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We consider zero-sum stochastic differential games with possibly path-
dependent volatility controls. Unlike the previous literature, we allow for
weak solutions of the state equation so that the players’ controls are auto-
matically of feedback type. In particular, we do not require the controls to
be “simple,” which has fundamental importance for the possible existence
of saddle-points. Under some restrictions, needed for the a priori regularity
of the upper and lower value functions of the game, we show that the game
value exists when both the appropriate path-dependent Isaacs condition, and
the uniqueness of viscosity solutions of the corresponding path-dependent
Isaacs-HJB equation hold. We also provide a general verification argument
and a characterisation of saddle-points by means of an appropriate notion of
second-order backward SDE.

1. Introduction. Stochastic differential games have attracted important attention during
the last three decades. Due to the crucial role of the information structure, the corresponding
literature is technically and conceptually more involved than standard stochastic control. It
had been recognised as early as in the 60s, in a series of papers by Varaiya [71], Roxin [60]
and Elliot and Kalton [29], in the context of deterministic differential games, that having both
players play a classical control generally led to ill-posed problems, and that the appropriate
notion was rather that of a strategy, that is to say that a given player uses a nonanticipative
map from the other player’s set of controls to his own set of controls. Earlier definitions of
value functions for games require appropriate approximations procedures, by discrete-time
games in Fleming’s definition [33–35], or by discretising the players’s actions in Friedman’s
definition [38, 39] (see also Varaiya and Lin [70] for an earlier related notion). This makes
the whole approach technically cumbersome.

The connection between the value function of the game and the corresponding Hamilton–
Jacobi–Isaacs partial differential equation was formally established by Isaacs [45, 46] in the
50s. The Elliot–Kalton definition induces an easy argument to prove rigorously this connec-
tion by using the notion of viscosity solutions, see Evans and Souganidis [31], as well as the
generalisation by Evans and Ishii [30].1 The Elliot–Kalton strategies have been successfully
generalised to the context of stochastic differential games by Fleming and Souganidis [37],
where the above mentioned strategy map is restricted to adapted controls. Despite the asym-
metry between the two players of the induced game problem formulation, this approach has
been followed by an important strand of the literature in continuous-time stochastic differ-
ential games; see notably the revisits of Buckdahn and Li [10] or Fleming and Hernández–
Hernández [36].
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This approach has some important drawbacks, however. Besides some stemming from
practical considerations, see Remark 2.5, the asymmetry between the players makes the prob-
lem of existence of saddle-points much harder in general. This justified the recent emergence
of several alternative formulations of the game. While the corresponding results may look
similar at first sight, these reformulations have very subtle differences. We shall devote Sec-
tion 2 completely to an incremental presentation of the different formulations which appeared
in the literature, with appropriate examples highlighting the main differences. In particular,
when the diffusion coefficient is not controlled by any of the players, the problem is com-
pletely addressed in Hamadène and Lepeltier [41], see Section 2.5. However, when the diffu-
sion coefficient is also controlled, all the results in the literature require the control/strategy
to be simple in some sense. This constraint makes it essentially impossible to obtain the
existence of saddle-points under those formulations.

The main contribution of this paper is to show that considering stochastic differential
games in weak formulation allows to bypass major difficulties pointed out in the previous
literature. In our setting, introduced in Section 3.1, the controlled state process is a weak
solution of the possibly path-dependent stochastic differential equation

dXα
t = bt

(
Xα,α0

t , α
1
t

)
dt + σt

(
Xα,α0

t , α
1
t

)
dWt,

where W is a Brownian motion with appropriate dimension, b and σ are nonanticipating
functions of the path, and α = (α0, α1) is the pair of controls of Players 0 and 1, respectively.
We consider the largest set of controls αi : [0, T ] × C0([0, T ]) �−→ Ai , i = 0,1, by only
assuming the natural nonanticipativity and measurability properties. In particular, we do not
impose that they are simple in some sense so as to guarantee existence of a strong solution for
the above state equation. Again, our approach is to consider weak solutions, without requiring
uniqueness of such a solution.

Our first main result, reported in Theorem 3.6, states that, under the path-dependent Isaacs
condition, uniqueness of viscosity solutions implies existence of the game value. Section 4
contains the technical arguments to prove this result, following the dynamic programming
arguments as in Pham and Zhang [57]. Our proof relies on the notion of path-dependent
viscosity solutions, introduced by Ekren, Touzi and Zhang [19, 20]. Observe that this result
covers the Markovian setting under the uniqueness condition of viscosity solutions in the
standard sense of Crandall and Lions [15], as our set of test functions includes theirs. As our
technique requires some a priori regularity for the game upper and lower values, Theorem 3.6
is established under restricting conditions on the coefficients b and σ which are essentially
summarised in Assumption 3.5, see also Section 5 for a slight weakening of these conditions.
Notice that the remarkable work of Sîrbu [62, 63] does not need any such restrictions, as the
Perron-like method this author uses allows to bypass the task of deriving directly the dynamic
programming principle. However, the method is restricted to the Markovian setting, and the
players controls are simple and thus much less general than the ones we consider here.

As a second main result reported in Theorem 3.10, we provide a verification argument,
still under the path-dependent Isaacs condition, including a characterisation of saddle-points.
We emphasise that when the volatility of the diffusion is degenerate, this result is new, even
in the special Markovian setting, as the value function of the game may fail to lie in the
standard Sobolev spaces, due to possible nonexistence of a density of the corresponding state
equation. By further considering a convenient relaxation, we also provide in Theorem 3.20
a characterisation by means of an appropriate notion of second-order backward SDE, which
plays the same role as the Sobolev-type solution for the corresponding Hamilton–Jacobi-
Bellman–Isaacs (HJBI for short) partial differential equation.

Notations: Throughout the paper, for i = 0,1, we assume that the control of Player i takes
values in Ai ⊂ Rdi , for some arbitrary integer di . We define A := A1 × A2, and denote typi-
cally the elements of A as a = (a0, a1). Throughout this paper, for every p-dimensional vec-
tor b with p ∈ N, we denote by b1, . . . , bp its entries, for 1 ≤ i ≤ p. For α,β ∈Rp we denote
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by α · β the usual inner product, with associated norm | · |. For any (�, c) ∈ N×N, M�,c(R)

denotes the space of � × c matrices with real entries. The elements of matrix M ∈ M�,c are
denoted (Mi,j )1≤i≤�,1≤j≤c, and the transpose of M is denoted by M�. We identify M�,1
with R�. When � = c, we let M�(R) := M�,�(R). We also denote by S� (resp. S�+) the set
of symmetric (resp. symmetric semi-definite positive) matrices in M�(R). The trace of a
matrix M ∈ M�(R) will be denoted by Tr[M]. For further reference, we list here all the
filtrations that will be used throughout the paper. For any filtration G := (Gt )0≤t≤T , and for
any probability measure P on our space (�,F), we denote by GP := (GP

t )0≤t≤T the usual P-
augmentation2 of G, and by G+ := (G+

t )0≤t≤T the right-limit of G. Similarly, the right limit
of GP will be denoted by GP+ := (GP+

t )0≤t≤T . For technical reasons, we also need to intro-
duce the universal filtration GU := (GU

t )0≤t≤T defined by GU
t := ⋂

P∈Prob(�) GP
t , t ∈ [0, T ],

where Prob(�) is the set of all probability measures on (�,F), and we denote by GU+, the
corresponding right-continuous limit. Moreover, for a subset P ⊂ Prob(�), we introduce the
set of P-polar sets NP := {N ⊂ � : N ⊂ A for some A ∈ FT with supP∈P P(A) = 0}, and we
introduce the P-completion of G, GP := (GP

t )t∈[0,T ], with GP
t := GU

t ∨ σ(NP), t ∈ [0, T ],
together with the corresponding right-continuous limit GP+.

2. Stochastic differential game formulations and examples. In this section we intro-
duce the main formulations of zero-sum stochastic differential games from the existing liter-
ature, and explain through several examples why we have chosen to concentrate our attention
on the “weak formulation with control against control.” The section is somewhat lengthy.
However, due to the subtleties involved in the formulations, we think such a detailed intro-
duction will prove helpful for our readers.

2.1. Strong formulation with control against control. Fix some time horizon T > 0. In
the strong formulation paradigm, a filtered probability space (�,F,F := (Ft )0≤t≤T ,P0), on
which is defined a d-dimensional Brownian motion W , is fixed. We denote by FW the natural
filtration of W , augmented under P0, and for i = 0,1, we let Ai

S denote the set of FW -
progressively measurable Ai -valued processes, and AS := A0

S × A1
S. Throughout the paper,

we take the notational convention that we write i as subscript for deterministic objects and
as superscript for random objects. Consider then, for i = 0,1 the following n-dimensional
controlled state processes with controls α := (α0, α1) ∈AS

(2.1) Xα
t :=

∫ t

0
b
(
s,Xα

s , αs

)
ds +

∫ t

0
σ
(
s,Xα

s , αs

)
dWs, t ∈ [0, T ],P0-a.s.,

where b : [0, T ] ×Rn × A −→ Rn and σ : [0, T ] ×Rn × A −→ Rn×d are appropriate Borel
measurable functions so that the above SDE has a unique strong solution for any α ∈ AS. We
introduce the so-called upper and lower values of the game

(2.2) V
S
0 := inf

α0∈A0
S

sup
α1∈A1

S

JS
(
α0, α1), and V S

0 := sup
α1∈A1

S

inf
α0∈A0

S

JS
(
α0, α1),

where the criterion of the players JS is defined, for some appropriate functions f : [0, T ] ×
Rn × A −→ R and g : Rn −→ R, by

(2.3) JS(α) := EP0

[
g
(
Xα

T

)+
∫ T

0
f
(
t,Xα

t , αt

)
dt

]
.

It is clear by definition that V S
0 ≤ V

S
0 . There are two central problems for the game defined

above:

2The P-augmentation is defined for any t ∈ [0, T ] by GP
t := σ(Gt ∪ NP), where NP := {A ⊂ �,A ⊂

B, with B ∈FT ,P[B] = 0}.
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(i) Does the game value exists, namely V
S
0 = V S

0?
(ii) Is there a saddle-point (also called equilibrium) for the game? That is to say, can we

find some α̂ := (α̂0, α̂1) ∈AS such that

(2.4) JS
(
α̂0, α1) ≤ JS

(
α̂0, α̂1) ≤ JS

(
α0, α̂1), for any α0 ∈ A0

S, α1 ∈A1
S.

Notice immediately that the existence of a saddle-point α̂ implies automatically that the game
value exists, and is equal to JS(α̂).

Despite the fact that the above formulation is very close to the usual framework of stochas-
tic control, it has never been considered in the literature, since even in seemingly benign
situations, the game value may fail to exist.

EXAMPLE 2.1. This is a simplified version of an example borrowed from R. Buckdahn,
see [57], Appendix E.

Let A0 = A1 = [−1,1], d = n = 2, and c ∈ R, ρ ∈ [−1,1] be two constants. Consider the
following specification:

f := 0, g(x) := |x1 − x2|2, b(t, x, a) :=
(
a0
a1

)
,

σ (t, x, a) :=
(

c 0

cρ c

√
1 − ρ2

)
.

In this case, we have

X
1,α
t :=

∫ t

0
α0

s ds + cW 1
t , X

2,α
t :=

∫ t

0
α1

s ds + c
[
ρW 1

t +
√

1 − ρ2W 2
t

]
,

JS(α) := EP0
[∣∣X1,α

T − X
2,α
T

∣∣2].
Then, we claim that

V S
0 ≤ 2(1 − ρ)c2T and T 2 ≤ V

S
0,

so that V S
0 < V

S
0 whenever 2(1 − ρ)c2 < T , and the game does not have a value in this

formulation. To see this, notice that for any α1 ∈A1
S , if Player 0 also plays the control α1, we

have

JS
(
α1, α1) = EP0

[∣∣c(1 − ρ)W 1
T − c

√
1 − ρ2W 2

T

∣∣2] = 2(1 − ρ)c2T .

Thus infα0∈A0
S
JS(α0, α1) ≤ 2(1 − ρ)c2T , so that by arbitrariness of α1 ∈ A1

S, we have V S
0 ≤

2(1 − ρ)c2T . On the other hand, for any α0 ∈ A0
S, set

x0 := EP0

[∫ T

0
α0

s ds

]
, sgn(x0) := 1{x0≥0} − 1{x0<0} ∈ A1,

α1
t := − sgn(x0), t ∈ [0, T ].

Then by Jensen’s inequality

JS
(
α0, α1) ≥ ∣∣EP0

[
X

1,α
T − X

2,α
T

]∣∣2 =
∣∣∣∣EP0

[∫ T

0
α0

s ds −
∫ T

0
α1

s ds

]∣∣∣∣2
= ∣∣x0 + T sgn(x0)

∣∣2 ≥ ∣∣T sgn(x0)
∣∣2 = T 2.

This implies that supα1∈A1
S
JS(α0, α1) ≥ T 2 for any α0 ∈ A0

S, and thus V
S
0 ≥ T 2.
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We recall that the zero-sum game (2.1)–(2.3) is closely related to the following HJBI
PDEs:

(2.5) −∂tv − H
(
t, x,Dv,D2v

) = 0, −∂tv − H
(
t, x,Dv,D2v

) = 0,

where the Hamiltonians H , H are defined, for any (t, x, z, γ, a) ∈ [0, T ]×Rd ×Rd ×Sd ×A

h(t, x, z, γ, a) := 1

2
Tr
[(

σσ�)(t, x, a)γ
]+ b(t, x, a) · z + f (t, x, a),

H(t, x, z, γ ) := inf
a0∈A0

sup
a1∈A1

h(t, x, z, γ, a0, a1),

H(t, x, z, γ ) := sup
a1∈A1

inf
a0∈A0

h(t, x, z, γ, a0, a1).

(2.6)

Moreover, the following Isaacs condition is crucial for the existence of the game value:

(2.7) H = H =: H.

Under the above condition, we say (â0, â1) ∈ A is a saddle-point of the Hamiltonian H at
(t, x, z, γ ) if for all a0 ∈ A0, a1 ∈ A1

(2.8) h(t, x, z, γ, â0, a1) ≤ H(t, x, z, γ ) ≤ h(t, x, z, γ, a0, â1).

REMARK 2.2. Direct calculation reveals that the Isaacs condition (2.7) holds in the con-
text of Example 2.1, with

H(z, γ ) = c2

2
(γ11 + γ22 + 2ργ12) + |z2| − |z1|, (z, γ ) ∈ R2 × S2.

So the game value does not exist, despite the fact that Isaacs’s condition holds. Notice as well
that when c = 0, this is a deterministic game, and when c > 0 and |ρ| < 1, σ is nondegenerate.
Thus potential degeneracy of the diffusion coefficient is not the reason for the nonexistence
of the game value.

2.2. Strong formulation with strategy against control. As we have seen above, naively
considering games in a control against control formulation usually leads to nonexistence of
the game value. One way to properly formalise the fact that in continuous-time differential
games the players also observe each other continuously consists in introducing the notion of
nonanticipative strategies. Roughly speaking, in such a framework a strategy for one player
is simply a nonanticipative map from the set of controls of the other player to the set of
controls of this player. Though strategies were introduced in deterministic games by Varaiya
[71], Roxin [60] and Elliot and Kalton [29], the first work to extend this notion in a stochastic
setting is due to Fleming and Souganidis [37]. Let us now give a proper definition.

DEFINITION 2.3. Let S0 denote the set of mappings a0 : A1
S −→ A0

S such that, for any
t ∈ [0, T ], and any (α1, α̃1) ∈ A1

S × A1
S satisfying α1 = α̃1, ds × dP0-a.s. on [0, t] × �,

we have a0(α1) = a0(α̃1), ds × dP0-a.s. on [0, t] × �. Similarly we define S1 as the set of
appropriate mappings a1 : A0

S −→ A1
S .

The upper and lower values in this formulation are then defined as

(2.9) V
FS
0 := sup

a1∈S1
inf

α0∈A0
S

JS
(
α0, a1(α0)), V FS

0 := inf
a0∈S0

sup
α1∈A1

S

JS
(
a0(α1), α1).
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We emphasise that in this framework, the upper value is defined as a sup inf, rather than an
inf sup. Besides, since the setting is by nature asymmetric, it is not a priori clear that

V FS
0 ≤ V

FS
0 , or V

FS
0 ≤ V FS

0 .

Nevertheless, this formulation has been very successful in the existing literature because
the game value is well understood, and characterised by the so-called Hamilton–Jacobi–
Bellman–Isaacs PDE. The main result of Fleming and Souganidis [37], Theorem 2.6, is the
following.

THEOREM 2.4. Under appropriate technical conditions on the coefficients b, σ , f , g, we

have V
FS
0 = v(0,0), V FS

0 = v(0,0), where v, v are viscosity solutions of the corresponding
HJBI equations (2.5). In particular, if Isaacs condition (2.7) holds, and the viscosity solution

to the above PDEs is unique, then V
FS
0 = V FS

0 , and the game value exists.

