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Mean Field Game Master Equations with

Anti-monotonicity Conditions
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Abstract

It is well known that the monotonicity condition, either in Lasry-Lions sense or in dis-

placement sense, is crucial for the global well-posedness of mean field game master equations,

as well as for the uniqueness of mean field equilibria and solutions to mean field game systems.

In the literature, the monotonicity conditions are always taken in a fixed direction. In this pa-

per we propose a new type of monotonicity condition in the opposite direction, which we call

the anti-monotonicity condition, and establish the global well-posedness for mean field game

master equations with nonseparable Hamiltonians. Our anti-monotonicity condition allows

our data to violate both the Lasry-Lions monotonicity and the displacement monotonicity

conditions.
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1 Introduction

In this paper we consider the following second order master equation, arising from mean field

games with common noise, with terminal condition V (T, x, µ) = G(x, µ):

LV (t, x, µ) := −∂tV − β̂2

2
tr (∂xxV ) +H(x, µ, ∂xV )−NV = 0, where

NV (t, x, µ) := tr

(
¯̃
E

[ β̂2

2
∂x̃∂µV (t, x, µ, ξ̃)− ∂µV (t, x, µ, ξ̃)(∂pH)⊤(ξ̃, µ, ∂xV (t, ξ̃, µ))

+β2∂x∂µV (t, x, µ, ξ̃) +
β2

2
∂µµV (t, x, µ, ξ̄, ξ̃)

])
, (t, x, µ) ∈ [0, T ) × R

d × P2(R
d).

(1.1)

Here β ≥ 0 is a constant, β̂2 := 1 + β2, ∂t, ∂x, ∂xx are standard temporal and spatial derivatives,

∂µ, ∂µµ are W2-Wasserstein derivatives, ξ̃ and ξ̄ are independent random variables with the same

law µ and ¯̃
E is the expectation with respect to their joint law. The theory of Mean Field Games

(MFGs, for short), initiated independently by Caines-Huang-Malhamé [15] and Lasry-Lions [40],

studies the asymptotic behavior of stochastic differential games with a large number of players

interacting in certain symmetric way. We refer to Lions [41], Cardaliaguet [16], Bensoussan-

Frehse-Yam [7], Carmona-Delarue [21, 22] and Cardaliaguet-Porretta [18] for a comprehensive

exposition of the subject. First introduced by Lions [41], the master equation characterizes the

value of the MFG, provided there is a unique mean field equilibrium. Roughly speaking, it plays

the role of the HJB equation in the stochastic control theory.

The master equation (1.1) admits a unique local (in time) classical solution when the data

H and G are sufficiently smooth, see e.g. Gangbo-Swiech [33], Bensoussan-Yam [10], Mayorga

[42], Carmona-Delarue [22] and Cardaliaguet-Cirant-Porretta [17]. In particular, [17] studied

the local well-posedness of the master equations not only for MFGs involving homogeneous

minor players but also for MFGs with a major player. It is much more challenging to ob-

tain a global classical solution, we refer to Buckdahn-Li-Peng-Rainer [14], Chassagneux-Crisan-

Delarue [23], Cardaliaguet-Delarue-Lasry-Lions [19], Carmona-Delarue [22], Gangbo-Meszaros-

Mou-Zhang [32] and, in the realm of potential MFGs, Bensoussan-Graber-Yam [8, 9], Gangbo-

Meszaros [31]. We also refer to Mou-Zhang [43], Bertucci [12], and Cardaliaguet-Souganidis [20]

for global weak solutions which require much weaker regularity on the data, and Bayraktar-Cohen

[3], Bertucci-Lasry-Lions [13], Cecchin-Delarue [25], Bertucci [11] for classical or weak solutions

of finite state mean field game master equations. All the above global well-posedness results,

with the exception [14] that considers linear master equations and thus no control or game is

involved, require certain monotonicity condition, which we explain next.

One typical condition, extensively used in the literature [3, 11, 12, 13, 19, 20, 22, 23, 43], is
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the well-known Lasry-Lions monotonicity condition: for a function G : Rd × P2(R
d) → R,

E

[
G(ξ1,Lξ1) +G(ξ2,Lξ2)−G(ξ1,Lξ2)−G(ξ2,Lξ1)

]
≥ 0, (1.2)

for any square integrable random variables ξ1, ξ2. Another type of monotonicity condition,originating

in Ahuja [1] and was later sparsely used in the literature, see Ahuja-Ren-Yang [2] and [8, 9, 31, 32],

is the displacement (or weak) monotonicity,

E

[
[∂xG(ξ1,Lξ1)− ∂xG(ξ2,Lξ2)][ξ1 − ξ2]

]
≥ 0. (1.3)

When G is regular enough with bounded ∂xxG, ∂xµG, (1.2) and (1.3) are equivalent to the

following inequalities, respectively: for all square integrable random variables ξ, η,

Ẽ
[〈
∂xµG(ξ,Lξ, ξ̃)η̃, η

〉]
≥ 0, Ẽ

[〈
∂xµG(ξ,Lξ , ξ̃)η̃, η

〉]
+ E

[
〈∂xxG(ξ,Lξ)η, η

〉]
≥ 0, (1.4)

where (ξ̃, η̃) is an independent copy of (ξ, η). The monotonicity conditions are crucial for the

uniqueness of the Nash equilibria of MFGs and thus the well-posedness of their master equations.

When none of the monotonicity conditions holds, the MFG could have multiple equilibria,

see e.g. Foguen Tchuendom [30], Cecchin-Dai Pra-Fisher-Pelino [24], Bayraktar-Zhang [6]. In

this case, one approach is to consider a special type of equilibria, see e.g. [24], Delarue-Foguen

Tchuendom [26], Cecchin-Delarue [25], Bayraktar-Cecchin-Cohen-Delarue [4, 5]. A larger lit-

erature is on the possible convergence of the equilibria for the N -player game, which is quite

often unique because the corresponding Nash system is non-degenerate due to the presence of

the individual noises, to the mean field equilibria (which may or may not be unique), see, e.g.,

[19, 22, 43], Delarue-Lacker-Ramanan [27, 28], Djete [29], Lacker [35, 36, 37, 38], Lacker-Flem

[39], Nuts-San Martin-Tan [44]. Finally, we note that Iseri-Zhang [34] takes a quite different

approach by investigating the set of game values over all mean field equilibria and establishes

the dynamic programming principle and the convergence from the N -player game to the MFG.

We emphasize that the two inequalities in (1.4) share the same direction. Our goal of this

paper is to propose a new type of monotonicity condition in the opposite direction, which we

call anti-monotonicity condition, and establish the global well-posedness for the master equation

(1.1), with possibly nonseparable Hamiltonian H. We remark that the mean field equilibrium

is a fixed point, and the monotonicity conditions (1.4) were used to ensure the uniqueness of

the fixed point. To motivate our anti-monotonicity condition, let us use a very simple example

to illustrate the idea. Suppose that f : R1 → R
1 is a continuously differentiable function and

we are interested in its fixed point x∗: f(x∗) = x∗. When f is decreasing, i.e., f ′ ≤ 0, clearly

f admits a unique fixed point x∗. When f is increasing, in general neither the existence nor

the uniqueness of x∗ is guaranteed. However, if f is sufficiently monotone, in the sense that
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f ′ ≥ 1 + ε for some ǫ > 0, then again f has a unique fixed point x∗. While in complete different

contexts, our conditions follow the same spirit. Roughly speaking, the standard monotonicity

conditions (1.4) correspond to the case that f is decreasing, while our new anti-monotonicity

condition corresponds to the case f is increasing, and for the same reason we will need to require

our data to be sufficiently anti-monotone in appropriate sense.

To be precise, our anti-monotonicity condition takes the following form:

Ẽ

[
λ0〈∂xxG(ξ,Lξ)η, η〉 + λ1〈∂xµG(ξ,Lξ, ξ̃)η̃, η〉

+ |∂xxG(ξ,Lξ)η|2 + λ2

∣∣∣ẼF1

T
[∂xµG(ξ,Lξ, ξ̃)η̃]

∣∣∣
2
− λ3|η|2

]
≤ 0,

(1.5)

for some appropriate constants λ0 > 0, λ1 ∈ R, λ2 > 0, λ3 ≥ 0. We remark that the inequality

here takes the opposite direction to those in (1.4). In particular, the displacement monotonicity

requires the convexity of G in x, while here G is typically concave in x, due to the first term in

(1.5). This justifies the name of anti-monotonicity (and to have a better comparison with (1.4),

we may also set λ1 = 1). We also note that, considering the case λ3 = 0, the second line of (1.5)

is positive, this means that the first line of (1.5) should be sufficiently negative, which is exactly

in the spirit that G to be sufficiently anti-monotone.

