COMPARISON OF VISCOSITY SOLUTIONS OF SEMILINEAR PATH-DEPENDENT PDEs*

ZHENJIE REN ${ }^{\dagger}$, NIZAR TOUZI ${ }^{\ddagger}$, AND JIANFENG ZHANG§

Abstract

This paper provides a probabilistic proof of the comparison result for viscosity solutions of path-dependent semilinear PDEs. We consider the notion of viscosity solutions introduced in [I. Ekren, et al., Ann. Probab., 42 (2014), pp. 204-236], which considers as test functions all those smooth processes which are tangent in mean. When restricted to the Markovian case, this definition induces a larger set of test functions and reduces to the notion of stochastic viscosity solutions analyzed in [E. Bayraktar and M. Sirbu, Proc. Amer. Math. Soc., 140 (2012), pp. 3645-3654; SIAM J. Control Optim., 51 (2013), pp. 4274-4294]. Our main result takes advantage of this enlargement of the test functions and provides an easier proof of comparison. This is most remarkable in the context of the linear path-dependent heat equation. As a key ingredient for our methodology, we introduce a notion of punctual differentiation, similar to the corresponding concept in the standard viscosity solutions [L. A. Caffarelli and X. Cabre, Amer. Math. Soc. Colloq. Publ., 43, AMS, Providence, RI, 1995], and we prove that semimartingales are almost everywhere punctually differentiable. This smoothness result can be viewed as the counterpart of the Aleksandroff smoothness result for convex functions. A similar comparison result was established earlier in [I. Ekren et al., Ann. Probab., 42 (2014), pp. 204-236]. The result of this paper is more general and, more importantly, the arguments that we develop do not rely on any representation of the solution.

Key words. viscosity solutions, optimal stopping, stochastic control, path-dependent PDEs
AMS subject classifications. 35D40, 35K10, 60H10, 60 H 30
DOI. 10.1137/19M1239404

1. Introduction. This paper provides a purely probabilistic wellposedness result for the semilinear path-dependent partial differential equation:

$$
\begin{equation*}
-\partial_{t} u-\frac{1}{2} \operatorname{Tr}\left[\sigma_{t}(\omega) \sigma_{t}^{\mathrm{T}}(\omega) \partial_{\omega \omega}^{2} u\right]-F_{t}\left(\omega, u_{t}(\omega), \sigma_{t}^{T}(\omega) \partial_{\omega} u_{t}(\omega)\right)=0 \quad \text { on } \quad[0, T) \tag{1.1}
\end{equation*}
$$

where $T>0$ is a given terminal time, $\omega \in \Omega$ is a continuous path from $[0, T]$ to \mathbb{R}^{d} starting from the origin, the diffusion coefficient σ is a mapping from $[0, T] \times \Omega$ to $\mathbb{R}^{d \times d}$ with σ^{T} denoting its transpose, and the nonlinearity F is a mapping from $(t, \omega, y, z) \in$ $[0, T] \times \Omega \times \mathbb{R} \times \mathbb{R}^{d}$ to \mathbb{R}. The unknown process $\left\{u_{t}(\omega), t \in[0, T]\right\}$ is required to be continuous in (t, ω). In the smooth case, the derivatives $\partial_{t} u, \partial_{\omega} u$, and $\partial_{\omega \omega}^{2} u$ are defined in accordance with the functional Itô formula introduced by Dupire [10] and further developed by Cont and Fournié $[5,6]$ (see also [23, 26, 32, 46]). We refer to Peng and Wang [37] for the study of smooth solutions of semilinear PPDEs. However, as is shown in the previous literature $[12,14,15]$, such a smoothness requirement is rather exceptional, even in the case of the path-dependent heat equation, that is, $\sigma=I_{d}$ and $F \equiv 0$.

[^0]Our objective is to continue the development of the theory of viscosity solutions in this context. Viscosity solutions in finite-dimensional spaces, which are locally compact, were introduced by Crandall and Lions [8]; we refer to [9] and [19] for an overview. Extensions to infinite-dimensional spaces with special structure have also been established by Lions [27, 28, 29] and Swiech [48]. However, these extensions are not suitable for our purpose due to the following two reasons. First, the path space Ω is a Banach space when endowed with the \mathbb{L}^{∞}-norm, and not a Hilbert space as assumed in the above literature. Second, the adaptedness requirement on the functions $u(t, \omega)$ is a special feature of our problem that is not addressed in the infinite-dimensional PDE literature.

Nonlinear path-dependent PDEs appear in various applications as the stochastic control of non-Markovian systems [14] and the corresponding stochastic differential games [38]. They are also intimately related to the backward stochastic differential equations introduced by Pardoux and Peng [33] and their extension to the second order in $[4,47]$. Loosely speaking, backward SDEs can be viewed as Sobolev solutions of path-dependent PDEs, and our goal is to develop the alternative notion of viscosity solutions which is well-known to provide a suitable wellposedness and stability theory in the Markovian case $u(t, \omega)=u\left(t, \omega_{t}\right)$. We also refer to the recent applications in [20] to establish a representation of the solution of a class of equations (1.1) in terms of branching diffusions, and to [31] for the small time large deviation results of path-dependent diffusions.

The notion of viscosity solutions studied in this paper, as introduced in [12, $14,15]$, consider smooth test processes which are tangent in mean, with respect to an appropriate class of probability measures, to the process of interest. This is in contrast with the Crandall and Lions [8] standard notion of viscosity solutions in finite-dimensional spaces where the test functions are tangent in the pointwise sense. In particular, when restricted to the Markovian case, our notion of viscosity solutions allows for a larger set of test functions, and in the case of the heat equation (or more general linear equation) case it reduces to the notion of stochastic viscosity solutions analyzed by Bayraktar and Sirbu [1, 2]. Consequently, the uniqueness may be easier with our notion, while existence is more restricted and may become harder. However, it was proved in the previous papers $[12,14,15]$ that existence still holds true under this notion of viscosity solutions for a large class of equations. In particular, in the present semilinear case, the solution of backward SDEs provides a natural probabilistic representation for viscosity solution of path-dependent PDEs and thus extends the nonlinear Feynman-Kac formula of Pardoux and Peng [34] to the pathdependent case.

The main contribution of this paper is to provide a probabilistic proof of the comparison result for the path-dependent equation (1.1) which, in contrast with [12], does not rely on any representation of the solution. We also observe that the present comparison result is stronger than that of [12] as it holds in a larger class of processes and for a random and possibly degenerate diffusion coefficient σ (in [12], only $\sigma=I_{d}$ is considered). Our proof bypasses completely the delicate and deep Crandall and Ishii lemma (see Lemma 3.2 in [9]). In particular, our proof of comparison result for the path-dependent heat equation is elementary and does not require any penalization to address. (The standard comparison result for second order PDEs applies to a bounded domain, and the extension to an unbounded domain involves a penalization using the growth conditions.) In particular, the wellposedness of the path-dependent heat equation is a direct consequence of the equivalence between the viscosity subsolution and the submartingale properties.

Our arguments are inspired by the work of Caffarelli and Cabre [3]. By adapting the notion of punctual differentiation to our path-dependent framework, we prove an important smoothness result. Namely, we show that semimartingales are punctually differentiable Leb $\otimes \mathbb{P}$-a.e. This result can be viewed as the analogue of the Aleksandroff regularity result for convex functions. In the present semilinear case, an important property of our notion of viscosity solutions is that viscosity subsolutions (resp., supersolutions) are submartingales (resp., supermartingales) up to the addition of some absolutely continuous process. In particular, viscosity subsolutions and supersolutions are punctually differentiable Leb $\otimes \mathbb{P}$-a.e.

We shall remark that, while the framework of fully nonlinear path-dependent PDEs in $[14,15]$ covers the random coefficient σ here, their comparison result excludes this case due to their heavy reliance on the locally uniform smooth approximation of the viscosity solution. The definition of viscosity solutions here is slightly different from that in $[14,15]$ by considering even more test functions. This enlargement of test function class allows us to establish the punctual differentiation of viscosity solutions, which does not require the smooth approximation to be locally uniform. On a different perspective, the class of probability measures used to determine the test functions is nondominated in $[14,15]$, and consequently the corresponding convergence theorem requires very strong regularity of the involved processes. It is still unclear how to obtain the punctual differentiation of viscosity solutions, even for the present semilinear PPDE (1.1), if we use the nondominated class of probability measures as in [14, 15].

We note that the theory of PPDEs has received very strong attention in recent years. Lukoyanov [30] provided a well-posedness result for a viscosity solution of a first order path-dependent Hamilton-Jacobi equation, by using compactness arguments. Peng and Song [36] proposed a notion of a Sobolev solution of the path-dependent HJB equation as a reinterpretation of their G-BSDE [21], a similar notion to the second order BSDE of [47]. Cosso and Russo [7] introduced a notion of a strong viscosity solution as a limit of some appropriate classical solution in their sense. In a recent work, Ekren and Zhang [16] studied degenerate fully nonlinear PPDEs by restricting to solutions with appropriate piecewise Markovian structure. The notion of a viscosity solution studied in this paper was successfully developed in Ekren [11] for obstacle fully nonlinear PPDEs, in Keller [25] for semilinear nonlocal PPDEs, in Ren [39] for elliptic PPDEs, in Ren [40] for the existence by Perron's method, and in Zhang and Zhuo [49] and Ren and Tan [42] for the convergence of monotone approximation schemes for PPDEs.

We also emphasize that some results and arguments of this paper have been included in our survey paper [43], which was written subsequently to the first version of this paper. So the priority must go to the present paper. Moreover, in our very recent work [44], we have developed a new comparison result for degenerate fully nonlinear PPDEs with a uniform continuity condition on the nonlinearity (which is not needed in the present paper). The last result is obtained by a completely different method based on convenient approximation of the viscosity semisolutions. In particular, [44] does not make use of the notion of punctual differentiability which, as stated above, is still not understood in the nondominated framework.

Finally, the main wellposedness result of this paper states that the unique viscosity solution coincides with the unique solution of the corresponding backward SDE, which can be viewed as a Sobolev solution of the PPDE. This may seem to represent a strong argument against our notion of viscosity solutions. However, in the fully nonlinear case, we believe that viscosity solutions have more potential than Sobolev solutions, similar to the well-known situation in the PDE setting. We believe that the
results of this paper represent important steps toward a good understanding of viscosity solutions and the extension to the fully nonlinear case. In particular the general punctual differentiability result of this paper has a theoretical interest on its own.

The rest of the paper is organized as follows. Section 2 introduces the set up of the problem, in particular the class of probability measures we will use. The notion of viscosity solution is defined in section 3. In particular, similar to the Crandall and Lions [8] standard notion of viscosity solutions, we show that our notion for path-dependent PDEs can be formulated equivalently in terms of the corresponding semijets. Section 4 is devoted to the main result of the paper: the comparison result of viscosity solutions of semilinear path-dependent PDEs. Then, section 5 proves briefly the existence of viscosity solutions by using the wellposedness of corresponding BSDEs. Finally section 6 completes the technical proofs.
2. Preliminaries. Throughout this paper let $T>0$ be a given finite maturity, $\Omega:=\left\{\omega \in C\left([0, T] ; \mathbb{R}^{d}\right): \omega_{0}=0\right\}$ be the set of continuous paths starting from the origin, and $\Theta:=[0, T] \times \Omega$. We denote by B the canonical process on $\Omega, \mathbb{F}=\left\{\mathcal{F}_{t}, 0 \leq\right.$ $t \leq T\}$ the canonical filtration, \mathcal{T} the set of all \mathbb{F}-stopping times taking values in $[0, T]$, and \mathbb{P}_{0} the Wiener measure on Ω. Moreover, let \mathcal{T}^{+}denote the subset of $\tau \in \mathcal{T}$ taking values in $(0, T]$, and for $\mathrm{H} \in \mathcal{T}$, let \mathcal{T}_{H} and $\mathcal{T}_{\mathrm{H}}^{+}$be the subset of $\tau \in \mathcal{T}$ taking values in $[0, \mathrm{H}]$ and $(0, \mathrm{H}]$, respectively.

Following Dupire [10], we introduce the following pseudodistance on Θ :

$$
\begin{aligned}
\|\omega\|_{t} & :=\sup _{0 \leq s \leq t}\left|\omega_{s}\right|, \quad d\left((t, \omega),\left(t^{\prime}, \omega^{\prime}\right)\right) \\
& :=\left|t-t^{\prime}\right|+\left\|\omega_{t \wedge}-\omega_{t^{\prime} \wedge}^{\prime}\right\|_{T} \text { for all }(t, \omega),\left(t^{\prime}, \omega^{\prime}\right) \in \Theta
\end{aligned}
$$

We say a process valued in some metric space E is in $C^{0}(\Theta, E)$ whenever it is continuous with respect to d. Similarly, $\mathbb{L}^{0}\left(\mathcal{F}_{t}, E\right)$ and $\mathbb{L}^{0}(\mathbb{F}, E)$ denote the set of $\mathcal{F}_{t^{-}}$ measurable random variables and \mathbb{F}-progressively measurable processes, respectively. We remark that $C^{0}(\Theta, E) \subset \mathbb{L}^{0}(\mathbb{F}, E)$, and when $E=\mathbb{R}$, we shall omit it in this notation.

For any $A \in \mathcal{F}_{T}, \xi \in \mathbb{L}^{0}\left(\mathcal{F}_{T}, E\right), X \in \mathbb{L}^{0}(\mathbb{F}, E)$, and $(t, \omega) \in[0, T] \times \Omega$, define
$A^{t, \omega}:=\left\{\omega^{\prime} \in \Omega: \omega \otimes_{t} \omega^{\prime} \in A\right\}, \quad \xi^{t, \omega}\left(\omega^{\prime}\right):=\xi\left(\omega \otimes_{t} \omega^{\prime}\right), \quad X_{s}^{t, \omega}\left(\omega^{\prime}\right):=X_{t+s}\left(\omega \otimes_{t} \omega^{\prime}\right)$ for all $s \in[0, T-t], \omega^{\prime} \in \Omega$, where $\left(\omega \otimes_{t} \omega^{\prime}\right)_{r}:=\omega_{r} \mathbf{1}_{[0, t]}(r)+\left(\omega_{t}+\omega_{r-t}^{\prime}\right) \mathbf{1}_{(t, T]}(r)$,

$$
0 \leq r \leq T
$$

Following the standard arguments of monotone class, we have the following simple results.

Lemma 2.1. Let $0 \leq t \leq s \leq T$ and $\omega \in \Omega$. Then $A^{t, \omega} \in \mathcal{F}_{s-t}$ for all $A \in \mathcal{F}_{s}$, $\xi^{t, \omega} \in \mathbb{L}^{0}\left(\mathcal{F}_{s-t}, E\right)$ for all $\xi \in \mathbb{L}^{0}\left(\mathcal{F}_{s}, E\right)$, $X^{t, \omega} \in \mathbb{L}^{0}(\mathbb{F}, E)$ for all $X \in \mathbb{L}^{0}(\mathbb{F}, E)$, and $\tau^{t, \omega}-t \in \mathcal{T}_{s-t}$ for all $\tau \in \mathcal{T}_{s}$.

To study the semilinear PPDE (1.1), we need to introduce the diffusion coefficient σ. Throughout the paper, the following assumption will always be in force.

Assumption 2.2. The diffusion coefficient $\sigma:(t, \omega) \in \Theta \rightarrow \sigma_{t}(\omega) \in \mathbb{R}^{d \times d}$ is continuous in t, and Lipschitz continuous in ω uniformly in t, i.e.,

$$
\left|\sigma_{t}(\omega)-\sigma_{t}\left(\omega^{\prime}\right)\right| \leq C\left\|\omega-\omega^{\prime}\right\|_{t} \text { for all } t \in[0, T], \omega, \omega^{\prime} \in \Omega, \text { for some } C \geq 0
$$

Remark 2.3. Assumption 2.2 implies that σ is continuous in (t, ω), and thus \mathbb{F} adapted. Also, we allow the parabolic PPDE (1.1) to be degenerate.

Our paper builds on the following result.
Lemma 2.4. For any bounded $\lambda \in \mathbb{L}^{0}\left(\mathbb{F}, \mathbb{R}^{d}\right)$, the following $S D E$ has a unique weak solution:

$$
\begin{equation*}
d X_{t}=\sigma\left(t, X_{.}\right)\left[d W_{t}+\lambda_{t}(X .) d t\right], \quad X_{0}=0 \tag{2.1}
\end{equation*}
$$

where W is a Brownian motion. In the special case that $\lambda=0$, the SDE has a unique strong solution. The solution will be denoted as $\mathbb{P}_{\sigma, \lambda}$, and $\mathbb{P}_{\sigma}:=\mathbb{P}_{\sigma, 0}$ when $\lambda=0$.

Proof. We first construct the solution by using the Girsanov transformation. First, thanks to the Lipschitz continuity of σ, let X^{σ} be the unique (strong) solution of the SDE

$$
\begin{align*}
X_{.}^{\sigma} & =\int_{0} \sigma_{s}\left(X_{.}^{\sigma}\right) d B_{s} \quad \mathbb{P}_{0} \text {-a.s. and denote } \tag{2.2}\\
B^{\lambda} & :=B-\int_{0} \lambda_{t}\left(X_{.}^{\sigma}\right) d t, \quad \mathbb{P}_{\sigma, \lambda}:=\mathbb{P}_{\lambda} \circ\left(X^{\sigma}\right)^{-1}
\end{align*}
$$

where $\frac{d \mathbb{P}_{\lambda}}{d \mathbb{P}_{0}}:=e^{\int_{0}^{T} \lambda_{t}\left(X^{\sigma}\right) \cdot d B_{t}-\frac{1}{2} \int_{0}^{T}\left|\lambda_{t}\left(X_{\cdot}^{\sigma}\right)\right|^{2} d t}$. Then $\left(B^{\lambda}, X^{\sigma}, \mathbb{P}_{\sigma, \lambda}\right)$ is a weak solution of (2.1).

For the uniqueness, we follow the arguments in [24, Proposition 5.3.10]. Let $\left(W^{i}, X^{i}, \mathbb{P}^{i}\right), i=1,2$, be two weak solutions to $\operatorname{SDE}(2.1)$, namely, W^{i} is a \mathbb{P}^{i} Brownian motion and

$$
d X_{t}^{i}=\sigma\left(t, X_{.}^{i}\right)\left[d W_{t}^{i}+\lambda_{t}\left(X_{.}^{i}\right) d t\right], \quad X_{0}^{i}=0, \quad \mathbb{P}^{i} \text {-a.s. }
$$

Denote $\tilde{W}_{t}^{i}:=\int_{0}^{t}\left[d W_{s}^{i}+\lambda_{s}\left(X_{\cdot}^{i}\right) d s\right], \frac{d \tilde{\mathbb{P}}^{i}}{d \mathbb{P}^{i}}:=M_{T}^{i}:=e^{-\int_{0}^{T} \lambda_{t}\left(X_{\cdot}^{i}\right) \cdot d W_{t}^{i}-\frac{1}{2} \int_{0}^{T}\left|\lambda_{t}\left(X_{\cdot}^{i}\right)\right|^{2} d t .}$ Then \tilde{W}^{i} is a $\tilde{\mathbb{P}}^{i}$-Brownian motion, and $X_{t}^{i}=\int_{0}^{t} \sigma\left(s, X^{i}\right) d \tilde{W}_{s}^{i}, \tilde{\mathbb{P}}^{i}$-a.s. By the Lipschitz continuity of σ, the $\tilde{\mathbb{P}}^{1}$-distribution of $\left(\tilde{W}^{1}, X^{1}\right)$ is equal to the $\tilde{\mathbb{P}}^{2}$-distribution of $\left(\tilde{W}^{2}, X^{2}\right)$. Note that W^{i} and M_{T}^{i} are functions of $\left(\tilde{W}^{i}, X^{i}\right)$; we see that the $\tilde{\mathbb{P}}^{1}$ distribution of $\left(\tilde{W}^{1}, X^{1}, W^{1}, M_{T}^{1}\right)$ is equal to the $\tilde{\mathbb{P}}^{2}$-distribution of $\left(\tilde{W}^{2}, X^{2}, W^{2}, M_{T}^{2}\right)$. Now it follows from $d \mathbb{P}^{i}=\left(M_{T}^{i}\right)^{-1} d \tilde{\mathbb{P}}^{i}$ that the \mathbb{P}^{1}-distribution of X^{1} is equal to the \mathbb{P}^{2}-distribution of X^{2}.

