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A MARTINGALE APPROACH FOR FRACTIONAL BROWNIAN
MOTIONS AND RELATED PATH DEPENDENT PDES
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Michigan State University and University of Southern California

In this paper, we study dynamic backward problems, with the computa-
tion of conditional expectations as a special objective, in a framework where
the (forward) state process satisfies a Volterra type SDE, with fractional
Brownian motion as a typical example. Such processes are neither Markov
processes nor semimartingales, and most notably, they feature a certain time
inconsistency which makes any direct application of Markovian ideas, such as
flow properties, impossible without passing to a path-dependent framework.
Our main result is a functional Itô formula, extending the seminal work of
Dupire (Quant. Finance 19 (2019) 721–729) to our more general framework.
In particular, unlike in (Quant. Finance 19 (2019) 721–729) where one needs
only to consider the stopped paths, here we need to concatenate the observed
path up to the current time with a certain smooth observable curve derived
from the distribution of the future paths. This new feature is due to the time
inconsistency involved in this paper. We then derive the path dependent PDEs
for the backward problems. Finally, an application to option pricing and hedg-
ing in a financial market with rough volatility is presented.
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1. Introduction.

1.1. Background and heuristic description of the main ideas. This paper intro-
duces a new technique for analyzing functionals of non-Markov processes using
ideas which are borrowed from the Markovian case, but necessarily require tak-
ing into account path dependence. In the Markovian case, consider the conditional
expectation

Yt = E
[
g(XT )|FX

t

]
, 0 ≤ t ≤ T ,

where g is a continuous function, X is a Markov diffusion process and {FX
t }0≤t≤T

is the filtration generated by X, it is well known that Yt is a deterministic function
of Xt only

Yt = u(t,Xt),

and that function u solves a parabolic PDE, at least in weak form.
When g(XT ) is replaced with a more general FX

T -measurable random variable
ξ and/or X is a non-Markov diffusion process, Yt will depend on the entire path of
X up to time t :

(1.1) Yt = u(t,X[0,t]) where X[0,t] := {Xr}0≤r≤t ,

and u solves a so-called Path Dependent PDE (PPDE, for short), which was first
proposed by Peng [33]. A powerful tool to study PPDEs is Dupire’s [16] functional
Itô calculus; see also Cont and Fournie [10–12]. A successful viscosity theory for
(fully) nonlinear PPDEs was established by Ekren et al. [17–19, 37]. We also refer
to Lukoyanov [29], Peng and Wang [35], Peng and Song [34] and Cosso and Russo
[13] for some different approaches and the book Zhang [40] for more references
in this direction. We shall emphasize that, in all above works, the state process
X is a diffusion process, in particular, it is a semimartingale under all involved
probabilities.

In this paper, we are interested in extending the above path-dependent analysis
to more “heavily” non-Markov processes X, beyond the semimartingale frame-
work. Typical examples of such non-Markov X are Gaussian processes with mem-
ory properties, such as the fractional Brownian motion (fBm). When X is fBm or
similar processes, if there is a hope to replicate PDE-type ideas for representing
Yt even in the state dependent case ξ = g(XT ), then any representation using a
deterministic function u will necessarily depend on the entire path of X up to t ,
namely in the form of (1.1).
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How to figure out this dependence, and how to find the deterministic function u

in as explicit a way as possible (theoretically or numerically), is what this paper is
about. To illustrate our main idea, in Section 2 we consider a special case that

(1.2) Xt =
∫ t

0
K(t, r) dWr,

where W is a Brownian motion and K is a deterministic kernel, and thus X is a
Volterra-type Gaussian process. This is in particular the case for fBM. Our main
idea is to introduce the following simple but crucial auxiliary process � with two
time variables:

(1.3) �t
s :=

∫ t

0
K(s, r) dWr.

This process � enjoys many nice properties, as we explain in details below.
We first note that, for any fixed s, the process t ∈ [0, s] �→ �t

s is a martin-
gale. The existing theory of PPDEs relies heavily on the semimartingale the-
ory, while X is not a semimartingale. So by adding � as our “state process,”
we will be be able to exploit its (semi)martingale property, and thus recover the
PPDE language. We remark that, for s > t , we have the orthogonal decomposi-
tion: Xs = �t

s + [Xs − �t
s]. This elementary property is a common computational

tool in stochastic analysis, used in many studies regarding fBm and related pro-
cesses (see the textbook by Nualart, [31], Chapter 5). However, we believe our
paper is the first instance where this property is applied in the context of PPDEs;
the reason for this may be that the property is usually invoked to exploit the inde-
pendent part Xs − �t

s of the decomposition, and the martingale property of � is
rarely exploited.

Next, the process X typically violates the standard flow property, which is an-
other major obstacle for using PDEs and PPDEs. The introduction of the mar-
tingale component � is the key for recovering the flow property, or say (X,�)

together will enjoy certain “Markov” property. More precisely, we shall rewrite
(1.1) as

(1.4) Yt = u
(
t,X[0,t) ⊗ �t[t,T ]

)
,

and show that this function u satisfies a PPDE. While in the standard literature
on PPDEs as mentioned earlier, u depends only on the stopped path X[0,t], in our
situation u will depend on the path �t[t,T ] as well. This is the major difference
between Dupire’s functional Itô calculus and our extension. We also note that,
when K(t, r) = K(r), then �t

s = Xt for t ≤ s ≤ T , and thus (1.4) reduces back to
(1.1).

Moreover, the introduction of � is also crucial for numerical computation of the
u in (1.4). On one hand, writing u as the solution to a PPDE enables us to extend
the existing numerical methods for standard PDEs to PPDEs naturally, which will
be carried out in a separate project. On the other hand, we note that the function
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u in (1.4) is continuous under mild conditions, which is important for numerical
purpose. However, � is typically discontinuous in X, so if we write Y as a function
of X only, the function u in (1.1) could be discontinuous, and thus its numerical
methods would be less efficient.

Finally, we discuss the tractability of the process �, which is important both
for numerical purpose and for applications, and we shall discuss it more when
we consider a financial application in the next subsection and Section 5. First, we
note that �t

s is FW
t -measurable, so mathematically all our analysis will have no

measurability issues. However, in many applications people may not observe W .
Fortunately, for the models we will consider, �t

s will be measurable to the observed
information. In particular, when X is a fBM, actually we have F

X = F
W since one

can represent W as a function of X through certain transform operator; see the
textbook by Nualart, [31], Chapter 5. Also, see Mocioalca and Viens [30] for the
case that K is of convolution form, which covers the so-called Riemann–Liouville
fBm. Then it is legitimate to use �t

s at time t , provided we observe X[0,t].
Having explained the ideas in details, in Section 3 we turn to the general frame-

work where X solves a Volterra SDE; see (3.1) below. In this case, the correspond-
ing � will be a semimartingale, and still shares all the nice properties discussed
above. Our main technical result is a functional Itô formula for functions u of the
form (1.4), extending Dupire’s [16] functional Itô calculus which involves only
the stopped process X[0,t]. We remark that in Dupire’s calculus the spatial deriva-
tives involve only perturbations of Xt , but not of the path before t : X[0,t). The
main feature of our extension is again that the state variable contains the auxiliary
process �, and our path derivatives will involve only the perturbation of �t[t,T ],
which is exactly in the spirit of Dupire. This is important because on one hand
�·

s is a semimartingale so an Itô formula involving its derivatives is possible, and
on the other hand X· is not a semimartingale so its derivatives are not helpful for
Itô calculus and should be avoided. We note that Dupire’s calculus serves as an
alternative to the Malliavin calculus, and appears as a simpler calculus of vari-
ations, when questions of measurability with respect to current information are
crucial. Said differently, the Malliavin calculus can be viewed as an overkill from
the standpoint of keeping track of this adaptability, since it applies equally well to
anticipating processes.

Section 4 applies our functional Itô formula to solve the backward problems in
such framework and obtain naturally the PPDEs. We shall formulate it as a non-
linear Backward SDE (BSDE), whose linear version is essentially the conditional
expectation E[g(X·)|Ft ] as discussed in Section 2. Such nonlinear problems have
many applications, especially in finance, stochastic control and probabilistic nu-
merical methods. We identify the corresponding semilinear PPDE, and assuming
a classical solution exists, it yields immediately a solution to the BSDE. This strat-
egy, known as a nonlinear Feynman–Kac formula, goes back to the original work
of Peng [36]. Section 4 also provides a brief discussion of fully nonlinear PPDEs,
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corresponding to stochastic optimization problems with diffusion controls in our
framework.

In Section 5, we apply our methodology to the option pricing and hedging prob-
lem in a rough volatility model, motivated by the recent work El Euch and Rosen-
baum [20]. We discuss this and more general financial applications in the next
subsection.

1.2. Application in rough volatility models. Consider a standard stock price
model under risk neutral probability:

(1.5) dSt = σtSt dBt ,

where B is a Brownian motion, σ is the volatility process and we are assuming
zero interest rate for simplicity. A number of recent studies have questioned the
possibility of assuming that σ is a Markov process. In continuous time, the first
paper to work with this assumption is Comte and Renault [9], in which σ is as-
sumed to be driven by an fBm. So-called continuous-time long-memory models
of that sort have been the main source of highly non-Markov volatility model.
The paper, Chronopoulou and Viens [8], can be consulted for references to such
works, and pertains to validating and calibrating this type of model from option
data. Fractional stochastic volatility models continue to draw lots of interest. A no-
table work is Gatheral, Jaisson and Rosenbaum [24], which finds market evidence
that volatility’s high-frequency behavior could be modeled as a rough path, for
example, based on fBm with H ∈ (0,1/2), and thus introduced the rough volatil-
ity models; see also Bennedsen, Lunde and Pakkanen [4]. Among many others,
Abi Jaber, Larsson and Pulido [1] and Gatheral and Keller-Ressel [25] studied
affine variance models, where σ 2 is modeled as a convolution type linear Volterra
SDE, which in particular includes the rough Heston model studied in El Euch
and Rosenbaum [20, 21]; Bayer, Friz and Gatheral [3] studied a rough Bergomi
model; Cuchiero and Teichmann [14] studied affine Volterra processes with jumps;
Gulisashvili, Viens and Zhang [26] provided an asymptotic analysis applying to
short-time fBm-modeling of volatility for fixed-income securities near maturity;
and Fouque and Hu [22] studied a portfolio optimization problem in a model with
fractional Ornstein–Uhlenbeck process.

We remark that our model of general Volterra SDEs covers all the models men-
tioned above, except the jump model in [14] which we believe can be dealt with by
extending our work to PPDEs on càdlàg paths; see Keller [27] where the state pro-
cess is a standard jump diffusion. Several works in the literature, for example, [3,
20, 25] have already used the forward variance processes �̂t

s := E[σ 2
s |Ft ], which

is closely related to our process �t
s . Indeed, in the affine variance models, they

can be transformed from one to the other, as we will see in Section 5. However,
for general models, especially when the drift of the Volterra SDE is nonlinear, we
believe our process � is intrinsic and is more convenient. Moreover, we note that
most works in the literature either focus on modeling the financial market, or on
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pricing contingent claims in rough volatility models. We shall provide a system-
atic study on the hedging of contingent claims in general rough volatility models,
motivated by the work [20]. Finally, we allow the backward process to be nonlin-
ear, which appears naturally in applications, for example, when the borrowing and
lending interest rates are different or when a control is involved; and we allow the
payoff to be path dependent, thus including Asian options and lookback options.

We now focus on the hedging issue. Consider the model (1.5) and assume
σ 2 is modeled through certain Volterra SDE which induce the crucial auxil-
iary process �. Then the price of the contingent claim will take the form Yt =
u(t, St , σ

2[0,t) ⊗t �t[t,T ]) and u solves a PPDE. We note that the market is typically
incomplete when S is the only tradable instruments. Applying our functional Itô
formula, we will see in Section 5 that the contingent claims can be hedged by us-
ing S and � (in appropriate sense), and the hedging portfolios are exactly in the
spirit of the �-hedging, as derivatives of the function u with respect to S and �,
respectively. Then the issue boils down to whether or not we can hedge � by using
tradable assets in the market. Note that � is defined through σ 2, so the key is to
understand the variance σ 2 or the volatility σ .

First, note that by observing S continuously in time, mathematically we may
compute σ from it, or say σ is F

S -measurable. In fact, based on this fact, in the
financial market there are proxies for σ , such as the VIX index from the Chicago
Board of Options Exchange, which is a proxy for the volatility on the S&P500
index. This VIX index has become so mature that even skeptics when it comes to
volatility quotes will argue that if S in (1.5) is a model for the S&P500, then both S

and σ are observable stochastic processes. Consequently, depending on the market
and on the assumptions one is willing to make regarding volatility quotes, we may
assume that (S, σ ) is observed. This clearly has advantage compared to computing
σ from S when numerical methods are concerned.

Next, note that in the simple setting (1.2)–(1.3) and assume for simplicity that
σ = X, we have �t

s = E[σs |Ft ]. Mathematically, to compute � from the observed
information σ , one needs to first compute W from σ by using certain transfer
operator as mentioned before, and then do the pathwise stochastic integration in
(1.3). Numerically this will be very expensive. However, in the financial context,
the expression E[σs |Ft ] above is also known as the forward volatility at time t

with horizon s > t , and that is a market observable. For the S&P500 and many
other equities, it is directly quoted by use of implied volatility.

Finally, for the rough volatility models we will consider in Section 5, we will be
able to replicate �t

s by using the forward variance E[σ 2
s |Ft ] (similar to the forward

volatility as we just discussed), which can be further replicated (approximately) by
using the variance swaps. See more details in Section 5. We can therefore conclude
that we are able to hedge the contingent claims by using the tradable assets S and
the forward variance E[σ 2

s |Ft ].
2. The flow property of fBm. This section provides simple heuristics in the

case of X = fBm for easily tractable examples.



MARTINGALE APPROACH FOR FBM AND PPDES 3495

2.1. Martingale decomposition of fBm. For simplicity in this section, we re-
strict to one-dimensional processes only. Let BH be a fBm with Hurst parameter
H ∈ (0,1). As we mentioned in the Introduction, Chapter 5 in the textbook by Nu-
alart [31] explains that there exists a Brownian motion (standard Wiener process)
W and an explicitly known deterministic kernel K(t, s) > 0 such that

(2.1) BH
t =

∫ t

0
K(t, r) dWr and F

BH = F
W =: F,

where the notation F
X is the filtration of X : FX = {FX

t : t ≥ 0}. The inclusion

F
BH ⊂ F

W is immediate. The reverse inclusion comes from the existence of a
bijective transfer operator to express W as a Wiener integral with respect to BH .
We remark that, among others, one main feature of fBM is the violation of the
standard flow property which can be viewed as certain time inconsistency: for
0 ≤ t < s ≤ T ,

(2.2) BH
s 	= B̃t,H

s where B̃t,H
s := BH

t +
∫ s

t
K(s, r) dWr.

We are interested in backward problems. For ξ = g(BH· ) ∈ L
2(FT ), denote

(2.3) Yt := E[ξ |Ft ].
Clearly, Y is a martingale. Our goal is to characterize Y from the PPDE point of
view. Due to (2.1), it is clear that

(2.4) Yt = u1
(
t,BH[0,t]

)= u2(t,W[0,t]),

for some measurable functions u1, u2. Since BH is not a semimartingale (when
H 	= 1

2 ), it is difficult to derive a PPDE for u1. On the other hand, since W is
a standard Brownian motion, formally u2 should satisfy a path dependent heat
equation. Indeed, this is true if u2 is continuous in W in the topology of uniform
convergence. However, provided g is continuous in BH , since BH is discontinuous
in W in pathwise sense, it is unlikely that u2 will have desired pathwise regularity.

To get around of this, we will utilize the following simple but crucial decompo-
sition:

(2.5) BH
s = �t

s + I t
s :=

∫ t

0
K(s, r) dWr +

∫ s

t
K(s, r) dWr, 0 ≤ t ≤ s ≤ T ,

where

(2.6) �t
s :=

∫ t

0
K(s, r) dWr = Et

[
BH

s

]
is Ft measurable, and I t

s is independent of Ft . We note that when s is fixed, the
process t ∈ [0, s] �→ �t

s is a F-martingale.
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REMARK 2.1. (i) If we use the rough path norms instead of the uniform con-
vergence topology, then BH can be continuous in W . However, this requires a
weaker regularity on the function u2 in (2.4), which would induce serious difficul-
ties for the functional Itô formula (3.16) below, and we do not see how to use the
existing PPDE theory to exploit the rough-path dependence of BH on W . Further
exploration in this direction may be worthwhile, but is beyond the scope of this
paper.

