An Elementary Proof for the Structure of Wasserstein Derivatives

Cong Wu* and Jianfeng Zhang ${ }^{\dagger}$

Abstract

Let $F: \mathbb{L}^{2}(\Omega, \mathbb{R})^{1} \rightarrow \mathbb{R}$ be a law invariant and continuously Fréchet differentiable mapping. Based on Lions [4, Cardaliaguet [1] (Theorem 6.2 and 6.5) proved that: $$
\begin{equation*} D F(\xi)=g(\xi), \tag{1} \end{equation*}
$$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a deterministic function which depends only on the law of ξ. See also Carmona \& Delarue [2] Section 5.2 and Gangbo \& Tudorascu [3]. In this short note we provide an elementary proof for this well known result. This note is part of our accompanying paper [5] which deals with a more general situation.

Let $\mathcal{P}_{2}(\mathbb{R})$ denote the set of square integrable probability measures on \mathbb{R}, and consider a mapping $f: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$. As in standard literature, we lift f to a function $F: \mathbb{L}^{2}(\Omega, \mathbb{R}) \rightarrow \mathbb{R}$ by $F(\xi):=f\left(\mathcal{L}_{\xi}\right)$, where $(\Omega, \mathcal{F}, \mathbb{P})$ is an atomless Polish probability space and \mathcal{L}_{ξ} denotes the law of ξ. If F is Frechét differentiable, then $D F(\xi)$ can be identified as an element of $\mathbb{L}^{2}(\Omega, \mathbb{R})$:

$$
\begin{equation*}
\mathbb{E}[D F(\xi) \eta]=\lim _{\varepsilon \rightarrow 0} \frac{F(\xi+\varepsilon \eta)-F(\xi)}{\varepsilon}, \quad \text { for all } \eta \in \mathbb{L}^{2}(\Omega, \mathbb{R}) \tag{2}
\end{equation*}
$$

We start with the simple case that ξ is discrete. Let δ_{x} denote the Dirac measure of x.
Proposition 1 Assume ξ is discrete: $\mathbb{P}\left(\xi=x_{i}\right)=p_{i}, i \geq 1$. If F is Fréchet differentiable at ξ, then (1) holds with

$$
\begin{equation*}
g\left(x_{i}\right):=\lim _{\varepsilon \rightarrow 0} \frac{f\left(\sum_{j \neq i} p_{j} \delta_{x_{j}}+p_{i} \delta_{x_{i}+\varepsilon}\right)-f\left(\sum_{j \geq 1} p_{j} \delta_{x_{j}}\right)}{\varepsilon p_{i}}, \quad i \geq 1 . \tag{3}
\end{equation*}
$$

[^0]To prove the proposition, we need the following result.
Lemma 2 Let $X \in \mathbb{L}^{2}(\Omega, \mathbb{R})$. Assume $A \in \mathcal{F}$ with $\mathbb{P}(A)>0$ satisfies

$$
\begin{equation*}
\mathbb{E}\left[X \mathbf{1}_{A_{1}}\right]=\mathbb{E}\left[X \mathbf{1}_{A_{2}}\right], \quad \text { for all } A_{1}, A_{2} \subset A \text { such that } \mathbb{P}\left(A_{1}\right)=\mathbb{P}\left(A_{2}\right) \tag{4}
\end{equation*}
$$

Then X is a constant, \mathbb{P}-a.s. in A.
Proof This result is elementary, we nevertheless provide a proof for completeness.
Assume the result is not true. Denote $c:=\frac{\mathbb{E}\left[X 1_{A}\right]}{\mathbb{P}(A)}$ and $A_{1}:=\{X<c\} \cap A, A_{2}:=\{X>$ $c\} \cap A$. Then $\mathbb{P}\left(A_{1}\right)>0, \mathbb{P}\left(A_{2}\right)>0$. Assume without loss of generality that $\mathbb{P}\left(A_{1}\right) \leq \mathbb{P}\left(A_{2}\right)$. Since $(\Omega, \mathcal{F}, \mathbb{P})$ is atomless, there is a random variable U with uniform distribution on $[0,1]$. Denote $A_{2, x}:=A_{2} \cap\{U \leq x\}, x \in[0,1]$. Clearly there exists x_{0} such that $\mathbb{P}\left(A_{2, x_{0}}\right)=\mathbb{P}\left(A_{1}\right)$. Apply (4) on A_{1} and $A_{2, x_{0}}$ we obtain the desired contradiction.

