
Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2022, Vol. 58, No. 2, 603–638
https://doi.org/10.1214/21-AIHP1158
© Association des Publications de l’Institut Henri Poincaré, 2022

Path dependent Feynman–Kac formula for forward backward
stochastic Volterra integral equations

Hanxiao Wang1,a, Jiongmin Yong2,b and Jianfeng Zhang3,c

1Department of Mathematics, National University of Singapore, Singapore 119076, Singapore. amathxw@nus.edu.sg
2Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA. bjiongmin.yong@ucf.edu

3Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA. cjianfenz@usc.edu

Received 13 April 2020; revised 23 January 2021; accepted 2 February 2021

Abstract. This paper is concerned with the relationship between forward–backward stochastic Volterra integral equations (FBSVIEs,
for short) and a system of (nonlocal in time) path dependent partial differential equations (PPDEs, for short). Due to the nature of
Volterra type equations, the usual flow property (or semigroup property) does not hold. Inspired by Viens–Zhang (Ann. Appl. Probab.
29 (2019) 3489–3540) and Wang–Yong (Stochastic Process. Appl. 129 (2019) 4926–4964), auxiliary processes are introduced so that
the flow property of adapted solutions to the FBSVIEs is recovered in a suitable sense, and thus the functional Itô formula is applicable.
Having achieved this stage, a natural PPDE is found so that the adapted solution of the backward SVIEs admits a representation in terms
of the solution to the forward SVIE via the solution to a PPDE. On the other hand, the solution of the PPDE admits a representation in
terms of adapted solution to the (path dependent) FBSVIE, which is referred to as a Feynman–Kac formula. This leads to the existence
and uniqueness of a classical solution to the PPDE, under smoothness conditions on the coefficients of the FBSVIEs. Further, when
the smoothness conditions are relaxed with the backward component of FBSVIE being one-dimensional, a new (and suitable) notion
of viscosity solution is introduced for the PPDE, for which a comparison principle of the viscosity solutions is established, leading
to the uniqueness of the viscosity solution. Finally, some results have been extended to coupled FBSVIEs and type-II BSVIEs, and a
representation formula for the path derivatives of PPDE solution is obtained by a closer investigation of linear FBSVIEs.

Résumé. Cet article étudie les relations entre les équations intégrales de Volterra forward-backward stochastiques (FBSVIE) et un
système d’équations aux dérivées partielles, non locales en temps, dépendant des trajectoires (PPDE). Du fait de la nature des équations
de type Volterra, la propriété habituelle de flot, ou de semigroupe, n’est pas vérifiée. Influencés par les travaux de Viens–Zhang
(Ann. Appl. Probab. 29 (2019) 3489–3540) et Wang–Yong (Stochastic Process. Appl. 129 (2019) 4926–4964), nous introduisons des
processus auxiliaires tels que la propriété de flot de solutions adaptées aux FBSVIE peut être retrouvée en un sens approprié, de sorte
que la formule d’Itô fonctionnelle peut être appliquée. Puis, nous exhibons une PPDE naturelle telle que la solution adaptée de la SVIE
backward admet une représentation en termes de la solution de la SVIE forward via la solution de cette PPDE. Par ailleurs, la solution
de la PPDE admet une représentation en termes de la solution à la FBSVIE (dépendant de la trajectoire), ce que nous interprétons
comme une formule de Feynman–Kac. Ceci conduit à l’existence et l’unicité d’une solution classique à la PPDE, sous des conditions
de régularité pour les coefficients de la FBSVIE. De plus, sous l’hypothèse que la composante backward de la FBSVIE est de dimension
1, on peut affaiblir ces conditions de régularité en introduisant une nouvelle notion de solution de viscosité pour la PPDE, et établir un
principe de comparaison de ces solutions qui implique leur unicité. Enfin, certains résultats sont étendus à des FBSVIE couplées et des
BSVIE de type II, et une formule de représentation des dérivées des trajectoires des solutions de la PPDE est obtenue par un examen
approfondi des FBSVIE linéaires.
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1. Introduction

Let (�,F ,F,P) be a complete filtered probability space, W a d-dimensional standard Brownian motion, F ≡ {Ft }t≥0

the natural filtration generated by W augmented by all the P-null sets in F and T > 0 a fixed time horizon. Consider the
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following (decoupled) forward–backward stochastic differential equation (FBSDE, for short): given initial data (t, x) ∈
[0, T ] ×R

n,{
X

t,x
s = x + ∫ s

t
b(r,X

t,x
r ) dr + ∫ s

t
σ (r,X

t,x
r ) dWr,

Y
t,x
s = g(X

t,x
T )+ ∫ T

s
f (r,X

t,x
r , Y

t,x
r ,Z

t,x
r ) dr − ∫ T

t
Z

t,x
r dWr,

s ∈ [t, T ], (1.1)

where the coefficients b, σ , f , g are deterministic functions. Such an FBSDE is associated with the following terminal
value problem of a partial differential equation (PDE, for short):⎧⎪⎨⎪⎩

∂tu(t, x)+ 1
2 tr[∂2

xxu(t, x)σ (t, x)σ�(t, x)] + ∂xu(t, x)b(t, x)

+ f (t, x,u(t, x), ∂xu(t, x)σ (t, x))= 0, (t, x) ∈ [0, T ] ×R
n,

u(T , x)= g(x), x ∈R
n.

(1.2)

By the seminal works Peng [48] and Pardoux–Peng [47], we have the nonlinear Feynman–Kac formula, representing the
viscosity solution to PDE (1.2) by the adapted solution to FBSDE (1.1):

u(t, x)= Y
t,x
t , (t, x) ∈ [0, T ] ×R

n, (1.3)

and on the other hand the adapted solution (Y t,x,Zt,x) to the backward stochastic differential equation (BSDE, for short),
namely the second equation in (1.1), has the following representation formula via the solution to PDE (1.2):

Y t,x
s = u

(
s,Xt,x

s

)
, Zt,x

s = ∂xu
(
s,Xt,x

s

)
σ
(
s,Xt,x

s

)
, s ∈ [t, T ], (1.4)

provided u is smooth. The key for this PDE approach is the flow property, also called semigroup property and can be
viewed as a type of time consistency, of the FBSDE. That is,

Xt,x
r =Xs,X

t,x
s

r , Y t,x
s = Y r,u(r,·);t,x

s , Zt,x
s = Zr,u(r,·);t,x

s , t ≤ s ≤ r ≤ T , (1.5)

where (Y r,u(r,·);t,x ,Zr,u(r,·);t,x) is the solution to the BSDE on [t, r] with terminal condition Yr = u(r,X
t,x
r ). We remark

that this approach remains effective for coupled FBSDEs (namely b, σ may depend on (Y,Z)); see Ma–Protter–Yong
[44], and even for more general situations, where u plays the role of the decoupling field for the forward–backward
equations.

In this paper, our objective is to consider the following decoupled forward–backward stochastic Volterra integral
equation (FBSVIE, for short) with solution triple (Xt , Yt ,Z

t
r ), 0≤ t ≤ r ≤ T :

Xt = xt +
∫ t

0
b(t, r,Xr) dr +

∫ t

0
σ(t, r,Xr) dWr,

Yt = g(t,XT )+
∫ T

t

f
(
t, r,Xr,Yr ,Z

t
r

)
dr −

∫ T

t

Zt
r dWr,

t ∈ [0, T ]. (1.6)

Here, the coefficients b, σ , f involve two time variables; the initial condition is a continuous path x ∈ C([0, T ];Rn);
and the terminal condition g depends on t as well. A special case of the forward SVIE is the fractional Brownian mo-
tion, where x = 0, b = 0, σ = K(t, r) for some deterministic kernel K . FSVIE has received very strong attention in
recent years due to its applications in rough volatility models; see, for example, Comte–Renault [10], Gatheral–Jaisson–
Rosenbaum [30], El Euch–Rosenbaum [26,27] and Viens–Zhang [60]. On the other hand, BSVIE has become a popular
tool for studying many problems in mathematical finance. For examples, Di Persio [18] on stochastic differential utility,
Yong [69], Wang–Yong [64] and Agram [2] on dynamic risk measures, Kromer–Overbeck [38] on dynamic capital al-
locations, Wang–Sun–Yong [62] on equilibrium recursive utility and equilibrium dynamic risk measures, to mention a
few. More interestingly, in recent years, time-inconsistent problems have attracted many researchers’ attention. Among
others, the time-inconsistency could be caused by the time-preferences of the decision-makers, which can be described by
nonexponential discounting. See the seminal paper by Strotz [59], and early follow-up works of Pollak [53] and Laibson
[39]. For the recent works of time-inconsistent problems relevant to the nonexponential discounting, we mention Karp
[37], Ekeland–Lazrak [22], Yong [71], Wei–Yong–Yu [67] and Hernandez–Possamai [34]. It is worthy of pointing out
that the most suitable dynamic recursive cost functional allowing nonexponential discounting should be described by a
BSVIE, as indicated in Wang–Yong [63]. We remark that the BSVIE in (1.6) is also called type-I BSVIE in the literature.
A more general type-II BSVIE, where f depends not only on Zt

r , but also on Zr
t , appears naturally as an adjoint equation

when one studies stochastic maximum principle for controlled FSVIE; see Yong [68,70].
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Our goal of this paper is to extend the PDE approach to FBSVIEs. This on one hand will help us to understand the
structure of FBSVIEs, and on the other hand is helpful for numerical computation of these equations. As mentioned,
the PDE approach is based on the flow property of the equations. Unfortunately, due to the two time variable structure,
neither FSVIE nor BSVIE satisfies the flow property in the standard sense: for 0≤ t < s ≤ T ,

Xs �=Xt +
∫ s

t

b(s, r,Xr) dr +
∫ s

t

σ (s, r,Xr) dWr, Yt �= Ys +
∫ s

t

f
(
t, r,Xr,Yr ,Z

t
r

)
dr −

∫ s

t

Zt
r dWr.

Our work is built on Viens–Zhang [60], Yong [72] and Wang–Yong [65]. By introducing auxiliary two-time variable
processes X̃s

t , Ỹ t
s (see (2.6) and (2.11) below), [60] recovers the flow property of the FSVIE in certain sense, and [65,72]

recover the flow property of the BSVIE. We remark that in [60] the backward equation is a standard BSDE, while in
[65,72] the forward equation is a standard SDE. Putting together allows us to adopt the PDE approach to FBSVIE (1.6).
We note that the associated PDE will intrinsically depend on the paths of X̃

[t,T ]
t , and thus it becomes a path dependent

PDE (PPDE, for short). Then, with a little extra effort, we can actually handle path dependent FBSVIEs, namely b, σ ,
f , g depend on the paths of X, as we will do in the paper. We shall emphasize though, even for the state dependent case
(1.6), our results in the paper are new.

To be precise, we shall introduce a two-time variable function U(t, s,x); 0 ≤ t ≤ s ≤ T , x ∈ C([0, T ];Rn), which
satisfies the PPDE with terminal condition U(t, T ,x)= g(t,x):

∂sU(t, s,x)+ 1

2

〈
∂2

xxU(t, s,x),
(
σ

s,x
[s,T ], σ

s,x
[s,T ]

)〉+ 〈
∂xU(t, s,x), b

s,x
[s,T ]

〉
+ f

(
t, s,x,U(s, s,x),

〈
∂xU(t, s,x), σ

s,x
[s,T ]

〉)= 0. (1.7)

Here, ∂xU , ∂2
xxU are the first- order and second-order Fréchet derivatives with respect to the perturbation of x[s,T ], and

for ϕ = b,σ , ϕ
s,x
[s,T ] refers to the path {ϕ(r, s,x)}r∈[s,T ]. Then we have the following relationship, which extends (1.4):

denoting X̂t
r :=Xr1[0,t)(r)+ X̃r

t 1[t,T ](r),

Yt =U
(
t, t, X̂t

)
, Zt

s =
〈
∂xU

(
t, s, X̂s

)
, σ

s,X̂s

[s,T ]
〉
, and Ỹ t

s =U
(
t, s, X̂s

)
, (1.8)

and similarly we can extend (1.3) to this case (see (3.6) below), and thus establish the Feyman–Kac formula for (1.7).
Besides the key flow property, a crucial tool in this analysis is the functional Itô formula, initiated by Dupire [21] in
standard SDE setting and extended to the SVIE setting by [60]. The PPDE (1.7) has several important features:

• The state variable x has a continuous path on [0, T ], and thus is infinite dimensional.
• U depends on two time variables (t, s). In particular, the equation at (t, s,x) involves the value U(s, s,x), and thus is

nonlocal in the first time variable t .
• Alternatively, noting that (1.7) does not involve derivatives with respect to the first time variable t , then we may

view t as a parameter instead of a variable. That is, we may view (1.7) as a system of PPDEs with parameter t

and solution {U(t, ·, ·)}t∈[0,T ]. Then this is an (uncountably) infinite dimensional system of PPDEs, which are self-
interacted through the diagonal term U(s, s,x).

We next prove the existence of classical solutions to PPDE (1.7), provided the coefficients are smooth enough in an
appropriate sense, and thus establish the above connection between PPDE (1.7) and FBSVIE (1.6) rigorously. We remark
that Peng–Wang [51] obtained the classical solution in the form u(t,x[0,t]) for a PPDE corresponding to PDE (1.2),
associated with the path dependent version of the FBSDE (1.1). Our result generalizes [51] in several aspects. First, in
[51] u(t,x[0,t]) depends on the path only up to t , in particular the path derivative ∂xu there involves only the perturbation
of xt , and thus is actually a finite dimensional derivative, while our path derivative is indeed a Fréchet derivative. Next, u is
finite dimensional, while as mentioned (1.7) can be viewed as an infinite dimensional system. Moreover, when restricted
to the state dependent case, the PPDE in [51] reduces back to the standard PDE (1.2), but (1.7) has the same features
that both the state x and the solution U are infinite dimensional. We also obtain a representation formula for the path
derivative ∂xU(t, s,x), which is interesting in its own right and is new in the literature.

The more challenging part is the viscosity solution theory for PPDE (1.7), in the case that Y is scalar but the coefficients
are less smooth. Note that the state space C([0, T ];Rn) is not locally compact, so the standard viscosity solution theory
of Crandall–Ishii–Lions [15] does not work here. Moreover, we have some intrinsic adaptiveness requirement on the
dependence of the path, which prevents us from applying the viscosity solution theory in infinite dimensional space;
see, for example, Crandall–Lions [16], Li–Yong [41] and Fabbri–Gozzi–Swiech [28]. One exception in this direction is
Ren–Rosestolato [55], which however requires some stronger type of regularity and is overall still not satisfactory for our
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purpose. We shall follow the approach proposed by Ekren–Keller–Touzi–Zhang [23], where the pointwise optimization in
[15] is replaced with an optimal stopping problem under certain nonlinear expectation, and thus the comparison principle
can be obtained without requiring the local compactness of the state space. Our PPDE (1.7) has two major differences from
[23]. First, the nonlinear expectation used in [23] relies on a family of semi-martinagle measures, while our state process X

is not a semimartingale. Second, the PPDE in [23] is one-dimensional and the comparison principle for classical solutions
(if they exist) is quite straightforward, but as mentioned PPDE (1.7) is nonlocal (or viewed as infinite dimensional), and in
fact the comparison principle fails in general even for classical solutions. Nevertheless, we shall propose a new notion of
viscosity solution to PPDE (1.7) and establish its well-posedness, including the comparison principle, under an additional
assumption that f is nondecreasing in y. We note that this monotonicity condition is essentially the proper condition
required in [15] for elliptic equations. For a standard parabolic equation like (1.2), this condition is redundant because it
is implied from the Lipschitz condition by a standard change variable argument. However, the change variable argument
fails for (1.7) because of its nonlocal structure. We also note that Wang–Yong [64] proved the comparison principle for
BSVIEs under the same monotonicity condition. As in the standard literature, since viscosity solution is a local notion
(even with some nonlocal feature here), its comparison principle is much more challenging.

Finally, we investigate briefly two more general FBSVIEs, the coupled FBSVIE (with b, σ depending on Y ) and the
type-II BSVIEs, and extend the representation formula in these cases. The more detailed studies on these equations are
left for interested readers. We note particularly that our new representation formula for ∂xU relies on a linear type-II
BSVIE. For this purpose, we establish a duality result for linear path dependent FSVIE, which covers the corresponding
results in Yong [68,70] and Peng–Yang [52], and provide an explicit solution for linear BSVIEs, which generalizes the
result of Hu–Øksendal [36].

The rest of this paper is organized as follows. In Section 1.1, we provide a literature review on the closely related topics.
Section 2 collects some preliminary results, which will be used in the paper. In Section 3, we establish the connection
between FBSVIEs and PPDEs, and prove the existence of classical solutions under appropriate conditions. Section 4
is devoted to the viscosity solutions of the PPDE. We extend some results to coupled FBSVIEs and type-II BSVIEs in
Section 5. Finally in Section 6, we obtain a representation formula for the path derivative ∂xU(t, s,x).