Finally, when $\lambda=0$, since σ is uniformly Lipschitz continuous in ω, both the (strong) existence and uniqueness are obvious.

For $\tau \in \mathcal{T}$ and $\omega \in \Omega$, let $\mathbb{P}^{\tau, \omega}$ be an regular conditional probability distribution (r.c.p.d.) of the probability measure \mathbb{P} conditional to \mathcal{F}_{τ}.

Lemma 2.5. Let M be a \mathbb{P}-martingale with continuous paths, \mathbb{P}-a.s. Then, for any $\tau \in \mathcal{T}$,

$$
\begin{equation*}
\mathbb{P}\left[\Omega_{\tau}^{0}\right]=1, \text { where } \Omega_{\tau}^{0}:=\left\{\omega: M^{\tau, \omega} \text { is a } \mathbb{P}^{\tau, \omega} \text {-martingale }\right\} . \tag{2.3}
\end{equation*}
$$

Proof. By standard approximation arguments, it is sufficient to prove that, for any $0 \leq t_{1}<t_{2} \leq T$ and any sequence $0 \leq s_{1} \leq \cdots \leq s_{n} \leq t_{1}$ such that $\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{Q}^{n}$, it holds that

$$
\begin{equation*}
\mathbb{E}^{\mathbb{P}^{\tau, \omega}}\left[\left(M_{t_{2}}^{\tau, \omega}-M_{t_{1}}^{\tau, \omega}\right) \varphi\left(B_{s_{1}}, \ldots, B_{s_{n}}\right)\right]=0 \text { for all } \varphi \in C_{b}\left(\mathbb{R}^{n}\right) \text { and } \omega \in \Omega_{\tau}^{n} \tag{2.4}
\end{equation*}
$$

for some Ω_{τ}^{n}, such that $\mathbb{P}\left[\Omega_{\tau}^{n}\right]=1$. Since $C_{b}\left(\mathbb{R}^{n}\right)$ is a separable space, there exists a countable set $\left(\psi_{k}^{n}\right)_{k \geq 1}$ dense in $C_{b}\left(\mathbb{R}^{n}\right)$. By the tower property, we may find $\Omega_{k}^{n} \subset \Omega$ such that

$$
\mathbb{E}^{\mathbb{P}^{\tau, \omega}}\left[\left(M_{t_{2}}^{\tau, \omega}-M_{t_{1}}^{\tau, \omega}\right) \psi_{k}^{n}\left(B_{s_{1}}, \ldots, B_{s_{n}}\right)\right]=0 \text { for all } \omega \in \Omega_{k}^{n}, \quad \mathbb{P}\left[\Omega_{k}^{n}\right]=1
$$

Then (2.4) holds on $\Omega_{\tau}^{n}:=\cap_{k \geq 1} \Omega_{k}^{n}$.

For all $\tau \in \mathcal{T}$ and $\omega \in \Omega$, it is clear that $\sigma^{\tau, \omega}$ satisfies Assumption 2.2. Then, for any bounded $\lambda \in \mathbb{L}^{0}\left(\mathbb{F}, \mathbb{R}^{d}\right)$, we may define from Lemma 2.4 a probability measure $\mathbb{P}_{\sigma^{\tau, \omega}, \lambda^{\tau, \omega}}$. The next result compares this probability measure to the r.c.p.d. $\mathbb{P}_{\sigma, \lambda}^{\tau, \omega}$.

Proposition 2.6. Let $\lambda \in \mathbb{L}^{0}\left(\mathbb{F}, \mathbb{R}^{d}\right)$ be bounded and $\tau \in \mathcal{T}$. Then for $\mathbb{P}_{\sigma, \lambda^{-}}$ a.e. $\omega, \mathbb{P}_{\sigma, \lambda}^{\tau, \omega}=\mathbb{P}_{\sigma^{\tau, \omega}, \lambda^{\tau, \omega}}$, namely, $\mathbb{E}^{\mathbb{P}_{\sigma, \lambda}^{\tau, \omega}}[\xi]=\mathbb{E}^{\mathbb{P}_{\sigma, \omega}{ }^{\tau, \omega}, \lambda^{\tau, \omega}}[\xi]$, for any bounded $\xi \in$ $\mathbb{L}^{0}\left(\mathcal{F}_{T-\tau(\omega)}\right)$.

Proof. First, denote $M_{t}:=B_{t}-\int_{0}^{t}(\sigma \lambda)_{s}(B) d$.$s and N_{t}:=M_{t} M_{t}^{T}-\int_{0}^{t}\left(\sigma \sigma^{T}\right)_{s}(B) d s.$. By the uniqueness of weak solution of $\operatorname{SDE}(2.1)$ we see that a probability measure \mathbb{P} is equal to $\mathbb{P}_{\sigma, \lambda}$ if and only if both M and N are \mathbb{P}-martingales. Note that M and N are continuous. By Lemma 2.5 , for $\mathbb{P}_{\sigma, \lambda}$-a.e. ω, it holds that $M_{t}^{\tau, \omega}=B_{t}-\int_{0}^{t}(\sigma \lambda)_{s}^{\tau, \omega}(B) d$. and $N_{t}^{\tau, \omega}=\left(M_{t} M_{t}^{T}\right)_{t}^{\tau, \omega}-\int_{0}^{t}\left(\sigma \sigma^{T}\right)_{s}^{\tau, \omega}(B) d$.$s are \mathbb{P}_{\sigma, \lambda}^{\tau, \omega}$-martingales, which implies that $\mathbb{P}_{\sigma, \lambda}^{\tau, \omega}=\mathbb{P}_{\sigma^{\tau, \omega}, \lambda^{\tau, \omega}}$.

We now introduce an important family of probability measures on Ω : for $L \geq 0$ and $(t, \omega) \in \Theta$,

$$
\begin{align*}
\mathcal{P}_{L}^{t, \omega} & :=\left\{\mathbb{P}_{\sigma^{t, \omega}, \lambda}: \lambda \in \mathbb{L}_{L}(\mathbb{F})\right\}, \quad \text { where } \tag{2.5}\\
\mathbb{L}_{L}(\mathbb{F}) & :=\left\{\lambda \in \mathbb{L}^{0}(\mathbb{F}):|\lambda| \leq L\right\}, \quad \text { and } \quad \mathcal{P}_{L}:=\mathcal{P}_{L}^{0,0}
\end{align*}
$$

and the associated nonlinear expectations

$$
\begin{equation*}
\overline{\mathcal{E}}_{L}^{t, \omega}:=\sup _{\mathbb{P} \in \mathcal{P}_{L}^{t, \omega}} \mathbb{E}^{\mathbb{P}}, \quad \underline{\mathcal{E}}_{L}^{t, \omega}:=\inf _{\mathbb{P} \in \mathcal{P}_{L}^{t, \omega}} \mathbb{E}^{\mathbb{P}}, \quad \text { and } \quad \overline{\mathcal{E}}_{L}:=\overline{\mathcal{E}}_{L}^{0,0}, \quad \underline{\mathcal{E}}_{L}:=\underline{\mathcal{E}}_{L}^{0,0} \tag{2.6}
\end{equation*}
$$

We note that the family \mathcal{P}_{L} depends on σ, which is fixed throughout the paper. For notational simplicity, we do not indicate this dependence explicitly. When $\sigma=I_{d}$, the nonlinear expectation $\overline{\mathcal{E}}_{L}$ is exactly the g-expectation of Peng [35] with $g=L|z|$.

Unlike $[13,14,15]$, where mutually singular measures are considered for fully nonlinear PPDEs, here all measures $\mathbb{P} \in \cup_{L>0} \mathcal{P}_{L}$ are equivalent to \mathbb{P}_{σ}. In particular, for $\lambda \in \mathbb{L}_{L}(\mathbb{F})$ and $\xi \in \mathbb{L}^{0}\left(\mathcal{F}_{T}\right)$, we have, using the notation in (2.2),

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}_{\sigma, \lambda}}[|\xi|] & =\mathbb{E}^{\mathbb{P}_{\lambda}}\left[\left|\xi\left(X^{\sigma}\right)\right|\right]=\mathbb{E}^{\mathbb{P}_{0}}\left[M_{T}^{\lambda}\left|\xi\left(X^{\sigma}\right)\right|\right] \\
& \leq C\left(\mathbb{E}^{\mathbb{P}_{0}}\left[\left|\xi\left(X^{\sigma}\right)\right|^{1+\varepsilon}\right]\right)^{\frac{1}{1+\varepsilon}}=C\left(\mathbb{E}^{\mathbb{P}_{\sigma}}\left[|\xi|^{1+\varepsilon}\right]\right)^{\frac{1}{1+\varepsilon}}
\end{aligned}
$$

for some constant $C=C_{L, \varepsilon}$. That is,

$$
\begin{equation*}
\overline{\mathcal{E}}_{L}[|\xi|] \leq C_{L, \varepsilon}\left(\mathbb{E}^{\mathbb{P}_{\sigma}}\left[|\xi|^{1+\varepsilon}\right]\right)^{\frac{1}{1+\varepsilon}} \tag{2.7}
\end{equation*}
$$

A direct consequence of this is the following convergence theorem, which makes some analysis in this paper much easier than that in [13, 14, 15].

Proposition 2.7. Assume $\xi_{n}, \xi \in \mathbb{L}^{0}\left(\mathcal{F}_{T}\right), \xi_{n} \rightarrow \xi$ in probability \mathbb{P}_{σ}, and $\sup _{n} \mathbb{E}^{\mathbb{P} \sigma}\left[\left|\xi_{n}\right|^{1+\varepsilon}\right]<\infty$ for some $\varepsilon>0$. Then $\lim _{n \rightarrow \infty} \overline{\mathcal{E}}_{L}\left[\left|\xi_{n}-\xi\right|\right]=0$ for all $L>0$.
3. Viscosity solutions of semilinear path-dependent PDEs. The objective of this paper is to study the semilinear path-dependent PDE (1.1), which we rewrite as

$$
\begin{gather*}
-\mathcal{L} u_{t}(\omega)-F\left(t, \omega, u_{t}(\omega), \sigma_{t}^{T}(\omega) \partial_{\omega} u_{t}(\omega)\right)=0, \quad(t, \omega) \in[0, T) \times \Omega \tag{3.1}\\
\text { where } \mathcal{L} u_{t}(\omega):=\partial_{t} u_{t}(\omega)+\frac{1}{2} \operatorname{Tr}\left[\sigma_{t}(\omega) \sigma_{t}^{\mathrm{T}}(\omega) \partial_{\omega \omega}^{2} u_{t}(\omega)\right]
\end{gather*}
$$

and the nonlinearity $F:(t, \omega, y, z) \in \Theta \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is \mathbb{F}-progressively measurable in all variables.

Assumption 3.1. (i) F is uniformly L_{0}-Lipschitz continuous in (y, z) for some $L_{0} \geq 0$, i.e.,

$$
\left|F(\cdot, y, z)-F\left(\cdot, y^{\prime}, z^{\prime}\right)\right| \leq L_{0}\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right) \quad \text { for all } \quad y, y^{\prime} \in \mathbb{R}, z, z^{\prime} \in \mathbb{R}^{d}
$$

(ii) There exists $F^{0} \in C^{0}(\Theta)$ such that $|F(\cdot, 0,0)| \leq F^{0}$.

Remark 3.2. Unlike the papers on the general fully nonlinear cases (see, e.g., $[15,41,44]$), we do not impose any regularity assumption on the coefficients with respect to the variable (t, ω), thanks to the particular argument we develop here for the semilinear context.
3.1. Definition via test functions. Similar to [14], we introduce the following notion of smoothness of processes through Dupire's functional Itô formula. Let \mathbb{S}^{d} denote the set of $d \times d$-symmetric matrices and we say a probability measure on $\left(\Omega, \mathcal{F}_{T}\right)$ is a semimartingale measure if B is a semimartingale under \mathbb{P}.

Definition 3.3. We say $u \in C^{1,2}(\Theta)$ if $u \in C^{0}(\Theta, \mathbb{R})$ and for all semimartingale measures \mathbb{P},

$$
d u=\partial_{t} u d t+\partial_{\omega} u \cdot d B_{t}+\frac{1}{2} \partial_{\omega \omega}^{2} u: d\langle B\rangle_{t}, \quad \mathbb{P} \text {-a.s. }
$$

for some processes $\partial_{t} u \in C^{0}(\Theta, \mathbb{R}), \partial_{\omega} u \in C^{0}\left(\Theta, \mathbb{R}^{d}\right), \partial_{\omega \omega}^{2} u \in C^{0}\left(\Theta, \mathbb{S}^{d}\right)$.
Remark 3.4. (i) By [14], for any $u \in C^{1,2}(\Theta), \partial_{t} u, \partial_{\omega} u, \partial_{\omega \omega}^{2} u$ are unique and are naturally called the path-derivatives of u. We refer to [14] for various properties of these path-derivatives, including their relation with Dupire's original definition of path-derivatives. We note that [14] considers a smaller class of semimartingale measures \mathbb{P} whose drift and diffusion characteristics are bounded. However, such a constraint does not cause any difference for our purpose and thus we do not introduce those constraints on \mathbb{P} in this paper.
(ii) As we will see in next subsection, to study viscosity solutions it suffices to consider only linear processes for semilinear PPDEs (and paraboloid processes for fully nonlinear PPDEs). So technically speaking Definition 3.3 is needed only for classical solutions of PPDEs.
(iii) In our semilinear case, denote

$$
\begin{equation*}
\mathcal{L} u:=\partial_{t} u+\frac{1}{2} \operatorname{Tr}\left(\sigma \sigma^{T} \partial_{\omega \omega}^{2} u\right) . \tag{3.2}
\end{equation*}
$$

Notice that all measures in $\cup_{L>0} \mathcal{P}_{L}$ are semimartingale measures, and then

$$
d u=\mathcal{L} u_{t} d t+\partial_{\omega} u \cdot d B_{t}, \quad \mathbb{P} \text {-a.s. for all } \mathbb{P} \in \cup_{L>0} \mathcal{P}_{L}
$$

Moreover, following the arguments in Lemma 2.5 and Proposition 2.6, we see that, for any $(t, \omega) \in \Theta$,

$$
\begin{align*}
u_{s}^{t, \omega}-u_{t}(\omega) & =\int_{0}^{s}(\mathcal{L} u)_{r}^{t, \omega} d r+\int_{0}^{s}\left(\partial_{\omega} u\right)_{r}^{t, \omega} \cdot d B_{r} \tag{3.3}\\
s & \in[0, T-t], \mathbb{P} \text {-a.s. for all } \mathbb{P} \in \cup_{L>0} \mathcal{P}_{L}^{t, \omega}
\end{align*}
$$

(iv) Unlike $[14,15]$, where $\partial_{t} u$ and $\partial_{\omega \omega}^{2} u$ appear separately in PPDE, here since σ is given, we do not need to distinguish the two terms in (3.3) and need only to identify $\mathcal{L} u$.

We introduce the sets of test processes for subsolutions and supersolutions:

$$
\begin{align*}
& \underline{\mathcal{A}}_{L} u_{t}(\omega) \tag{3.4}\\
& \quad:=\left\{\varphi \in C^{1,2}(\Theta):(\varphi-u)_{t}(\omega)=\min _{\tau \in \mathcal{T}_{\mathrm{H}}} \underline{\mathcal{E}}_{L}^{t, \omega}\left[(\varphi-u)_{\tau}^{t, \omega}\right] \text { for some } \mathrm{H} \in \mathcal{T}_{T-t}^{+}\right\} \\
& \overline{\mathcal{A}}_{L} u_{t}(\omega) \\
& \quad:=\left\{\varphi \in C^{1,2}(\Theta):(\varphi-u)_{t}(\omega)=\max _{\tau \in \mathcal{T}_{\mathrm{H}}} \overline{\mathcal{E}}_{L}^{t, \omega}\left[(\varphi-u)_{\tau}^{t, \omega}\right] \text { for some } \mathrm{H} \in \mathcal{T}_{T-t}^{+}\right\}
\end{align*}
$$

The stopping time H implies that the test processes are locally bounded at (t, ω), and in particular the integrability in (3.4) will always be guaranteed. For a test function $\varphi \in \underline{\mathcal{A}}_{L} u_{t}(\omega) \cup \overline{\mathcal{A}}_{L} u_{t}(\omega)$, we shall refer to a corresponding H as its localizing time. Note that in our definition, a test function is tangent to u at a point (t, ω) in mean value (under a family of probability measures), which is different from the corresponding notion in Crandall and Lions [8].

Definition 3.5 (viscosity solution of path-dependent PDE). Let $u \in C^{0}(\Theta, \mathbb{R})$.
(i) u is a \mathcal{P}_{L}-viscosity supersolution (resp., subsolution) of (3.1) if for any $(t, \omega) \in$ $[0, T) \times \Omega$,

$$
\begin{aligned}
& -\mathcal{L} \varphi_{t}(\omega)-F\left(t, \omega, u_{t}(\omega), \sigma_{t}^{T}(\omega) \partial_{\omega} \varphi_{t}(\omega)\right) \\
& \quad \geq(\text { resp., } \leq) 0 \text { for all } \varphi \in \overline{\mathcal{A}}_{L} u_{t}(\omega)\left(\text { resp., } \underline{\mathcal{A}}_{L} u_{t}(\omega)\right)
\end{aligned}
$$

 supersolution.

Remark 3.6. (i) In $[14,15]$, a larger and nondominated set $\overline{\mathcal{P}}_{L}$ which consists of mutually singular probability measures is used. The corresponding sets of test functions $\underline{\mathcal{A}}_{L} \overline{\mathcal{P}}_{L} u$ and $\overline{\mathcal{A}}_{L} \overline{\mathcal{P}}_{L} u$ are smaller there, and consequently a viscosity solution here must be a viscosity solution in the sense of [14], but not vice versa in general. Therefore, by putting more test functions in this paper, we are helping for the proof of uniqueness.
(ii) When $\sigma=I_{d}$ but under the above $\overline{\mathcal{P}}_{L}$-definition, the wellposedness of the semilinear PPDE (3.1) is achieved in $[14,15]$ by using a different approach. However, the general case with random σ and under $\overline{\mathcal{P}}_{L}$-definition does not fall into the framework of this paper and does not satisfy the sufficient conditions for the comparison principle in [15], and its wellposedness is still open.
3.2. Equivalent definition via semijets. Following the standard theory of viscosity solutions for PDEs, we may define viscosity solutions via semijets. In light of Remark 3.4 (iii) and (iv), let

$$
\begin{equation*}
Q^{\alpha, \beta}(t, \omega):=\alpha t+\beta \cdot \omega_{t}, \quad \alpha \in \mathbb{R}, \beta \in \mathbb{R}^{d}, \text { and }(t, \omega) \in \Theta \tag{3.5}
\end{equation*}
$$

Definition 3.7 (semijets). For $u \in C^{0}(\Theta, \mathbb{R})$, define subjet and superjet of u at (t, ω) :

$$
\begin{aligned}
\underline{\mathcal{J}}_{L} u_{t}(\omega) & :=\left\{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^{d}: Q^{a, \beta} \in \underline{\mathcal{A}}_{L} u_{t}(\omega)\right\} ; \\
\overline{\mathcal{J}}_{L} u_{t}(\omega) & :=\left\{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^{d}: Q^{a, \beta} \in \overline{\mathcal{A}}_{L} u_{t}(\omega)\right\} .
\end{aligned}
$$

Moreover, $\operatorname{cl}\left(\underline{\mathcal{J}}_{L} u_{t}(\omega)\right)$ and $\operatorname{cl}\left(\overline{\mathcal{J}}_{L} u_{t}(\omega)\right)$ denote their closures.

