- p. 14, Theorem 1.3.4 (ii): the two " X_{n} " there should be " X^{n} ".
- p. 15, Theorem 1.3.10 (ii), the last condition: $X_{n} \in \overline{\mathcal{H}}$.
- p. $67,(3.2 .7):$ the last term should be $" \int_{0}^{T}\left|\Delta \sigma_{t}\left(X_{t}^{1}\right)\right|^{2} d t$ ".
- p. 68, line -2: $\left|\beta_{t}^{n} \Delta X_{t}^{n}\right|^{2}$.
- p. 71, line -3: the last term should be " $+\int_{0}^{T}\left|\Delta \sigma_{t}^{n}\left(X_{t}\right)\right|^{2} d t$ ".
- p. 75, line -12: the term " $\langle X\rangle_{t}$ " should be " $\langle M\rangle_{t}$ ".
- p. 78 , Problem 3.7.8 (iii): $\eta \in \mathbb{L}^{2}\left(\mathcal{F}_{0}, \mathbb{R}^{d_{1}}\right)$.
- p. $81,(4.1 .4): \int_{0}^{t} \Gamma_{s}\left[\alpha_{s} d s+\cdots\right.$
- p. $82,(4.2 .5):$ the last term should be $"-2 \int_{t}^{T} Y_{s} Z_{s} d B_{s}$ ".
- p. 83, line 5: the last term should be " $C \int_{t}^{T}\left[\left|Y_{s}\right|^{2}+\left|Y_{s} Z_{s}\right|\right] d s$ ".
- p. 85 , line (-5) : in the term $2 \int_{t}^{T}\left[\Delta Y_{s}^{n}[\cdots\right.$, the first " $[$ " shouldn't be there.
- p. 86 , line 4: in the first term in the right side, " ΔY_{s}^{n} " should be $" \Delta Y_{t}^{n "}$.
- p. 90, line 2-4: all the " I_{p}^{2} " there should be " I_{p}^{p} ".
- p. 96, Problem 4.7.1, (4.7.1):

$$
Y_{t}^{i}=\xi+\int_{t}^{T}\left[\sum_{j=1}^{2}\left[\alpha_{s}^{i j} Y_{s}^{j}+\beta_{s}^{i j} Z_{s}^{j}\right]+\gamma_{s}^{i}\right] d s-\int_{t}^{T} Z_{s}^{i} d B_{s}, i=1,2 .
$$

- p. 104, (5.1.5): the signs in the right side should be changed:

$$
\begin{aligned}
& Y_{s}^{t, x}=g\left(X_{T}^{t, x}\right)+\int_{s}^{T} f\left(r, X_{r}^{t, x}, Y_{r}^{t, x}, Z_{r}^{t, x}\right) d r-\int_{s}^{T} Z_{r}^{t, x} d B_{r} \\
& \mathcal{Y}_{s}^{t, \eta}=g\left(\mathcal{X}_{T}^{t, \eta}\right)+\int_{s}^{T} f\left(r, \mathcal{X}_{r}^{t, \eta}, \mathcal{Y}_{r}^{t, \eta}, \mathcal{Z}_{r}^{t, \eta}\right) d r-\int_{s}^{T} \mathcal{Z}_{r}^{t, \eta} d B_{r} .
\end{aligned}
$$

- p. $125,(5.5 .13):$ the second \bar{Y} inside f should be \bar{Z} :

$$
\bar{Y}_{s}=\varphi\left(\tau, X_{\tau}\right)+\int_{s}^{\tau} f\left(r, X_{r}, \bar{Y}_{r}, \bar{Z}_{r}\right) d r-\int_{s}^{\tau} \bar{Z}_{r} d B_{r} .
$$

- p. 125 , line -10 : the \bar{X} inside σ should be X :

$$
d \widehat{Y}_{s}=\left[\partial_{t} \varphi+\frac{1}{2} \partial_{x x} \varphi \sigma^{2}+\partial_{x} \varphi b\right]\left(s, X_{s}\right) d s+\partial_{x} \varphi \sigma\left(s, X_{s}\right) d B_{s}
$$