1.1. Literature review on some related topics

For FSVIEs, we first refer to Nualart [45] for a comprehensive exposition of fractional Brownian motion, which is a very
special case of FSVIEs. In the state dependent case, the well-posedness of FSVIEs can be found in Berger–Mizel [8].
Since one cannot apply the Burkholder–Davis–Gundy inequalities for stochastic Volterra integral equations, the well-
posedness of path dependent FSVIEs is actually more involved, and we refer to the recent work Ruan–Zhang [57]. There
has been a growing number of publications on rough volatility models, for which FSVIE is a convenient tool. Besides
[10,26,27,30,60], a partial list also includes Abi Jaber–Larsson–Pulido [1], Alos–Leon–Vives [3], Bayer–Friz–Gatheral
[6], Bennedsen–Lunde–Pakkanen [7], Chronopoulou–Viens [9], Cuchiero–Teichmann [17], Fouque–Hu [29], Gatheral–
Keller–Ressel [31] and Gulisashvili–Viens–Zhang [32].

BSVIE was first introduced by Lin [42] in a special form. The general form, including type-II BSVIEs, has been
studied systematically by Yong [68,70], followed by Djordjevic–Jankovic [19,20], Shi–Wang–Yong [58], Wang–Yong
[64], Wang–Zhang [66], Overbeck–Roder [46], Hu–Øksendal [36], Wang–Yong [65], Popier [54], Hernandez–Possamai
[35], to mention a few. In particular, we note that Hamaguchi [33] proved the well-posedness of coupled FBSVIEs
over small time horizon. The well-posedness of coupled FBSVIEs over arbitrary time horizon is still open, to our best
knowledge. We also refer to [2,18,34,38,61–63,69] again for some applications of BSVIEs.

The notion of PPDE was first proposed by Peng [49]. A crucial tool is the functional Itô formula, initiated by Dupire
[21] and further developed by Cont–Fournié [11,12]. In the semilinear case, Peng–Wang [51] obtained the classical
solution and Ekren–Keller–Touzi–Zhang [23] established the viscosity solution theory. The viscosity solution approach
of [23] has been successfully extended to the fully nonlinear case by Ekren–Touzi–Zhang [24,25], Ren–Touzi–Zhang [56]
and Ren–Rosestolato [55]. We also refer to Barrasso–Russo [4], Cosso–Russo [13], Leao–Ohashi–Simas [40], Lukoyanov
[43], Peng–Song [50] for some related works, in particular to Cosso–Russo [14], Zhou [75] for some recent interesting
developments and to the book Zhang [74] for more references. We shall remark though that the PPDEs in all the above
works are in the semimartingale setting. Our PPDE is associated with SVIEs, and the corresponding functional Itô formula
was proved by [60]. Another closely related work also beyond semi-martinagle setting is Barrasso–Russo [5], which
studies the so-called decoupled mild solution for a PPDE associated with Gaussian processes.

2. Preliminaries

Let T > 0 be the time horizon, � := C([0, T ];Rd) the canonical space, W the canonical process (namely W(ω)= ω), P
the Wiener measure (namely W is a standard d-dimensional Brownian motion under P), and F := F

W augmented with
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the P-null sets. Denote

T= [0, T ], T
2 = [0, T ] × [0, T ],

T
2− =

{
(t, s) | 0≤ s ≤ t ≤ T

}
, T

2+ =
{
(t, s) | 0≤ t ≤ s ≤ T

}
.

Here, “−” indicates the left neighborhood of t , and “+” indicates the right neighborhood of t . For any Euclidean space H

(say, Rn, Rm×d , etc.), let

L
p

F
(0, T ;H)=

{
ϕ : [0, T ] ×�→H

∣∣∣ ϕ is F-progressively measurable, E
∫ T

0

∣∣ϕ(s)
∣∣p ds <∞

}
.

Our state space is X := C([0, T ];Rn), equipped with the uniform norm:

‖x‖ = sup
t∈[0,T ]

|xt |, ∀x ∈X. (2.1)

In this section, we review and present some basic results concerning forward and backward SVIEs, including a
continuous-norm estimate for the adapted solution to a class of BSVIEs. Moreover, among other things, we shall in-
troduce two auxiliary processes X̃ and Ỹ so that the flow property of the adapted solutions can be established in an
extended sense. It turns out that such a property will play an essential role in proving the relation between FBSVIEs and
PPDEs.

Before going further, we make a convention which will be used in the rest of the paper. For any map ϕ : T2×X×H×
�→ H̃, where H and H̃ are any Euclidean spaces (could be Rm, Rm×R

m×d , etc.), we simply say that ϕ is progressively
measurable if

ϕ(t, r,x, h,ω)= ϕ(t, r,xr∧·, h,ωr∧·), ∀(t, r,x, h,ω) ∈ T
2 ×X×H×�, (2.2)

and the above map is measurable. In the above, T2 can be replaced by T
2±; also some independent variables can be absent.

2.1. The well-posedness and flow property of FSVIEs

Given x ∈X, consider an FSVIE:

Xt = xt +
∫ t

0
b(t, r,X·) dr +

∫ t

0
σ(t, r,X·) dWr, t ∈ T. (2.3)

We shall assume the following.

Assumption 2.1. The map (b, σ ) : T2− ×X→R
n ×R

n×d is progressively measurable satisfying:

(i) For some constant C0 > 0, |b(t, r,0)| + |σ(t, r,0)| ≤ C0 for all (t, r) ∈ T
2−.

(ii) The map x → (b(t, r,x), σ (t, r,x)) is uniformly Lipschitz continuous under the norm ‖ · ‖.
(iii) The map t → (b(t, r,x), σ (t, r,x)) is differentiable, with ∂tb and ∂tσ also satisfying the conditions as in (i) and (ii).

The following result follows from Ruan–Zhang [57].

Proposition 2.2. Under Assumption 2.1, FSVIE (2.3) admits a unique strong solution X such that X is continuous in t

and the following estimate holds true: for any p > 1,

E
[‖X‖p

]≤ Cp

[
1+ ‖x‖p

]
. (2.4)

We remark that due to the first time variable t in σ , one cannot directly apply the Burkholder–Davis–Gundy inequalities
in the Volterra setting. Assumption 2.1(iii) helps us to get around that. In the state dependent case: σ = σ(t, r,Xr) (b can
be path dependent, although in the literature, typically, it is also state dependent), the well-posedness of (2.3) follows
from standard arguments; see, for example, Berger–Mizel [8]. The pathwise continuity of X as well as the norm estimate
(2.4) hold true for b, σ satisfying weaker continuity in the spirit of (2.9) below. The arguments are similar to those of
Proposition 2.4 below and we skip the details. It will be interesting to see if it is possible to weaken Assumption 2.1(iii)
in the path dependent case.
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Note that X is neither a Markov process nor a semimartingale. Even worse, in general the flow property fails in the
following sense: for fixed t ,

Xs �=Xt +
∫ s

t

b(s, r,X·) dr +
∫ s

t

σ (s, r,X·) dWr, s ∈ (t, T ]. (2.5)

One may refer to this as the time inconsistency. To overcome this deficiency, Viens–Zhang [60] introduced an auxiliary
process with two-time variables:

X̃s
t = xs +

∫ t

0
b(s, r,X·) dr +

∫ t

0
σ(s, r,X·) dWr, (t, s) ∈ T

2+. (2.6)

This process enjoys the following nice properties:

• For fixed s, the process [0, s] � t → X̃s
t is an F-semimartingale with X̃t

t =Xt ;
• For fixed t , the process [t, T ] � s → X̃s

t is Ft -measurable and continuous;
• The flow property holds in the following sense: for any F-stopping time τ ,

Xs = X̃s
τ +

∫ s

τ

b(s, r,X·) dr +
∫ s

τ

σ (s, r,X·) dWr, s ∈ [τ, T ]. (2.7)

We remark that, in the state dependent case as in (1.6), (2.7) implies

Xs = X̃s
t +

∫ s

t

b(s, r,Xr) dr +
∫ s

t

σ (s, r,Xr) dWr, (t, s) ∈ T
2+.

One can easily see that, conditional on X̃
[t,T ]
t , X[0,t) and X(t,T ] are conditionally independent. So this can be viewed as a

generalized Markov property.

2.2. The well-posedness and flow property of BSVIEs

Consider the following path dependent BSVIE:

Yt = g(t,X·)+
∫ T

t

f
(
t, r,X·, Yr ,Z

t
r

)
dr −

∫ T

t

Zt
r dWr, t ∈ T, (2.8)

where Y is m-dimensional, and hence Z is (m× d)-dimensional. We shall assume

Assumption 2.3. The map f : T2+ ×X×R
m ×R

m×d →R
m is progressively measurable and the map g : T×X→R

m

is FT -measurable satisfying:

(i) For some constant C0 > 0, it holds∣∣f (t, r,x,0,0)
∣∣+ ∣∣g(t,x)

∣∣≤ C0
[
1+ ‖x‖], ∀(t, r,x) ∈ T

2+ ×X;
(ii) The map (y, z) → f (t, r,x, y, z) is uniformly Lipschitz continuous;

(iii) The map t → (f (t, r,x, y, z), g(t,x)) is locally uniformly continuous in the following sense: for some modulus of
continuity function ρ,∣∣f (t − δ, r,x, y, z)− f (t, r,x, y, z)

∣∣+ ∣∣g(t − δ,x)− g(t,x)
∣∣

≤ C
[
1+ ‖x‖ + |y| + |z|]ρ(δ), ∀(t, r,x, y, z) ∈ T

2+ ×X×R
m ×R

m×d, δ ∈ [0, t]. (2.9)

Proposition 2.4. Under Assumptions 2.1 and 2.3, BSVIE (2.8) admits a unique strong solution (Y,Z) such that Y is
continuous in t and the following estimate holds true: for each p > 1,

E

[
sup

0≤t≤T

|Yt |p
]
+ sup

0≤t≤T

E

[(∫ T

t

∣∣Zt
s

∣∣2 ds

) p
2
]
≤ Cp

[
1+ ‖x‖p

]
. (2.10)
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The proof of the well-posedness of BSVIE (2.8) is standard and could be found in Yong [70], where the pathwise
continuity of Y was proved for a more general BSVIE, but under much stronger technical conditions. Our arguments for
the pathwise continuity and the above estimate (2.10) seems to be new in the literature. We note that (2.9) is much weaker
than Assumption 2.1(iii), because f is state dependent on (Y,Z). To facilitate the proof, we introduce the following
standard BSDE parameterized by t ∈ T with adapted solution (Ỹ t , Z̃t ):

Ỹ t
s = g(t,X·)+

∫ T

s

f
(
t ∧ r, r,X·, Yr , Z̃

t
r

)
dr −

∫ T

s

Z̃t
r dWr, s ∈ [0, T ]. (2.11)

Proof. First, from [70] we know (2.8) admits a unique solution (Y,Z) such that Y ∈ L
2
F
(0, T ;Rm) and Zt ∈

L
2
F
(t, T ;Rm×d). Compare (2.8) with the following linear BSDE on [t, T ]:

Ŷ t
s = g(t,X·)+

∫ T

s

f
(
t ∧ r, r,X·, Yr ,Z

t
r

)
dr −

∫ T

s

Ẑt
r dWr, s ∈ [t, T ].

It is obvious that Ŷ t
t = Yt and Ẑt

r = Zt
r . This implies that (Ŷ t , Ẑt ) satisfies (2.11). Then we have

Ỹ t
t = Yt , Z̃t

r = Zt
r , (t, r) ∈ T

2+. (2.12)

Next, by (2.4), (2.9) and the standard BSDE arguments, we have

sup
0≤t≤T

E

[
sup

0≤s≤T

∣∣Ỹ t
s

∣∣p +(∫ T

0

∣∣Zt
s

∣∣2 ds

) p
2
]
≤ Cp

[
1+ ‖x‖p

];
∣∣Ỹ t

s − Ỹ t ′
s

∣∣≤ Cp

[
1+ (

Es

[‖X‖p
]) 1

p
]
ρ
(∣∣t − t ′

∣∣), a.s.,∀t, t ′, s ∈ T.

(2.13)

Note that Ỹ t
s , Ỹ t ′

s , and Es[‖X‖p] are pathwise continuous in s, then we have

sup
s∈T

∣∣Ỹ t
s − Ỹ t ′

s

∣∣≤ Cp

[
1+ sup

s∈T
(
Es

[‖X‖p
]) 1

p

]
ρ
(∣∣t − t ′

∣∣), a.s.,∀t, t ′ ∈ T. (2.14)

Note that, by (standard) Doob’s maximum inequality,

E

[
sup
s∈T

Es

[‖X‖p
]]≤ Cp

(
E
[‖X‖2p

]) 1
2 ≤ Cp

[
1+ ‖x‖p

]
<∞.

Let {ti}i≥1 be the rationals in [0, T ]. There exists an �1 ⊂� such that P(�1)= 1, Ỹ
ti
s (ω) is continuous in s, and

sup
s∈T

∣∣Ỹ ti
s − Ỹ

tj
s

∣∣(ω)≤ Cp(ω)ρ
(|ti − tj |

)
, ∀(i, j),∀ω ∈�1,

where Cp(ω) :=
[
1+ sup

s∈T
(
Es

[‖X‖p
]) 1

p

]
(ω) <∞, ∀ω ∈�1.

(2.15)

For any t ∈ T, by (2.14), there exists an �t ⊂� such that P(�t )= 1 and

sup
s∈T

∣∣Ỹ t
s − Ỹ

tj
s

∣∣(ω)≤ Cp(ω)ρ
(|t − tj |

)
, ∀j,∀ω ∈�t ∩�1. (2.16)

For any (t, s) ∈ T
2, we define

Ȳ t
s (ω) := lim sup

tj→t
Ỹ

tj
s (ω), ω ∈�. (2.17)

By (2.15), we see that the above lim sup is actually a limit for ω ∈�1. Then, for any ω ∈�1,

Ȳ t
s (ω) is continuous in s, sup

s∈T

∣∣Ȳ t
s − Ȳ t ′

s

∣∣(ω)≤ Cp(ω)ρ
(∣∣t − t ′

∣∣), ∀t, t ′ ∈ T. (2.18)
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So Ȳ is (uniformly) continuous in (t, s) ∈ T
2 for all ω ∈�1. Moreover, by (2.16) we have

Ỹ t
s (ω)= Ȳ t

s (ω), ∀s ∈ T,∀ω ∈�t ∩�1. (2.19)

Since P(�t ∩ �1) = 1, so Ȳ is a desired version of Ỹ t
s , and thus, by always considering this version, Ỹ t

s is jointly
continuous in (t, s), a.s. In particular, this implies that Yt = Ỹ t

t is continuous in t , a.s.
Finally, applying the standard BSDE estimates on (2.11) we have

|Yt |p =
∣∣Ỹ t

t

∣∣p ≤ CpEt

[
1+ ‖X‖p +

∫ T

t

|Yr |p dr

]
, a.s.

Since t → Yt is continuous almost surely, we obtain from the Doob’s maximum inequality that

E

[
sup

0≤t≤T

|Yt |p
]
≤ Cp

(
E

[
1+ ‖X‖2p +

∫ T

0
|Yr |2p dr

]) 1
2 ≤ Cp

[
1+ ‖x‖p

]
,

where the second inequality thanks to (2.4) and the first line of (2.13). This, together with the first line of (2.13) again,
implies (2.10). �

Similar to the forward case, in general the flow property fails in the following sense: for fixed s,

Yt �= Ys +
∫ s

t

f
(
t, r,X·, Yr ,Z

t
r

)
dr −

∫ s

t

Zt
r dWr, t ∈ [0, s). (2.20)

However, we may recover the flow property by utilizing the auxiliary process Ỹ :

Yt = Ỹ t
s +

∫ s

t

f
(
t, r,X·, Yr ,Z

t
r

)
dr −

∫ s

t

Zt
r dWr, t ∈ [0, s]. (2.21)

2.3. The functional Itô formula

The materials in this subsection follow from Viens–Zhang [60]. Recall X := C(T;Rn) and define

Xt := C
([t, T ];Rn

);
X̂ :=D

(
T;Rn

)≡ {
x : T→R

n | x is right-continuous with left-limits
}
.

(2.22)

Clearly, X is a subset of X̂. Also, hereafter, for any η ∈ Xt , we automatically extend it to be zero on [0, t), still denote it
by η. Then Xt ⊆ X̂. Next, we define

� := T×X, �̂ := {
(t,x) ∈ T× X̂ : x|[t,T ] ∈Xt

}
, d

(
(t,x),

(
t ′,x′

)) := ∣∣t − t ′
∣∣+ ∥∥x− x′

∥∥,
with ‖x‖ = supt∈T |xt | for x ∈ X̂. It can be shown that d is a metric under which �̂ is a complete metric space. Now, let
C0(�̂) denote the set of all functions u : �̂→R, which are continuous under d. For any u ∈ C0(�̂) and given (t,x) ∈ �̂,
define

∂tu(t,x)= lim
δ↓0

u(t + δ,x)− u(t,x)

δ
, (2.23)

provided the limit exists, and define ∂xu(t,x) as the Fréchet derivative with respect to x|[t,T ], namely ∂xu(t,x) :Xt →R

is the linear functional satisfying the following:

u(t,x+ η)− u(t,x)= 〈
∂xu(t,x), η

〉+ o
(‖η‖), ∀η ∈Xt . (2.24)

It is clear that this is equal to the Gâteux derivative:〈
∂xu(t,x), η

〉= lim
ε→0

u(t,x+ εη)− u(t,x)

ε
, ∀η ∈Xt . (2.25)

Similarly, we define the second-order derivative ∂2
xxu(t,x) as a bilinear functional on Xt ×Xt :〈

∂xu(t,x+ η), η′
〉− 〈

∂xu(t,x), η′
〉= 〈

∂2
xxu(t,x),

(
η,η′

)〉+ o
(‖η‖), ∀η,η′ ∈Xt . (2.26)
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Definition 2.5. Let C
1,2
+ (�̂) denote the set of u ∈ C0(�̂) such that ∂tu, ∂xu, ∂2

xxu exist on T× X̂ and satisfy:

(i) There exist constants κ > 0 and C > 0 such that, for any (t,x),∣∣∂tu(t,x)
∣∣+ sup

η∈Xt ,‖η‖≤1

∣∣〈∂xu(t,x), η
〉∣∣+ sup

η,η′∈Xt ,‖η‖,‖η′‖≤1

∣∣〈∂2
xxu(t,x),

(
η,η′

)〉∣∣≤ C
[
1+ ‖x‖κ

]
.

