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STOCHASTIC CONTROL WITH DELAYED INFORMATION AND
RELATED NONLINEAR MASTER EQUATION\ast 

YURI F. SAPORITO\dagger AND JIANFENG ZHANG\ddagger 

Abstract. In this paper we study stochastic control problems with delayed information, that is,
the control at time t can depend only on the information observed before time t - h for some delay
parameter h. Such delay occurs frequently in practice and can be viewed as a special case of partial
observation. When the time duration T is smaller than h, the problem becomes a deterministic
control problem in the stochastic setting. While seemingly simple, the problem involves certain time
inconsistency issues, and the value function naturally relies on the distribution of the state process
and thus is a solution to a nonlinear master equation. Consequently, the optimal state process solves
a McKean--Vlasov SDE. In the general case that T is larger than h, the master equation becomes
path-dependent and the corresponding McKean--Vlasov SDE involves the conditional distribution of
the state process. We shall build these connections rigorously and obtain the existence of a classical
solution of these nonlinear (path-dependent) master equations in some special cases.
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1. Introduction. Consider a stochastic control problem

V0 = sup
\alpha \in \scrA 

\BbbE 
\Bigl[ 
g(X\alpha 

T ) +

\int T

0

f(t,X\alpha 
t , \alpha t)dt

\Bigr] 
,

where X\alpha 
t = x+

\int t

0

b(s,X\alpha 
s , \alpha s)ds+

\int t

0

\sigma (s,X\alpha 
s , \alpha s)dWs,

(1.1)

and \scrA is an appropriate set of A-valued admissible controls. It is well known that,
under mild conditions, V0 = u(0, x), where u is the solution of an HJB equation.
One standard but crucial condition in the literature is that the admissible control is
\BbbF -progressively measurable, where \BbbF = \{ \scrF t\} 0\leq t\leq T is a filtration under which W is a
Brownian motion.

Our paper is mainly motivated by the following practical consideration. Note
that \scrF t stands for the information the player observes over time period [0, t]. In
many practical situations, the player needs some time to collect and/or to analyze
the information, including numerical computations. Thus, the control \alpha t the player
needs to act at time t may not be able to utilize the most recent information, or,
say, there is some information delay. To be precise, let h > 0 be a fixed constant
standing for the delay parameter. In this paper we shall study the control problem
(1.1) by restricting the admissible control \alpha in \scrA h

0, i.e., such that \alpha t \in \scrF (t - h)+ , for
all t \in [0, T ]. This can be viewed as a special case of stochastic controls with partial
observation. For a literature review, see section 1.1.
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We first consider the simple case that T \leq h. Then \alpha t \in \BbbL 0(\scrF 0) for all t \in [0, T ],
and thus this is a deterministic control problem (assuming \scrF 0 is degenerate), but in
a stochastic framework. While seemingly simpler, the constraint that the control is
deterministic actually makes the problem more involving. The main reason is that
such a problem is time inconsistent if one follows the standard approach. Intuitively,
for problem (1.1) the optimal control \alpha \ast 

t = \alpha \ast (t,X\ast 
t ) may typically depend on the

corresponding state process X\ast 
t and thus is random. If the control is deterministic, the

optimal control (assuming its existence) \alpha \ast 
t = \alpha \ast (t, x) should typically depend only on

the initial value x for all t \in [0, T ]. When one considers a dynamic problem over time
period [t0, T ], the new ``deterministic"" optimal control will become \~\alpha \ast 

t = \~\alpha \ast (t,X\ast 
t0)

for all t \in [t0, T ], which will be \scrF t0-measurable rather than \scrF 0-measurable, and thus
typically \~\alpha \ast 

t \not = \alpha \ast 
t for t \geq t0. That is, the problem is time inconsistent.

We aim to solve the problem in a time consistent way. Note again that, in a
standard control problem, the optimal control reacts to the state process X\ast 

t . If the
control is deterministic, and we still want the optimal one to react to the state process
in some way, the most natural choice would be that \alpha \ast 

t reacts to the law of X\ast 
t . This

is indeed true. At time t0, instead of specifying a value of Xt0 , we shall specify the
distribution \mu of Xt0 and define the value V (t0, \mu ) for optimization over [t0, T ] with
deterministic control. It turns out that this dynamic problem is time consistent. The
function V satisfies an appropriate dynamic programming principle and is the solution
of a so-called master equation. Moreover, V0 = V (0, \delta x), where x is the initial value
X0 and \delta x is the Dirac-measure of x.

To understand the master equation, we remark that V : [0, T ] \times \scrP 2(\BbbR d) \rightarrow \BbbR 
is a deterministic function, where \scrP 2(\BbbR d) is the set of square-integrable probability
measures on \BbbR d. It is known that the derivative of V in terms of \mu \in \scrP 2(\BbbR d) takes
the form \partial \mu V : (t, \mu , x) \in [0, T ] \times \scrP 2(\BbbR d) \times \BbbR d \rightarrow \BbbR d. Denote by \partial x\partial \mu V the stan-
dard derivative of \partial \mu V with respect to x. Then the optimization problem (1.1) with
deterministic control is associated with the following HJB type of master equation:

\partial tV (t, \mu ) +H(t, \mu , \partial \mu V, \partial x\partial \mu V ) = 0, V (T, \mu ) = \BbbE [g(\xi )],(1.2)

where, for p : [0, T ]\times \scrP 2(\BbbR d)\times \BbbR d \rightarrow \BbbR d and q : [0, T ]\times \scrP 2(\BbbR d)\times \BbbR d \rightarrow \BbbR d\times d,

H(t, \mu , p, q) := sup
a\in A

h(t, \mu , p, q, a),

h(t, \mu , p, q, a) := \BbbE 
\Bigl[ 
b(t, \xi , a) \cdot p(t, \mu , \xi ) + 1

2
\sigma \sigma \top (t, \xi , a) : q(t, \mu , \xi ) + f(t, \xi , a)

\Bigr] 
.

(1.3)

Here \xi is a random variable with law \mu . We shall prove the existence of classical solu-
tions for a special case of (1.2), which to our best knowledge is new in the literature.

Assume further that the Hamiltonian H has optimal argument a\ast = I(t, \mu ) for
some function I : [0, T ] \times \scrP 2(\BbbR d) \rightarrow A; then the optimal control is \alpha \ast 

t = I(t,\scrL X\ast 
t
),

where \scrL \xi is the law of the random variable \xi and X\ast solves the following McKean--
Vlasov SDE (assuming its well-posedness):

X\ast 
t = x+

\int t

0

b
\bigl( 
s,X\ast 

s , I(s,\scrL X\ast 
s
)
\bigr) 
ds+

\int t

0

\sigma 
\bigl( 
s,X\ast 

s , I(s,\scrL X\ast 
s
)
\bigr) 
dWs.(1.4)

We shall carry out the verification theorem rigorously when I is continuous.
We finally consider the general case T > h. In this case, for t > h, the control

\alpha t is required to be \scrF t - h-measurable. Motivated by both theoretical and practical
considerations, we shall use closed-loop controls, namely, \alpha t = \alpha t(X[0,t - h]) is \scrF t - h-
measurable. Then the value function, V (t, \mu [0,t]), will be path-dependent in the sense
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that \mu [0,t] denotes the law of the stopped process X[0,t], and the master equation (1.2)
becomes a path-dependent equation. Consequently, the McKean--Vlasov SDE (1.4)
will involve the conditional law of X\ast 

t .
We finish this section with a thorough comparison of different problems and meth-

ods that relate to the ones proposed here, which is further developed in Appendix B.
The rest of the paper will be organized as follows. We discuss the deterministic case
in section 2. Moreover, a special case is fully developed in section 3, and the general
theory is presented in section 4.

1.1. Comparison to similar control problems and methods. As men-
tioned above, problem (1.1) with \alpha \in \scrA h

0 might be seen as a special case of stochastic
controls with partial observation. Generally, these stochastic control problems assume
that the admissible controls are adapted to a smaller filtration \BbbG , i.e., \scrG t \subset \scrF t, for
all t \in [0, T ]. Few papers have tackled this problem under this generality; see, for
instance, Christopeit (1980), where the existence of the optimal control is studied,
and Baghery and {\O}ksendal (2007), where a maximum principle was derived under
the more general L\'evy processes.

Additionally to the delayed case studied in our paper, a very important example
of the partial observation problem is the case of noisy observation. This situation has
drawn significantly more attention than the other types of partially observed systems.
For references, see Bensoussan (1992), Fleming and Pardoux (1982), Fleming (1980),
(1982), Bismut (1982), Tang (1998), and the more recent Bandini et al. (2018), (2016).
In these references, a separated control problem is proposed and studied. The opti-
mal control problem of the partially observed system is connected to this separated
problem, which is completely observed, using stochastic nonlinear filtering. It is worth
noticing that, similarly to what we have found in the control with delayed information,
the state variable of the separated control problem is an unnormalized conditional dis-
tribution measure and the class of admissible controls is a set of probability measures.
Moreover, the dynamics of the aforementioned unnormalized conditional distribution
measure is given by the so-called Zakai's equation.

Moreover, in Bandini et al. (2016), the authors have derived, in this context
of noisy observation, the dynamic programming principle with flow of probability
measures as state variable and the verification theorem of their master equation. Since
the deterministic control problem studied in section 2 is a particular case of the noisy
observation problem, our master equation and the dynamic programming principle in
this section could be seen as a special case of theirs. However, our arguments here
are much simpler, due to our special setting, and will be important for the general
case in section 4, so we decided to report our proofs in detail so that the readers can
easily grasp the main ideas.

In a different direction, although analyzing the same control problem as in the
references in the paragraph above, Mortensen (1966) and Bene\v s and Karatzas (1983)
have studied the value of the control problem as a function of the initial conditional
probability density and an HJB equation analogous to our master equation (1.2)
was derived. Moreover, an It\^o formula for functions of density-valued processes was
proved; cf. Lemma 2.7. Under the assumption that the agent observes pure indepen-
dent noise, it turns out that their control problem is equivalent to our deterministic
control problem in section 2. Moreover, when restricting to only those measures with
density, our master equation (1.2) is equivalent to Mortensen's HJB equation. In or-
der to verify this, one needs to understand the relation between G\^ateaux derivatives
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with respect to the probability densities and \partial \mu V ; see Bensoussan et al. (2017). For
more details, see Appendix B.

Furthermore, in the direction of applications of the delayed information setting
to mathematical finance, Ichiba and Mousavi (2017) have proposed a discrete-time
binomial model with delayed information for the price of asset. They studied the
superreplication of derivatives with convex payoffs and also the convergence of their
model to a continuous-time one (without delay). On the other hand, Bayraktar
and Zhou (2016) studied an optimal stopping problem where the player has inside
information instead of delayed information. In the contexts of stochastic control, this
amounts to, say, \alpha t can be \scrF t+h-measurable, and will be left for our future research.

A different aspect of delay in control problems is when the control chosen in a
previous time, for instance, at t - h, influences the dynamics and/or the cost function
at time t. In the literature, this is usually called stochastic control problems with delay
in the control ; see, for example, Gozzi and Marinelli (2006), Gozzi and Masiero (2017),
Alekal et al. (1971), and Chen and Wu (2011). More generally, path dependence in
the control was studied in Saporito (2017) in the framework of functional It\^o calculus.
This type of delay in the control is fundamentally different from the one we study
here. Notice that although the control acts with delay, the agent has full information
at time t to choose \alpha t. This departs completely from the setting we are proposing
in this paper. Moreover, as one could easily notice from the aforesaid references, the
value function V is not seen as a function of probability measures but as a function of
the history of the state process. This type of delay in the control was recently applied
to the study of systemic risk of a system of banks in Carmona et al. (2018).

We remark that the McKean--Vlasov SDE (for the forward state process) and the
master equation (for the backward value function) have received very strong attention
in recent years, mainly due to their application in mean field games and systemic risk;
see Caines et al. (2006) and Larsy and Lions (2007), as well as Cardaliaguet (2013),
Bensoussan et al. (2013), Carmona and Delarue (2017a), (2017b), and the references
therein. In particular, Pham and Wei (2018), Bayraktar et al. (2018), and Wu and
Zhang (2018) studied stochastic control problems for McKean--Vlasov dynamics un-
der various type of controls and derived the dynamic programming principle as well
as the master equations. In those applications, a large number of players are involved
and the measure \mu is introduced to characterize the aggregate behavior of the players.
Our motivation here is quite different. We also remark that our paper deals with
control problems and the master equation is nonlinear in \partial \mu V (and/or \partial x\partial \mu V ). For
mean field game problems, the master equation involves V (t, x, \mu ) and has a quite
different nature. On one hand those master equations are nonlocal, and on the other
hand they are typically nonlinear in \partial xV but linear in \partial \mu V . In fact, in some litera-
ture, master equations refer to only those for mean field games, while the equations
for control problems are called HJB equations in Wasserstein space. We nevertheless
call both master equations since they share many features. In a special case, we will
prove the existence of classical solutions for the nonlinear master equation (1.2). In
general it is difficult to obtain classical solutions for master equations; some positive
results include Buckdahn et al. (2017), Cardaliaguet et al. (2015), and Chassagneux,
Crisan, and Delarue (2014), where the equations are linear in \partial \mu V and \partial x\partial \mu V , and
Gangbo and Swiech (2015) and Bensoussan and Yam (2018), where the equations
are of first order (without involving \partial x\partial \mu V ). We also refer to Pham and Wei (2018)
and Wu and Zhang (2018) for viscosity solutions of master equations.