To establish the global well-posedness of the master equation (1.1), we follow the strategy

in [32], which consists of three steps. The key step of this approach is to show a priori that

the anti-monotonicity propagates along the solution V . That is, under appropriate conditions,

as long as V (T, ·) = G is anti-monotone, then V (t, ·) is anti-monotone for all t. The second

step is to show that the anti-monotonicity of V implies ∂xV is uniformly Lipschitz continuous in

(x, µ), under W2 in µ. This, together with a representation formula established in [43], implies

further the Lipschitz continuity under W1. In the final step we show that the uniform Lipschitz

continuity under W1 enables us to extend a local classical solution to a global one.

There is a major technical difference from [32] though. The assumptions we impose for the

propagation of anti-monotonicity prevents us from assuming uniform Lipschitz continuity of the

data G and H. Instead, we can only assume ∂xG, ∂xH are uniformly Lipschitz. This has two

consequences. First, the a priori estimate for the boundedness of ∂xxV , which is crucial for the

global well-posedness of the master equation and is pretty easy to obtain under the conditions in

[32], becomes very subtle. In fact, we need some serious efforts to obtain this estimate. Moreover,

unlike in [32], under our conditions the solution V will not be Lipschitz continuous. Instead, we

can only expect the Lipschitz continuity of ∂xV . Therefore, we will actually consider the vector

master equation of ~U := ∂xV and establish its global well-posedness first. Once we obtain ~U ,

then it is immediate to solve the original master equation (1.1) for V .

The rest of the paper is organized as follows. In Section 2 we review the setting in [32] and
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introduce our problem. In Section 3 we introduce the new notion of anti-monotonicity and present

the technical conditions used in the paper. In Section 4 we show a priori the crucial propagation

of the anti-monotonicity. Section 5 is devoted to the a priori uniform Lipschitz estimate of ∂xV

in µ, first under W2 and then under W1. In Section 6 we provide the a priori estimate for ∂xxV .

Finally in Section 7 we establish the global well-posedness of the master equation (1.1).

2 The setting

Throughout the paper we will use the setting in [32]. We review it briefly in this section and

refer to [32] for more details.

We consider the following product filtered probability space on [0, T ]:

Ω := Ω0 × Ω1, F := {Ft}0≤t≤T := {F0
t ⊗F1

t }0≤t≤T , P := P0 ⊗ P1, E := E
P.

Here, for ω = (ω0, ω1) ∈ Ω, B0(ω) = B0(ω0) and B(ω) = B(ω1) are independent d-dimensional

Brownian motions; F0 = {F0
t } is generated by B0; and F

1 = {F1
t } is generated by B and F1

0 ,

where we assume F1
0 has no atom. Let (Ω̃1, F̃

1, B̃, P̃1) be a copy of the filtered probability space

(Ω1,F
1, B,P1) and define the larger filtered probability space by

Ω̃ := Ω× Ω̃1, F̃ = {F̃t}0≤t≤T := {Ft ⊗ F̃1
t }0≤t≤T , P̃ := P⊗ P̃1, Ẽ := E

P̃.

Given an Ft-measurable random variable ξ(ω̃) = ϕ(ω0, ω1), ω̃ = (ω0, ω1, ω̃1) ∈ Ω̃, we see

that ξ̃(ω̃) := ϕ(ω0, ω̃1) is a conditionally independent copy of ξ, conditional on F0
t under P̃.

When two conditionally independent copies are needed, we let (Ω̄1, F̄
1, B̄, P̄1) be another copy of

(Ω1,F
1, B,P1), and enlarge the joint product space further:

¯̃Ω := Ω× Ω̃1 × Ω̄1,
¯̃
F = { ¯̃Ft}0≤t≤T := {Ft ⊗ F̃1

t ⊗ F̄1
t }0≤t≤T ,

¯̃
P := P⊗ P̃1 ⊗ P̄1,

¯̃
E := E

¯̃
P.

Throughout the paper we will use the probability space (Ω,F,P). However, when condition-

ally independent copies of random variables or processes are needed, we will tacitly use their

extensions to the larger space (Ω̃, F̃, P̃) ( ¯̃Ω, ¯̃F, ¯̃P, ¯̃E) without mentioning.

We next introduce the Wasserstein space and differential calculus on Wasserstein space. Let

P := P(Rd) be the set of all probability measures on R
d and, for any q ≥ 1, let Pq denote the set

of µ ∈ P with finite q-th moment. For any sub-σ-field G ⊂ FT and µ ∈ Pq, we denote the set of

R
d-valued, G-measurable, and q-integrable random variables ξ by L

q(G); and the set of ξ ∈ L
q(G)

such that the law Lξ = µ by L
q(G;µ). For any µ, ν ∈ Pq, the Wq–Wasserstein distance between

them is defined as follows:

Wq(µ, ν) := inf
{(

E[|ξ − η|q]
) 1

q : for all ξ ∈ L
q(FT ;µ), η ∈ L

q(FT ; ν)
}
.
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For a W2-continuous functions U : P2 → R, its Wasserstein gradient, also called Lions-derivative,

takes the form ∂µU : (µ, x̃) ∈ P2 × R
d → R

d and satisfies:

U(Lξ+η)− U(µ) = E
[
〈∂µU(µ, ξ), η〉

]
+ o(‖η‖2), ∀ ξ ∈ L

2(FT ;µ), η ∈ L
2(FT ). (2.1)

Let C0(P2) denote the set of W2-continuous functions U : P2 → R. For k = 1, 2, we introduce

Ck(P2), which are referred to as functions of full Ck regularity in [21, Theorem 4.17], as follows.

By C1(P2), we mean the space of functions U ∈ C0(P2) such that ∂µU exists and is continuous

on P2 × R
d, it is uniquely determined by (2.1). Similarly, C2(P2) stands for the set of functions

U ∈ C1(P2) such that ∂x̃µU, ∂µµU exist and are continuous on P2×R
d and P2×R

2d respectively.

Let C2(Rd×P2) denote the set of continuous functions U : Rd×P2 → R satisfying ∂xU, ∂xxU exist

and are joint continuous on R
d ×P2, ∂µU, ∂xµU, ∂x̃µU exist and are continuous on R

d ×P2 ×R
d,

and ∂µµU exists and is continuous on R
d × P2 × R

2d. Finally, we fix the state space

Θ := [0, T ]× R
d ×P2

for our master equation, and let C1,2(Θ) denote the set of continuous functions U ∈ Θ → R which

has the following continuous derivatives: ∂tU , ∂xU , ∂xxU , ∂µU , ∂xµU , ∂x̃µU, ∂µµU.

One crucial property of U ∈ C1,2(Θ) functions is the Itô formula. For i = 1, 2, let dXi
t :=

bitdt+σi
tdBt+σ

i,0
t dB0

t , where b
i : [0, T ]×Ω → R

d and σi, σi,0 : [0, T ]×Ω → R
d×d are F-progressively

measurable and bounded (for simplicity), and ρt := LX2

t |F
0

t
, then we have

dU(t,X1
t , ρt) =

[
∂tU + ∂xU · b1t +

1

2
tr
(
∂xxU [σ1

t (σ
1
t )

⊤ + σ
1,0
t (σ1,0

t )⊤]
)]
(t,X1

t , ρt)dt

+∂xU(t,X1
t , ρt) · σ1

t dBt + (σ1,0
t )⊤∂xU(t,X1

t , ρt) · dB0
t

+tr
(
ẼFt

[
∂µU(t,X1

t , ρt, X̃
2
t )(b̃

2
t )

⊤
])

dt+ ẼFt

[
(σ̃2,0

t )⊤∂µU(t,X1
t , ρt, X̃

2
t )
]]

· dB0
t (2.2)

+tr
(
ẼFt

[
∂x∂µU(t,X1

t , ρt, X̃
2
t )σ

1,0
t (σ̃2,0

t )⊤ +
1

2
∂x̃∂µU(t,X1

t , ρt, X̃
2
t )[σ̃

2
t (σ̃

2
t )

⊤ + σ̃
2,0
t (σ̃2,0

t )⊤]
]

+
1

2
¯̃
EFt

[
∂µµU(t,X1

t , ρt, X̃
2
t , X̄

2
t )σ̃

2,0
t (σ̄2,0

t )⊤
])

dt.