(ii) Alternatively one may view the u2 in (2.4) as a weak solution to the path
dependent heat equation, in Sobolev sense without requiring pathwise regularity as
in Cont [12]. However, the regularity itself is interesting and important, for exam-
ple, when one considers numerical methods. Moreover, in applications typically
one observes BH . Although in theory one may obtain W from BH through the
bijective transfer operator, such operator is not explicit, and thus in practice it is
not convenient to use the information W . As we will see soon, we shall express Y

through � which is more trackable in many applications.

2.2. A state dependent case. To begin by illustrating our idea of using the
process t �→ �t

s in the simplest possible context, we consider a very special case:

ξ = g
(
BH

T

)
.

By the martingale/orthogonal decomposition (2.5), we have

Yt = u
(
t,�t

T

)
where u(t, x) := E

[
g
(
x + I t

T

)]
.

Assuming g is smooth, then the regularity of u is clear. Moreover, since t �→ �t
T

is a martingale, applying the standard Itô formula we obtain

dYt =
[
∂tu
(
t,�t

T

)+ 1

2
∂2
xxu
(
t,�t

T

)
K2(T , t)

]
dt + ∂xu

(
t,�t

T

)
K(T , t) dWt .

Noticing that Y is a martingale by definition (2.3), this implies that the drift term
above must vanish, that is,

(2.7) ∂tu(t, x) + 1

2
K2(T , t)∂2

xxu(t, x) = 0, u(T , x) = g(x).

This very simple (backward) heat equation with a time-dependent diffusion coeffi-
cient shows how to compute the martingale Y by tracking the observed martingale
process t �→ �t

T and solving a deterministic problem (2.7) for u.

REMARK 2.2. If one were merely interested in finding a PDE representation
of Y at a given time, say Y0, a natural solution, in analogy to the Brownian case,
would emerge. Define

ũ(t, x) := E
[
g
(
x + BH

T − BH
t

)]= E
[
g
(
x + BH

T −t

)]
,
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where the second equality holds because of the stationarity of increments of fBm.
Note that x + BH

T −t ∼ Normal(x, (T − t)2H ), then

ũ(t, x) =
∫
R

g(y)pH (T − t, y − x)dt where pH(t, x) := 1√
2πtH

e
− x2

2t2H .

One may check straightforwardly that ∂tp
H (t, x) = Ht2H−1∂xxp

H (t, x). Then ũ

solves the following PDE:

∂t ũ + H(T − t)2H−1∂xxũ(t, x) = 0, ũ(T , x) = g(x).

This PDE was already obtained by Decreusefond and Ustunel [15] (see also Bau-
doin and Coutin [2] for a more general result in this direction) and it does not
look very different from the previous one we identified. Note that we still have
ũ(T ,BH

T ) = ξ and ũ(0,BH
0 ) = Y0, however, ũ(t,BH

t ) is not a martingale and in
particular ũ(t,BH

t ) 	= Yt for 0 < t < T . This is due to the fact that the natural de-
composition BH

T = BH
t + (BH

T −BH
t ) is not an orthogonal decomposition, namely

BH
t and BH

T − BH
t are not independent.

The standard technique in the Brownian case W , for which this decomposi-
tion over increments works so well, happens to coincide with the use of � since
�t

T = Wt and I t
T = WT −Wt . But when trying the same increments trick with BH

t

instead of W , since ũ(t,BH
t ) 	= Yt , the PDE above does not help track the value

of conditional expectations dynamically. Thus the orthogonal decomposition (2.5)
is preferable for purposes, such as in stochastic finance, where t �→ Yt needs to be
evaluated dynamically: we want to use a single PDE (or PPDE) to represent all
values of Y and for this, we need to track �.

2.3. A simple path dependent case. We now consider the case

(2.8) ξ = g
(
BH

T

)+ ∫ T

0
f
(
t,BH

t

)
dt.

As we alluded to in the Introduction, this is a typical example useful in finance,
for instance as a model of a portfolio utility with legacy (g) and consumption
(f ) terms, or as a contingent claim with straightforward path dependence such
as in Asian options. Because of the explicit path dependence, we contend that our
framework based on tracking � can handle this dependence without any additional
effort beyond what needs to be deployed to handle the stochastic path dependence
in BH .

REMARK 2.3. In the special case H = 1/2, that is, BH is a standard Brownian
motion, which we denote by W , we have

Ỹt := Yt −
∫ t

0
f (s,Ws) ds = E

[
g(WT ) +

∫ T

t
f (s,Ws) ds

∣∣∣Ft

]
= ũ(t,Wt),
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where ũ satisfies a standard backward heat equation with additive forcing:

∂t ũ + 1

2
∂2
xxũ + f (t, x) = 0, ũ(T , x) = g(x).

In the general fBm case, however, the above Ỹt is not Markovian anymore.
Instead, we use the same idea that leads to � to the expression for ξ : we decompose
the conditional expectation of the integral part in Yt from (2.3) into a term which is
observable at time t , and other terms. Those other terms are not independent of the
past, but we can apply the results of the previous section directly to them, whether
at the terminal time, or for each s in the integral from t to T . Thanks to the explicit
PDE (2.7) from that section, we obtain

Yt =
∫ t

0
f
(
s,BH

s

)
ds +E

[
g
(
BH

T

)|Ft

]+ ∫ T

t
E
[
f
(
s,BH

s

)|Ft

]
ds

=
∫ t

0
f
(
s,BH

s

)
ds + ug

(
T ; t,�t

T

)+ ∫ T

t
uf

(
s; t,�t

s

)
ds,

where

(2.9)

∂tug(T ; t, x) + 1

2
K2(T , t)∂2

xxug(T ; t, x) = 0, 0 ≤ t ≤ T ,

∂tuf (s; t, x) + 1

2
K2(s, t)∂2

xxuf (s; t, x) = 0, 0 ≤ t ≤ s,

ug(T ;T ,x) = g(x), uf (s; s, x) = f (s, x).

Therefore, we discover that Yt can be expressed as a single deterministic func-
tion u(t, ·) of the concatenated path which equals BH up to time t and equals �t

afterwards:

(2.10)

Yt = u

(
t,

{∫ t∧s

0
K(s, r) dWr

}
0≤s≤T

)
= u

(
t,BH ⊗t �t )

where (ω ⊗t θ)s := ωs1[0,t)(s) + θs1[t,T ](s),

u(t,ω ⊗t θ) :=
∫ t

0
f (s,ωs) ds + ug(T ; t, θT ) +

∫ T

t
uf (s; t, θs) ds.

The last line above clearly shows how u(t, ·) is an explicit function of the entire
concatenated path ω ⊗t θ . From that standpoint, at least in this example, we have
succeeded in representing the conditional expectation Y dynamically thanks to a
single deterministic path-dependent functional, by tracking �. We remark that the
above function u is continuous in (t,ω ⊗t θ) under mild and natural conditions.
This is reassuring for our goal, which is to introduce appropriate time and path
derivatives and then derive a path dependent PDE for the above u and in more
general contexts. Moreover, such regularity is important when one considers nu-
merical methods, even though it is not the focus of this paper.
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Let us first take a look heuristically at the above example. Differentiating u

formally,

∂tu(t,ω ⊗t θ) = f (t,ωt ) + ∂tug(T ; t, θT ) − uf (t; t, θt )

+
∫ T

t
∂tuf (s; t, θs) ds.

Note that

uf (t; t, θt ) = f (t, θt ) = f (t,ωt ) provided θt = ωt,

resulting a corresponding cancellation in ∂tu. This condition θt = ωt simply re-
quires continuity of the path ω ⊗t θ at the point s = t . This is certainly the case for
us in this section since �t

t = BH
t , and will remain true for any continuous Gaussian

process and for non-Gaussian processes of interest, as can be seen in (3.3) below.
Then, by (2.9) we have

∂tu(t,ω ⊗t θ) = ∂tug(T ; t, θT ) +
∫ T

t
∂tuf (s; t, θs) ds

= −1

2
K2(T , t)∂2

xxug(T ; t, θT )

− 1

2

∫ T

t
K2(s, t)∂2

xxuf (s; t, θs) ds

= −1

2
K2(T , t)∂2

θT θT
u(t,ω ⊗t θ)

− 1

2

∫ T

t
K2(s, t)∂2

θsθs
u(t,ω ⊗t θ) ds,

(2.11)

with the terminal condition u(T ,ω ⊗T θ) = g(ωT ) + ∫ T
0 f (t,ωt ) dt . The last

equality in (2.11) comes from the expression for u in (2.10). In that line, the no-
tation ∂2

θsθs
u means that this is a derivative with respect to the value of the path

ω ⊗t θ at time s ∈ [t, T ].
In any case, at least heuristically, one sees that u itself appears to solve a PPDE

in some sense. We will make this sense precise in the next section, in Theorem 4.1.
One observation is that the spatial derivatives of u above are only with respect to
θ , not to ω, which is crucial in our context because ω corresponds to BH which is
not a semimartingale, and we wish to use the semimartingale property to transport
stochastic objects (such as conditional expectations) to their deterministic repre-
sentations.

REMARK 2.4. (i) The kernel K involves two time variables, and thus BH is
not a semimartingale (when H 	= 1

2 ). Moreover, BH violates the standard flow
property, see (2.2), and is by nature time inconsistent. The introduction of the term
� is the key for recovering the flow property for BH , which is crucial for deriving
the corresponding PPDE.
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(ii) In the standard functional Itô calculus of Dupire [16], the function u de-
pends only on the stopped path Xt∧·, or equivalently, in their situation �t is flat.
So our main result in the next section is indeed a nontrivial extension of Dupire’s
result.

(iii) We also note that the occurrence of derivatives of u with respect only to
the “θ” portion of the path does not contradict Dupire’s functional Itô calculus,
because as just mentioned, in his setting θs = ωt for all s ∈ [t, T ], and thus the
derivatives with respect to θ reduce to the derivative with respect to ωt alone.

3. Functional Itô formula. In this section, we expand our framework’s reach
by considering more general processes X, beyond the Gaussian class. Assume X

is a solution to the d-dimensional Volterra SDE:

(3.1) Xt = x +
∫ t

0
b(t; r,X·) dr +

∫ t

0
σ(t; r,X·) dWr, 0 ≤ t ≤ T ,

where W is a standard (possibly multidimensional) Wiener process, and b and
σ have appropriate dimensions and are adapted in the sense that ϕ(t; r,X·) =
ϕ(t; r,Xr∧·) for ϕ = b,σ . As in (2.2), one main feature of such SDE is that it
violates the flow property. That is, Xs 	= X̃t

s for 0 ≤ t < s ≤ T , where X̃t is the
solution to the following SDE:

X̃t
s = Xt +

∫ s

t
b
(
s; r,X ⊗t X̃t·

)
dr +

∫ s

t
σ
(
s; r,X ⊗t X̃t )dWr, t ≤ s ≤ T .

Throughout the paper, the following assumption will always be in force.

ASSUMPTION 3.1. (i) The SDE (3.1) admits a weak solution (X,W).
(ii) E[sup0≤t≤T |Xt |p] < ∞ for all p ≥ 1.

The condition (ii) is technical, and in order not to distract our main focus, we
postpone its discussion to the Appendix. For condition (i), there have been many
works on well-posedness of Volterra SDEs; see, for example, Berger and Mizel [5,
6]. In this paper, we prefer not to restrict to specific conditions so as to allow for
the most generality, and in applications any reasonable model should admit at least
one solution. However, we would like to mention that, since in most applications X

is the observable state process and W is just used to model the distribution of X, it
suffices to consider a weak solution. Moreover, no uniqueness of weak solution is
needed. So from now on, we will always fix a weak solution (X,W), and slightly
unlike in Section 2, we shall always use the full filtration:

(3.2) F = F
X,W .

In this framework, the analogue of the martingale term in the decomposition of X

can be defined using exactly the same idea as in the Gaussian case, by basing it on
(3.1) rather than (2.1). Thus we denote

(3.3) �t
s := x +

∫ t

0
b(s; r,X·) ds +

∫ t

0
σ(s; r,X·) dWr, t ≤ s ≤ T ,
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where t �→ �t
s is a semimartinagle. Moreover, we denote

(3.4) X̌t
s := X ⊗t �t namely X̌t

s := Xs1[0,t)(s) + �t
s1[t,T ](s).

To simplify the notation, quite often we omit the X in b and σ , and simply write
ϕ(t, s) = ϕ(t; s,X·) for ϕ = b,σ .

REMARK 3.2. As we will see in the paper, we shall write the interested value
process Yt as a function of the paths X ⊗t �t , which we observe and the function
u is typically continuous under mild conditions. We note that �t

s is also a func-
tion of X[0,t]. However, this dependence is typically discontinuous under uniform
convergence. For example, set

b = 0; σ(t; s,ω) = 1, t ∈
[
0,

T

2

]
;

σ(t; s,ω) = 1 +
[
t − T

2

]
σ0(s,ω), t ∈

(
T

2
, T

]
,

for some appropriate function σ0. Then X[0, T
2 ] = W[0, T

2 ], and, for 0 < t ≤ T
2 ,

�t
T = Wt + T

2

∫ t
0 σ0(s,W·) dWs . This involves a stochastic integral and is typically

discontinuous in pathwise sense. Consequently, if we rewrite Yt as a function of
X[0,t] only, the function could be discontinuous. Besides theoretical interest, such
regularity is crucial when one studies numerical methods for the related problems.

3.1. The path derivatives. As in Dupire [16], though in the end all paths are
continuous, since we employ some piecewise-continuous approximations, we must
extend the sample space to the càdlàg space D0. Denote

� := C0([0, T ],Rd), � := D0([0, T ],Rd), �t := C0([t, T ],Rd);
� := [0, T ] × �, � := {(t,ω) ∈ [0, T ] × � : ω|[t,T ] ∈ �t

};
‖ω‖T := sup

0≤t≤T

|ωt |, d
(
(t,ω),

(
t ′,ω′)) := ∣∣t − t ′

∣∣+ ∥∥ω − ω′∥∥
T .

Here, we change our notation slightly compared to what we had used in the illus-
trative examples of the previous section. Indeed, we see here that ω is defined on
[0, T ], whereas previously we used the letter ω for paths on [0, t). The correspon-
dence between these two conventions is that what we now call ω1[0,t) and ω1[t,T ]
correspond to the ω and θ in (2.10), respectively. Though the old convention was
natural because it highlighted the concatenation of the path of X up to t with the
path of its observable martingale component �t after t , the new convention does
not presume that this is the structure of the full path ω, and allows more compact
notation. Moreover, we emphasize that in this subsection all the terms are deter-
ministic and there is no probability involved.
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The space we really care about is �, however, for technical reasons we need to
allow ω to be discontinuous on [0, t]. We note that Dupire’s framework is covered
by our setup since Dupire’s space is the subset of those ω which are constant on
[t, T ]. We also note that, for any (t,ω) ∈ � and t ′ > t , we have (t ′,ω) ∈ �. Let
C0(�) denote the set of functions u : � → R continuous under d. For u ∈ C0(�),
define

(3.5) ∂tu(t,ω) := lim
δ↓0

u(t + δ,ω) − u(t,ω)

δ
for all (t,ω) ∈ �,

provided the limit exists. We note that here ∂tu is actually the right time derivative.
We next define the spatial derivative with respect to ω. Given (t,ω) ∈ �, we

define ∂ωu(t,ω) as the Fréchet derivative with respect to ω1[t,T ] which is a linear
operator on �t :

(3.6)
u(t,ω + η1[t,T ]) − u(t,ω)

= 〈∂ωu(t,ω), η
〉+ o

(‖η1[t,T ]‖T

)
for any η ∈ �t.

It is clear that this is equal to the Gateux derivative:

(3.7)
〈
∂ωu(t,ω), η

〉= lim
ε→0

u(t,ω + εη1[t,T ]) − u(t,ω)

ε
for any η ∈ �t.

We emphasize that the above perturbation is only on [t, T ], not on [0, t). This is
consistent with Dupire’s derivative. For any s < t and η ∈ �s , we will take the
convention that

(3.8)
〈
∂ωu(t,ω), η

〉 := 〈∂ωu(t,ω), η1[t,T ]
〉
.