(ii) For any η,η′ ∈ X, ∂tu(t,x), 〈∂xu(t,x), η|[t,T ]〉, 〈∂xxu(t,x), (η|[t,T ], η′|[t,T ])〉 are continuous in (t,x), where the
continuity in t always means right continuity.

(iii) There exist κ > 0 and a modulus of continuity function ρ such that∣∣〈∂2
xxu(t,x)− ∂2

xxu
(
t,x′

)
, (η, η)

〉∣∣≤ [
1+ ‖x‖κ + ∥∥x′

∥∥κ]‖η‖2ρ
(∥∥x− x′

∥∥).
We remark that the function u will be involved in some backward equations, so both in (2.23) and in Definition 2.5(ii)

the time regularity is only required to be from right. We note that [60] assumes 〈∂xu(t,x), η|[t,T ]〉, etc. is continuous in
t , but actually it can only be right continuous because of the indicator function in η|[t,T ] and in all the arguments in [60]
only right continuity is used. For any u1, u2 ∈ C1,2(�̂), if u1 = u2 on �, by [60] we have, for any (t,x) ∈� and η ∈Xt ,

∂tu1(t,x)= ∂tu2(t,x),
〈
∂xu1(t,x), η

〉= 〈
∂xu2(t,x), η

〉
,〈

∂2
xxu1(t,x), (η, η)

〉= 〈
∂2

xxu2(t,x), (η, η)
〉
.

(2.27)

Definition 2.6. Let C
1,2
+ (�) be the set of functions u :�→R such that there exists a û ∈ C

1,2
b (�̂) satisfying u= û on �.

For such a case, define

∂tu(t,x)= ∂t û(t,x), ∂xu(t,x)= ∂xû(t,x), ∂2
xxu(t,x)= ∂2

xxû(t,x), ∀(t,x) ∈�.

We emphasize that, by (2.27), ∂2
xxu(t,x) is well-defined (or say independent of the choice of û) only on (η, η), rather

than on general (η, η′). However, this is sufficient for our purpose.
Define, for x ∈X, η ∈Xt , ϕ : T2− ×X→R

k with appropriate dimension k,

(x⊕t η)(s) := xs1[0,t)(s)+ ηs1[t,T ](s), s ∈ T; ϕt,x
s := ϕ(s, t,x), s ∈ [t, T ]. (2.28)

The main result of [60] is the following functional Itô formula.

Proposition 2.7. Suppose Assumption 2.1 holds. Let X be the solution to FSVIE (2.3), X̃ be the auxiliary process defined
by (2.6) and u ∈ C

1,2
+ (�). Then, viewing X̃t (ω) ∈Xt ,

du
(
t, X̂t

)= [
∂tu

(
t, X̂t

)+ 1

2

〈
∂2

xxu
(
t, X̂t

)
,
(
σ t,X, σ t,X

)〉+ 〈
∂xu

(
t, X̂t

)
, bt,X

〉]
dt

+ 〈
∂xu

(
t, X̂t

)
, σ t,X

〉
dWt, where X̂t :=X⊕t X̃t . (2.29)

2.4. FBSVIEs with random coefficients

For later purpose, we shall consider a more general FSVIE with random coefficients:

X̌t = xt +
∫ t

0
b̌(t, r,ω, X̌·) dr +

∫ t

0
σ̌ (t, r,ω, X̌·) dWr, t ∈ T. (2.30)

Assumption 2.8. Let (b̌, σ̌ ) : T2− ×�×X→R
n ×R

n×d be progressively measurable satisfying:

(i) The map x → (b̌(t, r,ω,x), σ̌ (t, r,ω,x)) is uniformly Lipschitz continuous under the norm ‖ · ‖.
(ii) The map t → (b̌(t, r,ω,x), σ̌ (t, r,ω,x)) is differentiable with (∂tb, ∂tσ ) also satisfying (i), and

I
p
p := sup

(t,r)∈T2−
E
[∣∣b̌(t, r, ·,0)

∣∣p + ∣∣σ̌ (t, r, ·,0)
∣∣p + ∣∣∂t b̌(t, r, ·,0)

∣∣p + ∣∣∂t σ̌ (t, r, ·,0)
∣∣p]<∞. (2.31)

We have the following result, also due to [57].
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Proposition 2.9. Under Assumption 2.8, FSVIE (2.30) admits a unique strong solution X̌ such that X̌ is continuous in t

and the following estimate holds true:

E
[‖X̌‖p

]≤ Cp

[‖η‖p + I
p
p

]
, where I

p
p is defined in (2.31). (2.32)

Similarly, we consider a more general BSVIE with random coefficients:

Y̌t = ǧ(t,ω)+
∫ T

t

f̌
(
t, r,ω, Y̌r , Ž

t
r

)
dr −

∫ T

t

Žt
r dWr, t ∈ T. (2.33)

Assumption 2.10. The map f̌ : T2+×�×R
m×R

m×d →R
m is progressively measurable and the map ǧ : T×�→R

m

is FT -measurable satisfying:

Ǐ
p
p := sup

t∈T
E

[(∫ T

t

∣∣f̌ (t, r, ·,0,0)
∣∣dr

)p

+ ∣∣ǧ(t, ·)∣∣p]<∞, (2.34)

and the map (y, z) → f̌ (t, r,ω, y, z) is uniformly Lipschitz continuous.

From Shi–Wang–Yong [58], we have the following standard result.

Proposition 2.11. Under Assumption 2.10, BSVIE (2.33) admits a unique strong solution (Y̌ , Ž) such that the following
estimate holds true:

sup
0≤t≤T

E

[
|Y̌t |p +

(∫ T

t

∣∣Žt
s

∣∣2 ds

) p
2
]
≤ CpǏ

p
p , where Ǐ

p
p is defined in (2.34). (2.35)

Another important property of BSVIEs is the following comparison principle, due to Wang–Yong [64]. For y, ỹ ∈R
m,

we say y ≤ ỹ if yi ≤ ỹi , i = 1, . . . ,m.

Proposition 2.12. For k = 1,2, let f̌ k , ǧk satisfy Assumption 2.10 and (Y̌ k, Žk) be the solutions to the corresponding
BSVIE (2.33). Assume f̌ 1 ≤ f̌ 2 and ǧ1 ≤ ǧ2. Assume further that, either for k = 1 or k = 2, f̌ k is nondecreasing in y (in
the componentwise sense), and f̌ k

i does not depend on zj , for i �= j , where zj ∈R
d is the j th row of z ∈R

m×d . Then we

have Y̌ 1
t ≤ Y̌ 2

t , 0≤ t ≤ T , a.s.

3. The path dependent Feynman–Kac formula

In this section, we are going to establish the relations between PPDEs and FBSVIEs.

3.1. From PPDE to FBSVIE

Recall the FSVIEs (2.3)–(2.6) and BSVIEs (2.8)–(2.11). Recall (1.7), let us introduce the following system of PPDEs:⎧⎪⎨⎪⎩
LU(t, s,x) := ∂sU(t, s,x)+ 1

2 〈∂2
xxU(t, s,x), (σ s,x, σ s,x)〉 + 〈∂xU(t, s,x), bs,x〉

+ f (t, s,x,U(s, s,x), 〈∂xU(t, s,x), σ s,x〉)= 0, (t, s,x) ∈ T
2+ ×X,

U(t, T ,x)= g(t,x), (t,x) ∈ [0, T ] ×X,

(3.1)

where, for ϕ = b,σ , ϕs,x is defined by (2.28). As we see in (2.29), x will correspond to X⊕s X̃s , rather than X. However,
due to the required adaptiveness, one has

ϕs,X⊕s X̃s
r = ϕ(r, s,X⊕s X̃s)= ϕ(r, s,X)= ϕs,X

r , r ∈ [s, T ], for ϕ = b,σ.

We emphasize that the derivatives in LU(t, s,x) are with respect to (s,x) only. As mentioned in Introduction, since (3.1)
involves the diagonal value U(s, s,x), it is nonlocal in the first time variable t . Alternatively, if we view t as a parameter
rather than an independent variable, then (3.1) is an (uncountably) infinite dimensional PPDE system self-interacted
through U(s, s,x).
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We call U ∈ C0(T2+ × X) a classical solution to the PPDE (3.1) if U(t, ·) ∈ C
1,2
+ ([t, T ] × X) for all t ∈ T, where

C
1,2
+ ([t, T ] ×X) is defined in the spirit of Definitions 2.5 and 2.6, but restrict to s ∈ [t, T ] only, and (3.1) is satisfied in

the classical sense.

Theorem 3.1. Under Assumptions 2.1 and 2.3, if the PPDE (3.1) has a classical solution U , then, for any (t, s) ∈ T
2+

and recalling the X̂ in (2.29),

Ỹ t
s =U

(
t, s, X̂s

)
, Yt =U

(
t, t, X̂t

)
, Zt

s = Z̃t
s =

〈
∂xU

(
t, s, X̂s

)
, σ s,X

〉
. (3.2)

Proof. Fix t . Applying the functional Itô formula (2.29) to U(t, ·, X̂·), we have

dU
(
t, s, X̂s

)= ∂sU
(
t, s, X̂s

)
ds + 〈

∂xU
(
t, s, X̂s

)
, bs,X

〉
ds

+ 1

2

〈
∂2

xxU
(
t, s, X̂s

)
,
(
σ s,X,σ s,X

)〉
ds + 〈

∂xU
(
t, s, X̂s

)
, σ s,X

〉
dWs.

Since U satisfies the PPDE (3.1), the above implies that

dU
(
t, s, X̂s

)=−f
(
t, s,X,U

(
s, s, X̂s

)
,
〈
∂xU

(
t, s, X̂s

)
, σ s,X

〉)
ds + 〈

∂xU
(
t, s, X̂s

)
, σ s,X

〉
dWs. (3.3)

Note that U(t, T ,X)= g(t, T ,X), integrating (3.3) over [t, T ] we have

U
(
t, t, X̂t

)= g(t, T ,X)+
∫ T

t

f
(
t, r,X,U

(
r, r, X̂r

)
,
〈
∂xU

(
t, r, X̂r

)
, σ r,X

〉)
dr

−
∫ T

t

〈
∂xU

(
t, r, X̂r

)
, σ r,X

〉
dWr.

That is, (Ŷt , Ẑ
t
s) := (U(t, t, X̂t ), 〈∂xU(t, s, X̂s), σ s,X〉) satisfies BSVIE (2.8). Then, from the uniqueness of BSVIEs we

obtain Ŷ = Y and Ẑ = Z, hence the last two formulae in (3.2). Moreover, by substituting these into (3.3), we have

dU
(
t, s, X̂s

)=−f
(
t, s,X,Ys,Z

t
s

)
ds +Zt

s dWs.

This clearly implies the first formula in (3.2). �

3.2. From FBSVIE to PPDE

In this subsection, we proceed with the opposite direction: constructing U(t, s,x) by using FBSVIEs. We emphasize
again that the x here corresponds to X⊕s X̃s .

First, for any (s,x) ∈�, denote X
s,x
l := xl , l ∈ [0, s], and consider the following FBSVIE:

X
s,x
l = xl +

∫ l

s

b
(
l, r,Xs,x·

)
dr +

∫ l

s

σ
(
l, r,Xs,x·

)
dWr ;

Y
s,x
l = g

(
l,Xs,x·

)+ ∫ T

l

f
(
l, r,Xs,x· , Y s,x

r ,Zl,s,x
r

)
dr −

∫ T

l

Zl,s,x
r dWr,

l ∈ [s, T ]. (3.4)

Next, given (t, s,x) ∈ T
2+ ×X, consider the following standard FBSDE:

X̃
s,x
r,l := xl +

∫ r

s

b
(
l, r ′,Xs,x·

)
dr ′ +

∫ r

s

σ
(
l, r ′,Xs,x·

)
dWr ′, s ≤ r ≤ l ≤ T ;

Ỹ
t,s,x
l = g

(
t,Xs,x·

)+ ∫ T

l

f
(
t, r,Xs,x· , Y s,x

r , Z̃t,s,x
r

)
dr −

∫ T

l

Z̃t,s,x
r dWr, l ∈ [s, T ].

(3.5)

We now define

U(t, s,x) := Ỹ t,s,x
s , (t, s,x) ∈ T

2+ ×X. (3.6)

It is obvious that Ỹ
t,s,x
l is σ(Wr −Ws, r ∈ [s, l])-measurable, so the above U(t, s,x) is deterministic.
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Theorem 3.2. Under Assumptions 2.1 and 2.3, if the function U defined by (3.6) is continuous in all variables and, for
any fixed t , ∂xU(t, ·), ∂2

xxU(t, ·) exist and satisfy the requirements in Definition 2.5 (in the sense of Definition 2.6), then
U is a classical solution of the PPDE (3.1).

Proof. First, note that U(s, s,x)= Ỹ
s,s,x
s = Y

s,x
s . For any s ≤ r ≤ l ≤ T , by (2.7) we have

X
s,x
l =X

r,X̂s,x,r

l , where X̂
s,x,r
r ′ := (

Xs,x ⊕r X̃s,x
r

)
r ′ :=X

s,x
r ′ 1[0,r)

(
r ′
)+ X̃

s,x
r,r ′1[r,T ]

(
r ′
)
. (3.7)

Then by the uniqueness of BSVIEs and BSDEs we have

Y s,x
r =U

(
r, r, X̂s,x,r

)
, Ỹ t,s,x

r =U
(
t, r, X̂s,x,r

)
. (3.8)

We next establish the representation for Z̃
t,s,x
r :

Z̃t,s,x
r = 〈

∂xU
(
t, r, X̂s,x,r

)
, σ r,X̂s,x,r 〉

, a.s., s ≤ r ≤ T . (3.9)

Fix δ > 0 and let s = s0 < · · ·< sn = T be such that �si := si − si−1 ≤ δ. Denote

Yn
r :=U

(
t, si+1, X̂

s,x,r
)
, Zn

r :=
〈
∂xU

(
t, si+1, X̂

s,x,r
)
, σ r,X̂s,x,r 〉

, r ∈ [si , si+1].
Note that (Y n

r ,Zn
r ) is Fr -measurable. Fix t and then apply the functional Itô formula (2.29) to U(t, si+1, X̂

s,x,·) (with
time variable fixed), we get

dYn
r =

[
1

2

〈
∂2

xxU
(
t, si+1, X̂

s,x,r
)
,
(
σ r,X̂s,x,r

, σ r,X̂s,x,r )〉+ 〈
∂xU

(
t, si+1, X̂

s,x,r
)
, br,X̂s,x,r 〉]

dr +Zn
r dWr.

Denote �Yn
r := Yn

r − Ỹ
t,s,x
r , �Zn

r := Zn
r − Z̃

t,s,x
r . Note that �Yn

si+1
= 0, and

d�Yn
r = f̂

(
t, r, X̂s,x,r , Y s,x

r ,Zn
r +�Zn

r

)
dr +�Zn

r dWr, where

f̂ (t, r, x̂, y, z) := 1

2

〈
∂2

xxU(t, si+1, x̂),
(
σ r,̂x, σ r,̂x)〉+ 〈

∂xU(t, si+1, x̂), br,̂x〉+ f (t, r, x̂, y, z).
(3.10)

By standard BSDE arguments we have

E

[
sup

si≤r≤si+1

∣∣�Yn
r

∣∣2 + ∫ si+1

si

∣∣�Zn
r

∣∣2 dr

]

≤ CE

[(∫ si+1

si

∣∣f̂ (t, r, X̂s,x,r , Y s,x
r ,Zn

r

)∣∣dr

)2]
≤ C

[
1+ ‖x‖4+2κ

]
δ�si+1,

(3.11)

where κ is the generic order of polynomial growth in Definition 2.5. Thus

E

[
n−1∑
i=0

∫ si+1

si

∣∣Z̃t,s,x
r − 〈

∂xU
(
t, si+1, X̂

s,x,r
)
, σ r,X̂s,x,r 〉∣∣2 dr

]
≤ C

[
1+ ‖x‖4+2κ

]
δ.

