- p. 14, Theorem 1.3.4 (ii): the two " X_n " there should be " X^n ".
- p. 15, Theorem 1.3.10 (ii), the last condition: $X_n \in \overline{\mathcal{H}}$.
- p. 67, (3.2.7): the last term should be " $\int_0^T |\Delta \sigma_t(X_t^1)|^2 dt$ ".
- p. 68, line -2: $|\beta_t^n \Delta X_t^n|^2$.
- p. 71, line -3: the last term should be "+ $\int_0^T |\Delta \sigma_t^n(X_t)|^2 dt$ ".
- p. 75, line -12: the term " $\langle X \rangle_t$ " should be " $\langle M \rangle_t$ ".
- p. 78, Problem 3.7.8 (iii): $\eta \in \mathbb{L}^2(\mathcal{F}_0, \mathbb{R}^{d_1})$.
- p. 81, (4.1.4): $\int_0^t \Gamma_s[\alpha_s ds + \cdots$
- p. 82, (4.2.5): the last term should be " $-2\int_t^T Y_s Z_s dB_s$ ".
- p. 83, line 5: the last term should be " $C \int_t^T [|Y_s|^2 + |Y_s Z_s|] ds$ ".
- p. 85, line (-5): in the term $2\int_t^T [\Delta Y_s^n[\cdots, \text{ the first "[" shouldn't be there."]}]$
- p. 86, line 4: in the first term in the right side, " ΔY_s^{n} " should be " ΔY_t^{n} ".
- p. 90, line 2-4: all the " I_p^2 " there should be " I_p^p ".
- p. 96, Problem 4.7.1, (4.7.1):

$$Y_t^i = \xi + \int_t^T \Big[\sum_{j=1}^2 [\alpha_s^{ij} Y_s^j + \beta_s^{ij} Z_s^j] + \gamma_s^i \Big] ds - \int_t^T Z_s^i dB_s, i = 1, 2.$$

• p. 104, (5.1.5): the signs in the right side should be changed:

$$Y_{s}^{t,x} = g(X_{T}^{t,x}) + \int_{s}^{T} f(r, X_{r}^{t,x}, Y_{r}^{t,x}, Z_{r}^{t,x}) dr - \int_{s}^{T} Z_{r}^{t,x} dB_{r};$$

$$\mathcal{Y}_{s}^{t,\eta} = g(\mathcal{X}_{T}^{t,\eta}) + \int_{s}^{T} f(r, \mathcal{X}_{r}^{t,\eta}, \mathcal{Y}_{r}^{t,\eta}, \mathcal{Z}_{r}^{t,\eta}) dr - \int_{s}^{T} \mathcal{Z}_{r}^{t,\eta} dB_{r}.$$

• p. 125, (5.5.13): the second \overline{Y} inside f should be \overline{Z} :

$$\bar{Y}_s = \varphi(\tau, X_\tau) + \int_s^\tau f(r, X_r, \bar{Y}_r, \bar{Z}_r) dr - \int_s^\tau \bar{Z}_r dB_r.$$

• p. 125, line -10: the \overline{X} inside σ should be X:

$$d\widehat{Y}_s = \left[\partial_t \varphi + \frac{1}{2}\partial_{xx}\varphi\sigma^2 + \partial_x\varphi b\right](s, X_s)ds + \partial_x\varphi\sigma(s, X_s)dB_s$$

• p. 125, line -3: there should be a negative sign in the right side:

$$d\Gamma_s = -\Gamma_s[\alpha_s ds + \beta_s dB_s], \quad \Gamma_t = 1.$$

• p. 125, line -1: a sign in the right side should be changed:

$$d(\Gamma_s \Delta Y_s) \ge \frac{c}{2} \Gamma_s ds + \Gamma_s [\Delta Z_s - \beta_s \Delta Y_s] dB_s.$$

• p. 150, line -4 and -3: First, there is a typo in the definition of K:

$$K_t := Y_0 - Y_t - \int_0^t [f_s^0 + h_s] ds + \int_0^t Z_s dB_s.$$

More seriously, the weak convergence of $K^n \to K$ is not sufficient to conclude that K is increasing in t, a.s. A rigorous argument is as follows.