DEFINITION 3.3. Let u ∈ C0(�) such that ∂ωu exists for all (t,ω) ∈ �.

(i) We say ∂ωu has polynomial growth if there exist constants C > 0, κ > 0
such that

(3.9)
∣∣〈∂ωu(t,ω), η

〉∣∣≤ C
[
1 + ‖ω‖κ

T

]‖η1[t,T ]‖T for all (t,ω) ∈ �,η ∈ �.

(ii) We say ∂ωu is continuous if, for any η ∈ �, the mapping (t,ω) ∈ � �→
〈∂ωu(t,ω), η〉 is continuous under d.

Throughout the paper, we use κ to denote a generic order of polynomial growth,
which may vary from line to line. We note that, when ∂ωu is continuous, it is clear
that the mapping λ ∈ [0,1] �→ u(t,ω + λη1[t,T ]) is continuously differentiable,
and thus

(3.10) u(t,ω + η1[t,T ]) − u(t,ω) =
∫ 1

0

〈
∂ωu(t,ω + λη1[t,T ]), η

〉
dλ,
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for any η ∈ �t . Define further the second derivative ∂2
ωωu(t,ω) as a bilinear oper-

ator on �t × �t :

(3.11)

〈
∂ωu(t,ω + η11[t,T ]), η2

〉− 〈∂ωu(t,ω), η2
〉

= 〈∂2
ωωu(t,ω), (η1, η2)

〉+ o
(‖η11[t,T ]‖T

)
,

for any η1, η2 ∈ �t . Similarly, define 〈∂2
ωωu(t,ω), (η1, η2)〉 for η1, η2 ∈ �s as in

(3.8), and define the polynomial growth and continuity in the spirit of Defini-
tion 3.3, with ‖η1[t,T ]‖T in (3.9) replaced with ‖η11[t,T ]‖T ‖η21[t,T ]‖T .

DEFINITION 3.4. We say u ∈ C1,2(�) ⊂ C0(�) if ∂tu, ∂ωu, ∂2
ωωu exist and

are continuous on �. Let C
1,2
+ (�) be the subset of C1,2(�) such that all the deriva-

tives have polynomial growth, and 〈∂2
ωωu, (η, η)〉 is locally uniformly continuous

in ω with polynomial growth, that is, there exist κ > 0 and a bounded modulus of
continuity function ρ such that, for any (t,ω), (t,ω′) ∈ � and η ∈ �t ,

(3.12)

∣∣〈∂2
ωωu(t,ω) − ∂2

ωωu
(
t,ω′), (η, η)

〉∣∣
≤ [1 + ‖ω‖κ

T + ∥∥ω′∥∥κ
T

]‖η1[t,T ]‖2
T ρ
(∥∥ω − ω′∥∥

T

)
.

REMARK 3.5. Cont and Fournier [11] established the functional Itô formula
in their framework for all u ∈ C1,2(�), by using the standard localization tech-
niques with stopping times. In their framework, only (t,ω1[0,t]) is involved, and
thus it is sufficient to consider the stopped paths ωt∧·. However, in our framework,
the whole path of ω on [0, T ] is involved, we have difficulty to apply the localiza-
tion techniques directly. Thus in this paper we require slightly stronger conditions
by restricting u to C

1,2
+ (�). We shall leave the possible relaxation of these condi-

tions in future research.

EXAMPLE 3.6. The first example below is in the framework of the path-
dependent case of Section 2.3. The second covers Dupire’s case.

(i) If u(t,ω) = g(ωT ) + ∫ T
t f (s,ωs) ds and f , g are smooth, then

∂tu(t,ω) = −f (t,ωt ),

〈
∂ωu(t,ω), η

〉= ∂xg(ωT ) · ηT +
∫ T

t
∂xf (s,ωs) · ηs ds,

〈
∂2
ωωu(t,ω),

(
η1, η2)〉= ∂2

xxg(ωT ) : [η1
T

(
η2

T

)�]+ ∫ T

t
∂2
xxf (s,ωs) : [η1

s

(
η2

s

)�]
ds.

Here, A1 : A2 := tr(A1A
�
2 ) for two matrices A1, A2.
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(ii) If u is adapted in the sense that, after time t , the path of ω is frozen, that is,
u(t,ω) = v(t,ω1[0,t) + ωt1[t,T ]) for some function v, then

∂tu(t,ω) = ∂tv(t,ω),〈
∂ωu(t,ω), η

〉= ∂ωv(t,ω) · ηt ,〈
∂2
ωωu(t,ω),

(
η1, η2)〉= ∂2

ωωv(t,ω) : [η1
t

(
η2

t

)�]
,

where ∂tv, ∂ωv, ∂2
ωωv are Dupire’s path derivatives.

The following result is similar to Cont and Fournié [10].

PROPOSITION 3.7. Let u1, u2 ∈ C
1,2
+ (�). Assume u1 = u2 on �, then ∂tu1 =

∂tu2, 〈∂ωu1, η〉 = 〈∂ωu2, η〉, 〈∂2
ωωu1, (η, η)〉 = 〈∂2

ωωu2, (η, η)〉 on �, for all η ∈ �.

The proof is closely related to the functional Itô formula below, so we postpone
it and combine with the proof of Theorem 3.10. We believe it is possible to show
that 〈∂2

ωωu1, (η1, η2)〉 = 〈∂2
ωωu2, (η1, η2)〉 for all η1, η2 ∈ � under possibly weaker

regularity conditions on u1, u2. We do not pursue such generality in this paper. We
now define the following.

DEFINITION 3.8. Let C
1,2
+ (�) denote the collection of functions u : � → R

such that there exists ũ ∈ C
1,2
+ (�) satisfying ũ = u on �. In this case, we define

the path derivatives: ∂tu := ∂t ũ, ∂ωu := ∂ωũ, ∂2
ωωu := ∂2

ωωũ on �.

By Proposition 3.7, for any η ∈ �, clearly ∂tu, ∂ωu, and 〈∂2
ωωu, (η, η)〉 are

uniquely determined on �, regardless of the choice of ũ in Definition 3.8.

3.2. Functional Itô formula in the regular case. As noted in the Introduc-
tion, the use of fBm causes two difficulties: (i) it is non-Markovian, because of
the two-variable kernel K(t, r); (ii) for H < 1/2, the kernel is singular, that is,
limr→t K(t, r) = ∞. The SDE (3.1) has the same issues, stemming from the same
properties of b and σ as functions of (t, r). The possible dependence of b and σ

on the path X (which we mostly omit in the notation below) add to the path depen-
dence. To understand the problem better, in this subsection we focus on the lack of
a Markov property and additional path dependence, and postpone the singularity
issue to the next subsection; thus we assume b and σ have no singularity as r tends
to t . We remark that in this “regular” case, X is typically a semimartingale:

(3.13) dXt = b(t; t) dt +σ(t; t) dWt +
[∫ t

0
∂tb(t; r) dr +

∫ t

0
∂tσ (t; r) dWr

]
dt,
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provided that ∂tb(t; r), ∂tσ (t; r) exist and have good integrability properties near
the time diagonal. We shall remark that, even for H > 1

2 , the fBM BH does not
satisfy the above expression because the corresponding ∂tσ (t; r) is not square in-
tegrable.

In this subsection, we assume the following.

ASSUMPTION 3.9. ∂tb(t; r, ·), ∂tσ (t; r, ·) exist for t ∈ [r, T ], and for ϕ =
b,σ, ∂tb, ∂tσ ,

(3.14)
∣∣ϕ(t; r,ω)

∣∣≤ C0
[
1 + ‖ω‖κ0

T

]
for some constants C0, κ0 > 0.

Recall (3.3), (3.4) and (3.13). Under Assumptions 3.1 and 3.9, it is obvious that

(3.15) E
[∥∥X̌t

∥∥p
T

]≤ Cp for all p ≥ 1,0 ≤ t ≤ T .

Our main result is the following functional Itô formula.

THEOREM 3.10. Let Assumptions 3.1 and 3.9 hold and u ∈ C
1,2
+ (�). Then

P-a.s.,

(3.16)
du
(
t, X̌t )= ∂tu

(
t, X̌t )dt + 1

2

〈
∂2
ωωu

(
t, X̌t ), (σ t,X, σ t,X)〉dt

+ 〈∂ωu
(
t, X̌t ), bt,X〉dt + 〈∂ωu

(
t, X̌t ), σ t,X〉dWt,

where, for ϕ = b,σ , ϕt,ω
s := ϕ(s; t,ω) emphasizes the dependence on s ∈ [t, T ].

The main idea of the proof follows that of Dupire [16] and Cont and Fournie
[11]. However, here we have to deal with the two time variables, and for that
purpose we need a few technical lemmas. The first one is a direct consequence
of the proof of Kolmogorov’s continuity criterion; see, for example, Revuz and
Yor [38], Chapter I, Theorem 2.1.

LEMMA 3.11. Let X̃ be a process on [0, T ] with X̃0 = 0, and α,β > 0 be
constants. Assume

E
[|X̃t − X̃t ′ |2p]≤ Cpβp

∣∣t − t ′
∣∣αp for all 0 ≤ t < t ′ ≤ T ,p ≥ 1.

Then, for each p ≥ 1, there exists another constant C̃p > 0, which may depend on
T , α, p, the dimension d and the above Cp , but does not depend on β , such that

E
[‖X̃‖2p

T

]≤ C̃pβp.

The following result will be crucial for the functional Itô formula.
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LEMMA 3.12. Let Assumptions 3.1 and 3.9 hold. Fix n and set h := 2−nT ,
ti := ih, i = 0, . . . ,2n,

(3.17) Xn
t :=

2n−1∑
i=0

�
ti
t 1[ti ,ti+1)(t) + XT 1{T }(t).

Then, for any p ≥ 1,

(3.18) E
[∥∥X̌t − X̌t ′∥∥4p

T

]≤ Cp

∣∣t ′ − t
∣∣p, E

[∥∥X − Xn
∥∥8
T

]≤ C2−n.

PROOF. We start with the first inequality of (3.18). Let t < t ′ and denote

X̃s := X̌t ′
s − X̌t

s =
∫ s∧t ′

s∧t
b(s; r) dr +

∫ s∧t ′

s∧t
σ (s; r) dWr.

We claim that, for any s < s′ and any p ≥ 1,

(3.19) Ip := E
[|X̃s − X̃s′ |2p]≤ Cp

(
t ′ − t

)p
2
(
s′ − s

)p
2 .

Then the first inequality of (3.18) follows from Lemma 3.11. We prove (3.19) in
three cases.

Case 1. s ≤ t . Then X̃s = 0 and thus, by Assumptions 3.1 and 3.9,

Ip = E
[|X̃s′ |2p]≤ CpE

[∣∣∣∣
∫ s′∧t ′

s′∧t
b
(
s′; r)dr

∣∣∣∣2p

+
∣∣∣∣
∫ s′∧t ′

s′∧t

∣∣σ (s′; r)∣∣2 dr

∣∣∣∣p
]

≤ CpE

[∣∣∣∣
∫ s′∧t ′

s′∧t

[
1 + ‖X‖κ0

T

]
dr

∣∣∣∣2p

+
∣∣∣∣
∫ s′∧t ′

s′∧t

[
1 + ‖X‖2κ0

T

]
dr

∣∣∣∣p
]

≤ Cp

[
s′ ∧ t ′ − s′ ∧ t

]p ≤ Cp

(
t ′ − t

)p
2
(
s′ − s

)p
2 .

Case 2. t < s ≤ t ′. Then

Ip = E

[∣∣∣∣
∫ s

t

[
b(s; r) dr + σ(s; r) dWr

]− ∫ s′∧t ′

t

[
b
(
s′; r)dr + σ

(
s′; r)dWr

]∣∣∣∣2p]

≤ CpE

[∣∣∣∣
∫ s

t

[
b(s; r) − b

(
s′; r)]dr +

∫ s

t

[
σ(s; r) − σ

(
s′; r)]dWr

∣∣∣∣2p

+
∣∣∣∣
∫ s′∧t ′

s
b
(
s′; r)dr +

∫ s′∧t ′

s
σ
(
s′; r)dWr

∣∣∣∣2p]

≤ CpE

[∣∣∣∣
∫ s

t

[
s′ − s

][
1 + ‖X‖κ0

T

]
dr

∣∣∣∣2p

+
∣∣∣∣
∫ s

t

[
s′ − s

]2[1 + ‖X‖2κ0
T

]
dr

∣∣∣∣p

+
∣∣∣∣
∫ s′∧t ′

s

[
1 + ‖X‖κ0

T

]
dr

∣∣∣∣2p

+
∣∣∣∣
∫ s′∧t ′

s

[
1 + ‖X‖2κ0

T

]
dr

∣∣∣∣p
]

≤ Cp

[
(s − t)p

(
s′ − s

)2p + (s′ ∧ t ′ − s
)p]≤ Cp

(
t ′ − t

)p
2
(
s′ − s

)p
2 .
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Case 3. s > t ′. Then

Ip = E

[∣∣∣∣
∫ t ′

t

[
b(s; r) dr + σ(s; r) dWr

]− ∫ t ′

t

[
b
(
s′; r)dr + σ

(
s′; r)dWr

]∣∣∣∣2p]

≤ CpE

[∣∣∣∣
∫ t ′

t

[
s′ − s

][
1 + ‖X‖κ0

T

]
dr

∣∣∣∣2p

+
∣∣∣∣
∫ t ′

t

[
s′ − s

]2[1 + ‖X‖2κ0
T

]
dr

∣∣∣∣p
]

≤ Cp

(
t ′ − t

)p(
s′ − s

)2p ≤ Cp

(
t ′ − t

)p
2
(
s′ − s

)p
2 .

So in all the cases, we have proved (3.19).
To see the second inequality in (3.18), for each i, note that

Xt − �
ti
t =

∫ t

ti

b(t; r) dr +
∫ t

ti

σ (t; r) dWr, t ≥ ti .

By Case 2 above, we see that

E
[∣∣[Xt − �

ti
t

]− [Xt ′ − �
ti
t ′
]∣∣2p]≤ Cph

p
2
∣∣t − t ′

∣∣p2 , ti ≤ t < t ′ ≤ ti+1.

Then by Lemma 3.11, we have E[supti≤t≤ti+1
|Xt − �

ti
t |4p] ≤ Cphp . Thus

E
[∥∥X − Xn

∥∥8
T

]≤ 2n−1∑
i=0

E

[
sup

ti≤t≤ti+1

∣∣Xt − Xn
t

∣∣8]≤ Ch22n = C2−n,

completing the proof. �

We need another lemma dealing with two variable functions/processes.

LEMMA 3.13. Let Assumptions 3.1 and 3.9 hold, u ∈ C0(�), and 0 ≤ t1 <

t2 ≤ T .

(i) If ∂ωu is continuous and has polynomial growth, then

(3.20)

〈
∂ωu

(
t2, X̌

t1
)
,

∫ t2

t1

b(·; r) dr

〉
=
∫ t2

t1

〈
∂ωu

(
t2, X̌

t1
)
, br,X〉dr;

〈
∂ωu

(
t2, X̌

t1
)
,

∫ t2

t1

σ(·; r) dWr

〉
=
∫ t2

t1

〈
∂ωu

(
t2, X̌

t1
)
, σ r,X〉dWr.

Here, assuming W is k-dimensional, 〈∂ωu,σ 〉dWr :=∑k
i=1〈∂ωu,σ i〉dWi

r , where
σ i is the ith column of σ .
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(ii) If ∂2
ωωu is continuous and has polynomial growth, then〈

∂2
ωωu

(
t2, X̌

t1
)
,

(∫ t2

t1

σ(·; r) dWr,

∫ t2

t1

σ(·; r) dWr

)〉

=
k∑

i=1

∫ t2

t1

〈
∂2
ωωu

(
t2, X̌

t1
)
,
(
σ i,t,X, σ i,t,X)〉dt

+
∫ t2

t1

〈
∂2
ωωu

(
t2, X̌

t1
)
,

(∫ t

t1

σ(·; r) dWr,σ
t,X

)〉
dWt

+
∫ t2

t1

〈
∂2
ωωu

(
t2, X̌

t1
)
,

(
σ t,X,

∫ t

t1

σ(·; r) dWr

)〉
dWt .

(3.21)

PROOF. For notational simplicity, we assume d = k = 1, and omit the variable
(t2, X̌

t1) inside ∂ωu and ∂2
ωωu.