Send δ→ 0, by the (right) continuity of ∂xU we obtain (3.9).
Moreover, set s1 := s + δ, by (3.10) again we have

U(t, s + δ,x)−U(t, s,x)=�Yn
s =−E

[∫ s+δ

s

f̄
(
t, r,Xs,x, Y s,x

r ,Zn
r

)
dr

]
−R(δ), (3.12)

where

f̄ (t, r, x̂, y, z) := 1

2

〈
∂2

xxU(t, r, x̂),
(
σ r,̂x, σ r,̂x)〉+ 〈

∂xU(t, r, x̂), br,̂x〉+ f (t, r, x̂, y, z),

R(δ) := E

[∫ s+δ

s

[
f̂
(
t, r,Xs,x, Y s,x

r ,Zn
r +�Zn

r

)− f̂
(
t, r,Xs,x, Y s,x

r ,Zn
r

)]
dr

+
∫ s+δ

s

[
f̂
(
t, r,Xs,x, Y s,x

r ,Zn
r

)− f̄
(
t, r,Xs,x, Y s,x

r ,Zn
r

)]
dr

]
.
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By (3.11) and the regularity of U , we have

∣∣R(δ)
∣∣2 ≤ CδE

[∫ s+δ

s

∣∣�Zn
r

∣∣2 dr

]
+ o

(
δ2)≤ C

[
1+ ‖x‖4+2κ

]
δ3 + o

(
δ2).

Divide the both sides of (3.12) by δ and send δ→ 0, by the desired continuity we see that ∂sU(t, s,x) exists and

−∂sU(t, s,x)= f̄
(
t, s,x,U(s, s,x),

〈
∂xU(t, s,x), σ s,x〉)

= 1

2

〈
∂2

xxU(t, s,x),
(
σ s,x, σ s,x)〉+ 〈

∂xU(t, s,x), bs,x〉+ f
(
t, s,x,U(s, s,x),

〈
∂xU(t, s,x), σ s,x〉).

This implies that ∂sU(t, s,x) has the desired regularity and LU(t, s,x)= 0.
Finally, clearly U(t, T ,x)= Ỹ

t,T ,x
T = g(t, T ,x), thus U is a classical solution of PPDE (3.1). �

3.3. Classical solutions of the PPDE

In this subsection, we provide some sufficient conditions so that the function U defined by (3.6) has the desired regularity,
and thus is the unique classical solution of the PPDE (3.1).

We first note that, since the derivatives of U involve càdlàg paths, we shall assume the coefficients b, σ , f , g can be
extended to X̂, and we will use the same notations. The derivatives of f with respect to (y, z) and those of (b, σ,f, g)

with respect to the first time variable t are in the standard sense, while those with respect to the second time variable will
not be needed. Given an adapted function ϕ : �̂→R, the derivative with respect to x is the Fréchet derivative as a linear
operator on X̂:

ϕ(t,x+ η)− ϕ(t,x)= 〈
Dϕ(t,x), η

〉+ o
(‖η‖). (3.13)

We emphasize that in (2.24) and (2.26) the perturbation path η is on [t, T ], while here η is on [0, T ] (actually on [0, t]
due to the adaptedness). Similarly, we define D2ϕ as a bilinear operator on X̂× X̂.

We say Dϕ is bounded if |〈Dϕ(t,x), η〉| ≤ C‖η‖ for all (t,x, η) ∈ �̂× X̂, and Dϕ is continuous if, for any η ∈ X̂, the
mapping (t,x) ∈ �̂ → 〈Dϕ(t,x), η〉 is continuous. Similarly, D2ϕ is bounded if |〈D2ϕ(t,x), (η′, η)〉| ≤ C‖η′‖‖η‖ and
continuous if (t,x) ∈ �̂ → 〈D2ϕ(t,x), (η′, η)〉 is continuous. When the mapping x ∈ X̂ →Dϕ(t,x) is continuous, one
can easily show that

ϕ(t,x+ η)− ϕ(t,x)=
∫ 1

0

〈
Dϕ(t,x+ θη), η

〉
dθ. (3.14)

Moreover, we may switch the order of differentiation: ∂tDϕ =D∂tϕ, if one of them is continuous.

Assumption 3.3. Assumptions 2.1 and 2.3 hold, and the dependence of b, σ , f , g on x can be extended to �̂, stilled
using the same notations, such that

(i) For ϕ = b,σ, g, ϕ is twice differentiable in x with bounded derivatives, and D2ϕ is uniformly Lipschitz continuous
in x;

(ii) f is jointly twice differentiable in (x, y, z) with bounded derivatives, and the second-order derivatives are uniformly
Lipschitz continuous in (x, y, z);

(iii) b, σ are differentiable in the first time variable t , and ∂tb, ∂tσ satisfy the requirements in (i).

Theorem 3.4. Under Assumption 3.3, the function U defined by (3.6) is the unique classical solution of PPDE (3.1).

Proof. By Theorem 3.2, it suffices to verify the required regularities of U . We shall repeatedly apply Propositions 2.9
and 2.11. In the proof, we may abuse the notations �X, b̌, etc., and we may omit the variable ω. We proceed in three
steps.

Step 1. In this step, we show that〈
∂xU(t, s,x), η

〉=∇ηỸ
t,s,x
s , (s,x) ∈ �̂, t ≤ s, η ∈Xs , (3.15)
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where (∇ηX
s,x,∇ηY

s,x,∇ηỸ
t,s,x) solve the following linear system with random coefficients on [s, T ]: denoting

∇ηX
s,x
l := 0 for l ∈ [0, s],

∇ηX
s,x
l = ηl +

∫ l

s

〈
Db

(
l, r,Xs,x),∇ηX

s,x〉dr +
∫ l

s

〈
Dσ

(
l, r,Xs,x),∇ηX

s,x〉dWr ;

∇ηY
s,x
l = 〈

Dg
(
l,Xs,x),∇ηX

s,x〉− ∫ T

l

∇ηZ
l,s,x
r dWr

+
∫ T

l

[〈
Df (·),∇ηX

s,x〉+ ∂yf (·)∇ηY
s,x
r + ∂zf (·)∇ηZ

l,s,x
r

](
l, r,Xs,x, Y s,x

r ,Zl,s,x
r

)
dr;

∇ηỸ
t,s,x
l = 〈

Dg
(
t,Xs,x),∇ηX

s,x〉− ∫ T

l

∇ηZ̃
t,s,x
r dWr

+
∫ T

l

[〈
Df (·),∇ηX

s,x〉+ ∂yf (·)∇ηY
s,x
r + ∂zf (·)∇ηZ̃

t,s,x
r

](
t, r,Xs,x, Y s,x

r , Z̃t,s,x
r

)
dr.

(3.16)

Indeed, first by Propositions 2.9 and 2.11, and by standard BSDE arguments (see, e.g., [74, Chapter 4]) we see that the
above system (3.16) is well-posed, and

E
[∥∥∇ηX

s,x∥∥p]≤ Cp‖η‖p;

sup
l∈[s,T ]

E

[∣∣∇ηY
s,x
l

∣∣p +(∫ T

l

∣∣∇ηZ
l,s,x
r

∣∣2 dr

) p
2
]
≤ CpE

[∥∥∇ηX
s,x∥∥p]≤ Cp‖η‖p;

E

[
sup

l∈[s,T ]
∣∣∇ηỸ

t,s,x
l

∣∣p +(∫ T

s

∣∣∇ηZ̃
t,s,x
r

∣∣2 dr

) p
2
]

≤ CpE
[∥∥∇ηX

s,x∥∥p]+Cp sup
l∈[s,T ]

E
[∣∣∇ηY

s,x
l

∣∣p]≤ Cp‖η‖p.

(3.17)

Next, denote

�ηX
s,x :=Xs,x+η −Xs,x −∇ηX

s,x, �ηỸ
t,s,x := Ỹ t,s,x+η − Ỹ t,s,x −∇ηỸ

t,s,x,

and similarly for �ηY
s,x, �ηZ

l,s,x, �ηZ̃
t,s,x. Then �ηX

s,x
l = 0 for l ∈ [0, s], and for l ∈ [s, T ],

�ηX
s,x
l =

∫ l

s

b̌
(
l, r,�ηX

s,x)dr +
∫ l

s

σ̌
(
l, r,�ηX

s,x)dWr ;

�ηY
s,x
l = ǧ

(
l,�ηX

s,x)+ ∫ T

l

f̌
(
l, r,�ηX

s,x,�ηY
s,x
r ,�ηZ

l,s,x
r

)
dr −

∫ T

l

�ηZ
l,s,x
r dWr ;

�ηỸ
t,s,x
l = ǧ

(
t,�ηX

s,x)+ ∫ T

l

f̌
(
t, r,�ηX

s,x,�ηY
s,x
r ,�ηZ̃

t,s,x
r

)
dr −

∫ T

l

�ηZ̃
t,s,x
r dWr,

(3.18)

where, for ϕ = b,σ, g,

ϕ̌
(
l, r,x′

) := ϕ
(
l, r,Xs,x +∇ηX

s,x + x′
)− ϕ

(
l, r,Xs,x)− 〈

Dϕ
(
l, r,Xs,x),∇ηX

s,x〉;
f̌
(
l, r,x′, y, z

) := f
(
l, r,Xs,x +∇ηX

s,x + x′, Y s,x
r +∇ηY

s,x
r + y,Zl,s,x

r +∇ηZ
l,s,x
r + z

)
− [

f (·)+ 〈
Df (·),∇ηX

s,x〉+ ∂yf (·)∇ηY
s,x
r + ∂zf (·)∇ηZ

l,s,x
r

](
l, r,Xs,x, Y s,x

r ,Zl,s,x
r

)
.
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Again by Propositions 2.9 and 2.11, recalling (3.14) we have

E
[∥∥�ηX

s,x
l

∥∥p]≤ Cp sup
(l,r)

∑
ϕ=b,σ

E
[∣∣ϕ̌(l, r,0)

∣∣p + ∣∣∂t ϕ̌(l, r,0)
∣∣p]

≤ Cp sup
(l,r)

∑
ϕ=b,σ

E

[∣∣∣∣∫ 1

0

〈
Dϕ

(
l, r,Xs,x + θ∇ηX

s,x)−Dϕ
(
l, r,Xs,x),∇ηX

s,x〉dθ

∣∣∣∣p

+
∣∣∣∣∫ 1

0
∂t

[〈
Dϕ

(
l, r,Xs,x + θ∇ηX

s,x)−Dϕ
(
l, r,Xs,x),∇ηX

s,x〉]dθ

∣∣∣∣p]
≤ CpE

[∥∥∇ηX
s,x∥∥2p]≤ Cp‖η‖2p,

and

sup
l∈[s,T ]

E

[∣∣�ηY
s,x
l

∣∣p +(∫ T

l

∣∣�ηZ
l,s,x
r

∣∣2 dr

) p
2
]

≤ Cp sup
l∈[s,T ]

E

[∣∣ǧ(l,�ηX
s,x)∣∣p +(∫ T

l

∣∣f̌ (l, r,�ηX
s,x,0,0

)∣∣dr

)p]

≤ Cp sup
l∈[s,T ]

E

[∣∣ǧ(l,0)
∣∣p +(∫ T

l

∣∣f̌ (l, r,0,0,0)
∣∣dr

)p

+ ∥∥�ηX
s,x∥∥p

]

≤ Cp sup
l∈[s,T ]

E

[(∫ T

l

(∥∥∇ηX
s,x∥∥+ ∣∣∇ηY

s,x
r

∣∣+ ∣∣∇ηZ
l,s,x
r

∣∣)2
dr

)p

+ ∥∥�ηX
s,x∥∥p

]
≤ Cp‖η‖2p.

Then it follows from standard BSDE arguments that

E

[
sup

l∈[s,T ]
∣∣�ηỸ

t,s,x
l

∣∣p +(∫ T

s

∣∣�ηZ̃
t,s,x
r

∣∣2 dr

) p
2
]

≤ CpE

[∣∣ǧ(t,�ηX
s,x)∣∣p +(∫ T

s

∣∣f̌ (t, r,�ηX
s,x,�ηY

s,x
r ,0

)∣∣dr

)p]
≤ CpE

[∣∣ǧ(t,�ηX
s,x)∣∣p +(∫ T

s

(∣∣f̌ (t, r,�ηX
s,x,0,0

)∣∣+ ∣∣�ηY
s,x
r

∣∣)dr

)p]
≤ CpE

[∥∥�ηX
s,x
l

∥∥p]+Cp sup
l∈[s,T ]

E
[∣∣�ηY

s,x
l

∣∣p]≤ Cp‖η‖2p.

In particular, taking l = s, this implies∣∣U(t, s,x+ η)−U(t, s,x)−∇ηỸ
t,s,x
s

∣∣= ∣∣�ηỸ
t,s,x
s

∣∣≤ C‖η‖2,

which exactly means (3.15).
Step 2. Denote

G
(
l,x′

) := 〈
Dg

(
l,Xs,x),x′

〉+ 〈
D2g

(
l,Xs,x), (∇η′X

s,x,∇ηX
s,x)〉;

F
(
l, r,x′, y, z

) := [〈
Df (·),x′

〉+ ∂yf (·)y + ∂zf (·)z
+ 〈

D2f (·), (∇η′X
s,x,∇ηX

s,x)〉+ ∂y

〈
Df (·),∇ηX

s,x〉∇η′Y
s,x
r

+ ∂z

〈
Df (·),∇ηX

s,x〉∇η′Z
l,s,x
r + 〈

D∂yf (·),∇η′X
s,x〉∇ηY

s,x
r + ∂2

yf (·)∇ηY
s,x
r ∇η′Y

s,x
r

+ ∂2
yzf (·)∇ηY

s,x
r ∇η′Z

l,s,x
r + 〈

D∂zf (·),∇η′X
s,x〉∇ηZ

l,s,x
r + ∂2

yzf (·)∇η′Y
s,x
r ∇ηZ

l,s,x
r

+ ∂2
zzf (·)∇η′Z

l,s,x
r ∇ηZ

l,s,x
r

](
l, r,Xs,x, Y s,x

r ,Zl,s,x
r

)
.
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Following similar arguments as in Step 1, we can show that

〈
∂2

xxU(t, s,x),
(
η′, η

)〉=∇η′,ηỸ
t,s,x
s , (s,x) ∈ �̂, t ≤ s, η′, η ∈Xs , (3.19)

with ∇η′,ηỸ t,s,x solving the following linear system on [s, T ]: denoting ∇η′,ηX
s,x
l := 0 for l ∈ [0, s],

∇η′,ηX
s,x
l =

∫ l

s

[〈
Db

(
l, r,Xs,x),∇η′,ηX

s,x〉+ 〈
D2b

(
l, r,Xs,x), (∇η′X

s,x,∇ηX
s,x)〉]dr

+
∫ l

s

[〈
Dσ

(
l, r,Xs,x),∇η′,ηX

s,x〉+ 〈
D2σ

(
l, r,Xs,x), (∇η′X

s,x,∇ηX
s,x)〉]dWr ;

∇η′,ηY
s,x
l =G

(
l,∇η′,ηX

s,x)− ∫ T

l

∇η′,ηZ
l,s,x
r dWr

+
∫ T

l

F
(
l, r,∇η′,ηX

s,x,∇η′,ηY
s,x
r ,∇η′,ηZ

l,s,x
r

)
dr;

∇η′,ηỸ
t,s,x
l =G

(
l,∇η′,ηX

s,x)− ∫ T

l

∇η′,ηZ̃
t,s,x
r dWr

+
∫ T

l

F
(
t, r,∇η′,ηX

s,x,∇η′,ηY
s,x
r ,∇η′,ηZ̃

t,s,x
r

)
dr.

Step 3. It remains to show that U,∂xU(t, ·) and ∂2
xxU(t, ·) have the desired regularity required in Theorem 3.2. We

emphasize that these functions here are already defined in X̂.
Step 3.1. We first show the continuity in x. Fix (s,x) ∈ �̂, t ≤ s, and x′ ∈ X̂. By abusing the notation, denote �x′Xs,x :=

Xs,x+x′ −Xs,x and similarly for the other terms, and

ϕ̌
(
l, r,x′

) := ϕ
(
l, r,Xs,x + x′

)− ϕ
(
l, r,Xs,x), for ϕ = b,σ, g;

f̌
(
l, r,x′, y, z

) := f
(
l, r,Xs,x+x′ , Y s,x

r + y,Zl,s,x
r + z

)− f
(
l, r,Xs,x, Y s,x

r ,Zl,s,x
r

)
.