First, by Mazur's lemma, there exist convex combination

$$\tilde{h}^n := \sum_{i \ge n} \alpha_i^n h^i, \quad \tilde{Z}^n := \sum_{i \ge n} \alpha_i^n Z^n$$

such that $(\tilde{h}^n, \tilde{Z}^n) \to (h, Z)$ strongly in \mathbb{L}^2 . Denote

$$\tilde{F}_t^n := \int_0^t [f_s^0 + \tilde{h}_s^n] ds, \ \tilde{M}_t^n := \int_0^t \tilde{Z}_s^n dB_s, \ F_t := \int_0^t [f_s^0 + h_s] ds, \ M_t := \int_0^t Z_s dB_s$$

Then, possibly along a subsequence, $(\tilde{F}^n - F)_T^* + (\tilde{M}^n - M)_T^* \to 0$, a.s. Denote

$$\tilde{Y}^n := \sum_{i \ge n} \alpha_i^n Y^i, \quad \tilde{K}^n := \sum_{i \ge n} \alpha_i^n K^i.$$
(1)

Then \tilde{K}^n is increasing in $t, \tilde{Y}^n \to Y_t, 0 \le t \le T$, a.s. Note that

$$\tilde{K}_t^n = \tilde{Y}_0^n - \tilde{Y}_t^n - \tilde{F}_t^n + \tilde{M}_t^n.$$
⁽²⁾

Then $\tilde{K}_t^n \to K_t$, $0 \le t \le T$, a.s. and thus K is also increasing in t, a.s.

- p. 207, line -2: the \mathbb{P} should be \mathbb{P}_0 .
- p. 229, Step 3 in the proof of Theorem 9.3.2: the current arguments use Problem 9.6.2, which unfortunately is wrong. A new argument is as follows.

Fix τ and a version of $\{\mathbb{P}^{\tau,\omega} : \omega \in \Omega\}$, $\{\mathbb{P}^{t,\omega} : \omega \in \Omega\}_{t \in [0,T]}$. Define

$$E_t := \{\tau = t\} \in \mathcal{F}_t, \quad \tilde{\mathbb{P}}^{t,\omega} := \begin{cases} \mathbb{P}^{\tau,\omega}, & \omega \in E_t; \\ \mathbb{P}^{t,\omega}, & \omega \notin E_t. \end{cases}$$
(3)

Then clearly $\tilde{\mathbb{P}}^{t,\omega}$ satisfies (9.3.8) for all $\omega \in \Omega$. It remains to show that, for any fixed $t, \tilde{\mathbb{P}}^{t,\omega}$ is also an r.c.p.d. of \mathbb{P} and

$$\tilde{\mathbb{P}}^{t,\omega} = \mathbb{P}^{t,\omega}, \quad \mathbb{P}\text{-a.e. } \omega.$$
(4)

First, for $\omega \in E_t$, $\mathbb{P}^{\tau,\omega}$ is a probability measure on $\mathcal{F}_T^{\tau(\omega)} = \mathcal{F}_T^t$. Then by (4) we see that $\tilde{\mathbb{P}}^{t,\omega}$ is a probability measure on \mathcal{F}_T^t for all $\omega \in \Omega$, verifying Definition 9.3.1 (i). Next, for any $\xi \in \mathbb{L}^1(\mathcal{F}_T, \mathbb{P})$, note that

$$\mathbb{E}^{\mathbb{P}^{t,\omega}}[\xi^{t,\omega}] = \mathbb{E}^{\mathbb{P}^{\tau,\omega}}[\xi^{t,\omega}]\mathbf{1}_{E_t}(\omega) + \mathbb{E}^{\mathbb{P}^{t,\omega}}[\xi^{t,\omega}]\mathbf{1}_{E_t^c}(\omega)$$
$$= \mathbb{E}^{\mathbb{P}^{\tau,\omega}}[\xi^{\tau,\omega}]\mathbf{1}_{\{\tau=t\}}(\omega) + \mathbb{E}^{\mathbb{P}^{t,\omega}}[\xi^{t,\omega}]\mathbf{1}_{E_t^c}(\omega)$$

Note that $\omega \mapsto \mathbb{E}^{\mathbb{P}^{\tau,\omega}}[\xi^{\tau,\omega}]$ is \mathcal{F}_{τ} -measurable, then by the definition of \mathcal{F}_{τ} we see that $\omega \mapsto \mathbb{E}^{\mathbb{P}^{\tau,\omega}}[\xi^{\tau,\omega}]\mathbf{1}_{\{\tau=t\}}(\omega)$ is \mathcal{F}_t -measurable. Now it is clear that $\omega \mapsto \mathbb{E}^{\mathbb{P}^{t,\omega}}[\xi^{t,\omega}]$ is also \mathcal{F}_t -measurable, verifying Definition 9.3.1 (ii).