- p. 125 , line -3 : there should be a negative sign in the right side:

$$
d \Gamma_{s}=-\Gamma_{s}\left[\alpha_{s} d s+\beta_{s} d B_{s}\right], \quad \Gamma_{t}=1
$$

- p. 125, line -1 : a sign in the right side should be changed:

$$
d\left(\Gamma_{s} \Delta Y_{s}\right) \geq \frac{c}{2} \Gamma_{s} d s+\Gamma_{s}\left[\Delta Z_{s}-\beta_{s} \Delta Y_{s}\right] d B_{s} .
$$

- p. 150 , line -4 and -3 : First, there is a typo in the definition of K :

$$
K_{t}:=Y_{0}-Y_{t}-\int_{0}^{t}\left[f_{s}^{0}+h_{s}\right] d s+\int_{0}^{t} Z_{s} d B_{s} .
$$

More seriously, the weak convergence of $K^{n} \rightarrow K$ is not sufficient to conclude that K is increasing in t, a.s. A rigorous argument is as follows.

First, by Mazur's lemma, there exist convex combination

$$
\tilde{h}^{n}:=\sum_{i \geq n} \alpha_{i}^{n} h^{i}, \quad \tilde{Z}^{n}:=\sum_{i \geq n} \alpha_{i}^{n} Z^{n}
$$

such that $\left(\tilde{h}^{n}, \tilde{Z}^{n}\right) \rightarrow(h, Z)$ strongly in \mathbb{L}^{2}. Denote

$$
\tilde{F}_{t}^{n}:=\int_{0}^{t}\left[f_{s}^{0}+\tilde{h}_{s}^{n}\right] d s, \tilde{M}_{t}^{n}:=\int_{0}^{t} \tilde{Z}_{s}^{n} d B_{s}, F_{t}:=\int_{0}^{t}\left[f_{s}^{0}+h_{s}\right] d s, M_{t}:=\int_{0}^{t} Z_{s} d B_{s}
$$

Then, possibly along a subsequence, $\left(\tilde{F}^{n}-F\right)_{T}^{*}+\left(\tilde{M}^{n}-M\right)_{T}^{*} \rightarrow 0$, a.s. Denote

$$
\begin{equation*}
\tilde{Y}^{n}:=\sum_{i \geq n} \alpha_{i}^{n} Y^{i}, \quad \tilde{K}^{n}:=\sum_{i \geq n} \alpha_{i}^{n} K^{i} . \tag{1}
\end{equation*}
$$

Then \tilde{K}^{n} is increasing in $t, \tilde{Y}^{n} \rightarrow Y_{t}, 0 \leq t \leq T$, a.s. Note that

$$
\begin{equation*}
\tilde{K}_{t}^{n}=\tilde{Y}_{0}^{n}-\tilde{Y}_{t}^{n}-\tilde{F}_{t}^{n}+\tilde{M}_{t}^{n} . \tag{2}
\end{equation*}
$$

Then $\tilde{K}_{t}^{n} \rightarrow K_{t}, 0 \leq t \leq T$, a.s. and thus K is also increasing in t, a.s.

- p. 207, line -2 : the \mathbb{P} should be \mathbb{P}_{0}.
- p. 229, Step 3 in the proof of Theorem 9.3.2: the current arguments use Problem 9.6.2, which unfortunately is wrong. A new argument is as follows.

Fix τ and a version of $\left\{\mathbb{P}^{\tau, \omega}: \omega \in \Omega\right\},\left\{\mathbb{P}^{t, \omega}: \omega \in \Omega\right\}_{t \in[0, T]}$. Define

$$
E_{t}:=\{\tau=t\} \in \mathcal{F}_{t}, \quad \tilde{\mathbb{P}}^{t, \omega}:= \begin{cases}\mathbb{P}^{\tau, \omega}, & \omega \in E_{t} ; \tag{3}\\ \mathbb{P}^{p}, \omega & \omega \notin E_{t} .\end{cases}
$$