Remark 3.8. In the fully nonlinear case, one has to distinguish $\partial_{t} u$ and $\partial_{\omega \omega}^{2} u$, and accordingly one needs to introduce paraboloid processes:

$$
Q^{\alpha, \beta, \gamma}(t, \omega):=\alpha t+\beta \cdot \omega_{t}+\frac{1}{2} \gamma \omega_{t} \cdot \omega_{t}, \quad \alpha \in \mathbb{R}, \beta \in \mathbb{R}^{d}, \gamma \in \mathbb{R}^{d \times d} \text { and }(t, \omega) \in \Theta .
$$

See [43] for more details. In the present semilinear case, one can easily show that the linear processes (3.5) is sufficient for our purpose.

Proposition 3.9. For $u \in C^{0}(\Theta, \mathbb{R})$ and $(t, \omega) \in[0, T) \times \Omega$, the following are equivalent:
(i) u is a \mathcal{P}_{L}-viscosity subsolution of the path-dependent PDE (3.1) at (t, ω);
(ii) $-\alpha-F\left(t, \omega, u_{t}(\omega), \sigma_{t}^{T}(\omega) \beta\right) \leq 0$ for all $(\alpha, \beta) \in \mathcal{J}_{L} u_{t}(\omega)$;
(iii) $-\alpha-F\left(t, \omega, u_{t}(\omega), \sigma_{t}^{T}(\omega) \beta\right) \leq 0$ for all $(\alpha, \beta) \in \operatorname{cl}\left(\mathcal{J}_{L} u_{t}(\omega)\right)$.

Proof. Since $Q^{\alpha, \beta} \in C^{1,2}(\Theta, \mathbb{R})$, clearly (i) implies (ii). Now assume (ii) holds true. For any $(\alpha, \beta) \in \operatorname{cl}\left(\underline{\mathcal{J}}_{L} u_{t}(\omega)\right)$, there exist $\left(\alpha_{n}, \beta_{n}\right) \in \underline{\mathcal{J}}_{L} u_{t}(\omega)$ such that $\left(\alpha_{n}, \beta_{n}\right) \rightarrow(\alpha, \beta)$. By (ii) we have $-\alpha_{n}-F\left(t, \omega, u_{t}(\omega), \sigma_{t}^{T}(\omega) \beta_{n}\right) \leq 0$. Sending $n \rightarrow \infty$ we prove (iii).

It remains to prove that (iii) implies (i). Let $(t, \omega) \in[0, T) \times \Omega$ and $\varphi \in \underline{\mathcal{A}}_{L} u_{t}(\omega)$ with localizing time $\mathrm{H} \in \mathcal{T}_{T-t}^{+}$. Without loss of generality, we take $(t, \omega)=(0,0)$ and $(\varphi-u)_{0}=0$. Denote

$$
\begin{equation*}
\alpha:=\mathcal{L} \varphi_{0}, \quad \beta:=\partial_{\omega} \varphi_{0} . \tag{3.6}
\end{equation*}
$$

For any $\varepsilon>0$, since $\sigma \in C^{0}(\Theta)$ and φ is smooth, by otherwise choosing a smaller H we may assume

$$
\left|\sigma_{t}-\sigma_{0}\right| \leq 1, \quad\left|\mathcal{L} \varphi_{t}-\alpha\right| \leq \varepsilon, \quad\left|\partial_{\omega} \varphi_{t}-\beta\right| \leq \varepsilon, \quad 0 \leq t \leq \text { н. }
$$

Denote $\alpha_{\varepsilon}:=\alpha+\left[1+L\left(1+\left|\sigma_{0}\right|\right)\right] \varepsilon$. Then, for all $\tau \in \mathcal{T}_{\text {H }}$,

$$
\begin{aligned}
& \left(Q^{\alpha_{\varepsilon}, \beta}-u\right)_{0}-\mathcal{E}_{L}\left[\left(Q^{\alpha_{\varepsilon}, \beta}-u\right)_{\tau}\right]=\overline{\mathcal{E}}_{L}\left[\left(u-u_{0}-Q^{\alpha_{\varepsilon}, \beta}\right)_{\tau}\right] \\
\leq & \overline{\mathcal{E}}_{L}\left[(u-\varphi)_{\tau}\right]+\overline{\mathcal{E}}_{L}\left[\left(\varphi-\varphi_{0}-Q^{\alpha_{\varepsilon}, \beta}\right)_{\tau}\right] \\
\leq & \overline{\mathcal{E}}_{L}\left[\int_{0}^{\tau}\left(\mathcal{L} \varphi_{s}-\alpha_{\varepsilon}\right) d s+\int_{0}^{\tau}\left(\partial_{\omega} \varphi_{s}-\beta\right) \cdot d B_{s}\right]
\end{aligned}
$$

where the last inequality holds thanks to the fact that $\varphi \in \underline{\mathcal{A}}_{L} u_{0}$. Note that, for any $\lambda \in \mathbb{L}_{L}(\mathbb{F})$,

$$
\begin{aligned}
& \mathbb{E}^{\mathbb{P} \sigma, \lambda}\left[\int_{0}^{\tau}\left(\mathcal{L} \varphi_{s}-\alpha_{\varepsilon}\right) d s+\int_{0}^{\tau}\left(\partial_{\omega} \varphi_{s}-\beta\right) \cdot d B_{s}\right] \\
= & \mathbb{E}^{\mathbb{P}_{\sigma, \lambda}}\left[\int_{0}^{\tau}\left(\mathcal{L} \varphi_{s}-\alpha\right) d s+\int_{0}^{\tau}\left(\partial_{\omega} \varphi_{s}-\beta\right) \cdot \sigma_{s} \lambda_{s} d s-\left[1+L\left(1+\left|\sigma_{0}\right|\right)\right] \varepsilon \tau\right] \\
\leq & \mathbb{E}^{\mathbb{P}_{\sigma, \lambda}}\left[\int_{0}^{\tau}\left[\varepsilon+\varepsilon L\left(1+\left|\sigma_{0}\right|\right)\right] d s-\left[1+L\left(1+\left|\sigma_{0}\right|\right)\right] \varepsilon \tau\right]=0 .
\end{aligned}
$$

By the arbitrariness of $\lambda \in \mathbb{L}_{L}(\mathbb{F})$, we see that

$$
\left(Q^{\alpha_{\varepsilon}, \beta}-u\right)_{0}-\underline{\mathcal{E}}_{L}\left[\left(Q^{\alpha_{\varepsilon}, \beta}-u\right)_{\tau}\right] \leq \overline{\mathcal{E}}_{L}\left[\int_{0}^{\tau}\left(\mathcal{L} \varphi_{s}-\alpha_{\varepsilon}\right) d s+\left(\partial_{\omega} \varphi_{s}-\beta\right) \cdot d B_{s}\right] \leq 0
$$

That is, $\left(\alpha_{\varepsilon}, \beta\right) \in \mathcal{J}_{L} u_{0}$. Then, $(\alpha, \beta) \in \operatorname{cl}\left(\underline{\mathcal{J}}_{L} u_{0}\right)$, and (iii) provides $-\alpha-F\left(0,0, u_{0}, \sigma_{0}^{T} \beta\right) \leq 0$. By (3.6), this exactly means (i).

The following simple results will be useful later.
Proposition 3.10. Let $u, u^{\prime} \in C^{0}(\Theta, \mathbb{R})$ and $(t, \omega) \in \Theta$.
(i) $(\alpha, \beta) \in \underline{\mathcal{J}}_{L} u_{t}(\omega)$ if and only if $(-\alpha,-\beta) \in \overline{\mathcal{J}}_{L}(-u)_{t}(\omega)$.
(ii) If $(\alpha, \beta) \in \underline{\mathcal{J}}_{L} u_{t}(\omega),\left(\alpha^{\prime}, \beta^{\prime}\right) \in \underline{\mathcal{J}}_{L} u_{t}^{\prime}(\omega)$, then $\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime}\right) \in \underline{\mathcal{J}}_{L}\left(u+u^{\prime}\right)_{t}(\omega)$.

Moreover, the results remain true if we replace the semijets with their closures.
Proof. Item (i) is obvious, and we can easily extend the results from semijets to their closures. It remains to prove (ii). Indeed, by definition, there exists a common $\mathrm{H} \in \mathcal{T}_{T-t}^{+}$such that

$$
u_{t}(\omega) \geq \overline{\mathcal{E}}_{L}\left[\left(u^{t, \omega}-Q^{\alpha, \beta}\right)_{\tau}\right], \quad u_{t}^{\prime}(\omega) \geq \overline{\mathcal{E}}_{L}\left[\left(\left(u^{\prime}\right)^{t, \omega}-Q^{\alpha^{\prime}, \beta^{\prime}}\right)_{\tau}\right] \text { for all } \tau \in \mathcal{T}_{\mathrm{H}} .
$$

Then, by the sublinearity of $\overline{\mathcal{E}}_{L}$ we have

$$
\begin{aligned}
\left(u+u^{\prime}\right)_{t}(\omega) & \geq \overline{\mathcal{E}}_{L}\left[\left(u^{t, \omega}-Q^{\alpha, \beta}\right)_{\tau}+\left(\left(u^{\prime}\right)^{t, \omega}-Q^{\alpha^{\prime}, \beta^{\prime}}\right)_{\tau}\right] \\
& =\overline{\mathcal{E}}_{L}\left[\left(\left[u+u^{\prime}\right]^{t, \omega}-Q^{\alpha+\alpha^{\prime}, \beta+\beta^{\prime}}\right)_{\tau}\right] .
\end{aligned}
$$

This means that $\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime}\right) \in \underline{\mathcal{J}}_{L}\left(u+u^{\prime}\right)_{t}(\omega)$.
3.3. Punctual differentiability. For $L \geq L_{0}$, note that $\left(\mathcal{L} u_{t}(\omega), \partial_{\omega} u_{t}(\omega)\right) \in$ $\operatorname{cl}\left(\mathcal{\mathcal { J }}_{L} u_{t}(\omega)\right)$, whenever $u \in C^{1,2}(\Theta, \mathbb{R})$. Moreover, similar to [14], and also combining the arguments in Proposition 3.9, one can easily show that u is a classical subsolution at (t, ω) if and only if u is a viscosity subsolution at (t, ω).

Following Caffarelli and Cabre [3], we introduce a notion of differentiation which is weaker than the path-derivatives and will be crucial for the proof of our main comparison result.

Definition 3.11. Let $\varphi \in \mathbb{L}^{0}(\mathbb{F})$. We say φ is \mathcal{P}_{L}-punctually $C^{1,2}$ at (t, ω) if

$$
\mathcal{J}_{L} \varphi_{t}(\omega):=\operatorname{cl}\left(\underline{\mathcal{J}}_{L} \varphi_{t}(\omega)\right) \cap \operatorname{cl}\left(\overline{\mathcal{J}}_{L} \varphi_{t}(\omega)\right) \neq \emptyset .
$$

The following result is straightforward.
Proposition 3.12. Let $u \in C^{0}(\Theta, \mathbb{R})$.
(i) If $u \in C^{1,2}(\Theta, \mathbb{R})$, then u is \mathcal{P}_{L}-punctually $C^{1,2}$ at all (t, ω) with $\left(\mathcal{L} u_{t}(\omega), \partial_{\omega} u_{t}(\omega)\right) \in \mathcal{J}_{L} u_{t}(\omega) ;$
(ii) If u is \mathcal{P}_{L}-punctually $C^{1,2}$ at (t, ω) and is a \mathcal{P}_{L}-viscosity solution (resp., subsolution, supersolution) of the path-dependent $\operatorname{PDE}(3.1)$ at (t, ω), then for any $(\alpha, \beta) \in \mathcal{J}_{L} u_{t}(\omega)$ we have

$$
-\alpha-F\left(t, \omega, u_{t}(\omega), \sigma_{t}^{T}(\omega) \beta\right)=(\text { resp. }, \leq, \geq) 0 .
$$

4. Comparison result. We first introduce some notation for appropriate spaces.

- $\mathbb{S}_{2}^{t, \omega}:=\left\{Y \in \mathbb{L}^{0}(\mathbb{F}): Y\right.$ continuous in $t, \mathbb{P}_{\sigma^{t, \omega}}$-a.s. and $\mathbb{E}^{\mathbb{P}_{\sigma} t, \omega}\left[\sup _{s \leq T-t}\left|Y_{s}\right|^{2}\right]<$ $\infty\} ; \mathbb{S}^{2}:=\mathbb{S}_{2}^{0,0}$;
- $C_{2}^{0}(\Theta):=\left\{u \in C^{0}(\Theta): u^{t, \omega} \in \mathbb{S}_{2}^{t, \omega}\right.$ for all $\left.(t, \omega) \in \Theta\right\}$; in particular, it follows from Assumption 2.2 and standard estimates for SDEs that $\sigma \in C_{2}^{0}(\Theta)$;
- $\mathbb{H}^{2}:=\left\{Z \in \mathbb{L}^{0}\left(\mathbb{F}, \mathbb{R}^{d}\right): \mathbb{E}^{\mathbb{P}_{\sigma}}\left[\int_{0}^{T}\left|\sigma_{s}^{T} Z_{s}\right|^{2} d s\right]<\infty\right\} ;$
- $\mathbb{I}^{2}:=\left\{K \in \mathbb{S}^{2}: K\right.$ is increasing, \mathbb{P}_{σ}-a.s. and $\left.K_{0}=0\right\}$.
4.1. Main result. The main focus of this paper is the following comparison result.

Theorem 4.1. Let Assumption 3.1 hold true and $u, v \in C_{2}^{0}(\Theta)$ be \mathcal{P}_{L}-viscosity subsolution and supersolution, respectively, of PPDE (3.1) for some $L \geq L_{0}$. If $u_{T} \leq$ v_{T} on Ω, then $u \leq v$ on Θ.

A similar result in the case of $\sigma=I_{d}$ was proved in [12]. Their proof is based on the construction of a regular approximation of the BSDE representation of the solution. Also, the comparison result in the fully nonlinear case addressed in [15] is crucially based on an approximation by finite-dimensional partial differential equations induced by conveniently freezing the path-dependency. With this approximation in hand, the comparison result is proved by building on the corresponding classical results in the PDE literature.

The main contribution of this paper is to provide an alternative proof which does not rely on any representation of the solution and which does not appeal to the corresponding PDE literature. We also observe that the comparison result of Theorem 4.1 allows for a random and possibly degenerate diffusion coefficient σ. Our proof of the comparison result is new and is even relevant in the Markovian case which reduces to a PDE in a finite-dimensional space. Notice that in the last context, any test function $\phi(t, x)$ which is pointwise tangent from below to a function $f(t, x)$ at point $\left(t^{*}, x^{*}\right)$ induces a test process $\varphi_{t}(\omega):=\phi\left(t, \omega_{t}\right)$ which lies in $\underline{\mathcal{A}}_{L} u_{t^{*}}\left(\omega^{*}\right)$ with $u_{t}(\omega):=f\left(t, \omega_{t}\right)$, whenever $\omega_{t^{*}}^{*}=x^{*}$. In general, the opposite direction is not true, even for a Markovian test process $\varphi_{t}(\omega)=\varphi\left(t, \omega_{t}\right)$ in $\underline{\mathcal{A}}_{L} u_{t}(\omega)$. This shows that our definition of viscosity solutions involves a larger class of test functions than the standard Crandall-Lions notion of viscosity solutions in finite-dimensional spaces. Consequently, the comparison result has more chances under our definition, and we may hope to have an easier proof. We believe that the present proof achieves this goal. This is definitely true in the linear case which is isolated in Subsection 4.5.
4.2. Martingale representation and optimal stopping problem. In this subsection, we state the results of the martingale representation under \mathbb{P}_{σ} and the related optimal stopping problem, which is the keystone for our comparison of viscosity solutions. We remark that, due to the possible degeneracy of σ, the martingale representation theorem here does not follow directly from the standard one under Brownian motion, but instead follows from Theorem III.4.29 in [22] together with Lemma 2.4. For readers' convenience we shall provide an alternative proof in the appendix.

THEOREM 4.2 (martingale representation). \mathbb{P}_{σ} satisfies the martingale representation property. That is, for any $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{T}, \mathbb{P}_{\sigma}\right)$, $\xi=\mathbb{E}^{\mathbb{P}_{\sigma}}[\xi]+\int_{0}^{T} Z_{t} \cdot d B_{t}, \mathbb{P}_{\sigma}$-a.s. for some $Z \in \mathbb{H}^{2}$.

Moreover Z is unique in the sense that $\mathbb{E}^{\mathbb{P}_{\sigma}}\left[\int_{0}^{T}\left|\sigma_{t}^{T}\left(\tilde{Z}_{t}-Z_{t}\right)\right|^{2} d t\right]=0$ for any $\tilde{Z} \in \mathbb{H}^{2}$ satisfying the above representation property.

Corollary 4.3. Let $\lambda \in \mathbb{L}_{L}(\mathbb{F})$ and $M \in \mathbb{S}^{2}$. Then M is a $\mathbb{P}_{\sigma, \lambda}$-martingale if and only if

$$
d M_{t}=Z_{t} \cdot\left[d B_{t}-\sigma_{t} \lambda_{t} d t\right], \quad t \in[0, T], \quad \mathbb{P}_{\sigma} \text {-a.s. for some } Z \in \mathbb{H}^{2}
$$

Let $\mathrm{H} \in \mathcal{T}^{+}$and $X \in \mathbb{L}^{0}(\mathbb{F})$ be a process with continuous sample paths. Consider the optimal stopping problem under dominated nonlinear expectation:

$$
\begin{equation*}
V_{t}(\omega):=\sup _{\tau \in \mathcal{T}} \overline{\mathcal{E}}_{L}^{t, \omega}\left[X_{\tau \wedge\left(\mathrm{H}^{t}, \omega-t\right)}^{t, \omega}\right] \text { for all }(t, \omega) \in \Theta . \tag{4.1}
\end{equation*}
$$

ThEOREM 4.4 (optimal stopping problem). Let $L>0$ and $X \in \mathbb{L}^{0}(\mathbb{F})$ such that $X_{\wedge_{H}} \in \mathbb{S}^{2}$. Then, there exists an \mathbb{F}-adapted and \mathbb{P}_{σ}-a.s. continuous process Y satisfying
(i) there exists $\tau^{*} \in \mathcal{T}_{\mathrm{H}}$ such that $\tau^{*}=\inf \left\{t: Y_{t}=X_{t}\right\}, \mathbb{P}_{\sigma}$-a.s. and $Y_{0}=$ $\overline{\mathcal{E}}_{L}\left[X_{\tau^{*}}\right] ;$
(ii) for all $\tau \in \mathcal{T}_{\mathrm{H}}$, we have $Y_{\tau}=V_{\tau}, \mathbb{P}_{\sigma}$-a.s.; in particular, $Y_{0}=V_{0}$;
(iii) there exist $\mathbb{P}^{*} \in \mathcal{P}_{L}, \mathbb{P}^{*}$-martingale M starting from 0 , and $K \in \mathbb{I}^{2}$ such that

$$
Y=Y_{0}+M-K \quad \text { and } \quad \int(Y-X) d K=0, \quad \mathbb{P}_{\sigma}-a . s .
$$

Remark 4.5. Although the results in Theorem 4.4 look very much the same as in standard literature (see, e.g., [18]), there is a very subtle measurability issue involved here. In the standard literature, one typically uses the augmented filtration. However, due to the pathwise nature of this paper, in Theorem 4.4 we require X, Y, and τ^{*} to be adapted to the natural filtration \mathbb{F}. We shall provide a detailed proof in the appendix.