Notice that the approach of Fleming and Souganidis [37] has been substantially improved
and simplified by Buckdahn and Li [10] (see also the works of Bouchard, Moreau and Nutz
[7] and Bouchard and Nutz [8] for a similar approach in stochastic target games), who consid-
ered a similar framework, allowing for controls depending on the full past of the trajectories
of W (implying in particular that their cost functionals become random variables), and also
for more general running cost functionals in the form of backward SDEs. Though their frame-
work remains Markovian, a recent extension to non-Markovian dynamics has been proposed
by Zhang [73, 74], relying on top of the BSDE method of Buckdahn and Li, on an approxi-
mation of the non-Markovian game by sequences of standard Markovian games.

While the above results are beautiful mathematically, it has two major drawbacks, as illus-
trated in the following two remarks.

REMARK 2.5. The strategies are typically difficult to implement in practice.

(i) In the problem V
FS
0 , Player 1 needs to observe the control α0 of Player 0. But since

this is a zero-sum game, the players typically would not tell their competitors their controls,
due to the so-called moral hazard.

(ii) Notice further that the strategy a1 is a function of the whole process α1, rather than
the paths of α1. This imposes further difficulty for the practical implementation of nonantici-
pative strategies. Even in the full information case (without moral hazard), the players do not
actually observe their opponent’s adapted control, but just a realisation of this control in the
actual state of the world.

REMARK 2.6. The study of the existence of saddle-points in this setting also proves very
difficult. Among some of the reasons, we would like to highlight the following.

(i) The information is asymmetric in this setting. As a consequence, it is not possible to
define saddle-points as conveniently as in the spirit of (2.4).

(ii) The problem V
FS
0 can be viewed as a zero-sum Stackelberg game, which requires

to solve sequential optimisation problems. Given a1, it will in general be difficult to solve
infα0∈A0

S
JS(α0, a1(α0)), since as a general strategy there are not many properties we can

impose on a1. The optimisation over a1 can then become even harder.
(iii) Moreover, we emphasise that this formulation is still in a strong setting, namely all

involved processes are required to be FW -progressively measurable. In this case, the set AS of
admissible controls is typically not compact, meaning that saddle-points are even less likely
to exist.
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We illustrate the above points by considering two examples where saddle-points cannot
exist, no matter how one defines them. For this purpose, we borrow a function ζ from Barlow
[1] which satisfies the following properties:

(1) ζ :R −→ [1,2] and is uniformly Hölder continuous.
(2) The following SDE admits a unique (in law) weak solution but no strong solution:

(2.10) Xt =
∫ t

0
ζ(Xs)dWs, P0-a.s.

EXAMPLE 2.7. Set A0 := [1,2], A1 := {0} and d = 1. Consider the following specifica-
tion:

b(t, x, a) := 0, σ (t, x, a) := |a0|,
g(x) := |x|2, f (t, x, a) := ∣∣ζ(x)

∣∣2 − 2a0ζ(x).

We then have, P0-a.s.

Xα
t =

∫ t

0

∣∣α0
s

∣∣dWs, JS(α) := EP0

[∣∣Xα
T

∣∣2 −
∫ T

0

[
2α0

t ζ
(
Xα

t

)− ∣∣ζ (Xα
t

)∣∣2]dt

]
.

Then V
FS
0 = V FS

0 , but there is no saddle-point in any appropriate sense. To see this, observe
that A1

S consists of only the constant process 0, and thus S1 also consists only of the trivial
mapping a1 = 0. Then it is clear that

(2.11) V
FS
0 = V FS

0 = inf
α0∈A0

S

JS
(
α0,0

)
.

This is a standard optimal control problem, and we know its value is v(0,0), where v is the
unique viscosity solution to the following HJB equation:

(2.12) −∂tv − inf
a0∈A0

{
1

2
|a0|2∂2

xxv − 2a0ζ(x) + ∣∣ζ(x)
∣∣2} = 0, v(T , x) = x2.

One can check straightforwardly that v(t, x) = x2 is the classical solution to the above PDE.
In particular, uniqueness for the last HJB equation follows from the standard verification
argument, and this implies that

(2.13) V
FS
0 = V FS

0 = sup
α0∈A0

S

JS
(
α0,0

) = v(0,0) = 0.

Now assume the game has a saddle-point in some appropriate sense, which will be associ-
ated to a certain â0 ∈ A0

S and α̂1 = 0. Then, denoting X̂ := Xα̂0,0

(2.14) 0 = JS

(
α̂0,0

) = EP0

[∫ T

0

∣∣α̂0
t − ζ(X̂t )

∣∣2 dt

]
.

This implies that necessarily α̂0 = ζ(X̂), P0-a.s. In other words, X̂ must satisfy

X̂t =
∫ t

0
|α̂s |dWs =

∫ t

0
ζ(X̂s)dWs, t ∈ [0, T ],P0-a.s.

By Barlow [1], the above SDE has no strong solution, which contradicts with our assumption
that X̂ = Xα̂0,0 is FW -progressively measurable.

The last example may seem very special, since the game problem is actually reduced to a
stochastic control problem. The following example shows that similar concerns appear in a
genuine game problem.
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EXAMPLE 2.8. Set A0 := [1,2], A1 := [0,1]. Consider the specification

b(t, x, a) := 0, σ (t, x, a) := |a0|, g(x) := |x|2,
f (t, x, a) := ∣∣ζ̄ (x)

∣∣2 − 2a0ζ̄ (x), ζ̄ :=
√

|ζ |2 − 1.

Then Isaacs condition (2.7) holds and

(2.15) JS(α) = EP0

[∣∣Xα
T

∣∣2 −
∫ T

0

[
2α0

t ζ̄
(
Xα

t

)− ∣∣ζ̄ (Xα
t

)∣∣2]dt

]
.

In this case, we still have V
FS
0 = V FS

0 = v(0,0), where v(t, x) = x2 + T − t is the unique
classical solution to the following HJBI equation

(2.16)

⎧⎪⎨⎪⎩∂tv + inf
a0∈A0

{
1

2
|a0|2∂2

xxv − 2a0ζ̄ (x) + ∣∣ζ̄ (x)
∣∣2}+ sup

a1∈A1

{
1

2
|a1|2∂2

xxv

}
= 0,

v(T , x) = x2.

Moreover, the (unique) saddle-point of the Hamiltonian in the sense of (2.8) is

(2.17) â0 = ζ̄ (x), â1 = 1, and thus |̂a| =
√

|̂a0|2 + |̂a1|2 = ζ.

Consequently, any natural saddle-point for the game should correspond to these feedback
controls. Unfortunately, similar to the previous example, no strong solution exists under these
feedback controls. Since this formulation is in strong setting, all involved processes should be
FW -progressively measurable, so it is very unlikely that a saddle-point under any reasonable
definition will exist for this example.

REMARK 2.9. We emphasise that the feedback controls (2.17) can be obtained naturally
from the Hamiltonian of the PDE (provided the PDE has a classical solution). In weak formu-
lation of the game, which will be introduced soon and will be the main focus of this paper, the
saddle-points of the Hamiltonian indeed lead to the saddle-points of the game. However, in
strategy against control formulation, saddle-points of the Hamiltonian provide no clue on the
possible saddle-points for the game. This is one of the main drawbacks of this formulation.

2.3. Strong formulation with symmetric delayed pathwise strategies. Recall that the set-
ting in the previous subsection is not symmetric, in the sense that in the definitions of the
upper and lower values, a given player is not optimising over the same set (over controls in
one case, and over strategies in the other). Cardaliaguet and Rainer [13] have reformulated
the game problem by using what they call nonanticipative strategies with delay, thus, formal-
ising the fact that the players only observe their opponent’s action in the actual state, as well
as the path of the resulting solution of the stochastic differential equation. Their framework
could thus be coined as “strategy against strategy.”

DEFINITION 2.10. Let S0
CR be the collection of progressively measurable (deterministic)

maps a0 : C0([0, T ],Rd) ×L0([0, T ],A1) −→ L0([0, T ],A0) satisfying the following delay
condition

(2.18)
[
a0(ω,α1)](t) = [

a0(ω(t−δ)+∧·, α1
(t−δ)+∧·

)]
(t), 0 ≤ t ≤ T ,

for some δ > 0 independent of (ω,α1), and where for a generic set E, L0([0, T ],E) is the
set of Borel measurable E-valued maps. We define similarly S1

CR.
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For delayed strategies, the following simple but crucial result holds.

LEMMA 2.11. For any (a0, a1) ∈ S0
CR × S1

CR, there exists unique (α0, α1) ∈ A0
S × A1

S
such that

(2.19) α0(ω) = a0(ω,α1(ω)
)
, α1(ω) = a1(ω,α0(ω)

)
, for all ω ∈ �.

Then Cardaliaguet and Rainer [13] define upper and lower values of the game as

(2.20) V
CR
0 := inf

a0∈S0
CR

sup
a1∈S1

CR

JS
(
α0, α1), V CR

0 := sup
a1∈S1

CR

inf
a0∈S0

CR

JS
(
α0, α1),

where (α0, α1) are determined by Lemma 2.11. We emphasise that the mapping from (a0, a1)

to (α0, α1) is in pairs, and it does not necessarily induce a mapping from a0 to α0 (or from

a1 to α1). Consequently, the game values (V
CR
0 ,V CR

0 ) are different from the values (V
S
0,V S

0)

in (2.2). We also notice that, unlike in (2.9) the upper value is defined an inf sup, since the
setting is symmetric again. The main result of [13] is the following.

THEOREM 2.12. Under appropriate conditions, including the Isaacs condition, we have

V
CR
0 = V CR

0 = v(0,0), where v is the unique viscosity solution to the corresponding HJBI
equation.

In particular, under the above conditions the game values in [37] and [13] are equal. No-
tice as well that without Isaacs condition, [13] establishes a partial comparison principle,
implying that v and v are only viscosity semi-solutions, not necessarily viscosity solutions of
the associated HJBI PDE. We remark in addition that this setting is symmetric and one can
naturally define saddle-points (̂a0, â1). However, the comments in Remark 2.5(i) and Remark
2.6(ii), (iii) remain valid, and no existence result of saddle-points is available in general be-
cause of the delay restriction on the strategies. Notice also that Buckdahn, Cardaliaguet and
Quincampoix [9] have adapted the BSDE method of Buckdahn and Li [10] to the framework
of nonanticipative strategies with delay.

Another way of symmetrising the game problem has been proposed by Fleming and
Hernández-Hernández [36]. Building upon the fact that Elliott–Kalton strategies are such
that, for instance for the lower value the minimising player has an advantage in the informa-
tion available to him at each time, they propose to restrict to so-called strictly progressively
measurable strategies which make this advantage disappear. They then define a notion of ap-
proximate ε-saddle-points, but cannot obtain the existence of a saddle-point in the sense we
have considered so far.

2.4. Strong formulation with symmetric feedback controls. The works closest to our
present paper are Cardaliaguet and Rainer [12], Pham and Zhang [57], and Sîrbu [62, 63].
Consider the following SDE with feedback controls α : [0, T ] × C0([0, T ],Rd) −→ A

(2.21) Xt = X0 +
∫ t

0
σ
(
s,Xs,αs(X·)

)
dWs +

∫ t

0
b
(
s,Xs,αs(X·)

)
ds, P0-a.s.

Let Asp denote the set of certain simple feedback controls (meaning controls which are con-
stant or deterministic in between points of a partition of [0, T ] and/or �), in particular so
that the above SDE has a unique strong solution for every admissible control α. We remark
that the sets Asp in [12, 57, 62, 63] are not the same, differing mainly on whether some
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mixing is allowed in the strategies or not, and on whether stopping times are allowed in the
time-discretisation. The upper and lower game values are then defined as

V
sp
0 := inf

α0∈A0
sp

sup
α1∈A1

sp

JS
(
α0(X),α1(X)

)
,

V
sp
0 := sup

α1∈A1
sp

inf
α0∈A0

sp

JS
(
α0(X·), α1(X·)

)
,

(2.22)

where, for α ∈ Asp, X is determined by (2.21). Then we still have

THEOREM 2.13. Under appropriate conditions, including the Isaacs condition, we have
V

sp
0 = V

sp
0 = v(0,0), where v is the unique viscosity solution to the HJBI equation (2.5).

We observe that, in contrast with [12] and [62, 63], the framework of [57] allows for
path-dependent dynamics, and in this case the Isaacs equation becomes a so-called path-
dependent PDE, which will be the main tool in this paper. However, [57] does not allow for
x-dependence in the coefficients b and σ , mainly for the purpose of proving the regularity of
the value functions, an issue which becomes very subtle in the present feedback formulation.
In the Markovian setting, this difficulty is remarkably by-passed in [62, 63] by using the
notion of stochastic viscosity solutions of Bayraktar and Sîrbu [3, 4].

We also remark that for feedback controls, it is a lot more convenient to use the so-called
weak formulation, under which the state process X is fixed and the players control its distri-
bution. We finally note that the restriction to simple feedback controls is a serious obstacle
for obtaining a saddle-point. This is the main drawback that addressed in this paper.

2.5. A complete result in the uncontrolled diffusion setting. The case where the diffusion
coefficient σ is not controlled by any of the players has received a lot of attention since the
inception of the study of stochastic differential games, as it allowed for a much simpler treat-
ment. Hence, using PDE methods in a Markovian setting with feedback controls (though it
is not clear whether strong or weak formulation is considered, see [40], Another remark, p.
85), Friedman [39, 40] proved existence of an equilibrium for an N -players game, as well
as existence of a value and a saddle-point for two-players zero-sum games. Using the mar-
tingale approach of Davis and Varaiya [17] for stochastic control problems, a version of the
problem in weak formulation was then considered by Elliott [26, 27], and Elliott and Davis
[28], allowing in particular for non-Markovian dynamics. Their approach was subsequently
streamlined and simplified by Hamadène and Lepeltier [41, 43] and Hamadène, Lepeltier and
Peng [42] using BSDEs methods.

Since their approach is close in spirit to the one we wish to follow, we dedicate this section
to describing it. Consider the following drift-less SDE

(2.23) Xt =
∫ t

0
σs(X·)dWs, P0-a.s.,

where σ : [0, T ] × C0([0, T ],Rd) −→ Sd is progressively measurable, bounded, nondegen-
erate, and uniformly Lipschitz in x. Hence, the above SDE has a unique strong solution, and
X and W generate the same filtration. We next introduce a progressively measurable bounded
map λ : [0, T ] × C0([0, T ],Rd) × A −→ Rd , together with the equivalent probability mea-
sures

dPα

dP0
:= exp

(∫ T

0
λt

(
X·, αt (X·)

) · dWt − 1

2

∫ T

0

∣∣λt

(
X·, αt (X·)

)∣∣2 dt

)
,
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for all α ∈ AHL, where AHL is the set of admissible controls, for which the above probability
measure is well defined. By Girsanov’s theorem, the process Wα := W − ∫ ·

0 λt (X·, αt (X·))dt

is an Pα-Brownian motion, and (Pα,X) is a weak solution of the drift-controlled SDE

(2.24) Xt =
∫ t

0
bs

(
X·, αs(X·)

)
ds +

∫ t

0
σs(X·)dWα

s , Pα-a.s., where b := σλ.

The upper and lower values of the game are then defined by

V
HL
0 := inf

α0∈A0
HL

sup
α1∈A1

HL

JW
(
α0, α1), V HL

0 := sup
α1∈A1

HL

inf
α0∈A0

HL

JW
(
α0, α1),

where

JW(α) := EPα
[
ξ +

∫ T

0
ft (, αt )dt

]
,

for some appropriate functions f : [0, T ] × C0([0, T ],Rd) × A −→ R and ξ : C0([0, T ],
Rd) −→ R. We finally introduce

F t(x, z) := inf
a0∈A0

sup
a1∈A1

{
bt (x, a) · z + ft (x, a)

}
,

F t (x, z) := sup
a1∈A1

inf
a0∈A0

{
bt (x, a) · z + ft (x, a)

}
,

where as usual a = (a0, a1). Notice that, by extending the Hamiltonians (2.6) to the path
dependent case in the obvious way, we have the correspondence

H = F + 1

2
Tr
[
σ 2γ

]
, and H = F + 1

2
Tr
[
σ 2γ

]
.

The main result of [41] is the following.

THEOREM 2.14. Under appropriate conditions, including Isaacs’s condition F = F =:
F , we have V

HL
0 = V HL

0 = Y0, where (Y,Z) is the unique solution to the backward SDE

(2.25) dYt = −Ft(X·,Zt )dt + Zt · dXt, and YT = ξ(X·), P0-a.s.

Moreover, any saddle-point of F induces a saddle-point of the game.

The following example shows that the framework of [41] allows to obtain a saddle-point
of a game in typical situations where all the previous frameworks of this section fail.

EXAMPLE 2.15. Consider the setting in Example 2.1 with c = 1, ρ = 0, except that
X = (X1,X2) should be viewed as weak solution of the following SDE

X1
t =

∫ t

0
α0

s

(
X1· ,X2·

)
ds + W

1,α
t , X2

t =
∫ t

0
α1

s

(
X1· ,X2·

)
ds + W

2,α
t .