Then clearly $\tilde{\mathbb{P}}^{t, \omega}$ satisfies (9.3.8) for all $\omega \in \Omega$. It remains to show that, for any fixed $t, \tilde{\mathbb{P}}^{t, \omega}$ is also an r.c.p.d. of \mathbb{P} and

$$
\begin{equation*}
\tilde{\mathbb{P}}^{t, \omega}=\mathbb{P}^{t, \omega}, \quad \mathbb{P}_{\text {-a.e. } \omega} . \tag{4}
\end{equation*}
$$

First, for $\omega \in E_{t}, \mathbb{P}^{\tau, \omega}$ is a probability measure on $\mathcal{F}_{T}^{\tau(\omega)}=\mathcal{F}_{T}^{t}$. Then by (4) we see that $\tilde{\mathbb{P}}^{t, \omega}$ is a probability measure on \mathcal{F}_{T}^{t} for all $\omega \in \Omega$, verifying Definition 9.3.1 (i).
Next, for any $\xi \in \mathbb{L}^{1}\left(\mathcal{F}_{T}, \mathbb{P}\right)$, note that

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}^{t, \omega}}\left[\xi^{t, \omega}\right] & =\mathbb{E}^{\mathbb{P}^{\tau, \omega}}\left[\xi^{t, \omega}\right] \mathbf{1}_{E_{t}}(\omega)+\mathbb{E}^{\mathbb{P}^{t, \omega}}\left[\xi^{t, \omega}\right] \mathbf{1}_{E_{t}^{c}}(\omega) \\
& =\mathbb{E}^{\mathbb{P}^{\tau, \omega}}\left[\xi^{\tau, \omega}\right] \mathbf{1}_{\{\tau=t\}}(\omega)+\mathbb{E}^{\mathbb{P}^{t, \omega}}\left[\xi^{t, \omega}\right] \mathbf{1}_{E_{t}^{c}}(\omega)
\end{aligned}
$$

Note that $\omega \mapsto \mathbb{E}^{\mathbb{P}^{T, \omega}}\left[\xi^{\tau, \omega}\right]$ is \mathcal{F}_{τ}-measurable, then by the definition of \mathcal{F}_{τ} we see that $\omega \mapsto \mathbb{E}^{\mathbb{P}^{\tau, \omega}}\left[\xi^{\tau, \omega}\right] \mathbf{1}_{\{\tau=t\}}(\omega)$ is \mathcal{F}_{t}-measurable. Now it is clear that $\omega \mapsto \mathbb{E}^{\tilde{\mathbb{P}}^{t, \omega}}\left[\xi^{t, \omega}\right]$ is also \mathcal{F}_{t}-measurable, verifying Definition 9.3.1 (ii).

Moreover, for any $\xi \in \mathbb{L}^{1}\left(\mathcal{F}_{T}, \mathbb{P}\right)$ and $\eta \in \mathbb{L}^{\infty}\left(\mathcal{F}_{t}, \mathbb{P}\right)$, we have

$$
\begin{aligned}
& \mathbb{E}^{\mathbb{P}}\left[\eta \mathbb{E}^{\tilde{\mathbb{P}}, \cdot}\left[\xi^{t, \cdot}\right]=\mathbb{E}^{\mathbb{P}}\left[\eta \mathbb{E}^{\mathbb{P}^{\text {P., }}}\left[\xi^{\tau, \cdot}\right] \mathbf{1}_{E_{t}}+\eta \mathbb{E}^{\mathbb{P}^{t, \cdot}}\left[\xi^{t, \cdot}\right] \mathbf{1}_{E_{t}^{c}}\right]\right. \\
& =\mathbb{E}^{\mathbb{P}}\left[\eta \mathbb{E}^{\mathbb{P}}\left[\xi \mid \mathcal{F}_{\tau}\right] \mathbf{1}_{E_{t}}+\eta \mathbb{E}^{\mathbb{P}}\left[\xi \mid \mathcal{F}_{t}\right] \mathbf{1}_{E_{t}^{c}}\right]=\mathbb{E}^{\mathbb{P}}\left[\mathbb{E}^{\mathbb{P}}\left[\eta \xi \mathbf{1}_{E_{t}} \mid \mathcal{F}_{\tau}\right]+\mathbb{E}^{\mathbb{P}}\left[\eta \xi \mathbf{1}_{E_{t}^{c}} \mid \mathcal{F}_{t}\right]\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[\eta \xi \mathbf{1}_{E_{t}}+\eta \xi \mathbf{1}_{E_{t}^{c}}\right]=\mathbb{E}^{\mathbb{P}}[\eta \xi]=\mathbb{E}^{\mathbb{P}}\left[\eta \mathbb{E}^{\mathbb{P}}\left[\xi \mid \mathcal{F}_{t}\right]\right] .
\end{aligned}
$$