We can see that

�x′X
s,x
l = x′l , l ∈ [0, s];

�x′X
s,x
l = x′l +

∫ l

s

b̌
(
l, r,�x′X

s,x)dr +
∫ l

s

σ̌
(
l, r,�x′X

s,x)dWr, l ∈ [s, T ];

and �x′Y s,x, �x′ Ỹ t,s,x satisfy equations similar to the last two equations in (3.18). Following the same arguments as in
Step 1, we can easily show that

∣∣U(
t, s,x+ x′

)−U(t, s,x)
∣∣≤ C

∥∥x′
∥∥, ∀x′ ∈ X̂. (3.20)

Similarly, for any fixed η,η′ ∈ Xs with ‖η‖,‖η′‖ ≤ 1, one can show that ∇ηỸ
t,x,x
s and ∇η′,ηỸ

t,x,x
s are uniformly

Lipschitz continuous in x; that is, for any x′ ∈ X̂,

∣∣〈∂xU
(
t, s,x+ x′

)− ∂xU(t, s,x), η
〉∣∣+ ∣∣〈∂2

xxU
(
t, s,x+ x′

)− ∂2
xxU(t, s,x),

(
η′, η

)〉∣∣≤ C
∥∥x′

∥∥. (3.21)

Step 3.2. We next show the right continuity in s. Recall (3.7) and (3.8), we have

Ỹ
t,s,x
l =U

(
t, s + δ, X̂s,x,s+δ

)+ ∫ s+δ

l

f
(
t, r,Xs,x, Y s,x

r , Z̃t,s,x
r

)
dr −

∫ s+δ

l

Z̃t,s,x
r dWr,
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for l ∈ [s, s + δ]. Then by Propositions 2.9 and 2.11, we get∣∣U(t, s,x)−U(t, s + δ,x)
∣∣2

= E
[∣∣Es

[
Ỹ t,s,x

s −U(t, s + δ,x)
]∣∣2]

≤ CE

[∣∣U(
t, s + δ, X̂s,x,s+δ

)−U(t, s + δ,x)
∣∣2 +(∫ s+δ

s

∣∣f (t, r,Xs,x, Y s,x
r , Z̃t,s,x

r

)∣∣dr

)2]
≤ CE

[∥∥X̂s,x,s+δ − x
∥∥2 + δ

∫ s+δ

s

(
1+ ∥∥Xs,x∥∥2 + ∣∣Y s,x

r

∣∣2 + ∣∣Z̃t,s,x
r

∣∣2)dr

]
≤ C

(
1+ ‖x‖2)δ. (3.22)

Thus ∣∣U(t, s + δ,x)−U(t, s,x)
∣∣≤ C

(
1+ ‖x‖)√δ. (3.23)

Similarly, fix η ∈Xs , by (3.5), (3.7) and (3.8) again, we have

∇ηỸ
t,s,x
s+δ = lim

ε→0

1

ε

[
Ỹ

t,s,x+εη
s+δ − Ỹ

t,s,x
s+δ

]= lim
ε→0

1

ε

[
U
(
t, s + δ, X̂s,x+εη,s+δ

)−U
(
t, s + δ, X̂s,x,s+δ

)]
= 〈

∂xU
(
t, s + δ, X̂s,x,s+δ

)
,∇ηX̂

s,x,s+δ
〉
,

where

∇ηX̂
s,x,s+δ
l := lim

ε→0

1

ε

[
X̂

s,x+εη,s+δ
l − X̂

s,x,s+δ
l

]= lim
ε→0

1

ε

[
X̃

s,x+εη
s+δ,l − X̃

s,x
s+δ,l

]
= ηl +

∫ s+δ

s

〈
∂xb

(
l, r,Xs,x),∇ηX

s,x〉dr +
∫ s+δ

s

〈
∂xσ

(
l, r,Xs,x),∇ηX

s,x〉dWr,

with ∇ηX
s,x determined by (3.16). From the above and (3.16), note that, for l ∈ [s, s + δ],

∇ηỸ
t,s,x
l = 〈

∂xU
(
t, s + δ, X̂s,x,s+δ

)
,∇ηX̂

s,x,s+δ
〉− ∫ s+δ

l

∇ηZ̃
t,s,x
r dWr

+
∫ s+δ

τ

[〈
Df (·),∇ηX

s,x〉+ ∂yf (·)∇ηY
s,x
r + ∂zf (·)∇ηZ̃

t,s,x
r

](
t, r,Xs,x, Y s,x

r , Z̃t,s,x
r

)
dr.

Then similar to (3.22) we have∣∣〈∂xU(t, s,x), η
〉− 〈

∂xU(t, s + δ,x), η
〉∣∣2

= ∣∣∇ηỸ
t,s,x
s − 〈

∂xU(t, s + δ,x), η
〉∣∣2

≤ CE

[∣∣〈∂xU
(
t, s + δ, X̂s,x,s+δ

)
,∇ηX̂

s,x,s+δ
〉− 〈

∂xU(t, s + δ,x), η
〉∣∣2

+
(∫ s+δ

s

∣∣〈Df (·),∇ηX
s,x〉+ ∂yf (·)∇ηY

s,x
r + ∂zf (·)∇ηZ̃

t,s,x
r

∣∣dr

)2]
≤ CE

[∥∥X̂s,x,s+δ − x
∥∥2∥∥∇ηX̂

s,x,s+δ
∥∥2 + ∥∥∇ηX̂

s,x,s+δ − η
∥∥2

× δ

∫ s+δ

s

(∥∥∇ηX
s,x∥∥2 + ∣∣∇ηY

s,x
r

∣∣2 + ∣∣∇ηZ̃
t,s,x
r

∣∣2)dr

]
≤ C

(
1+ ‖x‖2)‖η‖2δ.

Thus ∣∣〈∂xU(t, s + δ,x), η
〉− 〈

∂xU(t, s,x), η
〉∣∣≤ C

(
1+ ‖x‖)‖η‖√δ.
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Similarly, by using (3.19) we can show that∣∣〈∂2
xxU(t, s + δ,x),

(
η′, η

)〉− 〈
∂2

xxU(t, s,x),
(
η′, η

)〉∣∣≤ C
(
1+ ‖x‖)∥∥η′∥∥‖η‖√δ.

Step 3.3. Finally, by (2.9) and standard BSDE arguments we have∣∣U(t − δ, s,x)−U(t, s,x)
∣∣= ∣∣Ỹ t−δ,s,x

s − Ỹ t,s,x
s

∣∣≤ C
(
1+ ‖x‖)ρ(δ).

This, together with (3.20) and (3.23), implies that U is continuous in all variables (t, s,x). �

Combining Theorems 3.1 and 3.4, under Assumption 3.3, the path dependent Feynman–Kac formula of FBSVIEs is
established in the contexts of classical solutions. In Section 6.3 below, we shall obtain a more explicit representation
formula for ∂xU(t, s,x).

4. Viscosity solution of the PPDE

Inspired by Proposition 2.12, in this section, we investigate viscosity solutions for the PPDE system (3.1) in the case
m = 1. Since the state space X is not locally compact here, we shall take the approach of Ekren–Keller–Touzi–Zhang
[23], rather than the standard approach of Crandall–Ishii–Lions [15]. However, we shall emphasize that the paths here are
on the whole interval [0, T ], due to the Volterra nature of the state process, which is different from the setting in [23]. In
particular, our work covers the PPDE in Viens–Zhang [60] (under some stronger technical conditions though).

Throughout this section, we shall assume the following.

Assumption 4.1. Let Assumptions 2.1 and 2.3 hold and m= 1. Moreover,

(i) f , g are bounded and uniformly Lipschitz continuous in x.
(ii) f is nondecreasing in y.

We remark that the monotonicity condition in Assumption 4.1(ii) is essentially the proper condition in [15] for elliptic
PDEs. For standard parabolic PDE like (1.2), such a condition is redundant because, for any Lipschitz continuous function
f , ũ(t, x) := e−λtu(t, x) will satisfy a PDE whose corresponding f̃ is nondecreasing in y whenever λ is large enough.
However, due to the two-time variable structure, this change variable technique does not work for PPDE (3.1). Indeed, if
we remove the monotonicity condition, the comparison principle may fail even for classical solutions.

Let C0
b(T2+ × X) denote the set of functions U : T2+ × X→ R such that U is bounded, uniformly continuous in all

variables, and progressively measurable. Following the arguments in the proof of Theorem 3.4, Step 3, we have the
following.

Lemma 4.2. Under Assumption 4.1, the function U defined by (3.6) is in C0
b(T2+ ×X).

To introduce our notion of viscosity solutions, for any U ∈ C0
b(T2+ ×X) and φ ∈ C

1,2
+ (�), define

LUφ(t, s,x) := [LUφ](t, s,x)

:= ∂sφ(s,x)+ 1

2

〈
∂2

xxφ(s,x),
(
σ s,x, σ s,x)〉+ 〈

∂xφ(s,x), bs,x〉
+ f

(
t, s,x,U(s, s,x),

〈
∂xφ(s,x), σ s,x〉). (4.1)

We emphasize that we use U(s, s,x) instead of φ(s,x) inside f . It is clear that, for any fixed t ,

LUUt(t, s,x)= LU(t, s,x), where Ut :=U(t, ·). (4.2)

For any s ∈ T and L > 0, denote F
s := {F t

r }r∈[s,T ] with F s
r := σ(Wl −Ws, l ∈ [s, r]). Let Ts be the set of Fs -stopping

times, T +
s the subset of τ ∈ Ts such that τ > s, a.s., UL

s the set of F
s -progressively measurable processes on [s, T ]

bounded by L, and

Mθ
r := exp

(∫ r

s

θl dWl − 1

2

∫ r

s

|θl |2 dl

)
, r ∈ [s, T ], θ ∈ UL

s . (4.3)
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Given U ∈ C0
b(T2+ ×X) and (t, s,x) ∈ T

2+ ×X, denote

ALU(t, s,x) :=
{
φ ∈ C

1,2
+

([s, T ] ×X;R) ∣∣ ∃H ∈ T +
s such that

φ(s,x)−U(t, s,x)= 0= inf
θ∈UL

s

inf
H≥τ∈Ts

E
[
Mθ

τ [φ −Ut ]
(
τ, X̂s,x,τ

)]};
AL

U(t, s,x) :=
{
φ ∈ C

1,2
+

([s, T ] ×X;R) ∣∣ ∃H ∈ T +
s such that

φ(s,x)−U(t, s,x)= 0= sup
θ∈UL

s

sup
H≥τ∈Ts

E
[
Mθ

τ [φ −Ut ]
(
τ, X̂s,x,τ

)]}
.

(4.4)

We note that, if φ ∈ALU(t, s,x) with the corresponding H ∈ T +
s , then for any θ ∈ UL

s and H ≥ τ ∈ Ts , we have

Mθ
s [φ −Ut ](s,x)= 0≤ E

[
Mθ

τ [φ −Ut ]
(
τ, X̂s,x,τ

)]
. (4.5)

Definition 4.3. Let U ∈ C0
b(T2+ ×X).

(i) We say U is an L-viscosity subsolution of PPDE (3.1) if

LUφ(t, s,x)≥ 0 for any (t, s,x) ∈ T
2+ ×X and any φ ∈ALU(t, s,x). (4.6)

(ii) We say U is an L-viscosity supersolution of PPDE (3.1) if

LUφ(t, s,x)≤ 0 for any (t, s,x) ∈ T
2+ ×X and any φ ∈AL

U(t, s,x). (4.7)

(iii) We say U is an L-viscosity solution of PPDE (3.1) if it is both an L-viscosity subsolution and an L-viscosity
supersolution. Moreover, we say U is a viscosity solution of PPDE (3.1) if it is an L-viscosity solution for some
L > 0.

For consistency, we say U is a classical subsolution (resp., classical supersolution) of PPDE (3.1) if Ut(·) ∈
C

1,2
+ ([s, T ] ×X;R) and satisfies

LUUt(t, s,x)= LU(t, s,x)≥ (resp. ≤)0.

From now on, we let

L0 denote the Lipschitz constant of f with respect to z. (4.8)

We first have the consistency result.

Proposition 4.4. Assume U ∈ C0
b(T2+ ×X) and U(t, ·, ·) ∈ C

1,2
+ ([t, T ] ×X). Then U is a classical subsolution of PPDE

(3.1) if and only if it is a viscosity subsolution of PPDE (3.1).

Proof. We first assume U is an L-viscosity subsolution for some L. Clearly Ut ∈ ALU(t, s,x). Then LU(t, s,x) =
LUUt(t, s,x)≥ 0, which implies that U is a classical subsolution.

On the other hand, assume U is a classical subsolution. For any φ ∈ AL0U(t, s,x) with the corresponding H ∈ T +
s ,

applying the functional Itô formula we have

dφ
(
r, X̂s,x,r

)= [
∂rφ + 1

2

〈
∂2

xxφ,
(
σ ·, σ ·

)〉+ 〈
∂xφ,b·

〉](
r, X̂s,x,r

)
dr + 〈

∂xφ,σ ·
〉(
r, X̂s,x,r

)
dWr

= [
LUφ(t, ·)− f

(
t, ·,U(r, ·), 〈∂xφ,σ ·

〉)](
r, X̂s,x,r

)
dr + 〈

∂xφ,σ ·
〉(
r, X̂s,x,r

)
dWr. (4.9)

Similarly, we have

dUt

(
r, X̂s,x,r

)= [
LU(t, ·)− f

(
t, ·,U(r, ·), 〈∂xUt ,σ

·〉)](r, X̂s,x,r
)
dr + 〈

∂xUt,σ
·〉(r, X̂s,x,r

)
dWr.

Denote

�Yr := [φ −Ut ]
(
r, X̂s,x,r

)
, �Zr :=

〈
∂x[φ −Ut ], σ ·

〉(
r, X̂s,x,r

)
.
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Then

d[�Yr ] = [LUφ −LU ](t, r, X̂s,x,r
)
dr − θr�Zr dr +�Zr dWr,

for some |θ | ≤ L0. This implies that

d
(
Mθ

r �Yr

)=Mθ
r [LUφ −LU ](t, r, X̂s,x,r

)
dr +Mθ

r �ZrdWr,

where Mθ
r is defined by (4.3). Then, for any τ ≤ H, by (4.4) (or (4.5)) we have

0≤ E
[
Mθ

τ �Yτ −Mθ
s �Ys

]= E

[∫ τ

s

Mθ
r [LUφ −LU ](t, r, X̂s,x,r

)
dr

]
.

Since τ ≥ t is arbitrary and LUφ −LU is continuous, using the fact that LU(t, s,x)≥ 0, we have

0≤ [LUφ −LU ](t, s,x)≤ LUφ(t, s,x),

implying the viscosity subsolution property. �

Next, we have the following existence of the viscosity solutions to PPDE (3.1).

Theorem 4.5. Under Assumption 4.1, the function U defined by (3.6) is an L0-viscosity solution of PPDE (3.1).

Proof. Without loss of generality, we shall only verify the viscosity subsolution property. Fix (t, s,x) ∈ T
2+ ×X. Recall

(4.9) and (3.5), and denote

�Yr := φ
(
r, X̂s,x,r

)− Ỹ t,s,x
r , �Zr :=

〈
∂xφ,σ ·

〉(
r, X̂s,x,r

)− Z̃t,s,x
r .

Then

d(�Yr)=
{[
LUφ(t, ·)− f

(
t, ·,U(r, ·), 〈∂xφ,σ ·

〉)](
r, X̂s,x,r

)
+ f

(
t, r,Xs,x· , Y s,x

r , Z̃t,s,x
r

)}
dr +�Zr dWr.

Recall (3.7) and (3.8), the above implies

d(�Yr)= LUφ
(
t, r, X̂s,x,r

)
dr − θr�Zr dr +�Zr dWr,

for some |θ | ≤ L0. Then, for the Mθ
r defined by (4.3),

d
(
Mθ

r �Yr

)=Mθ
r LUφ

(
t, r, X̂s,x,r

)
dr +Mθ

r �Zr dWr.

Recall (3.8) again that �Yr = [φ −Ut ](r, X̂s,x,r ). Then, for any τ ≤ H, by (4.4) (or (4.5)) we have

0≤ E
[
Mθ

τ �Yτ −Mθ
s �Ys

]= E

[∫ τ

s

Mθ
r LUφ

(
t, r, X̂s,x,r

)
dr

]
.

Since τ ≥ t is arbitrary and LUφ is continuous, we obtain LUφ(t, s,x)≥ 0. �

The key for the viscosity solution theory is the following partial comparison principle.

Theorem 4.6. Let Assumption 4.1 hold and U1 (resp., U2) be a viscosity subsolution (resp., supersolution) of PPDE
(3.1). Assume U1(t, T ,x)≤U2(t, T ,x) for all (t,x) ∈�. If one of U1, U2 is smooth, then U1 ≤U2.

Proof. Without loss of generality, we assume that U2 is a classical supersolution. Fix δ > 0, which will be specified later.
We shall first prove U1(t, s,x)≤U2(t, s,x) whenever s ∈ [T − δ, T ]. Assume by contradiction that

c := sup
s∈[T−δ,T ],t∈[0,s],x∈X

[U1 −U2](t, s,x) > 0. (4.10)
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Then there exists desired (t0, s0,x0) such that [U1 −U2](t0, s0,x0)≥ c
2 > 0. Fix t0 and denote

V (s,x) := [U1 −U2](t0, s,x)− c

4(T − s0)
[T − s], ψ(s,x) := sup

τ∈Ts

sup
θ∈UL0

s

E
[
Mθ

τ V
(
τ, X̂s,x,τ

)]
, (4.11)

where X̂s,x,τ and Mθ
τ are defined by (3.7) and (4.3), respectively. Similar to Lemma 4.2, ψ is bounded and uniformly

continuous in (s,x). Moreover, by standard BSDE results (see [74], e.g.), Ys := ψ(s, X̂s0,x0,s) is the solution to the
following reflected BSDE:

Ys = V
(
T , X̂s0,x0,T

)+L0

∫ T

s

|Zr |dr −
∫ T

s

Zr dWr +KT −Ks;

Ys ≥ V
(
s, X̂s0,x0,s

)
,

[
Ys − V

(
s, X̂s0,x0,s

)]
dKs = 0.