Remark 3 Lemma 2 may not hold if $(\Omega, \mathcal{F}, \mathbb{P})$ has atoms. Indeed, consider $\Omega:=\left\{\omega_{1}, \omega_{2}\right\}$ with $\mathbb{P}\left(\omega_{1}\right)=\frac{1}{3}, \mathbb{P}\left(\omega_{2}\right)=\frac{2}{3}$. Set $A:=\Omega$ and X is an arbitrary random variable. The (4) holds true trivially because $\mathbb{P}\left(A_{1}\right) \neq \mathbb{P}\left(A_{2}\right)$ whenever $A_{1} \neq A_{2}$. However, X may not be a constant.

Proof of Proposition 1, Fix an $i \geq 1$. For an arbitrary $A_{1} \subset A:=\left\{\xi=x_{i}\right\}$, set $\eta:=\mathbf{1}_{A_{1}}$. Note that, for any $\varepsilon>0$, we have

$$
\mathcal{L}_{\xi+\varepsilon \eta}=\sum_{j \neq i} p_{j} \delta_{x_{j}}+\mathbb{P}\left(A_{1}\right) \delta_{x_{i}+\varepsilon}+\left[p_{i}-\mathbb{P}\left(A_{1}\right)\right] \delta_{x_{i}},
$$

which depends only on \mathcal{L}_{ξ} and $\mathbb{P}\left(A_{1}\right)$. By (2),

$$
\begin{equation*}
\mathbb{E}\left[D F(\xi) \mathbf{1}_{A_{1}}\right]=\lim _{\varepsilon \rightarrow 0} \frac{f\left(\sum_{j \neq i} p_{j} \delta_{x_{j}}+\mathbb{P}\left(A_{1}\right) \delta_{x_{i}+\varepsilon}+\left[p_{i}-\mathbb{P}\left(A_{1}\right)\right] \delta_{x_{i}}\right)-f\left(\sum_{j \geq 1} p_{j} \delta_{x_{j}}\right)}{\varepsilon} \tag{5}
\end{equation*}
$$

In particular, $\mathbb{E}\left[D F(\xi) \mathbf{1}_{A_{1}}\right]$ depends only on $\mathbb{P}\left(A_{1}\right)$ for $A_{1} \subset\left\{\xi=x_{i}\right\}$. Applying Lemma 2. we see that $D F(\xi)$ is a constant, \mathbb{P}-a.s. on $\left\{\xi=x_{i}\right\}$. Now set $A_{1}:=\left\{\xi=x_{i}\right\}$ in (5), we obtain (3) immediately.

We now consider the general case.

Theorem 4 If F is continuously Fréchet differentiable, then (11) holds with g depending only on \mathcal{L}_{ξ} but not on the particular choice of ξ.