Note that, unlike in Example 2.1, here X1 and X2 depend on both α0 and α1. In this case, we
have

F t(z) = F t(z) = Ft(z) = inf|a0|≤1
{a0z1} + sup

|a1|≤1
{a1z2} = −|z1| + |z2|,

and the unique saddle-point of F is given by

â0(z) := − sgn(z1), â1(z) := sgn(z2).
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Notice that since σ is the identity matrix here, we have X = W and the BSDE (2.25) becomes

Yt = ∣∣X1
T − X2

T

∣∣2 +
∫ T

t

(∣∣Z2
s

∣∣− ∣∣Z1
s

∣∣)ds −
∫ T

t
Zs · dXs, P0-a.s.

In fact, one may verify straightforwardly that the solution to the above BSDE is

Yt := ∣∣X1
t − X2

t

∣∣2 + 2(T − t), Z1
t := 2

(
X1

t − X2
t

)
, Z2

t = 2
(
X2

t − X1
t

)
.

Consequently, the game value is Y0 = 2T and the saddle-point of the game is given by

α̂0
t := − sgn

(
Z1

t

) = − sgn
(
X1

t − X2
t

)
, α̂1

t := sgn
(
Z2

t

) = sgn
(
X2

t − X1
t

)
.

Our objective of this paper is to extend Theorem 2.14 to a controlled (possibly degenerate)
diffusion framework. Again we shall use weak formulation and our main tool will be path de-
pendent PDEs, whose semi-linear counterpart is exactly the backward SDE. In particular, our
results will provide a complete characterisations of Examples 2.7 and 2.8, once reformulated
in the setting of weak solutions, as well as the degenerate situation of Example 2.15 (namely
|ρ| = 1). As will become clearer later, the assumptions on the coefficients we will require are
slightly stronger than in the recent work of Zhang [73, 74], but the latter considers the strong
formulation with strategy against control and thus cannot obtain any positive results towards
existence of saddle-points. The weak formulation allows to do so, but at the price of more
stringent assumptions on the coefficients.

3. Main results.

3.1. Path dependent game in weak formulation. The canonical space � := {ω ∈
C([0, T ];Rd) : ω0 = 0} is endowed with the L∞-norm. The corresponding canonical pro-
cess X induces the natural filtration F. The time space set � := [0, T ] × � is equipped with
the pseudo-distance d∞((t,ω), (t ′,ω′)) := |t − t ′| + ‖ω∧t − ω′

∧t ′‖∞.

The set of control processes A := A0 ×A1
consists of all F-progressively measurable A-

valued processes, for some subset A := A0 ×A1 of a finite dimensional space. For all α ∈A,
we denote by P(α) the set of weak solutions of the following path-dependent SDE

(3.1) Xt =
∫ t

0
bs

(
X·, αs(X·)

)
ds +

∫ t

0
σs

(
X·, αs(X·)

)
dWs, t ∈ [0, T ],

where b : �×A −→ Rd , σ : �×A −→ Sd satisfies the conditions in Assumption 3.1 below.
Here, for simplicity, we assume that X and W have the same dimension d and σ is symmetric,
but the extension to the more general situation is straightforward. Equivalently, any P ∈P(α)

is a probability measure on the canonical space � which solves the following martingale
problem, for any 0 ≤ t ≤ T , P-a.s.

(3.2) Mα
t := Xt −

∫ t

0
bs(αs)ds is a P-martingale, with

〈
Mα 〉

t =
∫ t

0
σ 2

s (αs)ds.

Here we take the notational convention that, by putting the time variable s as subscript, we
mean bs , σs , αs depend on X, but we often omit X itself for notational simplicity. Notice
that in general, the set P(α) for an arbitrary α ∈ A may be empty. We thus introduce the
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following subset A := A0 ×A1, where3

(3.3) Ai := {
αi ∈ Ai : P(

αi) �= ∅
}
, where P

(
αi) := ⋃

α1−i∈A1−i

P
(
α0, α1), i = 0,1.

For an FT -measurable random variable ξ and an F-progressively measurable f : � × A −→
R, we now define

J0(α,P) := EP

[
ξ +

∫ T

0
fs(αs)ds

]
,

J 0(α) := sup
P∈P(α)

J0(α,P), and J 0(α) := inf
P∈P(α)

J0(α,P),
(3.4)

with the convention that sup∅ := −∞ and inf∅ := ∞. The upper and lower values of the
game are then

(3.5) V 0 := inf
α0∈A0

sup
α1∈A1

J 0(α), and V 0 := sup
α1∈A1

inf
α0∈A0

J 0(α).

Notice that the inequality ∞ ≥ V 0 ≥ V 0 ≥ −∞ always holds.

ASSUMPTION 3.1. (i) b, σ , and f are bounded, F-progressively measurable in all vari-
ables, and uniformly continuous in (t,ω) under d∞, uniformly in a ∈ A.

(ii) ξ is bounded and uniformly continuous in ω.

We remark that we allow σ to be degenerate. Under the assumptions on b and σ , the sets
A1 and A2 are not empty, as they contain constant and even piecewise constant controls.
The remaining conditions on f and ξ guarantee that J0 is finite. We emphasise that the
boundedness assumption may be relaxed to linear growth.

DEFINITION 3.2. The game value exists if V 0 = V 0. A control α̂ = (α̂0, α̂1) ∈ A is a
saddle-point of the game if for all (α0, α1) ∈A

(3.6) J 0
(
α̂0, α1) ≤ J 0(α̂) = V 0 = V 0 = J 0(α̂) ≤ J 0

(
α0, α̂1).

We remark that, if α̂ is a saddle-point, then P(α̂) �= ∅ and J0(α̂,P) = V 0 = V 0 for all P ∈
P(α̂). We conclude this subsection with a generic result concerning saddle-points. Denote

(3.7) J 0
(
α0) := sup

α1∈A1
J 0

(
α0, α1), and J 0

(
α1) := inf

α0∈A0
J 0

(
α0, α1).

Then the game problems in (3.5) can be rewritten

(3.8) V 0 = inf
α0∈A0

J 0
(
α0) and V 0 = sup

α1∈A1
J 0

(
α1).

PROPOSITION 3.3. Assume the game value exists. Then α̂ ∈ A is a saddle-point of the
game if and only if α̂0 and α̂1 are optimal controls of V 0 and V 0 in (3.8), respectively.

3The idea here is that if there existed α0,� ∈ A0
such that P(α0,�, α1) = ∅ for any α1 ∈ A1

, then obviously

in the upper value Player 0 will play α0,�, since then whatever the choice of Player 1 afterwards will lead to a

value of −∞. Similarly, if there existed α1,� ∈A1
such that P(α0, α1,�) =∅ for any α0 ∈A0

, in the lower value
Player 1 will play α1,�, since then whatever the choice of Player 0 afterwards will lead to a value of +∞. Our
restriction is here merely to prevent this obvious degeneracy.
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The proof is omitted as it follows directly from Definition 3.2. We shall see that the ex-
istence of the game value will typically follow from the uniqueness of the viscosity solu-
tion to the corresponding HJBI equation. By Proposition 3.3, it seems that the existence of
saddle-points is then reduced to two standard optimisation problems. However, we emphasise
that, due to the weak formulation or more specifically our choice of feedback controls, the
mappings α0 ∈ A0 �−→ J 0(α

0) and α1 ∈ A1 �−→ J 0(α
1) are typically not continuous. Even

worse, it is not clear what is the appropriate topology for the sets A0 and A1, and whether
they do have the appropriate topological requirements. Therefore, the optimisation problems
in (3.8) are actually real challenges.

3.2. Path-dependent HJBI characterisation. Similar to the Markovian case, we shall use
path-dependent PDEs as a powerful tool to study the present path-dependent differential
games. For a = (a0, a1) ∈ A, similar to (2.6) we define

ht (ω, z, γ, a) := 1

2
Tr
[
σ 2

t (ω, a)γ
]+ bt (ω, a) · z + ft (ω, a),

H t := inf
a0∈A0

sup
a1∈A1

ht (·, a0, a1), H t := sup
a1∈A1

inf
a0∈A0

ht (·, a0, a1).
(3.9)

Our main result requires the standard Isaacs condition

(3.10) H = H =: H.

To prove existence of the game value, we shall use the viscosity theory of path-dependent
PDEs (PPDE hereafter). Let C0(�,R) denote the set of functions u : � −→ R continuous
under d∞, C0

b(�,R) the subset of bounded functions, and UCb(�,R) the subset of uniformly
continuous functions. For any L > 0, PL denotes the set of semimartingale measures on �

such that the drift and diffusion of X are bounded by L and
√

2L, respectively, and P∞ :=⋃
L>0 PL. For any t ∈ [0, T ], let Tt denote the set of F-stopping times smaller than t . For a

generic measurable set E, we also denote by L0(�,E) the set of F-progressively measurable
E-valued functions. For any subset P of P∞, we say that a property holds P-q.s. if it holds
P-a.s. for any P ∈ P .

For θ = (t,ω) ∈ � and ω′ ∈ �, define(
ω ⊗t ω′)

s := ωs1[0,t] + (
ωt + ω′

s−t − ω′
0
)
1(t,T ](s), ζ θ (ω′) := ζ

(
ω ⊗t ω′),

ηθ
s

(
ω′) := ηt+s

(
ω ⊗t ω′), s ∈ [0, T − t],

for an FT -measurable random variable ζ , and an F-measurable process {ηs, s ∈ [0, T ]}. We
observe in particular that ζ θ is FT −t -measurable, and the process ηθ is F-adapted. Finally,
for ε > 0, we introduce the stopping time Hε(ω) := inf{t : d∞((t,ω), (0,0)) ≥ ε} ∧ T .

For u ∈ C0(�,R) and θ := (t,ω) ∈ �, the super and sub-jets are defined by the subsets of
R×Rd × Sd :

J L
u(θ) :=

{
(κ, z, γ ) : ∃ε > 0, u(θ) = inf

P∈PL

inf
τ∈THε

EP[uθ
τ − κτ − qz,γ (Xτ )

]}
,

J Lu(θ) :=
{
(κ, z, γ ) : ∃ε > 0, u(θ) = sup

P∈PL

sup
τ∈THε

EP[uθ
τ − κτ − qz,γ (Xτ )

]}
,

(3.11)

where we used the notation qz,γ (x) := z · x + 1
2 Tr[γ xx�], for all (x, z, γ ) ∈ Rd ×Rd × Sd .

Now consider the following PPDE with generator G : � ×R×Rd × Sd −→ R

(3.12) −∂tut (ω) − Gt

(
ω,u, ∂ωu, ∂2

ωωu
) = 0.

The appropriate notion of path-derivatives in the above equation has been proposed first by
Dupire [18], and consists essentially in a directional derivative with respect to perturbations
of the last value taken by the path. Since we are only interested in viscosity solutions, we do
not need to detail this any further.
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DEFINITION 3.4. Let u ∈ C0(�,R).

(i) For any L > 0, we say u is a PL-viscosity super-solution (resp. sub-solution) of PPDE

(3.12) if, for any θ ∈ � and any (κ, z, γ ) ∈ J L
u(θ) (resp. in J Lu(θ)), it holds that

−κ − Gt

(
ω,ut (ω), z, γ

)≥ (resp. ≤)0.

(ii) u is a PL-viscosity solution of PPDE (3.12) if it is both a PL-viscosity super and
sub-solution of (3.12). Moreover, u is a P∞-viscosity solution of PPDE (3.12) if it is a PL-
viscosity solution for some L > 0.

We remark that in our weak formulation setting (or more precisely due to the feedback
type of controls), the regularity of the game value is a very subtle question. As will be ex-
plained later on in the paper, our main need for a priori regularity is linked to our proof of the
dynamic programming principle. This is in stark contrast with the usual control theory, for
which proving dynamic programming in weak formulation requires merely to assume proper
measurability of the coefficients, see for instance the recent papers by El Karoui and Tan [24,
25]. Proving regularity in a strong formulation framework, either in the strategy against con-
trol setting or the delayed strategies one of Section 2, does not pose any specific difficulty.
Indeed, in these settings the control remains the same when one perturbs the initial value of
the state process, thus the regularity simply follows appropriate uniform estimates on the mo-
ments of the controlled diffusion. However in weak formulation, the fact that the players are
controlling the distribution of X makes matters much worse. For example, in (2.21) one can
hardly expect that the law of X would have desired regularity in X0 for an arbitrary control
α. Once again, this is the price to pay if one wishes to obtain general existence results for
saddle-points, as shown in our previous examples.

In order to bypass this difficulty and for the sake of clarity, we consider in this subsection
a special case which is easier to deal with. A more general case will be studied in Section 5
below.

ASSUMPTION 3.5. b = b(t, a) and σ = σ(t, a) are independent of ω.

Our first main result is the following. The proof is postponed to the next section.

THEOREM 3.6. Let Assumptions 3.1, 3.5, and Isaacs’s condition (3.10) hold. Then

(i) The following path dependent Isaacs equation has a viscosity solution u ∈ UCb(�,R)

(3.13) −∂tu − Ht

(
ω,∂ωu, ∂2

ωωu
) = 0, t < T ,uT = ξ.

(ii) Assume also that this PPDE has a unique viscosity solution in UCb(�,R). Then
V 0 = V 0 = u0(0).

REMARK 3.7. (i) The uniqueness of viscosity solution is a highly nontrivial issue. In
Ekren, Touzi and Zhang [20] and Pham and Zhang [57], uniqueness was proved only in the
case where σ is uniformly nondegenerate and the dimension d is either 1 or 2.

(ii) If one can prove the existence of viscosity solution in a smaller class C ⊂ C(�,R) (or
more precisely show that the dynamic upper and lower value processes of the game are in C),
then it is actually enough to prove the uniqueness of viscosity solution in the class C. Hence,
Ren, Touzi and Zhang [59] proved the existence and uniqueness in a subclass of UCb(�,R),
under slightly stronger regularity assumptions on ξ and f in terms of ω. Using their result
provides us with the existence of the game value, even when σ is degenerate or d ≥ 3.
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(iii) Notice however that [59] requires that b and σ are independent of ω. On the
other hand, Ekren and Zhang [21] have introduced a different type of viscosity solution
called pseudo-Markovian viscosity solutions, and proved the corresponding uniqueness un-
der weaker conditions. This will be interesting for us when we extend our game problem to
path dependent (b, σ ) in Section 5 below.

(iv) Finally, in the Markovian case, we can replace our uniqueness assumption with the
uniqueness in the standard Crandall–Lions notion of viscosity solutions. However, notice
that our uniqueness assumption is always weaker, since the set of test functions in the non-
Markovian setting is strictly larger than the usual one.

3.3. A verification result. In this subsection we establish the existence of a saddle-point
under the stronger condition that the Isaacs equation (3.13) has additional regularity inspired
from the W 1,2-Sobolev solutions in the PDE literature. We emphasise that in this subsection
we do not require Assumption 3.5 to hold. This is to be expected as already in standard
stochastic control problems, verification-type arguments do not require to prove beforehand
the dynamic programming principle, which, once more, is the only result which requires
regularity of the value function. Note that

(3.14) d〈X〉t =: σ̂ 2
t dt, holds P∞-q.s.,

for an appropriate symmetric matrix σ̂ , and can be defined without reference to a specific
measure in P∞ by classical results of Bichteler [6].

DEFINITION 3.8. Let u ∈ L0(�,R) and P ⊂ P∞. We say that u ∈ W
1,2
loc (P) if

(i) u is a uniformly integrable semimartinagle under any P ∈ P ;
(ii) for some measurable processes ∂tu, ∂ωu, ∂2

ωωu valued in R, Rd , and Sd , u has the
decomposition

(3.15) dut = ∂tut dt + ∂ωut · dXt + 1

2
Tr
[
∂2
ωωut d〈X〉t ], P-q.s.,

with
∫ T

0 (|∂tut + 1
2 Tr[∂2

ωωut σ̂
2
t ]| + |∂ωut |2)dt < ∞, P-q.s.

REMARK 3.9. (i) By definition, any u ∈ W
1,2
loc (P) is continuous in t , P-q.s. However,

unlike in Dupire [18] or in Ekren, Touzi and Zhang [19, 20], we do not require pointwise
continuity in ω. In particular, this relaxation will allow us to cover BSDEs and 2BSDEs with
measurable coefficients.

(ii) Clearly, (3.15) is closely related to the functional Itô formula in [18–20]. However,
our requirements here are weaker. In particular, we do not require the uniqueness of ∂tu and
∂2
ωωu.

(iii) One can easily see that ∂ωu is unique d〈X〉t × dP-a.s., and ∂tut + 1
2 Tr[σ̂ 2

t ∂2
ωωut ]

is unique dt × dP-a.s., for all P ∈ P . If we set P = PL for some L > 0, and require ∂tut

and ∂2
ωωut to be PL-q.s. continuous, then it follows from Song [66] that ∂tu and ∂2

ωωu are
unique in the PL-q.s. sense. This additional quasi-sure continuity requirement leads to the
G-Sobolev space W

1,2
G introduced by Peng and Song [55].