See, e.g., [22, Theorem 4.17], [14, 23]). Here LX2
t |F

0
t
stands for the conditional law of X2

t given

F0
t , and ẼFt and

¯̃
EFt are the conditional expectations given Ft corresponding to the probability

measures P̃ and ¯̃
P respectively. Throughout the paper, the elements of Rd are viewed as column

vectors; ∂xU, ∂µU ∈ R
d are also column vectors; ∂xµU := ∂x∂µU := ∂x

[
(∂µU)⊤

]
∈ R

d×d, where

⊤ denotes the transpose, and similarly for the other second order derivatives; both the notations

“·” and 〈·, ·〉 denote the inner product of column vectors.

We finally introduce the mean field system related to the master equation (1.1). It either
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takes the form of forward backward McKean-Vlasov SDEs on [t0, T ]: given t0 and ξ ∈ L
2(Ft0),

X
ξ
t = ξ −

∫ t

t0

∂pH(Xξ
s , ρs, Z

ξ
s )ds +Bt0

t + βB
0,t0
t , Bt0

t := Bt −Bt0 , B
0,t0
t := B0

t −B0
t0
;

Y
ξ
t = G(Xξ

T , ρT ) +

∫ T

t

L̂(Xξ
s , ρs, Z

ξ
s )ds −

∫ T

t

Zξ
s · dBs −

∫ T

t

Z0,ξ
s · dB0

s ;

where L̂(x, µ, p) := p · ∂pH(x, µ, p)−H(x, µ, p), ρt := ρ
ξ
t := L

X
ξ
t |F

0

t
,

(2.3)

or take the form of forward backward stochastic PDE system on [t0, T ]: denoting β̂2 := 1 + β2,

dρ(t, x) =
[ β̂2

2
tr
(
∂xxρ(t, x)

)
+ div

(
ρ(t, x)∂pH(x, ρ(t, ·), ∂xu(t, x))

)]
dt− β∂xρ(t, x) · dB0

t ;

du(t, x) = v(t, x) · dB0
t −

[
tr
( β̂2

2
∂xxu(t, x) + β∂xv

⊤(t, x)
)
−H(x, ρ(t, ·), ∂xu(t, x))

]
dt;

ρ(t0, ·) = Lξ, u(T, x) = G(x, ρ(T, ·)),

(2.4)

where the solution triple (ρ, u, v) is F
0-progressively measurable and ρ(t, ·, ω) is a (random)

probability measure. The systems (2.3) and (2.4) connect to the master equation (1.1) as follows:

provided all the equations are well-posed and in particular (1.1) has a classical solution V , then

Y
ξ
t = V (t,Xξ

t , ρt), Z
ξ
t = ∂xV (t,Xξ

t , ρt), and u(t, x, ω) = V (t, x, ρ(t, ·, ω)). (2.5)

It is already well known that, c.f. [22], if the master equation (1.1) has a classical solution V with

bounded derivatives, then we can get existence and uniqueness of the mean field equilibrium, and

the equilibrium of the corresponding N -player game will converge to the mean field equilibrium.

Therefore, we shall only focus on the global well-posedness of the master equation (1.1).

We conclude this section with the strategy in [32] for the global well-posedness of (1.1).

We will follow the same strategy in this paper, except that we shall replace the monotonicity

condition with the anti-monotonicity condition:

Step 1. Introduce appropriate monotonicity condition on data which ensure the propagation

of the monotonicity along any classical solution to the master equation.

Step 2. Show that the monotonicity of V (t, ·, ·) implies an (a priori) uniform Lipschitz conti-

nuity of V in the measure variable µ.

Step 3. Combine the local well-posedness of classical solutions and the above uniform Lips-

chitz continuity to obtain the global well-posedness of classical solutions.
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3 Assumptions and anti-monotonicity conditions

In this section, we introduce the following notations. For any A ∈ R
d×d,

κ(A) := inf
|x|=1

〈Ax, x〉 = the smallest eigenvalue of 1
2 [A+A⊤], κ(A) := sup

|x|=1
〈Ax, x〉;

κ′(A) := the smallest real part of eigenvalues of A;

|A| := sup
|x|=|y|=1

〈Ax, y〉.
(3.1)

It is obvious that, for any A,A1, A2 ∈ R
d×d and x ∈ R

d,

| · | is a norm on R
d×d, |A1A2| ≤ |A1||A2|, |Ax| ≤ |A||x|,

and, when A is symmetric, κ′(A) = κ(A) and |A| = |κ(A)| ∨ |κ(A)|.
(3.2)

3.1 Regularity assumptions

We first specify some technical assumptions on G and H.

Assumption 3.1 (i) H ∈ C2(Rd×P2×R
d) and there exist constants L

H
xp, L

H
xx,L

H
2 > 0 such that

|∂xpH| ≤ L
H
xp, |∂xxH| ≤ L

H
xx, |∂ppH|, |∂xµH|, |∂pµH| ≤ LH

2 . (3.3)

(ii) H ∈ C3(Rd × P2 × R
d), and

∂xH, ∂pH, ∂xxH, ∂xpH, ∂ppH, ∂xxpH, ∂xppH, ∂pppH ∈ C2(Rd × P2 × R
d),

∂µH, ∂xµH, ∂pµH, ∂xpµH, ∂ppµH ∈ C2(Rd × P2 × R
2d),

where all the second and higher order derivatives of H involved above are uniformly bounded.

Assumption 3.2 (i) G ∈ C2(Rd × P2), and there exist constants L
G
xx, L

G
2 > 0 such that

|∂xxG| ≤ L
G
xx, |∂xµG| ≤ LG

2 . (3.4)

(ii) ∂xG, ∂xxG ∈ C2(Rd ×P2), and ∂µG, ∂xµG ∈ C2(Rd ×P2 ×R
d), and all the second and higher

order derivatives of G involved here are uniformly bounded.

Here the spaces C2, C3 are defined in the same manner as C1,2(Θ). Note that at above we

do not require the first order derivatives to be uniformly bounded. In fact, the condition (3.18)

below does not allow ∂xH to be bounded.

Remark 3.3 Under Assumption 3.2-(i), we see that ∂xG is uniformly Lipschitz continuous in µ

under W1 on R
d × P2 with Lipschitz constant LG

2 . This implies further the Lipschitz continuity

of ∂xG in µ under W2 on R
d × P2, and we denote the Lipschitz constant by L̃G

2 ≤ LG
2 :

Ẽ

[
[∂xµG(x, µ, ξ̃)η̃]

]
≤ L̃G

2

(
E[|η|2]

) 1

2

, ∀ξ ∈ L
2(F1

T , µ), η ∈ L
2(F1

T ).
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3.2 Monotonicity and anti-monotoncity conditions

Under the above regularity conditions on the data G and H, the MFG may still have multiple

mean field equilibria over a long time duration and thus the global well-posedness of classical

solutions for the master equations can fail. Therefore, some structural conditions on G,H are

needed in order to guarantee its global well-posedness. The typical structural conditions assumed

in the literature are two types of monotonicity conditions, i.e., the Lasry-Lions monotonicity

condition and the displacement monotonicity condition.

Definition 3.4 Let U : Rd × P2 → R be such that U ∈ C2(Rd × P2).