Moreover, for any $\xi \in \mathbb{L}^1(\mathcal{F}_T, \mathbb{P})$ and $\eta \in \mathbb{L}^\infty(\mathcal{F}_t, \mathbb{P})$, we have

$$\mathbb{E}^{\mathbb{P}}[\eta\mathbb{E}^{\mathbb{P}^{t,\cdot}}[\xi^{t,\cdot}] = \mathbb{E}^{\mathbb{P}}\left[\eta\mathbb{E}^{\mathbb{P}^{\tau,\cdot}}[\xi^{\tau,\cdot}]\mathbf{1}_{E_{t}} + \eta\mathbb{E}^{\mathbb{P}^{t,\cdot}}[\xi^{t,\cdot}]\mathbf{1}_{E_{t}^{c}}\right] \\ = \mathbb{E}^{\mathbb{P}}\left[\eta\mathbb{E}^{\mathbb{P}}[\xi|\mathcal{F}_{\tau}]\mathbf{1}_{E_{t}} + \eta\mathbb{E}^{\mathbb{P}}[\xi|\mathcal{F}_{t}]\mathbf{1}_{E_{t}^{c}}\right] = \mathbb{E}^{\mathbb{P}}\left[\mathbb{E}^{\mathbb{P}}[\eta\xi\mathbf{1}_{E_{t}}|\mathcal{F}_{\tau}] + \mathbb{E}^{\mathbb{P}}[\eta\xi\mathbf{1}_{E_{t}^{c}}|\mathcal{F}_{t}]\right] \\ = \mathbb{E}^{\mathbb{P}}\left[\eta\xi\mathbf{1}_{E_{t}} + \eta\xi\mathbf{1}_{E_{t}^{c}}\right] = \mathbb{E}^{\mathbb{P}}[\eta\xi] = \mathbb{E}^{\mathbb{P}}\left[\eta\mathbb{E}^{\mathbb{P}}[\xi|\mathcal{F}_{t}]\right].$$

This implies (9.3.7) for $\tilde{\mathbb{P}}^{t,\omega}$.

Finally, if $\mathbb{P}(E_t) = 0$, then (4) holds true. We now consider the case that $\mathbb{P}(E_t) > 0$. Recall (9.3.9) and denote

$$\eta_n^{\tau} := \mathbb{E}^{\mathbb{P}}[\xi_n | \mathcal{F}_{\tau}], \quad \eta_n^t := \mathbb{E}^{\mathbb{P}}[\xi_n | \mathcal{F}_t].$$

It is clear that $\mathbb{P}\left(\{\eta_n^{\tau} \neq \eta_n^t\} \cap E_t\right) = 0$ for all n, and thus

$$\mathbb{P}(E'_t) = 0$$
, where $E'_t := \bigcup_n \{\eta_n^\tau \neq \eta_n^t\} \cap E_t$.

By (9.3.12), we have

$$\mathbb{E}_{\tau}^{\omega}[\xi] = \mathbb{E}_{t}^{\omega}[\xi], \quad \forall \omega \in \Omega_{1} \cap (E_{t} \setminus E_{t}'), \ \xi \in C_{b}^{0}(\Omega).$$

Now following the arguments in Steps 1 and 2 we see that $\mathbb{P}^{\tau,\omega} = \mathbb{P}^{t,\omega}$ for all $\omega \in \Omega_2 \cap (E_t \setminus E'_t)$. Combining with (4) we obtain $\tilde{\mathbb{P}}^{t,\omega} = \mathbb{P}^{t,\omega}$ for all $\omega \in \Omega_2 \setminus E'_t$, which implies (4) immediately.

• p. 241, Problem 9.6.2 is wrong. Indeed, let $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ be an arbitrary probability space and $\tilde{\xi}$ a random variable bounded by 1. Denote $\tilde{X}_t := t\tilde{\xi}$, $\mathbb{P} := \tilde{\mathbb{P}} \circ (\tilde{X})^{-1}$, and $\xi := (-1) \lor X_1 \land 1$. Then it is clear that $\mathbb{P} \in \mathcal{P}_{\infty}$ and $\xi \in C_b^0(\Omega)$. For any t > 0, we have $\mathbb{E}^{\mathbb{P}}[\xi|\mathcal{F}_t] = \mathbb{E}^{\tilde{\mathbb{P}}}[\tilde{\xi}|\mathcal{F}_t^{\tilde{X}}] = \tilde{\xi}$, but $\mathbb{E}^{\mathbb{P}}[\xi|\mathcal{F}_0] = \mathbb{E}^{\tilde{\mathbb{P}}}[\tilde{\xi}|\mathcal{F}_0^{\tilde{X}}] = \mathbb{E}^{\tilde{\mathbb{P}}}[\tilde{\xi}]$. Then $\lim_{t\downarrow 0} \mathbb{E}^{\mathbb{P}}[\xi|\mathcal{F}_t] \neq \mathbb{E}^{\mathbb{P}}[\xi|\mathcal{F}_0]$ when $\tilde{\xi}$ is not a constant.