(i) We prove the second equality in three steps. The first one follows similar
arguments.

Step 1. Assume σ(s; r) =∑n−1
i=0 σ(s; ri)1[ri ,ri+1) for some t1 = r0 < · · · < rn =

t2. Since ∂ωu is linear, the second equality of (3.20) is obvious.
Step 2. Assume, for some constants C, κ > 0 and for all t1 ≤ r < r ′ ≤ t2,

(3.22)
∣∣σ(s; r) − σ

(
s; r ′)∣∣+ ∣∣∂sσ (s; r) − ∂sσ

(
s; r ′)∣∣≤ C

[
1 + ‖ω‖κ

T

]∣∣r − r ′∣∣.
Denote σn(s; r) := ∑2n−1

i=0 σ(s; ri)1[ri ,ri+1), where ri := t1 + i(t2 − t1)2−n, i =
0, . . . ,2−n. Then supt2≤s≤T [|σn(s; r) − σ(s; r)| + |∂sσn(s; r) − ∂sσ (s; r)| ≤
C[1 + ‖ω‖κ

T ]2−n for all r ∈ [t1, t2]. By (3.9), this implies limn→∞〈∂ωu,σ r,X
n 〉 =

〈∂ωu,σ r,X〉, which together with the dominated convergence theorem, implies fur-
ther that

(3.23) lim
n→∞E

[∣∣∣∣
∫ t2

t1

〈
∂ωu,σ r,X

n

〉
dWr −

∫ t2

t1

〈
∂ωu,σ r,X〉dWr

∣∣∣∣2
]

= 0.

Moreover, denote X̃s := ∫ t2
t1

[σn(s; r) − σ(s; r)]dWr . Then, for t2 ≤ s < s′ ≤ T

and p ≥ 1,

E
[|X̃s − X̃s′ |2p]= E

[∣∣∣∣
∫ t2

t1

∫ s′

s
∂sσn(l; r) − ∂sσ (l; r) dl dWr

∣∣∣∣2p]

≤ CpE

[∣∣∣∣
∫ t2

t1

∣∣∣∣
∫ s′

s
∂sσn(l; r) − ∂sσ (l; r) dl

∣∣∣∣2 dr

∣∣∣∣p
]

≤ Cp2−2pn(s′ − s
)2p

.

Applying Lemma 3.11, we get E[supt2≤s≤T |X̃s |2] ≤ C2−2n. Then

lim
n→∞ sup

t2≤s≤T

|X̃s | = 0, P-a.s.,
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and thus

(3.24) lim
n→∞

〈
∂ωu,

∫ t2

t1

σn(·; r) dWr

〉
=
〈
∂ωu,

∫ t2

t1

σ(·; r) dWr

〉
, P-a.s.

By Step 1, the second equality of (3.20) holds for σn. Then by (3.23) and (3.24)
we obtain the desired equality for σ .

Step 3. Denote

σε(s; r) := 1

ε

∫ r

(r−ε)+
σ(s; l) dl and thus ∂sσε(s; r) := 1

ε

∫ r

(r−ε)+
∂sσ (s; l) dl.

It is clear that limε→0 E[∫ t2
t1

[|σε(s; r)−σ(s; r)|p +|∂sσε(s; r)−∂sσ (s; r)|p]dr] =
0 for all p ≥ 1. Fix some p large enough, then there exists εn ↓ 0 such that

E

[∫ t2

t1

[∣∣σεn(s; r) − σ(s; r)∣∣p + ∣∣∂sσεn(s; r) − ∂sσ (s; r)∣∣p]dr

]
≤ 2−n.

Now following the arguments of Step 2 as well as that of Lemma 3.11, one can
show that

lim
n→∞E

[∣∣∣∣
∫ t2

t1

〈
∂ωu,σ r,X

εn

〉
dWr −

∫ t2

t1

〈
∂ωu,σ r,X〉dWr

∣∣∣∣2
]

= 0;

lim
n→∞

〈
∂ωu,

∫ t2

t1

σεn(·; r) dWr

〉
=
〈
∂ωu,

∫ t2

t1

σ(·; r) dWr

〉
a.s.

Clearly, σε satisfies the conditions in Step 2, and thus the second equality of (3.20)
holds for each σε . Then the above limits imply the desired equality for σ .

(ii) Combining the arguments in Steps 2 and 3 in (i) above, it suffices to prove
(3.21) in the case σ is piecewise constant in r : σ(s; r) =∑n−1

i=0 σ(s; ri)1[ri ,ri+1)

for some t1 = r0 < · · · < rn = t2. In this case,
∫ t2
t1

σ(s; r) dWr =∑n−1
i=0 [Wri+1 −

Wri ]σ(s; ri). Denote Ws,t := Wt − Ws and Iij := 〈∂2
ωωu, (σ ri ,X, σ rj ,X)〉. Since

∂2
ωωu is bilinear, we see that

∫ t2

t1

〈
∂2
ωωu,

(∫ t

t1

σ(·; r) dWr,σ
t,X

)〉
dWt

=
n−1∑
i=0

∫ ri+1

ri

〈
∂2
ωωu,

(
i−1∑
j=0

σ rj ,XWrj ,rj+1 + σ ri,XWri,t , σ
ri ,X

)〉
dWt

=
n−1∑
i=0

[
i−1∑
j=0

IjiWri,ri+1Wrj ,rj+1 + Iii

∫ ri+1

ri

Wri,t dWt

]
.
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Then, by similar arguments for the last term of (3.21), the right-hand side of (3.21)
becomes

n−1∑
i=0

Iii[ri+1 − ri] +
n−1∑
i=0

[
i−1∑
j=0

[Iji + Iij ]Wri,ri+1Wrj ,rj+1

+ 2Iii

∫ ri+1

ri

Wri,t dWt

]

=
n−1∑
i=0

IiiW
2
ri ,ri+1

+ ∑
0≤j<i≤n−1

Wri,ri+1Wrj ,rj+1[Iij + Iji]

=
n−1∑
i=0

n−1∑
j=0

Wri,ri+1Wrj ,rj+1Iij ,

which is equal to the left-hand side of (3.21). �

We are now ready to prove our main result.

PROOF OF THEOREM 3.10 AND PROPOSITION 3.7. As announced, we shall
prove these two results together. This does not create a circular argument. The
first step is to prove Theorem 3.10 on �, which is not related to Proposition 3.7,
then we prove Proposition 3.7, and finally we invoke Proposition 3.7 to draw the
conclusion of Theorem 3.10 as it applies to � instead of �, where the derivatives in
(1.2) are uniquely determined because of Proposition 3.7. For notational simplicity
in this proof, we assume all processes are scalar. The multidimensional case can
be proved without any significant difficulty. Moreover, we emphasize again that
we denote by κ the generic polynomial growth order which may vary from line to
line.

Step 1. By abusing the notation slightly, in this step we assume u ∈ C
1,2
+ (�) and

prove (3.16) for such a function. This step does not refer to Proposition 3.7 since
it works in C

1,2
+ (�). Without loss of generality, we shall only prove the result for

u(T ,X) − u(0,0). Fix n and consider the setting in (3.17). Then

(3.25) u(T ,X) − u(0,0) = u(T ,X) − u
(
T ,Xn)+ 2n−1∑

i=0

[
I 1
i + I 2

i

]
,

where

I 1
i := u

(
ti+1,X

n ⊗ti �ti
)− u

(
ti ,X

n ⊗ti �ti
);

I 2
i := u

(
ti+1,X

n ⊗ti+1 �ti+1
)− u

(
ti+1,X

n ⊗ti �ti
)
.
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First, by the second inequality in (3.18) we have

E

[ ∞∑
n=1

∥∥X−Xn
∥∥8
T

]
≤ C

∑
n=1

2−n < ∞ and thus lim
n→∞

∥∥X−Xn
∥∥
T = 0, P-a.s.

Since u is continuous, we have

(3.26) lim
n→∞

[
u(T ,X) − u

(
T ,Xn)]= 0, P-a.s.

Next, by definition (3.5) and the continuity of ∂tu we have

I 1
i =

∫ ti+1

ti

∂tu
(
t,Xn ⊗ti �ti

)
dt.

By (3.18), one can easily show that

(3.27) lim
n→∞

2n−1∑
i=0

∫ ti+1

ti

∥∥Xn ⊗ti �ti − X ⊗t �t
∥∥
T dt = 0, P-a.s.

and thus, again by the continuity of ∂tu together with polynomial growth of ∂tu

and (3.15),

(3.28) lim
n→∞

2n−1∑
i=0

I 1
i =

∫ T

0
∂tu
(
t,X ⊗t �t )dt, P-a.s.

Moreover, note that

(3.29) Xn ⊗ti �ti = Xn ⊗ti+1 �ti =: Xn,i .

Denote ��ti := �ti+1 − �ti , then

I 2
i = u

(
ti+1,X

n ⊗ti+1 �ti+1
)− u

(
ti+1,X

n,i)
=
∫ 1

0

〈
∂ωu

(
ti+1,X

n ⊗ti+1

[
�ti + λ��ti

])
,��ti

〉
dλ(3.30)

= I
2,1
i + I

2,2
i + I

2,3
i ,

where

I
2,1
i := 〈∂ωu

(
ti+1,X

n,i),��ti
〉

I
2,2
i := 1

2

〈
∂2
ωωu

(
ti+1,X

n,i), (��ti ,��ti
)〉

I
2,3
i := 〈∂2

ωωu
(
ti+1,X

n ⊗ti+1

[
�ti + λ∗��ti

])− ∂2
ωωu

(
ti+1,X

n,i),(
��ti ,��ti

)〉
,

for some appropriate (random) λ∗ taking values on [0,1]. Note that

(3.31) ��ti
s =

∫ ti+1

ti

b(s; r) dr +
∫ ti+1

ti

σ (s; r) dWr, s ≥ ti+1.
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Since Xn ⊗ti+1 �ti = Xn ⊗ti �ti is Fti -measurable, similar to Lemma 3.13(i), we
have

I
2,1
i =

∫ ti+1

ti

〈
∂ωu

(
ti+1,X

n,i), br,X〉dr +
∫ ti+1

ti

〈
∂ωu

(
ti+1,X

n,i), σ r,X〉dWr.

Recall (3.29) and (3.27). By Assumptions 3.1 and 3.9, since ∂ωu is continuous, we
have

lim
n→∞

2n−1∑
i=0

∫ ti+1

ti

∣∣〈∂ωu
(
ti+1,X

n,i), br,X〉− 〈∂ωu
(
r, X̌r), br,X〉∣∣dr = 0;

lim
n→∞

2n−1∑
i=0

∫ ti+1

ti

∣∣〈∂ωu
(
ti+1,X

n,i), σ r,X〉− 〈∂ωu
(
r, X̌r), σ r,X〉∣∣2 dr = 0.

Therefore, with convergence in L
2,

(3.32) lim
n→∞

2n−1∑
i=0

I
2,1
i =

∫ T

0

〈
∂ωu

(
t, X̌t ), bt,X〉dt +

∫ T

0

〈
∂ωu

(
t, X̌t ), σ t,X〉dWt .

We now consider I
2,2
i . In the spirit of Lemma 3.13(ii) we can prove

(3.33) 2I
2,2
i = I

2,2,1
i + I

2,2,2
i + I

2,2,3
i ,

where

I
2,2,1
i :=

〈
∂2
ωωu

(
ti+1,X

n,i),(∫ ti+1

ti

b(·; r) dr,

∫ ti+1

ti

b(·; r) dr

)〉

+
〈
∂2
ωωu

(
ti+1,X

n,i),(∫ ti+1

ti

b(·; r) dr,

∫ ti+1

ti

σ (·; r) dWr

)〉

+
〈
∂2
ωωu

(
ti+1,X

n,i),(∫ ti+1

ti

σ (·; r) dWr,

∫ ti+1

ti

b(·; r) dr

)〉

I
2,2,2
i :=

∫ ti+1

ti

〈
∂2
ωωu

(
ti+1,X

n,i),(∫ t

ti

σ (·; r) dWr,σ
t,X

)〉
dWt

+
∫ ti+1

ti

〈
∂2
ωωu

(
ti+1,X

n,i),(σ t,X,

∫ t

ti

σ (·; r) dWr

)〉
dWt

I
2,2,3
i :=

∫ ti+1

ti

〈
∂2
ωωu

(
ti+1,X

n,i), (σ t,X, σ t,X)〉dt.

One can similarly show that, with convergence in L
2,

(3.34) lim
n→∞

2n−1∑
i=0

I
2,2,3
i =

∫ T

0

〈
∂2
ωωu

(
t, X̌t ), (σ t,X, σ t,X)〉dt.
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By the martingale property,

E

[∣∣∣∣∣
2n−1∑
i=0

I
2,2,2
i

∣∣∣∣∣
2]

=
2n−1∑
i=0

E

[∫ ti+1

ti

∣∣∣∣
〈
∂2
ωωu

(
ti+1,X

n,i),(∫ t

ti

σ (·; r) dWr,σ
t,X

)〉∣∣∣∣2 dt

+
∫ ti+1

ti

∣∣∣∣
〈
∂2
ωωu

(
ti+1,X

n,i),(σ t,X,

∫ t

ti

σ (·; r) dWr

)〉∣∣∣∣2 dt

]

≤ C

2n−1∑
i=0

E

[[
1 + ∥∥Xn,i

∥∥κ
T + ‖X‖κ

T

] ∫ ti+1

ti

sup
ti+1≤s≤T

∣∣∣∣
∫ t

ti

σ (s; r) dWr

∣∣∣∣2 dt

]

≤ C

2n−1∑
i=0

(
E

[
2−n

∫ ti+1

ti

sup
ti+1≤s≤T

∣∣∣∣
∫ t

ti

σ (s; r) dWr

∣∣∣∣4 dt

]) 1
2
.

Note that, for ti ≤ t ≤ ti+1 ≤ s < s′ ≤ T and p ≥ 1,

E

[∣∣∣∣
∫ t

ti

σ (s; r) dWr −
∫ t

ti

σ
(
s′; r)dWr

∣∣∣∣2p]

≤ CpE

[[∫ t

ti

∣∣σ(s; r) − σ
(
s′; r)∣∣2 dr

]p]

≤ CpE

[[∫ t

ti

[∫ s′

s

∣∣∂lσ (l, r)
∣∣dl

]2
dr

]p]
≤ Cp(t − ti)

p(s′ − s
)2p

.

Applying Lemma 3.11, we have

(3.35) E

[
sup

ti+1≤s≤T

∣∣∣∣
∫ t

ti

σ (s; r) dWr

∣∣∣∣4 dt

]
≤ C(t − ti)

2 ≤ C2−2n.

Then

E

[∣∣∣∣∣
2n−1∑
i=0

I
2,2,2
i

∣∣∣∣∣
2]

≤ C

2n−1∑
i=0

(
2−n

∫ ti+1

ti

2−2n dt

) 1
2

= C

2n−1∑
i=0

2−2n = C2−n → 0.

(3.36)
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Moreover, by (3.35) again,

E

[∣∣∣∣∣
2n−1∑
i=0

I
2,2,1
i

∣∣∣∣∣
2]

≤ 2n
2n−1∑
i=0

E
[
I

2,2,1
i |2]

≤ C2n
2n−1∑
i=0

E

[[
1 + ∥∥Xn,i

∥∥κ
T + ‖X‖κ

T

]

×
[
2−4n + 2−2n sup

ti+1≤s≤T

∣∣∣∣
∫ ti+1

ti

σ (s; r) dWr

∣∣∣∣2
]]

≤ C2−2n + C2−n
2n−1∑
i=0

(
E

[
sup

ti+1≤s≤T

∣∣∣∣
∫ ti+1

ti

σ (s; r) dWr

∣∣∣∣4
]) 1

2

≤ C2−2n + C2−n
2n−1∑
i=0

2−n ≤ C2−n.

Plug this and (3.34), (3.36) into (3.33), we obtain

(3.37) lim
n→∞

2n−1∑
i=0

I
2,2
i = 1

2

∫ T

0

〈
∂2
ωωu

(
t, X̌t ), (σ t,X, σ t,X)〉dt.

Finally, denote ‖��i‖ := supti+1≤s≤T |��
ti
s |. For any ε > 0, by (3.12) we have

∣∣I 2,3
i

∣∣≤ ρ
(‖��i‖)‖��i‖2 ≤ ρ(ε)‖��i‖2 + Cε−1‖��i‖3.