THEOREM 3.10. Let Assumption 3.1 and Isaacs’s condition (3.10) hold. Assume further
that

(i) The PPDE (3.13) has a W
1,2
loc (P)-solution u, where P := ⋃

α∈AP(α). In other words,
there exist, not necessarily unique, (∂tu, ∂ωu, ∂2

ωωu) satisfying (3.15) and

(3.16) −∂tu − Ht

(
∂ωu, ∂2

ωωu
) = 0, P-q.s.
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(ii) The Hamiltonian Ht(ω, ∂ωu, ∂2
ωωu) has a measurable saddle-point α̂t (ω), such that

P-q.s., for all a ∈ A

ht

(
∂ωu, ∂2

ωωu, α̂0
t , a1

) ≤ ht

(
∂ωu, ∂2

ωωu, α̂0
t , α̂

1
t

) ≤ ht

(
∂ωu, ∂2

ωωu, a0, α̂
1
t

)
.(3.17)

(iii) The set P(α̂) is not empty.

Then V 0 = u0 = V 0 and α̂ is a saddle-point of the game.

PROOF. For any α0 ∈ A0, and P ∈ P(α0, α̂1), it follows from (3.15) and (3.16) that,
P-a.s.

dut =
(
bt

(
α0

t , α̂
1
t

) · ∂ωu + 1

2
Tr
[
σ 2

t

(
α0

t , α̂
1
t

)
∂2
ωωu

]− Ht

(
∂ωu, ∂2

ωωu
))

dt

+ ∂ωu · dM
α0,α̂1

t ≥ −ft

(
α0

t , α̂
1
t

)
dt + ∂ωu · dM

α0,α̂1

t ,

(3.18)

where we recall that Mα0,α̂1
has been defined in (3.2).

Recall the integrability condition in Definition 3.8(ii), and denote τn := T ∧ inf{t :∫ t
0 (|∂tus + 1

2 Tr[∂2
ωωusσ̂

2
s ]| + |∂ωus |2)ds ≥ n}, so that limn→∞ P[τn = T ] = 1. As σ̂ 2

t =
σ 2

t (α0
t , α̂

1
t ), P-a.s. we see by integrating and taking expectations above that u0 ≤ EP[uτn +∫ τn

0 ft (α
0
t , α̂

1
t )dt]. Send now n −→ ∞, since u is continuous in t and uniformly integrable

under P, we obtain from the dominated convergence theorem under P that

J0
(
α0, α̂1,P

)= EP

[
ξ +

∫ T

0
ft

(
α0

t , α̂
1
t

)
dt

]
≥ u0.

Following similar arguments, for any α0 ∈ A0, α1 ∈ A1, P0 ∈ P(α0, α̂1), P1 ∈ P(α̂0, α1),
P̂ ∈ P(α̂), we obtain

J0
(
α̂0, α1,P1) ≤ u0 = J0(α̂, P̂) ≤ J0

(
α0, α̂1,P0).

This implies immediately that V 0 = u0 = V 0 and α̂ is a saddle-point of the game. �

REMARK 3.11. Notice that in Theorem 3.10(iii), we do not require P(α̂) to be a single-
ton. When it consists of several measures P, the value J0(α̂,P) is actually independent of the
choice of P.

REMARK 3.12. The key to Theorem 3.10 is the (functional) Itô formula (3.15). In the
Markovian case, assume that the PDE has a Sobolev solution u in the standard W 1,2-space.
When σ is uniformly elliptic, the generalised Itô formula of Krylov [49], Theorem 2.10.1,
allows to conclude as usual, by replacing (3.17) with its Markovian counterpart: for an ap-
propriate set N with Lebesgue measure 0 on [0, T ] ×Rd , for (t, x) /∈ N

(3.19)
h
(
t, x,Du,D2u, α̂0(t, x), a1

) ≤ H
(
t, x,Du,D2u

)
≤ h

(
t, x,Du,D2u,a0, α̂

1(t, x)
)
.

However, in the degenerate case, an W 1,2-Sobolev solution u is not enough for the verifica-
tion. Indeed, in this case u(t,Xt) may violate the Itô formula under certain P and (3.19) may
not imply that, P-a.s.

h
(
t,Xt ,Du(t,Xt),D

2u(t,Xt), α̂
0(t,Xt), a1

) ≤ H
(
t,Xt ,Du(t,Xt),D

2u(t,Xt)
)
.

Then the arguments for (3.18) cannot go through. To be precise, consider the following simple
SDE with degenerate diffusion coefficient (skipping the controls for simplicity):

(3.20) Xt = X0 +
∫ t

0
1(0,∞)(Xs)dBs, P0-a.s.
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Clearly this SDE has a strong solution Xt = X̃τ∧t , where X̃t := X0 + Bt and τ := inf{t ≥
0 : X̃t = 0}. Then for any t > 0, Xt has an atom 0 as long as P0(X0 > 0) > 0 (even if X0
has a density). So, if u is not differentiable at 0, the whole arguments collapse under P :=
P0 ◦X−1. In other words, even in the Markovian setting, with degenerate diffusion, our quasi-
sure characterisation of the Sobolev solution and the saddle-points of the Hamiltonian seems
necessary for the verification arguments.

A saddle-point exists under our formulation in the following examples. We emphasise
that none of the formulations in the existing literature allows to handle these examples, see
Section 2.

EXAMPLE 3.13. Compare to Example 2.8. Set A0 := [1,2], A1 := [0,1], d := 1, b := 0,
σt (a) := |a0|, ft (a) := ζ (ωt ) − 2a0ζ (ωt ), ξ(ω) := |ωT |2. That is, P(α) consists of weak
solutions of

(3.21)

Xt =
∫ t

0

∣∣α0
s (X·)

∣∣dWs,

J0(α,P) := EP

[
|XT |2 −

∫ T

0

[
2α0

t ζ̄ (Xt ) − ∣∣ζ̄ (Xt )
∣∣2]dt

]
.

We remark that f and ξ here violate the boundedness assumption in Assumption 3.1. How-
ever, this condition is mainly for the convenience of the general path dependent PDEs, and
in this particular example, it is not needed. Nevertheless, in this case, we have V 0 = V 0 =
v(0,0), where v(t, x) = x2 + T − t is the classical solution to the HJBI equation (3.13).
Again, the (unique) saddle-point of the Hamiltonian in the sense of (3.17) is provided by
(2.17). Define α̂t (ω) := ât (ωt ). Then |α̂t (ω)| = ζ(ωt ) and thus (3.21) becomes (2.10). By
Barlow [1], P(α̂) is a singleton. This implies easily that α̂ is indeed a saddle-point of the
game.

The next example extends Example 2.15 to the degenerate case, namely c = 0 or |ρ| = 1.
We remark that the result of Hamadène and Lepeltier [41] does not apply in this case.

EXAMPLE 3.14. Consider the setting of Example 2.15, but with c = 0 or |ρ| = 1.

(i) Let ρ = 1 and c > 0; the case ρ = −1 can be treated similarly. The HJBI equation
reduces to ⎧⎨⎩−∂tv − 1

2
c2(∂x1x1v + ∂x2x2v + 2∂x1x2v) + |∂x1v| − |∂x2v| = 0,

v(T , x1, x2) = |x1 − x2|2,
which has a classical solution v(t, x1, x2) = |x1 −x2|2. The saddle-points for the Hamiltonian
are then given by

â0(t, x) := − sgn(x1 − x2) − β1(t, x)1{x1=x2},
â1(t, x) := sgn(x2 − x1) + β2(t, x)1{x1=x2},

for any arbitrary measurable functions β1, β2 taking values in [−1,1]. Denote DX :=
X2 − X1. In order to prove that the two-dimensional SDE Xi

t = ∫ t
0 (sgn(DXs) − βi(s,Xs) ×

1{DXs=0})ds + cWt , i = 0,1, has a weak solution, we observe that the difference satisfies the
ODE DXt = ∫ t

0 (β1 + β2)(s,Xs)1{DXs=0} ds, which has a solution if and only if β1 + β2 = 0.
In this case, the unique solution is DXt = 0, that is, X1 = X0, and we are reduced to the SDE



ZERO-SUM GAMES IN WEAK FORMULATION 1433

X0
t = ∫ t

0 β1(s,X
0
s ,X

0
s )ds + cWt , which also has a unique weak solution since c > 0 and β1

is bounded by definition. Therefore, the saddle-points of the game are

α̂0
t = α̂1

t = sgn
(
X1

t − X0
t

)+ β
(
t,X0

t

)
1{X0

t =X1
t },

for an arbitrary measurable β : [0, T ] ×R −→ [−1,1].
(ii) When c = 0, the last characterisation of the saddle-point still holds true provided that

the ODE X0
t = ∫ t

0 β(s,X0
s )ds has a solution.

In the rest of this section, we investigate the question of existence of weak solutions
for path-dependent SDEs, thus providing sufficient conditions for Theorem 3.10(iii). In the
Markovian setting, we refer to Krylov [49], Section 2.6, for existence of weak solutions of
SDEs with measurable coefficients. We emphasise again that uniqueness is not required in
our approach.

DEFINITION 3.15. An F-progressively mesurable process ϕ, with values in an Euclidean
space, is called P-q.s. continuous if, for any ε > 0, there exist closed subsets {�ε

t }0≤t≤T ⊂ �

such that

(i) 1�ε
t

is F-progressively measurable with supP∈P EP[∫ T
0 1(�ε

t )
c dt] ≤ ε.

(ii) For each t , ϕ(t, ·) is continuous in �ε
t .

The following existence result looks standard and its proof is postponed to the Appendix.

THEOREM 3.16. Assume b : � −→ Rd and σ : � −→ Sd are bounded by a certain
constant L, are F-measurable, and PL-q.s. continuous. Then there is a weak solution to the
SDE Xt = ∫ t

0 b(s,X·)ds + ∫ t
0 σ(s,X·)dWs .

We finally discuss the desired regularity for saddle-points of the Hamiltonian, for which
we define W 1,2(P) as the subset of W

1,2
loc (P) consisting of processes u such that ∂tu, ∂ωu,

and ∂2
ωωu are P-q.s. continuous.

THEOREM 3.17. Let Assumption 3.1 holds, b, σ be continuous in a, and assume that
the Isaacs condition (3.10) holds with saddle-point α̂t (ω, z, γ ), that is, for all a ∈ A, P-q.s.

ht

(
ω,z, γ, α̂0

t , a1
) ≤ ht

(
ω,z, γ, α̂0

t , α̂
1
t

) = Ht(ω, z, γ ) ≤ ht

(
ω,z, γ, a0, α̂

1
t

)
,

such that α̂ is continuous in (z, γ ), and uniformly P-continuous in (t,ω), that is, α̂(·, z, γ ) is
P-continuous for all (z, γ ), with a common {�ε

t }0≤t≤T for all (z, γ ).
Let u be a W 1,2(P)-solution of the PPDE (3.13) with P := ⋃

α∈AP(α). Then V 0 = u0 =
V 0 and α∗

t (ω) := α̂t (ω, ∂ωu(t,ω), ∂2
ωωu(t,ω)) is a saddle-point of the game.

PROOF. By our regularity assumptions on u and α̂, we see that α∗
t (ω) := α̂t (ω, ∂ωu(t,ω),

∂2
ωωu(t,ω)) is P-q.s. continuous. Together with the continuity of b and σ in a, this implies

that b̂(t,ω) := bt (ω,α∗
t (ω)) and σ̂ (t,ω) := σt (ω,α∗

t (ω)) are also P-q.s. continuous. Now
it follows from Theorem 3.16 that P(α∗) �= ∅. Therefore, we can apply Theorem 3.10 to
conclude. �

3.4. Second order backward SDE characterisation. For α0 ∈ A0 fixed, the stochastic
control problem J 0(α

0), defined in (3.7), can be characterized by the corresponding second
order BSDEs, as introduced by Cheridito, Soner, Touzi and Victoir [14], and further devel-
oped by Soner, Touzi and Zhang [65] and Possamaï, Tan and Zhou [58].
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3.4.1. The general case. We emphasise that in this subsection, we do not require As-
sumption 3.5 to hold.

ASSUMPTION 3.18. (i) b = σλ for some λ : �×A →Rd progressively measurable and
bounded.

(ii) For every (t,ω) ∈ � and a = (a0, a1) ∈ A, the following two sets are convex{
(b, σ, f )

(
t,ω, a′

0, a1
) : a′

0 ∈ A0
}
,

{
(b, σ, f )

(
t,ω, a0, a

′
1
) : a′

1 ∈ A1
}
.

Assumption 3.18(i) is made in order to focus on the main arguments, and can be relaxed at
the price of more technical developments. We used it in order to highlight more our core ideas.
Assumption 3.18(ii) is mainly technical, and will be explained in the proof of Lemma 6.1
below. For now, let us only mention that it is linked to our use of the relaxed formulation
for stochastic control problems, and that it is a classical assumption to recover weak optimal
controls from relaxed ones (see for instance Beneš [5], which uses a version of Filippov’s
lemma on implicit functions [32]).

Recall A, P(α), and (3.3) from Section 3.1. We introduce the corresponding terms when
b = 0

P0(α) :=
{
P : X· =

∫ ·
0

σs

(
X·, α(X·)

)
dWs,P-a.s.

}
, P0

0
(
α1) := ⋃

α0∈A0

P0(α),

P1
0
(
α0) := ⋃

α1∈A1

P0(α), A0
0 = {

α0 ∈ A0 : P1
0
(
α0) �=∅

}
,

A1
0 := {

α1 ∈ A1 : P0
0
(
α1) �= ∅

}
, A0 := A0

0 ×A1
0.

For every pair (α,P) ∈A0 ×P0(α), let WP,α be an P-Brownian motion corresponding to the
driftless SDE in the definition of P0(α). For λ satisfying Assumption 3.18(i), we denote λα :=
λ(X·, α(X·)), and we introduce an equivalent measure Pα , together with the corresponding
Brownian motion (by Girsanov theorem):

dPα

dP
:= exp

(∫ T

0
λα

s · dWP,α
s − 1

2

∫ T

0

∣∣λα
s

∣∣2 ds

)
, WPα := WP,α −

∫ ·
0

λα
s ds,

so that the dynamics of the canonical process under Pα are given by:

dXs = bs

(
X·, αs(X·)

)
ds + σs

(
X·, α(X·)

)
dWPα

s , Pα-a.s.

The upper and lower values of the game can then be rewritten as

V
0
0 := inf

α0∈A0
0

sup
α1∈A1

0

J 0(α), and V 0
0 := sup

α1∈A1
0

inf
α0∈A0

0

J 0(α),

where

J 0(α) := sup
P∈P0(α)

EPα
[
ξ +

∫ T

0
fs(αs)ds

]
, J 0(α) := inf

P∈P0(α)
EPα

[
ξ +

∫ T

0
fs(αs)ds

]
.

We next introduce the nonlinear generators

F t(ω, z, a0) := sup
a1∈A1(t,ω,a0)

Ft (ω, z, a0, a1),

F t (ω, z, a1) := inf
a0∈A0(t,ω,a1)

Ft (ω, z, a0, a1),
(3.22)
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where, for the σ̂ defined in (3.14),

Ft(ω, z, a) := bt (ω, a) · z + ft (ω, a),

Ai(t,ω, a1−i) := {
ai ∈ Ai : (σtσ

�
t

)
(ω, a0, a1) = σ̂ 2

t (ω)
}
, i = 0,1.

The second order backward SDEs (2BSDE, hereafter) which will serve to represent the upper
and lower values is defined by the following representation of the r.v. ξ , which must hold P-
a.s. for all P belonging respectively to P0

0 (α1) and P1
0 (α0)4

Yα1

t = ξ +
∫ T

t
F s

(
Zα1

s , α1
s

)
ds −

∫ T

t
Zα1

s · dXs −
∫ T

t
dKα1

s ,(3.23)

Y
α0

t = ξ +
∫ T

t
F s

(
Z

α0

s , α0
s

)
ds −

∫ T

t
Z

α0

s · dXs +
∫ T

t
dK

α0

s .(3.24)

DEFINITION 3.19. We say that (Y α1
,Zα1

) is a solution of the 2BSDE (3.23) if, for some
p > 1,

(i) Yα1
is a càdlàg and FP0

0 (α1)+-optional process, with∥∥Yα1∥∥p

D0
p

:= sup
P∈P0

0 (α1)

EP
[
sup
t≤T

∣∣Yα1

t

∣∣p] < ∞.

(ii) Zα1
is an FP0

0 (α1)-predictable process, with

∥∥Zα1∥∥p

H0
p

:= sup
P∈P0

0 (α1)

EP

[(∫ T

0

(
Zα1

t

)�
σ̂ 2

t Zα1

t dt

)p
2
]

< ∞.

(iii) For all P ∈ P0
0 (α1), the process

(3.25) K
α1,P
t := Yα1

t − Yα1

0 +
∫ t

0
F s

(
Zα1

s , α1
s

)
ds −

∫ t

0
Zα1

s · dXs, t ∈ [0, T ],
is P-optional, nondecreasing, and satisfies the minimality condition:

(3.26) K
α1,P
t = essinfP

P′∈P0
0 (α1;t,P,F+)

EP′[
K

α1,P′
T |FP+

t

]
, 0 ≤ t ≤ T ,P-a.s.,

where P0
0 (α1; t,P,F+) := {P′ ∈ P0

0 (α1) : P[E] = P′[E] for all E ∈ F+
t }, t ∈ [0, T ].