We further remark that the optimal stopping problem always plays a crucial role in the analysis on the viscosity solutions to path-dependent PDEs. In the recent work [41], the authors randomized the time-variable in the definition of the viscosity solution. By doing so and applying the classical dynamic programming argument, they obtained the desired optimal stopping results similar to the points (i), (ii) above in the general fully nonlinear case. However, it does not automatically lead to the point (iii) in the randomized setting, while the representation in (iii) is important for our argument in this paper for the semilinear case.

Definition 4.6 (Snell envelope). The process Y introduced in Theorem 4.4 is called a Snell envelope of the stopped process $X_{\wedge_{\wedge}}$ and denoted $\operatorname{Snell}\left(X_{\wedge_{\wedge}}\right):=Y$. The stopping time $\tau^{*} \in \mathcal{T}_{\mathrm{H}}$ is called an optimal stopping rule.
4.3. Pathwise semimartingales. In this subsection, let $u \in \mathbb{L}^{0}(\mathbb{F})$ such that all the (nonlinear) expectations involved below exist. Similar to a standard semimartingale under a fixed probability measure \mathbb{P}, we say u is an $\overline{\mathcal{E}}_{L}$-submartingale (resp., supermartingale) if
$u_{t} \leq($ resp.,$\geq) \overline{\mathcal{E}}_{L}\left[u_{\tau} \mid \mathcal{F}_{t}\right]:=\underset{\mathbb{P} \in \mathcal{P}_{L}}{\operatorname{ess}-\sup } \mathbb{E}^{\mathbb{P}}\left[u_{\tau} \mid \mathcal{F}_{t}\right], \mathbb{P}_{\sigma}$-a.s. for any $t, \tau \in \mathcal{T}$ with $\tau \geq t$.
As viscosity solutions are pathwise defined, we extend this notion in a pathwise manner.

Definition 4.7. (i) We say u is a pathwise \mathbb{P}_{σ}-submartingale (resp., supermartingale) if

$$
u_{t}(\omega) \leq(\text { resp. }, \geq) \mathbb{E}^{\mathbb{P}_{\sigma} t, \omega}\left[u_{\tau}^{t, \omega}\right] \quad \text { for any }(t, \omega) \in \Theta \text { and } \tau \in \mathcal{T}_{T-t}
$$

(ii) We say u is a pathwise $\overline{\mathcal{E}}_{L}$-submartingale (resp., supermartingale) if

$$
u_{t}(\omega) \leq(\text { resp } ., \geq) \overline{\mathcal{E}}_{L}^{t, \omega}\left[u_{\tau}^{t, \omega}\right] \quad \text { for any }(t, \omega) \in \Theta \text { and } \tau \in \mathcal{T}_{T-t}
$$

Remark 4.8. By Proposition 2.6 and the definition of r.c.p.d., it is clear that a pathwise \mathbb{P}_{σ}-submartingale is a \mathbb{P}_{σ}-submartingale. Similar statements hold for supermartingales.

Proposition 4.9. Assume $u \in \mathbb{S}^{2}$ is a pathwise $\overline{\mathcal{E}}_{L^{-}}$-submartingale. Then,
(i) u is an $\overline{\mathcal{E}}_{L}$-submartingale;
(ii) there exists $\mathbb{P}^{*} \in \mathcal{P}_{L}$ such that u is a \mathbb{P}^{*}-submartingale.
4.4. A fundamental lemma. The following result shows how to find a point of tangency in mean. This replaces the local compactness in the standard CrandallLions theory of viscosity solutions.

Lemma 4.10. Assume $u \in \mathbb{L}^{0}(\mathbb{F})$ satisfying $u_{\cdot \wedge \mathrm{H}} \in \mathbb{S}^{2}$ and $u_{0}>\overline{\mathcal{E}}_{L}\left[u_{\mathrm{H}}\right]$ for some $\mathrm{H} \in \mathcal{T}^{+}$. Then there exists $\omega^{*} \in \Omega$ and $t^{*}<\mathrm{H}\left(\omega^{*}\right)$ such that $0 \in \underline{\mathcal{A}}_{L} u_{t^{*}}\left(\omega^{*}\right)$.

Proof. Define the optimal stopping value V by (4.1) with $X:=u$. Let $\tau^{*} \in \mathcal{T}_{\mathrm{H}}$ be the optimal stopping rule. Since by Theorem 4.4(i) and (ii) we have $\overline{\mathcal{E}}_{L}\left[u_{\tau^{*}}\right]=V_{0} \geq$ $u_{0}>\overline{\mathcal{E}}_{L}\left[u_{\mathrm{H}}\right]$ and $\mathbb{P}_{\sigma}\left[u_{\tau^{*}}=V_{\tau^{*}}\right]=1$. It follows that $\mathbb{P}_{\sigma}\left[u_{\tau^{*}}=V_{\tau^{*}}, \tau^{*}<\mathrm{H}\right]>0$, and then there exists $\omega^{*} \in \Omega$ such that $t^{*}:=\tau^{*}\left(\omega^{*}\right)<\mathrm{H}\left(\omega^{*}\right)$ and $u_{t^{*}}\left(\omega^{*}\right)=V_{t^{*}}\left(\omega^{*}\right)$. By the definition of V and $\underline{\mathcal{A}}_{L} u$, this means that $\left(t^{*}, \omega^{*}\right)$ is the desired point.
4.5. Comparison result for the heat equation. For $F=0$, the equation reduces to

$$
\begin{equation*}
-\mathcal{L} u(t, \omega)=0 \quad t<T, \quad \omega \in \Omega \tag{4.3}
\end{equation*}
$$

Our objective is to provide an easy proof of the comparison result of Theorem 4.1, which requires standard tools from stochastic analysis. For simplicity, we specialize the comparison Theorem 4.1 to the case $L=0$ and call the corresponding viscosity solution a \mathbb{P}_{σ}-viscosity solution. We emphasize that the set of test processes is the largest possible with $L=0$.

Theorem 4.11. For a process $u \in C_{2}^{0}(\Theta)$, the following are equivalent:
(i) u is a pathwise \mathbb{P}_{σ}-submartingale (resp. supermartingale);
(ii) u is a \mathbb{P}_{σ}-viscosity subsolution (resp., supersolution) of the path-dependent heat equation (4.3).

Proof. (i) \Longrightarrow (ii) Assume to the contrary that $-c:=\mathcal{L} \varphi_{t}(\omega)<0$ for some $(t, \omega) \in \Theta$ and $\varphi \in \underline{\mathcal{A}}_{0} u_{t}(\omega)$ with localizing time $\mathrm{H} \in \mathcal{T}^{+}$. Without loss of generality, $(t, \omega)=(0,0)$. Note that

$$
(\varphi-u)_{0} \leq \mathbb{E}^{\mathbb{P}_{\sigma}}\left[(\varphi-u)_{\tau}\right] \text { for all } \tau \in \mathcal{T}_{\mathrm{H}}
$$

Denote $\tau:=\inf \left\{t: \mathcal{L} \varphi_{t} \geq-\frac{c}{2}\right\} \wedge \mathrm{H} \in \mathcal{T}^{+}$. Then, by (ii), we obtain the following desired contradiction:

$$
0 \geq u_{0}-\mathbb{E}^{\mathbb{P}_{\sigma}}\left[u_{\tau}\right] \geq \varphi_{0}-\mathbb{E}^{\mathbb{P}_{\sigma}}\left[\varphi_{\tau}\right]=\mathbb{E}^{\mathbb{P}_{\sigma}}\left[-\int_{0}^{\tau} \mathcal{L} \varphi_{s} d s\right] \geq \frac{c}{2} \mathbb{E}^{\mathbb{P}_{\sigma}}[\tau]>0
$$

(ii) \Longrightarrow (i) It is easy to verify that $u_{t}^{\varepsilon}(\omega):=u_{t}(\omega)+\varepsilon t$ is a \mathbb{P}_{σ}-viscosity subsolution to the equation:

$$
-\mathcal{L} u_{t}^{\varepsilon}(\omega)+\varepsilon \leq 0
$$

We now show that u^{ε} is a pathwise \mathbb{P}_{σ}-submartingale. Suppose to the contrary that there exists a point (t, ω) at which the supermartingale property fails, and set $(t, \omega)=(0,0)$ without loss of generality. Then, there exists a stopping time $\mathrm{H} \in \mathcal{T}_{T}^{+}$ such that $u_{0}^{\varepsilon}>\mathbb{E}^{\mathbb{P}_{\sigma}}\left[u_{\mathrm{H}}^{\varepsilon}\right]$. By Lemma 4.10 , there exists $\left(t^{*}, \omega^{*}\right)$ such that $0 \in \underline{\mathcal{A}}_{0} u_{t^{*}}^{\varepsilon}\left(\omega^{*}\right)$, and it follows from the \mathbb{P}_{σ}-viscosity subsolution property of u^{ε} that $\varepsilon \leq 0$, which is the required contradiction.

Hence, u^{ε} is a pathwise $\mathbb{P}_{\sigma^{-}}$-submartingale, namely, $u_{t}(\omega)+\varepsilon t \leq \mathbb{E}^{\mathbb{P}^{\sigma}, \omega}\left[u_{\tau}^{t, \omega}+\right.$ $\varepsilon(\tau+t)]$ for all $\tau \in \mathcal{T}_{T-t}$. Sending $\varepsilon \rightarrow 0$, we obtain immediately that u is a pathwise \mathbb{P}_{σ}-submartingale.

Theorem 4.11 leads immediately to the comparison result.
Theorem 4.12. Let $u, v \in C_{2}^{0}(\Theta)$ be a \mathbb{P}_{σ}-viscosity subsolution and a \mathbb{P}_{σ}-viscosity supersolution, respectively, of path-dependent heat equation (4.3). If $u_{T} \leq v_{T}$ on Ω, then $u \leq v$ on Θ.

Remark 4.13. By Theorem 4.11 we see that our notion of a \mathbb{P}_{σ}-viscosity solution reduces to the notion of a stochastic viscosity solution introduced by Bayraktar and Sirbu [1, 2] in the Markovian case.

Remark 4.14. (i) Theorem 4.11 also provides the unique solution of the heat equation. Indeed it implies that a pathwise \mathbb{P}_{σ}-martingale is a viscosity solution. Since the final value is fixed by the boundary condition ξ, we are naturally lead to the candidate solution $u(t, \omega):=\mathbb{E}^{\mathbb{P}^{\sigma}}{ }^{t, \omega}\left[\xi^{t, \omega}\right]$. Therefore, if this process is in $C_{2}^{0}(\Theta)$, it is the unique viscosity solution of the heat equation.
(ii) For the heat equation, we can in fact prove the comparison principle without requiring the continuity (in ω) of the viscosity semisolutions.
4.6. Partial comparison. We next return to the general semilinear PPDE (3.1). The following partial comparison result, as in [12] and [14], is a crucial step for our proof of the comparison result.

Proposition 4.15. In the setting of Theorem 4.1, if in addition $v \in C^{1,2}(\Theta)$, then $u \leq v$ on Θ.

Proof. We report the proof from [12] for completeness. First, by possibly transforming the problem to the comparison of $\tilde{u}_{t}:=e^{\lambda t} u_{t}$ and $\tilde{v}_{t}:=e^{\lambda t} v_{t}$, it follows from the Lipschitz property of the nonlinearity F in y that we may assume without loss of generality that F is decreasing in y.

Suppose to the contrary that $c:=(u-v)_{t}(\omega)>0$ at some point $(t, \omega) \in[0, T) \times \Omega$. Without loss of generality assume $(t, \omega)=(0,0)$. Let $c_{0}:=\frac{c}{2 T}$, and define $X_{s}:=$ $(u-v)_{s}^{+}+c_{0} s, s \in[0, T]$. Clearly $X \in C_{2}^{0}(\Theta)$. Since $(u-v)_{T} \leq 0$, it follows that $X_{0}>\overline{\mathcal{E}}_{L}\left[X_{T}\right]$. By Lemma 4.10, we may find a point $\left(t^{*}, \omega^{*}\right)$ such that $t<T$ and $0 \in \underline{\mathcal{A}}_{L} X_{t^{*}}\left(\omega^{*}\right)$. In particular, this implies that

$$
-(u-v)_{t^{*}}^{+}\left(\omega^{*}\right)-c_{0} t^{*} \leq \underline{\mathcal{E}}_{L}\left[-\left\{(u-v)^{+}\right\}_{T-t^{*}}^{t^{*}, \omega^{*}}-c_{0} T\right]=-c_{0} T
$$

and thus $(u-v)_{t^{*}}^{+}\left(\omega^{*}\right) \geq c_{0}\left(T-t^{*}\right)>0$. Therefore, $(u-v)_{t^{*}}^{+}\left(\omega^{*}\right)=(u-v)_{t^{*}}\left(\omega^{*}\right)>0$. Then, since $(u-v)^{+} \geq u-v$, we deduce from $0 \in \underline{\mathcal{A}}_{L} X_{t^{*}}\left(\omega^{*}\right)$ that

$$
(\varphi-u)_{t^{*}}\left(\omega^{*}\right) \leq \underline{\mathcal{E}}_{L}\left[(\varphi-u)_{\tau}^{t^{*}, \omega^{*}}\right] \text { for all } \tau \in \mathcal{T}_{T-t^{*}}, \text { where } \varphi_{s}(\omega):=v_{s}(\omega)-c_{0} s
$$

Since $v \in C^{1,2}(\Theta)$, this means that $\varphi \in \underline{\mathcal{A}}_{L} u_{t^{*}}\left(\omega^{*}\right)$. Note that $\mathcal{L} \varphi=\mathcal{L} v-c_{0}$ and $\partial_{\omega} \varphi=\partial_{\omega} v$. Then, since u is a viscosity subsolution and v is a classical supersolution, we deduce that

$$
\begin{aligned}
0 & \geq\left\{-\mathcal{L} \varphi-F\left(., u, \sigma^{T} \partial_{\omega} \varphi\right)\right\}\left(t^{*}, \omega^{*}\right) \\
& =c_{0}+\left\{-\mathcal{L} v-F\left(., u, \sigma^{T} \partial_{\omega} v\right)\right\}\left(t^{*}, \omega^{*}\right) \\
& \geq c_{0}+\left\{F\left(., v, \sigma^{T} \partial_{\omega} v\right)-F\left(., u, \sigma^{T} \partial_{\omega} v\right)\right\}\left(t^{*}, \omega^{*}\right) \geq c_{0},
\end{aligned}
$$

where the last inequality follows from the nonincrease of F in y and the fact that $u_{t^{*}}\left(\omega^{*}\right) \geq v_{t^{*}}\left(\omega^{*}\right)$. Since $c_{0}>0$, this is the required contradiction.

4.7. Punctual differentiability of viscosity semisolutions.

Lemma 4.16. Let Assumption 3.1 hold, and for some $L \geq L_{0}$, let $u \in C_{2}^{0}(\Theta)$ be an L-subsolution of PPDE (3.1). Then, the process $\hat{u}:=u+\int_{0}^{\cdot}\left(L_{0}\left|u_{s}\right|+F_{s}^{0}+1\right) d s$ is a pathwise $\overline{\mathcal{E}}_{\text {L-submartingale }}$.

Proof. Suppose to the contrary that $\hat{u}_{t}(\omega)>\overline{\mathcal{E}}_{L}^{t, \omega}\left[\hat{u}_{\mathrm{H}}^{t, \omega}\right]$ for some $(t, \omega) \in[0, T) \times \Omega$ and $\mathrm{H} \in \mathcal{T}_{T-t}^{+}$. Then, it follows from Lemma 4.10 that there exist $\omega^{*} \in \Omega$ and $t^{*} \in\left[t, t+\mathrm{H}\left(\omega^{*}\right)\right)$ such that $0 \in \underline{\mathcal{A}}_{L} \hat{u}_{t^{*}}\left(\omega^{*}\right)$, i.e., there exists $\mathrm{H}^{\prime} \in \mathcal{T}_{T-t^{*}}^{+}$such that $-\hat{u}_{t^{*}}\left(\omega^{*}\right) \leq \underline{\mathcal{E}}_{L}^{t^{*}, \omega^{*}}\left[-\hat{u}_{\tau}^{t^{*}, \omega^{*}}\right]$ for all $\tau \in \mathcal{T}_{\mathrm{H}^{\prime}}$. Rewriting it we have

$$
\begin{aligned}
-u_{t^{*}}\left(\omega^{*}\right) & \leq \underline{\mathcal{E}}_{L}^{t^{*}, \omega^{*}}\left[\varphi_{\tau}-u_{\tau}^{t^{*}, \omega^{*}}\right] \text { for all } \tau \in \mathcal{T}_{\mathrm{H}^{\prime}} \\
\text { where } \varphi_{t} & :=-\int_{0}^{t}\left(L_{0}\left|u_{s}\right|+\left(F^{0}\right)_{s}+1\right) d s
\end{aligned}
$$

Then $\varphi \in \underline{\mathcal{A}}_{L} u_{t^{*}}\left(\omega^{*}\right)$, as $\varphi \in C^{1,2}(\Theta)$ with $\mathcal{L} \varphi_{t^{*}}\left(\omega^{*}\right)=-L_{0}\left|u_{t^{*}}\left(\omega^{*}\right)\right|-F_{t^{*}}^{0}\left(\omega^{*}\right)-1$ and $\partial_{\omega} \varphi_{t^{*}}\left(\omega^{*}\right)=0$. The contradiction now follows from the viscosity subsolution of u and Assumption 3.1:

$$
\begin{aligned}
0 & \geq-\mathcal{L} \varphi_{t^{*}}\left(\omega^{*}\right)-F_{t^{*}}\left(\omega^{*}, u_{t^{*}}\left(\omega^{*}\right), \sigma_{t^{*}}^{T}\left(\omega^{*}\right) \partial_{\omega} \varphi_{t^{*}}\left(\omega^{*}\right)\right) \\
& =L_{0}\left|u_{t^{*}}\left(\omega^{*}\right)\right|+F_{t^{*}}^{0}\left(\omega^{*}\right)+1-F_{t^{*}}\left(\omega^{*}, u_{t^{*}}\left(\omega^{*}\right), 0\right) \geq F_{t^{*}}^{0}\left(\omega^{*}\right)+1-F_{t^{*}}\left(\omega^{*}, 0,0\right) \geq 1
\end{aligned}
$$

Unlike the heat equation case, this property and the corresponding statement for a viscosity supersolution v do not induce the comparison principle directly. Our main idea is the following.