(4.12)

Denote

τ ∗ := inf
{
s ≥ s0 : Ys = V

(
s, X̂s0,x0,s

)}
. (4.13)

Then dKs = 0 for s ∈ [s0, τ
∗]. From (4.11), we note

Ys0 ≥ V
(
s0, X̂

s0,x0,s0
)= V

(
s0,x0)= [U1 −U2]

(
t0, s0,x0)− c

4
≥ c

4
> 0, (4.14)

YT = [U1 −U2]
(
t0, T , X̂s0,x0,T

)≤ 0. (4.15)

Then it is clear that P(τ ∗ < T ) > 0. Indeed, if P(τ ∗ < T )= 0, we have dKs ≡ 0 and the reflected BSDE (4.12) becomes
a standard BSDE. Then the terminal condition (4.15) implies Ys0 ≤ 0, which contradicts (4.14). Therefore, there exists
ω∗ ∈� such that

τ ∗
(
ω∗

)
< T and ψ

(
s∗,x∗

)= V
(
s∗,x∗

)
, where s∗ := τ ∗

(
ω∗

)
,x∗ := X̂s0,x0,s∗(ω∗).

Now define

φ(s,x) :=U2(t0, s,x)+ c

4(T − s0)
(T − s)+ψ

(
s∗,x∗

)
.

Then φ ∈ C
1,2
+ ([s0, T ] ×X), φ(s∗,x∗)=U1(t0, s

∗,x∗), and, for any θ ∈ UL0
s∗ and any τ ∈ Ts∗ ,

E
[
Mθ

τ

[
φ −U1(t0, ·)

](
s, X̂s∗,x∗,s)]=ψ

(
s∗,x∗

)−E
[
Mθ

τ V
(
s, X̂s∗,x∗,s)]≥ 0. (4.16)

That is, φ ∈AL0U1(t0, s
∗,x∗), and thus by the viscosity subsolution property of U1 we have

0≤ LU1φ
(
t0, s

∗,x∗
)

=
[
∂sφ + 1

2

〈
∂2

xxφ,
(
σ ·, σ ·

)〉+ 〈
∂xφ,b·

〉+ f
(
t0, ·,U1

(
s∗, ·), 〈∂xφ,σ ·

〉)](
s∗,x∗

)
=− c

4(T − s0)
+
[
∂sU2(t0, ·)+ 1

2

〈
∂2

xxU2(t0, ·),
(
σ ·, σ ·

)〉+ 〈
∂xU2(t0, ·), b·

〉
+ f

(
t0, ·,U1

(
s∗, ·), 〈∂xU2(t0, ·), σ ·

〉)](
s∗,x∗

)
. (4.17)

Recall (4.10) we have

U1
(
s∗, s∗,x∗

)≤U2
(
s∗, s∗,x∗

)+ c.

Let L denote the Lipschitz constant of f with respect to y. Then, by Assumption 4.1(ii) we have

0 ≤ − c

4δ
+
[
∂sU2(t0, ·)+ 1

2

〈
∂2

xxU2(t0, ·),
(
σ ·, σ ·

)〉+ 〈
∂xU2(t0, ·), b·

〉
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+ f
(
t0, ·,U2

(
s∗, ·), 〈∂xU2(t0, ·), σ ·

〉)](
s∗,x∗

)+Lc

= LU2
(
t0, s

∗,x∗
)− c

4δ
+Lc ≤ Lc− c

4δ
,

thanks to the supersolution property of U2. Set δ := 1
8L

, we obtain the desired contradiction, and hence U1(t, s,x) ≤
U2(t, s,x) whenever s ∈ [T − δ, T ].

Now consider the PPDE (3.1) on [0, T − δ]. Since U1(t, T − δ,x) ≤ U2(t, T − δ,x) for all (t,x) ∈ [0, T − δ] × X,
by the same arguments as above we can show that U1(t, s,x) ≤ U2(t, s,x) whenever s ∈ [T − 2δ, T − δ]. Repeat the
arguments backwardly in time, we show that U1 ≤U2 over the whole space. �

Our final result in this section is the following comparison principle.

Theorem 4.7. Let b, σ satisfy the requirements in Assumption 3.3 and f , g satisfy the requirements in Assumption 4.1. Let
U1 (resp., U2) be a viscosity subsolution (resp., supersolution) of PPDE (3.1). Assume U1(t, T ,x)≤ g(t,x)≤U2(t, T ,x)

for all (t,x) ∈�, then U1 ≤U2 on T
2+ ×X.

Proof. Without loss of generality, we shall assume U1(t, T ,x)≤ g(t,x) and prove only U1 ≤ U , where U is defined by
(3.6). We shall approximate (f, g) by (fn, gn), which satisfy Assumption 3.3. However, since x is a path, the standard
mollification does not work and the approximations may not be uniform in terms of x. In particular, we may not have
U1(t, T ,x)≤ gn(t,x) for all (t,x) ∈�. Therefore, instead of directly applying the partial comparison principle, we will
follow its arguments. As in Theorem 4.6, it suffices to prove U1(t, s,x) ≤ U(t, s,x) for s ∈ [T − δ, T ], where δ := 1

8L
.

Assume by contradiction that, for some s0 ∈ [T − δ, T ], t0 ≤ s0 and x0 ∈X,

c := sup
s∈[T−δ,T ],t∈[0,s],x∈X

[U1 −U ](t, s,x) > 0 and [U1 −U ](t0, s0,x0)≥ c

2
. (4.18)

We now mollify (f, g). By first discretizing x ∈X, one can easily construct fn, gn such that, for each n, fn, gn satisfy
Assumption 3.3, and

sup
(t,s)∈T2+

sup
y,z

∣∣[fn − f ](t, s,x, y, z)
∣∣+ sup

t∈T

∣∣[gn − g](t, T ,x)
∣∣≤ C

[
1

n
+OSC 1

n
(x)

]
,

where OSCδ(x) := sup
|t−s|≤δ

|xt − xs |.
(4.19)

By Theorem 3.4, the PPDE (3.1) with coefficients (b, σ,fn, gn) has a classical solution Un. As in (4.11), fix t0 and denote

Vn(s,x) := [U1 −Un](t0, s,x)− c

4(T − s0)
[T − s], ψn(s,x) := sup

τ∈Ts

sup
θ∈UL0

s

E
[
Mθ

τ Vn

(
τ, X̂s,x,τ

)]
. (4.20)

Denote further Yn
s :=ψn(s, X̂

s0,x0,s). Then (4.12) and (4.13) become:

Yn
s = Vn

(
T , X̂s0,x0,T

)+L0

∫ T

s

∣∣Zn
r

∣∣dr −
∫ T

s

Zn
r dWr +Kn

T −Kn
s ;

Yn
s ≥ Vn

(
s, X̂s0,x0,s

)
,

[
Yn

s − Vn

(
s, X̂s0,x0,s

)]
dKn

s = 0;
τ ∗n := inf

{
s ≥ s0 : Yn

s = Vn

(
s, X̂s0,x0,s

)}
.

(4.21)

Note that

Yn
s0
≥ Vn

(
s0, X̂

s0,x0,s0
)= Vn

(
s0,x0)= [U1 −Un]

(
s0,x0)− c

4
≥ c

4
− [U −Un]

(
s0,x0),

Yn
T = [U1 −Un]

(
t0, T , X̂s0,x0,T

)≤ [U −Un]
(
t0, T , X̂s0,x0,T

)
.

By (4.19) and noting that x ∈X, one can easily show that

lim
n→∞E

[∣∣OSC 1
n

(
X̂s0,x0,τ

)∣∣2 + |U −Un|2
(
t0, τ, X̂

s0,x0,τ
)]= 0, for any τ ∈ Ts0 . (4.22)



Path dependent Feynman–Kac formula for FBSVIEs 625

In particular, for any ε > 0 small, this implies that, for n large enough,

Yn
s0
≥ c

8
> 0 and E

[∣∣Yn
T

∣∣21{Yn
T≥0}

]≤ ε.

Denote θn
s := L0sign(Zn

s ). Note that dKn
s = 0 for s ∈ [s0, τ

∗
n ], then Yn

s0
= E[Mθn

τ∗n Y
n
τ∗n ]. Thus

c

8
≤ Yn

s0
= E

[
Mθn

τ∗n Y
n
τ∗n 1{τ∗n <T } +Mθn

T Yn
T 1{τ∗n=T }

]
≤ E

[
Mθn

τ∗n Y
n
τ∗n 1{τ∗n <T } +Mθn

T Yn
T 1{τ∗n=T }1{Yn

T≥0}
]

≤ C
[√

P
(
τ ∗n < T

)+√ε
]
.

Then, for ε > 0 small, we have

P
(
τ ∗n < T

)≥ c2

C
, for all n large enough. (4.23)

Moreover, by (4.19) and (4.22), we have E[|�n|2] ≤ ε3 for n large enough, where

�n := sup
s∈[s0,T ],t∈[0,s]

sup
y,z
|fn − f |(t, s, X̂s0,x0,s , y, z

)+ |U −Un|
(
t0, τ

∗
n , X̂s0,x0,τ∗n

)
, (4.24)

which implies that

P(�n > ε)≤ 1

ε2
E
[|�n|2

]≤ ε.

Together with (4.23), for ε < c2

C
, we have P({τ ∗n < T } ∩ {�n ≤ ε}) > 0, for all n large enough. Therefore, there exists ω∗n

such that

τ ∗
(
ω∗n

)
< T, �n

(
ω∗n

)≤ ε, and ψn

(
s∗n,x∗n

)= Vn

(
s∗n,x∗n

)
,

where s∗n := τ ∗n
(
ω∗n

)
, x∗n := X̂s0,x0,s∗n

(
ω∗n

)
.

Now define

φn(s,x) :=Un(t0, s,x)+ c

4(T − s0)
(T − s)+ψn

(
s∗n,x∗n

)
.

Similar to (4.16)–(4.17), we have φn ∈AL0U1(t0, s
∗
n,x∗n) and then, recalling that T − s0 ≤ δ = 1

8L
,

0 ≤ −2Lc+
[
∂sUn(t0, ·)+ 1

2

〈
∂2

xxUn(t0, ·),
(
σ ·, σ ·

)〉+ 〈
∂xUn(t0, ·), b·

〉
+ f

(
t0, ·,U1

(
s∗n, ·), 〈∂xUn(t0, ·), σ ·

〉)](
s∗n,x∗n

)
.

Since Un is a classical solution of the corresponding PPDE, this implies

2Lc ≤ [
f
(
t0, ·,U1

(
s∗n, ·), 〈∂xUn(t0, ·), σ ·

〉)− fn

(
t0, ·,Un

(
s∗n, ·), 〈∂xUn(t0, ·), σ ·

〉)](
s∗n,x∗n

)
.

Then, by (4.24) and recalling �n(ω
∗
n)≤ ε, we have

2Lc ≤ [
f
(
t0, ·,U1

(
s∗n, ·), 〈∂xUn(t0, ·), σ ·

〉)− f
(
t0, ·,U

(
s∗n, ·), 〈∂xUn(t0, ·), σ ·

〉)](
s∗n,x∗n

)+Cε.

Note further that (4.18) leads to U1(s
∗
n, s∗n,x∗n)≤U(s∗n, s∗n,x∗n)+c, and since f is Lipschitz continuous and nondecreasing

in y, we have 2Lc ≤ Lc + Cε, and thus Lc ≤ Cε. This is a desired contradiction since ε can be arbitrarily small, thus
U1(t, s,x)≤U(t, s,x) whenever s ∈ [T − δ, T ].

Now similar to the end of Theorem 4.6, we can show that U1 ≤U over the whole space. �
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Remark 4.8. In Theorem 4.7, the assumptions imposed on b, σ are somewhat strong.
(i) In [23] and the subsequent works [24,25], general semimartingale measures are used to define the corresponding set

of test functions ALU . In this paper, X is not a semimartingale and inside U we need to use X̂, so in (4.4) we are using

the exact process X̂. Consequently, we are not allowed to mollify (b, σ ), which will change the process X̂. Therefore, we
assume b, σ are smooth so that, together with mollified (fn, gn), the corresponding PPDE has a classical solution Un. It
will be desirable to allow the X̂ in (4.4) to have more general distributions, in the spirit of [24,25]. Then it may become
possible to mollify (b, σ ), and even to allow b, σ to depend on some controls. We shall leave this to future research.

(ii) If X ≡ BH is a fractional Brownian motion (with the Hurst parameter H �= 1
2 ), namely b ≡ 0 and σ(t, r,x) ≡

σ(t, r), following our arguments we may prove our results without Assumption 2.1(iii) and Assumption 3.3(iii). Thus,
in the setting that the randomness of f , g comes from some fractional Brownian motions, the viscosity theory of the
corresponding PPDEs still holds true.

5. Coupled forward backward SVIEs and type-II BSVIEs

In this section, we investigate briefly two more general BSVIEs.

5.1. Coupled FBSVIEs

We now consider the following coupled FBSVIEs:{
Xt = xt +

∫ t

0 b(t, r,X·, Yr) dr + ∫ t

0 σ(t, r,X·, Yr ) dWr, t ∈ T,

Yt = g(t,X·)+
∫ T

t
f (t, r,X·, Yr ,Z

t
r ) dr − ∫ T

t
Zt

r dWr, t ∈ T,
(5.1)

and the associated PPDE:⎧⎪⎨⎪⎩
∂sU(t, s,x)+ 1

2 〈∂2
xxU(t, s,x), (̂σ s,x, σ̂ s,x)〉 + 〈∂xU(t, s,x), b̂s,x〉

+ f (t, s,x,U(s, s,x), 〈∂xU(t, s,x), σ̂ s,x〉)= 0, (t, s) ∈ T
2+,x ∈X,

U(t, T ,x)= g(t, T ,x), t ∈ T,x ∈X,

(5.2)

where, for ϕ = b,σ , ϕ̂
s,x
r := ϕ(r, s,x·,U(s, s,x)), r ∈ [s, T ].

When T is small, Hamaguchi [33] proved the well-posedness of FBSVIE (5.1) with the forward being a SDE. Fol-
lowing Ma–Protter–Yong [44], in this subsection we prove the well-posedness of (5.1) for arbitrary T , provided PPDE
(5.2) has a classical solution. The existence of such classical solution, as well as the well-posedness of (5.1) in general,
remains a challenging problem and we shall leave it for future research. For simplicity, in the following result we do not
specify the precise technical conditions.

Theorem 5.1. Assume b, σ , f , g are sufficiently smooth with all the related derivatives being bounded. If PPDE (5.2)
has a classical solution U with bounded ∂xU , then the coupled FBSVIE (5.1) admits a unique strong solution (X,Y,Z)

and the following representation holds:

Yt =U
(
t, t, X̂t

)
, Zt

s =
〈
∂xU

(
t, s, X̂s

)
, σ̂ s,X̂s 〉

, (t, s) ∈ T
2+,

where X̂t :=X⊕t X̃t , X̃s
t := xs +

∫ t

0
b(s, r,X·, Yr ) dr +

∫ t

0
σ(s, r,X·, Yr ) dWr.

(5.3)

Proof. We proceed in two steps. Fix an arbitrary T .
Step 1. We first show the existence. Let δ > 0 be a small number which will be specified later. Introduce a mapping �

on L
2
F
([0, δ];Rm) by �(y) := Y y, where, for any y ∈ L

2
F
([0, δ];Rm),

X
y
t = xt +

∫ t

0
b
(
t, r,Xy· ,yr

)
dr +

∫ t

0
σ
(
t, r,Xy· ,yr

)
dWr, t ∈ [0, δ];

X̃
y,s
t = xs +

∫ t

0
b
(
s, r,Xy· ,yr

)
dr +

∫ t

0
σ
(
s, r,Xy· ,yr

)
dWr, s ∈ [t, T ];

X̂y,t :=Xy ⊕t X̃
y
t , Y

y
t :=U

(
t, t, X̂y,t

)
, t ∈ [0, δ].

(5.4)
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We emphasize that here we do not need to assume T ≤ δ. We shall show that � is a contraction mapping when δ is small
enough.

Indeed, let y,y′ ∈ L
2
F
([0, δ];Rm). Denote �y := y− y′, �X :=Xy −Xy′ , and similarly for the other notations. First,

applying Proposition 2.9 one can easily have

E

[
sup

0≤t≤δ

|�Xt |2
]
≤ CE

[∫ δ

0
|�yr |2 dr

]
. (5.5)

Then by standard SDE estimates we have

E
[∣∣�X̃s

t

∣∣2]≤ CE

[∫ δ

0
|�yr |2 dr

]
, t ∈ [0, δ], s ∈ [t, T ].

Moreover, since ∂tb, ∂tσ satisfy the desired regularity, following the arguments in [57] we have

E

[
sup

s∈[t,T ]
∣∣�X̃s

t

∣∣2]≤ CE

[∫ δ

0
|�yr |2 dr

]
, t ∈ [0, δ].

This, together with (5.5), implies that

E

[
sup

s∈[0,T ]
∣∣�X̂t

s

∣∣2]≤ CE

[∫ δ

0
|�yr |2 dr

]
, t ∈ [0, δ].