The solution (Y
α0

,Z
α0

) of the 2BSDE (3.24) is defined similarly.

We are now ready for the main result of this subsection, the proof is postponed to Section 6
below.

4We remark that 2BSDEs (3.23) and (3.24) do not include an orthogonal martingale term, even though the
involved probabilities P may not satisfy the predictable martingale representation property. This is linked to the
fact that we are considering so-called “saturated” solutions for 2BSDEs, as in [58], Definitions 5.1 and 5.2. In a

nutshell, during the construction of the solution of a 2BSDE, the nondecreasing processes Kα1
and K

α0
appear

through the application of the Doob–Meyer decomposition. In this case, the martingale part in the decomposition
can then be written as a stochastic integral with respect to X, plus an orthogonal martingale (because the under-
lying filtration is general). However, since the sets of probabilities considered here are saturated (in the sense that
any measure Q equivalent to a measure in the set and making X in a local martingale still belongs to the set),
we can use the optional decomposition [23, 48] instead of the Doob–Meyer one, in which case the nondecreasing
processes are optional instead of predictable, but there is no longer any need for orthogonal martingales.
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THEOREM 3.20. (i) Under Assumptions 3.1 and 3.18, the 2BSDEs (3.23) and (3.24)
have unique solutions, with

V 0 := inf
α0∈A0

0

sup
P∈P1

0 (α0)

EPα [
Y

α0

0
]
, and V 0 := sup

α1∈A1
0

inf
P∈P0

0 (α1)

EPα [
Yα1

0
];

(ii) If in addition, for some α̂ = (α̂0, α̂1) ∈ A0, and P̂ ∈P0(α̂),

(3.27) F s

(
Zα̂1

s , α̂1
s

) = F s

(
Z

α̂0

s , α̂0
s

)
, ds ⊗ dP̂-a.e., and K

α̂0

T = Kα̂1

T = 0, P̂-a.s.

then the game value exists, that is, V 0 = V 0, and α̂ is a saddle-point of the game.

We notice that Theorem 3.20 does not require Assumption 3.5. Moreover, Theorem 3.20
(ii) does not require (3.10) directly. However, the conditions in (3.27) are rather strong, and
essentially imply (3.10), see Remark 6.2 below for more details.

3.4.2. A simpler case: Volatility controlled by one player only. In this subsection we
improve Theorem 3.20 when only one player, say Player 0, controls the volatility, that is,
σt (ω, a) = σt (ω, a0).5 Then, (3.9) reduces to

Ht(z, γ ) = inf
�∈�t

{
1

2
Tr[�γ ] + Gt(z,�)

}
,

H t (z, γ ) = sup
a1∈A1

inf
�∈�t

{
1

2
Tr[�γ ] + g

t
(z,�,a1)

}
,

where

�t(a0) := (
σtσ

�
t

)
(a0), �t := {

�t(a0), a0 ∈ A0
}
,

A0(t,�) := {
a0 ∈ A0 : (σtσ

�
t

)
(a0) = �

}
,

Gt(z,�) := inf
a0∈A0(t,�)

sup
a1∈A1

Ft(z, a0, a1),

g
t
(z,�,a1) := inf

a0∈A0(t,�)
Ft (z, a0, a1),

Gt(z,�) := sup
a1∈A1

g
t
(z,�,a1).

(3.28)

Moreover, it is clear that P0(α) = P1
0 (α0) =: P0(α

0) depends only on α0. Denote P0 :=⋃
α0∈A0 P0(α

0). We now introduce the following 2BSDEs with solutions defined similarly to
Definition 3.19, which must hold for any P ∈ P0

Y t = ξ +
∫ T

t
Gs

(
Zs, σ̂

2
s

)
ds −

∫ T

t
Zs · dXs −

∫ T

t
dKs, P-a.s.,(3.29)

Y t = ξ +
∫ T

t
Gs

(
Zs, σ̂

2
s

)
ds −

∫ T

t
Zs · dXs −

∫ T

t
dKs, P-a.s.(3.30)

THEOREM 3.21. Under Assumptions 3.1 and 3.18, the 2BSDEs (3.29) and (3.30) have
unique solutions with

V 0 = inf
P∈P0

EP[Y 0], and V 0 = inf
P∈P0

EP[Y 0].

If moreover the Isaac’s-like condition G = G holds, then the game has a value.

5See Mastrolia and Possamaï [52], Hernández Santibáñez and Mastrolia [44], and Sung [68] for a similar setting
in the context of moral hazard problems under uncertainty.
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REMARK 3.22. The conditions G = G and H = H are equivalent in the uncontrolled
volatility setting of Section 2.5. However they are not comparable in general. It can be readily
checked that when a saddle-point exists, the condition G = G actually implies that H =
H when evaluated at this saddle-point, which is exactly what is needed to conclude to the
existence of a game value. Unlike the general case of Theorem 3.20(ii), we can conclude
here the existence of a game value, without having to assume existence of a saddle-point.

4. Dynamic programming principle and viscosity property. In this section we prove
Theorem 3.6 under the additional Assumption 3.5. As usual, the main tool is the dynamic pro-
gramming principle. We shall focus on the upper value, and the lower value can be analysed
similarly. For any t ∈ [0, T ], denote

bt (s, a) := b
(
(t + s) ∧ T ,a

)
,

σ t (s, a) := σ
(
(t + s) ∧ T ,a

)
, (s, a) ∈ [0, T ] × A.

(4.1)

We define P(t, α),At , . . . , in an obvious way, by replacing (b, σ ) with (bt , σ t ). For each
P ∈ P(t, α), define

Jt (ω,α,P) := EP

[
ξ t,ω +

∫ T −t

0
f t,ω

s (αs)ds

]
, J t := sup

P∈P(t,α)

Jt (·,P),

V t (ω) := inf
α0∈A0

t

sup
α1∈A1

t

J t

(
ω,α0, α1).(4.2)

As we will explain in Remark 4.4 below, we are not able to establish the DPP for V directly.
To get around of this difficulty, as an intermediate step we shall modify the upper value
slightly. Following the idea of Pham and Zhang [57], we restrict α0 to a class of appropriately
defined simple processes. We note that in [57] both players are restricted to such simple
controls, while here we only need this restriction for the one playing first.

Let A0,pc
t denote the subset of A0

t whose elements take the following form

(4.3) α0
s (ω) :=

n−1∑
i=0

mi∑
j=1

a0
ij 1Eij

(ω)1[ti ,ti+1)(s), 0 ≤ s ≤ T − t,ω ∈ �,

where 0 = t0 < · · · < tn = T − t , {Eij }1≤j≤mi
⊂ Fti is a partition of �, and a0

ij ∈ A0 are
constants. Define

(4.4) V
pc
t (ω) := inf

α0∈A0,pc
t

sup
α1∈A1

t

J t

(
ω,α0, α1).

It is clear that

(4.5) V t ≤ V
pc
t .

Moreover, the uniform continuity and the boundedness in Assumption 3.1, induce the follow-
ing regularity immediately.

LEMMA 4.1. Under Assumptions 3.1 and 3.5, J is uniformly continuous in ω, uniformly
in (t, α,P). Consequently, V and V

pc
are uniformly continuous in ω, uniformly in t .

We emphasise that the maps b and σ , and hence the probability measure P, do not depend
on ω. When b or σ depends on ω, the class P(t, α) will depend on ω, and thus one cannot
fix an arbitrary P to discuss the regularly of J in terms of ω. Indeed, in this general case, the
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regularity of V
pc

is the major difficulty in our approach, and we shall investigate it further in
Section 5 below.

The following result is crucial for the dynamic programming principle which will be es-
tablished next, and is an immediate consequence of [25], Remark 3.8 and Theorem 3.4.

LEMMA 4.2. (i) Let α = (α0, α1) ∈ A0,pc
0 × A1

0, t ∈ [0, T ], and P ∈ P(α). Then αt,ω ∈
A0,pc

t × A1
t and the regular conditional probability distribution Pt,ω ∈ P(t, αt,ω) for P-a.e.

ω ∈ �.
(ii) Let t ∈ [0, T ], n ∈ N, α0 ∈ A0,pc

0 , α0
i ∈ A0,pc

t , 1 ≤ i ≤ n, {Ei}1≤i≤n ⊂ Ft a finite par-
tition of �, and define the control α̃0(ω ⊗t ω′) := 1[0,t)α

0(ω) + 1[t,T ]
∑n

i=1 α0
i (ω

′)1Ei
(ω).

Then α̃0 ∈ A0,pc
0 .

We now prove the dynamic programming principle (DPP) for V
pc

.

THEOREM 4.3. Under Assumptions 3.1 and 3.5, V
pc ∈ UCb(�), and

V
pc
t (ω) = inf

α0∈A0,pc
t

sup
α1∈A1

t

sup
P∈P(t,α)

EP

[(
V

pc)θ
τ +

∫ τ

0
f θ

s (αs)ds

]
,

for any θ ∈ �, and F-stopping time τ ≤ T − t .

PROOF. We proceed in three steps.
Step 1. We first establish the DPP for deterministic τ . Without loss of generality we will

just prove the following

V
pc
0 = inf

α0∈A0,pc
0

sup
α1∈A1

0

sup
P∈P(α)

J̃0(α,P),

J̃0(α,P) := EP

[
V

pc
t +

∫ t

0
fs(αs)ds

]
, t ∈ [0, T ].

(4.6)

Step 1.1. We first prove ≤. By Lemma 4.1, J is uniformly continuous in ω. Since �

is separable, for any ε > 0, there exist a partition {Ei}i≥1 ⊂ Ft and ωi ∈ Ei such that
|Jt (ω,α,P) − Jt (ω

i, α,P)| ≤ ε for all ω ∈ Ei , i ≥ 1, and all α ∈ A and P ∈ P(t, α). For
each i, let α0

i ∈A0,pc
t be an ε-optimiser for V

pc
t (ωi), namely

(4.7) St

(
ωi,α0

i

) ≤ V
pc
t

(
ωi)+ ε, where St

(
ω,α0

i

) := sup
α1∈A1

t

sup
P∈P(t,α0

i ,α1)

Jt

(
ω,α0

i , α
1,P

)
.

Notice that α0
i does not depend on ω. Then it is clear that∣∣St

(
ω,α0

i

)− St

(
ωi,α0

i

)∣∣ ≤ ε, and∣∣V pc
t (ω) − V

pc
t

(
ωi)∣∣ ≤ ε, for all ω ∈ Ei, i ≥ 1.

(4.8)

Now for any α = (α0, α1) ∈ A0,pc
0 ×A1

0 and P ∈ P(α), define α̃0 ∈ A0 as in Lemma 4.2(ii).
Note that (α̃0)t,ω = α0

i for ω ∈ Ei . By Lemma 4.2(i), we obtain

J 0
(
α̃0, α1,P

) = EP

[
EPt,ω

[
ξ t,ω +

∫ T −t

0
f t,ω

s

((
α̃0)t,ω

s ,
(
α1)t,ω

s

)
ds

]
+
∫ t

0
fs(αs)ds

]
≤ EP

[∑
i≥1

St

(
ω,α0

i

)
1Ei

(ω) +
∫ t

0
fs(αs)ds

]
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≤ EP

[∑
i≥1

St

(
ωi,α0

i

)
1Ei

(ω) +
∫ t

0
fs(αs)ds

]
+ ε

≤ EP

[∑
i≥1

V
pc
t

(
ωi)1Ei

(ω) +
∫ t

0
fs(αs)ds

]
+ 2ε

≤ EP

[∑
i≥1

V
pc
t (ω)1Ei

(ω) +
∫ t

0
fs(αs)ds

]
+ 3ε

= EP

[
V

pc
t (ω) +

∫ t

0
fs(αs)ds

]
+ 3ε = J̃0(α,P) + 3ε.

By the arbitrariness of α0, α1, P and ε, we prove the “≤” part of (4.6).
Step 1.2. We next prove ≥. Fix α0 = ∑n−1

i=0 1[ti ,ti+1)

∑mi

j=1 a0
ij 1Eij

∈ A0,pc
0 as in (4.3). By

otherwise adding the point t in (4.6) into the partition points in the definition of α0, we may
assume without loss of generality that t = ti for a certain i. We claim that, again denoting
α := (α0, α1), for all i = 0, . . . , n − 1

(4.9) sup
α1∈A1

0

sup
P∈P(α)

EP

[
V

pc
ti

+
∫ ti

0
fs(αs)ds

]
≤ sup

α1∈A1
0

sup
P∈P(α)

EP

[
V

pc
ti+1

+
∫ ti+1

0
fs(αs)ds

]
,

so that, since V
pc
tn

= ξ , for all i = 0, . . . , n − 1

sup
α1∈A1

0

sup
P∈P(α)

EP

[
V

pc
ti

+
∫ ti

0
fs(αs)ds

]
≤ sup

α1∈A1
0

sup
P∈P(α)

EP

[
ξ +

∫ T

0
fs(αs)ds

]
,

thus implying the “≥” part of (4.6) by the arbitrariness of α0.
To see that (4.9) holds, fix i, α1 ∈ A1

0, and P ∈ P(α0, α1). For any ε > 0, by Pham and
Zhang [57], Lemma 4.3, one may choose the partition {Ek}k≥1 ⊂ Fti such that

sup
α∈A

sup
P∈P(α)

P

[ ⋃
k>N

Ek

]
≤ ε, for some N large enough.

Denote ẼN := ⋃
k>N Ek , Eijk := Eij ∩ Ek for j = 1, . . . ,mi , k = 1, . . . ,N , and Ẽij :=

Eij ∩ ẼN , for j = 1, . . . ,mi . Fix an ωijk ∈ Eijk for each j , k, whenever Eijk �=∅. Recalling
that {Eij }1≤j≤mi

is a partition of �, we have

EP[V pc
ti

]
= EP

[
mi∑

j=1

V
pc
ti

(ω)1Eij
(ω)

]

≤ EP

[
mi∑

j=1

N∑
k=1

V
pc
ti

(ω)1Eijk
(ω)

]
+ Cε

≤ EP

[
mi∑

j=1

N∑
k=1

V
pc
ti

(
ωijk)1Eijk

(ω)

]
+ Cε

≤ EP

[
mi∑

j=1

N∑
k=1

sup
α̃1∈A1

ti

sup
P̃∈P(ti ,a

0
ij ,α̃1)

EP̃

[(
V

pc)ti ,ωijk

δi
+
∫ δi

0
f ti ,ω

ijk

s

(
a0
ij , α̃

1
s

)]
1Eijk

(ω)

]
+ Cε,
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where δi := ti+1 − ti , the first inequality is due to the boundedness of V
pc

, and the last
inequality used Step 1.1. For each j , k, there exist α̃1,jk ∈ A1

ti
and P̃jk ∈ P(ti, a

0
ij , α̃

1,jk)

such that

sup
α̃1∈A1

ti

sup
P̃∈P(ti ,a

0
ij ,α̃1)

EP̃

[(
V

pc)ti ,ωijk

δi
+
∫ δi

0
f ti ,ω

ijk

s

(
a0
ij , α̃

1
s

)]

≤ EP̃jk

[(
V

pc)ti ,ωijk

δi
+
∫ δi

0
f ti ,ω

ijk

s

(
a0
ij , α̃

1,jk
s

)]+ ε.

Fix an arbitrary a1 ∈ A1 and P̃
a0
ij ,a1 ∈ P(ti, a

0
ij , a1). Define

α̂1 := 1[0,ti )α
1 + 1[ti ,T ]

(
mi∑

j=1

N∑
k=1

α̃
1,jk
·−ti

1Eijk
+ a11ẼN

)
∈ A1

0,

P̂ := P⊗ti

mi∑
j=1

(
N∑

k=1

P̃jk1Eijk
+ P̃

a0
ij ,a11Ẽij

)
∈P

(
α0, α̂1).

Then, by the regularity of V
pc

and f in ω,

EP
[
V

pc
ti

]
≤ EP

[
mi∑

j=1

N∑
k=1

EP̃jk

[(
V

pc)ti ,ωijk

δi
+
∫ δi

0
f ti ,ω

ijk

s

(
a0
ij , α̃

1,jk
s

)
ds

]
1Eijk

(ω)

]
+ Cε

≤ EP

[
mi∑

j=1

N∑
k=1

EP̃jk

[(
V

pc)ti ,ω
δi

+
∫ δi

0
f ti ,ω

s

(
a0
ij , α̃

1,jk
s

)
ds

]
1Eijk

(ω)

]
+ Cε

= EP

[
mi∑

j=1

N∑
k=1

EP̂ti ,ω
[(

V
pc)ti ,ω

δi
+
∫ δi

0
f ti ,ω

s

(
a0
ij ,

(
α̂1)ti ,ω

s

)
ds

]
1Eijk

(ω)

]
+ Cε

= EP

[
mi∑

j=1

N∑
k=1

EP̂ti ,ω
[(

V
pc)ti ,ω

δi
+
∫ δi

0
f ti ,ω

s

(
a0
ij ,

(
α̂1)ti ,ω

s

)
ds

]
1Eijk

(ω)

]
+ Cε

= EP

[
EP̂ti ,ω

[(
V

pc)ti ,ω
δi

+
∫ δi

0
f ti ,ω

s

((
α0)ti ,ω

s ,
(
α̂1)ti ,ω

s

)
ds

]
1Ẽc

N
(ω)

]
+ Cε

≤ EP

[
EP̂ti ,ω

[(
V

pc)ti ,ω
δi

+
∫ δi

0
f ti ,ω

s

((
α0)ti ,ω

s ,
(
α̂1)ti ,ω

s

)
ds

]]
+ Cε

= EP̂

[
V

pc
ti+1

+
∫ ti+1

ti

fs

(
α0

s , α̂
1
s

)
ds

]
+ Cε.

