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Wasserstein Derivatives
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Abstract

Let F : L2 (Q,Rﬂ — R be a law invariant and continuously Fréchet differentiable
mapping. Based on Lions [4], Cardaliaguet [I] (Theorem 6.2 and 6.5) proved that:

DF(&) = 9(), (1)

where g : R — R is a deterministic function which depends only on the law of £. See
also Carmona & Delarue [2] Section 5.2 and Gangbo & Tudorascu [3]. In this short
note we provide an elementary proof for this well known result. This note is part of our

accompanying paper [5], which deals with a more general situation.

Let P2(R) denote the set of square integrable probability measures on R, and consider a
mapping f : P2(R) — R. As in standard literature, we lift f to a function F': L2(Q,R) — R
by F(&) := f(L¢), where (Q, F,P) is an atomless Polish probability space and L¢ denotes
the law of &. If F' is Frechét differentiable, then DF (&) can be identified as an element of
L2(Q,R):

E[DF(£)n] = lim Fle+ 6? — F(g), for all n € L*(Q, R). (2)

e—0

We start with the simple case that £ is discrete. Let d, denote the Dirac measure of x.

Proposition 1 Assume & is discrete: P(§ = x;) = p;, i > 1. If F' is Fréchet differentiable
at &, then ([0)) holds with

g($l) — lim f(ZJ;ézp] j p +E) f(Z]zl Dy g), i> 1 (3)
e—0 EpP;
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!The space R can be replaced with general R?. We assume d = 1 here for simplicity.
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To prove the proposition, we need the following result.

Lemma 2 Let X € L2(Q,R). Assume A € F with P(A) > 0 satisfies
E[X14,] =E[X14,], forall A;, Ay C A such that P(A;) = P(As). (4)
Then X is a constant, P-a.s. in A.

Proof This result is elementary, we nevertheless provide a proof for completeness.
Assume the result is not true. Denote ¢ := E][I;?&)A] and A :={X <c}NA, Ay ={X >
c}NA. Then P(Ay) > 0, P(A3) > 0. Assume without loss of generality that P(A;) < P(As).
Since (2, F,P) is atomless, there is a random variable U with uniform distribution on [0, 1].
Denote Ag ; := A2N{U < z}, x € [0,1]. Clearly there exists x such that P(Asg 5,) = P(A;

).
Apply @) on A; and A ;, we obtain the desired contradiction. [ |

Remark 3 Lemma [2l may not hold if (2, F,P) has atoms. Indeed, consider €2 := {wq,ws}
with P(w;) = %,]P’(wg) = % Set A := Q and X is an arbitrary random variable. The (@)
holds true trivially because P(A;) # P(A2) whenever A; # As. However, X may not be a

constant. [

Proof of Proposition Il Fix ani > 1. For an arbitrary A; C A := {& = 2;}, set n:= 14,.
Note that, for any € > 0, we have

ﬁ&—l—sn = ij‘sxj + ]P)(Al)éxi-i-a + [pi - ]P)(Al)]él‘iv
J#i
which depends only on £L¢ and P(A;). By (@),

E[DF(E)1a,] = lim F(324iPide; + P(A1)de, e + [pi — P(A1)]02;) — F(X 51 pjdrj)‘ 5)

e—0 IS

In particular, E[DF(&)IAI] depends only on P(A;) for A; C {{ = z;}. Applying Lemma
2 we see that DF(§) is a constant, P-a.s. on {{ = x;}. Now set Ay := {{ = x;} in (@), we
obtain (3]) immediately. [ |

We now consider the general case.

Theorem 4 If F is continuously Fréchet differentiable, then () holds with g depending

only on L¢ but not on the particular choice of €.



Proof For each n > 1, denote 2! :=i2™",i € Z, and &, := Y oo T Lzn<ecyr, 3. Since
&, is discrete, by Proposition [l we have DF(&,) = gn(§n) = gn(&), where g, is defined
on {z',i € Z} by @) (with g,(z]) := 0 when P(§, = z}') = 0) and g, (z) := gn(2]) for
z € [z, x ). Clearly lim, o E[|&, — £[?] = 0. Then by the continuous differentiability of
F we see that lim,_,oo E[|gn(€) — DF(£)[?] = 0. Thus, there exists a subsequence {ny }r>1
such that gn, (£) — DF(£), P-a.s. Denote K := {x : limj_,00 G, (z) = lim,_, o Gn, (z)}, and
g(z) :=limg_y00 Gn, (z)1x (). Then P(§ € K) =1 and DF(§) = g(&), P-a.s.

Moreover, let £ be another random variable such that Lg = L¢. Define ), similarly.
Then DF(E]) = gn(§') for the same function g,. Note that P({’ € K) = P({ € K) = 1,
then limy_,o0 g, (§') = g(¢'), P-a.s. On the other hand, DF(E), ) — DF(¢') in L?. So
DF(&') = g(¢'), and thus g does not depend on the choice of . [ |

Remark 5 One may also write DF(§) = g(L¢, &), where g : Po(R) x R — R. When DF is
uniformly continuous, one may easily construct g jointly measurable in (u, ) € P2(R) x R.
One may also extend the result to the case that I is a function of processes. We leave the
details to [5]. [ |
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