Furthermore, although we are considering control problems, the delayed observa-
tion aspect of our setting is present in Bensoussan et al. (2015), (2017), which study
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Stackelberg stochastic games with delayed information. A simple version of these
games can described by two players: a leader and a follower. The leader has full in-
formation of both players and the follower has delayed information of the leader state
variable (and full information of him/herself). In these references, the authors studied
the convergence of the system of N -players to its mean field counterpart. Moreover,
in the linear quadratic case, they were able to analyze and derive exact formulas for
the mean field game.

2. The deterministic control problem. We remark that this case is the inter-
section of several related works. For example, Hu and Tang (2017) studied the linear
quadratic case by using the stochastic maximum principle (see Appendix A); Bene\v s
and Karatzas (1983) derived a similar equation when the measures have a density
(see Appendix B); in particular, our master equation (2.12)--(2.13) and the dynamic
programming principle theorem, Theorem 2.3 below, are already covered by Bandini
et al. (2016) as a special case. However, since the arguments here are much simpler
due to the special structure, which could be helpful for readers to grasp the main
ideas, and more importantly since these arguments will be important for the general
case in section 4, we still provide the details.

Let T > 0 be a fixed time horizon, (\Omega ,\BbbF ,\BbbP ) a filtered probability space on [0, T ],
andW an \BbbF -Brownian motion under \BbbP . In this section we assume T \leq h and thus the
controls are deterministic. Denote by \scrP 2(\BbbR d) the set of square-integrable measures
on \BbbR d, and for each \mu \in \scrP 2(\BbbR d), denote \BbbL 2

\mu (\scrF t) := \{ \xi \in \BbbL 2(\scrF t) : \scrL \xi = \mu \} , where
\scrL \xi denotes the law of \xi and \BbbL 2(\scrF t) is the space of \scrF t-measurable square-integrable
random variables. For technical convenience, we shall assume \scrF 0 is rich enough such
that \BbbL 2

\mu (\scrF 0) \not = \emptyset for all \mu \in \scrP 2(\BbbR d). However, in this and the next section we nev-
ertheless assume the controls are deterministic, rather than \scrF 0-measurable. Finally,
denote \Theta := [0, T ]\times \scrP 2(\BbbR d) and \Theta := \{ (t, \xi ) : t \in [0, T ], \xi \in \BbbL 2(\scrF t)\} .

2.1. The control problem. Let A be an (arbitrary) measurable set in certain
Euclidian space and \scrA t the set of all Borel measurable functions \alpha : [t, T ] \rightarrow A. For
any (t, \xi ) \in \Theta and \alpha \in \scrA t, define

Xt,\xi ,\alpha 
s = \xi +

\int s

t

b(r,Xt,\xi ,\alpha 
r , \alpha r)dr +

\int s

t

\sigma (r,Xt,\xi ,\alpha 
r , \alpha r)dWr, s \in [t, T ],

J(t, \xi , \alpha ) := \BbbE 

\Biggl[ 
g(Xt,\xi ,\alpha 

T ) +

\int T

t

f(s,Xt,\xi ,\alpha 
s , \alpha s)ds

\Biggr] 
,

(2.1)

where b, \sigma , f, g are deterministic functions with appropriate dimensions.

Assumption 2.1. (i) b, \sigma , f, g are measurable in all their variables, and b(t, 0, a),
\sigma (t, 0, a), f(t, 0, a) are bounded;

(ii) b, \sigma are uniformly Lipschitz continuous in x and uniformly continuous in t;
(iii) f is uniformly continuous in (t, x), and g is uniformly continuous in x.

Under Assumption 2.1, clearly the SDE in (2.1) is well-posed and

| J(t, \xi , \alpha )| \leq C[1 + \| \xi \| \BbbL 2 ].(2.2)

Moreover, the following result is obvious.

Lemma 2.2. Under Assumption 2.1, the mapping \xi \mapsto \rightarrow J(t, \xi , \alpha ) is law invariant.
That is, if \scrL \xi = \scrL \xi \prime , then J(t, \xi , \alpha ) = J(t, \xi \prime , \alpha ).
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We are now ready to introduce the optimization problem:

V (t, \mu ) := sup
\alpha \in \scrA t

J(t, \xi , \alpha ), (t, \mu ) \in \Theta and \xi \in \BbbL 2
\mu (\scrF t).(2.3)

By (2.2), V (t, \mu ) is finite. We emphasize that V does not depend on the choice of
\xi , thanks to Lemma 2.2. Throughout this section, when there is no confusion, for a
given (t, \mu ) \in \Theta we shall always use \xi to denote some random variable in \BbbL 2

\mu (\scrF t), and
the claimed results will not depend on the choice of \xi .

We next establish the dynamic programming principle for V .

Theorem 2.3. Let Assumption 2.1 hold. Then, for any (t1, \mu ) \in \Theta , t2 \in (t1, T ],

V (t1, \mu ) = sup
\alpha \in \scrA t1

\Bigl[ 
V
\bigl( 
t2,\scrL X

t1,\xi ,\alpha 
t2

\bigr) 
+

\int t2

t1

\BbbE [f(s,Xt1,\xi ,\alpha 
s , \alpha s)]ds

\Bigr] 
.(2.4)

Proof. For notational simplicity, we assume t1 = 0 and t2 = t; then (2.4) becomes

V (0, \mu ) = \widetilde V (0, \mu ) := sup
\alpha \in \scrA 0

\Bigl[ 
V
\bigl( 
t,\scrL X0,\xi ,\alpha 

t

\bigr) 
+

\int t

0

\BbbE [f(s,X0,\xi ,\alpha 
s , \alpha s)]ds

\Bigr] 
.(2.5)

First, for any \alpha \in \scrA 0, by the flow property for the SDE we have

X0,\xi ,\alpha 
s = X

t,X0,\xi ,\alpha 
t ,\alpha \prime 

s , s \in [t, T ],

where \alpha \prime := \alpha 
\bigm| \bigm| 
[t,T ]

\in \scrA t. Then,

J(0, \xi , \alpha ) = \BbbE 
\Bigl[ 
g(X

t,X0,\xi ,\alpha 
t ,\alpha \prime 

T ) +

\int T

t

f(s,X
t,X0,\xi ,\alpha 

t ,\alpha \prime 

s , \alpha \prime 
s)ds+

\int t

0

f(s,X0,\xi ,\alpha 
s , \alpha s)ds

\Bigr] 
= J(t,X0,\xi ,\alpha 

t , \alpha \prime ) +

\int t

0

\BbbE [f(s,X0,\xi ,\alpha 
s , \alpha s)]ds(2.6)

\leq V
\bigl( 
t,\scrL X0,\xi ,\alpha 

t

\bigr) 
+

\int t

0

\BbbE [f(s,X0,\xi ,\alpha 
s , \alpha s)]ds \leq \widetilde V (0, \mu ).

By the arbitrariness of \alpha , we obtain V (0, \mu ) \leq \widetilde V (0, \mu ).

Next, for any \varepsilon > 0, by the definition of \widetilde V (0, \mu ), there exists \alpha \varepsilon \in \scrA 0 such that

V
\bigl( 
t,\scrL 

X0,\xi ,\alpha \varepsilon 

t

\bigr) 
+

\int t

0

\BbbE [f(s,X0,\xi ,\alpha \varepsilon 

s , \alpha \varepsilon 
s)]ds \geq \widetilde V (0, \mu ) - \varepsilon 

2
.

Moreover, by the definition of V
\bigl( 
t,\scrL 

X0,\xi ,\alpha \varepsilon 

t

\bigr) 
there exists \widetilde \alpha \varepsilon \in \scrA t such that

J(t,X0,\xi ,\alpha \varepsilon 

t , \widetilde \alpha \varepsilon ) \geq V
\bigl( 
t,\scrL 

X0,\xi ,\alpha \varepsilon 

t

\bigr) 
 - \varepsilon 

2
.

Note that \^\alpha \varepsilon := \alpha 1[0,t) + \alpha \prime 1[t,T ] \in \scrA 0. Then, by the middle line of (2.6),

V (0, \mu ) \geq J(0, \xi , \^\alpha \varepsilon ) = J(t,X0,\xi ,\alpha \varepsilon 

t , \widetilde \alpha \varepsilon ) +

\int t

0

\BbbE [f(s,X0,\xi ,\alpha \varepsilon 

s , \alpha \varepsilon 
s)]ds

\geq V
\bigl( 
t,\scrL 

X0,\xi ,\alpha \varepsilon 

t

\bigr) 
+

\int t

0

\BbbE [f(s,X0,\xi ,\alpha \varepsilon 

s , \alpha \varepsilon 
s)]ds - 

\varepsilon 

2
\geq \widetilde V (0, \mu ) - \varepsilon .

Because \varepsilon > 0 is arbitrary, we obtain V (0, \mu ) \geq \widetilde V (0, \mu ).

Remark 2.4. Since we are in the simple setting of deterministic control, no regu-
larity or even measurability of V in terms of (t, \mu ) is needed in the above result.
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2.2. The master equation. In this subsection we derive the master equation
associated with the value function V . For this purpose, we first introduce the 2-
Wasserstein distance on \scrP 2(\BbbR d): for \mu , \mu \prime \in \scrP 2(\BbbR d),

\scrW 2(\mu , \mu 
\prime ) := inf

\bigl\{ 
\| \xi  - \xi \prime \| \BbbL 2 : \xi \in \BbbL 2

\mu (\scrF T ), \xi 
\prime \in \BbbL 2

\mu (\scrF T )
\bigr\} 
.(2.7)

Let V : \Theta \rightarrow \BbbR . The time derivative of V is defined in the standard way:

\partial tV (t, \mu ) := lim
\delta \downarrow 0

V (t+ \delta , \mu ) - V (t, \mu )

\delta 
,(2.8)

provided the limit exists. Notice that the above is actually the right time derivative.
The derivative in terms of \mu is much more involved. We first lift the function V :

U(t, \xi ) := V (t,\scrL \xi ), \xi \in \BbbL 2(\scrF t).(2.9)

Assume U is continuously Fr\'echet differentiable in \xi , then the Fr\'echet derivative
DU(t, \xi ) can be identified as an element in \BbbL 2(\scrF t). By Cardaliaguet (2013) (based
on Lions' lecture), there exists a deterministic function \partial \mu V : \Theta \times \BbbR d \rightarrow \BbbR d such that
DU(t, \xi ) = \partial \mu V (t, \mu , \xi ). See also Wu and Zhang (2017) for an elementary proof. This
function \partial \mu V is our spatial derivative, which is called the L-derivative or Wasserstein
gradient. In particular, the L-derivative is also a Gat\^eaux derivative:

\BbbE 
\Bigl[ 
\partial \mu V (t, \mu , \xi ) \cdot \xi \prime 

\Bigr] 
= lim

\varepsilon \rightarrow 0

V (t,\scrL \xi +\varepsilon \xi \prime ) - V (t, \mu )

\varepsilon 
(2.10)

for all \xi \in \BbbL 2
\mu (\scrF t) and \xi 

\prime \in \BbbL 2(\scrF t).

Remark 2.5. We shall remark that \partial \mu V (t, \mu , \cdot ) : \BbbR d \rightarrow \BbbR is unique only in the
support of \mu . Assume \partial \mu V exists and can be extended to \BbbR d continuously; then we
may define \partial x\partial \mu V as the standard derivative of \partial \mu V in terms of the third variable.
Obviously, \partial x\partial \mu V (t, \mu , \cdot ) is also well defined only in the support of \mu . In this paper
we shall always understand \partial \mu V in this way. In particular, we emphasize that the
possible nonuniqueness of \partial \mu V (t, \mu , \cdot ) outside of the support of \mu does not affect the
It\^o formula (2.11) below, which is what we will actually need in the paper.

Definition 2.6. (i) Let C1
Lip,b(\scrP 2(\BbbR d)) denote the space of functions f : \scrP 2(\BbbR d)

\rightarrow \BbbR such that \partial \mu f exists everywhere and \partial \mu f : \scrP 2(\BbbR d) \times \BbbR d \rightarrow \BbbR d is bounded and
Lipschitz continuous.

(ii) Let C2
Lip,b(\scrP 2(\BbbR d)) denote the subset of C1

Lip,b(\scrP 2(\BbbR d)) such that

\bullet for each x \in \BbbR , all components of \partial \mu f(\cdot , x) belongs to C1
Lip,b(\scrP 2(\BbbR d));

\bullet \partial 2\mu f : \scrP 2(\BbbR d)\times \BbbR d \times \BbbR d \rightarrow \BbbR d\times d is bounded and Lipschitz continuous;

\bullet \partial x\partial \mu f : \scrP 2(\BbbR d)\times \BbbR d \rightarrow \BbbR d\times d exists and it is bounded and Lipschitz continuous.

(iii) Let C1,2(\Theta ) := C1,2
Lip,b(\Theta ) denote the space of V : \Theta \rightarrow \BbbR such that

\bullet V (\cdot , \mu ) \in C1([0, T ]) for any \mu \in \scrP 2(\BbbR d);
\bullet V (t, \cdot ) \in C2

Lip,b(\scrP 2(\BbbR d)) for any t \in [0, T ].