Therefore, since ∂xU is bounded,

E
[|�Yt |2

]≤ CE
[∥∥�X̂t

∥∥2]≤ CE

[∫ δ

0
|�yr |2 dr

]
, t ∈ [0, δ],

and thus

E

[∫ δ

0
|�Yt |2 dt

]
≤ CδE

[∫ δ

0
|�yt |2 dt

]
.

Choose δ := 1
2C

, we see that � is a contraction mapping. Consequently, � has a unique fixed-point y∗. Denote X∗
t :=X

y∗
t ,

X̃
∗,s
t := X̃

y∗,s
t , t ∈ [0, δ], s ∈ [t, T ].

Next, we introduce another mapping �2 on L
2
F
([δ,2δ];Rm) by �2(y) := Y y, where, by abusing the notation, for any

y ∈ L
2
F
([δ,2δ];Rm),

X
y
t = X̃

∗,t
δ +

∫ t

δ

b
(
t, r,X∗ ⊕δ Xy· ,yr

)
dr +

∫ t

δ

σ
(
t, r,X∗ ⊕t Xy· ,yr

)
dWr, t ∈ [δ,2δ];

X̃
y,s
t = X̃

∗,s
δ +

∫ t

δ

b
(
s, r,X∗ ⊕δ Xy· ,yr

)
dr +

∫ t

δ

σ
(
s, r,X∗ ⊕δ Xy· ,yr

)
dWr, s ∈ [t, T ];

X̂y,t :=X∗ ⊕δ Xy ⊕t X̃
y
t , Y

y
t :=U

(
t, t, X̂y,t

)
, t ∈ [δ,2δ].

(5.6)

Following the same arguments, we can show that �2 is also a contraction mapping, and thus we may extend the unique
fixed-point y∗ to [0,2δ]. Repeat the arguments and we will obtain a fixed-point y∗ ∈ L

2
F
([0, T ];Rm) such that

X∗
t = xt +

∫ t

0
b
(
t, r,X∗· ,y∗r

)
dr +

∫ t

0
σ
(
t, r,X∗· ,y∗r

)
dWr, t ∈ [0, T ];

X̃
∗,s
t = xs +

∫ t

0
b
(
s, r,X∗· ,y∗r

)
dr +

∫ t

0
σ
(
s, r,X∗· ,y∗r

)
dWr, s ∈ [t, T ];

X̂∗,t :=X∗ ⊕t X̃∗
t , y∗t :=U

(
t, t, X̂∗,t), t ∈ [0, T ].

(5.7)

Now applying the functional Itô formula (2.29) on U(t, s, X̂∗,t ) and utilizing the PPDE (5.2), one can easily see that
(X∗,y∗) satisfy FBSVIE (5.1) and the representation (5.3) holds true.
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Step 2. We next show the uniqueness. Let (X,Y,Z) be an arbitrary solution, and X̃, Ỹ , X̂ be defined in an obvious
way: X̂t :=X⊕t X̃t , and

X̃s
t = xs +

∫ t

0
b(s, r,X·, Yr ) dr +

∫ t

0
σ(s, r,X·, Yr ) dWr,

Ỹ t
s = g(t,X·)+

∫ T

s

f
(
t, r,X·, Yr ,Z

t
r

)
dr −

∫ T

s

Zt
r dWr,

(t, s) ∈ T
2+.

Now denote ϕ
s,(x,y)
r := ϕ(r, s,x, y), r ∈ [s, T ], for ϕ = b,σ , and

Yt :=U
(
t, t, X̂t

)
, Ỹ t

s :=U
(
t, s, X̂s

)
, Z t

s :=
〈
∂xU

(
t, s, X̂s

)
, σ s,(X,Ys)

〉;
�Y := Y − Y, �Ỹ := Ỹ − Ỹ , �Z :=Z −Z.

Applying the functional Itô formula (2.29) and then utilizing the PPDE (5.2), we have

dỸ t
s = Z t

s dWs +
[
∂sU + 1

2

〈
∂2

xxU,
(
σ s,X,Ys , σ s,X,Ys

)〉+ 〈
∂xU,bs,X,Ys

〉](
t, s, X̂s

)
ds

= Z t
s dWs +

[
1

2

〈
∂2

xxU,
(
σ s,X,Ys , σ s,X,Ys

)〉+ 〈
∂xU,bs,X,Ys

〉](
t, s, X̂s

)
ds

−
[

1

2

〈
∂2

xxU,
(
σ̂ s,X̂s

, σ̂ s,X̂s )〉+ 〈
∂xU, b̂s,X̂s 〉+ f

(·,Ys ,
〈
∂xU, σ̂ s,X̂s 〉)](

t, s, X̂s
)
ds.

Then

d�Ỹ t
s =�Z t

s dWs + 1

2

[〈
∂2

xxU,
(
σ s,X,Ys , σ s,X,Ys

)〉− 〈
∂2

xxU,
(
σ̂ s,X̂s

, σ̂ s,X̂s )〉](
t, s, X̂s

)
ds

+ 〈
∂xU,bs,X,Ys − b̂s,X̂s 〉(

t, s, X̂s
)
ds + [

f
(·, Ys,Z

t
s

)− f
(·,Ys ,

〈
∂xU, σ̂ s,X̂s 〉)](

t, s, X̂s
)
ds.

Noting that �Ỹ t
T = 0, by standard BSDE arguments, this implies

E

[∣∣�Ỹ t
s

∣∣2 + ∫ T

s

∣∣�Z t
r

∣∣2 dr

]
≤ CE

[∫ T

s

(∣∣�Ỹ t
r

∣∣2 + ∥∥σ r,X,Yr − σ̂ r,X̂r∥∥2 + ∥∥br,X,Yr − b̂r,X̂r∥∥2

+ |�Yr |2 +
∣∣�Ỹ t

r

∣∣∣∣Zt
r −

〈
∂xU

(
t, r, X̂r

)
, σ̂ r,X̂r 〉∣∣)dr

]
.

Note that, for ϕ = b,σ ,∥∥ϕr,X,Yr − ϕ̂r,X̂r∥∥= sup
l∈[r,T ]

∣∣ϕ(l, r,X,Yr)− ϕ
(
l, r,X,U

(
r, r, X̂r

))∣∣≤ C|�Yr |;
∣∣Zt

r −
〈
∂xU

(
t, r, X̂r

)
, σ̂ r,X̂r 〉∣∣≤ ∣∣�Z t

r

∣∣+ ∣∣〈∂xU
(
t, r, X̂r

)
, σ r,X,Yr − σ̂ r,X̂r 〉∣∣

≤ ∣∣�Z t
r

∣∣+C
∥∥σ r,X,Yr − σ̂ r,X̂r∥∥≤ ∣∣�Z t

r

∣∣+C|�Yr |.
Then

E

[∣∣�Ỹ t
s

∣∣2 + ∫ T

s

∣∣�Z t
r

∣∣2 dr

]
≤ E

[∫ T

s

[
C
∣∣�Ỹ t

r

∣∣2 +C|�Yr |2 +C
∣∣�Ỹ t

r

∣∣∣∣Z t
r

∣∣]dr

]
,

which implies

E
[∣∣�Ỹ t

s

∣∣2]≤ E

[∣∣�Ỹ t
s

∣∣2 + 1

2

∫ T

s

∣∣�Z t
r

∣∣2 dr

]
≤ CE

[∫ T

s

[∣∣�Ỹ t
r

∣∣2 + |�Yr |2
]
dr

]
. (5.8)

Now applying the Grönwall inequality we obtain

E
[∣∣�Ỹ t

s

∣∣2]≤ CE

[∫ T

s

|�Yr |2 dr

]
, s ∈ [t, T ]. (5.9)
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Set s = t at above, we have

E
[|�Yt |2

]= E
[∣∣�Ỹ t

t

∣∣2]≤ CE

[∫ T

t

|�Yr |2 dr

]
, t ∈ [0, T ].

Apply the Grönwall inequality again, we have �Y = 0. Plug this into (5.9) and then to (5.8), we see that �Ỹ =�Z = 0.
In particular, this implies that y := Y is a fixed point in Step 1. By the uniqueness of the fixed point, we see that Y is
unique, which implies immediately that X and Z are also unique. �

5.2. Type-II BSVIEs

Let X be the solution to FSVIE (2.3). In this subsection, we consider the following type-II BSVIE:

Yt = g(t,X·)+
∫ T

t

f
(
t, r,X·, Yr ,Z

t
r ,Z

r
t

)
dr −

∫ T

t

Zt
r dWr,

Yt = E[Yt ] +
∫ t

0
Zt

r dWr,

t ∈ T. (5.10)

We note that here f depends on both Zt
r and Zr

t , where Zr
t for t ≤ r is determined by the martingale representation of Yr ,

as in the second line of (5.10). The F-adapted solution to (5.10) is called an M-solution, with M referring to martingale.
By Yong [70], under suitable conditions BSVIE (5.10) admits a unique M-solution. Inspired by Wang–Yong [65], we
introduce the following PPDE:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂sV (t, s,x)+ 1
2 〈∂2

xxV (t, s,x), (σ s,x, σ s,x)〉 + 〈∂xV (t, s,x), bs,x〉 = 0, (t, s) ∈ T
2−,

∂sU(t, s,x′,x)+ 1
2 〈∂2

xxU(t, s,x′,x), (σ s,x, σ s,x)〉 + 〈∂xU(t, s,x′,x), bs,x〉
+ f (t, s,x,U(s, s,x,x), 〈∂xU(t, s,x′,x), σ s,x〉, 〈∂xV (s, t,x′), σ t,x′ 〉)= 0, (t, s) ∈ T

2+,

V (t, t,x)=U(t, t,x,x), U(t, T ,x′,x)= g(t,x·), t ∈ T,x′,x ∈X.

(5.11)

Note that here V : T2− ×X→R
m and U : T2+ ×X×X→R

m.

Theorem 5.2. Assume b, σ , f , g are sufficiently smooth with all the related derivatives being bounded, and let X, X̃, X̂

be determined by FSVIE (2.3) in the obvious sense. Assume PPDE (5.11) has a classical solution (V ,U) with bounded
derivatives. Then the unique M-solution of BSVIE (5.10) satisfies: for any 0≤ r ≤ t ≤ s ≤ T ,

Yt =U
(
t, t, X̂t , X̂t

)
, Zt

s =
〈
∂xU

(
t, s, X̂t , X̂s

)
, σ s,X

〉
, Zt

r =
〈
∂xV

(
t, r, X̂r

)
, σ r,X

〉
. (5.12)

Proof. Define Y , Z as in (5.12) and Ỹ t
s := U(t, s, X̂t , X̂s), Ỹ t

r = V (t, r, X̂r ) for 0≤ r ≤ t ≤ s ≤ T . We shall verify that
they satisfy BSVIE (5.10).

First, fix t , and apply functional Itô formula (2.29) on V (t, r, X̂r ); r ∈ [0, t], we have

dỸ t
r =

[
∂rV + 1

2

〈
∂2

xxV,
(
σ r,X,σ r,X

)〉+ 〈
∂xV,br,X

〉](
t, r, X̂r

)
ds +Zt

r dWr = Zt
r dWr,

where the second equality is due to (5.11). Since Ỹ t
t = Yt , this verifies the second line of (5.10).

Next, fix (t, X̂t ), and apply functional Itô formula (2.29) on U(t, s, X̂t , X̂s); s ∈ [t, T ], we have

dỸ t
s =

[
∂sU + 1

2

〈
∂2

xxU,
(
σ s,X,σ s,X

)〉+ 〈
∂xU,bs,X

〉](
t, s, X̂t , X̂s

)
ds +Zt

s dWs

= −f
(
t, s, Ys,Z

t
s,Z

s
t

)
ds +Zt

s dWs,

where the second equality is also due to (5.11). This verifies the first line of (5.10) immediately. �

6. Probabilistic representation of ∂xU(t, s,x)

In this section, we shall investigate linear FBSVIEs more closely and then use it to obtain an explicit representation
formula for ∂xU(t, s,x).
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6.1. A duality result for linear FSVIE

For the ease of presentation, in the rest of the paper we restrict to one-dimensional processes only. However, all our results
hold true in the multiple dimensional situation, and we provide a multiple dimensional setting in Remark 6.4 below.

Note that the dual space of C([0, T ]) consists of signed measures on [0, T ] (see [73], p. 119, e.g.). That is, for a
continuous linear mapping � : C([0, T ])→ R, there exists a unique function F̌ on [0, T ] with finite variation such that
〈�,η〉 = ∫ T

0 ηt F̌ (dt). Then we may view the Db, Dσ in (3.16) as signed measures. For this purpose, in this subsection
we consider the following FSVIE:

Xt = ηt +
∫ t

0

∫ s

0
Xr b̌(t, s, dr) ds +

∫ t

0

∫ s

0
Xr σ̌ (t, s, dr) dWs. (6.1)

Here, b̌, σ̌ : (t, s, r,ω) ∈ T
3− ×�→ R are progressively measurable, the adaptedness of ω is with respect to the second

time variable s, and the dependence on the third time variable r is right continuous with finite variation. We are interested
in the term

E

[∫ T

0
Xr ǧ(dr)

]
, (6.2)

where ǧ : T×�→ R is FT measurable in ω and right continuous and finite variated in r . Our goal is to find a finite
variated function r ∈ T → Ỹ(r,0) such that the following duality principle holds:

E

[∫ T

0
Xr ǧ(dr)

]
=
∫ T

0
ηr Ỹ(dr,0). (6.3)

This will give us an explicit representation for the linear mapping F̌ :

�= F̌ (·)= Ỹ(·,0). (6.4)

We shall approach the problem dynamically. Define, for 0≤ t ≤ r ≤ T ,

X̃ r
t := ηr +

∫ r

0

∫ s∧t

0
Xl b̌(r, s, dl) ds +

∫ r

0

∫ s∧t

0
Xl σ̌ (r, s, dl) dWs. (6.5)

Note that ηr = X̃r
0. In light of (6.3), we want to find Ỹ such that

Et

[∫ T

t

Xr ǧ(dr)

]
=
∫ T

t

X̃ r
t Ỹ(dr, t), t ∈ [0, T ]. (6.6)

For this purpose, we introduce the following type-II BSVIE:

Yt = ǧ(t)−
∫

t≤l≤s≤r≤T

[
b̌(r, s, dl)Ỹ(dr, s)+ σ̌ (r, s, dl)Z(dr, s)

]
ds −

∫ T

t

Z(t, s) dWs;

Ỹ(t, s)= Yt −
∫ t

s

Z(t, r) dWr, 0≤ s ≤ t.

(6.7)

We emphasize that, for fixed t ,

• The mapping s ∈ [0, t]→ Ỹ(t, s) is an F-martingale;
• The mappings s ∈ [t, T ]→ (Ỹ(s, t),Z(s, t)) are Ft -measurable and finite variated.

The second requirement above, of course, will add difficulty for the existence of solutions, which we shall leave for
future research.

Theorem 6.1. Let X and Y , Ỹ , Z be the solution to (6.1) and (6.7), respectively. Then (6.6) holds, and in particular
(6.3) holds.
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Proof. We shall only prove (6.3), the arguments for (6.6) are similar.
Since η is continuous, by taking time partitions we have

∫ T

0
ηt Ỹ(dt,0)= lim

N→∞

N−1∑
i=0

[
Ỹ(ti+1,0)− Ỹ(ti ,0)

]
ηti .

Now fix a time partition with large N , by the second line of (6.7), we see that

∫ T

0
ηt Ỹ(dt,0)≈

N−1∑
i=0

[
Ỹ(ti+1,0)− Ỹ(ti ,0)

]
ηti =

N−1∑
i=0

E
[[Yti+1 −Yti ]ηti

]

=
N−1∑
i=0

E

[
[Yti+1 −Yti ]

[
Xti −

∫ ti

0

∫ s

0
Xr b̌(ti , s, dr) ds −

∫ ti

0

∫ s

0
Xr σ̌ (ti , s, dr) dWs

]]

=
N−1∑
i=0

E

[
[Yti+1 −Yti ]Xti −

[
Y(ti+1, ti )−Y(ti , ti )

]
×
[∫ ti

0

∫ s

0
Xr b̌(ti , s, dr) ds +

∫ ti

0

∫ s

0
Xr σ̌ (ti , s, dr) dWs

]]

=
N−1∑
i=0

E

[
[Yti+1 −Yti ]Xti −

∫ ti

0

[
Ỹ(ti+1, s)− Ỹ(ti , s)

][∫ s

0
Xr b̌(ti , s, dr)

]
ds

−
∫ ti

0

[
Z(ti+1, s)−Z(ti , s)

][∫ s

0
Xr σ̌ (ti , s, dr)

]
ds

]

≈
N−1∑
k=0

E
[[Ytk+1 −Ytk ]Xtk

]− T

n

∑
0≤k<j<i≤N−1

[[
Ỹ(ti+1, tj )− Ỹ(ti , tj )

]
× [

b̌(ti , tj , tk+1)− b̌(ti , tj , tk)
]+ [

Z(ti+1, tj )−Z(ti , tj )
][

σ̌ (ti , tj , tk+1)− σ̌ (ti , tj , tk)
]]
Xtk .