By (3.31), similar to (3.35) we have

E
[∣∣I 2,3

i

∣∣]≤ ρ(ε)E
[‖��i‖2]+ Cε−1

E
[‖��i‖3]≤ Cρ(ε)2−n + Cε−12− 3

2 n.

Then

E

[2n−1∑
i=0

∣∣I 2,3
i

∣∣]≤ Cρ(ε) + Cε−12− n
2 .

By first sending n → ∞ and then ε → 0, we obtain limn→∞E[∑2n−1
i=0 |I 2,3

i |] = 0.
Plug this and (3.32), (3.37) into (3.30), we get

lim
n→∞

2n−1∑
i=0

I 2
i =

∫ T

0

〈
∂ωu

(
t, X̌t ), bt,X〉dt +

∫ T

0

〈
∂ωu

(
t, X̌t ), σ t,X〉dWt

+ 1

2

∫ T

0

〈
∂2
ωωu

(
t, X̌t ), (σ t,X, σ t,X)〉dt, P-a.s.

This, together with (3.26) and (3.28), proves (3.16) for u ∈ C
1,2
+ (�).
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Step 2. We now prove Proposition 3.7. Set u := u1 − u2 ∈ C
1,2
+ (�) and thus

u = 0 on �. By definition in (3.5), it is clear that ∂tu = 0 on �. Fix (t0,ω
0) ∈ �

and η ∈ �t0 . Define

X̃t := ω0
t 1[0,t0)(t) +

[
ω0

t0
+
∫ t

t0

ηr dWr

]
1[t0,T ](t),

�̃t
s := ω0

s +
∫ t

t0

ηr dWr,

t0 ≤ t ≤ s ≤ T .

Note that X̃ ⊗t �̃t is continuous, thus u(t, X̃ ⊗t �̃t ) = 0, t0 ≤ t ≤ T . By Step 1,
which does not require Proposition 3.7, the process u(t, X̃ ⊗t �̃t ) satisfies (3.16)
on [t0, T ], and thus〈
∂ωu

(
t, X̃ ⊗t �̃t ), η〉= 0,

〈
∂2
ωωu

(
t, X̃ ⊗t �̃t ), (η, η)

〉= 0, t0 ≤ t ≤ T ,P-a.s.

In particular, noting that X̃ ⊗t0 �̃t0 = ω0, then for t = t0 we have
〈
∂ωu

(
t0,ω

0), η〉= 0,
〈
∂2
ωωu

(
t0,ω

0), (η, η)
〉= 0, P-a.s.

Since η is arbitrary, we prove Proposition 3.7.
Step 3. Finally, it is clear that (3.16) holds for u ∈ C

1,2
+ (�). In particular, by

Proposition 3.7 (or say Step 2 above), the path derivatives in the right-hand side of
(3.16) do not depend on the choice of ũ ∈ C

1,2
+ (�). �

REMARK 3.14. An alternative way to define path derivatives is directly
through (3.16) by positing that this functional Itô formula holds, and the deriva-
tives will be uniquely defined in appropriate sense. This is the approach in [18, 19]
for PPDEs in a semmartingale framework. In this way, we may avoid involving the
càdlàg space �.

3.3. The singular case. We now consider the case where b(t; t) and σ(t; t)
may blow up. We shall assume the following growth condition which is modeled
after the behavior of the kernel for Gaussian processes with self-similarity param-
eter H ∈ (0,1/2), and is therefore satisfied by fBm with H in that range (and is
more true for fBM with larger hurst parameter by setting H = 1

2 at below).

ASSUMPTION 3.15. For ϕ = b,σ , ∂tϕ(t; s, ·) exists for t ∈ (s, T ], and there
exists 0 < H < 1

2 such that, for any 0 ≤ s < t ≤ T ,

(3.38)

∣∣ϕ(t; s,ω)
∣∣≤ C0

[
1 + ‖ω‖κ0

T

]
(t − s)H− 1

2 ,∣∣∂tϕ(t; s,ω)
∣∣≤ C0

[
1 + ‖ω‖κ0

T

]
(t − s)H− 3

2 .
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We remark that, in this case bt,X , σ t,X are not in �t and thus cannot serve as
the test function in the right-hand side of (3.16). To overcome this difficulty, we
assume the following conditions on u which roughly mean that u(t,ω) does not
depend on {ωs}t≤s≤t+δ for some small δ > 0, or depends very weakly on the paths
in the sense that u’s derivatives become increasingly smaller as one approaches the
diagonal.

DEFINITION 3.16. We say u ∈ C
1,2
+ (�) vanishes diagonally with rate α ∈

(0,1), denoted as u ∈ C
1,2
+,α(�) if there exist an extension of u in C

1,2
+ (�), still

denoted as u, a polynomial growth order κ , and a bounded modulus of continuity
function ρ satisfying: for any 0 ≤ t < T , 0 < δ ≤ T − t and η,η1, η2 ∈ �t with the
supports of η, η1 and η2 contained in [t, t + δ]:

(i) for any ω ∈ � such that ω1[t,T ] ∈ �t ,

(3.39)

∣∣〈∂ωu(t,ω), η
〉∣∣≤ C

[
1 + ‖ω‖κ

T

]‖η‖T δα,∣∣〈∂2
ωωu(t,ω), (η1, η2)

〉∣∣≤ C
[
1 + ‖ω‖κ

T

]∥∥|η1||η2|
∥∥
T δ2α;

(ii) for any other ω′ ∈ � such that ω′1[t,T ] ∈ �t ,

(3.40)

∣∣〈∂ωu(t,ω) − ∂ωu
(
t,ω′), η〉∣∣

≤ [1 + ‖ω‖κ
T + ∥∥ω′∥∥κ

T

]‖η‖T ρ
(∥∥ω − ω′∥∥

T

)
δα,∣∣〈∂2

ωωu(t,ω) − ∂2
ωωu

(
t,ω′), (η1, η2)

〉∣∣
≤ [1 + ‖ω‖κ

T + ∥∥ω′∥∥κ
T

]∥∥|η1||η2|
∥∥
T ρ
(∥∥ω − ω′∥∥

T

)
δ2α.

These conditions will allow us to truncate the coefficients b, σ near the diagonal,
and control the error made by this truncation. For ϕ = b,σ and δ > 0, we introduce
the truncated functions:

ϕδ(t; s,ω) := ϕ
(
t ∨ (s + δ); s,ω).

We also again use the notation ϕδ,s,ω for the path t ∈ [s, T ] �→ ϕδ(t; s,ω). Another
consequence of using these truncated coefficients is that the notion of time and
path derivatives must be understood as limits when the truncation parameter δ

tends to 0. Specifically, we prove the following functional Itô formula, where in
particular, the said limits exist.

THEOREM 3.17. Let Assumptions 3.1 and 3.15 hold. Assume u ∈ C
1,2
+,α(�)

with β := α + H − 1
2 > 0. Then the functional Itô formula (3.16) still holds true,

where

(3.41)

〈
∂ωu(t,ω),ϕt,ω〉 := lim

δ↓0

〈
∂ωu(t,ω),ϕδ,t,ω〉, ϕ = b,σ,

〈
∂2
ωωu(t,ω),

(
σ t,ω, σ t,ω)〉 := lim

δ↓0

〈
∂2
ωωu(t,ω),

(
σ δ,t,ω, σ δ,t,ω)〉.
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PROOF. We proceed in three steps.
Step 1. We first show that the limits in (3.41) exist. We shall only prove it for σ ,

and the result for b follow the same arguments. Denote

(3.42) ψn(s) := s − tn+1

δn − δn+1
1(tn+1,tn](s) + tn−1 − s

δn−1 − δn

1(tn,tn−1)(s),

where δn := 1
2n , tn := t + δn. Then ψn is continuous, with support (tn+1, tn−1), and

ψn + ψn+1 = 1 on [tn+1, tn]. Now for any δ′ < δ, assume δ′ ∈ [δn+1, δn) and δ ∈
[δm+1, δm) for some m ≤ n. Consider the following decomposition into continuous
functions for the constant 1:

(3.43) 1[t,T ] = [1 − ψm]1[tm,T ] +
n∑

k=m

ψk + [1 − ψn]1[t,tn].

Note that σ δ,t,ω
s = σ δ′,t,ω

s for s ∈ [tm, T ]. Then, for s ≥ t ,

(3.44)
σ δ,t,ω

s − σ δ′,t,ω
s =

n∑
k=m

[
σ δ,t,ω

s − σ δ′,t,ω
s

]
ψk(s)

+ [σ δ,t,ω
s − σ δ′,t,ω

s

][1 − ψn]1[t,tn].

Thus, by the first inequalities of (3.39) and (3.38),

∣∣〈∂ωu(t,ω), σ δ,t,ω〉− 〈∂ωu(t,ω), σ δ′,t,ω〉∣∣
≤

n∑
k=m

∣∣〈∂ωu(t,ω),ψk

[
σ δ,t,ω − σ δ′,t,ω]〉∣∣

+ ∣∣〈∂ωu(t,ω), [1 − ψn]1[t,tn]
[
σ δ,t,ω − σ δ′,t,ω]〉∣∣

≤ C
[
1 + ‖ω‖κ

T

][ n∑
k=m

sup
tk+1≤s≤tk−1

[∣∣σ δ,t,ω
s

∣∣+ ∣∣σ δ′,t,ω
s

∣∣]δα
k−1

(3.45)

+ sup
t≤s≤tn−1

[∣∣σ δ,t,ω
s

∣∣+ ∣∣σ δ′,t,ω
s

∣∣]δα
n−1

]

≤ C
[
1 + ‖ω‖κ

T

][ n∑
k=m

δ
H− 1

2
k+1 δα

k−1 + δ
H− 1

2
n+1 δα

n−1

]

≤ C
[
1 + ‖ω‖κ

T

] ∞∑
k=m

2−βk ≤ C
[
1 + ‖ω‖κ

T

]
2−βm

≤ C
[
1 + ‖ω‖κ

T

]
δβ → 0 as δ → 0.
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Similarly, by the second inequality of (3.39) and the first inequality of (3.38), we
have

(3.46)

∣∣〈∂2
ωωu(t,ω),

(
σ δ,t,ω, σ δ,t,ω)〉− 〈∂2

ωωu(t,ω),
(
σ δ′,t,ω, σ δ′,t,ω)〉∣∣

≤ ∣∣〈∂2
ωωu(t,ω),

(
σ δ,t,ω, σ δ,t,ω − σ δ′,t,ω)〉∣∣

+ ∣∣〈∂2
ωωu(t,ω),

(
σ δ,t,ω − σ δ′,t,ω, σ δ′,t,ω)〉∣∣

≤ C
[
1 + ‖ω‖κ

T

][ n∑
k=m

sup
tk+1≤s≤tk−1

[∣∣σ δ,t,ω
s

∣∣+ ∣∣σ δ′,t,ω
s

∣∣]2δ2α
k−1

+ sup
t≤s≤tn−1

[∣∣σ δ,t,ω
s

∣∣+ ∣∣σ δ′,t,ω
s

∣∣]2δ2α
n−1

]

≤ C
[
1 + ‖ω‖κ

T

][ n∑
k=m

δ2H−1
k+1 δ2α

k−1 + δ2H−1
n+1 δ2α

n−1

]

≤ C
[
1 + ‖ω‖κ

T

] ∞∑
k=m

2−2βk ≤ C
[
1 + ‖ω‖κ

T

]
δ2β → 0 as δ → 0.

This, together with (3.45), implies (3.41). Moreover, by sending δ′ → 0, we obtain
the following estimates which are stronger than (3.41):

∣∣〈∂ωu(t,ω),ϕδ,t,ω〉− 〈∂ωu(t,ω),ϕt,ω〉∣∣≤ C
[
1 + ‖ω‖κ

T

]
δβ, ϕ = b,σ,∣∣〈∂2

ωωu(t,ω),
(
σ δ,t,ω, σ δ,t,ω)〉− 〈∂2

ωωu(t,ω),
(
σ t,ω, σ t,ω)〉∣∣

≤ C
[
1 + ‖ω‖κ

T

]
δ2β.

(3.47)

Step 2. Denote

(3.48)
Xδ

t := x +
∫ t

0
bδ(t; r,X)dr +

∫ t

0
σ δ(t; r,X)dWr,

�δ,t
s := x +

∫ t

0
bδ(s; r,X)dr +

∫ t

0
σ δ(s; r,X)dWr.

We emphasize that in the above definitions, bδ , σ δ depend on X, not Xδ , since
the truncation occurs in the first two parameters of b, σ only. In particular, Xδ is
explicit given by X, and does not solve a SDE. For notational simplicity at below,
we shall still omit X in the coefficients b, σ . Recall (3.4) and denote X̌δ,t :=
Xδ ⊗t �δ,t . In this step, we prove

(3.49) E
[∥∥X̌δ,t − X̌t

∥∥2p
T

]≤ CpδpH for any 0 ≤ t ≤ T , p ≥ 1, and δ > 0.
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We first estimate the difference of �. By stochastic Fubini theorem, we have

sup
t≤s≤T

∣∣�δ,t
s − �t

s

∣∣
= sup

t≤s≤t+δ

∣∣∣∣
∫ t

s−δ

[[
b(r + δ; r) − b(s; r)]dr + [σ(r + δ; r) − σ(s; r)]dWr

]∣∣∣∣
= sup

t≤s≤t+δ

∣∣∣∣
∫ t

s−δ

∫ r+δ

s

[
∂tb(λ; r) dλdr + ∂tσ (λ; r) dλdWr

]∣∣∣∣
= sup

t≤s≤t+δ

∣∣∣∣
∫ t+δ

s

∫ λ−δ

s−δ

[
∂tb(λ; r) dr + ∂tσ (λ; r) dWr

]
dλ

∣∣∣∣
=
∫ t+δ

t
sup

t−δ≤l≤λ−δ

∣∣∣∣
∫ λ−δ

l

[
∂tb(λ; r) dr + ∂tσ (λ; r) dWr

]∣∣∣∣dλ.

Then, for any p ≥ 1, by Burkholder–Davis–Gundy inequality and the second in-
equality of (3.38), we obtain

E

[
sup

t≤s≤T

∣∣�δ,t
s − �t

s

∣∣2p
]

≤ Cpδ2p−1
∫ t+δ

t
E

[
sup

t−δ≤l≤λ−δ

∣∣∣∣
∫ λ−δ

l

[
∂tb(λ; r) dr + ∂tσ (λ; r) dWr

]∣∣∣∣2p]
dλ

≤ Cpδ2p−1
∫ t+δ

t
E

[(∫ λ−δ

t−δ

[∣∣∂tb(λ; r)∣∣2 + ∣∣∂tσ (λ; r)∣∣2]dr

)p]
dλ

≤ Cpδ2p−1
∫ t+δ

t

(∫ λ−δ

t−δ
(λ − r)2H−3 dr

)p

dλ

= Cpδ2p−1
∫ t+δ

t

(
δ2H−2 − (δ + λ − t)2H−2)p dλ.

By changing variable, this implies

(3.50)

E

[
sup

t≤s≤T

∣∣�δ,t
s − �t

s

∣∣2p
]

≤ Cpδ2pH
∫ 1

0

(
1 − (1 + λ)2H−2)p dλ = Cpδ2pH .

We next estimate the difference of X. For any t < t ′, note that

(3.51)
∣∣(Xδ

t − Xt

)− (Xδ
t ′ − Xt ′

)∣∣≤ I1 + I2,

where

I1 :=
∣∣∣∣
∫ t ′

t

[
bδ(t ′; r)− b

(
t ′; r)]dr +

∫ t ′

t

[
σ δ(t ′; r)− σ

(
t ′; r)]dWr

∣∣∣∣,
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I2 :=
∣∣∣∣
∫ t

0

[
bδ(t; r) − b(t; r) − bδ(t ′; r)+ b

(
t ′; r)]dr

+
∫ t

0

[
σ δ(t; r) − σ(t; r) − σ δ(t ′; r)+ σ

(
t ′; r)]dWr

∣∣∣∣.
Denote δ′ := t ′ − t . For any p ≥ 1, by the Burkholder–Davis–Gundy inequality
and (3.38),

E
[
I

2p
1

]≤ CpE

[(∫ t ′

t

[∣∣bδ(t ′; s)− b
(
t ′; s)∣∣2 + ∣∣σ δ(t ′; s)− σ

(
t ′; s)∣∣2]ds

)p]

= CpE

[(∫ t ′

t∨(t ′−δ)

[∣∣b(s + δ; s) − b
(
t ′; s)∣∣2

+ ∣∣σ(s + δ; s) − σ
(
t ′; s)∣∣2]ds

)p]

≤ CpE

[(∫ t ′

t∨(t ′−δ)

[∫ s+δ

t ′
[∣∣∂tb(r; s)∣∣+ ∣∣∂tσ (r; s)∣∣]dr

]2
ds

)p]

≤ Cp

(∫ t ′

t∨(t ′−δ)

∣∣∣∣
∫ s+δ

t ′
(r − s)H− 3

2 dr

∣∣∣∣2 ds

)p

= Cp

(∫ δ∧δ′

0

[
rH− 1

2 − δH− 1
2
]2

dr

)p

≤ Cp

(∫ δ∧δ′

0
r2H−1 dr

)p

≤ Cp

(
δ ∧ δ′)2pH

.