The following It\^o formula is crucial for the results developed here; see, e.g., Buck-
dahn et al. (2017) and Chassagneux, Crisan, and Delarue (2014).

Lemma 2.7. Let V \in C1,2(\Theta ) and dXt = btdt + \sigma tdWt for some \BbbF -progressively
measurable processes b and \sigma such that \BbbE [

\int T

0
[| bt| 2 + | \sigma t| 4]dt] <\infty . Then

d

dt
V (t,\scrL Xt

) = \partial tV (t,\scrL Xt
) + \BbbE 

\biggl[ \biggl[ 
bt \cdot \partial \mu V +

1

2
\sigma \sigma \top 

t : \partial x\partial \mu V

\biggr] 
(t,\scrL Xt

, Xt)

\biggr] 
.(2.11)
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The main result of this section is the following verification theorem.

Theorem 2.8. Let Assumption 2.1 hold and V \in C1,2(\Theta ). Then V is the value
function defined by (2.3) if and only if V is a classical solution to the master equation:

\partial tV (t, \mu ) +H(t, \mu , \partial \mu V, \partial x\partial \mu V ) = 0, V (T, \mu ) = \BbbE [g(\xi )],(2.12)

where, for p : \Theta \times \BbbR d \rightarrow \BbbR d and q : \Theta \times \BbbR d \rightarrow \BbbR d\times d,

H(t, \mu , p, q) := sup
a\in A

h(t, \mu , p, q, a),(2.13)

h(t, \mu , p, q, a) := \BbbE 
\Bigl[ 
b(t, \xi , a) \cdot p(t, \mu , \xi ) + 1

2
\sigma \sigma \top (t, \xi , a) : q(t, \mu , \xi ) + f(t, \xi , a)

\Bigr] 
.

Consequently, the above master equation has at most one classical solution in C1,2(\Theta ).

Proof. We first assume V \in C1,2(\Theta ) is defined by (2.3). Then clearly V satisfies
the terminal condition in (2.12). Now fix (t, \mu ) \in \Theta and \xi \in \BbbL 2

\mu (\scrF t). Recall (2.13)
and apply It\^o formula (2.11) on (2.4) with t1 = t, t2 = t+ \delta ; we have

sup
\alpha \in \scrA t

\int t+\delta 

t

\bigl[ 
\partial tV (s,\scrL Xt,\xi ,\alpha 

s
) + h(s,\scrL Xt,\xi ,\alpha 

s
, \partial \mu V, \partial x\partial \mu V, \alpha s)

\bigr] 
ds = 0.(2.14)

Under Assumption 2.1, \scrW 2(\scrL Xt,\xi ,\alpha 
s

, \mu ) \leq \| Xt,\xi ,\alpha 
s  - \xi \| \BbbL 2 \leq C

\surd 
\delta , for s \in [t, t+\delta ], where

C may depend on \| \xi \| \BbbL 2 . By the required regularity on V , there exists a modulus of
continuity function \rho such that, again for \alpha \in \scrA t and s \in [t, t+ \delta ],

| \partial tV (s,\scrL Xt,\xi ,\alpha 
s

) - \partial tV (t, \mu )| + | \partial \mu V (s,\scrL Xt,\xi ,\alpha 
s

, Xt,\xi ,\alpha 
s ) - \partial \mu V (t, \mu , \xi )| 

+ | \partial x\partial \mu V (s,\scrL Xt,\xi ,\alpha 
s

, Xt,\xi ,\alpha 
s ) - \partial x\partial \mu V (t, \mu , \xi )| \leq \rho 

\bigl( 
C
\surd 
\delta + | Xt,\xi ,\alpha 

s  - \xi | 
\bigr) 
,

| b(s,Xt,\xi ,\alpha 
s , \alpha s) - b(t, \xi , \alpha s)| + | \sigma (s,Xt,\xi ,\alpha 

s , \alpha s) - \sigma (t, \xi , \alpha s)| 
+ | f(s,Xt,\xi ,\alpha 

s , \alpha s) - f(t, \xi , \alpha s)| \leq \rho 
\bigl( 
\delta + | Xt,\xi ,\alpha 

s  - \xi | 
\bigr) 
.

(2.15)

These lead to, for a possibly different modulus of continuity function \rho \prime ,\bigm| \bigm| h(s,\scrL Xt,\xi ,\alpha 
s

, \partial \mu V, \partial x\partial \mu V, \alpha s) - h(t, \mu , \partial \mu V, \partial x\partial \mu V, \alpha s)
\bigm| \bigm| \leq \rho \prime (\delta ).(2.16)

Then, by (2.14) we have, when \delta \rightarrow 0,

\partial tV (t, \mu ) + sup
\alpha \in \scrA t

1

\delta 

\int t+\delta 

t

h(t, \mu , \partial \mu V, \partial x\partial \mu V, \alpha s)ds = o(1).

On one hand, this clearly implies \partial tV (t, \mu ) + H(t, \mu , \partial \mu V, \partial x\partial \mu V ) \geq 0. On the
other hand, by restricting the above \alpha to constant functions we obtain \partial tV (t, \mu ) +
H(t, \mu , \partial \mu V, \partial x\partial \mu V ) \leq 0. That is, V satisfies (2.12).

We now assume V \in C1,2(\Theta ) is a classical solution of (2.12) and want to verify
(2.3). Fix (t, \mu ) \in \Theta and \xi \in \BbbL 2

\mu (\scrF t). For any \alpha \in \scrA t, by It\^o formula (2.11) we have

J(t, \xi , \alpha ) = \BbbE [g(Xt,\xi ,\alpha 
T )] +

\int T

t

\BbbE 
\bigl[ 
f(s,Xt,\xi ,\alpha 

s , \alpha s)
\bigr] 
ds

= V (T,\scrL Xt,\xi ,\alpha 
T

) +

\int T

t

\BbbE 
\bigl[ 
f(s,Xt,\xi ,\alpha 

s , \alpha s)
\bigr] 
ds

= V (t, \mu ) +

\int T

t

\bigl[ 
\partial tV (s,\scrL Xt,\xi ,\alpha 

s
) + h(s,\scrL Xt,\xi ,\alpha 

s
, \partial \mu V, \partial x\partial \mu V, \alpha s)

\bigr] 
ds

\leq V (t, \mu ) +

\int T

t

\bigl[ 
\partial tV (s,\scrL Xt,\xi ,\alpha 

s
) +H(s,\scrL Xt,\xi ,\alpha 

s
, \partial \mu V, \partial x\partial \mu V )

\bigr] 
ds = V (t, \mu ).(2.17)
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On the other hand, fix \varepsilon > 0 and n \geq 1, and denote ti := t + i
n [T  - t], i = 0, \cdot \cdot \cdot , n.

We construct an \alpha n,\varepsilon \in \scrA t as follows. First, there exists a\varepsilon 0 \in A such that

h(t0, \mu , \partial \mu V, \partial x\partial \mu V, a
\varepsilon 
0) \geq H(t0, \mu , \partial \mu V, \partial x\partial \mu V ) - \varepsilon 

T  - t
.

Define \alpha n,\varepsilon 
s := a\varepsilon 0 for s \in [t0, t1). Next, there exists a\varepsilon 1 \in A such that

h(t1,\scrL Xt,\xi ,\alpha n,\varepsilon 

t1

, \partial \mu V, \partial x\partial \mu V, a
\varepsilon 
1) \geq H(t1,\scrL Xt,\xi ,\alpha n,\varepsilon 

t1

, \partial \mu V, \partial x\partial \mu V ) - \varepsilon 

T  - t
.

Define \alpha n,\varepsilon 
s := a\varepsilon 1 for s \in [t1, t2). Repeat the procedure and define \alpha n,\varepsilon 

s for s \in [ti, ti+1)
for i = 1, . . . , n  - 1. Clearly \alpha n,\varepsilon \in \scrA t. Now, by the second equality of (2.17) and
then by (2.15) and (2.16), as n\rightarrow \infty , we have

J(t, \xi , \alpha n,\varepsilon ) - V (t, \mu )

=

n - 1\sum 
i=0

\int ti+1

ti

\bigl[ 
\partial tV (s,\scrL 

Xt,\xi ,\alpha n,\varepsilon 
s

) + h(s,\scrL 
Xt,\xi ,\alpha n,\varepsilon 

s
, \partial \mu V, \partial x\partial \mu V, \alpha 

n,\varepsilon 
s )

\bigr] 
ds

=

n - 1\sum 
i=0

\int ti+1

ti

\bigl[ 
\partial tV (ti,\scrL Xt,\xi ,\alpha n,\varepsilon 

ti

) + h(ti,\scrL Xt,\xi ,\alpha n,\varepsilon 

ti

, \partial \mu V, \partial x\partial \mu V, \alpha 
n,\varepsilon 
s )

\bigr] 
ds+ o(1)

\geq 
n - 1\sum 
i=0

\int ti+1

ti

\bigl[ 
\partial tV (ti,\scrL Xt,\xi ,\alpha n,\varepsilon 

ti

) +H(ti,\scrL Xt,\xi ,\alpha n,\varepsilon 

ti

, \partial \mu V, \partial x\partial \mu V ) - \varepsilon 
\bigr] 
ds+ o(1)

= o(1) - \varepsilon .

Here the o(1) may depend on \| \xi \| \BbbL 2 and we have used the fact that

sup
t\leq s\leq T

\| Xt,\xi ,\alpha n,\varepsilon 

s \| \BbbL 2 \leq C[1 + \| \xi \| \BbbL 2 ].

By first sending n\rightarrow \infty and then \varepsilon \rightarrow 0, we obtain sup\alpha \in \scrA t
J(t, \xi , \alpha ) \geq V (t, \mu ), hence

V is indeed the value function defined by (2.3).

Remark 2.9. While we shall provide some positive results in the next section,
in general it is difficult to expect classical solutions for nonlinear master equations.
There have been some studies on viscosity solutions to such master equations. For
example, Pham and Wei (2018) proposed a notion of viscosity solution by first lifting
the function V to U in the sense of (2.9) and then studying the viscosity property
of U in the Hilbert space \BbbL 2(\scrF T ). More recently, Wu and Zhang (2018) proposed
an intrinsic notion of viscosity solutions for path-dependent master equations in the
Wasserstein space directly, which, in particular, is consistent with the classical solution
in Theorem 2.8 when V is smooth.

2.3. The optimal control. We now turn to the optimal control.

Theorem 2.10. Let Assumption 2.1 hold and V \in C1,2(\Theta ) be the classical solu-
tion to the master equation (2.12)--(2.13). Assume further that
(i) the Hamiltonian H(t, \mu , \partial \mu V, \partial x\partial \mu V ) defined by (2.13) has an optimal control

a\ast = I(t, \mu ) \in A, for any (t, \mu ) \in \Theta , where I : [0, T ]\times \scrP 2(\BbbR d) \rightarrow A is measurable;
(ii) for any fixed (t, \mu ) \in \Theta and \xi \in \BbbL 2

\mu (\scrF t), the McKean--Vlasov SDE

X\ast 
s = \xi +

\int s

t

b
\bigl( 
r,X\ast 

r , I(r,\scrL X\ast 
r
)
\bigr) 
dr +

\int s

t

\sigma 
\bigl( 
r,X\ast 

r , I(r,\scrL X\ast 
r
)
\bigr) 
dWr(2.18)

has a (strong) solution X\ast .



702 YURI F. SAPORITO AND JIANFENG ZHANG

Then \alpha \ast 
s := I(s,\scrL X\ast 

s
), s \in [t, T ], is an optimal control for the optimization problem

(2.3) with this fixed (t, \mu ).

Proof. Note that X\ast = Xt,\xi ,\alpha \ast 
. Set \alpha = \alpha \ast in (2.17). By optimality condition

(i) we see that equality holds for (2.17), namely, J(t, \xi , \alpha \ast ) = V (t, \mu ), implying that
\alpha \ast is optimal.

As in standard control theory, in general, the existence of the classical solution V
is not sufficient for the existence of the optimal control. In particular, the McKean--
Vlasov SDE (2.18) may not have a solution, even if I exists. At below we provide a
sufficient condition.

Theorem 2.11. Let all the conditions in Theorem 2.10 hold true, except possibly
the (ii) there. Assume further b, \sigma are bounded and continuous in a, and I : \Theta \rightarrow A
is continuous. Then the McKean--Vlasov SDE (2.18) has a strong solution for any
(t, \mu ), and hence the optimization problem (2.3) has an optimal control.

Proof. Without loss of generality, we prove the result only at (0, \mu ). Fix \xi \in \BbbL 2
0(\mu ).

For any \alpha \in \scrA 0, denote

X\alpha 
t = \xi +

\int t

0

b(s,X\alpha 
s , \alpha s)ds+

\int t

0

\sigma (s,X\alpha 
s , \alpha s)dWs.