Here and in the sequel, we are using ≈ to denote a difference of o(1) term when N →∞. Then∫ T

0
ηt Ỹ(dt,0)−E

[∫ T

0
Xt ǧ(dt)

]

≈
∫ T

0
ηt Ỹ(dt,0)−

N−1∑
k=0

E
[[

ǧ(tk+1)− ǧ(tk)
]
Xtk

]≈ N−1∑
k=0

E[Xtk Ik], (6.8)

where, for each k,

Ik :=
∫

tk≤l≤s≤r≤T

[
b̌(r, s, dl)Ỹ(dr, s)+ σ̌ (r, s, dl)Z(dr, s)

]
ds

−
∫

tk+1≤l≤s≤r≤T

[
b̌(r, s, dl)Ỹ(dr, s)+ σ̌ (r, s, dl)Z(dr, s)

]
ds

− T

n

∑
k<j<i≤N−1

[[
b̌(ti , tj , tk+1)− b̌(ti , tj , tk)

][
Ỹ(ti+1, tj )− Ỹ(ti , tj )

]
+ [

σ̌ (ti , tj , tk+1)− σ̌ (ti , tj , tk)
][
Z(ti+1, tj )−Z(ti , tj )

]]
.

One may easily check that

Ik ≈
∫

tk≤s≤r≤T

[[
b̌(r, s, s)− b̌(r, s, tk)

]
Ỹ(dr, s)+ [

σ̌ (r, s, s)− σ̌ (r, s, tk)
]
Z(dr, s)

]
ds



632 H. Wang, J. Yong and J. Zhang

−
∫

tk+1≤s≤r≤T

[[
b̌(r, s, s)− b̌(r, s, tk+1)

]
Ỹ(dr, s)+ [

σ̌ (r, s, s)− σ̌ (r, s, tk+1)
]
Z(dr, s)

]
ds

−
∫

tk+1≤s≤r≤T

[[
b̌(r, s, tk+1)− b̌(r, s, tk)

]
Ỹ( dr, s)+ [

σ̌ (r, s, tk+1)− σ̌ (r, s, tk)
]
Z( dr, s)

]
ds

=
∫

tk≤s≤r≤T

[[
b̌(r, s, s)− b̌(r, s, tk)

]
Ỹ(dr, s)+ [

σ̌ (r, s, s)− σ̌ (r, s, tk)
]
Z(dr, s)

]
ds

−
∫

tk+1≤s≤r≤T

[[
b̌(r, s, s)− b̌(r, s, tk)

]
Ỹ(dr, s)+ [

σ̌ (r, s, s)− σ̌ (r, s, tk)
]
Z(dr, s)

]
ds

=
∫ tk+1

tk

∫ T

s

[[
b̌(r, s, s)− b̌(r, s, tk)

]
Ỹ(dr, s)+ [

σ̌ (r, s, s)− σ̌ (r, s, tk)
]
Z(dr, s)

]
ds.

Substituting the above into (6.8) implies that

∫ T

0
ηt Ỹ(dt,0)−E

[∫ T

0
Xt ǧ(dt)

]
≈

N−1∑
k=0

E

[∫ tk+1

tk

∫ T

s

[[
b̌(r, s, s)− b̌(r, s, tk)

]
Ỹ(dr, s)

+ [
σ̌ (r, s, s)− σ̌ (r, s, tk)

]
Z(dr, s)

]
dsXtk

]
. (6.9)

Using the fact that the finite variated function is a.e continuous, we get

lim
tk↑s

[
b̌(r, s, s)− b̌(r, s, tk)

]= lim
tk↑s

[
σ̌ (r, s, s)− σ̌ (r, s, tk)

]= 0, for a.e. s.

Then from (6.9) we see that (6.3) holds true by letting N →∞. �

Remark 6.2. In the state dependent case, the measures are degenerate:

b̌(t, s, dr)= b(t, s)δs(r), σ̌ (t, s, dr)= σ(t, s)δs(r), ǧ(dr)= g(r) dr,

with the Dirac measure δ being defined by

δsx= xs , s ∈ [0, T ],x ∈ C
([0, T ]).

Then (6.1) and (6.7) become

Xt = ηt +
∫ t

0
b(t, s)Xs ds +

∫ t

0
σ(t, s)Xs dWs;

Yt = ǧ(t)−
∫ T

t

∫ T

s

[
b(r, s)Ỹ(dr, s)+ σ(r, s)Z(dr, s)

]
ds −

∫ T

t

Z(t, s) dWs;

Ỹ(t, s)= Yt −
∫ t

s

Z(t, r) dWr, 0≤ s ≤ t.

(6.10)

Let (Y,Z) denote the solution to the following type-II BSVIE:

Yt = g(t)+
∫ T

t

[
b(s, t)Ys + σ(s, t)Z(s, t)

]
ds −

∫ T

t

Z(t, s) dWs;

Yt = E[Yt ] +
∫ t

0
Z(t, s) dWs.

(6.11)

We can easily check that

Yt = Y0 +
∫ t

0
Yr dr, Ỹ(t, s)= Ys +

∫ t

s

Es[Yr ]dr, Z(t, s)=
∫ t

s

Z(r, s) dr, 0≤ s ≤ t ≤ T
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satisfy the BSVIE in (6.10). Then (6.3) becomes

E

[∫ T

0
g(t)Xt dt

]
= E

[∫ T

0
Xt ǧ(dt)

]
=
∫ T

0
ηt Ỹ(dt,0)=

∫ T

0
ηtE[Yt ]dt = E

[∫ T

0
ηtYt dt

]
.

This is exactly the duality in Yong [68,70]. So our result here is a generalization of these works.

Remark 6.3. Our result also generalizes the duality between delayed SDEs and anticipated BSDEs in Peng–Yang [52].
Let (X,Y,Z) denote the solution to the following equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dX

ξ
s = (μsX

ξ
s + μ̄s−θX

ξ
s−θ ) ds + (σsX

ξ
s + σs−θX

ξ
s−θ ) dWs, s ∈ [t, T + θ ],

Xt = ξ, Xs = 0, s ∈ [t − θ, t];
− dYs = (μsYs + μ̄sEs[Ys+θ ] + σsZs + σsEs[Zs+θ ] + ls) ds −Zs dWs, s ∈ [t, T ],
Ys =Qs, Zs = Ps, s ∈ [T ,T + θ ],

(6.12)

where θ > 0 is a fixed delay time. From [52, Theorem 2.1], we get the duality

〈Yt , ξ 〉 = Et

[
X

ξ
T QT +

∫ T

t

Xξ
s ls ds +

∫ T+θ

T

(Qsμ̄s−θ + Psσ̄s−θ )X
ξ
s−θ ds

]
:= Et

[∫ T

t

Xξ
s ǧ(ds)

]
, (6.13)

which shows that Yt is an explicit representation of the linear functional ξ → Et [
∫ T

t
X

ξ
s ǧ(ds)]. Since FSVIE (6.1) is

more general than the delayed SDE in (6.12), we can also use Theorem 6.1 to give such an explicit representation for
ξ → Et [

∫ T

t
X

ξ
s ǧ(ds)]. Indeed, take

b̌(s, dr)= μsδs(r)+ μ̄s−θ δs−θ (r), σ̌ (s, dr)= σ(s)δs(r)+ σ̄s−θ δs−θ (r), s ∈ [t + θ,T ],
b̌(s, dr)= μsδs(r), σ̌ (s, dr)= σ(s)δs(r), s ∈ [t, t + θ ],
ǧ(dr)= l(r) dr +Er [Qr+θ μ̄r + Pr+θ σ̄r ]1[T−θ,T ](r) dr +Q(T )δT (r).

Note that b̌(τ, s, dr), σ̌ (τ, s, dr) are independent of τ , the corresponding BSVIE (6.7) reads

Yτ = ǧ(τ )−
∫ T

τ

μs

[
Ỹ(T , s)− Ỹ(s, s)

]
ds −

∫ T

τ+θ

μ̄s−θ

[
Ỹ(T , s)− Ỹ(s, s)

]
ds

−
∫ T

τ

σs

[
Z(T , s)−Zs

]
ds −

∫ T

τ+θ

σ̄s−θ

[
Z(T , s)−Zs

]
ds −

∫ T

τ

Zs dWs;

Ỹ(τ, s)= Yτ −
∫ τ

s

Z(τ, r) dWr, 0≤ s ≤ τ.

Then it is easy to check

Yt = Y(T , t)−Yt , Zt =Z(T , t)−Zt ,〈
Y(T , t)−Yt , ξ

〉= 〈Yt , ξ 〉 = Et

[∫ T

t

Xξ
s ǧ(ds)

]
.

Thus Theorem 6.1 covers the duality in [52].
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Remark 6.4. The duality (6.6) still holds true in the multidimensional case, where the FSVIE (6.1) and type-II BSVIE
(6.7) become

Xt = ηt +
∫ t

0

∫ s

0
Xr b̌(t, s, dr) ds +

d∑
j=1

∫ t

0

∫ s

0
Xr σ̌

j (t, s, dr) dW
j
s ;

Yt = ǧ(t)−
∫

t≤l≤s≤r≤T

[
b̌(r, s, dl)Ỹ(dr, s)+

d∑
j=1

σ̌ j (r, s, dl)Zj (dr, s)

]
ds −

d∑
j=1

∫ T

t

Zj (t, s) dW
j
s ;

Ỹ(t, s)= Yt −
d∑

j=1

∫ t

s

Zj (t, r) dW
j
r , 0≤ s ≤ t,

with b̌, σ̌ j : (t, s, r,ω) ∈ T
3− ×�→R

n×n and ǧ : T×�→R
m×n being proper maps.

6.2. An explicit solution for linear BSVIEs

In this subsection, we investigate the following linear BSVIE:

Yt = ξt +
∫ T

t

[
α(t, r)Yr + β(t, r)Z t

r

]
dr −

∫ T

t

Z t
r dWr, (6.14)

where ξ : T×�→R, α,β : T2+ ×�→R are progressively measurable (omitting the variable ω).

Proposition 6.5. Assume α, β are bounded and supt∈TE[|ξt |2]<∞. Then

Yt = Et

[
Mt

T ξt +
∫ T

t

�(t, r)Mr
T ξr dr

]
, (6.15)

where M is the solution to the following SDE:

dMt
r =Mt

rβ(t, r) dWr, (t, r) ∈ T
2+; Mt

t = Im, (6.16)

and

�(t, s) :=
∞∑

n=1

Kn(t, s), K1(t, s) :=Mt
sα(t, s), Kn+1(t, s) :=

∫ s

t

K1(t, r)Kn(r, s) dr. (6.17)

Proof. First, by Proposition 2.11 we see that (6.14) is well-posed. Next, since α, β are bounded, it is clear that
Et [|K1(t, s)|2] ≤ C0 <∞. Note that

Et

[∣∣Kn+1(t, s)
∣∣2]≤ (s − t)

∫ s

t

Et

[∣∣K1(t, r)
∣∣2Er

[∣∣Kn(r, s)
∣∣2]]dr.

Then by induction one can easily show that

Et

[∣∣Kn+1(t, s)
∣∣2]≤ Cn+1

0 (s − t)2n

(2n− 1)!! , and thus Et

[∣∣�(t, s)
∣∣2]≤ C <∞.

We now let (Ỹ, Z̃) satisfy the following BSDE:

Ỹ t
s = ξt +

∫ T

s

[
α(t, r)Yr + β(t, r)Z̃ t

r

]
dr −

∫ T

s

Z̃ t
r dWr. (6.18)

Then

Yt = Ỹ t
t , Z t

s = Z̃ t
s .
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Apply Itô formula to the mapping s →Mt
s Ỹ t

s on [t, T ], we get

Yt = Ỹ t
t = Et

[
Mt

T ξt +
∫ T

t

Mt
sα(t, s)Ys ds

]
. (6.19)

Moreover, note that

�(t, s)=K1(t, s)+
∫ s

t

K1(t, r)�(r, s) dr.

Then

Yt = Et

[
Mt

T ξt +
∫ T

t

K1(t, s)Es

[
Ms

T ξs +
∫ T

s

�(s, r)Mr
T ξr dr

]
ds

]
= Et

[
Mt

T ξt +
∫ T

t

K1(t, s)M
s
T ξs ds +

∫ T

t

K1(t, s)

∫ T

s

�(s, r)Mr
T ξr dr ds

]
= Et

[
Mt

T ξt +
∫ T

t

K1(t, s)M
s
T ξs ds +

∫ T

t

∫ r

t

K1(t, s)�(s, r) dsMr
T ξr dr

]
= Et

[
Mt

T ξt +
∫ T

t

[
K1(t, s)+

∫ s

t

K1(t, r)�(r, s) dr

]
Ms

T ξs ds

]
= Et

[
Mt

T ξt +
∫ T

t

�(t, s)Ms
T ξs ds

]
= Yt .

This implies that (Y,Z) satisfy (6.14). The result then follows from the uniqueness of (6.14). �

Remark 6.6. The representation (6.15) of Y is exactly the so-called variation of constants formula for linear BSVIEs.
A similar result was first obtained by Hu–Øksendal [36] for the linear BSVIEs driven by a Brownian motion and a
compensated Poisson random measure. However, in [36] the coefficients α, β are assumed to be deterministic functions
and β(t, r)≡ β(r) is required to be independent of t . Thus our result is a generalized version of [36, Theorem 3.1].

6.3. Representation of ∂xU

In this subsection, we assume Assumption 3.3 holds true, and let U be the classical solution to PPDE (3.1), corresponding
to the decoupled FBSVIE (2.3)–(2.8). We shall use type-II BSVIE to provide an explicit representation formula for
∂xU(t, s,x), which is determined by (3.15)–(3.16).

We first apply Proposition 6.5 to the middle equation of (3.16) with

ξl :=
〈
Dg

(
l,Xs,x),∇ηX

s,x〉+ ∫ T

l∨s

〈
Df

(
l, r,Xs,x, Y s,x

r ,Zl,s,x
r

)
,∇ηX

s,x〉dr;

α(l, r) := ∂yf
(
l, r,Xs,x, Y s,x

r ,Zl,s,x
r

)
, β(l, r) := ∂zf

(
l, r,Xs,x, Y s,x

r ,Zl,s,x
r

)
, l ∨ s ≤ r;

α(t, r) := 0, β(t, r) := 0, t ≤ r < s.

(6.20)

Define Ml
r , K1(l, r) and �(l, r) by (6.16)–(6.17), then

∇ηY
s,x
l = El

[
Ml

T ξl +
∫ T

l

�(l, r)Mr
T ξr dr

]
, l ∈ [s, T ].

Note that Mt
s = 1 and K1(t, r)= 0 for r ∈ [t, s], thanks to the third line of (6.20). Then, by (3.15) and the last equation

of (3.16) we have

∂xU(t, s,x) = ∇ηỸ
t,s,x
s = E

[
Mt

T ξt +
∫ T

s

Mt
l α(t, l)∇ηY

s,x
l dl

]
= E

[
Mt

T ξt +
∫ T

s

K1(t, l)

[
Ml

T ξl +
∫ T

l

�(l, r)Mr
T ξr dr

]
dl

]
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= E

[
Mt

T ξt +
∫ T

s

[
K1(t, l)+

∫ r

s

K1(t, l)�(l, r) dl

]
Mr

T ξr dr

]
= E

[
Mt

T ξt +
∫ T

s

�(t, r)Mr
T ξr dr

]
.

Plug the first line of (6.20) into this, we obtain

∂xU(t, s,x)= E
[〈
Gs,x(t),∇ηX

s,x〉],
where Gs,x(t) :=Mt

T Dg
(
t,Xs,x)+ ∫ T

s

�(t, l)Ml
T Dg

(
l,Xs,x)dl +

∫ T

s

H s,x(t, r) dr;

Hs,x(t, r) :=Mt
rDf

(
t, r,Xs,x, Y s,x

r ,Zt,s,x
r

)+ ∫ r

s

�(t, l)Ml
rDf

(
l, r,Xs,x, Y s,x

r ,Zl,s,x
r

)
dl.

(6.21)

Next, recall the first equation of (3.16). We set

ϕ̌
(
t, s,x; t ′, s′, dr ′

) :=Dϕ
(
t ′, s′,Xs,x)(dr ′

)
, for ϕ = b,σ ;

ǧ
(
t, s,x;dt ′

) :=Gs,x(t)
(
dt ′

)
.

(6.22)

We now introduce the type-II BSVIE on [s, T ]:

Yt ′ = ǧ
(
t ′
)− ∫

t ′≤l′≤s′≤r ′≤T

[
b̌
(
t, s,x; r ′, s′, dl′

)
Ỹ
(
dr ′, s′

)
+ σ̌

(
t, s,x; r ′, s′, dl′

)
Z
(
dr ′, s′

)]
ds′ −

∫ T

t ′
Z
(
t ′, s′

)
dWs′ ;

Ỹ
(
t ′, s′

)= Yt ′ −
∫ t ′

s′
Z
(
t ′, r ′

)
dWr ′, 0≤ s′ ≤ t ′.

(6.23)

By Theorem 6.1, we obtain the following explicit representation formula for ∂xU(t, s,x).

Theorem 6.7. For any fixed (t, s,x) ∈ T
2+ ×X, let Ỹ be determined by (6.23). Then the path derivative of the solution U

to PPDE (3.1) can be represented explicitly as follows:

∂xU(t, s,x)= Ỹ(·, s). (6.24)
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