(i) U is called Lasry-Lions monotone, if for any ξ, η ∈ L
2(F1

T ),

Ẽ

[
〈∂xµU(ξ,Lξ, ξ̃)η̃, η〉

]
≥ 0. (3.5)

(ii) U is called displacement monotone if for any ξ, η ∈ L
2(F1

T ),

Ẽ

[
〈∂xµU(ξ,Lξ, ξ̃)η̃, η〉+ 〈∂xxU(ξ,Lξ)η, η〉

]
≥ 0. (3.6)

(iii) U is called displacement semi-monotone if, for some λ ∈ R and for any ξ, η ∈ L
2(F1

T ),

Ẽ

[
〈∂xµU(ξ,Lξ, ξ̃)η̃, η〉+ 〈∂xxU(ξ,Lξ)η, η〉

]
− λE[|η|2] ≥ 0. (3.7)

Here, as in Section 2, (ξ̃, η̃) is an independent copy of (ξ, η). We remark that the displacement

semi-monotonicity is obviously weaker than the displacement monotonicity (3.6), and when ∂xxU

is bounded, it is also weaker than the Lasry-Lions monotonicity (3.5).

Remark 3.5 The above formulations of the monotonicity conditions are convenient for our pur-

pose. For U ∈ C2(Rd ×P2), (3.5) and (3.6) are equivalent to (1.2) and (1.3), respectively, which

appear more often in the literature. See [32, Remark 2.4].

We next turn to the monotonicity conditions for the Hamiltonian H. In the literature, the

Lasry-Lions monotonicity has only been proposed for the separable Hamiltonians, i.e., H(x, µ, p) =

H0(x, p)− F (x, µ) and F satisfies (1.2). In [32], a notion of displacement monotonicity for non-

separable H was proposed to study the well-posedness of the master equation (1.1).

Definition 3.6 Let H be a Hamiltonian satisfying Assumption 3.1(i) and H is strictly convex in

p. We say that H is displacement monotone if: for any ξ, η ∈ L
2(F1

T ) and any bounded Lipschitz

continuous function ϕ ∈ C1(Rd;Rd),

Ẽ

[〈
∂xµH(ξ,Lξ, ξ̃, ϕ(ξ))η̃ + ∂xxH(ξ,Lξ, ϕ(ξ))η, η

〉

+
1

4

∣∣∣
(
∂ppH(ξ,Lξ, ϕ(ξ))

)− 1

2 ẼF1

T
[∂pµH(ξ,Lξ, ξ̃, ϕ(ξ))η̃]

∣∣∣
2
]
≤ 0.

(3.8)
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Remark 3.7 (i) The above definition of displacement monotonicity for non-separable Hamilto-

nians is not really used in the rest of the paper except for the comparison with the new notion

of anti-monotonicity introduced below. We refer to [32, Proposition 3.7] for another equivalent

definition of the above one.

(ii) The function ϕ(ξ) in (3.8) is chosen to be ∂xV (t, ξ,Lξ) in the proof of the propagation of

the displacement monotonicity (3.6) along V (t, ·) in [32]. Since ∂xV is not priorily known, the

displacement monotonicity (3.8) is made for any desirable function ϕ.

(iii) When H is non-separable, it still remains a challenge to find appropriate conditions on

H so that the Lasry-Lions monotonicity (3.5) could propagate along the solution V (t, ·).

Finally we introduce the anti-monotonicity condition, which is the main structural condition

in this paper and serves as an alternative sufficient condition for the global wellposedness of the

master equation. Denote

D4 :=
{
~λ = (λ0, λ1, λ2, λ3) : λ0 > 0, λ1 ∈ R, λ2 > 0, λ3 ≥ 0

}
. (3.9)

Definition 3.8 Let U ∈ C2(Rd ×P2) and ~λ ∈ D4. We say U is ~λ-anti-monotone if,

(AntiMon)
~λ
ξU(η, η) := Ẽ

[
λ0〈∂xxU(ξ,Lξ)η, η〉 + λ1〈∂xµU(ξ,Lξ, ξ̃)η̃, η〉

+ |∂xxU(ξ,Lξ)η|2 + λ2

∣∣∣ẼF1

T
[∂xµU(ξ,Lξ, ξ̃)η̃]

∣∣∣
2
− λ3|η|2

]
≤ 0, ∀ξ, η ∈ L

2(F1
T ).

(3.10)

Remark 3.9 (i) The main feature of (3.10) is that the direction of the inequality is opposite to

those in Definition 3.4. In particular, (3.10) implies the Lasry-Lions anti-monotonicity, i.e.

Ẽ

[
〈∂xµU(ξ,Lξ, ξ̃)η̃, η〉

]
≤ 0, (3.11)

for the case that λ0 = λ3 = 0 and λ1 = λ2 = 1. In fact, in this case the condition (3.10) is

stronger than (3.11) and we interpret it as U is sufficiently Lasry-Lions anti-monotone:

Ẽ

[
〈∂xµU(ξ,Lξ, ξ̃)η̃, η〉

]
≤ −Ẽ

[
|∂xxU(ξ,Lξ)η|2 +

∣∣∣ẼF1

T
[∂xµU(ξ,Lξ, ξ̃)η̃]

∣∣∣
2
]
≤ 0. (3.12)

Similarly, in the case λ0 = λ1 = λ2 = 1 and λ3 = 0, we see that (3.10) implies U is sufficiently

displacement anti-monotone:

Ẽ

[
〈∂xxU(ξ,Lξ)η, η〉+〈∂xµU(ξ,Lξ, ξ̃)η̃, η〉

]
≤ −Ẽ

[
|∂xxU(ξ,Lξ)η|2+

∣∣∣ẼF1

T

[∂xµU(ξ,Lξ, ξ̃)η̃]
∣∣∣
2
]
≤ 0. (3.13)

Note that the concavity of U in x could help in (3.13), while in (3.6) its convexity is helpful.
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(ii) The inequality (3.10) implies the displacement semi-anti-monotonicity, i.e.

Ẽ

[
〈∂xxU(ξ,Lξ)η, η〉 + 〈∂xµU(ξ,Lξ , ξ̃)η̃, η〉

]
≤ λ3Ẽ

[
|η|2

]
, (3.14)

if ~λ ∈ D4, λ0 = λ1 = 1 and λ3 ≥ 0. Note that the condition (3.14) is weaker than (3.13) for

the case. We recall that in the literature a function u : Rd → R is said to be semi-concave, or

λ-concave, if ∂xxu ≤ λId for some constant λ > 0, where Id is the d × d identity matrix. We

follow the same spirit to call U ~λ-anti-monotone if U satisfies (3.10).

We next provide an example which is ~λ-anti-monotone.

Example 3.10 Let d = 1 and consider the function: for some constants a0, a1,

U(x, µ) =
a0

2
|x|2 + a1x

∫

R

yµ(dy), (x, µ) ∈ R× P2.

It is clear that ∂xxU = a0 and ∂xµU = a1.

(i) For any ξ, η ∈ L
2(F1

T ), we have

Ẽ

[
〈∂xµU(ξ,Lξ, ξ̃)η̃, η〉

]
= a1

∣∣E[η]
∣∣2.

So U is Lasry-Lions monotone if a1 ≥ 0, and Lasry-Lions anti-monotone if a1 ≤ 0.

(ii) Similarly we have

Ẽ

[
〈∂xxU(ξ,Lξ)η, η〉 + 〈∂xµU(ξ,Lξ, ξ̃)η̃, η〉

]
= a0E

[
|η|2

]
+ a1

∣∣E[η]
∣∣2.

Then one can easily check that U is displacement monotone if a0 ≥ 0, a1 ≥ −a0, and displacement

anti-monotone if a0 ≤ 0, a1 ≤ −a0.

(iii) For any ~λ ∈ D4, we have

(AntiMon)
~λ
ξU(η, η) :=

[
λ0a0 + |a0|2 − λ3

]
E[|η|2] +

[
λ1a1 + λ2|a1|2

]∣∣E[η]
∣∣2.

Then U is ~λ-anti-monotone if:

λ0a0 + |a0|2 − λ3 ≤ 0, λ0a0 + |a0|2 − λ3 ≤ −
[
λ1a1 + λ2|a1|2

]
,

which is equivalent to:

λ3 ≥ max
(
λ0a0 + |a0|2, λ0a0 + |a0|2 + λ1a1 + λ2|a1|2

)
.

In particular, if we set λ0 = λ1 = λ2 = 1, λ3 = 0, and −1 ≤ a0, a1 ≤ 0, we see that U is

~λ-anti-monotone.
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Remark 3.11 Let U ∈ C2(Rd × P2) and ~λ ∈ D4.