Under Assumption 2.1, it is clear that

\BbbE [| X\alpha 
t  - X\alpha 

s | 2] \leq C\mu | t - s| , and thus \scrW 2(\scrL X\alpha 
t
,\scrL X\alpha 

s
) \leq C\mu 

\sqrt{} 
| t - s| ,(2.19)

where the constant C\mu may depend on \mu but does not depend on \alpha . Moreover, assume

| b| , | \sigma | \leq L. Let \scrD L(\mu ) denote the set of \scrL \~Xt
, where t \in [0, T ], \~Xt = \~X0 +

\int t

0
\~bsds +\int t

0
\~\sigma sdWs in some arbitrary probability space with \scrL \~X0

= \mu and | \~b| , | \~\sigma | \leq L. As in Wu
and Zhang (2018, Lemma 3.1), one can easily show that \scrD L(\mu ) is compact under \scrW 2.
Since I is continuous in \Theta , it is uniformly continuous on [0, T ]\times \scrD L(\mu ) with certain
modulus of continuity function \rho \mu , which may depend on \mu . Clearly \scrL X\alpha 

t
\in \scrD L(\mu )

for all \alpha \in \scrA 0 and t \in [0, T ]. Then we have\bigm| \bigm| \bigm| I(t,\scrL X\alpha 
t
) - I(s,\scrL X\alpha 

s
)
\bigm| \bigm| \bigm| \leq \rho \mu (| t - s| ) for all \alpha \in \scrA 0.(2.20)

Denote

\scrA 0(\rho \mu ) :=
\Bigl\{ 
\alpha \in \scrA 0 : | \alpha t  - \alpha s| \leq \rho \mu (t - s), 0 \leq s < t \leq T

\Bigr\} 
.(2.21)

We now define a mapping \Phi : \scrA 0(\rho \mu ) \rightarrow \scrA 0(\rho \mu ) by \Phi t(\alpha ) := I(t,\scrL X\alpha 
t
), where (2.20)

ensures that \Phi (\alpha ) \in \scrA 0(\rho \mu ) for all \alpha \in \scrA 0(\rho \mu ). One can easily show that \scrA 0(\rho \mu ) is
convex and compact under the uniform norm, and \Phi is continuous. Then, applying
the Schauder's fixed point theorem, \Phi has a fixed point \alpha \ast \in \scrA 0(\rho \mu ): \Phi (\alpha \ast ) = \alpha \ast .
Now it is clear that X\ast := X\alpha \ast 

satisfies (2.18), and hence \alpha \ast is an optimal control.

Remark 2.12. In this section, we used the dynamic programming principle. Since
the control here is deterministic and thus falls in strong formulation, one may also
use the stochastic maximum principle, provided the optimal control exists. We will
present heuristic arguments in Appendix A to show how the McKean--Vlasov SDEs
come into play naturally.
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3. Classical solution of a nonlinear master equation. The existence of
classical solutions for nonlinear master equations is a very challenging problem. We
shall leave the general case to future research. In this section we study a special type
of master equations. Consider the equation (2.12)--(2.13) with

\sigma = Id, b = b(t, a), f = f(t, a).

Then (2.12) becomes

\partial tV (t, \mu ) +
1

2
\BbbE 
\Bigl[ 
tr (\partial x\partial \mu V (t, \mu , \xi ))

\Bigr] 
+ sup

a

\Bigl[ 
b(t, a) \cdot \BbbE 

\bigl[ 
\partial \mu V (t, \mu , \xi )

\bigr] 
+ f(t, a)

\bigr] 
= 0.

This is a special case of the following nonlinear master equation:

\partial tV (t, \mu ) +
1

2
\BbbE 
\Bigl[ 
tr (\partial x\partial \mu V (t, \mu , \xi ))

\Bigr] 
+ F

\bigl( 
t,\BbbE 

\bigl[ 
\partial \mu V (t, \mu , \xi )

\bigr] \bigr) 
= 0,

V (T, \mu ) = \BbbE 
\bigl[ 
g(\xi )

\bigr] 
.

(3.1)

Theorem 3.1. Let F and g be smooth enough with bounded derivatives. Assume
one of the following two conditions holds true:

(i) T is sufficiently small;
(ii) d = 1, and either \partial xxg > 0 > \partial xxF or \partial xxg < 0 < \partial xxF .

Then the master equation (3.1) has a classical solution V \in C1,2(\Theta ).

Proof. We shall proceed in two steps.
Step 1. Consider the following master equation which is linear in \partial \mu \widetilde V :

\partial t \widetilde V (t, \mu ) +
1

2
\BbbE 
\Bigl[ 
tr (\partial x\partial \mu \widetilde V (t, \mu , \xi ))

\Bigr] 
+ \partial xF

\bigl( 
t, \widetilde V (t, \mu )

\bigr) 
\BbbE 
\bigl[ 
\partial \mu \widetilde V (t, \mu , \xi )

\bigr] 
= 0,\widetilde V (T, \mu ) = \BbbE 

\bigl[ 
\partial xg(\xi )

\bigr] 
.

(3.2)

We shall prove in Step 2 below that under (i) or (ii) the above master equation has a

unique classical solution \widetilde V . We next consider the linear master equation:

\partial tV (t, \mu ) +
1

2
\BbbE 
\Bigl[ 
tr (\partial x\partial \mu V (t, \mu , \xi ))

\Bigr] 
+ F

\bigl( 
t, \widetilde V (t, \mu )

\bigr) 
= 0,

V (T, \mu ) = \BbbE 
\bigl[ 
g(\xi )

\bigr] 
,

(3.3)

Then clearly V is also smooth. It remains to verify that the above V satisfies (3.1).
Indeed, by (3.3) we see that

V (t, \mu ) = \BbbE 
\bigl[ 
g(Xt,\xi 

T )
\bigr] 
+

\int T

t

F (s, \widetilde V (s,\scrL Xt,\xi 
s

))ds,(3.4)

where Xt,\xi 
s := \xi +Ws  - Wt. Differentiating with respect to \mu , we obtain

\BbbE 
\bigl[ 
\partial \mu V (t, \mu , \xi )

\bigr] 
= \BbbE 

\Bigl[ 
\partial xg(X

t,\xi 
T )

\Bigr] 
(3.5)

+ \BbbE 
\Bigl[ \int T

t

\partial xF (s, \widetilde V (s,\scrL Xt,\xi 
s

)) \cdot \partial \mu \widetilde V \bigl( 
s,\scrL Xt,\xi 

s
, Xt,\xi 

s

\bigr) 
ds
\Bigr] 
.

That is, V (t, \mu ) := \BbbE 
\bigl[ 
\partial \mu V (t, \mu , \xi )

\bigr] 
satisfies the following linear master equation:

\partial tV (t, \mu ) +
1

2
\BbbE 
\Bigl[ 
tr (\partial x\partial \mu V (t, \mu , \xi ))

\Bigr] 
+ \partial xF

\bigl( 
t, \widetilde V (t, \mu )) \cdot \BbbE 

\bigl[ 
\partial \mu \widetilde V (t, \mu , \xi )

\bigr] \bigr) 
= 0,

V (T, \mu ) = \BbbE 
\bigl[ 
\partial xg(\xi )

\bigr] 
.
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However, by (3.2), \widetilde V also satisfies the above master equation. Then by the uniqueness

of classical solutions, we have \widetilde V (t, \mu ) = V (t, \mu ) = \BbbE 
\bigl[ 
\partial \mu V (t, \mu , \xi )

\bigr] 
. Plugging this into

(3.3), we see that V satisfies (3.1).
Step 2. We now prove the well-posedness of (3.2) under (i) or (ii). When T is

small, the arguments are rather standard; see, e.g., Chassagneux, Crisan, and Delarue
(2014). We now assume (ii) holds true. Without loss of generality, we assume F is
convex in x and g is concave. For any y \in \BbbR , define

\Phi (y; t, \mu ) := \BbbE 
\Bigl[ 
\partial xg

\bigl( 
\xi +WT  - Wt +

\int T

t

\partial xF (s, y)ds
\bigr) \Bigr] 
,

\Psi (y, t, \mu ) := \Phi (y; t, \mu ) - y,
(3.6)

where \scrL \xi = \mu and WT  - Wt is independent of \xi . It is straightforward to show that \Phi 
is smooth in (y, t, \mu ) and, for any y, \Phi (y; \cdot ) solves the following linear master equation:

\partial t\Phi (y; t, \mu ) +
1

2
\BbbE 
\bigl[ 
\partial x\partial \mu \Phi (y; t, \mu , \xi ))

\bigr] 
+ \partial xF (t, y)\BbbE 

\bigl[ 
\partial \mu \Phi (y; t, \mu , \xi )

\bigr] 
= 0.(3.7)

Under our conditions, \partial xg is decreasing and \partial xF is increasing in y; then by (3.6) \Phi 
is decreasing in y and thus \partial y\Psi \leq  - 1, so y \mapsto \rightarrow \Psi (y, t, \mu ) has an inverse function \Psi  - 1,
which is also smooth. Since \partial xg is bounded by some constant C0, then | \Phi (y; t, \mu )| \leq 
C0, and thus \Psi (C0, t, \mu ) \leq 0 \leq \Psi ( - C0, t, \mu ) for any fixed (t, \mu ). In particular, 0 is
in the range of \Psi (\cdot ; t, \mu ) for any fixed (t, \mu ). Define U(t, \mu ) := \Psi  - 1(0, t, \mu ); then U
is smooth. Note that U(t, \mu ) = \Phi (U(t, \mu ); t, \mu ). Applying the chain rule (which is
obvious from the definitions), we have

\partial tU = \partial t\Phi + \partial y\Phi \partial tU, \partial \mu U = \partial \mu \Phi + \partial y\Phi \partial \mu U, \partial x\partial \mu U = \partial x\partial \mu \Phi + \partial y\Phi \partial x\partial \mu U.

Namely, denoting c := 1 - \partial y\Phi (U(t, \mu ); t, \mu ) \geq 1,

\partial t\Phi (U(t, \mu ); t, \mu ) = c \partial tU(t, \mu ), \partial \mu \Phi (U(t, \mu ); t, \mu , \cdot ) = c \partial \mu U(t, \mu , \cdot ),
\partial x\partial \mu \Phi (U(t, \mu ); t, \mu , \cdot ) = c \partial x\partial \mu U(t, \mu , \cdot ).

Plugging these into (3.7) with y = U(t, \mu ), we obtain that U satisfies (3.2).

3.1. An example. We now consider a special case. For some R > 0, which will
be specified later, set

d = 1, A = [ - R,R], b(t, x, a) = a, \sigma = 1, f(t, x, a) =  - 1

2
a2.(3.8)

Then

h(t, \mu , p, q, a) =
1

2
\BbbE [q(t, \mu , \xi )] + a\BbbE [p(t, \mu , \xi )] - 1

2
a2,

H(t, \mu , p, q) =
1

2
\BbbE [q(t, \mu , \xi )] + F (\BbbE [p(t, \mu , \xi )]),

where F (x) =
1

2
| x| 21\{ | x| \leq R\} + [R| x|  - 1

2
R2]1\{ | x| >R\} ,

(3.9)

and thus (2.12) becomes

\partial tV +
1

2
\BbbE 
\bigl[ 
\partial x\partial \mu V (t, \mu , \xi )

\bigr] 
+ F

\bigl( 
\BbbE 
\bigl[ 
\partial \mu V (t, \mu , \xi )

\bigr) 
= 0, V (T, \mu ) = \BbbE [g(\xi )].(3.10)

Notice that F is convex; however, it is in C1(\BbbR ) but not in C2(\BbbR ).
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Theorem 3.2. Assume g is smooth enough with bounded derivatives, and in par-
ticular | \partial xg| \leq C0 < R. Then, either for T small enough or d = 1 and g is concave,

(i) the master equation (3.10) has a unique classical solution V such that\bigm| \bigm| \bigm| \BbbE \bigl[ \partial \mu V (t, \mu , \xi )
\bigr] \bigm| \bigm| \bigm| \leq C0, (t, \mu ) \in \Theta , \xi \in \BbbL 2

\mu (\scrF t);(3.11)

(ii) for any (t, \mu ) \in \Theta and \xi \in \BbbL 2
\mu (\scrF t), the McKean--Vlasov SDE (2.18) with

I(t, \mu ) := \BbbE 
\bigl[ 
\partial \mu V (t, \mu , \xi )

\bigr] 
has a solution X\ast ;

(iii) for any (t, \mu ) \in \Theta , the optimization problem (2.3) has an optimal control:
\alpha \ast 
s := I(s,\scrL X\ast 

s
).

Proof. Let \widetilde F : \BbbR \rightarrow \BbbR be a smooth function such that

\widetilde F is convex and \widetilde F (x) = F (x) for | x| \leq C0 or | x| \geq R.

Applying Theorem 3.1, the master equation (3.10) corresponding to \widetilde F has a classical

solution V . Introduce the conjugate of \widetilde F : \widetilde f(a) := supx\in \BbbR [ax - \widetilde F (x)], a \in A. By the

convexity of \widetilde F , we have \widetilde F (x) = supa\in A[ax - \widetilde f(a)]. Then by Theorem 2.8 we see that

V (t, \mu ) = sup
\alpha \in \scrA t

\widetilde J(t, \xi , \alpha ), where(3.12)

\widetilde Xt,\xi ,\alpha 
s := \xi +

\int s

t

\alpha rdr +Ws  - Wt, \widetilde J(t, \xi , \alpha ) := \BbbE 
\bigl[ 
g( \widetilde Xt,\xi ,\alpha 

T )
\bigr] 
 - 

\int T

t

\widetilde f(\alpha s)ds.