Proof For each $n \geq 1$, denote $x_{i}^{n}:=i 2^{-n}, i \in \mathbb{Z}$, and $\xi_{n}:=\sum_{i=-\infty}^{\infty} x_{i}^{n} \mathbf{1}_{\left\{x_{i}^{n} \leq \xi<x_{i+1}^{n}\right\}}$. Since ξ_{n} is discrete, by Proposition $\mathbb{1}$ we have $\operatorname{DF}\left(\xi_{n}\right)=g_{n}\left(\xi_{n}\right)=\tilde{g}_{n}(\xi)$, where g_{n} is defined on $\left\{x_{i}^{n}, i \in \mathbb{Z}\right\}$ by (3) (with $g_{n}\left(x_{i}^{n}\right):=0$ when $\mathbb{P}\left(\xi_{n}=x_{i}^{n}\right)=0$) and $\tilde{g}_{n}(x):=g_{n}\left(x_{i}^{n}\right)$ for $x \in\left[x_{i}^{n}, x_{i+1}^{n}\right)$. Clearly $\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|\xi_{n}-\xi\right|^{2}\right]=0$. Then by the continuous differentiability of F we see that $\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|\tilde{g}_{n}(\xi)-D F(\xi)\right|^{2}\right]=0$. Thus, there exists a subsequence $\left\{n_{k}\right\}_{k \geq 1}$ such that $\tilde{g}_{n_{k}}(\xi) \rightarrow D F(\xi), \mathbb{P}$-a.s. Denote $K:=\left\{x: \overline{\lim }_{k \rightarrow \infty} \tilde{g}_{n_{k}}(x)=\underline{\lim }_{k \rightarrow \infty} \tilde{g}_{n_{k}}(x)\right\}$, and $g(x):=\lim _{k \rightarrow \infty} \tilde{g}_{n_{k}}(x) \mathbf{1}_{K}(x)$. Then $\mathbb{P}(\xi \in K)=1$ and $D F(\xi)=g(\xi), \mathbb{P}$-a.s.

Moreover, let ξ^{\prime} be another random variable such that $\mathcal{L}_{\xi^{\prime}}=\mathcal{L}_{\xi}$. Define ξ_{n}^{\prime} similarly. Then $D F\left(\xi_{n}^{\prime}\right)=\tilde{g}_{n}\left(\xi^{\prime}\right)$ for the same function \tilde{g}_{n}. Note that $\mathbb{P}\left(\xi^{\prime} \in K\right)=\mathbb{P}(\xi \in K)=1$, then $\lim _{k \rightarrow \infty} \tilde{g}_{n_{k}}\left(\xi^{\prime}\right)=g\left(\xi^{\prime}\right), \mathbb{P}$-a.s. On the other hand, $D F\left(\xi_{n_{k}}^{\prime}\right) \rightarrow D F\left(\xi^{\prime}\right)$ in \mathbb{L}^{2}. So $D F\left(\xi^{\prime}\right)=g\left(\xi^{\prime}\right)$, and thus g does not depend on the choice of ξ.

Remark 5 One may also write $D F(\xi)=g\left(\mathcal{L}_{\xi}, \xi\right)$, where $g: \mathcal{P}_{2}(\mathbb{R}) \times \mathbb{R} \rightarrow \mathbb{R}$. When $D F$ is uniformly continuous, one may easily construct g jointly measurable in $(\mu, x) \in \mathcal{P}_{2}(\mathbb{R}) \times \mathbb{R}$. One may also extend the result to the case that F is a function of processes. We leave the details to [5].

References

[1] Cardaliaguet P. (2013), Notes on Mean Field Games (from P.-L. Lions lectures at College de France), preprint, www.ceremade.dauphine.fr/~cardalia/MFG100629.pdf.
[2] Carmona, R. and Delarue, F. (2017) Probabilistic Theory of Mean Field Games I Mean Field FBSDEs, Control, and Games, Springer Verlag, 2017.
[3] Gangbo, W. and Tudorascu, A. On differentiability in the Wasserstein space and wellposedness for Hamilton-Jacobi equations. Technical report, 2017.
[4] Lions, P.-L. Cours au Collége de France. www.college-de-france.fr.
[5] Wu, C. and Zhang, J. Viscosity Solutions to Parabolic Master Equations and McKeanVlasov SDEs with Closed-loop Controls, preprint, arXiv:1805.02639.

[^0]: *Department of Mathematics, University of Southern California, Los Angeles, CA 90089. E-mail: congw@usc.edu.
 ${ }^{\dagger}$ Department of Mathematics, University of Southern California, Los Angeles, CA 90089. E-mail: jianfenz@usc.edu. This author is supported in part by NSF grant \#1413717.
 ${ }^{1}$ The space \mathbb{R} can be replaced with general \mathbb{R}^{d}. We assume $d=1$ here for simplicity.