(i) When λ0 = 0, (3.10) is equivalent to the following integral form: for any ξ1, ξ2 ∈ L
2(F1

T ),

λ1E

[
U(ξ1,Lξ1) + U(ξ2,Lξ2)− U(ξ1,Lξ2)− U(ξ2,Lξ1)

]

+ E

[
|∂xU(ξ1,Lξ2)− ∂xU(ξ2,Lξ2)|2 + λ2|∂xU(ξ2,Lξ1)− ∂xU(ξ2,Lξ2)|2

]
(3.15)

≤ λ3E
[
|ξ1 − ξ2|2

]
+ o

(
E
[
|ξ1 − ξ2|2

])
.

Here o(ε) means it vanishes faster than ε as ε → 0.

(ii) When λ0 = λ1, (3.10) is equivalent to the following integral form: for any ξ1, ξ2 ∈ L
2(F1

T ),

λ0E

[〈
∂xU(ξ1,Lξ1)− ∂xU(ξ2,Lξ2), ξ1 − ξ2

〉]

+ E

[
|∂xU(ξ1,Lξ2)− ∂xU(ξ2,Lξ2)|2 + λ2|∂xU(ξ2,Lξ1)− ∂xU(ξ2,Lξ2)|2

]
(3.16)

≤ CE
[
|ξ1 − ξ2|2

]
+ o

(
E
[
|ξ1 − ξ2|2

])
.

(iii) In general, (3.10) is equivalent to the following integral form: for any ξ1, ξ2 ∈ L
2(F1

T ),

E

[
λ0

〈
∂xU(ξ1,Lξ2)− ∂xU(ξ2,Lξ2), ξ1 − ξ2

〉
+ λ1

〈
∂xU(ξ2,Lξ1)− ∂xU(ξ2,Lξ2), ξ1 − ξ2

〉]

+ E

[
|∂xU(ξ1,Lξ2)− ∂xU(ξ2,Lξ2)|2 + λ2|∂xU(ξ2,Lξ1)− ∂xU(ξ2,Lξ2)|2

]
(3.17)

≤ λ3E
[
|ξ1 − ξ2|2

]
+ o

(
E
[
|ξ1 − ξ2|2

])
.

Assumption 3.12 (i) G satisfies Assumption 3.2-(i) and is ~λ-anti-monotone for some ~λ ∈ D4;

(ii) H satisfies Assumption 3.1-(i) and there exist constants LH
xp > 0, LH

xx > 0, γ > γ > 0 s.t.

κ(∂xpH) ≥ LH
xp, κ(∂xxH) ≥ LH

xx, (3.18)

γLH
xp ≤ LH

xx ≤ L
H
xx ≤ γLH

xp, L
H
xp ≤ γLH

xp. (3.19)

Note that we do not require structural conditions on ∂xµH here, and ∂ppH can be degenerate.

4 Propagation of anti-monotonicity

In this section we show that any classical solution V to the master equation (1.1) could propagate

the anti-monotonicity under appropriate conditions.

Theorem 4.1 Let Assumption 3.12 hold and V be a classical solution of the master equation

(1.1) such that

∂xxV (t, ·, ·) ∈ C2(Rd × P2), ∂xµV (t, ·, ·, ·) ∈ C2(Rd × P2 × R
d),
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and all the second and higher order derivatives of V involved above are also continuous in the

time variable and are uniformly bounded. Assume further that there exist a constant LV
xx > 0

such that

|∂xxV | ≤ LV
xx, (4.1)

and λ0 >
γ2[1 + LV

xx]
2 − 8λ3

4γ
so that θ1 :=

γ[1 + LV
xx]√

4(γλ0 + 2λ3)
< 1. (4.2)

Introduce the following symmetric matrices, which depend only on γ, γ,~λ, and LV
xx:

A1 :=




4[1− θ1] 0 0

0 2λ2 0

0 0 [1− θ1][λ0γ + 2λ3]


 ,

A2 :=




λ0 λ0 |λ0 − 1
2λ1|+ λ3

λ0 |λ1| 1
2 |λ1|+ λ2 + λ3

|λ0 − 1
2λ1|+ λ3

1
2 |λ1|+ λ2 + λ3 |λ1|+ 2λ3


+




0 1 1

1 λ2 λ2

1 λ2 0


LV

xx.

(4.3)

Then, whenever

LH
xp ≥ κ(A−1

1 A2)L
H
2 , (4.4)

V (t, ·) is ~λ-anti-monotone in the sense of (3.10) for all t ∈ [0, T ].

Proof. Without loss of generality, we shall prove the theorem only for t0 = 0.

Fix ξ ∈ L
2(F0) and η ∈ L

2(F0). Given the desired regularity of V and H, the following

system of McKean-Vlasov SDEs has a unique solution (X, δX):

Xt = ξ −
∫ t

0
∂pH(Xs, µs, ∂xV (s,Xs, µs))ds +Bt + βB0

t , µt := LXt|F0
t
;

δXt = η −
∫ t

0

[
∂pxH(Xs, µs, ∂xV (s,Xs, µs))δXs + ẼFs [∂pµH(Xs, µs, ∂xV (s,Xs, µs), X̃s)δX̃s]

+∂ppH(Xs, µs, ∂xV (s,Xs, µs))[Υs + Ῡs]
]
ds,

where Υt := ẼFt [∂xµV (t,Xt, µt, X̃t)δX̃t], Ῡt := ∂xxV (t,Xt, µt)δXt.

(4.5)

In the sequel, for simplicity of notation, we omit the variables (t, µt) as well as the dependence

on ∂xV , and denote

Hp(Xt) := ∂pH
(
Xt, µt, ∂xV (t,Xt, µt)

)
, Hpµ(Xt, X̃t) := ∂pµH

(
Xt, µt, X̃t, ∂xV (t,Xt, µt)

)
,

and similarly for Hxp,Hpp, Hxµ, ∂xxV , ∂xµV , etc. We remark that, (X̃t, δX̃t) is a conditionally

independent copy of (Xt, δXt) and µt is F0
t -measurable.
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Recall (4.5) and introduce:

It := E
[
〈Υt, δXt〉

]
, Īt := E

[
〈Ῡt, δXt〉

]
;

Γt := (AntiMon)
~λ
Xt
V (t, ·)(δXt, δXt) = λ0Īt + λ1It + E

[
|Ῡt|2 + λ2|Υt|2 − λ3|δXt|2

]
.

(4.6)

By the calculation in [32, Theorem 4.1] we have

d

dt
I(t) = E

[
−

〈
Hpp(Xt)Υt, Υt

〉
−
〈
ẼFt

[
Hpµ(Xt, X̃t)δX̃t

]
,Υt − Ῡt

〉

+
〈
ẼFt

[
Hxµ(Xt, X̃t)δX̃t

]
, δXt

〉]
;

d

dt
Ī(t) = E

[
−

〈
Hpp(Xt)Ῡt, Ῡt

〉
− 2

〈
Hpp(Xt)Ῡt,Υt

〉

−2
〈
Ῡt, ẼFt [Hpµ(Xt, X̃t)δX̃t]

〉
+

〈
Hxx(Xt)δXt, δXt

〉]
,

(4.7)

and, by the calculation in [32, Theorem 5.1] we have

dΥt = (dBt)
⊤K1(t) + β(dB0

t )
⊤K2(t) +

[
K3(t)Υt +K4(t)

]
dt;

dῩt = (dBt)
⊤K̄1(t) + β(dB0

t )
⊤K̄2(t) +

[
2Hxp(Xt)Ῡt − ∂xxV (Xt)Hpp(Xt)Υt + K̄3(t)

]
dt,

(4.8)

where (K5(t) and K6(t) in [32] turn to K3(t) and K4(t) respectively here)

K1(t) := ẼFt

[
∂xxµV (Xt, X̃t)δX̃t

]
,

K2(t) := K1(t) +
¯̃
EFt

[[
(∂µxµV )(Xt, X̄t, X̃t) + ∂x̃xµV (Xt, X̃t)

]
δX̃t

]
,

K3(t) := Hxp(Xt) + ∂xxV (Xt)Hpp(Xt),

K4(t) := ẼFt

[[
Hxµ(Xt, X̃t) + ∂xxV (Xt)Hpµ(Xt, X̃t)

]
δX̃t

]
,

K̄1(t) := ∂xxxV (Xt)δXt,

K̄2(t) := K̄1(t) + ẼFt

[
(∂µxxV )(Xt, X̃t)δX̃t

]
,

K̄3(t) := [Hxx(Xt)− ∂xxV (Xt)Hpx(Xt)]δXt − ∂xxV (Xt)ẼFt

[
Hpµ(Xt, X̃t)δX̃t

]
.