For any t \in [0, T ], \xi , \xi \prime \in \BbbL 2(\scrF t), and \alpha \in \scrA t, under our conditions it is clear that

| \widetilde J(t, \xi , \alpha ) - \widetilde J(t, \xi \prime , \alpha )| \leq C0\BbbE [| \xi  - \xi \prime | ].

Since \xi , \xi \prime are arbitrary, then it follows from (3.12) that

| V (t, \mu ) - V (t, \mu \prime )| \leq C0\scrW 2(\mu , \mu 
\prime ),

which implies (3.11) immediately. Since \widetilde F (x) = F (x) = 1
2x

2 for | x| \leq C0, then (3.11)
implies further that V is a classical solution to master equation (3.10) corresponding
to F .

(ii) Clearly in this case the optimal argument of the Hamiltonian F leads to
I(t, \mu ) = \BbbE 

\bigl[ 
\partial \mu V (t, \mu , \xi )

\bigr] 
, which is continuous. Then (ii) follows from Theorem 2.11.

Finally, (iii) follows directly from Theorem 2.10.

We remark that in this example it is more natural to set A = \BbbR and all the results
still hold true. The constraint A = [ - R,R] is to ensure the uniform requirement in
Assumption 2.1(i), which is more convenient for establishing the general theory but
can be relaxed.

4. The general case. In this section we investigate the general case T > h.

4.1. Strong formulation with closed loop controls. In this subsection we
illustrate how the information delay naturally leads to the path dependence of the
value function, even if the coefficients b, \sigma , f, g in (2.1) depend only on the current
state of X. It is easier to show the idea in strong formulation, namely, we fix a
probability space and the state process X\alpha is controlled, but we emphasize that we
shall use closed loop controls, both for practical and for theoretical reasons.
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As in section 2, let (\Omega ,\BbbF ,\BbbP ) be a filtered probability space on [0, T ] and W an \BbbF -
Brownian motion under \BbbP . For simplicity, in this subsection we assume T \leq 2h, which
will not be required in later subsections. Let t \in (h, T ], and \xi be an \BbbF -progressively
measurable process on [0, t]. Consider the following counterpart of (2.1):

Xt,\xi ,\alpha 
s = \xi t +

\int s

t

b
\bigl( 
r,Xt,\xi ,\alpha 

r , \alpha r(\xi [0,r - h])
\bigr) 
dr +

\int s

t

\sigma 
\bigl( 
r,Xt,\xi ,\alpha 

r , \alpha r(\xi [0,r - h])
\bigr) 
dWr;

J(t, \xi , \alpha ) := \BbbE 

\Biggl[ 
g(Xt,\xi ,\alpha 

T ) +

\int T

t

f
\bigl( 
s,Xt,\xi ,\alpha 

s , \alpha s(\xi [0,s - h])
\bigr) 
ds

\Biggr] 
.

(4.1)

Similar to Lemma 2.2, J(t, \xi , \alpha ) depends on \xi only through the law of the stopped pro-
cess \xi [0,t]. That is, if \xi 

\prime is another process such that \scrL \xi [0,t] = \scrL \xi \prime 
[0,t]

, then J(t, \xi , \alpha ) =

J(t, \xi \prime , \alpha ). Consequently, the following value function is also law invariant:

\widetilde V (t, \xi ) := sup
\alpha \in \scrA t

J(t, \xi , \alpha ).(4.2)

We emphasize that the above law invariant property relies on the law of the
stopped process \xi [0,t], rather than the law of the current state \xi t.

Example 4.1. Let d = 1, A = [ - 1, 1], b(t, x, a) = a, \sigma (t, x, a) = 1, f(t, x, a) = 0,
g(x) = x2, T = 2h, t = 3

2h. Set

\xi s =Ws, 0 \leq s \leq t, \xi \prime s :=W3(s - h)1[h,t](s).(4.3)

Then \xi t = \xi \prime t =Wt but in general \widetilde V (t, \xi ) \not = \widetilde V (t, \xi \prime ).

Proof. First, since \xi \prime s = 0, s \leq h, then \alpha r(\xi 
\prime 
[0,r - h]) = \alpha r(0) is deterministic. Thus

J(t, \xi \prime , \alpha ) = \BbbE 

\left[  \bigm| \bigm| \bigm| \bigm| \bigm| Wt +

\int T

t

\alpha r(0)dr +WT  - Wt

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right]  =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

t

\alpha r(0)dr

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ T.

This implies

\widetilde V (t, \xi \prime ) = T + (T  - t)2 = 2h+
1

4
h2.

On the other hand, denote \beta r := \alpha r+h(W[0,r]) which is \scrF r-measurable; then

J(t, \xi , \alpha ) = \BbbE 

\left[  \bigm| \bigm| \bigm| \bigm| \bigm| Wt +

\int T - h

t - h

\beta rdr +WT  - Wt

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right]  

= \BbbE 

\left[  \bigm| \bigm| \bigm| \bigm| \bigm| 
\int T - h

t - h

\beta rdr

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ 2

\int T - h

t - h

Wr\beta rdr

\right]  + T \geq 2\BbbE 

\Biggl[ \int h

h
2

Wr\beta rdr

\Biggr] 
+ 2h.

By choosing \beta r = sign(Wr), we have

\widetilde V (t, \xi ) \geq 2\BbbE 
\Bigl[ \int h

h
2

| Wr| dr
\Bigr] 
+ 2h = 2h+ ch

3
2 ,

where c > 0 is a generic constant independent of h. Then clearly \widetilde V (t, \xi ) > \widetilde V (t, \xi \prime ),
when h is small enough.
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We also remark that it is crucial to use closed loop controls. If we use open loop
controls with delay, namely, \alpha s = \alpha s(W[0,s - h]), then for each \alpha , obviously J(t, \xi , \alpha )
would depend on the joint law of (\xi ,W ) on [0, t]. The following example shows that
the corresponding value function \~V (t, \xi ) may also violate the law invariant property.

Example 4.2. Consider the same setting in Example 4.1, but replace (4.3) with

\xi s = [Ws  - Wh]1[h,t](s), \xi \prime s =Ws - h1[h,t](s), 0 \leq s \leq t.

Then \scrL \xi [0,t] = \scrL \xi \prime 
[0,t]

. However, if we use open loop controls but still denote the value

function as \~V , then \widetilde V (t, \xi ) \not = \widetilde V (t, \xi \prime ).

Proof. First, note that \alpha s = \alpha s(W[0,s - h]) is \scrF h-measurable. Then

J(t, \xi , \alpha ) = \BbbE 

\left[  \bigm| \bigm| \bigm| \bigm| \bigm| Wt  - Wh +

\int T

t

\alpha sds+WT  - Wt

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right]  = \BbbE 

\left[  \bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

t

\alpha sds

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right]  + T  - h.

This implies

\widetilde V (t, \xi ) = T  - h+ (T  - t)2 = h+
1

4
h2.

On the other hand, denote \beta r := \alpha r+h(W[0,r]) which is \scrF r-measurable; then

J(t, \xi \prime , \alpha ) = \BbbE 

\left[  \bigm| \bigm| \bigm| \bigm| \bigm| W h
2
+

\int T - h

t - h

\beta rdr +WT  - Wt

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right]  = \BbbE 

\left[  \bigm| \bigm| \bigm| \bigm| \bigm| W h
2
+

\int h

h
2

\beta rdr

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right]  +

h

2
.

By choosing \beta r = sign(W h
2
), we have

\widetilde V (t, \xi ) \geq \BbbE 
\Bigl[ \Bigl[ \bigm| \bigm| \bigm| W h

2

\bigm| \bigm| \bigm| + h

2

\Bigr] 2 \Bigr] 
+

h

2
= h+

1

4
h2 + h\BbbE [| W h

2
| ] > \widetilde V (t, \xi ).

This completes the proof.

4.2. Weak formulation in path-dependent setting. Both for closed loop
controls and for path-dependent problems, it is a lot more convenient to use the weak
formulation on canonical space. We shall follow the setting of Wu and Zhang (2018).

Let \Omega := C([0, T ];\BbbR d) be the canonical space equipped with the metric \| \omega \| T :=
sup0\leq t\leq T | \omega t| , X the canonical process, and \BbbF = \BbbF X = \{ \scrF t\} t\in [0,T ] the natural filtra-
tion generated by X. Denote by \scrP 2(\scrF T ) the set of probability measures \BbbP on \scrF T

such that \BbbE \BbbP [\| X\| 2T ] < \infty and \Theta T := [0, T ]\times \scrP 2(\scrF T ). Quite often we will also use \mu 
to denote elements of \scrP 2(\scrF T ). We equip \scrP 2(\scrF T ) with the 2-Wasserstein distance \scrW 2

which extends (2.7):

\scrW 2(\mu , \mu 
\prime ) := inf

\bigl\{ \bigl( 
\BbbE [ sup

0\leq t\leq T
| \eta t  - \eta \prime t| 2

\bigr] \bigr) 1
2 : \scrL \eta = \mu ,\scrL \eta \prime = \mu \prime \bigr\} (4.4)

for \mu , \mu \prime \in \scrP 2(\scrF T ), where \scrL \eta is the law of the process \eta .
Given \mu \in \scrP 2(\scrF T ), let \mu [0,t] denote the \mu -distribution of the stopped process

X[0,t]. For a function V : \Theta T \rightarrow \BbbR , we say V is \BbbF -adapted if V (t, \mu ) = V (t, \mu [0,t]) for
any (t, \mu ) \in \Theta T . For such V , we define its time derivative as

\partial tV (t, \mu ) := lim
\delta \downarrow 0

V (t+ \delta , \mu [0,t]) - V (t, \mu [0,t])

\delta 
,(4.5)
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where we are freezing the law of X from t to t + \delta . The spatial derivative takes the
form \partial \mu V : \Theta T \times \Omega \rightarrow \BbbR d and is \BbbF -progressively measurable, namely, measurable
in all variables and \BbbF -adapted. We emphasize that, as in Dupire (2009), \partial \mu V is not
a Fr\'echet derivative with respect to the law of the whole stopped process X[0,t] but
is a derivative with respect to \scrL Xt only. Roughly speaking, by extending the whole
setting to the space of c\`adl\`ag paths, let \xi be a process on [0, t] such that \scrL \xi = \mu [0,t],
and let \xi \prime t be an \scrF t-measurable random variable. Then

\BbbE \mu 
\Bigl[ 
\partial \mu V (t, \mu , \xi ) \cdot \xi \prime t

\Bigr] 
:= lim

\varepsilon \downarrow 0

V (t,\scrL \xi +\varepsilon \xi \prime t\bfone \{ t\} ) - V (t,\scrL \xi )

\varepsilon 
.(4.6)

Moreover, for the process \partial \mu V (t, \mu ,X\cdot ), we may introduce the path derivative \partial \omega \partial \mu V
in the spirit of Dupire (2009). When V is smooth enough in these senses, the functional
It\^o formula (4.7) below holds true. We refer to Wu and Zhang (2018) for details. In
this section, to avoid the technical details, we take the approach in Ekren, Touzi, and
Zhang (2016) and use the functional It\^o formula directly to define the smoothness of V .

Definition 4.3. Let C1,2(\Theta T ) denote the space of functions V : \Theta T \rightarrow \BbbR such
that there exist functions \partial \mu V : \Theta T \times \Omega \rightarrow \BbbR d and \partial \omega \partial \mu V : \Theta T \times \Omega \rightarrow \BbbR d\times d satisfying
that

(i) the \partial tV defined by (4.5) exists, and V , \partial tV , \partial \mu V , \partial \omega \partial \mu V are all \BbbF -adapted
and uniformly continuous;

(ii) for any semimartingale measure \BbbP , namely, X is a semimartingale under \BbbP ,
the following functional It\^o formula holds:

dV (t,\BbbP ) = \partial tV (t,\BbbP )dt+ \BbbE \BbbP 
\Bigl[ 
\partial \mu V (t,\BbbP , X\cdot ) \cdot dXt +

1

2
\partial \omega \partial \mu V (t,\BbbP , X\cdot ) : d\langle X\rangle t

\Bigr] 
.(4.7)

By Lemma 2.7 and Wu and Zhang (2018), the spatial derivatives there coincide
with the above \partial \mu V, \partial \omega \partial \mu V (with \partial \omega \partial \mu V = \partial x\partial \mu V in the Markovian case). We
remark that, for the purpose of viscosity solutions, in Wu and Zhang (2018), (4.7)
is required only for semimartingale measures whose drift and diffusion characteristics
are bounded. In that case, the regularity requirements on V are weaker than the
corresponding conditions in Lemma 2.7. It is not difficult to extend the functional It\^o
formula in Wu and Zhang (2018) to allow for more general semimartingale measures.
Nevertheless, it is more convenient to define the derivatives through the functional
It\^o formula directly as we do here.

Lemma 4.4. For any V \in C1,2(\Theta T ), the derivatives \partial \mu V and \partial \omega \partial \mu V are unique
in the sense that \partial \mu V (t, \mu ,X\cdot ) and 1

2 [\partial \omega \partial \mu V + (\partial \omega \partial \mu V )\top ](t, \mu ,X\cdot ) are \mu -a.s. unique
for any (t, \mu ) \in \Theta T .