This implies (9.3.7) for $\tilde{\mathbb{P}}^{t, \omega}$.
Finally, if $\mathbb{P}\left(E_{t}\right)=0$, then (4) holds true. We now consider the case that $\mathbb{P}\left(E_{t}\right)>0$. Recall (9.3.9) and denote

$$
\eta_{n}^{\tau}:=\mathbb{E}^{\mathbb{P}}\left[\xi_{n} \mid \mathcal{F}_{\tau}\right], \quad \eta_{n}^{t}:=\mathbb{E}^{\mathbb{P}}\left[\xi_{n} \mid \mathcal{F}_{t}\right] .
$$

It is clear that $\mathbb{P}\left(\left\{\eta_{n}^{\tau} \neq \eta_{n}^{t}\right\} \cap E_{t}\right)=0$ for all n, and thus

$$
\mathbb{P}\left(E_{t}^{\prime}\right)=0, \quad \text { where } \quad E_{t}^{\prime}:=\cup_{n}\left\{\eta_{n}^{\tau} \neq \eta_{n}^{t}\right\} \cap E_{t} .
$$

By (9.3.12), we have

$$
\mathbb{E}_{\tau}^{\omega}[\xi]=\mathbb{E}_{t}^{\omega}[\xi], \quad \forall \omega \in \Omega_{1} \cap\left(E_{t} \backslash E_{t}^{\prime}\right), \xi \in C_{b}^{0}(\Omega)
$$

Now following the arguments in Steps 1 and 2 we see that $\mathbb{P}^{\tau, \omega}=\mathbb{P}^{t, \omega}$ for all $\omega \in$ $\Omega_{2} \cap\left(E_{t} \backslash E_{t}^{\prime}\right)$. Combining with (4) we obtain $\tilde{\mathbb{P}}^{t, \omega}=\mathbb{P}^{t, \omega}$ for all $\omega \in \Omega_{2} \backslash E_{t}^{\prime}$, which implies (4) immediately.

- p. 241, Problem 9.6 .2 is wrong. Indeed, let $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ be an arbitrary probability space and $\tilde{\xi}$ a random variable bounded by 1 . Denote $\tilde{X}_{t}:=t \tilde{\xi}, \mathbb{P}:=\tilde{\mathbb{P}} \circ(\tilde{X})^{-1}$, and $\xi:=(-1) \vee X_{1} \wedge 1$. Then it is clear that $\mathbb{P} \in \mathcal{P}_{\infty}$ and $\xi \in C_{b}^{0}(\Omega)$. For any $t>0$, we have $\mathbb{E}^{\mathbb{P}}\left[\xi \mid \mathcal{F}_{t}\right]=\mathbb{E}^{\tilde{\mathbb{P}}}\left[\tilde{\xi} \mid \mathcal{F}_{t}^{\tilde{X}}\right]=\tilde{\xi}$, but $\mathbb{E}^{\mathbb{P}}\left[\xi \mid \mathcal{F}_{0}\right]=\mathbb{E}^{\tilde{\mathbb{P}}}\left[\tilde{\xi} \mid \mathcal{F}_{0}^{\tilde{X}}\right]=\mathbb{E}^{\tilde{\mathbb{P}}}[\tilde{\xi}]$. Then $\lim _{t \downarrow 0} \mathbb{E}^{\mathbb{P}}\left[\xi \mid \mathcal{F}_{t}\right] \neq \mathbb{E}^{\mathbb{P}}\left[\xi \mid \mathcal{F}_{0}\right]$ when $\tilde{\xi}$ is not a constant.