(4.9)

In particular, this implies that

d

dt
E[|Υt|2] ≥ 2E

[〈
Υt, K3(t)Υt +K4(t)

〉]
;

d

dt
E[|Ῡt|2] ≥ 2E

[〈
Ῡt, 2Hxp(Xt)Ῡt − ∂xxV (Xt)Hpp(Xt)Υt + K̄3(t)

〉]
.

(4.10)

Moreover, by (4.5) we have

d

dt
E
[
|δXt|2

]
= −2E

[〈
Hpx(Xt)δXt + ẼFt [Hpµ(Xt, X̃t)δX̃t] +Hpp(Xt)[Υt + Ῡt], δXt

〉]
. (4.11)
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Thus, by (4.7), (4.10), and (4.11), we have

d

dt
Γt ≥ λ0E

[
−

〈
Hpp(Xt)Ῡt, Ῡt

〉
− 2

〈
Hpp(Xt)Ῡt,Υt

〉

−2
〈
Ῡt, ẼFt [Hpµ(Xt, X̃t)δX̃t]

〉
+

〈
Hxx(Xt)δXt, δXt

〉]

+λ1E

[
−

〈
Hpp(Xt)Υt, Υt

〉
−

〈
ẼFt

[
Hpµ(Xt, X̃t)δX̃t

]
,Υt − Ῡt

〉

+
〈
ẼFt

[
Hxµ(Xt, X̃t)δX̃t

]
, δXt

〉]

+2E
[〈
Ῡt,

[
2Hxp(Xt)Ῡt − ∂xxV (Xt)Hpp(Xt)Υt + K̄3(t)

]〉
+ λ2

〈
Υt,

[
K3(t)Υt +K4(t)

]〉]

+2λ3E

[〈
Hpx(Xt)δXt + ẼFt [Hpµ(Xt, X̃t)δX̃t] +Hpp(Xt)[Υt + Ῡt], δXt

〉]

= E

[〈
[−λ0Hpp(Xt) + 4Hxp(Xt)]Ῡt, Ῡt

〉
+

〈
[−λ1Hpp(Xt) + 2λ2K3(t)]Υt,Υt

〉

+
〈
[λ0Hxx(Xt) + 2λ3Hpx(Xt)]δXt, δXt

〉

+
〈
λ1ẼFt

[
Hxµ(Xt, X̃t)δX̃t

]
+ 2λ3ẼFt

[
Hpµ(Xt, X̃t)δX̃t

]
, δXt

〉

−
〈
2[λ0Hpp(Xt) + ∂xxV (Xt)Hpp(Xt)]Υt, Ῡt

〉

+
〈
[−2λ0 + λ1]ẼFt

[
Hpµ(Xt, X̃t)δX̃t

]
+ 2K̄3(t) + 2λ3Hpp(Xt)δXt, Ῡt

〉

+
〈
− λ1ẼFt

[
Hpµ(Xt, X̃t)δX̃t

]
+ 2λ2K4(t) + 2λ3Hpp(Xt)δXt,Υt

〉]
.

Next, by Assumptions 3.1-(i) and 3.12-(ii), and (3.19) we have

d

dt
Γt ≥ [4LH

xp − λ0L
H
2 ]E[|Ῡt|2] +

[
2λ2L

H
xp − [|λ1|+ λ2L

V
xx]L

H
2

]
E[|Υt|2]

+
[
λ0L

H
xx + 2λ3L

H
xp − [|λ1|+ 2λ3]L

H
2

]
E[|δXt|2]

−2LH
2 [λ0 + LV

xx]E[|Υt||Ῡt|]
−
[
|λ1 − 2λ0|LH

2 + 2γ[1 + LV
xx]L

H
xp + 2LV

xxL
H
2 + 2λ3L

H
2 ]

] (
E[|δXt|2]

) 1

2

(
E[|Ῡt|2]

) 1

2

−LH
2

[
|λ1|+ 2λ2[1 + LV

xx] + 2λ3

] (
E[|δXt|2]

) 1

2

(
E[|Υt|2]

) 1

2 .

Note that, recalling the θ1 in (4.2),

4θ1E[|Ῡt|2] + 2γ[1 + LV
xx]

(
E[|δXt|2]

) 1

2

(
E[|Ῡt|2]

) 1

2 + θ1[λ0γ + 2λ3]E[|δXt|2] ≥ 0,

Then, recalling (4.3) and denoting a :=
[
(E[|Ῡt|2])

1

2 , (E[|Υt|2])
1

2 ,
(
E[|δXt|2]

) 1

2

]
,

d

dt
Γt ≥

[
4[1− θ1]L

H
xp − λ0L

H
2 ]E[|Ῡt|2] +

[
2λ2L

H
xp − [|λ1|+ λ2L

V
xx]L

H
2

]
E[|Υt|2]

+
[
[1− θ1][λ0γ + 2λ3]L

H
xp − [|λ1|+ 2λ3]L

H
2

]
E[|δXt|2]

−2LH
2 [λ0 + LV

xx]E[|Υt||Ῡt|]
−LH

2

[
|λ1 − 2λ0|+ 2LV

xx + 2λ3

] (
E[|δXt|2]

) 1

2

(
E[|Ῡt|2]

) 1

2

−LH
2

[
|λ1|+ 2λ2[1 + LV

xx] + 2λ3

] (
E[|δXt|2]

) 1

2

(
E[|Υt|2]

) 1

2 .

= a
[
A1L

H
xp −A2L

H
2

]
a⊤ ≥ 0,

where the last inequality thanks to (4.4) and the fact that A1 ≥ 0. Thus

(AntiMon)
~λ
ξV (0, η, η) = Γ0 ≤ ΓT = (AntiMon)

~λ
XT

G(δXT , δXT ) ≤ 0.

That is, V (0, ·, ·) is ~λ-anti-monotone.
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5 The Lipschitz continuity

We first show that the anti-monotonicity of V implies the uniformly Lipschitz continuity of ∂xV

in µ under W2. Unlike in [32], since we do not require the first order derivatives of G,H to be

bounded, here we do not expect the Lipschitz continuity of V itself.

Theorem 5.1 Let Assumptions 3.1-(i), 3.2-(i) hold and V be a classical solution of the master

equation (1.1) such that

∂xxV (t, ·, ·) ∈ C2(Rd × P2), ∂xµV (t, ·, ·, ·) ∈ C2(Rd × P2 × R
d),

and all the second and higher order derivatives of V involved above are also continuous in the

time variable and are uniformly bounded. Assume further that V (t, ·, ·) is ~λ-anti-monotone in the

sense of (3.10) for all t ∈ [0, T ]. Then ∂xV is uniformly Lipschitz continuous in µ under W2,

with a Lipschitz constant Cµ
2 depending only on ~λ, the parameters in (3.3) and (3.4), and LV

xx.