We remark that since \langle X\rangle is symmetric, so the uniqueness of 1
2 [\partial \omega \partial \mu V+(\partial \omega \partial \mu V )\top ]

(t, \mu ,X\cdot ) implies that uniqueness of \partial \omega \partial \mu V (t,\BbbP , X\cdot ) : d\langle X\rangle t in (4.7).

Proof. First let \mu \in \scrP 2(\scrF T ) be a semimartingale measure. For any t \in [0, T ] and
any \scrF t-measurable and bounded random variables bt and \sigma t > 0, let \BbbP \in \scrP 2(\scrF T ) be
such that

\BbbP [0,t] = \mu [0,t] and Xs  - Xt = bt[s - t] + \sigma t[Ws  - Wt], t \leq s \leq T, \BbbP -a.s.,

for some \BbbP -Brownian motion W . Then, by (4.7), we see that

\BbbE \BbbP 
\Bigl[ 
bt \cdot 

\int s

t

\partial \mu V (r,\BbbP , X\cdot )dr +
1

2
\sigma t\sigma 

\top 
t :

\int s

t

\partial \omega \partial \mu V (r,\BbbP , X\cdot )dr
\Bigr] 
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is unique. By the uniform continuity of \partial \mu V and \partial \omega \partial \mu V , this implies that

\BbbE \mu 
\Bigl[ 
bt \cdot \partial \mu V (t, \mu ,X\cdot ) +

1

2
\sigma t\sigma 

\top 
t : \partial \omega \partial \mu V (t, \mu ,X\cdot )

\Bigr] 
is unique. Here we rewrite \BbbP as \mu since \BbbP [0,t] = \mu [0,t] and the integrand above is
\scrF t-measurable. Since bt and \sigma t are arbitrary, we obtain the desired uniqueness.

Now assume \mu \in \scrP 2(\scrF T ) is arbitrary. For any \varepsilon > 0, denote X\varepsilon 
t := 1

\varepsilon 

\int t

(t - \varepsilon )+
Xsds

and \mu \varepsilon := \mu \circ (X\varepsilon ) - 1. Then

\scrW 2
2 (\mu , \mu 

\varepsilon ) \leq \BbbE \mu 
\Bigl[ 
\| X  - X\varepsilon \| 2T

\Bigr] 
\rightarrow 0 as \varepsilon \rightarrow 0,

which implies that \mu \varepsilon \rightarrow \mu weakly. Clearly X\varepsilon is a \mu -semimartinagle, and then
\mu \varepsilon is a semimartingale measure. Thus \partial \mu V (t, \mu \varepsilon 

t , X\cdot ) is \mu \varepsilon -a.s. unique. Let \eta t be
\scrF t-measurable, bounded, and continuous in \omega (under \| \cdot \| T ). Note that, denoting by
\rho the modulus of continuity function of \partial \mu V ,\bigm| \bigm| \bigm| \BbbE \mu \varepsilon 

\Bigl[ 
\partial \mu V (t, \mu \varepsilon , X\cdot )\eta t

\Bigr] 
 - \BbbE \mu 

\Bigl[ 
\partial \mu V (t, \mu ,X\cdot )\eta t

\Bigr] \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \BbbE \mu \varepsilon 

\Bigl[ 
\partial \mu V (t, \mu \varepsilon , X\cdot )\eta t

\Bigr] 
 - \BbbE \mu \varepsilon 

\Bigl[ 
\partial \mu V (t, \mu ,X\cdot )\eta t

\Bigr] \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \BbbE \mu \varepsilon 

\Bigl[ 
\partial \mu V (t, \mu ,X\cdot )\eta t

\Bigr] 
 - \BbbE \mu 

\Bigl[ 
\partial \mu V (t, \mu ,X\cdot )\eta t

\Bigr] \bigm| \bigm| \bigm| 
\leq C\rho (\scrW 2(\mu , \mu 

\varepsilon )) +
\bigm| \bigm| \bigm| \BbbE \mu \varepsilon 

\Bigl[ 
\partial \mu V (t, \mu ,X\cdot )\eta t

\Bigr] 
 - \BbbE \mu 

\Bigl[ 
\partial \mu V (t, \mu ,X\cdot )\eta t

\Bigr] \bigm| \bigm| \bigm| .
Sending \varepsilon \rightarrow 0, by the weak convergence of \mu \varepsilon \rightarrow \mu , we see that

\BbbE \mu 
\Bigl[ 
\partial \mu V (t, \mu ,X\cdot )\eta t

\Bigr] 
= lim

\varepsilon \rightarrow 0
\BbbE \mu \varepsilon 

\Bigl[ 
\partial \mu V (t, \mu \varepsilon , X\cdot )\eta t

\Bigr] 
is unique. Since \eta t is arbitrary, we obtain the desired uniqueness of \partial \mu V (t, \mu ,X\cdot ).
Similarly we have the uniqueness of \partial \omega \partial \mu V .

4.3. The control problem in weak formulation. Since the value function
depends on the path of the state process X anyway, we shall work on the path-
dependent setting directly, i.e., we will allow b, \sigma , f , and g to depend on the paths of
X, namely, b, \sigma , f are functions on [0, T ]\times \Omega \times A and g is a function on \Omega , so as to have
a more general result. Let \scrA h

t denote the set of \BbbF -progressively measurable A-valued
processes \alpha on [t, T ] such that \alpha s is \scrF (s - h)+ -measurable, namely, \alpha s = \alpha s(X[0,(s - h+]).
Given (t, \mu ) \in \Theta T and \alpha \in \scrA h

t , denote by \BbbP t,\mu ,\alpha the unique probability measure
\BbbP \in \scrP 2(\scrF T ) such that \BbbP [0,t] = \mu [0,t] and \BbbP is the strong solution of the following SDE
on [t, T ]:

dXs = b(s,X\cdot , \alpha s)ds+ \sigma (s,X\cdot , \alpha s)dWs, t \leq s \leq T,\BbbP -a.s.(4.8)

We emphasize again that above \alpha s = \alpha s(X[0,(s - h+]). We then define

V (t, \mu ) := sup
\alpha \in \scrA h

t

J(t, \mu , \alpha ) := sup
\alpha \in \scrA h

t

\BbbE \BbbP t,\mu ,\alpha 
\Bigl[ 
g(X\cdot ) +

\int T

t

f(s,X\cdot , \alpha s)ds
\Bigr] 
.(4.9)

Remark 4.5. When T \leq h, \alpha t is \scrF 0-measurable for t \in [0, T ]. Since \scrF 0 is not
degenerate here, in general \alpha may not be deterministic, and thus rigorously speaking
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the formulation here is slightly different from that in sections 2 and 3. However, they
are equivalent when \mu 0 is degenerate, namely, X0 is a constant, \mu -a.s.

Alternatively, following the rationale of information delay, one may require \alpha t

to be \scrF 0 - := \{ \emptyset ,\Omega \} -measurable for t < h, and thus it is deterministic. One minor
disadvantage of this reformulation is that the information flow will have a jump at
t = h. Again, this discontinuity disappears when \mu 0 is degenerate.

Similar to Assumption 2.1, we shall assume the following.

Assumption 4.6. (i) b, \sigma , f are \BbbF -adapted, and b(t, 0, a), \sigma (t, 0, a), and f(t, 0, a)
are bounded;

(ii) b and \sigma are uniformly Lipschitz continuous in \omega , uniformly continuous in t,
and continuous in a;

(iii) f is uniformly continuous in (t, \omega ) and continuous in a, and g is uniformly
continuous in \omega .

Under the above assumptions, it is clear that (4.8) is well-posed, V is \BbbF -adapted,
and analogous to Theorem 2.3 one can easily prove

V (t, \mu ) = sup
\alpha \in \scrA h

t

\Bigl[ 
V (t+ \delta ,\BbbP t,\mu ,\alpha ) +

\int t+\delta 

t

\BbbE \BbbP t,\mu ,\alpha \bigl[ 
f(s,X\cdot , \alpha s)

\bigr] 
ds
\Bigr] 
.(4.10)

Now assume V \in C1,2(\Theta T ) in the sense of Definition 4.3. By (4.10), similar to
Theorem 2.8 one can easily derive

\partial tV (t, \mu ) +H(t, \mu , \partial \mu V, \partial \omega \partial \mu V ) = 0,(4.11)

where, for p : \Theta T \times \Omega \rightarrow \BbbR d and q : \Theta T \times \Omega \rightarrow \BbbR d\times d,

H(t, \mu , p, q) := sup
\alpha \in \scrA h

t

h(t, \mu , p, q, \alpha t),

h(t, \mu , p, q, \alpha t) := \BbbE \mu 
\Bigl[ \bigl[ 
b(\cdot ) \cdot p(t, \mu ,X\cdot ) +

1

2
\sigma \sigma \top (\cdot ) : q(t, \mu ,X\cdot ) + f(\cdot )

\bigr] 
(t,X\cdot , \alpha t)

\Bigr] 
.

(4.12)

Note that \alpha t is \scrF (t - h)+ -measurable. Denote t := (t  - h)+ and let \mu t,\omega denote the

regular conditional probability distribution of \mu given \scrF t, i.e., \mu 
t,\omega (E) = \BbbE \mu [1E(X[0,t])

| \scrF t](\omega ) for \mu -a.e. \omega \in \Omega . Then,

h(t, \mu , p, q, \alpha t) := \BbbE \mu 
\Bigl[ 
h
\bigl( 
t,X[0,t], \mu , p, q, \alpha t(X[0,t]

\bigr) \bigr) \Bigr] 
, where

h(t, \omega , \mu , p, q, a) := \BbbE \mu t,\omega 
\Bigl[ \bigl[ 
b(\cdot ) \cdot p(t, \mu ,X\cdot ) +

1

2
\sigma \sigma \top (\cdot ) : q(t, \mu ,X\cdot ) + f(\cdot )

\bigr] 
(t,X\cdot , a)

\Bigr] 
.

(4.13)

We remark that in (4.12) h depends on the whole random variable \alpha t, while in (4.13)
h depends on the realized value a \in A. We have the following result.

Theorem 4.7. Let Assumption 4.6 hold.
(i) For any p : \Theta T \times \BbbR d \rightarrow \BbbR d, q : \Theta T \times \BbbR d \rightarrow \BbbR d\times d uniformly continuous, the

Hamiltonian H in (4.12) becomes

H(t, \mu , p, q) = \BbbE \mu 
\Bigl[ 
sup
a\in A

h(t,X[0,t], \mu , p, q, a)
\Bigr] 
;(4.14)

(ii) Assume V \in C1,2(\Theta T ). Then V is the value function in (4.9) if and only if
V satisfies the following path-dependent master equation:

\partial tV (t, \mu ) + \BbbE \mu 
\Bigl[ 
sup
a\in A

h(t,X[0,t], \mu , \partial \mu V, \partial \omega \partial \mu V, a)
\Bigr] 
= 0, V (T, \mu ) = \BbbE \mu [g(X\cdot )].(4.15)
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Proof. (i) Define

\widetilde H(t, \mu , p, q) := \BbbE \mu 
\Bigl[ 
sup
a\in A

h(t,X[0,t], \mu , p, q, a)
\Bigr] 
.

It is clear that H \leq \widetilde H. To see the opposite inequality, fix (t, \mu , p, q) as specified in (i).
By our conditions, it is obvious that \omega \mapsto \rightarrow h(t, \omega , \mu , p, q, a) is \scrF t-measurable for each
a, and a \mapsto \rightarrow h(t, \omega , \mu , p, q, a) is continuous for each \omega . Then (\omega , a) \mapsto \rightarrow h(t, \omega , \mu , p, q, a)
is \scrF t\times \scrB (A)-measurable. By the standard measurable selection theorem (see, e.g., El
Karoui and Tan (2013, Proposition 2.21)) for any \varepsilon > 0, there exists an \scrF \mu 

t
-measurable

random variable a\varepsilon such that

h(t,X[0,t], \mu , p, q, a
\varepsilon ) \geq sup

a\in A
h(t,X[0,t], \mu , p, q, a) - \varepsilon , \mu -a.s,

where \scrF \mu 

t
denotes the \mu -augmentation of \scrF t. By Zhang (2017, Proposition 1.2.2),

there exists \scrF t-measurable \alpha \varepsilon 
t such that \alpha \varepsilon 

t = a\varepsilon , \mu -a.s. Then

\widetilde H(t, \mu , p, q) \leq \BbbE \mu 
\bigl[ 
h(t,X[0,t], \mu , p, q, \alpha 

\varepsilon 
t )
\bigr] 
+ \varepsilon \leq H(t, \mu , p, q) + \varepsilon .

By the arbitrariness of \varepsilon , we obtain \widetilde H \leq H, and thus the equality holds.
(ii) This follows from similar arguments as in Theorem 2.8.

Assume further that the following Hamiltonian H has an optimal argument a\ast :

H(t, \omega , \mu , \partial \mu V, \partial \omega \partial \mu V ) := sup
a\in A

h(t, \omega , \mu , \partial \mu V, \partial \omega \partial \mu V, a).(4.16)

By (4.13), we see that a\ast takes the form I(t, \mu t,\omega , \omega [0,t]). Then (4.8) becomes a
McKean--Vlasov SDE again:

dX\ast 
s = b

\bigl( 
s,X\ast 

\cdot , I(s,\BbbP s,X\ast 
, X\ast 

[0,s])
\bigr) 
ds+ \sigma 

\bigl( 
s,X\ast 

\cdot , I(s,\BbbP s,X\ast 
, X\ast 

[0,s])
\bigr) 
dWs,\BbbP -a.s.(4.17)

Similar to Theorem 2.10, one can easily prove the following.