Proposition 4.17. Assume u is a \mathbb{P}_{σ}-semimartingale with decomposition: $d u_{t}=$ $Z_{t} \cdot d B_{t}+d A_{t}$, where $Z \in \mathbb{H}^{2}$ and $A \in \mathbb{L}^{0}(\mathbb{F})$ is continuous and has finite variation, \mathbb{P}_{σ}-a.s. Then there exist a Borel set $\mathbb{T}^{u} \subset[0, T]$ and $\Omega_{t}^{u} \in \mathcal{F}_{t}$ for each $t \in \mathbb{T}^{u}$ such that, for any $L>0$,

$$
\begin{align*}
& \operatorname{Leb}\left(\mathbb{T}^{u}\right)=T, \mathbb{P}_{\sigma}\left(\Omega_{t}^{u}\right)=1, \tag{4.4}\\
& \quad \text { and } u \text { is } \mathcal{P}_{L^{-p u n c t u a l l y}} C^{1,2} \text { at }(t, \omega) \text { for all } t \in \mathbb{T}^{u}, \omega \in \Omega_{t}^{u}
\end{align*}
$$

Proof. Denote

$$
\begin{aligned}
\zeta_{t} & :=\varlimsup_{0 \downarrow h \in \mathbb{Q}} \frac{1}{h} \int_{t}^{t+h}\left|\sigma_{s}^{T} Z_{s}-\sigma_{t}^{T} Z_{t}\right| d s, \\
\dot{A}_{t}^{+} & :=\varlimsup_{0 \downarrow h \in \mathbb{Q}} \frac{1}{h}\left[A_{t+h}-A_{t}\right], \quad \dot{A}_{t}^{-}:=\varliminf_{0 \downarrow h \in \mathbb{Q}} \frac{1}{h}\left[A_{t+h}-A_{t}\right] .
\end{aligned}
$$

Note that the processes ζ, \dot{A}^{+}, and \dot{A}_{t}^{-}are \mathbb{F}^{+}-measurable (with possible values ∞ and $-\infty$). Denote

$$
\begin{align*}
& \Omega_{0}:=\{\omega \in \Omega: \int_{0}^{T}\left|\sigma_{t}^{T} Z_{t}(\omega)\right| d t<\infty \\
&\quad \text { and } A \text { is continuous and has finite variation on }[0, T]\} \tag{4.5}\\
& \Theta_{0}:=\left\{(t, \omega) \in[0, T) \times \Omega: \zeta_{t}(\omega)=0, \dot{A}_{t}^{+}(\omega)=\dot{A}_{t}^{-}(\omega) \in \mathbb{R}\right\} \in \mathcal{B}([0, T]) \times \mathcal{F}_{T} .
\end{align*}
$$

Then $\mathbb{P}_{\sigma}\left(\Omega_{0}\right)=1$, and, by the Lebesgue differentiation theorem (see, e.g., [45, Theorem 7.7, p. 139]), $\operatorname{Leb}\left[t:(t, \omega) \in \Theta_{0}\right]=T$ for all $\omega \in \Omega_{0}$. Applying the Fubini theorem
there exists $\mathbb{T}^{u} \subset[0, T]$ such that
(4.6) $\operatorname{Leb}\left[\mathbb{T}^{u}\right]=T$ and $\mathbb{P}_{\sigma}\left[\Omega_{t}^{1}\right]=1$ for all $t \in \mathbb{T}^{u}$, where $\Omega_{t}^{1}:=\left\{\omega \in \Omega:(t, \omega) \in \Theta_{0}\right\}$.

Note that $\Omega_{t}^{1} \in \mathcal{F}_{t+} \subset \mathcal{F}_{t}^{*}$, thanks to Proposition 6.2 in the appendix. Moreover, for any $t \in \mathbb{T}^{u}$, by Proposition 2.6 one can easily see that there exists $\Omega_{t}^{2} \in \mathcal{F}_{t}$ such that

$$
\begin{align*}
& \mathbb{P}_{\sigma}\left[\Omega_{t}^{2}\right]=1 \text { and } d u_{s}^{t, \omega}=Z_{s}^{t, \omega} \cdot d B_{s}+d A_{s}^{t, \omega} \tag{4.7}\\
& 0 \leq s \leq T-t, \mathbb{P}_{\sigma^{t, \omega}} \\
& \text { a.s. for all } \omega \in \Omega_{t}^{2}
\end{align*}
$$

Now define $\Omega_{t}:=\Omega_{t}^{1} \cap \Omega_{t}^{2} \cap \Omega_{0} \in \mathcal{F}_{t}^{*}$ for all $t \in \mathbb{T}^{u}$, and then we may find $\Omega_{t}^{u} \subset \Omega_{t}$ such that

$$
\begin{equation*}
\Omega_{t}^{u} \in \mathcal{F}_{t}, \quad \mathbb{P}_{\sigma}\left[\Omega_{t}^{u}\right]=1, \quad \text { for all } t \in \mathbb{T}^{u} \tag{4.8}
\end{equation*}
$$

Define $\dot{A}_{t}(\omega):=\dot{A}_{t}^{+}(\omega)=\dot{A}_{t}^{-}(\omega)$ for $(t, \omega) \in \Theta_{0}$. We claim that $\left(\dot{A}_{t}(\omega), Z_{t}(\omega)\right) \in$ $\mathcal{J}_{L} u_{t}(\omega)$ for all $t \in \mathbb{T}^{u}, \omega \in \Omega_{t}^{u}$ and $L>0$. Without loss of generality, we shall only show that

$$
\begin{equation*}
\left(\dot{A}_{t}(\omega)+\varepsilon, Z_{t}(\omega)\right) \in \underline{\mathcal{J}}_{L} u_{t}(\omega) \quad \text { for any } \quad \varepsilon>0 \tag{4.9}
\end{equation*}
$$

Indeed, fix $t \in \mathbb{T}^{u}$ and $\omega \in \Omega_{t}^{u}$. First, since $A(\omega)$ is continuous, we have

$$
\lim _{h \downarrow 0} \frac{1}{h} \int_{t}^{t+h}\left|\sigma_{s}^{T} Z_{s}(\omega)-\sigma_{t}^{T} Z_{t}(\omega)\right| d s=0, \lim _{h \downarrow 0} \frac{1}{h}\left[A_{t+h}(\omega)-A_{t}(\omega)\right]=\dot{A}_{t}(\omega) .
$$

Next, set $\delta:=\frac{\varepsilon}{2 L\left(1+\left|Z_{t}(\omega)\right|\right.}$. By Lemma 6.4 in the appendix, there exists $\mathrm{H} \in \mathcal{T}_{T-t}$ such that

$$
\begin{gathered}
\mathrm{H}=\inf \left\{s>0: \int_{0}^{s}\left|\left(\sigma^{T} Z\right)_{r}^{t, \omega}-\left(\sigma^{T} Z\right)_{t}(\omega)\right| d r \geq \delta s, \text { or }\left|\sigma_{s}^{t, \omega}-\sigma_{t}(\omega)\right| \geq \delta\right. \\
\text { or } \left.A_{s}^{t, \omega}-A_{t}(\omega) \geq\left(\dot{A}_{t}(\omega)+\frac{\varepsilon}{2}\right) s\right\} \wedge(T-t), \quad \mathbb{P}_{\sigma^{t, \omega}-\mathrm{a} . \mathrm{s}}
\end{gathered}
$$

By (4.5) we see that $\mathrm{H}>0$ and thus $\mathrm{H} \in \mathcal{T}_{T-t}^{+}$. For any $\lambda \in \mathbb{L}_{L}(\mathbb{F})$ and $\tau \in \mathcal{T}_{\mathrm{H}}$, by (4.7) we have

$$
\begin{aligned}
& \mathbb{E}^{\mathbb{P}_{\sigma, \omega, \lambda}}\left[u_{\tau}^{t, \omega}-Q_{\tau}^{\dot{A}_{t}(\omega)+\varepsilon, Z_{t}(\omega)}\right]-u_{t}(\omega) \\
& =\mathbb{E}^{\mathbb{P}_{\sigma} t, \omega, \lambda}\left[u_{\tau}^{t, \omega}-u_{0}^{t, \omega}-\left(\dot{A}_{t}(\omega)+\varepsilon\right) \tau-Z_{t}(\omega) \cdot B_{\tau}\right] \\
& =\mathbb{E}^{\mathbb{P}_{\sigma^{t, \omega}, \lambda}}\left[\int_{0}^{\tau}\left[Z_{s}^{t, \omega}-Z_{t}(\omega)\right] \cdot d B_{s}+\left(A_{\tau}^{t, \omega}-A_{0}^{t, \omega}\right)-\left(\dot{A}_{t}(\omega)+\varepsilon\right) \tau\right] \\
& =\mathbb{E}^{\mathbb{P}_{\sigma^{t, \omega, \lambda}}}\left[\int_{0}^{\tau}\left[Z_{s}^{t, \omega}-Z_{0}^{t, \omega}\right] \cdot\left(\sigma_{s}^{t, \omega} \lambda_{s}\right) d s+\left(A_{\tau}^{t, \omega}-A_{0}^{t, \omega}\right)-\left(\dot{A}_{t}(\omega)+\varepsilon\right) \tau\right] \\
& \leq \mathbb{E}^{\mathbb{P}_{\sigma^{t, \omega}, \lambda}}\left[L \int_{0}^{\tau}\left|\left(\sigma^{T} Z\right)_{s}^{t, \omega}-\left(\sigma^{T} Z\right)_{t}(\omega)\right| d s\right. \\
& \left.+L\left|Z_{t}(\omega)\right| \int_{0}^{\tau}\left|\sigma_{s}^{t, \omega}-\sigma_{t}(\omega)\right| d s+\left(A_{\tau}^{t, \omega}-A_{0}^{t, \omega}\right)-\left(\dot{A}_{t}(\omega)+\varepsilon\right) \tau\right] \\
& \leq \mathbb{E}^{\mathbb{P}_{\sigma t, \omega, \lambda}}\left[L \delta \tau+L\left|Z_{t}(\omega)\right| \delta \tau+\left(\dot{A}_{t}(\omega)+\frac{\varepsilon}{2}\right) \tau-\left(\dot{A}_{t}(\omega)+\varepsilon\right) \tau\right]=0 .
\end{aligned}
$$

Then (4.9) follows from the arbitrariness of λ and τ.
4.8. Comparison result for general semilinear PPDEs. We are now ready for the key step for the proof of Theorem 4.1. We observe that this statement is an adaptation of the approach of Caffarelli and Cabre [3] to the comparison in the context of the standard Crandall-Lions theory of viscosity solutions in finite dimensional spaces. See [3, Theorem 5.3, p. 45].

Proposition 4.18. Let Assumption 3.1 hold true, $L \geq L_{0}$, and $u, v \in C_{2}^{0}(\Theta)$ be the \mathcal{P}_{L}-viscosity subsolution and supersolution of (3.1). Then, $w:=u-v$ is an L-viscosity subsolution of

$$
\begin{equation*}
-\mathcal{L} w(t, \omega)-L\left|w_{t}(\omega)\right|-L\left|\sigma_{t}^{T}(\omega) \partial_{\omega} w_{t}(\omega)\right| \leq 0 \tag{4.10}
\end{equation*}
$$

Before we prove this proposition, we use it to complete the proof of Theorem 4.1.
Proof of Theorem 4.1. By Proposition 4.18, functional $u-v$ is a \mathcal{P}_{L}-viscosity subsolution of PPDE (4.10). Clearly, 0 is a classical supersolution of the same equation. Since $(u-v)_{T} \leq 0$, we conclude from the partial comparison Proposition 4.15 that $u-v \leq 0$ on Θ.

Proof of Proposition 4.18. Without loss of generality, we only check the viscosity subsolution property at $(t, \omega)=(0,0)$. For an arbitrary $(\alpha, \beta) \in \underline{\mathcal{J}}_{L} w_{0}$, we want to show that

$$
\begin{equation*}
-\alpha-L\left|w_{0}\right|-L\left|\sigma_{0}^{T} \beta\right| \leq 0 \tag{4.11}
\end{equation*}
$$

1. By definition, there exists $\mathrm{H} \in \mathcal{T}^{+}$such that

$$
w_{0}=\max _{\tau \in \mathcal{T}_{\mathrm{H}}} \overline{\mathcal{E}}_{L}\left[\left(w-Q^{\alpha, \beta}\right)_{\tau}\right] .
$$

Fix $\delta>0$. By otherwise choosing a smaller H, we may assume without loss of generality that

$$
\begin{equation*}
\left|\varphi_{t}-\varphi_{0}\right| \leq \delta \text { for } \varphi=B, \sigma, u, v \tag{4.12}
\end{equation*}
$$

Recall Definition 4.6 and introduce the processes $X:=w-Q^{\alpha+\delta, \beta}$ and $Y:=\operatorname{Snell}\left(X_{. \wedge \mathrm{H}}\right)$. Clearly,

$$
\begin{equation*}
\overline{\mathcal{E}}_{L}\left[X_{\mathrm{H}}\right]<w_{0}=X_{0} \leq Y_{0} \quad \text { and } \quad Y_{\mathrm{H}}=X_{\mathrm{H}}, \quad \mathbb{P}_{\sigma^{-}} \text {-a.s. } \tag{4.13}
\end{equation*}
$$

Then, it follows from (4.13) and Theorem 4.4(iii) that there exists $\mathbb{P}^{*} \in \mathcal{P}_{L}$ and $K \in \mathbb{I}^{2}$ such that

$$
0>\overline{\mathcal{E}}_{L}\left[Y_{\mathrm{H}}-Y_{0}\right] \geq \mathbb{E}^{\mathbb{P}^{*}}\left[Y_{\mathrm{H}}-Y_{0}\right]=-\mathbb{E}^{\mathbb{P}^{*}}\left[K_{\mathrm{H}}\right]=-\mathbb{E}^{\mathbb{P}^{*}}\left[\int_{0}^{\mathrm{H}} \mathbf{1}_{\left\{Y_{t}=X_{t}\right\}} d K_{t}\right]
$$

We shall prove in step 3 below that

$$
\begin{equation*}
K \text { is absolutely continuous, } \mathbb{P}_{\sigma} \text {-a.s. } \tag{4.14}
\end{equation*}
$$

Then, noticing that \mathbb{P}^{*} is equivalent to \mathbb{P}_{σ}, we deduce from the previous inequalities that

$$
\begin{equation*}
\mathbb{E}^{\mathbb{P}^{*}}\left[\int_{0}^{\mathrm{H}} \mathbf{1}_{\left\{Y_{t}=X_{t}\right\}} \dot{K}_{t} d t\right]>0 \text { and thus Leb } \otimes \mathbb{P}_{\sigma}\left[t<\mathrm{H}, Y_{t}=X_{t}\right]>0 \tag{4.15}
\end{equation*}
$$

where \dot{K} is the derivative of K. Moreover, combining Lemma 4.16, Remark 4.8, and Proposition 4.9, we see that \hat{u}, and hence u, is a $\mathbb{P}_{\sigma^{-}}$-semimartingale. Then by Propo-
sition 4.17 , there exist measurable sets $\mathbb{T}^{u} \subset[0, T]$ and $\Omega_{t}^{u} \in \mathcal{F}_{t}$ for each $t \in \mathbb{T}^{u}$ such that (4.4) holds. Similarly, we may find \mathbb{T}^{v} and Ω_{t}^{v} such that (4.4) holds for v as well. Then (4.15) leads to Leb $\otimes \mathbb{P}_{\sigma}\left[t \in[0, \mathrm{H}) \cap \mathbb{T}^{u} \cap \mathbb{T}^{v}, Y_{t}=X_{t}\right]>0$, and thus there exists $t^{*} \in \mathbb{T}^{v} \cap \mathbb{T}^{u}$ such that $\mathbb{P}_{\sigma}\left[t^{*}<\mathrm{H}, Y_{t^{*}}=X_{t^{*}}\right]>0$, which implies further that, recalling the V defined in (4.1) and Theorem 4.4(i),

$$
\mathbb{P}_{\sigma}\left[\Omega_{t^{*}}^{u} \cap \Omega_{t^{*}}^{v} \cap\left\{t^{*}<\mathrm{H}, Y_{t^{*}}=X_{t^{*}}\right\} \cap\left\{Y_{t^{*}}=V_{t^{*}}\right\}\right]>0
$$

Therefore, there exists $\omega^{*} \in \Omega$ such that

$$
\begin{gather*}
\text { both } u \text { and } v \text { are } \mathcal{P}_{L} \text {-punctually } C^{1,2} \text { at }\left(t^{*}, \omega^{*}\right), \\
t^{*}<\mathrm{H}\left(\omega^{*}\right) \text { and } X_{t^{*}}\left(\omega^{*}\right)=\sup _{\tau \in \mathcal{T}} \overline{\mathcal{E}}_{L}^{t^{*}, \omega^{*}}\left[X_{\tau \wedge\left(\mathrm{H}^{t^{*}, \omega^{*}}-t^{*}\right)}^{t^{*}, \omega^{*}}\right] \tag{4.16}
\end{gather*}
$$

2. Let $\left(\alpha^{u}, \beta^{u}\right) \in \mathcal{J}_{L} u\left(t^{*}, \omega^{*}\right) \subset \operatorname{cl}\left(\bar{J}_{L} u_{t^{*}}\left(\omega^{*}\right)\right)$ and $\left(\alpha^{v}, \beta^{v}\right) \in \mathcal{J}_{L} v\left(t^{*}, \omega^{*}\right) \subset$ $c l\left(\underline{J}_{L} v_{t^{*}}\left(\omega^{*}\right)\right)$. Then $\left(\alpha^{u}-\delta, \beta^{u}\right) \in \bar{J}_{L} u_{t^{*}}\left(\omega^{*}\right)$ and $\left(\alpha^{v}+\delta, \beta^{v}\right) \in \underline{\mathcal{J}}_{L} v\left(t^{*}, \omega^{*}\right)$. Applying Proposition 3.10, we have

$$
\begin{equation*}
\left(\alpha^{\prime}, \beta^{\prime}\right) \in \overline{\mathcal{J}}_{L} X_{t^{*}}\left(\omega^{*}\right), \quad \text { where } \quad \alpha^{\prime}:=\alpha^{u}-\alpha^{v}-\alpha-3 \delta, \beta^{\prime}:=\beta^{u}-\beta^{v}-\beta \tag{4.17}
\end{equation*}
$$

Choose $\lambda \in \mathbb{L}_{L}(\mathbb{F})$ such that $\left(\sigma^{T}\right)^{t^{*}, \omega^{*}} \beta^{\prime} \cdot \lambda=L\left|\left(\sigma^{T}\right)^{t^{*}, \omega^{*}} \beta^{\prime}\right|$. Then, for any $\varepsilon>0$, letting $\mathrm{H}^{\prime} \leq \mathrm{H}^{t^{*}, \omega^{*}}-t^{*}$ be a common localizing time satisfying $\left|\sigma_{t}^{t^{*}, \omega^{*}}-\sigma_{t^{*}}\left(\omega^{*}\right)\right| \leq \varepsilon$ for $0 \leq t \leq \mathrm{H}^{\prime}$, we have

$$
\begin{aligned}
X_{t^{*}}\left(\omega^{*}\right) & \leq \underline{\mathcal{E}}_{L}\left[X_{\mathrm{H}^{\prime}}^{t^{*}, \omega^{*}}-Q_{\mathrm{H}^{\prime}}^{\alpha^{\prime}, \beta^{\prime}}\right] \leq \mathbb{E}^{\mathbb{P}_{\sigma^{*}, \omega^{*}, \lambda}}\left[X_{\mathrm{H}^{\prime}, \omega^{*}}^{t^{*}}-Q_{\mathrm{H}^{\prime}}^{\alpha^{\prime}, \beta^{\prime}}\right] \\
& =\mathbb{E}^{\mathbb{P}_{\sigma^{t^{*}, \omega^{*}, \lambda}}}\left[X_{\mathrm{H}^{\prime}}^{t^{*}, \omega^{*}}-\alpha^{\prime} \mathrm{H}^{\prime}-\int_{0}^{\mathrm{H}^{\prime}} L\left|\left(\sigma^{T}\right)_{t}^{t^{*}, \omega^{*}} \beta^{\prime}\right| d t\right] \\
& \left.\leq \overline{\mathcal{E}}_{L}^{t^{*}, \omega^{*}}\left[X_{\mathrm{H}^{\prime}}^{t^{*}, \omega^{*}}\right]-\left(\alpha^{\prime}+L\left|\sigma_{t^{*}}^{T}\left(\omega^{*}\right) \beta^{\prime}\right|-L \varepsilon\left|\beta^{\prime}\right|\right) \mathbb{E}_{\sigma^{t^{*}, \omega^{*}, \lambda}}^{\mathbb{H}^{\prime}}\right] .
\end{aligned}
$$