This implies that

EP

[
V

pc
ti

+
∫ ti

0
fs

(
α0

s , α
1
s

)
ds

]
≤ EP̂

[
V

pc
ti+1

+
∫ ti+1

0
fs

(
α0

s , α̂
1
s

)
ds

]
+ Cε.

Since α1 ∈ A1
0 and P ∈ P(α0, α1) are arbitrary, the above inequality leads to (4.9) immedi-

ately.
Step 2. We next show that V

pc
is uniformly continuous in (t,ω). Let ρ denote the

modulus of continuity function of V
pc

with respect to ω. For t < t ′ and ω ∈ �, denote
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δ := d∞((t,ω), (t ′,ω)). By Step 1, we have∣∣V pc
t − V

pc
t ′
∣∣(ω)

≤ sup
α0∈A0,pc

t

sup
α1∈A1

t

sup
P∈P(t,α0,α1)

∣∣∣∣EP

[
V

pc
t ′ (ω ⊗t X) +

∫ t ′−t

0
f t,ω

s

(
α0

s , α
1
s

)
ds

]
− V

pc
t ′ (ω)

∣∣∣∣
≤ sup

α0∈A0,pc
t

sup
α1∈A1

t

sup
P∈P(t,α0,α1)

EP

[
ρ
(∥∥(ω ⊗t X)·∧t ′ − ω·∧t ′

∥∥∞
)+

∫ δ

0

∣∣f t,ω
s

(
α0

s , α
1
s

)∣∣ds

]

≤ sup
α0∈A0,pc

t

sup
α1∈A1

t

sup
P∈P(t,α0,α1)

EP

[
ρ
(
δ + ‖X·∧δ‖∞

)+
∫ δ

0

∣∣f t,ω
s

(
α0

s , α
1
s

)∣∣ds

]

≤ sup
P∈PL

EP[ρ(δ + ‖X·∧δ‖∞
)]+ Cδ,

for some L large enough. Under our conditions, this clearly implies the uniform continuity
of V

pc
in (t,ω).

Step 3. Following standard approximation arguments, we may extend Theorem 4.3 to stop-
ping times. �

REMARK 4.4. (i) Following similar arguments as in Step 1.1 above, one may prove the
partial DPP for V :

V 0 ≤ inf
α0∈A0

0

sup
α1∈A1

0

sup
P∈P(α0,α1)

EP

[
V t +

∫ t

0
fs(αs)ds

]
.

However, to prove the opposite inequality, we encountered some serious difficulties that we
would like to highlight. Let f = 0 for simplicity of presentation. Then we want to prove, for
fixed α0 ∈ A0

0, that

(4.10) sup
α1∈A1

0

sup
P∈P(α0,α1)

EP[ξ ] ≥ sup
α1∈A1

0

sup
P∈P(α0,α1)

EP
[

sup
α̃1∈A1

t

sup
P̃∈P(t,(α0)t,ω,α̃1)

EP̃[ξ t,ω]],
which is the partial DPP for a control problem (instead of a game problem). However, we
insist on the fact that we are using weak formulation, which implies in particular that the
control α1 depends on X, and the fixed control α0 has typically absolutely no regularity with
respect to X. The DPP for this problem is not available in the literature, and there are indeed
serious obstacles to overcome in order to establish it. Several authors managed to obtain such
DPP but either in strong formulation (see Nisio [53], Fleming and Souganidis [37], Święch
[69], Buckdahn and Li [10], Bouchard, Moreau and Nutz [7], Bouchard and Nutz [8], Krylov
[50, 51]), or with the use of simple strategies for both players (see Pham and Zhang [57] or
Sîrbu [62, 63]).6

(ii) As we saw in Example 2.1, in the strong formulation setting of Section 2.1, the game
value typically does not exist. The main reason is that in this setting the DPP fails for the

dynamic upper (and lower) value of the game. In fact, in this case the dynamic version of V
S

0
in (2.2) is the following deterministic function (assuming b = f = 0 for simplicity),

u(t, x) := inf
α0∈A0

S

sup
α1∈A1

S

EP0
[
g
(
X

t,x,α
T −t

)]
,

6A slight exception would be Kovats [47], which considers games written somehow in a weak formulation, but
with strategies against control, and relies on approximation techniques similar to [37].
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where

Xt,x,α
s = x +

∫ s

0
σ t (r,Xt,x,α

r , αr

)
dWr, 0 ≤ s ≤ T − t,P0-a.s.

Under mild conditions, one can easily show that u(t, ·) is uniformly continuous in x. Fol-
lowing similar arguments as in Step 1.2 (actually much easier because we have the desired
regularity under the strong formulation), one can prove the following partial DPP (stated for
t1 = 0, t2 = t and x = 0 for simplicity),

u(0,0) ≥ inf
α0∈A0

S

sup
α1∈A1

S

EP0
[
u
(
t,Xα

t

)]
.

However, the opposite direction of the DPP will not hold, since the game value does not exist.
Let us explain why the arguments in Step 1.1 fail in this setting.

By the uniform regularity of u in x, there exists a partition {Oi}i≥1 of Rd such that
|u(t, x) − u(t, xi)| ≤ ε for all x ∈ Oi , where xi ∈ Oi is fixed. Now for each i, let α0

i ∈ A0
S be

an ε-optimiser of u(t, xi). Then we will have, for any α ∈AS

EP0
[
u
(
t,Xα

t

)] ≥ EP0

[∑
i≥1

sup
α̃1∈A1

S

EP0
[
g(X

t,x,(α0
i ,α̃1)

T −t

]|x=Xα
t
1Oi

(
Xα

t

)]− ε

≥ sup
α̃1∈A1

S

EP0
[
g(X̃T )

]− ε,

where, denoting Wt
s := Wt+s − Wt ,

(4.11) X̃s = Xα
t +

∫ s

t
σ

(
r, X̃r ,

∑
i≥1

α0
i

(
r − t,W t·

)
1Oi

(
Xα

t

)
, α̃1(r − t,W t ))dr, P0-a.s.

In other words, to prove the opposite direction of the DPP, essentially we want to prove

(4.12) inf
α0∈A0

S

sup
α1∈A1

S

EP0
[
g
(
Xα

T

)] ≤ inf
α0∈A0

S

sup
α1∈A1

S

sup
α̃1∈A1

S

EP0
[
g(X̃T )

]
.

Fix an α0 ∈ A0
S . Note that the right side above involves only α0|[0,t]. The idea is to construct

α̃0 ∈ A0
S such that

sup
α1∈A1

S

EP0
[
g
(
X

α̃0,α1

T

)] ≤ sup
α1∈A1

S

sup
α̃1∈A1

S

EP0
[
g(X̃T )

]
.

By (4.11), the most natural construction of α̃0 is to set

α̃0(s,W·) := 1[0,t)(s)α
0(s,W·) + 1[t,T ]

∑
i≥1

α0
i

(
s − t,W t·

)
1Oi

(
Xα

t

)
.

This construction does work well in weak formulation, as we saw in Lemma 4.2(ii). However,
in the strong formulation considered here, the above construction relies on Xα

t , thus in turn
on α1|[0,t]. In other words, the α0 in the left side of (4.12) will depend on α1. This is exactly
the idea of the notion of strategy against control introduced in Section 2.2, which is however
not allowed in the current setting of strong formulation with control against control.

We now derive the viscosity property of V
pc

. Once the DPP and the regularity of V
pc

have
been established, it is a rather straightforward verification.

PROPOSITION 4.5. Under Assumptions 3.1 and 3.5, V
pc

is a viscosity solution of the
PPDE

(4.13) −∂tV
pc − Ht

(
∂ωV

pc
, ∂2

ωωV
pc) = 0.
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PROOF. Without loss of generality, we shall only verify the L-viscosity property at (0,0)

for some L large enough.
Step 1. We first verify the viscosity sub-solution property. Assume by contradiction

that there exists (κ, z, γ ) ∈ J LV
pc

(0,0) with corresponding hitting time Hε such that
−c := κ + H 0(z, γ ) < 0. By the definition of H , there exists a∗

0 ∈ A0 such that κ +
supa1∈A1

h0(z, γ, a∗
0 , a1) ≤ − c

2 < 0. By choosing ε > 0 small enough, it follows from the
uniform regularity of b, σ and f that

(4.14) κ + sup
a1∈A1

ht

(
ω,z, γ, a∗

0 , a1
) ≤ −c

3
< 0, 0 ≤ t ≤ Hε(ω).

Now fix the above ε > 0. For an arbitrary δ > 0, denote τ := Hε ∧ δ ≤ Hε . By (3.11) we have

(4.15) −V
pc
0 ≤ inf

P∈PL

EP

[
κτ + z · Xτ + 1

2
Tr
[
γXτX

�
τ

]− V
pc
τ

]
.

On the other hand, by setting α0 as the constant process a∗
0 in the right side of DPP (4.6), we

have

V
pc
0 ≤ sup

α1∈A1
0

sup
P∈P(a∗

0 ,α1)

EP

[
V

pc
τ +

∫ τ

0
fs

(
a∗

0 , α1
s

)
ds

]
.

Choose α1 ∈ A1
0 and P ∈ P(a∗

0 , α1) such that

(4.16) V
pc
0 ≤ EP

[
V

pc
τ +

∫ τ

0
fs

(
a∗

0 , α1
s

)
ds

]
+ δ2.

Note that
⋃

α∈AP(α) ⊂ PL for L large enough, and in particular the above P is also in PL.
Then, we derive from (4.15) and (4.16) that

−δ2 ≤ EP

[
κτ + z · Xτ + Tr

[
γ

2
XτX

�
τ

]
+
∫ τ

0
fs

(
a∗

0 , α1
s

)
ds

]
= EP

[∫ τ

0

(
κ + hs

(
z, γ, a∗

0 , α1
s

)+ Tr
[
γ b

(
s, a∗

0 , α1
s

)
X�

s

])
ds

]
.

Now by (4.14) we have

−δ2 ≤ EP

[
−c

3
τ +

∫ τ

0
Tr
[
γ b

(
s, a∗

0 , α1
s

)
X�

s

]
ds

]
≤ −c

3
δ + CP[Hε ≤ δ] + CEP[‖X·∧δ‖∞

]
δ.

Clearly EP[‖X∧δ‖∞] ≤ CL

√
δ. Moroever, for δ ≤ ε

2 ,

P[Hε ≤ δ] ≤ P
[
δ + ‖X·∧δ‖∞ ≥ ε

] ≤ P

[
‖X∧δ‖∞ ≥ ε

2

]
≤ C

ε4E
P
[‖X∧δ‖4∞

] ≤ Cε,Lδ2.

Then 0 ≤ − c
3δ +CCε,Lδ2 +CCLδ3/2 + δ2, which leads to the desired contradiction for small

δ > 0.
Step 2. We next verify the viscosity super-solution property. Assume by contradiction that

there exists (κ, z, γ ) ∈ J L
u(0,0) with corresponding hitting time Hε such that c := κ +

H 0(z, γ ) > 0. Then

κ + sup
a1∈A1

h0(z, γ, a0, a1) ≥ c > 0, for all a0 ∈ A0,

and there exists a mapping ψ : A0 −→ A1 such that κ + h0(z, γ, a0,ψ(a0)) ≥ c
2 > 0, for all

a0 ∈ A0. By choosing ε > 0 small enough, it follows from the uniform regularity of b, σ and
f that

(4.17) κ + ht

(
ω,z, γ, a0,ψ(a0)

) ≥ c

3
> 0, for all a0 ∈ A0,0 ≤ t ≤ Hε(ω).
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Now fix the above ε > 0. For an arbitrary δ > 0, denote τ := Hε ∧ δ ≤ Hε . By (3.11) we have

(4.18) −V
pc
0 ≥ sup

P∈PL

EP

[
κτ + z · Xτ + 1

2
Tr
[
γXτX

�
τ

]− V
pc
τ

]
.

On the other hand, by the DPP (4.6), there exists α0 ∈ A0 such that

V
pc
0 ≥ sup

α1∈A1
0

sup
P∈P(α0,α1)

EP

[
V

pc
τ +

∫ τ

0
fs

(
α0

s , α
1
s

)
ds

]
− δ2.

Since
⋃

α1∈A1
0
P(α0, α1) ⊂ PL, the above estimate together with (4.18) implies

δ2 ≥ sup
α1∈A1

0

sup
P∈P(α0,α1)

EP

[
κτ + z · Xτ + 1

2
Tr
[
γXτX

�
τ

]+
∫ τ

0
fs

(
α0

s , α
1
s

)
ds

]

= sup
α1∈A1

0

sup
P∈P(α0,α1)

EP

[∫ τ

0

(
κ + hs

(
z, γ,α0

s , α
1
s

)+ Tr
[
γ b

(
s, α0

s , α
1
s

)
X�

s

])
ds

]
.

Choose α1 := ψ(α0). By the structure of α0, we see α1 is also piecewise constant and thus
P(α0, α1) �=∅. Set P ∈ P(α0, α1) ⊂ PL. Then

δ2 ≥ EP

[∫ τ

0

(
κ + hs

(
z, γ,α0

s ,ψ
(
α0

s

))+ Tr
[
γ b

(
s, α0

s ,ψ
(
α0

s

))
X�

s

])
ds

]
≥ EP

[∫ τ

0

(
c

3
+ Tr

[
γ b

(
s, α0

s ,ψ
(
α0

s

))
X�

s

])
ds

]
,

thanks to (4.17). Now following the same arguments as in Step 1, we obtain 0 ≥ c
3δ −

Cε,Lδ2 − Cδ3/2, which leads to the desired contradiction by choosing δ > 0 small enough.
�

Finally, we can prove our main result of this section.

PROOF OF THEOREM 3.6. Following similar arguments, one may define V
pc
t by restrict-

ing α1 to piecewise constant processes in the problem V t , and show that V pc ∈ UCb(�,R)

is a viscosity solution of the PPDE

(4.19) −∂tV
pc − Ht

(
∂ωV pc, ∂2

ωωV pc) = 0.

Clearly V
pc
T = ξ = V

pc
T . Then it follows from Isaacs’s condition (3.10) and the uniqueness

assumption for viscosity solutions of the PPDEs, that V
pc = V pc. Moreover, recalling (4.5),

we deduce V pc ≤ V ≤ V ≤ V
pc

, and therefore V = V . �

5. An extension. In this section we shall relax Assumption 3.5, and replace the expec-
tation J0(α,P) in (3.4) with the solution to a nonlinear BSDE, as in the seminal paper of
Buckdahn and Li [10].

For α ∈ A and P ∈P(α), consider the solution (Y α,P,Zα,P,Nα,P) of the BSDE

Y
α,P
t = ξ(X) +

∫ T

t
fs

(
X·, Y α,P

s , σs(X·, αs)Z
α,P
s , αs

)
ds

− Zα,P
s · dMα

s + dNα,P
s , P-a.s.,

(5.1)

where Mα is defined in (3.2), and Nα,P is an P-martingale orthogonal to X (or equivalently to
Mα) under P, namely 〈Nα,P,X〉 = 0, P-a.s. Recall (3.2), so that BSDE (5.1) can be rewritten,
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P-a.s.

Y
α,P
t = ξ(X) +

∫ T

t

[
fs

(
X·, Y α,P

s , σs(X·, αs)Z
α,P
s , αs

)+ Zα,P
s bs(X·, αs)

]
ds

−
∫ T

t
Zα,P

s dXs +
∫ T

t
dNα,P

s .

(5.2)

In this section we shall assume

ASSUMPTION 5.1. (i) b, σ and ξ satisfy the conditions in Assumption 3.1.
(ii) f is F-progressively measurable in all variables, and the function ft (ω,0,0, a) is

bounded.
(iii) f is locally uniformly continuous in (t,ω, a), locally uniformly in (y, z). That is, for

any R > 0, there exists a modulus of continuity function ρR such that∣∣ft (ω, y, z, a) − ft ′
(
ω′, y, z, a

)∣∣ ≤ ρR

(
d∞

(
θ, θ ′)) for all θ, θ ′ ∈ �, |y|, |z| ≤ R,a ∈ A.

(iv) f is uniformly Lipschitz continuous in (y, z).