Theorem 4.8. Let Assumption 4.6 hold and V \in C1,2(\Theta T ) be the classical solu-
tion to the master equation (4.15). Assume further that

(i) the Hamiltonian H defined by (4.16) has an optimal control a\ast = I(t, \mu t,\omega , \omega [0,t])
for any (t, \mu ) \in \Theta T , where I : \Theta T \times \Omega \rightarrow A is measurable;

(ii) for a fixed (t, \mu ) \in \Theta T , the McKean--Vlasov SDE (4.17) on [t, T ] has a (strong)
solution \BbbP \ast such that \BbbP \ast 

[0,t] = \mu [0,t].

Then \alpha \ast 
s := I(s, (\BbbP \ast )s,\omega , \omega [0,s]), s \in [t, T ], is an optimal control for the optimization

problem (4.9) with this fixed (t, \mu ).

It will be interesting to extend Theorems 2.11 and 3.1 to this case. This requires
the measurability and/or regularity in terms of the paths and is more challenging.
We shall leave a more systematic study on these issues to future research. In the
subsection below, we shall solve the linear quadratic case which extends the example
in subsection 3.1.

Finally, consider a special case where b, \sigma , f do not depend on X. Then

h(t, \omega , \mu , p, q, a) =
1

2
\sigma \sigma \top (t, a) : \BbbE \mu [q(t, \mu ,X\cdot )| \scrF t] + b(t, a) \cdot \BbbE \mu [p(t, \mu ,X\cdot )| \scrF t] + f(t, a),
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and thus a\ast takes the form a\ast = I
\bigl( 
t,\BbbE \mu [p(t, \mu ,X\cdot )| \scrF t],\BbbE \mu [q(t, \mu ,X\cdot )| \scrF t]

\bigr) 
. Therefore,

(4.17) becomes

dX\ast 
s = b

\bigl( 
s,X\ast 

\cdot , I
\bigl( 
s,\BbbE [\partial \mu V | \scrF s],\BbbE [\partial \omega \partial \mu V | \scrF s]

\bigr) \bigr) 
ds

+ \sigma 
\bigl( 
s,X\ast 

\cdot , I
\bigl( 
s,\BbbE [\partial \mu V | \scrF s],\BbbE [\partial \omega \partial \mu V | \scrF s]

\bigr) \bigr) 
dWs, \BbbP -a.s.

(4.18)

where \partial \mu V and \partial \omega \partial \mu V are computed at (s,\scrL X\ast 
[0,s]

, Xs).

4.4. The linear quadratic example. Consider the path-dependent setting of
the example in section 3:

d = 1, A = \BbbR , b(t, x, a) = a, \sigma = 1, f(t, x, a) =  - 1

2
a2, g(x) = x2, T = 2h.(4.19)

In this case (4.11) becomes as follows: recalling t := (t - h)+,

\partial tV (t, \mu ) +
1

2
\BbbE \mu 

\Bigl[ 
\partial \omega \partial \mu V (t, \mu ,X\cdot )

\Bigr] 
+

1

2
\BbbE \mu 

\Bigl[ \bigm| \bigm| \bigm| \BbbE \mu 
\bigl[ 
\partial \mu V (t, \mu ,X\cdot )| \scrF t

\bigr] \bigm| \bigm| \bigm| 2\Bigr] = 0,

V (T, \mu ) = \BbbE \mu [| XT | 2].
(4.20)

Moreover, provided (4.20) has a classical solution, then (4.18) reduces to

dX\ast 
s = \BbbE 

\bigl[ 
\partial \mu V (s,\scrL X\ast 

[0,s]
, X\ast 

s )| \scrF s

\bigr] 
ds+ dWs, \BbbP -a.s.(4.21)

Theorem 4.9. Let (4.19) hold. Assume h < 1
4 and denote h := 1

2  - h.
(i) The V defined by (4.9) is equal to

V (t, \mu ) =

\left\{                       

\BbbE \mu 
\Bigl[ 
| Xt| 2 +

\int h

t - h

| \BbbE \mu 
s [Xt]| 2

2(h+ s)2
ds
\Bigr] 
+ T  - t, t \in [h, 2h];

\BbbE \mu [| Xt| 2]
2(h+ t)

+

\int t

0

\BbbE \mu [| \BbbE \mu 
s [Xt]| 2]

2(h+ s)2
ds+ h+

1

2
ln

1

2(h+ t)

+
h - t

2h( 12  - 2h+ t)
\BbbE \mu 

\Bigl[ \bigm| \bigm| \BbbE \mu 
0 [Xt]

\bigm| \bigm| 2\Bigr] , t \in [0,h).

(4.22)

It is in C1,2(\Theta T ) and is a classical solution to the path-dependent master equation
(4.20).

(ii) For any (t, \mu ) \in \Theta T , the SDE (4.21) on [t, T ] with initial condition \BbbP \circ 
(X\ast 

[0,t])
 - 1 = \mu [0,t] has a strong solution X\ast , and the optimal control takes the form

\alpha \ast 
t = \BbbE \BbbP \ast \bigl[ 

\partial \mu V (t,\BbbP \ast , X\cdot )| \scrF (t - h)+
\bigr] 
, where \BbbP \ast = \BbbP \circ (X\ast ) - 1.(4.23)

The proof of this theorem is lengthy but quite standard, so we omit it here and
refer readers to the arXiv version of this paper (Saporito and Zhang (2017)).

Remark 4.10. In this remark we investigate the special setting with t = 0 and
\mu = \delta x0 . We consider three cases, always with T = 2h:

(i) the case discussed in this subsection, with delay parameter h;
(ii) the case with delay parameter 2h, but still with T = 2h.
(iii) the case without delay, which is the case studied in the standard literature.
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Denote the optimization values as V h
0 , V

2h
0 , and V 0

0 , respectively. Then we have

V h
0 =

x20
1 - 4h

+ h - 1

2
ln(1 - 2h), V 2h

0 =
x20

1 - 4h
+ 2h; V 0

0 =
x20

1 - 4h
 - 1

2
ln(1 - 4h).

Again we refer to the details in the arXiv version. Recalling 0 < h < 1
4 , one can easily

see that V 2h
0 < V h

0 < V 0
0 . This indicates that the information delay indeed decreases

the value function, consistent with our intuition.

Appendix A. In this appendix, we show heuristically how the stochastic max-
imum principle leads to the same structure as in section 2. We remark that this
approach has also been used by Hu and Tang (2017) recently for a mixture of de-
terministic and stochastic controls in a linear quadratic setting. To focus on the
main idea and simplify the presentation, we consider the following simple case with
deterministic controls \alpha \in \scrA 0:

V0 := sup
\alpha \in \scrA 0

J(\alpha ) := sup
\alpha \in \scrA 

\BbbE 
\Bigl[ 
g(X\alpha 

T ) +

\int T

0

f(t, \alpha t)dt
\Bigr] 
,

where X\alpha 
t = x+

\int t

0

b(s, \alpha s)ds+Wt,

(A.1)

where \scrA 0 is the set of all Borel measurable functions \alpha : [0, T ] \rightarrow A.
Since \scrA 0 is convex, namely, for \alpha , \alpha \prime \in \scrA , we have \alpha + \varepsilon (\alpha \prime  - \alpha ) \in \scrA for all

\varepsilon \in (0, 1). Fix \alpha , \alpha \prime \in \scrA and denote \Delta \alpha := \alpha \prime  - \alpha , \alpha \varepsilon := \alpha + \varepsilon \Delta \alpha . Assume b and f
are continuously differentiable in a and g is continuously differentiable in x. Then

\nabla Xt := lim
\varepsilon \rightarrow 0

X\alpha \varepsilon 

t  - X\alpha 
t

\varepsilon 
=

\int t

0

\partial ab(s, \alpha s)\Delta \alpha sds,

\nabla J := lim
\varepsilon \rightarrow 0

J(\alpha \varepsilon ) - J(\alpha )

\varepsilon 
= \BbbE 

\Bigl[ 
\partial xg(X

\alpha 
T )\nabla XT +

\int t

0

\partial af(s, \alpha s)\Delta \alpha sds
\Bigr] 
.

Let (\widetilde Y \alpha , \widetilde Z\alpha ) be the solution to the following BSDE:

\widetilde Y \alpha 
t = \partial xg(X

\alpha 
T ) - 

\int T

t

\widetilde Z\alpha 
s dWs.

We emphasize that (\widetilde Y \alpha , \widetilde Z\alpha ) depend on \alpha but not on \Delta \alpha . Then

\nabla J = \BbbE 
\Bigl[ \int T

t

\bigl[ \widetilde Y \alpha 
s \partial ab(s, \alpha s) + \partial af(s, \alpha s)

\bigr] 
\Delta \alpha sds

\Bigr] 
=

\int T

t

\Bigl[ 
\BbbE [\widetilde Y \alpha 

s ]\partial ab(s, \alpha s) + \partial af(s, \alpha s)
\Bigr] 
\Delta \alpha sds

\Bigr] 
,(A.2)

where the second equality relies on the fact that \alpha and \Delta \alpha are deterministic. Now
assume \alpha \ast \in \scrA 0 is an optimal argument, then \Delta J \leq 0 for all possible \Delta \alpha . Assume
further that \alpha \ast is an inner point of \scrA in the sense that one may choose \Delta \alpha in all
directions. Then

\BbbE [\widetilde Y \alpha \ast 

t ]\partial ab(t, \alpha 
\ast 
t ) + \partial af(t, \alpha 

\ast 
t ) = 0.(A.3)

Assume b and f are such that the above equation determines a function \widetilde I(t, x) such
that \alpha \ast 

t = \widetilde I(t,\BbbE [\widetilde Y \alpha \ast 

t ]). Then, denoting X\ast := X\alpha \ast 
, \widetilde Y \ast := \widetilde Y \alpha \ast 

, \widetilde Z\ast := \widetilde Z\alpha \ast 
, we obtain

the following coupled forward backward SDE (FBSDE):
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X\ast 
t = x+

\int t

0

b(s, \widetilde I(s,\BbbE [\widetilde Y \ast 
s ]))ds+Wt, \widetilde Y \ast 

t = \partial xg(X
\ast 
T ) - 

\int T

t

\widetilde Z\ast 
sdWs.(A.4)

We emphasize that the above FBSDE is of McKean--Vlasov type because the forward
one includes \BbbE [\widetilde Y \ast 

s ], which is determined by the law of \widetilde Y \ast 
s rather than the value

of Y \ast 
s . Assume the above FBSDE is well-posed and we have the decoupling field:\widetilde Y \ast 

t = \widetilde V (t,\scrL X\ast 
t
, X\ast 

t ), which without surprise involves the law of X\ast . Denote I(t, \mu ) :=\widetilde I\bigl( t,\BbbE [\widetilde V (t, \mu , \xi )]
\bigr) 
, where as usual \scrL \xi = \mu . Then \widetilde I(t,\BbbE [\widetilde Y \ast 

t ]) = I(t,\scrL X\ast 
t
), and thus

X\ast 
t = x+

\int t

0

b(s, I(s,\scrL X\ast 
s
))ds+Wt,(A.5)

which is consistent with (2.18).

Remark A.1. When the control \alpha t is \scrF t-measurable, the first equality of (A.2)
still holds but the second fails. Due to the arbitrariness of \Delta \alpha , in this case the first
order condition (A.3) becomes

\widetilde Y \alpha \ast 

t \partial ab(t, \alpha 
\ast 
t ) + \partial af(t, \alpha 

\ast 
t ) = 0.(A.6)

This leads to \alpha \ast 
t = \widetilde I(t, \widetilde Y \alpha \ast 

t ), which in turn leads to a standard FBSDE. These
are very standard arguments in the literature. Again, here due to our constraint of
deterministic control, the optimal control \alpha \ast 

t depends on \BbbE [\widetilde Y \ast 
t ] instead of \widetilde Y \ast 

t and
hence depends on the law of X\ast 

t .