(3.52)

To estimate I2, when δ′ ≥ δ, by (3.50) we have

E
[|I2|2p]= E

[∣∣∣∣
∫ t

0

[
bδ(t; s) − b(t; s)]ds

+
∫ t

0

[
σ δ(t; s) − σ(t; s)]dWs

∣∣∣∣2p]

= E
[∣∣�δ,t

t − �t

∣∣2p]≤ Cpδ2pH .

(3.53)

When δ′ < δ, one can check straightforwardly that

I2 =
∣∣∣∣
∫ t

t−δ

[
b
(
t ′ ∧ (s + δ); s)−b(t; s)]ds +

∫ t

t−δ

[
σ
(
t ′ ∧ (s + δ); s)−σ(t; s)]dWs

∣∣∣∣.
Then, again by the Burkholder–Davis–Gundy inequality and (3.38),

E
[
I

2p
2

] ≤ Cp

(∫ t

t−δ

[∫ t ′∧(s+δ)

t
(r − s)H− 3

2 dr

]2
ds

)p

≤ Cp

(∫ δ

0

[
rH− 1

2 − [(r + δ′)∧ δ
]H− 1

2
]2

dr

)p
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= Cp

(∫ δ−δ′

0

[
rH− 1

2 − (r + δ′)H− 1
2
]2

dr

)p

+ Cp

(∫ δ

δ−δ′
[
rH− 1

2 − δH− 1
2
]2

dr

)p

(3.54)

≤ Cp

(
δ′)2pH

(∫ ∞
0

[
rH− 1

2 − (r + 1)H− 1
2
]2

dr

)p

+ Cp

(∫ δ

δ−δ′
r2H−1 dr

)p

.

≤ Cp

(
δ′)2pH + Cp

[
δ2H − (δ − δ′)2H ]p ≤ Cp

(
δ′)2pH

,

where the last inequality thanks to the assumption that H < 1
2 . Plug (3.52), (3.53),

and (3.54) into (3.51), we get

E
[∣∣(Xδ

t − Xt

)− (Xδ
t ′ − Xt ′

)∣∣2p]
≤ Cp

(
δ ∧ δ′)2pH = CpδpH (δ′)pH = CpδpH

∣∣t ′ − t
∣∣pH

.

Then by Lemma 3.11, we see that E[‖Xδ − X‖2p
T ] ≤ CpδpH . This, together with

(3.50), proves (3.49).
Step 3. We now prove (3.16). We first note that u(t, X̌δ,t ) falls short of satisfying

the conditions in Theorem 3.10. In fact, Xδ is not a solution to the SDE (3.1) with
coefficients (bδ, σ δ), and bδ , σ δ are not differentiable at t = s + δ. However, by
checking the arguments of the proof of Theorem 3.10 one can see that these differ-
ences do not cause any trouble, and thus the conclusion still holds true. Therefore,
u(t, X̌δ,t ) satisfies (3.16):

du
(
t, X̌δ,t )= ∂tu

(
t, X̌δ,t )dt + 1

2

〈
∂2
ωωu

(
t, X̌δ,t ), (σ δ,t,X, σ δ,t,X)〉dt

+ 〈∂ωu
(
t, X̌δ,t ), bδ,t,X〉dt + 〈∂ωu

(
t, X̌δ,t ), σ δ,t,X〉dWt, P-a.s.

Then, by (3.49) and by the continuity of u and ∂tu, we have

(3.55) lim
δ→0

E
[∣∣u(t, X̌δ,t )− u

(
t, X̌t )∣∣+ ∣∣∂tu

(
t, X̌δ,t )− ∂tu

(
t, X̌t )∣∣]= 0.

Moreover, recall the notation in (3.42) and assume δn+1 ≤ δ < δn. Set m = 1 in
(3.43):

1[t1,T ] = [1 − ψ1]1[t1,T ] +
n∑

k=1

ψk + [1 − ψn]1[t,tn].

Then by (3.47) and (3.40) we have, for ϕ = b,σ ,∣∣〈∂ωu
(
t, X̌δ,t ), ϕδ,t,X〉− 〈∂ωu

(
t, X̌t ), ϕt,X〉∣∣

≤ ∣∣〈∂ωu
(
t, X̌δ,t )− ∂ωu

(
t, X̌t ), ϕδ,t,X〉∣∣+ ∣∣〈∂ωu

(
t, X̌t ), ϕδ,t,X − ϕt,X〉∣∣
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≤ C
[
1 + ∥∥X̌t

∥∥κ
T

]
δβ +

∣∣∣∣∣
〈
∂ωu

(
t, X̌δ,t )− ∂ωu

(
t, X̌t ),

[
[1 − ψ1]1[t1,T ] +

n∑
k=1

ψk + [1 − ψn]1[t,tn]
]
ϕδ,t,X

〉∣∣∣∣∣
≤ C

[
1 + ∥∥X̌t

∥∥κ
T + ∥∥X̌δ,t

∥∥κ
T

][
ρ
(∥∥X̌δ,t − X̌t

∥∥
T

)[
1 +

n∑
k=1

δ
β
k + δβ

n

]
+ δβ

]

≤ C
[
1 + ∥∥X̌t

∥∥κ
T + ∥∥X̌δ,t

∥∥κ
T

][
ρ
(∥∥X̌δ,t − X̌t

∥∥
T

)+ δβ].
Similarly, by (3.47) and (3.40) we have∣∣〈∂2

ωωu
(
t, X̌δ,t ), (σ δ,t,X, σ δ,t,X)〉− 〈∂2

ωωu
(
t, X̌t ), (σ t,X, σ t,X)〉∣∣

≤ ∣∣〈∂2
ωωu

(
t, X̌δ,t )− ∂2

ωωu
(
t, X̌t ), (σ δ,t,X, σ δ,t,X)〉∣∣

+ ∣∣〈∂2
ωωu

(
t, X̌t ), (σ δ,t,X, σ δ,t,X)〉− 〈∂2

ωωu
(
t, X̌t ), (σ t,X, σ t,X)〉∣∣

≤ C
[
1 + ‖X‖κ

T

]
δ2β +

∣∣∣∣∣
〈
∂2
ωωu

(
t, X̌δ,t )− ∂2

ωωu
(
t, X̌t ),

(
σ δ,t,X,

[
[1 − ψ1]1[t1,T ] +

n∑
k=1

ψk + [1 − ψn]1[t,tn]
]
σ δ,t,X

)〉∣∣∣∣∣
≤ C

[
1 + ∥∥X̌t

∥∥κ
T + ∥∥X̌δ,t

∥∥κ
T

][
ρ
(∥∥X̌δ,t − X̌t

∥∥
T

)[
1 +

n∑
k=1

δ
2β
k + δ2β)

n

]
+ δ2β

]

≤ C
[
1 + ∥∥X̌t

∥∥κ
T + ∥∥X̌δ,t

∥∥κ
T

][
ρ
(∥∥X̌δ,t − X̌t

∥∥
T

)+ δ2β].
Put together, we derive from (3.49) that

lim
δ→0

E
[∣∣〈∂ωu

(
t, X̌δ,t ), ϕδ,t,X〉− 〈∂ωu

(
t, X̌t ), ϕt,X〉∣∣2]= 0,

lim
δ→0

E
[∣∣〈∂2

ωωu
(
t, X̌δ,t ), (σ δ,t,X, σ δ,t,X)〉− 〈∂2

ωωu
(
t, X̌t ), (σ t,X, σ t,X)〉∣∣]= 0.

Plug this and (3.55) into (3.55), we obtain (3.16) in this singular case. �

4. Path dependent PDEs and Feynman–Kac formulae.

4.1. The linear case. We first apply Theorem 3.17 to the path-dependent ex-
ample of Section 2.3. This works because the kernel of fBm satisfies all the hy-
potheses on b and σ in Theorem 3.17, including the ones where u is weakly depen-
dent on paths near its time diagonal. In fact, we find that we may choose α = 1/2
in Definition 3.16.
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THEOREM 4.1. Consider the setting in Section 2.3, and denote

(4.1)

u(t,ω) := E

[
g

(
ωT +

∫ T

t
K(T , r) dWr

)

+
∫ T

t
f

(
s,ωs +

∫ s

t
K(s, r) dWr

)
ds

]
.

Assume f is continuous in t ; and for ϕ = g,f (t, ·), ϕ ∈ C2(R) such that all
the derivatives have polynomial growth with |ϕ′′(t, x) − ϕ′′(t, x̃)| ≤ C[1 + |x|κ +
|x̃|κ ]ρ(|x − x̃|). Then:

(i) u evaluated at BH ⊗t �t coincides with the conditional expectation:

(4.2) Yt := E

[
g
(
BH

T

)+ ∫ T

t
f
(
s,BH

s

)
ds
∣∣∣Ft

]
= u

(
t,BH ⊗t �t ).

(ii) u ∈ C
1,2
+ (�) with path derivatives:〈

∂ωu(t,ω), η
〉

= E

[
g′
(
ωT +

∫ T

t
K(T , r) dWr

)
ηT

+
∫ T

t
f ′
(
s,ωs +

∫ s

t
K(s, r) dWr

)
ηs ds

]
,

〈
∂2
ωωu(t,ω), (η1, η2)

〉
= E

[
g′′
(
ωT +

∫ T

t
K(T , r) dWr

)
η1(T )η2(T )

+
∫ T

t
f ′′
(
s,ωs +

∫ s

t
K(s, r) dWr

)
η1(s)η2(s) ds

]
.

(4.3)

(iii) u vanishes diagonally with rate α = 1
2 , in the sense of Definition 3.16.

Consequently, the functional Itô formula (3.16) holds true for all H ∈ (0,1).
(iv) u is a classical solution to the following linear PPDE which, together with

(4.3), provides a representation for ∂tu:

(4.4)
∂tu(t,ω) + 1

2

〈
∂2
ωωu(t,ω),

(
Kt,Kt )〉+ f (t,ωt ) = 0, (t,ω) ∈ �;

u(T ,ω) = g(ωT ).

PROOF. We shall only prove the irregular case H < 1
2 . The regular case H ≥ 1

2
follows by similar but easier arguments.

First, (4.2) follows directly from the arguments in Section 2.2.
Next, applying (3.6) and (3.11) on (4.1), one may easily verify (4.3), and that

∂ωu, ∂2
ωωu are continuous, have polynomial growth, and satisfy (3.12), (3.39) and

(3.40) with α = 1
2 .
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Moreover, denote σ 2(s, t) := ∫ s
t K2(s, r) dr < ∞, 0 ≤ t < s ≤ T . Then∫ s

t K(s, r) dWr has distribution Normal (0, σ 2(s, t)). Thus, denoting by N a stan-
dard normal distribution,

u(t,ω) = E

[
g
(
ωT + σ(T , t)N

)
) +

∫ T

t
f
(
s,ωs + σ(s, t)N

)
ds

]
.

Note that ∂tσ (s, t) = −K2(s,t)
2σ(s,t)

. Then one can easily see that

∂tu(t,ω) = −1

2
E

[[
g′(ωT + σ(T , t)N

)− g′(ωT )
]K2(T , t)

σ (T , t)
N

+
∫ T

t

[
f ′(s,ωs + σ(s, t)N

)− f ′(s,ωs)
]K2(s, t)

σ (s, t)
N ds

]

= −1

2

∫ 1

0
E

[
g′′(ωT + λσ(T , t)N

)
K2(T , t)N 2

+
∫ T

t
f ′′(s,ωs + λσ(s, t)N

)
K2(s, t)N 2 ds

]
dλ,

(4.5)

where, to justify the integrability in the right-hand side above, we note that

∣∣∂tu(t,ω)
∣∣≤ C

[
K2(T , t) +

∫ T

t
K2(s, t) ds

][
1 + ‖ω‖κ

T

]≤ C
[
1 + ‖ω‖κ

T

]
.

This means that ∂tu exists and has polynomial growth. By (4.5), one can also see
that ∂tu is continuous. Then u ∈ C

1,2
+ (�).

Finally, note that

u
(
t,BH ⊗t �t )+ ∫ t

0
f
(
s,BH

s

)
ds = E

[
g
(
BH

T

)+ ∫ T

0
f
(
s,BH

s

)
ds
∣∣∣Ft

]

is a martingale. Applying the functional Itô formula (3.16) on u(t,BH ⊗t �t ), we
see that (4.4) holds on BH ⊗t �t , P-a.s. In particular, (4.4) holds at (0,0). Given
(t,ω) ∈ �, apply the same arguments on the system starting with (t,ω), in the
spirit of the proof of Proposition 3.7 (Step 2 of that joint proof), we can see that
(4.4) holds at (t,ω) as well. �

4.2. The semilinear case. In this subsection, we consider the following BSDE:

(4.6) Yt = g(X·) +
∫ T

t
f (s,X·, Ys,Zs) ds −

∫ T

t
Zs dWs, 0 ≤ t ≤ T ,

where f = f (s,Xs∧·, y, z) is adapted. We emphasize again that, as we saw in the
previous section, even if the coefficients b, σ , f , g are state dependent (namely
depending only on Xs at time s), the BSDE is not Markovian as soon as X is
not a Markov process. When X is a strong solution to SDE (3.1), namely X is
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F
W -progressively measurable, then it follows from the seminal work Pardoux and

Peng [32] that the above BSDE is well-posed, provided f is uniformly Lipschitz-
continuous in (y, z). When X is a weak solution and no strong solution exists, then
typically one needs to introduce an orthogonal martingale term in the BSDE (4.6).
We avoid this situation in the sequel, though the uniqueness of a strong solution to
(4.6) is not a requirement.

This BSDE is closely related to the following semilinear PPDE, where the no-
tation is that of Section 3.1:

(4.7)

∂tu(t,ω) + 1

2

〈
∂2
ωωu(t,ω),

(
σ t,ω, σ t,ω)〉+ 〈∂ωu(t,ω), bt,ω〉

+ f
(
t,ω,u(t,ω),

〈
∂ωu(t,ω), σ t,ω〉)= 0, (t,ω) ∈ �,

u(T ,ω) = g(ω).

We have the following Feynman–Kac formula.

THEOREM 4.2. Let Assumption 3.1 hold and assume the semilinear PPDE
(4.7) has a classical solution u ∈ C

1,2
+ (�). Assume further that either Assump-

tion 3.9 holds or Assumption 3.15 holds and u ∈ C
1,2
+,α(�) for some α > 1

2 − H .
Then the BSDE (4.6) has a strong solution:

(4.8) Yt := u
(
t, X̌t ), Zt := 〈∂ωu

(
t, X̌t ), σ t,X〉.

PROOF. By our assumptions, u(t, X̌t ) satisfies the functional Itô formula
(3.16). Then it is straightforward to verify that the process (Y,Z) defined by (4.8)
satisfies (4.6). �

We note that when the PPDE has a classical solution, (4.8) provides a solution
to the BSDE (4.6) even if X is a weak solution to (3.1). However, in this case
typically (Y,Z) are also not FW -progressively measurable.

We now proceed in the opposite direction, namely to provide a representation
for the solution of PPDE (4.7) through the BSDE (4.6). For each (t,ω) ∈ �, define

(4.9) u(t,ω) := Y
t,ω
t ,

where, for t ≤ s ≤ T ,

Xt,ω
s = ωs +

∫ s

t
b
(
s; r,ω ⊗t Xt,ω)dr +

∫ s

t
σ
(
s; r,ω ⊗t Xt,ω)dWr,

Y t,ω
s = g

(
ω ⊗t Xt,ω)+ ∫ T

s
f
(
r,ω ⊗t Xt,ω, Y t,ω

r ,Zt,ω
r

)
dr −

∫ T

s
Zt,ω

r dWr.