Under Assumption 5.1, the BSDE (5.1) is well-posed with F-progressively measurable
solutions. By abusing the notations, we redefine (3.4) as

(5.3) J0(α,P) := Y
α,P
0 ,

and still define J 0(α), J 0(α) by (3.4), the upper and lower values (V 0,V 0) by (3.5), and a
saddle-point α̂ of the game by (3.6), but using the newly defined J0(α,P).

It is quite straightforward to extend the results in Section 3.3 to this setting. In this section,
we shall focus on extending Theorem 3.6 to this general case. We remark that the nonlinear
extension to BSDE does not cause significant difficulty, and as we explained, the main dif-
ficulty is the regularity of the value functions due to the dependence of b and σ on ω. As
mentioned in Section 2.4, in the Markovian case this difficulty can be circumvented by using
the idea of Sîrbu [62, 63]. In this section we shall provide a sufficient condition, in addition to
Assumption 5.1, under which we are able to extend Theorem 3.6 for path-dependent games.

We first notice that in this case the Hamiltonians become (again abusing notations)

ht (ω, y, z, γ, a) := 1

2
Tr
[
σσ�

t (ω, a)γ
]+ bt (ω, a) · z + ft

(
ω,y, zσt (ω, a), a

)
,

H t (ω, y, z, γ ) := inf
a0∈A0

sup
a1∈A1

ht (ω, y, z, γ, a),

H t(ω, y, z, γ ) := sup
a1∈A1

inf
a0∈A0

ht (ω, y, z, γ, a).

(5.4)

5.1. Drift reduction by Girsanov transformation. In this subsection we illustrate that
there is flexibility on the drift b, through the Girsanov transformation. For any λ : �×A −→
Rd , denote

σ ′ := σ, b′ := b − σλ, f ′ := f + z · λ, ξ ′ := ξ,

h′
t (ω, y, z, γ, a) := 1

2
Tr
[(

σ ′)2
t (ω, a)γ

]+ b′
t (ω, a) · z + f ′

t

(
ω,y, zσt (ω, a), a

)
,

(5.5)

and define P ′(α), Y ′α,P, J
′
0(α), . . . , in an obvious manner. It is clear that h′ = h, and thus

the corresponding Isaacs equation will remain the same. We show that the game values are
invariant under this transformation.
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PROPOSITION 5.2. Let b, σ , f , ξ satisfy Assumption 5.1. Assume λ is bounded, F-
progressively measurable in all variables, uniformly continuous in (t,ω) under d∞, uniformly
in a ∈ A, and is locally uniformly continuous in a, in the sense of Assumption 5.1(iii). Then
J

′
0(α) = J 0(α) and J ′

0(α) = J 0(α) for any α ∈ A.

PROOF. First, it is clear that b′, σ ′, f ′, ξ ′ also satisfy Assumption 5.1. We proceed in
two steps.

Step 1. Let � := � × � with canonical process (X,W). For any α ∈ A, denote by P(α)

the set of probability measures P on � such that W is a P-Brownian motion and (3.1) holds
P-a.s. Then clearly P(α) = {P := P ◦ X−1 : P ∈ P(α)}. Now for each P ∈P(α), define

dWα
t = dWt + λt

(
X·, αt (X·)

)
dt,

dP
′

dP
:= exp

(
−
∫ T

0
λt

(
X·, αt (X·)

) · dWt − 1

2

∫ T

0

∣∣λt

(
X·, αt (X·)

)∣∣2 dt

)
.

Then Wα is an P
′
-Brownian motion and

dXt = b′
t

(
X·, αt (X·)

)
dt + σ ′

t

(
X·, αt (X·)

)
dWα

t , P
′
-a.s.,

that is to say P
′ ∈ P ′

(α). Similarly one may construct P ∈ P(α) from P
′ ∈ P ′

(α), which
implies that there is a one-to-one correspondence between P(α) and P ′

(α) through Girsanov
transformations.

Step 2. We now turn to the backward problem. Since the solution of (5.1) is FX-
measurable, then, by embedding them into the enlarged canonical space �, we have

Y
α,P
t = ξ(X) +

∫ T

t
fs

(
X·, Y α,P

s ,Z
α,P

s , αs(X·)
)

ds

−
∫ T

t
Z

α,P

s · dWs + N
α,P
T − N

α,P
t , P-a.s.,

where Z
α,P

t = σt (X·, αt (X·))Zα,P
t . This implies

Y
α,P
t = ξ ′(X) +

∫ T

t
f ′

s

(
X·, Y α,P

s ,Z
α,P

s , αs(X·)
)

ds

−
∫ T

t
Z

α,P

s · dWα
s + N

α,P
T − N

α,P
t , P-a.s.

Notice that P
′

is equivalent to P, so that the last decomposition also holds P
′
-a.s. Denote

P′ := P
′ ◦ X−1. By the uniqueness of the solution to the BSDE, we see that Yα,P = Yα,P′

.
Since P ′(α) = {P′ := P

′ ◦ X−1 : P′ ∈ P ′
(α)} and recalling from Step 1 that P(α) and P ′

(α)

are in a one-to-one correspondence, we see that J
′
0(α) = J 0(α) and J ′

0(α) = J 0(α). �

REMARK 5.3. (i) While very natural, the above result relies heavily on our formulation
that α (and λ) depends on X only. When α (or λ) depends on W , the one to one correspon-
dence in Step 1 above fails, and α(W) �= α(Wα), thus the game values may not be equal
under the Girsanov transformation, even though the Hamiltonians remain the same. See Sec-
tion 2.1 where the upper and lower values of the corresponding game are not related to the
solutions to the corresponding Isaacs equations.

(ii) Notice that the transformation in (5.5) changes the map f as well. Given Assump-
tion 3.18 (i), if we apply the above transformation, then the convex sets in Assumption 3.18
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(ii) reduces to {(
σt (x, a0, a), ft (x, a0, a) + z · λt (x, a0, a)

) : a ∈ A1
}
,{(

σt (x, a, a1), ft (x, a, a1) + z · λt (x, a, a1)
) : a ∈ A0

}
.

Hence, Proposition 5.2 does not help simplifying Assumption 3.18(ii).

5.2. State independent range of controls. In this subsection, we relax Assumption 3.5,
and assume the following.

ASSUMPTION 5.4. (i) b = b0(t,ω, a) + σ(t,ω, a)λ(t,ω, a), where λ is bounded, F-
progressively measurable, uniformly continuous in (t,ω) under d∞, uniformly in a ∈ A, in
the sense of Assumption 5.1(iii).

(ii) Player 1 has state independent range of controls with respect to (b0, σ ) in the sense
that for any t ∈ [0, T ], a0 ∈ A0, the range Rt (a0) := {(b0, σ )(t,ω, a0, a1) : a1 ∈ A1} is inde-
pendent of ω.

(iii) Player 0 has state independent range of controls with respect to (b0, σ ) in a similar
sense.

Notice that Assumption 3.5 obviously implies Assumption 5.4. We next provide a nontriv-
ial example satisfying Assumption 5.4. For simplicity, we shall only focus on σ and verify
(ii).

EXAMPLE 5.5. Let d = 1, A0 = A1 = R, η ∈ UC(�), and σ ,σ :R → (0,1) satisfy σ <

σ , limx→−∞ σ(x) = limx→−∞ σ(x) = 0, limx→∞ σ(x) = limx→∞ σ(x) = 1 (for instance,
we could take σ to be the cdf of the standard normal distribution, and σ(x) := σ(x + 1)).
Define

σt (ω, a) := (
σ(a0) + σ(a1)

)∨ (
ηt (ω) + a0 + a1

)∧ (
σ(a0) + σ(a1)

)
.(5.6)

For any t , ω, a0, one may check straightforwardly that

inf
a1∈A1

σt (ω, a0, a1) = σ(a0), sup
a1∈A1

σt (ω, a0, a1) = σ(a0) + 1.

That is, Rt (a0) = (σ (a0), σ (a0) + 1) (the σ part only) is independent of ω.
Moreover, we verify that

inf
a0∈A0

sup
a1∈A1

σt (ω, a) = inf
a0∈A0

[
σ(a0) + 1

] = 1, sup
a1∈A1

inf
a0∈A0

σt (ω, a) = sup
a1∈A1

σ(a1) = 1.

Then the Isaacs’s condition infa0∈A0 supa1∈A1
σ 2

t (ω, a)γ = supa1∈A1
infa0∈A0 σ 2

t (ω, a)γ is
immediately checked for γ ≥ 0. One can similarly verify the Isaacs’s condition for γ < 0.

Our main result which generalises Theorem 3.6 is given below.

THEOREM 5.6. Let Assumptions 3.1, 5.4, and Isaacs condition (3.10) hold. Then

(i) The following path-dependent Isaacs equation has a viscosity solution u ∈ UCb(�,

R)

(5.7) −∂tu − Ht

(
ω,u, ∂ωu, ∂2

ωωu
) = 0, t < T ,uT = ξ.

(ii) Assume further that uniqueness of viscosity solution for the above PPDE holds in the
class UCb(�,R). Then V 0 = V 0 = u0(0).
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PROOF. First, by Proposition 5.2, it suffices to prove the theorem in the case λ = 0. Thus
in this proof we assume the two players have state independent range of controls with respect
to (b, σ ). We shall focus on the upper value process V t(ω) and follow the arguments in
Section 4.

Fix (t,ω) ∈ �. In this case (4.1) becomes:

bt,ω(s, ω̃, a) := b
(
(t + s) ∧ T ,ω ⊗t ω̃, a

)
,

σ t,ω(s, a) := σ
(
(t + s) ∧ T ,ω ⊗t ω̃, a

)
, (s, ω̃, a) ∈ � × A.

(5.8)

For α ∈ A, let P(t,ω,α) denote the set of weak solutions to the SDE

Xs =
∫ s

0
bt,ω(r,X·, αr(X·)

)
dr +

∫ s

0
σ t,ω(r,X·, αr(X·)

)
dWr.

We emphasise that in this case P depends on ω. Define At (ω) in an obvious way. Then (4.2)
becomes

(5.9) V t(ω) := inf
α0∈A0

t (ω)

St

(
ω,α0), St

(
ω,α0) := sup

α1∈A1
t (ω)

sup
P∈P(t,ω,α0,α1)

Y
t,ω,α0,α1,P
0 ,

where

Y t,ω,α,P
s = ξ t,ω +

∫ T −t

s

(
f t,ω

r

(
X·, Y t,ω,α,P

r , σ t,ω
r (X·, αr)Z

t,ω,α,P
r , αr

)
+ Zt,ω,α,P

r bt,ω
r (X·, αr)

)
dr

−
∫ T −t

s
Zt,ω,α,P

s dXr −
∫ T −t

s
dNt,ω,α,P

s , P-a.s.

Notice that, for fixed (α,P), by BSDE arguments one can easily show that ω �−→ Y
t,ω,α,P
0 is

uniformly continuous. However, the sets P(t,ω,α) and At (ω) may depend on ω, and thus in
general we cannot fix (α,P) for different ω. This causes the main difficulty for obtaining the
desired regularity of V and S.

We shall use Assumption 5.4(ii) to get around this difficulty. As in Section 4, we restrict
α0 to A0,pc

t . We emphasise that A0,pc
t does not depend on ω and A0,pc

t ⊂ A0
t (ω) for all ω. We

then modify (4.4) as

(5.10) V
pc
t (ω) := inf

α0∈A0,pc
t

St

(
ω,α0).

Fix α0 ∈ A0,pc
t , define

A1
t

(
α0) := {

(b̃, σ̃ ) ∈ L0(�) ×L0(�) : (b̃s(ω̃), σ̃s(ω̃)
) ∈ Rt+s

(
α0

s (ω̃)
)
, (s, ω̃) ∈ �

}
.

We emphasise that, by Assumption 5.4(ii), A1
t (α

0) does not depend on ω. For each (b̃, σ̃ ) ∈
A1

t (α
0), let P(b̃, σ̃ ) denote the set of weak solutions of the SDE

X̃s =
∫ s

0
b̃r (X̃·)dr +

∫ s

0
σ̃r (X̃·)dWr.

One can check straightforwardly that
⋃

(b̃,σ̃ )∈A1
t (α

0)
P̃(b̃, σ̃ ) = ⋃

α1∈A1
t (ω)P(t,ω,α0, α1) for

all ω ∈ �. Moreover, denote A1(s, b̃, σ̃ , a0) := {a1 ∈ A1 : (b̃, σ̃ ) ∈ Rs(a0, a1)}, and

f̃ t,ω,b̃,σ̃
s (ω̃, y, z, a0) := sup

a1∈A1(t+s,b̃s (ω̃),σ̃s (ω̃),a0)

f t,ω
s (ω̃, y, z, a0, a1).
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Then, by the comparison principle for BSDEs, it is immediate to verify that

(5.11) St

(
ω,α0) := sup

(b̃,σ̃ )∈A1
t (α

0)

sup
P∈P̃(b̃,σ̃ )

Ỹ
t,ω,b̃,σ̃ ,P
0 ,

where

Ỹ t,ω,b̃,σ̃ ,P
s = ξ t,ω +

∫ T −t

s

(
f̃ t,ω

r

(
X·, Y t,ω,b̃,σ̃ ,P

r , σ̃r (X·)Zt,ω,b̃,σ̃ ,P
r , α0

r (X·)
)

+ Zt,ω,b̃,σ̃ ,P
r b̃r (X·)

)
dr

−
∫ T −t

s
Zt,ω,b̃,σ̃ ,P

s dXr −
∫ T −t

s
dNt,ω,b̃,σ̃ ,P

s , P-a.s.

Now for each (b̃, σ̃ ) ∈ A1
t (α

0) and P ∈ P̃(b̃, σ̃ ), which do not depend on ω, by standard

BSDE arguments one can show that ω �−→ Ỹ
t,ω,b̃,σ̃ ,P
0 is uniformly continuous. Then as in

Lemma 4.1 we see that S and V
pc

are uniformly continuous in ω. The rest of the proof
follows then from the arguments in Section 4, combined with standard BSDE arguments. We
leave the details to interested readers. �

As mentioned in Remark 3.7(iii), the approach in Ekren and Zhang [21] can be used in
this context to identify sufficient conditions for (ii) to hold in Theorem 5.6. However, we note
that the definition of viscosity solution is slightly different in [21]. Rigorously speaking, if
we want to apply the results of [21] to conclude the existence of game value in Theorem 5.6,
we need to verify that V pc and V

pc
are viscosity solutions in the sense of [21]. This is done in

[21], but using the formulation of strategy against control as in Section 2.2, exactly due to the
regularity issue. As we saw, Assumption 5.4 enables us to overcome the regularity difficulty,
and thus we can apply the arguments in [21] to our context. We leave the details to interested
readers.

6. Proof of Theorems 3.20 and 3.21. Throughout this section Assumptions 3.1 and 3.18
are in force.

6.1. A relaxed formulation. To establish the wellposedness of 2BSDEs, we shall apply
the results of Possamaï, Tan and Zhou [58], which rely on the dynamic programming prin-
ciple in El Karoui and Tan [24, 25] (see also Nutz and van Handel [54]). However, we shall
note that the weak formulation considered in [24, 25] is different from the feedback controls
in this paper. So our first goal is to establish the equivalence between these two formulations.7

We now fix α0 ∈ A0
0, and denote ϕt(ω, a1) := ϕt(ω,α0

t (ω), a1) for ϕ = b,σ,f . The weak
formulation in [25], Section 1.2, pages 7–9, consists in working on a fixed canonical space
for both the controlled process and the associated controls. Let C([0, T ],Rd) be the canonical
space of continuous functions on [0, T ] with values in Rd , and let A be the collection of all
finite and positive Borel measures on [0, T ]×A1, whose projection on [0, T ] is the Lebesgue
measure. In other words, every q ∈ A can be disintegrated as q(ds,da) = qs(da)ds, for an
appropriate kernel qs . The weak formulation requires to consider a subset of A, namely the
set A0 of all q ∈ A such that the kernel qs is of the form δφs (da) for some Borel function φ.
We then define the canonical space � := C([0, T ],Rd) ×A, with canonical process (X,�),
where

Xt(ω, q) := ω(t), �(ω,q) := q, (t,ω, q) ∈ [0, T ] × �.

7Most of the arguments here are from discussions with Xiaolu Tan, who we thank warmly.
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The associated canonical filtration is defined by F := (Ft )t∈[0,T ] where

Ft := σ
((

Xs,�s(ϕ)
)
, (s, ϕ) ∈ [0, t] × Cb

([0, T ] × A1
))

, t ∈ [0, T ],
where Cb([0, T ] × A1) is the set of bounded continuous functions on [0, T ] × A1, and
�s(ϕ) := ∫ s

0
∫
A ϕ(r, a)�(dr,da), for all (s, ϕ) ∈ [0, T ] × Cb([0, T ] × A1). We next define

the following set of measures on (�,FT ):

P := {
P : M(ϕ) is an (P,F)-martingale for all ϕ ∈ C2

b(Rd), and P[X0 = x0,� ∈ A0] = 1
}
,

where C2
b(Rd) is the set of bounded twice continuously differentiable functions with bounded

derivatives, and

Ms(ϕ) := ϕ(Xs) −
∫ s

0

∫
A1

(
br(X·, a) · Dϕ(Xr)

+ 1

2
Tr
[(

σσ�)
r (X·, a)D2ϕ(Xr)

])
�(dr,da).

