by the

de�nition (5.78) it is not hard to check that fA"g, whence fBng, is tight under the
Meyer-Zheng topology. An argument similar to that in Chapter 3 shows that A0 has

a c�agl�ad version. The proof is now complete.

Remark 5.5.2 If we let h(t; x) = 1[0;t0](t) for some t0 2 [0; T ], then the assumptions

(i){(iii) of the theorem are all satis�ed. Therefore our result covers the special case

when �(X) = g(Xt0); that is, the case considered in [30].

Remark 5.5.3 In the theorem we assumed that h is bounded so that the random

variables involved are all square integrable. An alternative assumption (of (i)) could

be that (i')
Z
IR
z4F (dz) <1. We leave the details to the interested readers.

5.6 General Case

In this section we shall summarize the results from previous sections to study

some more general situations. We present them in two theorems.

Theorem 5.6.1 Assume that �(X) = g(
R T
0 h1(t; Xt)dt;

R T
0 h2(t; Xt�)dXt), where

h1(t; x)
4
= (h11; � � � ; h1m)(t; x); h2(t; x)

4
= (h21; � � � ; h2n)(t; x):

Assume further that h2 is bounded and c�agl�ad with respect to t. De�ne

' : IRm � IRn � IR� [0; T ]� IR 7! IR

as follows:

'(A1; A2; x; t; y)

4
= E

(
g(A1 +

Z T

t
h1(s;X

t;y
s )ds; A2 + h2(t; x)(y � x) +

Z T

t
h2(s;X

t;y
s�)dX

t;y
s )

)
:
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i) If g, h1 and h2 are continuously di�erentiable with uniformly bounded deriva-

tives with respect to the spatial variables, then � is c�agl�ad . To be more precise, one

has

�t(�
2 + b2)(t; Xt�)

= �2(t; Xt�)'y
� Z t�

0
h1(s;Xs)ds;

Z t�

0
h2(s;Xs�)dXs; Xt�; t; Xt�

�
(5.81)

+b2(t; Xt�)
Z
IR

Z 1

0
'y
� Z t�

0
h1(s;Xs)ds;Z t�

0
h2(s;Xs�)dXs; Xt�; t; Xt� + b(t; Xt�)zu

�
z2duF (dz);

where

'y(A1; A2; x; t; y) = E
n
h g1;

Z T

t
(h1)

0
x(s;X

t;y
s )rX t;y

s ds i (5.82)

+ h g2;h2(t; x) +
Z T

t
(h2)

0
x(s;X

t;y
s�)rX t;y

s�dX
t;y
s +

Z T

t
h2(s;X

t;y
s�)drX t;y

s i
o
:

ii) The same holds when g, h1 and h2 are di�erences of two functions convex with

respect to the spatial variables, with right derivatives bounded and all the derivatives

appearing in i) are replaced by the corresponding right derivative, provided we have

X t;y
s ,

R T
0 h

1
i (t; Xt)dt and

R T
0 h

2
j(t; Xt)dXt have no atoms.

Proof. (i) If (h2)
0
x is also c�agl�ad with respect to t, then similar to (5.24) one can

show that (5.81) also holds. In general we can again approximate h2 by the moli�ers

to conclude the same result.

(ii) This is a direct consequence of the arguments of Theorem 2.6-b) of [30].

Theorem 5.6.2 Assume that �(X) = g(�1(X); � � � ;�n(X)), where g is uniformly

Lipschitz, and �i(X)'s are of the form as those in Theorem 5.4.4, Theorem 5.4.5 or

Theorem 5.5.1. Then, � is c�agl�ad .

Proof. To simplify the presentation, let us assume that

�(X) = g
�
�1(X); sup

0�t�T
h(t; Xt);

Z T

0
k(t; Xt�)dXt

�
;
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where �1 satis�es L1-Lipschitz condition (1.3), and h, k satisfy the conditions in

Theorem 5.4.4 and Theorem 5.5.1, respectively. De�ne ' : lD� IR2� [0; T ]� IR 7! IR

to be such that

'(x; a; x; t; y)
4
= E

n
g
�
�1(x1[0;t) +X t;y1[t;T ]); sup

0�s<t
h(s;x(s)) _ sup

t�s�T
h(s;X t;y

s );

a+ k(t; x)(y � x) +
Z T

t
k(s;X t;y

s�)dX
t;y
s

�o
:

For any partition � : 0 = t0 < � � � < tn = T , de�ne '� similar to (5.37). Then,

combining the arguments in the previous sections we see that �� will converge to �

in measure, as j�j ! 0, and that � is c�agl�ad .
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