Here, we are assuming that the FBSDE in (4.9) has a unique strong solution for
all (t,ω) ∈ �. With that assumption, for fixed (t,ω) ∈ �, the pair of processes
(Y t,ω,Zt,ω) is given unambiguously by the FBSDE, and u in (4.9) is well defined
on �. We avoid further technical discussion, stating the representation result with
comments only.
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REMARK 4.3. (i) Provided appropriate conditions on the coefficients of (3.1)
and (4.6), one can show that the u defined by (4.9) is indeed smooth and is the
classical solution to PPDE (4.7). See Peng and Wang [35] for a related result in the
Brownian motion framework.

(ii) Our BSDE (4.6) is time consistent: the coefficient f depends only on one
time variable and g is independent of time. We refer to Yong [39] and the refer-
ences therein for Volterra-type BSDEs.

4.3. A strategy for control problems. The framework of the previous subsec-
tion applies directly, as a slight extension, if there is control involved. Formally,
one can easily write down the path-dependent Hamilton–Jacobi–Bellman (HJB)
equation. More precisely, let A be an appropriate set of admissible controls taking
values in certain set A; X solve a controlled Volterra SDE; and Y solve a controlled
BSDE. We define the value function u for the control problem as follows:

(4.10) u(t,ω) := sup
a∈A

Y
t,ω,a
t ,

where, for t ≤ s ≤ T ,

Xt,ω,a
s = ωs +

∫ s

t
b
(
s; r,ω ⊗t Xt,ω,a, as

)
dr +

∫ s

t
σ
(
s; r,ω ⊗t Xt,ω,a, as

)
dWr,

Y t,ω,a
s = g

(
ω ⊗t Xt,ω,a)+ ∫ T

s
f
(
r,ω ⊗t Xt,ω,a, Y t,ω,a

r ,Zt,ω,a
r , as

)
dr

−
∫ T

s
Zt,ω,a,

r dWr.

Then formally u should satisfy the following path dependent HJB equation:

∂tu(t,ω) + sup
a∈A

[
1

2

〈
∂2
ωωu(t,ω),

(
σ t,ω,a, σ t,ω,a)〉+ 〈∂ωu(t,ω), bt,ω,a 〉

+ f
(
t,ω,u(t,ω),

〈
∂ωu(t,ω), σ t,ω,a 〉, at

)]= 0, (t,ω) ∈ �,

(4.11)

with terminal condition u(T ,ω) = g(ω). Here, for ϕ = b,σ , ϕt,ω,a
s := ϕ(s; t,

ω, a). See Fouque and Hu [22] for an application in this direction.
When the path dependent HJB equation (4.11) has a classical solution u ∈

C
1,2
+ (�) or when the value function u defined by (4.10) is indeed in C

1,2
+ (�) (or

u ∈ C
1,2
+,α(�) for some appropriate α in the singular case), it is not difficult to prove

that they are equal, as in the standard verification theorem. However, in general it
is difficult to expect a classical solution for such a control problem, because of the
path dependence. We shall study viscosity solutions, in the spirit of Ekren et al.
[18, 19], for these fully nonlinear PPDEs in our future research.
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5. An application to finance. In the reference El Euch and Rosenbaum [20],
the authors work with the so-called rough Heston model, whose well-posedness
was established in their previous publication [21]. In [20], they show that options
on equities given by this model can be hedged if one assumes that the volatility
is observed. In fact, for an option on a given equity, they argue that, since the
forward variance can be replicated in the market using liquid instruments, then all
that is required for hedging purposes is observation of that forward variance and
the equity’s spot price. We will describe their model more precisely, how it fits in
ours and what more pricing and hedging questions can be reached in ours.

Recall Section 1.2 and in particular (1.5). Consider the following rough Heston
model:

(5.1)

St = S0 +
∫ t

0
Sr

√
Vr

[√
1 − ρ2 dW 1

r + ρ dW 2
r

]
,

Vt = V0 + 1

�(H + 1
2)

∫ t

0
(t − r)H− 1

2
[
λ[θ − Vr ]dr + ν

√
Vr dW 2

r

]
.

Here, W = (W 1,W 2)� is a two-dimensional Brownian motion, ρ ∈ [0,1] is a
correlation parameter, θ is a mean-reversion level, λ is a mean-reversion rate, ν is a
noise intensity and the roughness parameter H is typically in (0, 1

2). We leave aside
the question of whether any of these parameters can be estimated or calibrated

from the data. We note instead that the term (t − r)H− 1
2 is similar to the kernel

K of fBm (it is in fact identical to the kernel of the so-called Riemann–Liouville
fBm). By [21], the SDE (5.1) has a unique weak solution X := (S,V )�. The paper
[20] asks the question of how to compute the conditional expectation of a nonpath-
dependent contingent claim at any time prior to maturity:

(5.2) Yt := Ct := E
[
g(ST )|Ft

]
for some deterministic contract function g. They express Ct as a function of St as
well as the so-called forward variance:

(5.3) �̂t
s := E[Vs |Ft ], 0 ≤ t ≤ s ≤ T .

Note that both the forward variance �̂t
s and the forward volatility E[√Vs |Ft ] in-

troduced in Section 1.2 are financial indexes available in the market. A PPDE is
derived for Ct in this special case. Moreover, the forward variance can be approxi-
mated by using liquid variance swaps or vanilla options, and in this sense one may
view the forward variance as a set of additional tradable assets. The main contribu-
tion of [20] is to provide a perfect hedge for the derivative g(ST ) by using the stock
S and the forward variance �̂. The hedging portfolio relies on the Frechet deriva-
tive of Ct and certain characteristic functions, which requires the special structure
of (5.1) and that CT = g(ST ) is state dependent.



3528 F. VIENS AND J. ZHANG

We now explain how our framework covers the above example and beyond.
First note that, for X = (S,V )�, (5.1) is a Volterra SDE (3.1) with

(5.4)

b(t; r, x1, x2) =
⎡
⎢⎣

0

λ(t − r)H− 1
2 [θ − x2]

�(H + 1
2)

⎤
⎥⎦ ,

σ (t; r, x1, x2) =

⎡
⎢⎢⎣
√

1 − ρ2x1
√

x2 ρx1
√

x2

0
ν(t − r)H− 1

2
√

x2

�(H + 1
2)

⎤
⎥⎥⎦ .

One may easily check that (5.1) satisfies all the properties in Assumptions 3.1 and
3.15, needed in Section 3.3 for H ∈ (0,1/2); see Remark A.2 below. Note that the
dynamics of S is standard, without involving a two-time-variable kernel. While we
may apply the results in previous sections directly on the two-dimensional SDE
(5.1), for simplicity we restrict the path dependence only to the dynamics of V .
Therefore, recall (2.6), for t < s we denote

(5.5) �t
s := V0 + 1

�(H + 1
2)

∫ t

0
(s − r)H− 1

2
[
λ[θ − Vr ]dr + ν

√
Vr dW 2

r

]
.

By the special structure of the rough Heston model, we can actually see that

(5.6) Ct = u
(
t, St ,�

t[t,T ]
)
.

In particular, the dependence of Ct on S is only via St and its dependence on V

does not involve V[0,t). Denote u as u(t, x,ω) and we shall assume g is smooth
which would imply the smoothness of u. Now following the arguments in Sec-
tion 4.1, in particular noting that C is a martingale, we see that u satisfies the
following PPDE:

(5.7)

∂tu + λ[θ − ωt ]
�(H + 1

2)

〈
∂ωu, at 〉+ x2ωt

2
∂2
xxu + ρνxωt

�(H + 1
2)

〈
∂ω(∂xu), at 〉

+ ν2ωt

2�(H + 1
2)

〈
∂2
ωωu,

(
at , at )〉= 0 where at

s := (s − t)H− 1
2 .

Moreover, by Theorem 3.17, we have (recalling Vt = �t
t )

(5.8) dCt = ∂xu
(
t, St ,�

t[t,T ]
)
dSt + ν

√
Vt

�(H + 1
2)

〈
∂ωu

(
t, St ,�

t[t,T ]
)
, at 〉dW 2

t .

The first term in the right-hand side above obviously provides the �-hedging in
terms of the stock S. Note further that t �→ �t

T is a semimartingale, and we have

ν
√

Vt

�(H + 1
2)

dW 2
t = (T − t)

1
2 −H d�t

T − λ[θ − Vt ]
�(H + 1

2)
dt.
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Then

dCt = ∂xu
(
t, St ,�

t[t,T ]
)
dSt + (T − t)

1
2 −H 〈∂ωu

(
t, St ,�

t[t,T ]
)
, at 〉d�t

T

− λ[θ − Vt ]
�(H + 1

2)

〈
∂ωu

(
t, St ,�

t[t,T ]
)
, at 〉dt.

(5.9)

That is, provided that we could replicate �t
T using market instruments, which we

will discuss in details below, then we may (perfectly) hedge g(ST ) as claimed in
[20].

We note that our �t in (5.5) is different from the forward variance �̂t in (5.3).
However, it can easily be replicated by using �̂t , which can further be replicated
(approximately) by variance swaps. Indeed, by (5.5) and taking conditional expec-
tation on the dynamics of V in (5.1), we see that

(5.10) �̂t
s = �t

s + 1

�(H + 1
2)

∫ s

t
(s − r)H− 1

2 λ
[
θ − �̂t

r

]
dr, t ≤ s ≤ T .

For any fixed t , clearly �t
s is uniquely determined by {�̂t

r}t≤r≤s :

(5.11) �t
s = �̂t

s − 1

�(H + 1
2)

∫ s

t
(s − r)H− 1

2 λ
[
θ − �̂t

r

]
dr.

In particular, this implies that, provided we observe the forward variance �̂t
s , the

process �t
s is also observable at t . Moreover, as a function of t ,

d�t
T = d�̂t

T + 1

�(H + 1
2)

(T − t)H− 1
2 λ
[
θ − �̂t

t

]
dt.

Plug this into (5.9) and note that �̂t
t = Vt , we obtain

(5.12) dCt = ∂xu
(
t, St ,�

t[t,T ]
)
dSt + (T − t)

1
2 −H 〈∂ωu

(
t, St ,�

t[t,T ]
)
, at 〉d�̂t

T .

That is, CT can be replicated by using St and �̂t
T , with the corresponding hedging

portfolios ∂xu and (T − t)
1
2 −H 〈∂ωu, at 〉, respectively.

REMARK 5.1. We notice that, to hedge CT = g(ST ) in the rough Heston
model, it is sufficient to use S and �̂·

T . However, if we want to hedge CT =
g(ST ) + ∫ T

0 f (t, St ) dt (or even more general path dependent contingent claims,
which is not covered by [20]), then we shall need S and {�̂·

s}0≤s≤T . Indeed, in this
case we will have

Ct := E

[
g(ST ) +

∫ T

t
f (s, Ss) ds

∣∣∣Ft

]
= u

(
t, St ,�

t[t,T ]
)
,
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and, provided u is smooth,

dCt = ∂xu
(
t, St ,�

t[t,T ]
)
dSt + (T − t)

1
2 −H 〈∂ωu

(
t, St ,�

t[t,T ]
)
, at 〉d�̂t

T

+
∫ T

t
(s − t)

1
2 −H 〈∂ωu

(
t, St ,�

t[t,T ]
)
, at 〉d�̂t

s ds − f (t, St ) dt.

Thus, the portfolio of �̂·
s at time t is (s − t)

1
2 −H 〈∂ωu(t, St ,�

t[t,T ]), at 〉ds.

We would like to comment further on how to replicate �t by using �̂t in more
general cases. Mathematically, as we saw in previous sections, �t is intrinsically
more appropriate for this framework. In fact, recall (2.4) and the discussion after-
wards. In the general model (3.1), if we use �̂t

s := E[Vs |Ft ] as our “state variable,”
it is not clear if one would be able to derive a sensible PPDE. However, it is clear
that �̂ = � when b = 0. For the rough Heston model (5.1), thanks to the fact that
its drift b is linear in V , �t and �̂t are still equivalent in the following sense. Given
�t[t,T ], (5.10) is a linear convolution ODE which, by Laplace transformation, has

a unique solution �̂t : denoting α := H + 1
2 ,

�̂t
s = �t

s + λ(s − t)α

�(α + 1)

+
∫ s

t

[ ∞∑
n=1

(−λ)n

�(nα)
(s − r)nα− 1

2

][
�t

r + λ(r − t)α

�(α + 1)

]
dr.

(5.13)

Together with (5.11), we have a one-to-one mapping between the paths �t[t,T ] and

�̂t[t,T ]. In this sense, it is conceivable to write Ct as a function of �̂t in the rough
Heston model, and we believe this is the underlying reason that a PPDE could be
derived in [20]. The same arguments would work for the affine Volterra process
in Abi Jaber, Larsson and Pulido [1], where V satisfies the following convolution
type of Volterral SDE:

(5.14) Vt = V0 +
∫ t

0
K(t − r)

[[b0 + b1Vr ]dr +√a0 + a1Vr dW 2
r

]
.

However, we emphasize that one cannot extend (5.10) when the volatility V

satisfies the following general model with nonlinear b:

(5.15) Vt = V0 +
∫ t

0
b(t; r,Vr) dr +

∫ t

0
σ(t; r,Vr) dW 2

r .

In this case, as before we denote

(5.16) �t
s := V0 +

∫ t

0
b(s; r,Vr) dr +

∫ t

0
σ(s; r,Vr) dW 2

r .

Then we have

(5.17) �t
s = E[Vs |Ft ] −

∫ s

t
E
[
b(s; r,Vr)|Ft

]
dr.
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As we mentioned above, the forward variance E[Vs |Ft ] can be replicated by using
variance swaps. For nonlinear b, under technical conditions, by Carr and Madan
[7] one may replicate E[b(s; r,Vr)|Ft ], and hence �t

s provided one can repli-
cate the variance options E[(Vs − K)+|Ft ], or the volatility options E[(√Vs −
K)+|Ft ], for all K . We note again that a wide range of volatility options are avail-
able in the financial market, at least for the S&P 500; see the VIX options in
Gatheral [23].

To conclude this article, we point out that our framework can cover much more
general models than the rough Heston model (5.1). As already mentioned, we al-
low for nonlinear b (and σ ) in (5.15) and we can still derive the PPDE and provide
a perfect hedge for g(ST ), as long as the PPDE has a classical solution and �

can be replicated as we discussed above. In addition, our framework also cov-
ers the fractional Stein–Stein model, where

√
V is Gaussian and is the fractional

Ornstein–Uhlenbeck process; see Comte and Renault [9], Chronopoulou and Viens
[8] and Gulisashvili, Viens and Zhang [26] and references therein. Besides the gen-
erality of the underlying model, we also allow for more general derivatives. On the
one hand, the derivatives can be path dependent in our framework; for instance,
we discussed the special case CT = g(ST ) + ∫ T

0 f (t, St ) dt in Section 2.3 and Re-
mark 5.1. On the other hand, we can allow for nonlinear pricing (e.g., when the
borrowing and lending interest rates are different) as a solution of the BSDE (4.6).
We leave these details to the interested readers and further investigations.

REMARK 5.2. In this remark, we provide more details concerning the rough
Bergomi model considered in Bayer, Friz and Gatheral [3]. Here, we shall only for-
mally discuss the hedging issues, and leave some technical issues in Remark A.4
below. Let S be as in (5.1), but the variance V is replaced with

(5.18) Vt := V0 exp
(
Mt − 1

2
λ2t2H

)
, Mt = λ

√
2H

∫ t

0
(t − r)H− 1

2 dW 2
r .

We note that the variance V is not in the form (5.15), so the situation here is slightly
different from above. However, clearly the dynamics of X = (S,M) is in the form
of Volterra SDE (3.1) with two-dimensional W and b = 0,

σ(t; r, x1, x2) =
⎡
⎣
√

1 − ρ2x1

√
V0e

x2− 1
2 λ2t2H

ρx1

√
V0e

x2− 1
2 λ2t2H

0 λ
√

2H(t − r)H− 1
2

⎤
⎦ .

As in (5.1), the dynamics of S is linear, and thus has explicit representation:

(5.19) St = S0 exp
(∫ t

0

√
VsdW̃s − 1

2

∫ t

0
Vs ds

)
,

where W̃t :=
√

1 − ρ2W 1
t + ρ dW 2

t .