With the optimality in (4.16), this implies that $\alpha^{\prime}+L\left|\sigma_{t^{*}}^{T}\left(\omega^{*}\right) \beta^{\prime}\right|-L \varepsilon\left|\beta^{\prime}\right| \leq 0$, and by the arbitrariness of $\varepsilon>0$, we get $\alpha^{\prime}+L\left|\sigma_{t^{*}}^{T}\left(\omega^{*}\right) \beta^{\prime}\right| \leq 0$. Moreover, applying Proposition 3.9, the semiviscosity properties of u and v lead to

$$
-\alpha^{u}-F_{t^{*}}\left(\omega^{*}, u_{t^{*}}\left(\omega^{*}\right), \sigma_{t^{*}}^{T}\left(\omega^{*}\right) \beta^{u}\right) \leq 0, \quad-\alpha^{v}-F\left(_{t^{*}}\left(\omega^{*}, v_{t^{*}}\left(\omega^{*}\right), \sigma_{t^{*}}^{T}\left(\omega^{*}\right) \beta^{v}\right) \geq 0\right.
$$

Then, recalling (4.17) and by (4.12),

$$
\begin{aligned}
& 0 \leq \alpha^{u}+ \\
& \quad F_{t^{*}}\left(\omega^{*}, u_{t^{*}}\left(\omega^{*}\right), \sigma_{t^{*}}^{T}\left(\omega^{*}\right) \beta^{u}\right)-\alpha^{v}-F_{t^{*}}\left(\omega^{*}, v_{t^{*}}\left(\omega^{*}\right), \sigma_{t^{*}}^{T}\left(\omega^{*}\right)\right. \\
& \quad-\alpha^{\prime}-L\left|\sigma_{t^{*}}^{T}\left(\omega^{*}\right) \beta^{\prime}\right| \\
& \leq \alpha+3 \delta+L\left|w_{t^{*}}\left(\omega^{*}\right)\right|+L\left|\sigma_{t^{*}}^{T}\left(\omega^{*}\right) \beta\right| \leq \alpha+L\left|w_{0}\right|+L\left|\sigma_{0}^{T} \beta\right|+(3+L+L \mid) \delta .
\end{aligned}
$$

Now sending $\delta \rightarrow 0$, we obtain (4.11).
3. It remains to prove (4.14). By Proposition 4.16 and Remark 4.8, we know the process \hat{u} is an $\overline{\mathcal{E}}_{L}$-submartingale. Then it follows from Proposition 4.9 and Corollary 4.3 that there exist $\lambda^{u} \in \mathbb{L}_{L}(\mathbb{F})$ and $K^{u} \in \mathbb{I}^{2}$ such that $d \hat{u}_{t}=Z_{t}^{u} \cdot\left[d B_{t}-\sigma_{t} \lambda_{t}^{u} d t\right]+d K_{t}^{u}$, \mathbb{P}_{σ}-a.s. and thus

$$
d u_{t}=Z_{t}^{u} \cdot d B_{t}-\left[\sigma_{t} \lambda_{t}^{u} \cdot Z_{t}^{u}-L_{0}\left|u_{t}\right|-F_{t}^{0}-1\right] d t+d K_{t}^{u}, \quad \mathbb{P}_{\sigma^{-}} \text {-a.s. }
$$

Similarly, $d v_{t}=Z_{t}^{v} \cdot d B_{t}+\left[-\sigma_{t} \lambda_{t}^{v} \cdot Z_{t}^{v}+L_{0}\left|v_{t}\right|+F_{t}^{0}+1\right] d t-d K_{t}^{v}, \mathbb{P}_{\sigma}$-a.s. for some $\lambda^{v} \in \mathbb{L}_{L}(\mathbb{F})$ and $K^{v} \in \mathbb{I}^{2}$. Thus, with appropriately defined processes Z^{X}, σ^{X} and the λ^{*} corresponding to \mathbb{P}^{*},

$$
\begin{equation*}
d X_{t}=Z_{t}^{X} \cdot\left[d B_{t}-\sigma_{t} \lambda_{t}^{*} d t\right]-\sigma_{t}^{X} d t+d\left(K_{t}^{u}+K_{t}^{v}\right), \quad \mathbb{P}_{\sigma^{-}} \text {a.s. } \tag{4.18}
\end{equation*}
$$

Now for any $0 \leq s \leq t \leq T$, define $\tau_{s}:=\inf \left\{t \geq s \wedge \mathrm{H}: X_{t}=Y_{t}\right\}$. Recalling Theorem 4.4(iii), we have $K_{\tau_{s}}=K_{s \wedge \mathrm{H}}, \mathbb{P}_{\sigma}$-a.s. Then, by (4.18) we have

$$
\begin{aligned}
& \mathbb{E}^{\mathbb{P}^{*}}\left[K_{t \wedge \mathrm{H}}-K_{s \wedge \mathrm{H}} \mid \mathcal{F}_{s \wedge \mathrm{H}}\right]=\mathbb{E}^{\mathbb{P}^{*}}\left[K_{t \wedge \mathrm{H}}-K_{\tau_{s}} \mid \mathcal{F}_{s \wedge \mathrm{H}}\right] \\
= & \mathbb{E}^{\mathbb{P}^{*}}\left[Y_{\tau_{s}}-Y_{t \wedge \mathrm{H}} \mid \mathcal{F}_{s \wedge \mathrm{H}}\right] \leq \mathbb{E}^{\mathbb{P}^{*}}\left[X_{\tau_{s}}-X_{t \wedge \mathrm{H}} \mid \mathcal{F}_{s \wedge \mathrm{H}}\right] \\
= & \mathbb{E}^{\mathbb{P}^{*}}\left[\int_{\tau_{s}}^{t \wedge \mathrm{H}}\left[\sigma_{r}^{X} d r-d K_{r}^{u}-d K_{r}^{v}\right] \mid \mathcal{F}_{s \wedge \mathrm{H}}\right] \leq \mathbb{E}^{\mathbb{P}^{*}}\left[\int_{s \wedge \mathrm{H}}^{t \wedge \mathrm{H}}\left|\sigma_{r}^{X}\right| d r \mid \mathcal{F}_{s \wedge \mathrm{H}}\right] .
\end{aligned}
$$

This implies that $d K_{t} \leq\left|\sigma_{t}^{X}\right| d t, \mathbb{P}^{*}$-a.s. and hence also \mathbb{P}_{σ}-a.s.
5. Existence. To construct a viscosity solution to a semilinear path-dependent PDE , we need to introduce BSDEs. For $(t, \omega) \in \Theta, \tau \in \mathcal{T}_{T-t}$, and $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{\tau}, \mathbb{P}_{\sigma^{t, \omega}}\right)$, consider the BSDE:

$$
\begin{equation*}
Y_{s}=\xi+\int_{s}^{\tau} F_{r}^{t, \omega}\left(B ., Y_{r},\left(\sigma^{T}\right)_{r}^{t, \omega} Z_{r}\right) d r-\int_{s}^{\tau} Z_{r} \cdot d B_{r}, \quad 0 \leq s \leq \tau, \mathbb{P}_{\sigma^{t, \omega}} \text {-a.s. } \tag{5.1}
\end{equation*}
$$

By Assumption 3.1 and Theorem 4.2, additionally assuming that

$$
\mathbb{E}^{\mathbb{P}_{\sigma t, \omega}}\left[\int_{0}^{T-t} F_{s}^{t, \omega}(B, 0,0)^{2} d s\right]<\infty
$$

for all $(t, \omega) \in \Theta$, one may easily prove by standard arguments that the above BSDE admits a unique \mathbb{F}-measurable solution, denoted as $\left(\mathcal{Y}^{t, \omega}(\tau, \xi), \mathcal{Z}^{t, \omega}(\tau, \xi)\right)$. Now, fix $\xi \in \mathbb{L}^{0}\left(\mathcal{F}_{T}\right)$ such that $\xi^{t, \omega} \in \mathbb{L}^{2}\left(\mathcal{F}_{T-t}, \mathbb{P}_{\sigma^{t, \omega}}\right)$ for any $(t, \omega) \in \Theta$, and define

$$
\begin{equation*}
u(t, \omega):=\mathcal{Y}_{0}^{t, \omega}\left(T-t, \xi^{t, \omega}\right) \tag{5.2}
\end{equation*}
$$

The conditions here are slightly weaker than those of [14, section 4.2], but the arguments are more or less the same.

Theorem 5.1. Let Assumption 3.1 hold true. Assume F is continuous in t and $u \in C_{2}^{0}(\Theta)$. Then u is an L-viscosity solution of PPDE (3.1) for any $L \geq L_{0}$.

Proof. Since $u \in C_{2}^{0}(\Theta)$, following similar arguments as in [14, section 4.2], (5.2) implies the dynamic programming principle: given $(t, \omega) \in \Theta$ and $\tau \in \mathcal{T}_{T-t}$,

$$
\begin{equation*}
u(t, \omega)=\mathcal{Y}_{t}^{t, \omega}\left(\tau, u_{\tau}^{t, \omega}\right) \tag{5.3}
\end{equation*}
$$

Without loss of generality, we check only the viscosity subsolution property at $(0,0)$. Assume not, and then there exists $\varphi \in \underline{\mathcal{A}}_{L} u_{0}$ with localizing time H such that $-c:=\mathcal{L} \varphi_{0}+F_{0}\left(u_{0}, \sigma_{0}^{T} \partial_{\omega} \varphi_{0}\right)<0$. By continuity there exists $\tau \in \mathcal{T}_{\mathrm{H}}^{+}$such that $\mathcal{L} \varphi_{t}+F_{t}\left(u_{t}, \sigma_{t}^{T} \partial_{\omega} \varphi_{t}\right) \leq-\frac{c}{2}$ for $0 \leq t \leq \tau$. Note that $u_{t}=\mathcal{Y}_{t}^{0,0}\left(\tau, u_{\tau}\right)$ and denote $Z_{t}:=\mathcal{Z}^{0,0}\left(\tau, u_{\tau}\right)$. Then, by (5.3) and the functional Itô formula (3.3),

$$
\begin{aligned}
{[\varphi-} & u]_{\tau}-[\varphi-u]_{0} \\
& =\int_{0}^{\tau}\left[\mathcal{L} \varphi_{t}+F_{t}\left(u_{t}, \sigma_{t}^{T} Z_{t}\right)\right] d t+\int_{0}^{\tau}\left[\partial_{\omega} \varphi_{t}-Z_{t}\right] \cdot d B_{t} \\
& \leq \int_{0}^{\tau}\left[-\frac{c}{2}+F_{t}\left(u_{t}, \sigma_{t}^{T} Z_{t}\right)-F_{t}\left(u_{t}, \sigma_{t}^{T} \partial_{\omega} \varphi_{t}\right)\right] d t+\int_{0}^{\tau}\left[\partial_{\omega} \varphi_{t}-Z_{t}\right] \cdot d B_{t} \\
& =\int_{0}^{\tau}\left[-\frac{c}{2}-\left[\partial_{\omega} \varphi_{t}-Z_{t}\right] \cdot \sigma_{t} \lambda_{t}\right] d t+\int_{0}^{\tau}\left[\partial_{\omega} \varphi_{t}-Z_{t}\right] \cdot d B_{t}, \mathbb{P}_{\sigma} \text {-a.s. }
\end{aligned}
$$

where $\lambda \in \mathbb{L}_{L_{0}}(\mathbb{F})$. Note that $\mathbb{P}_{\sigma, \lambda}$ and \mathbb{P}_{σ} are equivalent. This implies

$$
[\varphi-u]_{\tau}-[\varphi-u]_{0} \leq-\frac{c}{2} \tau+\int_{0}^{\tau}\left[\partial_{\omega} \varphi_{t}-Z_{t}\right] \cdot\left[d B_{t}-\sigma_{t} \lambda_{t} d t\right], \mathbb{P}_{\sigma, \lambda} \text {-a.s. }
$$

Thus, noting that $L \geq L_{0}$ and that $d B_{t}-\sigma_{t} \lambda_{t} d t$ is a $\mathbb{P}_{\sigma, \lambda}$-martingale,

$$
[\varphi-u]_{0} \geq \mathbb{E}^{\mathbb{P} \sigma, \lambda}\left[[\varphi-u]_{\tau}+\frac{c}{2} \tau\right]>\mathbb{E}^{\mathbb{P} \sigma, \lambda}\left[[\varphi-u]_{\tau}\right] \geq \underline{\mathcal{E}}_{L}\left[[\varphi-u]_{\tau}\right],
$$

contradicting the fact that $\varphi \in \underline{\mathcal{A}}_{L} u_{0}$.
The following proposition gives a sufficient condition so that $u \in C_{2}^{0}(\Theta)$. The proof follows from standard BSDE estimates (see, e.g., [14, section 4.2]), and thus is omitted.

Proposition 5.2. Let F, ξ be uniformly continuous in ω, F continuous in t. Then $u \in C_{2}^{0}(\Theta)$.

6. Appendix.

6.1. Martingale representation. Recall (2.2), denote $X:=X^{\sigma}$ for notational simplicity, and define $\mathbb{F}^{X}:=\left\{\mathcal{F}_{t}^{X}, 0 \leq t \leq T\right\}$ to be the filtration generated by the process X.

Lemma 6.1. For any $\eta \in \mathbb{L}^{1}\left(\mathcal{F}_{T}^{X}, \mathbb{P}_{0}\right)$, we have $\mathbb{E}^{\mathbb{P}_{0}}\left[\eta \mid \mathcal{F}_{t}^{X}\right]=\mathbb{E}^{\mathbb{P}_{0}}\left[\eta \mid \mathcal{F}_{t}\right], \mathbb{P}_{0}$-a.s.
Proof. Denote $\mathcal{G}_{t}:=\sigma\left\{B_{s}-B_{t}: s \geq t\right\}$. Since X is a strong solution, we see that $\mathcal{F}_{t}^{X} \subset \mathcal{F}_{t}$ and $\mathcal{F}_{T}^{X} \subset \mathcal{F}_{t}^{X} \vee \mathcal{G}_{t}$. In particular, \mathcal{F}_{t}^{X} and \mathcal{F}_{t} are independent of \mathcal{G}_{t} under \mathbb{P}_{0}. Then, $\mathbb{E}^{\mathbb{P}_{0}}\left[\mathbf{1}_{E} \mathbf{1}_{E^{\prime}} \mid \mathcal{F}_{t}^{X}\right]=\mathbf{1}_{E} \mathbb{P}_{0}\left[E^{\prime}\right]=\mathbb{E}^{\mathbb{P}_{0}}\left[\mathbf{1}_{E} \mathbf{1}_{E^{\prime}} \mid \mathcal{F}_{t}\right]$ for any $E \in \mathcal{F}_{t}^{X}, E^{\prime} \in \mathcal{G}_{t}$. Now the result follows from the standard argument of monotone class theorem.

We next establish the martingale representation property for \mathbb{P}_{σ}.
Proof of Theorem 4.2. Uniqueness is obvious. To prove existence, by standard approximation arguments, we may assume without loss of generality that ξ is Lipschitz continuous in ω. Denote

$$
u(t, \omega):=\mathbb{E}^{\mathbb{P}_{o} t, \omega}\left[\xi^{t, \omega}\right]=\mathbb{E}^{\mathbb{P}_{0}}\left[\xi^{t, \omega}\left(X^{t, \omega}\right)\right], \text { where } X_{s}^{t, \omega}=\int_{0}^{s} \sigma_{r}^{t, \omega}\left(X^{t, \omega}\right) d B_{r}, \mathbb{P}_{0} \text {-a.s. }
$$

Since σ is Lipschitz continuous in ω, one can show that u is uniformly Lipschitz continuous in ω and, by Proposition 2.6 with $\lambda=0, u$ is a \mathbb{P}_{σ}-martingale. The rest of the proof organizes into three steps.

1. We first assume σ is constant and show that the above Z exists and is bounded. Indeed, by standard approximation again, we may assume $\xi=g\left(B_{t_{1}}, \cdots, B_{t_{n}}\right)$ for some $0<t_{1}<\cdots<t_{n} \leq T$ and smooth g. Then one can easily see that $u(t, \omega)=$ $v\left(t, B_{t_{1}}, \cdots, B_{t_{i}}, B_{t}\right), t_{i} \leq t<t_{i+1}$, for some smooth function v. Applying Itô's formula we obtain the representation with $Z_{t}=D v\left(t, B_{t_{1}}, \cdots, B_{t_{i}}, B_{t}\right)$, where $D v$ is the gradient in terms of the last variable B_{t}. It is straightforward to check that $D v$ is bounded by the Lipschitz constant of ξ, which implies the boundedness of Z.
2. We now prove the general case. Denote $\tilde{\xi}:=\xi(X),. \tilde{u}:=u(X$.$) , and \tilde{\sigma}:=\sigma(X$.$) .$ It follows from Lemma 6.1 that \tilde{u} is a ($\mathbb{P}_{0}, \mathbb{F}$)-martingale. By the standard martingale representation theorem under \mathbb{P}_{0}, there exists \tilde{Z} such that $\mathbb{E}^{\mathbb{P}_{0}}\left[\int_{0}^{T}\left|\tilde{Z}_{t}\right|^{2} d t\right]<\infty$ and $d \tilde{u}_{t}=\tilde{Z}_{t} \cdot d B_{t}, \mathbb{P}_{0}$-a.s. We claim that

$$
\begin{equation*}
\tilde{Z}=\tilde{\sigma}^{T} \zeta \quad \text { for some } \zeta \in \mathbb{L}^{0}\left(\mathbb{F}, \mathbb{R}^{d}\right) . \tag{6.1}
\end{equation*}
$$

Then $d \tilde{u}_{t}=\zeta_{t} \cdot d X_{t}$, and thus $d\langle\tilde{u}, X\rangle_{t}=\tilde{\sigma}_{t} \tilde{\sigma}_{t}^{T} \zeta_{t} d t, \mathbb{P}_{0}$-a.s. Rewrite $\sigma=P \sigma^{*} Q$, where
P, Q take values in orthogonal matrices and $\sigma^{*}=\operatorname{diag}\left[a_{1}, c d s, a_{d}\right]$ is a diagonal matrix valued process. Denote $\tilde{P}:=P(X)$, and similarly for other terms. Since $\langle\tilde{u}, X\rangle \in$ $\mathbb{L}^{0}\left(\mathbb{F}^{X}\right)$, we see that $\tilde{\sigma} \tilde{\sigma}^{T} \zeta=\tilde{P}\left(\tilde{\sigma}^{*}\right)^{2} \tilde{P}^{T} \zeta \in \mathbb{L}^{0}\left(\mathbb{F}^{X}\right)$, and thus $\left(\tilde{\sigma}^{*}\right)^{2} \tilde{P}^{T} \zeta \in \mathbb{L}^{0}\left(\mathbb{F}^{X}\right)$. Denote $\tilde{P}^{T} \zeta:=\left[\zeta_{1}, \cdots, \zeta_{d}\right]^{T}$, and let ζ^{\prime} be determined by

$$
\tilde{P}^{T} \zeta^{\prime}:=\left[\zeta_{1} \mathbf{1}_{\left\{\tilde{a}_{1} \neq 0\right\}}, \cdots, \zeta_{d} \mathbf{1}_{\left\{\tilde{a}_{d} \neq 0\right\}}\right]^{T} .
$$

Then one can easily check that

- $\tilde{\sigma}^{*} \tilde{P}^{T} \zeta^{\prime}=\left[\tilde{a}_{1} \zeta_{1} \mathbf{1}_{\left\{\tilde{a}_{1} \neq 0\right\}}, \cdots, \tilde{a}_{d} \zeta_{d} \mathbf{1}_{\left\{\tilde{a}_{d} \neq 0\right\}}\right]^{T}=\tilde{\sigma}^{*} \tilde{P}^{T} \zeta$ and thus $\tilde{\sigma} \zeta^{\prime}=\tilde{\sigma} \zeta ;$
- $\tilde{a}_{i}^{2} \zeta_{i} \mathbf{1}_{\left\{\tilde{a}_{i} \neq 0\right\}} \in \mathbb{L}^{0}\left(\mathbb{F}^{X}\right)$, then $\zeta_{i} \mathbf{1}_{\left\{\tilde{a}_{i} \neq 0\right\}} \in \mathbb{L}^{0}\left(\mathbb{F}^{X}\right)$, thus $\tilde{P}^{T} \zeta^{\prime} \in \mathbb{L}^{0}\left(\mathbb{F}^{X}\right)$, and hence $\zeta^{\prime} \in \mathbb{L}^{0}\left(\mathbb{F}^{X}\right)$.