Appendix B. In this appendix, we will show some mathematical details of the
discussion outlined in section 1.1. Specifically, we will describe some aspects of the
noisy observation case and how it compares to ours. The state variable X is governed
by the dynamics (2.1). For simplicity of notation, we assume d = 1 and \sigma \equiv 1 in what
follows. Then,

Xt,\xi ,\alpha 
s = \xi +

\int s

t

b(r,Xt,\xi ,\alpha 
r , \alpha r)dr +Ws  - Wt, s \in [t, T ],

J(t, p, \alpha ) := \BbbE p

\Biggl[ 
g(Xt,\xi ,\alpha 

T ) +

\int T

t

f(s,Xt,\xi ,\alpha 
s , \alpha s)ds

\Biggr] 
,

(B.1)

for \xi with probability density p. Differently from the previous control problem, the
agent observes a nonlinear noisy process given by

Ys =

\int s

t

h(r,Xt,\xi ,\alpha 
r )dr + \widetilde Ws,

where \widetilde W is a Brownian motion independent of W . Thus, an admissible control \alpha has
to be \BbbF Y -progressively measurable. We will denote this space by \widetilde \scrA [t,T ]. Hence, the
value function is given by

V (t, p) := sup
\alpha \in \widetilde \scrA [t,T ]

J(t, p, \alpha ).(B.2)

We will follow closely the approach of Bene\v s and Karatzas (1983). First we
introduce some notation. Given two functions \varphi ,\psi : \BbbR d \rightarrow \BbbR , denote \langle \varphi ,\psi \rangle :=\int 
\BbbR d \varphi (z)\psi (z)dz. Given a function F : L2(\BbbR )  - \rightarrow \BbbR , its derivative with respect to p is
a function \partial pF (p) : L

2(\BbbR )  - \rightarrow \BbbR , defined in the G\^ateaux sense,
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d

d\varepsilon 
F (p+ \varepsilon \varphi )

\bigm| \bigm| \bigm| \bigm| 
\varepsilon =0

= \langle \partial pF (p), \varphi \rangle ,

for appropriate test function \varphi : \BbbR d \rightarrow \BbbR . The second order derivative \partial ppF (p) is
defined similarly through \langle \partial ppF, [\varphi ,\psi ]\rangle and can be viewed as a bilinear mapping.
Moreover, \partial \mu and \partial p are related through the equation (see, e.g., Bensoussan, Chau,
and Yam (2017)): for measure \mu with density p,

\partial \mu F (\mu , x) = \partial x\partial pF (p)(x).(B.3)

Bene\v s and Karatzas (1983) show that the dynamics of a proper unnormalized
density of the distribution of X\alpha 

s given \scrF Y
s , denoted by \rho s, is given by

d\rho t,ps (x) = \scrL \ast \alpha s
s \rho t,ps (x)dt+ h(s, x)\rho t,ps (x)dYs,

with \rho t,pt = p, which is the unnormalized density of Xt, and

\scrL \ast a
s =

1

2
\partial xx  - b(s, x, a)\partial x  - \partial xb(s, x, a).

Moreover, one may write

J(t, p, \alpha ) = \BbbE 

\Biggl[ 
\langle g, \rho t,pT \rangle 
\langle 1, \rho t,pT \rangle 

+

\int T

t

\langle f(s, \cdot , \alpha s), \rho 
t,p
s \rangle 

\langle 1, \rho t,ps \rangle 
ds

\Biggr] 
.

Under certain conditions, V satisfies the following HJB equation (see Bene\v s and
Karatzas (1983, equations (2.14)--(2.15))) with terminal condition V (T, p) = \langle g, p\rangle :

\partial tV (t, p) +
1

2

\bigl\langle 
\partial ppV (t, p), [h(t, \cdot )p, h(t, \cdot )p]

\bigr\rangle 
(B.4)

+ sup
a\in A

\Bigl[ \bigl\langle 
\partial pV (t, p),\scrL \ast a

t p
\bigr\rangle 
+

\bigl\langle 
f(t, \cdot , a), p

\bigr\rangle \Bigr] 
= 0.

We would like to point out that the deterministic control problem studied in
section 2 is equivalent to the noisy observation control problem with h \equiv 0, i.e., the
pure noise case. Under this situation, we will now show that the master equation
(2.12) is the HJB equation (B.4), when restricted to those measures with density. In
fact, in this case, the HJB equation (B.4) becomes

\partial tV (t, p) + sup
a\in A

\Bigl[ \bigl\langle 
\partial pV (t, p),\scrL \ast a

t p
\bigr\rangle 
+

\bigl\langle 
f(t, \cdot , a), p

\bigr\rangle \Bigr] 
= 0.(B.5)

By using the integrating by parts formula, we have

\langle \partial pV (t, p), \partial xxp\rangle = \langle \partial xx\partial pV (t, p), p\rangle ;
\langle \partial pV (t, p), b(t, \cdot , a)\partial xp\rangle =  - 

\bigl\langle 
\partial x\partial pV (t, p)b(t, \cdot , a) + \partial pV (t, p)\partial xb(t, \cdot , a), p

\bigr\rangle 
.

Then, for measure \mu with density and by using (B.3),

\langle \partial pV (t, p),\scrL \ast a
t p\rangle =

\Bigl\langle 
\partial pV (t, p),

1

2
\partial xxp - b(t, \cdot , a)\partial xp - \partial xb(t, \cdot , a)p

\Bigr\rangle 
=

\Bigl\langle 1
2
\partial xx\partial pV (t, p) + b(t, \cdot , a)\partial x\partial pV (t, p), p

\Bigr\rangle 
=

\Bigl\langle 1
2
\partial x\partial \mu V (t, \mu ) + b(t, \cdot , a)\partial \mu V (t, \mu ), p

\Bigr\rangle 
.

Plugging this into (B.4) we obtain our master equation (2.12) immediately.



716 YURI F. SAPORITO AND JIANFENG ZHANG

REFERENCES

Y. Alekal, P. Brunovsky, D. Chyung, and E. Lee (1971), The quadratic problem for systems
with time delays, IEEE Trans. Automat. Control, 16, pp. 673--687.

F. Baghery and B. {\O}ksendal (2007), A maximum principle for stochastic control with partial
information, Stoch. Anal. Appl., 25, pp. 705--717.

E. Bandini, A. Cosso, M. Fuhrman, and H. Pham (2018), Randomization method and backward
SDEs for optimal ccontrol of partially observed path-dependent stochastic systems, Ann. Appl.
Probab., 28, pp. 1634--1678.

E. Bandini, A. Cosso, M. Fuhrman, and H. Pham (2019), Randomized filtering and Bellman
equation in Wasserstein space for partial observation control problem, Stochastic Process. Appl.,
129, pp. 674--711.

E. Bayraktar, A. Cosso, and H. Pham (2018), Randomized dynamic programming principle and
Feynman-Kac representation for optimal control of McKean-Vlasov dynamics, Trans. Amer.
Math. Soc., 370, pp. 2115--2160.

E. Bayraktar and Z. Zhou (2017), On an optimal stopping problem of an insider, Theory Probab.
Appl., 61, pp. 133--139.

V. Bene\v s and I. Karatzas (1983), On the relation of Zakai's and Mortensen's equation, SIAM J.
Control Optim., 21, pp. 472--489.

A. Bensoussan (1992), Stochastic Control of Partially Observable Systems, Cambridge University
Press, Cambridge, UK.

A. Bensoussan, M. H. M. Chau, and S. C. P. Yam (2015), Mean field Stackelberg games: Aggre-
gation of delayed instructions, SIAM J. Control Optim., 53, pp. 2237--2266.

A. Bensoussan, M. H. M. Chau, and S. C. P. Yam (2017), Linear-quadratic mean field Stackelberg
games with state and control delays, SIAM J. Control Optim., 55, pp. 2748--2781.

A. Bensoussan, J. Frehse, and S. C. P. Yam (2013), Mean Field Games and Mean Field Type
Control Theory, Springer Briefs Math., Springer, New York.

A. Bensoussan, J. Frehse, and S. C. P. Yam (2017), On the interpretation of the master equation,
Stoch. Proc. Appl., 127, pp. 2093--2137.

A. Bensoussan and S. C. P. Yam, Control problem on space of random variables and master
equation, ESAIM Control Optim. Calc. Var., to appear.

J.-M. Bismut, Partially observed diffusions and their control (1982), SIAM J. Control Optim., 20,
pp. 302--309.

R. Buckdahn, J. Li, S. Peng, and C. Rainer (2017), Mean-field stochastic differential equations
and associated PDEs, Ann. Probab., 45, pp. 824--878.

P. Caines, M. Huang, and R. Malhame (2006), Large population stochastic dynamic games:
Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun.
Inf. Syst., 6, pp. 221--252.

P. Cardaliaguet (2013), Notes on Mean Field Games (from P.-L. Lions lectures at College de
France), preprint, https://www.ceremade.dauphine.fr/\sim cardaliaguet/MFG100629.pdf.

P. Cardaliaguet, F. Delarue, J. M. Lasry, and P. L. Lions (2015), The Master Equation and
the Convergence Problem in Mean Field Games, preprint, arXiv:1509.02505.

R. Carmona and F. Delarue (2017a), Probabilistic Theory of Mean Field Games I: Mean Field
FBSDEs, Control, and Games, Springer, New York.

R. Carmona and F. Delarue (2017b), Probabilistic Theory of Mean Field Games II: Mean Field
Games with Common Noise and Master Equations, Springer, New York.

R. Carmona, J.-P. Fouque, S. M. Mousavi, and L.-H. Sun (2018), Systemic risk and stochastic
games with delay, J. Optim. Appl., 179, pp. 366--399.

J.-F. Chassagneux, D. Crisan, and F. Delarue (2014), A Probabilistic Approach to Classical
Solutions of the Master Equation for Large Population Equilibria, preprint, arXiv:1411.3009.

L. Chen and Z. Wu (2011), The quadratic problem for stochastic linear control systems with delay,
in Proceedings of the 30th Chinese Control Conference, pp. 1344--1349.

N. Christopeit (1980), Existence of Optimal Stochastic Controls under Partial Observation,
Probab. Theory Related Fields, 51, pp. 201--213.

B. Dupire (2009), Functional It\^o Calculus, http://ssrn.com/abstract=1435551.
N. El Karoui and X. Tan (2013), Capacities, Measurable Selection and Dynamic Programming.

Part I: Abstract Framework, preprint, arXiv:1310.3363.
I. Ekren, N. Touzi, and J. Zhang (2016), Viscosity solutions of fully nonlinear parabolic path

dependent PDEs: Part I, Ann. Probab., 44, pp. 1212--1253.
W. Fleming (1980), Measure-valued processes in the control of partially-observable stochastic sys-

tems, Appl. Math. Optim., 6, pp. 271--285.

https://www.ceremade.dauphine.fr/~cardaliaguet/MFG100629.pdf
https://arxiv.org/abs/1509.02505
https://arxiv.org/abs/1411.3009
http://ssrn.com/abstract=1435551
https://arxiv.org/abs/1310.3363


STOCHASTIC CONTROL WITH DELAYED INFORMATION 717

W. Fleming (1982), Nonlinear semigroup for controlled partially observed diffusions, SIAM J. Con-
trol Optim., 20, pp. 286--301.

W. Fleming and E. Pardoux (1982), Optimal control for partially observed diffusions, SIAM J.
Control Optim., 20, pp. 261--285.

W. Gangbo and A. Swiech (2015), Existence of a solution to an equation arising from the theory
of mean field games, J. Differential Equations, 259, pp. 6573--6643.

F. Gozzi and C. Marinelli (2006), Stochastic optimal control of delay equations arising in adver-
tising models, in Stochastic Partial Differential Equations and Applications VII, G. D. Prato
and L. Tubaro, eds., Chapman \& Hall/CRC, Press, Boca Raton, FL, pp. 133--148.

F. Gozzi and F. Masiero (2017), Stochastic optimal control with delay in the control I: Solving
solution through partial smoothing, SIAM J. Control Optim., 55, pp. 2981--3012.

Y. Hu and S. Tang (2017), Mixed Deterministic and Random Optimal Control of Linear Stochastic
Systems with Quadratic Costs, preprint, arXiv:1708.06547.

T. Ichiba and S. M. Mousavi (2017), Option Pricing with Delayed Information, preprint,
arXiv:1707.01600.

J. Larsy and P. Lions, Mean field games (2007), Jpn. J. Math., 2, pp. 229--260.
R. Mortensen (1996), Stochastic optimal control with noisy observations, Internat. J. Control., 4,

pp. 455--464.
H. Pham and X. Wei (2018), Bellman equation and viscosity solutions for mean-field stochastic

control problem, ESAIM Control Optim. Calc. Var., 24, pp. 437--461.
Y. F. Saporito (2017), Stochastic Control and Differential Games with Path-Dependent Controls,

preprint, arXiv:1611.00589.
Y. F. Saporito and J. Zhang (2017), Stochastic Control with Delayed Information and Related

Nonlinear Master Equation, arXiv:1710.05609.
S. Tang (1998), The maximum principle for partially observed optimal control of stochastic differ-

ential equations, SIAM J. Control Optim., 36, pp. 1596--1617.
C. Wu and J. Zhang (2017), An Elementary Proof for the Structure of Wasserstein Derivatives,

preprint, arXiv:1705.08046.
C. Wu and J. Zhang (2018), Viscosity Solutions to Parabolic Master Equations and McKean-Vlasov

SDEs with Closed-Loop Controls, preprint, arXiv:1805.02639.
J. Zhang (2017), Backward Stochastic Differential Equations---From Linear to Fully Nonlinear The-

ory, Springer, New York.

https://arxiv.org/abs/1708.06547
https://arxiv.org/abs/1707.01600
https://arxiv.org/abs/1611.00589
https://arxiv.org/abs/1710.05609
https://arxiv.org/abs/1705.08046
https://arxiv.org/abs/1805.02639

	Introduction
	Comparison to similar control problems and methods

	The deterministic control problem
	The control problem
	The master equation
	The optimal control

	Classical solution of a nonlinear master equation
	An example

	The general case
	Strong formulation with closed loop controls
	Weak formulation in path-dependent setting
	The control problem in weak formulation
	The linear quadratic example

	Appendix A
	Appendix B