Proof. In this proof, C > 0 denotes a generic constant depending only on quantities mentioned

in the statement of the theorem. As in the proof of Theorem 4.1, without loss of generality we

show the theorem only for t0 = 0. First, by (3.10) we have, for any ξ, η ∈ L
2(F1

t ),

E

[∣∣∣ẼF1

T

[
∂xµV (t, ξ,Lξ , ξ̃)η̃

]∣∣∣
2]

≤ C
∣∣∣Ẽ

[〈
∂xµV (t, ξ,Lξ , ξ̃)η̃, η

〉]∣∣∣+ CE[|η|2]. (5.1)

Next, applying Hölder’s inequality to (5.1) we have

E

[∣∣∣ẼF1

T

[
∂xµV (t, ξ,Lξ, ξ̃)η̃

]∣∣∣
2]

≤ CE[|η|2]. (5.2)

From now on we fix ξ ∈ L
2(F0) and η ∈ L

2(F0) and continue to use the notation as in the proof

of Theorem 4.1. In particular, X, δX, µt,Υ, Ῡ are defined by (4.5). Applying (5.2) by replacing

E with EF0
t
and noting that Xt is Ft-measurable, we have

E[|Υt|2] = E

[
EF0

t

[∣∣∣ẼFT

[
∂xµV (t,Xt, µt, X̃t)δX̃t

]∣∣∣
2]]

≤ CE

[
EF0

t
[|δXt|2]

]
≤ CE[|δXt|2]. (5.3)

Using Hölder’s inequality on (4.5) and noting in particular |Ῡt| ≤ LV
xx|δXt|, we obtain

|δXt|2 ≤ 2|η|2 + C

∫ t

0

[
|δXs|2 +

∣∣ẼFs [|δX̃s|]
∣∣2 + |Υs|2

]
ds. (5.4)

Taking expectation on (5.4) and using (5.3), we derive

E
[
|δXt|2

]
≤ 2E[|η|2] + C

∫ t

0
E
[
|δXs|2

]
ds.
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Then it follows from Grönwall’s inequality that

sup
t∈[0,T ]

E
[
|δXt|2

]
≤ CE

[
|η|2

]
. (5.5)

Next, by (4.8), we have

Υt = ΥT −
∫ T

t

[
K3(s)Υs +K4(s)

]
ds−

∫ T

t

(dBs)
⊤K1(s)− β

∫ T

t

(dB0
s )

⊤K2(s).

Take conditional expectation ẼFt , we have

Υt = ẼFt

[
∂xµG(XT , µT , X̃T )δX̃T

]
−

∫ T

t

ẼFt

[
K3(s)Υs +K4(s)

]
ds. (5.6)

Then by (5.6) and the required regularity of G,H and V , we have

|Υt|2 ≤ CẼFt

[
|δX̃T |2

]
+C

∫ T

t

ẼFt

[
|Υs|2 + |δX̃s|2

]
ds.

Now take conditional expectation ẼF0
, we get

ẼF0

[
|Υt|2

]
≤ CẼF0

[
|δX̃T |2

]
+ C

∫ T

t

ẼF0

[
|Υs|2 + |δX̃s|2

]
ds.

Thus, by the Grönwall inequality we have

|Υ0|2 = ẼF0

[
|Υ0|2

]
≤ CẼF0

[
|δX̃T |2

]
+ C

∫ T

0
ẼF0

[
|δX̃s|2

]
ds. (5.7)

Note that, recalling the setting in Section 2, δX̃t is measurable with respect to F0
t ∨ F̃1

t ,

which is independent of F0 under P̃. Then the conditional expectation in the right side of (5.7)

is actually an expectation. Plug (5.5) into (5.7), we have

∣∣∣ẼF0

[
∂xµV (0, ξ, µ0, ξ̃)η̃

]∣∣∣
2
= |Υ0|2 ≤ CE

[
|η|2

]
. (5.8)

This implies

∣∣∣Ẽ
[
∂xµV (0, x, µ0, ξ̃)η̃

]∣∣∣ ≤ C(E|η|2) 1

2 , µ0 − a.e. x. (5.9)

Since ∂µV is continuous, then (5.9) actually holds for all x. In particular, this implies that there

exists a constant Cµ0

2 > 0 such that

∣∣∣∂xV (0, x,Lξ+η)− ∂xV (0, x,Lξ)
∣∣∣ =

∣∣∣
∫ 1

0
E
[
∂xµV (0, x,Lξ+θη, ξ + θη)η

]
dθ

∣∣∣ ≤ C
µ0

2 (E[|η|2]) 1

2 .(5.10)

Now, taking random variables ξ, η such that W 2
2 (Lξ+η,Lξ) = E[|η|2], the above inequality exactly

means that ∂xV (0, x, ·) is uniformly Lipschitz continuous in µ0 under W2 with uniform Lipschitz

constant Cµ0

2 .
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We emphasize that the above Lipschitz continuity is under W2, while the global wellposed-

ness of the master equation requires the W1-Lipschitz continuity. As in [32], we shall derive

the desired W1-Lipschitz continuity from the W2-Lipschitz continuity by utilizing the pointwise

representation for the Wasserstein derivative developed in [43]. Note again that in Theorem 5.1

we only have the Lipschitz continuity for ∂xV , but not for V , so at below we shall also consider

~U(t, x, µ) := ∂xV (t, x, µ), which formally should satisfy the following vectorial master equation

on [0, T ) × R
d × P2(R

d), with terminal condition ~U(T, x, µ) = ∂xG(x, µ):

−∂t~U − β̂2

2
tr (∂xx~U) + ∂xH(x, µ, ~U ) + ∂pH(x, µ, ~U ) · ∂x~U − ~N ~U = 0, where

~N ~U(t, x, µ) := tr
(
¯̃
E

[ β̂2

2
∂x̃∂µ~U(t, x, µ, ξ̃)− ∂µ~U(t, x, µ, ξ̃)(∂pH)⊤(ξ̃, µ, ~U (t, ξ̃, µ))

+β2∂x∂µ~U(t, x, µ, ξ̃) + β2

2 ∂µµ~U(t, x, µ, ξ̄, ξ̃)
])

.

(5.11)

To be precise, fix t0, ξ, we first consider the following McKean-Vlasov SDE on [t0, T ]:

X
ξ
t = ξ −

∫ t

t0

∂pH(Xξ
s , ρs,∇Y ξ

s )ds +Bt0
t + βB

0,t0
t , ρt := ρ

ξ
t := L

X
ξ
t |F

0

t
;

∇Y
ξ
t = ∂xG(Xξ

T , ρT )−
∫ T

t

∂xH(Xξ
s , ρs,∇Y ξ

s )ds−
∫ T

t

∇Zξ
s · dBs −

∫ T

t

∇Z0,ξ
s · dB0

s .

(5.12)

Next, given ρ as above, for fixed x ∈ R
d and letting (e1, · · · , ed) denote the natural basis of Rd,

we introduce a series of FBSDEs, possibly McKean-Vlasov type:




X
ξ,x
t = x−

∫ t

t0

∂pH(Xξ,x
s , ρs,∇Y ξ,x

s )ds+ Bt0
t + βB

0,t0
t ;

∇Y
ξ,x
t = ∂xG(Xξ,x

T , ρT )−
∫ T

t

∂xH(Xξ,x
s , ρs,∇Y ξ,x

s )ds−
∫ T

t

∇Zξ,x
s · dBs −

∫ T

t

∇Z0,ξ,x
s · dB0

s ;

(5.13)





∇kX
ξ,x
t = ek −

∫ t

t0

[
(∇kX

ξ,x
s )⊤∂xpH(Xξ,x

s , ρs,∇Y ξ,x
s ) + (∇2

kY
ξ,x
s )⊤∂ppH(Xξ,x

s , ρs,∇Y ξ,x
s )

]
ds;

∇2

kY
ξ,x
t = (∇kX

ξ,x
T )⊤∂xxG(Xξ,x

T , ρT )−
∫ T

t

∇2

kZ
ξ,x
s · dBt0

s −
∫ T

t

∇2

kZ
0,ξ,x
s · dB0,t0

s

−
∫ T

t

[
(∇kX

ξ,x
s )⊤∂xxH(Xξ,x

s , ρs,∇Y ξ,x
s ) + (∇2

kY
ξ,x
s )⊤∂pxH(Xξ,x

s , ρs,∇Y ξ,x
s )

]
ds;

(5.14)





∇kX ξ,x
t = −

∫ t

t0

[
(∇kX ξ,x

s )⊤∂xpH(Xξ
s , ρs,∇Y ξ

s ) + (∇2

kYξ,x
s )⊤∂ppH(Xξ

s , ρs,∇Y ξ
s )

+ẼFs

[
(∇kX̃

ξ,x
s )⊤(∂µpH)(Xξ

s , ρs, X̃
ξ,x
s ,∇Y ξ

s ) + (∇kX̃ ξ,x
s )⊤∂µpH(Xξ

s , ρs, X̃
ξ
s ,∇Y ξ

s )
]]
ds;