The second property implies that $\zeta^{\prime}=Z(X)$ for some $Z \in \mathbb{L}^{0}(\mathbb{F})$. Then, by the first property,

$$
d \tilde{u}_{t}=\zeta_{t}^{\prime} \cdot d X_{t}, \quad \mathbb{P}_{0} \text {-a.s. } \quad \text { and thus } \quad d u_{t}=Z_{t} \cdot d B_{t}, \quad \mathbb{P}_{\sigma^{-}} \text {-a.s. }
$$

3. It remains to prove the claim (6.1). Consider the decomposition $\tilde{Z}=\tilde{\sigma}^{T} \zeta+\eta$, where $\tilde{\sigma} \eta=0$, and let us prove that $\eta=0, \mathbb{P}_{0}$-a.s. For this purpose, let $n>0$, $h:=\frac{T}{n}, t_{i}:=i h, i=0, \cdots, n$, and denote $\bar{\eta}_{i}:=h^{-1} \mathbb{E}^{\mathbb{P}_{0}}\left[\int_{t_{i}}^{t_{i+1}} \eta_{s} d s \mid \mathcal{F}_{t_{i}}\right], \bar{\sigma}_{i}:=$ $h^{-1} \mathbb{E}^{\mathbb{P}_{0}}\left[\int_{t_{i}}^{t_{i+1}} \tilde{\sigma}_{s} d s \mid \mathcal{F}_{t_{i}}\right], i=0, \ldots, n-1$. Then,

$$
\mathbb{E}^{\mathbb{P}_{0}}\left[\int_{0}^{T}\left|\eta_{t}\right|^{2} d t\right]=\mathbb{E}^{\mathbb{P}_{0}}\left[\int_{0}^{T} \tilde{Z}_{t} \cdot \eta_{t} d t\right]=\sum_{i=0}^{n-1} \mathbb{E}^{\mathbb{P}_{0}}\left[\int_{t_{i}}^{t_{i+1}} \tilde{Z}_{t} \cdot \bar{\eta}_{i} d t\right]+R_{1}^{n},
$$

where $R_{1}^{n} \longrightarrow 0$ as $n \rightarrow \infty$. Denoting $B_{s}^{t}:=B_{s}-B_{t}$, it follows from the Itô isometry that

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}_{0}} & {\left[\int_{0}^{T}\left|\eta_{t}\right|^{2} d t\right] } \\
& =\sum_{i=0}^{n-1} \mathbb{E}^{\mathbb{P}_{0}}\left[\bar{\eta}_{i} \cdot B_{t_{i+1}}^{t_{i}} \int_{t_{i}}^{t_{i+1}} \tilde{Z}_{t} \cdot d B_{t}\right]+R_{1}^{n} \\
& =\sum_{i=0}^{n-1} \mathbb{E}^{\mathbb{P}_{0}}\left[\left(\tilde{u}_{t_{i+1}}-\tilde{u}_{t_{i}}\right) \bar{\eta}_{i} \cdot B_{t_{i+1}}^{t_{i}}\right]+R_{1}^{n} \\
& =\sum_{i=0}^{n-1} \mathbb{E}^{\mathbb{P}_{0}}\left[\left(u_{t_{i+1}}(X)-u_{t_{i}}(X)\right) \bar{\eta}_{i} \cdot B_{t_{i+1}}^{t_{i}}\right]+R_{1}^{n} \\
& =\sum_{i=0}^{n-1} \mathbb{E}^{\mathbb{P}_{0}}\left[\left(u_{t_{i+1}}\left(X \otimes_{t_{i}} \bar{\sigma}_{i} B^{t_{i}}\right)-\mathbb{E}^{\mathbb{P}_{0}}\left[u_{t_{i+1}}\left(X \otimes_{t_{i}} \bar{\sigma}_{i} B^{t_{i}}\right) \mid \mathcal{F}_{t_{i}}\right]\right) \bar{\eta}_{i} \cdot B_{t_{i+1}}^{t_{i}}\right]+R_{2}^{n}
\end{aligned}
$$

where we used the fact that $B_{t_{i+1}}^{t_{i}}$ and $\mathcal{F}_{t_{i}}$ are \mathbb{P}_{0}-independent. By the uniform Lipschitz continuity of u, we see that $R_{2}^{n} \longrightarrow 0$ as $n \rightarrow \infty$. We further decompose $\bar{\eta}_{i}=\bar{\sigma}_{i}^{T} \varepsilon_{i}+\hat{\eta}_{i}$, where $\bar{\sigma}_{i} \hat{\eta}=0$. Note that, conditionally on $\mathcal{F}_{t_{i}}, \bar{\sigma}_{i} B^{t_{i}}$ and $\hat{\eta}_{i} \cdot B_{t_{i+1}}^{t_{i}}$ are \mathbb{P}_{0}-independetnt. Then

$$
\mathbb{E}^{\mathbb{P}_{0}}\left[\int_{0}^{T}\left|\eta_{t}\right|^{2} d t\right]=R_{2}^{n}+\sum_{i=1}^{n} r_{i}^{n},
$$

where $r_{i}^{n}:=\mathbb{E}^{\mathbb{P}_{0}}\left[\left(u_{t_{i+1}}\left(X \otimes_{t_{i}} \bar{\sigma}_{i} B^{t_{i}}\right)-\mathbb{E}^{\mathbb{P}_{0}}\left[u_{t_{i+1}}\left(X \otimes_{t_{i}} \bar{\sigma}_{i} B^{t_{i}}\right) \mid \mathcal{F}_{t_{i}}\right]\right) \bar{\sigma}_{i}^{T} \varepsilon_{i} \cdot B_{t_{i+1}}^{t_{i}}\right]$.

We now analyze r_{i}^{n}. By step 1 , there exists γ bounded by the Lipschitz constant of $u_{t_{i+1}}$ (in terms of ω) such that $u_{t_{i+1}}\left(X \otimes_{t_{i}} \bar{\sigma}_{i} B^{t_{i}}\right)-\mathbb{E}^{\mathbb{P}_{0}}\left[u_{t_{i+1}}\left(X \otimes_{t_{i}} \bar{\sigma}_{i} B^{t_{i}}\right) \mid \mathcal{F}_{t_{i}}\right]=$ $\int_{t_{i}}^{t_{i+1}} \gamma_{t} \cdot \bar{\sigma}_{i} d B_{t}^{t_{i}}$. Then

$$
\left|r_{i}^{n}\right|=\left|\mathbb{E}^{\mathbb{P}_{0}}\left[\int_{t_{i}}^{t_{i+1}} \gamma_{t} d t \cdot \bar{\sigma}_{i} \bar{\sigma}_{i}^{T} \varepsilon_{i}\right]\right|=\left|\mathbb{E}^{\mathbb{P}_{0}}\left[\int_{t_{i}}^{t_{i+1}} \gamma_{t} d t \cdot \bar{\sigma}_{i} \bar{\eta}_{i}\right]\right| \leq C h \mathbb{E}^{\mathbb{P}_{0}}\left[\left|\bar{\sigma}_{i} \bar{\eta}_{i}\right|\right] .
$$

Since $\tilde{\sigma} \eta=0$, we have $0=\mathbb{E}^{\mathbb{P}_{0}}\left[\int_{t_{i}}^{t_{i+1}} \tilde{\sigma}_{t} \eta_{t} d t \mid \mathcal{F}_{t_{i}}\right]=\bar{\sigma}_{i} \bar{\eta}_{i}+\mathbb{E}^{\mathbb{P}_{0}}\left[\int_{t_{i}}^{t_{i+1}}\left(\left[\tilde{\sigma}_{t}-\bar{\sigma}_{i}\right] \eta_{t}+\bar{\sigma}_{i}\left[\eta_{t}-\right.\right.\right.$ $\left.\left.\left.\bar{\eta}_{i}\right]\right) d t \mid \mathcal{F}_{t_{i}}\right]$. Thus, noting that $\sigma \in C_{2}^{0}(\Theta) \subset \mathbb{S}^{2}$ and $\mathbb{E}^{\mathbb{P}_{0}}\left[\int_{0}^{T}\left|\eta_{t}\right|^{2} d t\right]<\infty$,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|r_{i}^{n}\right| & \leq C \sum_{i=1}^{n} \mathbb{E}^{\mathbb{P}_{0}}\left[\int_{t_{i}}^{t_{i+1}}\left|\left[\tilde{\sigma}_{t}-\bar{\sigma}_{i}\right] \eta_{t}+\bar{\sigma}_{i}\left[\eta_{t}-\bar{\eta}_{i}\right]\right| d t\right] \\
& \leq C\left(\sum_{i=1}^{n} \mathbb{E}^{\mathbb{P}_{0}}\left[\int_{t_{i}}^{t_{i+1}}\left[\left|\tilde{\sigma}_{t}-\bar{\sigma}_{i}\right|^{2}+\left|\eta_{t}-\bar{\eta}_{i}\right|^{2}\right] d t\right]\right)^{\frac{1}{2}},
\end{aligned}
$$

which tends to zero, as $n \rightarrow \infty$. This implies that $\mathbb{E}^{\mathbb{P}_{0}}\left[\int_{0}^{T}\left|\eta_{t}\right|^{2} d t\right]=0$ and thus proves (6.1).
6.2. Some measurability issues. As a preparation for the nonlinear optimal stopping problem, we investigate a subtle but crucial measurability issue. Denote
(6.2) $\quad \mathbb{F}^{*}:=\mathbb{P}_{\sigma}$-augmentation of \mathbb{F} and $\mathcal{T}^{*}:=$ the set of \mathbb{F}^{*}-stopping times,
and recall that \mathbb{F} is the natural filtration of B. We start with the Blumenthal 0-1 law under \mathbb{P}_{σ}.

Proposition 6.2 (Blumenthal's 0-1 law). Under Assumption 2.2, for any bounded $\xi \in \mathcal{F}_{t+}, \mathbb{E}^{\mathbb{P}_{\sigma}}\left[\xi \mid \mathcal{F}_{t}\right]=\xi, \mathbb{P}_{\sigma}$-a.s. Consequently, the augmented filtration \mathbb{F}^{*} is right continuous.

Proof. Denote again $X:=X^{\sigma}$ and $\tilde{\xi}:=\xi\left(\underset{\tilde{\xi}}{ }\right.$). Clearly $\tilde{\xi} \in \mathcal{F}_{t+}$, and by the Blumenthal 0-1 law under \mathbb{P}_{0}, we have $\mathbb{E}^{\mathbb{P}_{0}}\left[\tilde{\xi} \mid \mathcal{F}_{t}\right]=\tilde{\xi}, \mathbb{P}_{0}$-a.s. Since $\tilde{\xi} \in \mathbb{L}^{1}\left(\mathcal{F}_{T}^{X}, \mathbb{P}_{0}\right)$, applying Lemma 6.1 we see that $\mathbb{E}^{\mathbb{P}_{0}}\left[\tilde{\xi} \mid \mathcal{F}_{t}^{X}\right]=\tilde{\xi}, \mathbb{P}_{0}$-a.s., which exactly means $\mathbb{E}^{\mathbb{P}_{\sigma}}\left[\xi \mid \mathcal{F}_{t}\right]=\xi$, \mathbb{P}_{σ}-a.s.

Following the arguments in [17], we have the following.
Proposition 6.3. Let $\tau \in \mathcal{T}^{*}$ be previsible, namely, there exist $\tau_{n} \in \mathcal{T}^{*}$ such that $\tau_{n}<\tau$ and $\tau_{n} \uparrow \tau$. Then there exists $\bar{\tau} \in \mathcal{T}$ such that $\bar{\tau}=\tau, \mathbb{P}_{\sigma}$-a.s.

Proof. Denote by $\mathbb{F}^{+}:=\left\{\mathcal{F}_{t}^{+}\right\}_{0 \leq t \leq T}$ the right filtration. For each $n \geq 1$ and $r \in \mathbb{Q} \cap[0, T]$, denote $E_{r}^{n}:=\left\{\tau_{n}<r\right\} \in \mathcal{F}_{r}^{*}$. Then there exists $\tilde{E}_{r}^{n} \in \mathcal{F}_{r}$ such that $\tilde{E}_{r}^{n} \subset E_{r}^{n}$ and $\mathbb{P}_{\sigma}\left(E_{r}^{n} \backslash \tilde{E}_{r}^{n}\right)=0$. Note that E_{r}^{n} is decreasing in n and increasing in r; without loss of generality we may assume that \tilde{E}_{r}^{n} has the same monotonicity. Define

$$
\tilde{\tau}_{n}:=\inf \left\{r \in \mathbb{Q} \cap[0, T]: \omega \in \tilde{E}_{r}^{n}\right\} \wedge T, \quad \tilde{\tau}:=\lim _{n \rightarrow \infty} \tilde{\tau}_{n} .
$$

One can easily check that $\tilde{\tau}_{n}$ and $\tilde{\tau}$ are \mathbb{F}^{+}-stopping times, $\tilde{\tau}_{n} \uparrow \tilde{\tau}$, and $\mathbb{P}_{\sigma}(\tilde{\tau}=\tau)=1$. To construct the desired \mathbb{F}-stopping time, we modify $\tilde{\tau}_{n}$ and $\tilde{\tau}$ as follows.

$$
\bar{\tau}_{n}:=\left(\tilde{\tau}_{n} \mathbf{1}_{\left\{\tilde{\tau}_{n}<\tilde{\tau}\right\}}+T \mathbf{1}_{\left\{\tilde{\tau}_{n}=\tilde{\tau}\right\}}\right) \wedge\left(T-\frac{1}{n}\right), \quad \bar{\tau}:=\lim _{n \rightarrow \infty} \bar{\tau}_{n} .
$$

It is clear that $\bar{\tau}_{n}$ are also \mathbb{F}^{+}-stopping times, $\bar{\tau}_{n} \uparrow \bar{\tau}, \bar{\tau} \geq \tilde{\tau}$, and $\mathbb{P}_{\sigma}(\bar{\tau}=\tau)=1$. Moreover, for each n, on $\left\{\tilde{\tau}_{n}<\tilde{\tau}\right\}$ we have $\bar{\tau}_{n}=\tilde{\tau}_{n} \wedge\left(T-\frac{1}{n}\right)<\tilde{\tau} \leq \bar{\tau}$; and on $\left\{\tilde{\tau}_{n}=\tilde{\tau}\right\}$, we have $\tilde{\tau}_{m}=\tilde{\tau}$ for all $m \geq n$, thus $\bar{\tau}_{m}=T-\frac{1}{m}, \bar{\tau}=T$, and therefore $\bar{\tau}_{n}=T-\frac{1}{n}<\bar{\tau}$. So in both cases we have $\bar{\tau}_{n}<\bar{\tau}$. Then $\{\bar{\tau} \leq t\}=\cap_{n \geq 1}\left\{\bar{\tau}_{n}<t\right\} \in \mathcal{F}_{t}$ for all $t \leq T$, that is, $\bar{\tau}$ is an \mathbb{F}-stopping time.

Lemma 6.4. Assume $X \in \mathbb{L}^{0}(\mathbb{F})$ is continuous (in t), \mathbb{P}_{σ}-a.s. Then there exists $\tau \in \mathcal{T}$ such that $\tau=\inf \left\{t: X_{t}=0\right\} \wedge T, \mathbb{P}_{\sigma}$-a.s.

Proof. If $X_{0}=0, \tau:=0$ satisfies all the requirement. We thus assume $X_{0} \neq 0$. Set $E:=\{\omega: X(\omega)$ continuous on $[0, T]\}$ and $\hat{X}:=X \mathbf{1}_{E}+\mathbf{1}_{E^{c}}$. Then $\hat{X} \in \mathbb{L}^{0}\left(\mathbb{F}^{*}\right)$ is continuous for all ω and $\hat{X}_{0} \neq 0$. Denote $\hat{\tau}:=\inf \left\{t: \hat{X}_{t}=0\right\} \wedge T \in \mathcal{T}^{*}$ and $\hat{\tau}_{n}:=\inf \left\{t:\left|\hat{X}_{t}\right| \leq \frac{1}{n}\right\} \wedge\left(T-\frac{1}{n}\right) \in \mathcal{T}^{*}$. Clearly $\hat{\tau}_{n}<\hat{\tau}$ and $\hat{\tau}_{n} \uparrow \hat{\tau}$. By Proposition 6.3, there exists $\tau \in \mathcal{T}$ such that $\hat{\tau}=\tau, \mathbb{P}_{\sigma}$-a.s. Note that $\tau=\inf \left\{t: X_{t}=0\right\} \wedge T$ on $\{\hat{\tau}=\tau\} \cap E$. Since $\mathbb{P}_{\sigma}[\hat{\tau}=\tau]=\mathbb{P}_{\sigma}[E]=1$, this concludes the proof.
6.3. Optimal stopping under $\overline{\mathcal{E}}_{L}$. The next result is a BSDE characterization of the nonlinear expectation $\overline{\mathcal{E}}_{L}$, which extends the g-expectation of Peng [35] to general σ.