In this case, �t
s = E[Ms |Ft ] = λ

√
2H

∫ t
0 (s − r)H− 1

2 dW 2
r (again there is no

need to introduce another component corresponding to S), which in particular is a
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martingale in this case. The option price Ct in (5.2) still takes the form (5.6), while
(5.8) becomes

(5.20) dCt = ∂xu
(
t, St ,�

t[t,T ]
)
dSt + λ

√
2H
〈
∂ωu

(
t, St ,�

t[t,T ]
)
, at 〉dW 2

t ,

for the same at as in (5.7). Define the forward variance �̂t
s as in (5.3). By using

the orthogonal decomposition of M as in Section 2, by (5.18) we can easily have

�̂t
T = V0 exp

(
�t

T + 1

2
λ2[(T − t)2H − T 2H ]).

By straightforward computation, we obtain

dW 2
t = (T − t)

1
2 −H

λ
√

2H
d�t

T = (T − t)
1
2 −H

λ
√

2H�̂t
T

d�̂t
T .

Plug this into (5.20), we have

(5.21) dCt = ∂xu
(
t, St ,�

t[t,T ]
)
dSt + (T − t)

1
2 −H

�̂t
T

〈
∂ωu

(
t, St ,�

t[t,T ]
)
, at 〉d�̂t

T .

That is, we can replicate CT by using St and �̂t
T , with the corresponding hedging

portfolios ∂xu and (T −t)
1
2 −H

�̂t
T

〈∂ωu, at 〉, respectively.

APPENDIX: INTEGRABILITY OF THE STATE PROCESS X

In this Appendix, we provide some sufficient conditions for Assumption 3.1(ii).
We first remark that, by examining our proofs carefully, it is sufficient to assume
that X has the p∗th moment for some finite p∗ large enough; however, in that
case we need to put corresponding constraints on the polynomial growth order κ

in Definitions 3.3, 3.4 and 3.16, as well as the κ0 in Assumptions 3.9 and 3.15.
We also remark that, for many financial models like those we saw in the previous
section, the dynamics of S is typically a semimartingale and is linear in S, and thus
we have a representation like (5.19). Then we need much lower integrability for
the S part, as in the standard literature.

The following result extends Abi Jaber, Larsson and Pulido [1], Lemma 3.1.

THEOREM A.1. Let (X,W) be a weak solution to Volterra SDE (3.1). As-
sume, for ϕ = b,σ , ∂tϕ(t; s, ·) exists for t ∈ (s, T ], and there exists 0 < H < 1

2
such that, for any 0 ≤ s < t ≤ T ,

(A.1)

∣∣ϕ(t; s,ω)
∣∣≤ C0

[
1 + ‖ω‖T

]
(t − s)H− 1

2 ,∣∣∂tϕ(t; s,ω)
∣∣≤ C0

[
1 + ‖ω‖T

]
(t − s)H− 3

2 .

Then Assumption 3.1(ii) holds true.
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PROOF. Fix p ≥ 2. We first show that it suffices to prove a priori estimates by
using the standard truncation arguments. Indeed, for any n, denote

τn := inf
{
t : |XT | ≥ n

}∧ T , Xn
t := Xτn∧t ,

bn(t; s,ω) := b(t; s,ω)1{τ(ω)≥s}, σ n(t; s,ω) := σ(t; s,ω)1{τ(ω)≥s}.

Then (Xn,W) satisfies (3.1) with coefficients (bn, σn) and (bn, σn) satisfies (A.1)
with the same constants H and C0. Note that Xn is bounded, and we shall prove
that there exists a constant Cp , independent of n, such that E[‖Xn‖p

T ] ≤ Cp[1 +
|x|p]. Then by sending n → ∞, we prove the theorem.

We now assume X is bounded and prove in two steps that

(A.2) E
[‖X‖p]≤ Cp

[
1 + |x|p].

Step 1. Assume T ≤ δ0, for some small δ0 > 0 which will be specified later.
Then

E
[|Xt − x|p]≤ CpE

[∣∣∣∣
∫ t

0
b(t; s,X·) ds

∣∣∣∣p +
∣∣∣∣
∫ t

0
σ(t; s,X·) dWs

∣∣∣∣p
]

≤ CpE

[[∫ t

0

∣∣b(t; s,X·)
∣∣ds

]p
+
[∫ t

0

∣∣σ(t; s,X·)
∣∣2 ds

]p
2
]

≤ CpE

[[∫ t

0
(t − s)2H−1‖X‖2

T ds

]p
2
]

≤ CpE
[[

t2H‖X‖2
T

]p
2
]= CptpH

E
[‖X‖p

T

]
.

Next, for 0 ≤ t1 < t2 ≤ T , denoting δ := t2 − t1. When t1 ≤ δ, we have

E
[|Xt2 − Xt1 |p

]≤ CpE
[|Xt2 − x|p + |Xt1 − x|p]

≤ CpE
[‖X‖p

T

][
t
pH
2 + t

pH
1

]≤ CpE
[‖X‖p

T

]
δpH .

When t1 > δ, we have

Xt2 − Xt1 = I1 + I2,

where

I1 :=
∫ t1−δ

0

[∫ t2

t1

∂tb(t; s,X·) dt ds +
∫ t2

t1

∂tσ (t; s,X·) dt dWs

]
,

I2 :=
∫ t2

t1−δ

[
b(t2; s,X·) ds + σ(t2; s,X·) dWs

]

+
∫ t1

t1−δ

[
b(t2; s,X·) ds + σ(t2; s,X·) dWs

]
.
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Note that

E
[|I1|p] ≤ CpE

[(∫ t1−δ

0

∫ t2

t1

∣∣∂tb(t; s,X·)
∣∣dt ds

)p

+
(∫ t1−δ

0

(∫ t2

t1

∣∣∂tσ (t; s,X·)
∣∣dt

)2
ds

)p
2
]

≤ CpE

[(∫ t1−δ

0

(
δ(t1 − s)H− 3

2
[
1 + ‖X‖T

])2
ds

)p
2
]

≤ CpE
[
1 + ‖X‖p

T

]
δpH ;

E
[|I2|p] ≤ Cp

2∑
i=1

E

[(∫ ti

t1−δ

∣∣b(ti; s,X·)
∣∣ds

)p

+
(∫ ti

t1−δ

∣∣σ(ti; s,X·)
∣∣2 ds

)p
2
]

≤ Cp

2∑
i=1

E

[(∫ ti

t1−δ

(
(ti − s)H− 1

2
[
1 + ‖X‖T

])2
ds

)p
2
]

= Cp

2∑
i=1

E
[
1 + ‖X‖p

T

][
ti − (t1 − δ)

]pH ≤ CpE
[
1 + ‖X‖p

T

]
δpH .

Then

E
[|Xt2 − Xt1 |p

]≤ CpE
[
1 + ‖X‖p

T

]
δpH .

This implies that

E
[|Xt2 − Xt1 |p

]≤ CpE
[
1 + ‖X‖p

T

]
δ

pH
2

0 δ
pH

2 .

By Lemma 3.11, we obtain

E
[‖X‖p

T

]≤ CpE

[
|x|p + sup

0≤t≤T

|Xt − x|p
]
≤ CpE

[|x|p + [1 + ‖X‖p
T

]
δ

pH
2

0

]
.

By choosing δ0 such that Cpδ
pH

2
0 = 1

2 , we obtain (A.2). We emphasize that δ0
depends on p, H , but not on x.

Step 2. Now consider arbitrary T . Let δ0 be as in Step 1, and denote 0 = t0 <

t1 < · · · < tm = T be such that δ0
2 < ti+1 − ti ≤ δ0. Note that

Xt = �
ti
t +

∫ t

ti

b(t; s,X·) ds +
∫ t

ti

σ (t; s,X·) dWs,

for ti ≤ t ≤ ti+1. Following the same arguments as in Step 1, we obtain

E

[
sup

ti≤t≤ti+1

∣∣Xt − �
ti
t

∣∣p]≤ CpE

[
1 + sup

0≤t≤ti

|Xt |p
]
.
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Notice further that, for ti ≤ t < t + δ ≤ ti+1,

�
ti
t+δ − �

ti
t =

∫ ti

0

∫ t+δ

t
∂tb(r; s,X·) dr ds +

∫ ti

0

∫ t+δ

t
∂tσ (r; s,X·) dr dWs.

Then

E
[∣∣�ti

t+δ − �
ti
t

∣∣p]≤ CpE

[(∫ ti

0

∫ t+δ

t

∣∣∂tb(r; s,X·)
∣∣dr ds

)p

+
(∫ ti

0

(∫ t+δ

t

∣∣∂tσ (r; s,X·)
∣∣dr

)2
ds

)p
2
]

≤ CpE

[
1 + sup

0≤t≤ti

|Xt |p
](∫ ti

0

(∫ t+δ

t
(r − s)H− 3

2 dr

)2
ds

)p
2
.

Note that∫ ti

0

(∫ t+δ

t
(r − s)H− 3

2 dr

)2
ds

≤
∫ ti

0

(∫ ti+δ

ti

(r − s)H− 3
2 dr

)2
ds

=
[∫ ti−δ

2
3

0
+
∫ ti

ti−δ
2
3

](∫ ti+δ

ti

(r − s)H− 3
2 dr

)2
ds

≤
∫ ti−δ

2
3

0

[
δ
(
δ

2
3
)H− 3

2
]2

ds + C

∫ ti

ti−δ
2
3
(ti − s)2H−1 ds ≤ Cδ

4H
3 .

Then

E
[∣∣�ti

t+δ − �
ti
t

∣∣p]≤ CpE

[
1 + sup

0≤t≤ti

|Xt |p
]
δ

2pH
3 .

By Lemma 3.11, we have

E

[
sup

ti≤t≤ti+1

∣∣�ti
t

∣∣p]≤ CpE

[
1 + sup

0≤t≤ti

|Xt |p
]
.

Then

E

[
sup

ti≤t≤ti+1

|Xt |p
]
≤ CpE

[
1 + sup

0≤t≤ti

|Xt |p
]
.

Now by induction, one obtains (A.2) immediately. �

REMARK A.2. Consider the rough Heston model (5.1). By Theorem A.1, it
is clear that E[sup0≤t≤T V

p
t ] < ∞ for all p ≥ 1. However, we note that the co-

efficient of S does not grow linearly, and thus we cannot apply Theorem A.1 on
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S directly. We shall instead utilize the representation formula (5.19). Note that
V ≥ 0, then

Vt ≤ C + c

∫ t

0
(t − r)H− 1

2
√

Vr dW 2
r ,

for some generic constants C, c. Thus

0 ≤
∫ t

0
Vs ds ≤ C + c

∫ t

0

∫ s

0
(s − r)H− 1

2
√

Vr dW 2
r ds

= C + c

∫ t

0
(t − r)H+ 1

2
√

Vr dW 2
r .

Therefore, for any n ≥ 1,

E

[(∫ t

0
Vs ds

)n]
≤ Cn + Cn

E

[(∫ t

0
(t − r)2H+1Vrdr

) n
2
]

≤ Cn + Cn

(
E

[(∫ t

0
Vr dr

)n]) 1
2
.

This implies that

E

[(∫ t

0
Vs ds

)n]
≤ Cn and hence E

[
exp
(
p

∫ t

0
Vs ds

)]
≤ Cp < ∞.

Now by (5.19) we obtain immediately that E[Sp
t ] ≤ Cp < ∞. Finally, again since

S is a standard diffusion, applying Burkholder–Davis–Gundy inequality on the
first equation in (5.1), we see that E[sup0≤t≤T S

p
t ] ≤ Cp < ∞.

REMARK A.3. For a rough volatility model, we may also denote the state
process as X = (Ŝ,V ) where Ŝ := lnS. Then, in the case of (5.1), we have

Ŝt = Ŝ0 +
∫ t

0

√
Vr

[√
1 − ρ2 dW 1

r + ρ dW 2
r

]− 1

2

∫ t

0
Vr dr.

This clearly satisfies (A.1), and thus (Ŝ,V ) satisfies Assumption 3.1(ii). However,
in this case we shall write Ct = û(t, Ŝt ,�

t[t,T ]), where û(t, x, θ) := u(t, ex, θ). If
it turns out that û has the desired polynomial growth in x (which in particular
requires ĝ(x) := g(ex) has polynomial growth in x), then we may derive the re-
quired results by using (Ŝ,V ). However, when g has linear growth, ĝ would grow
exponentially and then the integrability in Assumption 3.1(ii) will not be enough.

REMARK A.4. In this remark, we discuss the integrability for the rough
Bergomi model in Remark 5.2. Let p∗ denote the largest moment for S, as in-
troduced by Lee [28]:

(A.3) p∗ := sup
{
p : E[Sp

T

]
< ∞}

.
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(i) When ρ = 0, we have p∗ = 1. For simplicity, let us assume λ = V0 = S0 = 1.
Then

Mt = √
2H

∫ t

0
(t − r)H− 1

2 dW 2
r , Vt := eMt− 1

2 t2H

,

St = e
∫ t

0
√

Vs dW 1
s − 1

2

∫ t
0 Vs ds .

In particular, V and W 1 are independent. Clearly,

E[ST ] = E
[
E
[
ST |FV

T

]]= E[1] = 1.

However, for any p > 1 and for some generic constant c > 0, denote t0 := T
2 , we

have

E
[
S

p
T

]= E

[
exp
(
p

∫ T

0

√
Vs dW 1

s − p

2

∫ T

0
Vs ds

)]

= E

[
E

[
exp
(
p

∫ T

0

√
Vs dW 1

s − p

2

∫ T

0
Vs ds

)∣∣∣FV
T

]]

= E

[
exp
(

p(p − 1)

2

∫ T

0
Vs ds

)]
≥ E

[
exp
(
c

∫ T

t0

Vs ds

)]

= E

[
E

[
exp
(
c

∫ T

t0

Vs ds

)∣∣∣FW 2

t0

]]
≥ E

[
exp
(
c

∫ T

t0

E
[
Vs |FW 2

t0

]
ds

)]
,

where the last inequality is due to Jensen’s inequality. Note that

E
[
Vs |FW 2

t0

] ≥ cE
[
eMs |FW 2

t0

]≥ c exp
(
E
[
Ms |FW 2

t0

])
= c exp

(
c

∫ t0

0
(s − r)H− 1

2 dW 2
r

)
.

Then, by Jensen’s inequality again,

∫ T

t0

E
[
Vs |FW 2

t0

]
ds = c

T − t0

∫ T

t0

exp
(
c

∫ t0

0
(s − r)H− 1

2 dW 2
r

)
ds

≥ c exp
(

c

T − t0

∫ T

t0

(∫ t0

0
(s − r)H− 1

2 dW 2
r

)
ds

)

= c exp
(
c

∫ t0

0

[
(T − r)H+ 1

2 − (t0 − r)H+ 1
2
]
dW 2

r

)
.

Note that
∫ t0

0 [(T − r)H+ 1
2 − (t0 − r)H+ 1

2 ]dW 2
r ∼ N(0, c0) for some c0 > 0. Then

E
[
S

p
T

]≥ cE
[
exp
(
cecN(0,c0)

)]= ∞.
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(ii) The situation could be worse if ρ 	= 0. Assume for simplicity that H = 1
2

and λ = V0 = S0 = 1. Then

Vt = exp
(
W 2

t − t

2

)
,

St = exp
(∫ t

0

√
Vs

[√
1 − ρ2 dW 1

s + ρ dW 2
s

]− 1

2

∫ t

0
Vs ds

)
.

Thus

E[ST ] = E
[
E
[
ST |FW 2

T

]]
= E

[
exp
(∫ T

0

√
Vsρ dW 2

s − 1

2

∫ T

0
Vs ds

)
exp
(

1 − ρ2

2

∫ T

0
Vs ds

)]

= E

[
exp
(
ρ

∫ t

0

√
Vs dW 2

s − ρ2

2

∫ t

0
Vs ds

)]

= E

[
exp
(
ρ

∫ t

0
e

1
2 W 2

s − s
4 dW 2

s − ρ2

2

∫ t

0
eW 2

s − s
2 ds

)]
.

This is in the framework of the Girsanov theorem, but the drift ρe
1
2 W 2

s − s
4 has expo-

nential growth. While we do not have a rigorous proof, we suspect that the above
integral is strictly less than 1, and then S would be a strict local martingale.
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