The associated weak formulation of the control problem is then defined by

Vw := sup
P∈P

Jw(P) where Jw(P) := EP

[
g(X·) +

∫ T

0

∫
A1

f t (X·, a)�(dt,da)

]
.

LEMMA 6.1. P = P0
0 (α0) and Vw = supP∈P1

0 (α0)E
Pα [Yα0

0 ].

PROOF. By the requirement � ∈ A0, P ∈ P amounts to say there exist a process φP,
possibly in an enlarged space, and a Brownian motion WP, such that

Xt = x0 +
∫ t

0
bs

(
X·, φP

s

)
ds +

∫ t

0
σ s

(
X·, φP

s

)
dWP

s , P-a.s., and

Jw(P) := EP

[
g(X·) +

∫ T

0
f t

(
X·, φP

t

)
dt

]
.

On the other hand, the set P0
0 (α0) corresponds to those P such that φP is FX-progressively

measurable. Then clearly P0
0 (α0) ⊂ P . Now fix P ∈ P . Apply the classical results of Wong

[72], Theorem 4.2, we obtain the existence of another P-Brownian motion W̃P such that

Xt = x0 +
∫ t

0
b̃Ps ds +

∫ t

0
σ̃P

s dW̃P
s , P-a.s., and

Jw(P) := EP

[
g(X·) +

∫ T

0
f̃ P

t dt

]
,

where b̃Ps := EP[bs(X·, φP
s )|FX

s ], σ̃P
s := EP[σ s(X·, φP

s )|FX
s ], and f̃ P

s := EP[f s(X·, φP
s )|

FX
s ]. Using the fact that range of (b, σ , f ) is assumed to be convex, there exists an FX-

progressively measurable process α̃P such that b̃Ps = bs(X·, α̃P
s ), σ̃P

s = σ s(X·, α̃P
s ), and

f̃ P
s = f s(X·, α̃P

s ). This implies that P ∈ P0
0 (α0) and Jw(P) = J (α0, α̃P), thus inducing the

required result. �

6.2. Proof of Theorem 3.20. We will only prove the result for the 2BSDE (3.23), the
remaining proof is similar. We first address the well-posedness by verifying the conditions
of Possamaï, Tan and Zhou [58]. We introduce the dynamic version P0

0 (α1)(t,ω) of the set
P0

0 (α1), by considering the same SDE on [t, T ] starting at time t from the path ω ∈ �.
We first verify that the family {P0

0 (α1)(t,ω), (t,ω) ∈ [0, T ]×�} is saturated, in the termi-
nology of [58], Definition 5.1, that is, for all P1 ∈ P0

0 (α1)(t,ω), and P2 ∼ P1 under which X
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is an P2-martingale, we must have P2 ∈ P0
0 (α1)(t,ω). To see this, notice that the equivalence

between P1 and P2 implies that the quadratic variation of X is not changed by passing from
P1 to P2. Hence the required result.

Since σ and b are bounded, it follows from the definition of admissible controls that
F satisfies the integrability and Lipschitz continuity assumptions required in [58]. We
also directly check from the fact that f is bounded, together with [64], Lemma 6.2, that
supP∈P0

0 (α1)E
P[essupP0≤t≤T (EP[∫ T

0 |F(0, σ̂ 2
s )|κ ds|F+

t ])p/κ ] < ∞, for some p > κ ≥ 1.
Then, the dynamic programming requirements of [58], Assumption 2.1, follow from the

more general results given in El Karoui and Tan [24, 25] (see also Nutz and van Handel
[54]), thanks to Lemma 6.1. Finally, since ξ is bounded, the required well-posedness result
is a direct consequence of [64], Lemma 6.2, together with [58], Theorems 4.1 and 5.1.

Now, the representation for V 0 is immediate, see for instance the similar proof in [16],
Proposition 4.6.

REMARK 6.2. Let us investigate the 2BSDEs further under additional regularity of the
solution. In particular, this will provide a formal justification of the fact that (3.27) implies
(3.10). For this purpose, we extend and abuse slightly our earlier notations. Omitting ω as
usual, we define

�t(a) := (
σtσ

�
t

)
(a), �1

t (a0) := {
�t(a0, a1), a1 ∈ A1

}
,

�0
t (a1) := {

�t(a0, a1), a0 ∈ A0
}
,

A0(t,�,a1) := {
a0 ∈ A0 : (σtσ

�
t

)
(a0, a1) = �

}
,

A1(t,�,a0) := {
a1 ∈ A1 : (σtσ

�
t

)
(a0, a1) = �

}
,

F t (z,�,a0) := sup
a1∈A1(t,�,a0)

Ft (z, a0, a1),

F t (z,�,a1) := inf
a0∈A0(t,�,a1)

Ft (z, a0, a1).

(6.1)

Then one can check straightforwardly that

Ht(z, γ ) = inf
a0∈A0

sup
�∈�1

t (a0)

{
1

2
Tr[�γ ] + F t(z,�,a0)

}
,

H t (z, γ ) = sup
a1∈A1

inf
�∈�0

t (a1)

{
1

2
Tr[�γ ] + F t(z,�,a1)

}
.

(6.2)

Assume that the processes K in the definition of the 2BSDEs are absolutely continuous with
respect to the Lebesgue measure (see the formal discussion in [58], pp. 21–22, as well as
rigorous arguments in the simpler setting of G-expectations in [56]), and can be written as

dKα1

t

dt
= 1

2
Tr
[
σ̂ 2

t �α1

t

]+ F t

(
Zα1

t , σ̂ 2
t , α1

t

)− inf
�∈�0

t (α
1)

{
1

2
Tr
[
��α1

t

]+ F t

(
Zα1

t ,�,α1
t

)}
,

dK
α0

t

dt
= sup

�∈�1
t (α

0)

{
1

2
Tr
[
��

α0

t

]+ F t

(
Z

α0

t ,�,α0
t

)}− 1

2
Tr
[
σ̂ 2

t �
α0

t

]− F t

(
Z

α0

t , σ̂ 2
t , α0

t

)
,

for some predictable processes �α1
and �

α0

. Now given (3.27), (3.23) and (3.24) reduce to

the same BSDE under P̂. Then Y α̂1 = Y
α̂0 =: Ŷ , Zα̂1 = Z

α̂0 =: Ẑ, P̂-a.s. This would imply
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further that �α̂1 = �
α̂0 =: �̂. Then by (3.27) again we have

Ht(Ẑt , �̂t ) ≥ inf
�∈�0

t (α̂
1)

{
1

2
Tr[��̂t ] + F t

(
Ẑt ,�, α̂1

t

)} = 1

2
Tr
[
σ̂ 2

t �̂t

]+ F t

(
Ẑt , σ̂

2
t , α̂1

t

)
= 1

2
Tr
[
σ̂ 2

t �̂t

]+ F t

(
Ẑt , σ̂

2
t , α̂1

t

) = sup
�∈�1

t (α̂
0)

{
1

2
Tr[��̂t ] + F t

(
Ẑt ,�, α̂0

t

)}
≥ Ht(Ẑt , �̂t ).

This implies (3.10) at (Ẑt , �̂t ), and we see that (α̂0, α̂1) is a saddle point of the Hamiltonian.

REMARK 6.3. In the spirit of relaxed controls, we may reformulate our game problem
by using the notion of mixed strategies, exactly as in Sîrbu [61]. For i = 0,1, let P(Ai) denote
the set of probability measures on Ai , and mi : � −→ P(Ai) be F-measurable, i = 0,1. Let
P be a weak solution of the SDE

(6.3) Xt =
∫ t

0
[mb]s(X·)ds +

∫ t

0

[
m
(
σσ�)]1/2

s (X·)dWs,

where [mϕ]t (ω,λ) := ∫
A ϕt (ω,λ, a)m0(t,ω,da0)m1(t,ω,da1), for any function ϕt(ω,λ, a)

with λ ∈ Rd . Denote

J0(m,P) := EP

[
ξ(X·) +

∫ T

0
[mf ]t (X·)dt

]
.

Then we can introduce the zero-sum game in the setting in an obvious manner. The advantage
of this formulation is that Isaacs’s condition always holds H

′
t (ω, z, γ ) = H ′

t (ω, z, γ ), where

H
′
t (ω, z, γ ) := inf

m0∈P(A0)
sup

m1∈P(A1)

[mh]t (ω, z, γ ),

H ′
t (ω, z, γ ) := sup

m1∈P(A1)

inf
m0∈P(A0)

[mh]t (ω, z, γ ),

are the randomised versions of the upper and lower Hamiltonians. It would be interesting
to extend our results to this formulation which does not require Isaacs’s condition to hold.
See also the contribution of Buckdahn, Li and Quincampoix [11], who considered a setting
similar to Buckdahn and Li [10], but where the players see each other’s actions with a delay
relative to a fixed time grid, and both play mixed delayed strategies. Notice that we always
have H ≤ H ′ = H

′ ≤ H , so that when the standard Isaacs’s condition (3.10) holds, they are
all equal.

6.3. Proof of Theorem 3.21. The well-posedness and the representation for V 0 are

proved as in the previous section. For α1 ∈ A1
, the 2BSDE

Yα1

t = ξ +
∫ T

t
g

s

(
Zα1

s , σ̂ 2
s , α1

s

)
ds −

∫ T

t
Zα1

s · dXs −
∫ T

t
dKα1

s , P-a.s. for all P ∈P,

induces the following representation

inf
P∈PEP

[
Yα1

0
] = inf

α0∈A0
0

J 0(α).

Then, the comparison theorem for 2BSDEs, see [58], Theorem 4.3, implies that Y
α1
t ≤ Yt .

By an obvious extension of the argument of El Karoui, Peng and Quenez [22], Corollary 3.1,
to 2BSDEs, we deduce the desired result. Finally, the existence of a value is now immediate
when G = G.
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APPENDIX: PROOF OF THEOREM 3.16

We start with the continuous coefficients setting, where the result looks standard. We nev-
ertheless provide a detailed proof for completeness.

LEMMA A.1. Assume b : � −→ Rd and σ : � −→ Sd are bounded, F-progressively
measurable, and for each t , b(t, ·) and σ(t, ·) are continuous. Then the SDE of Theorem 3.16
has a weak solution

PROOF. Assume W is an P0-Brownian motion. For n ≥ 1, denote ti := i
n
T , i = 0, . . . , n,

and define for i = 0, . . . , n − 1

Xn
t0

:= 0, Xn
t := Xn

ti
+
∫ t

ti

b
(
s,Xn·∧ti

)
ds +

∫ t

ti

σ
(
s,Xn·∧ti

)
dWs, t ∈ [ti , ti+1].

Define Pn := P0 ◦ (Xn)−1. Then Pn ⊂ PL for L large enough, and Pn is a weak solution
to the SDE of Theorem 3.16 with the coefficients bn(t,ω) := b(t,ωtni ∧·), and σn(t,ω) :=
σ(t,ωtni ∧·), t ∈ [ti , ti+1], i = 0, . . . , n−1. Note that bn, σn are uniformly bounded. By Zheng
[76], {Pn}n≥1 has a weakly convergent subsequence, and for notational simplicity we assume
Pn −→ P weakly. Now it suffices to verify that P is a weak solution to the SDE of Theorem
3.16. For this purpose, we first recall that by Zhang [75], Lemmata 9.2.4 (i) and (9.2.18),

∃{Em}m≥1 ⊂FT s.t. Em is compact and sup
P∈PL

E
[
Ec

m

] ≤ 2−m,

and for each m and each ω ∈ Em, we have ωt∧· ∈ Em for all t ∈ [0, T ].
(A.1)

Denote

(A.2) Mt := Xt −
∫ t

0
b(s,X·)ds, Nt := MtM

�
t −

∫ t

0
σ 2(s,X·)ds,

and define Mn, Nn by replacing (b, σ ) above with (bn, σn). Then it is equivalent to prove that
P is a weak solution to the SDE of Theorem 3.16, and that M and N are P-martingales. First,
for any s < t and any η ∈ C0

b(Fs), by the definition of Pn, we have EPn[(Mn
t − Mn

s )ηs] = 0.
Note that Mt − Ms = Xt − Xs − ∫ t

s b(r,X·)dr . Since b(r, ·) is continuous for each r , by
the weak convergence of Pn, together with the bounded convergence theorem (under the
Lebesgue measure), we have

lim
n→∞EPn

[
ηs

∫ t

s
b(r,X·)dr

]
= EP

[
ηs

∫ t

s
b(r,X·)dr

]
.

Moreover, for any R > 0, denote by IR(x) the truncation of x by R and Xs,t := Xt − Xs , we
have

lim
n→∞EPn

[
IR(Xs,t )ηs

] = EP[IR(Xs,t )ηs

]
,

sup
P′∈PL

EP′[∣∣(Xs,t ) − IR(Xs,t )
∣∣2] ≤ 1

R
sup
P′∈PL

EP′[|Xs,t |3] ≤ C

R
.

Denoting similarly Ms,t := Mt − Ms and Mn
s,t := Mn

t − Mn
s , wee see that

EP[Ms,tηs] = lim
n→∞EPn[Ms,tηs] = lim

n→∞EPn
[(

Ms,t − Mn
s,t

)
ηs

]
= lim

n→∞EPn

[
ηs

∫ t

s

[
b(r,X·) − bn(r,X·)

]
dr

]
(A.3)

= lim
n→∞

∫ t

s
EPn

[
ηs

(
b(r,X·) − bn(r,X·)

)]
dr.(A.4)
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Now for each r ∈ [s, t] and m ≥ 1, since b(r, ·) is continuous and Em is compact, b(r, ·) is
uniformly continuous on Em with a certain modulus of continuity function ρr,m. Then, by the
definition of bn and (A.1)∣∣EPn

[
ηs

(
b(r,X·) − bn(r,X·)

)]∣∣ ≤ CEPn
[∣∣b(r,X·) − bn(r,X·)

∣∣1Em

]+ CPn

[
Ec

m

]
≤ CEPn

[
ρr,m

(
OSC2−n(X)

)]+ C2−m

≤ CEPn
[
ρr,m

(
OSC2−k (X)

)]+ C2−m,

for any k ≤ n, where OSCδ(X) := supt1,t2:|t1−t2|≤δ |Xt1 − Xt2 |. Fix m, k and send n −→ ∞,
we deduce

lim sup
n→∞

∣∣EPn
[
ηs

(
b(r,X·) − bn(r,X·)

)]∣∣ ≤ CEP[ρr,m

(
OSC2−k (X)

)]+ C2−m.

By first sending k −→ ∞ and then m −→ ∞, we have limn→∞EPn[ηs(b(r,X·) −
bn(r,X·))] = 0, and by the bounded convergence theorem, it follows from (A.3) that
EP[Ms,tηs] = 0, that is, M is an P-martingale. Similarly one can show that N is an P-
martingale. Therefore, P is a weak solution to the SDE of Theorem 3.16. �

PROOF OF THEOREM 3.16. For ε > 0, let �ε
t be a common set for (b, σ ) as in Defini-

tion 3.15. By Zhang [75], Problem 10.5.3, there exists (bε, σε) such that (bε, σε)(t, ·) agree
with (b, σ )(t, ·) on �ε

t and are continuous for each t . Moreover, by the construction in [75],
Problem 10.5.3, it follows from the progressive measurability in Definition 3.15(i), that bε ,
σε are F-progressively measurable. By Lemma A.1, let Pε be a weak solution to the SDE of
Theorem 3.16 with coefficients (bε, σε). Similarly to Lemma A.1, there exists εn −→ 0 such
that Pεn converges to some P ∈ P weakly. Recall (A.2) and define Mε and Nε by replacing
(b, σ ) above with (bε, σε). Then, for any s < t and ηs ∈ C0

b(Fs), following similar arguments
as in Lemma A.1 we have, for any m ≥ 1,

EP
[
M

εm
s,t ηs

] = lim
n→∞EPεn

[
M

εm
s,t ηs

]
= lim

n→∞EPεn
[(

M
εm
s,t − M

εn
s,t

)
ηs

]
= lim

n→∞EPεn

[
ηs

∫ t

s
[bεm − bεn](r,X·)dr

]
.

Thus ∣∣EP[Ms,tηs]
∣∣

≤ ∣∣EP[Mεm
s,t ηs

]∣∣+ ∣∣EP[ηs

(
Ms,t − M

εm
s,t

)]∣∣
≤ C lim inf

n→∞ EPεn

[∫ t

s

∣∣[bεm − bεn](r,X·)
∣∣dr

]
+ CEP

[∫ t

s

∣∣[bεm − b](r,X·)
∣∣dr

]
≤ C lim inf

n→∞ EPεn

[∫ t

s
[1(�

εn
r )c + 1(�

εm
r )c ]dr

]
+ CEP

[∫ t

s
1(�

εm
r )c dr

]
≤ Cεm.

Since m is arbitrary, we have EP[Ms,tηs] = 0 for all ηs ∈ C0
b(Fs). That is, M is an P-

martingale. Similarly, N is an P-martingale, so that P is a weak solution to the SDE of
Theorem 3.16. �
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