Proposition 6.5. Let $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{T}, \mathbb{P}_{\sigma}\right)$ and $\tau \in \mathcal{T}$.
(i) For any $\lambda \in \mathbb{L}^{0}(\mathbb{F})$ bounded, $\mathbb{E}^{\mathbb{P}_{\sigma, \lambda}^{\tau, \omega}}\left[\xi^{\tau, \omega}\right]=Y_{\tau}^{\lambda}(\omega)$ for \mathbb{P}_{σ}-a.e. ω, where

$$
Y_{t}^{\lambda}=\xi+\int_{t}^{T} Z_{s} \cdot \sigma_{s} \lambda_{s} d s-\int_{t}^{T} Z_{s} \cdot d B_{s}, \quad \mathbb{P}_{\sigma^{-}} \text {a.s. }
$$

(ii) For any $L>0, \overline{\mathcal{E}}_{L}^{\tau, \omega}\left[\xi^{\tau, \omega}\right]=Y_{\tau}(\omega)$ for \mathbb{P}_{σ}-a.e. ω, where

$$
Y_{t}=\xi+\int_{t}^{T} L\left|\sigma_{s}^{T} Z_{s}\right| d s-\int_{t}^{T} Z_{s} \cdot d B_{s}, \quad \mathbb{P}_{\sigma^{-}}-a . s
$$

Proof. (i) The result follows directly from the definition of $\mathbb{P}_{\sigma, \lambda}$ and Proposition 2.6 .
(ii) Following Proposition 2.6, for $\mathbb{P}_{\sigma^{-}}$a.e. ω, we have $Y_{t}^{\tau, \omega}=\tilde{Y}_{t}, 0 \leq t \leq \tilde{T}:=$ $T-\tau(\omega), \mathbb{P}_{\sigma^{\tau, \omega}}$ a.s., where \tilde{Y} is the solution to the following shifted BSDE:

$$
\tilde{Y}_{t}=\xi^{\tau, \omega}+\int_{t}^{\tilde{T}} L\left|\left(\sigma^{\tau, \omega}\right)_{s}^{T} \tilde{Z}_{s}\right| d s-\int_{t}^{\tilde{T}} \tilde{Z}_{s} \cdot d B_{s}, \quad 0 \leq t \leq \tilde{T}, \quad \mathbb{P}_{\sigma^{\tau, \omega-a}} .
$$

Clearly, we have $\tilde{Y}_{0}=\overline{\mathcal{E}}_{L}^{\tau, \omega}\left[\xi^{\tau, \omega}\right]$, and therefore, $Y_{\tau}(\omega)=\overline{\mathcal{E}}_{L}^{\tau, \omega}\left[\xi^{\tau, \omega}\right], \mathbb{P}_{\sigma^{-}}$a.s.
As an application of Proposition 6.5 , we study the optimal stopping problem under $\overline{\mathcal{E}}_{L}$ via reflected BSDE under \mathbb{P}_{σ} :

$$
\left\{\begin{array}{l}
Y_{t}=X_{\mathrm{H}}+\int_{t}^{\mathrm{H}} L\left|\sigma_{s}^{T} Z_{s}\right| d s-\int_{t}^{\mathrm{H}} Z_{s} \cdot d B_{s}+K_{\mathrm{H}}-K_{t} ; \quad 0 \leq t \leq \mathrm{H}, \quad \mathbb{P}_{\sigma} \text {-a.s. } \tag{6.3}\\
Y \geq X, \quad\left(Y_{t}-X_{t}\right) d K_{t}=0 ;
\end{array}\right.
$$

Here the component K of the solution triplet (Y, Z, K) is by definition nondecreasing with $K_{0}=0$. Given the martingale representation Theorem 4.2, it follows from standard arguments (see, e.g., [18]) that (6.3) has a unique solution $(Y, Z, K) \in \mathbb{S}^{2} \times \mathbb{H}^{2} \times \mathbb{I}^{2}$, restricted on $[0, \mathrm{H}]$.

We are now ready to establish the nonlinear Snell envelope theory.

Proof of Theorem 4.4. (i) Since X and Y are continuous, \mathbb{P}_{σ}-a.s., applying Lemma 6.4 we have $\tau^{*} \in \mathcal{T}$ such that $\tau^{*}=\inf \left\{t: Y_{t}=X_{t}\right\} \wedge$ н, \mathbb{P}_{σ}-a.s. Moreover, since $Y_{\mathrm{H}}=X_{\mathrm{H}}$, it is clear that $Y_{\tau^{*}}=X_{\tau^{*}}, \mathbb{P}_{\sigma^{-}}$a.s. To see the optimality of τ^{*}, we first note that $Y>X$ in $\left[0, \tau^{*}\right)$. Then it follows from the minimum condition in (6.3) that $K=0$ in $\left[0, \tau^{*}\right)$. Thus RBSDE (6.3) becomes a standard BSDE on $\left[0, \tau^{*}\right]$. Now it follows from Proposition 6.5 (ii) that $Y_{0}=\overline{\mathcal{E}}_{L}\left[Y_{\tau^{*}}\right]=\overline{\mathcal{E}}_{L}\left[X_{\tau^{*}}\right]$.
(ii) We first show that $V_{0}=Y_{0}$. For any $\tau \in \mathcal{T}_{\mathrm{H}}$, by Proposition 6.5(ii) $\overline{\mathcal{E}}_{L}\left[X_{\tau}\right]=$ Y_{0}^{τ}, where

$$
Y_{t}^{\tau}=X_{\tau}+\int_{t}^{\tau} L\left|\sigma_{s}^{T} Z_{s}^{\tau}\right| d s-\int_{t}^{\tau} Z_{s}^{\tau} \cdot d B_{s}, \quad 0 \leq t \leq \tau, \mathbb{P}_{\sigma^{-}} \text {a.s. }
$$

Noting that $X_{\tau} \leq Y_{\tau}$, it follows from the comparison principle of BSDEs that $Y_{0}^{\tau} \leq Y_{0}$. Then $V_{0} \leq Y_{0}$. On the other hand, by (i) we have $Y_{0}=\overline{\mathcal{E}}_{L}\left[X_{\tau^{*}}\right] \leq V_{0}$. So $Y_{0}=V_{0}$.

For the general case, following Proposition 2.6, for any $\tau \in \mathcal{T}_{\mathrm{H}}$ and \mathbb{P}_{σ}-a.e. ω, we have $Y_{t}^{\tau, \omega}=\tilde{Y}_{t}, 0 \leq t \leq \tilde{\mathrm{H}}:=\mathrm{H}^{\tau, \omega}-\tau(\omega), \mathbb{P}_{\sigma^{\tau, \omega-a}}$ a.s., where \tilde{Y} is the solution to the following shifted RBSDE:
$\left\{\begin{array}{l}\tilde{Y}_{t}=X_{\tilde{\mathrm{H}}}^{\tau, \omega}+\int_{t}^{\tilde{\mathrm{H}}} L\left|\left(\sigma^{\tau, \omega}\right)_{s}^{T} \tilde{Z}_{s}\right| d s-\int_{t}^{\tilde{\mathrm{H}}} \tilde{Z}_{s} \cdot d B_{s}+\tilde{K}_{\tilde{\mathrm{H}}}-\tilde{K}_{t} ; \quad 0 \leq t \leq \tilde{\mathrm{H}}, \quad \mathbb{P}_{\sigma^{\tau, \omega}} \text { a.s. } \\ \tilde{Y} \geq X^{\tau, \omega}, \quad\left(\tilde{Y}_{t}-X_{t}^{\tau, \omega}\right) d \tilde{K}_{t}=0 ;\end{array}\right.$
Then the above arguments (for $t=0$) imply that $V_{\tau}(\omega)=\tilde{Y}_{0}$, and therefore, $V_{\tau}=Y_{\tau}$, \mathbb{P}_{σ}-a.s.
(iii) Take $\mathbb{P}^{*}:=\mathbb{P}_{\sigma, \lambda^{*}}$, where λ^{*} is so that $\left(\lambda^{*}\right)^{T} \sigma^{T} Z=L\left|\sigma^{T} Z\right|$ holds, completing the proof.

We remark that the optimal stopping problem here relies on the convergence Proposition 2.7 implicitly; more precisely, the wellposedness of RBSDE (6.3) relies on the dominated convergence theorem under \mathbb{P}_{σ}. In [13] the class \mathcal{P}_{L} is nondominated and we do not have this type of convergence theorem. Consequently, the optimal stopping problem in [13] is technically much more involved than here. As an application of RBSDE, we may prove Proposition 4.9.

Proof of Proposition 4.9. (i) For any $\tau \in \mathcal{T}$ such that $\tau \geq t$, consider the BSDE:

$$
Y_{s}=u_{\tau}+\int_{s}^{\tau} L\left|\sigma_{r}^{T} Z_{r}\right| d r-\int_{s}^{\tau} Z_{r} \cdot d B_{r}, \quad 0 \leq s \leq \tau, \quad \mathbb{P}_{\sigma} \text {-a.s. }
$$

One may easily show that $Y_{t}=\overline{\mathcal{E}}_{L}\left[u_{\tau} \mid \mathcal{F}_{t}\right], \mathbb{P}_{\sigma}$-a.s. By (ii) of Proposition 6.5, we have $Y_{t}(\omega)=\overline{\mathcal{E}}_{L}^{t, \omega}\left[u_{\tau^{t, \omega}}^{t, \omega}\right]$ for $\mathbb{P}_{\sigma^{-}}$a.e. ω. Since u is a pathwise $\overline{\mathcal{E}}_{L^{-}}$-submartingale and $\tau^{t, \omega} \in \mathcal{T}_{T-t}$, we obtain that $u_{t}(\omega) \leq \overline{\mathcal{E}}_{L}^{t, \omega}\left[u_{\tau^{t, \omega}}^{t, \omega}\right]=\overline{\mathcal{E}}_{L}\left[u_{\tau} \mid \mathcal{F}_{t}\right](\omega), \mathbb{P}_{\sigma^{-}}$a.s. Therefore, u is an $\overline{\mathcal{E}}_{L^{-} \text {-submartingale. }}$
(ii) Consider the following RBSDE with upper barrier:

$$
\left\{\begin{array}{l}
Y_{t}=u_{T}+\int_{t}^{T} L\left|\sigma_{s}^{T} Z_{s}\right| d s-\int_{t}^{T} Z_{s} \cdot d B_{s}-K_{T}+K_{t} ; \quad 0 \leq t \leq T, \mathbb{P}_{\sigma^{-}-\mathrm{a} . \mathrm{s}} \\
Y_{t} \leq u_{t}, \quad\left(u_{t}-Y_{t}\right) d K_{t}=0
\end{array}\right.
$$

Similar to Theorem 4.4, one can show that $Y_{t}=\operatorname{ess}-\inf _{\tau \in \mathcal{T}, \tau \geq t} \overline{\mathcal{E}}_{L}\left[u_{\tau} \mid \mathcal{F}_{t}\right], \mathbb{P}_{\sigma}$-a.s. Since u is an $\overline{\mathcal{E}}_{L}$-submartingale, we get $\overline{\mathcal{E}}_{L}\left[u_{\tau} \mid \mathcal{F}_{t}\right] \geq u_{t}, \mathbb{P}_{\sigma}$-a.s. for all $\tau \in \mathcal{T}_{T-t}$, and thus $Y \geq u$. On the other hand, by definition $Y \leq u$. Hence, $u=Y$. Further, take $\mathbb{P}^{*}:=\mathbb{P}_{\sigma, \lambda^{*}}$, where λ^{*} is so that $\left(\lambda^{*}\right)^{T} \sigma^{T} Z=L\left|\sigma^{T} Z\right|$ holds. Then the desired result follows.

REFERENCES

[1] E. Bayraktar and M. Sirbu, Stochastic Perron's method and verification without smoothness using viscosity comparison: The linear case, Proc. Amer. Math. Soc., 140 (2012), pp. 3645-3654.
[2] E. Bayraktar and M. Sirbu, Stochastic Perron's method for Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim., 51 (2013), pp. 4274-4294.
[3] L. A. Caffarelli and X. Cabre, Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ., 43, AMS, Providence, RI, 1995.
[4] P. Cheridito, H. M. Soner, N. Touzi, and N. Victoir, Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs, Comm. Pure Appl. Math., 60 (2007), pp. 1081-1110.
[5] R. Cont and D. Fournié, Change of variable formulas for non-anticipative functionals on path space, J. Funct. Anal., 259 (2010), pp. 1043-1072.
[6] R. Cont and D. Fournié, Functional Itô calculus and stochastic integral representation of martingales, Ann. Probab., 41 (2013), pp. 109-133.
[7] A. Cosso and F. Russo, Strong-viscosity solutions: Semilinear parabolic PDEs and path-dependent PDEs, Osaka J. Math., 56 (2019), pp. 323-373.
[8] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), pp. 1-42.
[9] M.G. Crandall, H. IshiI, and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), pp. 1-67.
[10] B. Dupire, Functional Itô Calculus, papers.ssrn.com, 2009.
[11] I. Ekren, Viscosity solutions of obstacle problems for fully nonlinear path-dependent PDEs, Stochastic Process. Appl., 127 (2017), pp. 3966-3996.
[12] I. Ekren, C. Keller, N. Touzi, and J. Zhang, On viscosity solutions of path-dependent PDEs, Ann. Probab., 42 (2014), pp. 204-236.
[13] I. Ekren, N. Touzi, and J. Zhang, Optimal stopping under nonlinear expectation, Stochastic Process. Appl., 124 (2014), pp. 3277-3311.
[14] I. Ekren, N. Touzi, and J. Zhang, Fully nonlinear viscosity solutions of path dependent PDEs: Part I, Ann. Probab., 44 (2016), pp. 1212-1253.
[15] I. Ekren, N. Touzi, and J. Zhang, Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II, Ann. Probab., 44 (2016), pp. 2507-2553.
[16] I. Ekren and J. Zhang, Pseudo-Markovian viscosity solutions of fully nonlinear degenerate PPDEs, J. Probab. Uncertain. Quant. Risk, 6 (2016).
[17] C. Dellacherie and P.-A. Meyer, Probabilities and Potential, A, Math. Stud. 29, Elsevier, New York, 1979.
[18] N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng, and M.-C. Quenez, Reflected solutions of backward SDE's, and related obstacle problems for PDE's, Ann. Probab., 25 (1997), pp. 702-737.
[19] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd ed., Stoch. Model. Appl. Probab. 25, Springer, New York, 2006.
[20] P. Henry-Labordere, X. Tan, and N. Touzi, A numerical algorithm for a class of BSDEs via the branching process, Stochastic Process. Appl., 124 (2014), pp. 1112-1140.
[21] M. Hu, S. Ji, S. Peng, and Y. Song, Backward stochastic differential equations driven by G-Brownian motion, Stochastic Process. Appl., 124 (2014), pp. 759-784.
[22] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss. 288, Springer, New York, 2003.
[23] S. Jazaerli and Y. Saporito, Functional Ito calculus, path-dependence and the computation of Greeks, Stochastic Process. Appl., 127 (2017), pp. 3997-4028.
[24] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Grad. Texts in Math. 113, Springer, New York, 1991.
[25] C. Keller, Viscosity solutions of path-dependent integro-differential equations, Stochastic Process. Appl., 126 (2016), pp. 2665-2718.
[26] D. Leao, A. Ohashi, and A. Simas, Weak Functional Itô Calculus and Applications, preprint, https://arxiv.org/abs/1408.1423.
[27] P.-L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. I. The case of bounded stochastic evolutions, Acta Math., 161 (1988), pp. 243-278.
[28] P.-L. Lions, Viscosity solutions of fully nonlinear second order equations and optimal stochastic control in infinite dimensions. II. Optimal control of Zakai's equation, in Stochastic Partial Differential Equations and Applications, Lecture Notes in Math. 1390, Springer, New York, 1989, pp. 147-170.
[29] P.-L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. III. Uniqueness of viscosity solutions for general second-order equations, J. Funct. Anal., 86 (1989), pp. 1-18.
[30] N. LukOYanov, On viscosity solution of functional Hamilton-Jacobi type equations for hereditary systems, Proc. Steklov Inst. Math., Suppl. 2 (2007), pp. 190-200.
[31] J. Ma, Z. Ren, N. Touzi, and J. Zhang, Large deviations for non-Markovian diffusions and a path-dependent Eikonal equation, Ann. Inst. Henri Poincaré, 52 (2016), pp. 1196-1216.
[32] H. Oberhauser, An extension of the functional Ito formula under a family of continuous semimartingale measures, Stoch. Dyn., 16 (2016), 1650010.
[33] E. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett., 14 (1990), pp. 55-61.
[34] E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, in Stochastic Partial Differential Equations and Their Applications, Lecture Notes in Control and Inform. Sci. 176, Springer, New York, 1992, pp. 200-217.
[35] S. Peng, Backward SDE and related g-expectation, in Backward Stochastic Differential Equations (Paris, 1995-1996), Pitman Res. Notes Math. Ser., 364, Longman, Harlow, 1997, pp. 141-159.
[36] S. Peng and Y. Song, G-expectation weighted Sobolev spaces, backward SDE and path dependent PDE, J. Math. Soc. Japan, 67 (2015), pp. 1725-1757.
[37] S. Peng and F. Wang, BSDE, Path-dependent PDE and nonlinear Feynman-Kac formula, Sci. China Math., 59 (2016), pp. 19-36.
[38] T. Pham and J. Zhang, Two Person Zero-Sum Game in Weak Formulation and Path Dependent Bellman-Isaacs Equation, SIAM J. Control Optim., 52 (2014), pp. 2090-2121.
[39] Z. Ren, Viscosity solutions of fully nonlinear elliptic path dependent PDEs, Ann. Appl. Probab., 26 (2016), pp. 3381-3414.
[40] Z. Ren, Perron's method for viscosity solutions of semilinear path-dependent PDEs, Stochastics, 89 (2016), pp. 843-867.
[41] Z. Ren and M. Rosestolato, Viscosity Solutions of Path-Dependent PDEs with Randomized Time, preprint, https://arxiv.org/abs/1806.07654.
[42] Z. Ren and X. Tan, On the convergence of monotone schemes for path-dependent PDE, Stochastic Process. Appl., 127 (2017), pp. 1738-1762.
[43] Z. Ren, N. Touzi, and J. Zhang, An overview of viscosity solutions of path-dependent PDEs, in Stochastic Analysis and Applications 2014, Springer Proc. Math. Stat. 100, D. Crisan, B. Hambly, and T. Zariphopoulou, eds., Springer, New York, 2014, pp. 397-453.
[44] Z. Ren, N. Touzi, and J. Zhang, Comparison of viscosity solutions of fully nonlinear degenerate parabolic path-dependent PDEs, SIAM J. Math. Anal., 49 (2017), pp. 4093-4116.
[45] W. Rudin, Real and Complex Analysis, Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991.
[46] Y. Saporito, Functional Meyer-Tanaka formula, Stoch. Dyn., 18 (2018), 1850030.
[47] H. M. Soner, N. Touzi, and J. Zhang, Wellposedness of second order backward SDEs, Probab. Theory Related Fields., 153 (2012), pp. 149-190.
[48] A. SWIECH, Unbounded second order partial differential equations in infinite-dimensional Hilbert spaces, Comm. Partial Differential Equations, 19 (1994), pp. 1999-2036.
[49] J. Zhang and J. Zhuo, Monotone schemes for fully nonlinear parabolic path dependent PDEs, J. Finan. Eng., 1 (2014), 1450005, https://doi.org/10.1142/S2345768614500056.

[^0]: *Received by the editors January 18, 2019; accepted for publication (in revised form) October 24, 2019; published electronically January 21, 2020.
 https://doi.org/10.1137/19M1239404
 Funding: The second author was financially supported by the ERC Advanced Grant 321111, and the Chairs Financial Risk and Finance and Sustainable Development of the Louis Bachelier Institute. The research of the third author was supported in part by NSF grant DMS-1413717.
 ${ }^{\dagger}$ Université Paris-Dauphine, PSL Research University, CNRS, UMR [7534], Ceremade, 75016 Paris, France (ren@ceremade.dauphine.fr).
 ${ }^{\ddagger}$ CMAP, Ecole Polytechnique Paris, Palaiseau, 91128, France (nizar.touzi@polytechinque.edu).
 §University of Southern California, Department of Mathematics, Los Angeles, CA, 90089-2532 (jianfenz@usc.edu).