∇2

kYξ,x
t = ẼFT

[
(∇kX̃

ξ,x
T )⊤∂µxG(Xξ

T , ρT , X̃
ξ,x
T ) + (∇kX̃ ξ,x

T )⊤∂µxG(Xξ
T , ρT , X̃

ξ
T )

]

+(∇kX ξ,x
T )⊤∂xxG(Xξ

T , ρT )−
∫ T

t

∇2

kZξ,x
s · dBt0

s −
∫ T

t

∇2

kZ0,ξ,x
s · dB0,t0

s

−
∫ T

t

[
(∇kX ξ,x

s )⊤∂xxH
(
Xξ

s , ρs,∇Y ξ
s ) + (∇2

kYξ,x
s )⊤∂pxH

(
Xξ

s , ρs,∇Y ξ
s )

+ẼFs

[
(∇kX̃

ξ,x
s )⊤∂µxH

(
Xξ

s , ρs, X̃
ξ,x
s ,∇Y ξ

s ) + (∇kX̃ ξ,x
s )⊤∂µxH

(
Xξ

s , ρs, X̃
ξ
s ,∇Y ξ

s )
]]
ds;

(5.15)
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∇µk
X

x,ξ,x̃
t = −

∫ t

t0

[
(∇µk

Xx,ξ,x̃
s )⊤∂xpH(Xξ,x

s , ρs,∇Y ξ,x
s ) + (∇2

µk
Y x,ξ,x̃
s )⊤∂ppH(Xξ,x

s , ρs,∇Y ξ,x
s )

+ẼFs

[
(∇kX̃

ξ,x̃
s )⊤∂µpH(Xξ,x

s , ρs, X̃
ξ,x̃
s ,∇Y ξ,x

s ) + (∇kX̃ ξ,x̃
s )⊤∂µpH(Xξ,x

s , ρs, X̃
ξ
s ,∇Y ξ,x

s )
]]
ds;

∇2

µk
Y

x,ξ,x̃
t = ẼFT

[
(∇kX̃

ξ,x̃
T )⊤∂µxG(Xξ,x

T , ρT , X̃
ξ,x̃
T ) + (∇kX̃ ξ,x̃

T )⊤∂µxG(Xξ,x
T , ρT , X̃

ξ
T )

]

+(∇µk
X

x,ξ,x̃
T )⊤∂xxG(Xξ,x

T , ρT )−
∫ T

t

∇2

µk
Zx,ξ,x̃
s · dBs −

∫ T

t

∇2

µk
Z0,x,ξ,x̃
s · dB0

s

−
∫ T

t

[
(∇µk

Xx,ξ,x̃
s )⊤∂xxH(Xξ,x

s , ρs,∇Y ξ,x
s ) + (∇2

µk
Y x,ξ,x̃
s )⊤∂pxH(Xx

s , ρs,∇Y ξ,x
s )

+ẼFs

[
(∇kX̃

ξ,x̃
s )⊤∂µxH(Xξ,x

s , ρs, X̃
ξ,x̃
s ,∇Y ξ,x

s ) + (∇kX̃ ξ,x̃
s )⊤∂µxH(Xξ,x

s , ρs, X̃
ξ
s ,∇Y ξ,x

s )
]]
ds.

(5.16)

The following local (in time) result provides the crucial W1-Lipschitz continuity of ~U .

Proposition 5.2 Let Assumptions 3.1-(i) and 3.2-(i) hold. Recall the constants L
H
xx, L

H
xp, L

H
2 in

(3.3), LG
2 , L

G
xx in (3.4), and L̃G

2 in Remark 3.3. Then there exists a constant δ > 0, depending

only d, L
H
xx, L

H
xp, L

H
2 , L

G
xx, L̃

G
2 , such that whenever T − t0 ≤ δ, the following hold.

(i) The McKean-Vlasov FBSDEs (5.12), (5.13), (5.14), (5.15), and (5.16) are well-posed on

[t0, T ], for any µ ∈ P2 and ξ ∈ L
2(Ft0 , µ).

(ii) Define ~U(t0, x, µ) := ∇Y
x,ξ
t0

. Then we have the pointwise representation:

∂µk
~U(t0, x, µ, x̃) = ∇2

µk
Y

x,ξ,x̃
t0

. (5.17)

Moreover, there exists a constant Cµ
1 > 0, depending only on d, L

H
xx, L

H
xp, L

H
2 , LG

2 , L
G
xx such that

|∂µ~U(0, x, µ, x̃)| ≤ C
µ
1 . (5.18)

(iii) Assume further that Assumptions 3.1-(ii) and 3.2-(ii) hold true. Then the vectorial

master equation (5.11) has a unique classical solution ~U . Moreover,

~U(t, ·, ·), ∂x~U(t, ·, ·) ∈ C2(Rd × P2), ∂µ~U(t, ·, ·, ·) ∈ C2(Rd × P2 × R
d),

and all their derivatives in the state and probability measure variables are continuous in the time

variable and are uniformly bounded.

(iv) The following decoupled McKean-Vlasov FBSDE

Xx
t = x+Bt0

t + βB
0,t0
t ;

Y
x,ξ
t = G(Xx

T , ρT )−
∫ T

t

H(Xx
s , ρs,

~U(s,Xx
s , ρs))ds −

∫ T

t

Zx,ξ
s · dBs −

∫ T

t

Z0,x,ξ
s · dB0

s

(5.19)

is well-posed on [t0, T ] for any x ∈ R
d. Define V (t0, x, µ) := Y

x,ξ
t0

. Then V is the unique classical

solution of the master equation (1.1) and ∂xV = ~U on [0, T ]× R
d × P2.
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We emphasize that at above Cµ
1 depends on LG

2 in (3.4), but the δ depends only on L̃G
2 in Remark

3.3, not on LG
2 .

Proof. The proof of (i)-(iii) is very lengthy, but essentially identical to as that of [32, Propo-

sition 6.2], except that [32] considers both ∂µV and ∂xµV = ∂µ~U . Therefore we omit it here.

(iv) By the smoothness of ~U obtained in (iii), clearly the V defined in (iv) is smooth and

Y
x,ξ
t = V (t,Xx

t , ρt). By applying Itô’s formula (2.2) we see that V satisfies the PDE:

−∂tV − β̂2

2
tr (∂xxV ) +H(x, µ, ~U )− tr

(
¯̃
E

[ β̂2

2
∂x̃∂µV (t, x, µ, ξ̃) +

β2

2
∂µµV (t, x, µ, ξ̄, ξ̃)

−∂µV (t, x, µ, ξ̃)(∂pH)⊤(ξ̃, µ, ~U (t, ξ̃, µ)) + β2∂x∂µV (t, x, µ, ξ̃)
])

= 0.

(5.20)

Differentiate it with respect to x, we obtain the PDE for ~U ′ := ∂xV :

−∂t ~U ′ − β̂2

2
tr (∂xx ~U ′) + ∂xH(x, µ, ~U ) + ∂pH(x, µ, ~U ) · ∂x~U

−tr
(
¯̃
E

[ β̂2

2
∂x̃∂µ ~U ′(t, x, µ, ξ̃) +

β2

2
∂µµ ~U ′(t, x, µ, ξ̄, ξ̃)

−∂µ ~U ′(t, x, µ, ξ̃)(∂pH)⊤(ξ̃, µ, ~U (t, ξ̃, µ)) + β2∂x∂µ ~U ′(t, x, µ, ξ̃)
])

= 0.

(5.21)

Compare this with (5.11), we see that ~U also satisfies (5.21). Thus, by the uniqueness we have

~U = ~U ′ = ∂xV . Plug this into (5.20) we verify that V satisfies (1.1).

6 Uniform estimates of ∂xxV

We note that all the above results rely on the bound LV
xx of ∂xxV in (4.1). In particular, in

Theorem 4.1 the LH
xp depends on LV

xx. Then it is crucial to obtain an a priori uniform estimate

of LV
xx which is independent of LH

xp. Recall (2.5), we have ∂xxV = ∂xxu, so it suffices to establish

the a priori estimate for the solution u to the backward SPDE in (2.4), for an arbitrarily given

ρ (not necessarily satisfying the forward SPDE in (2.4)).

For this purpose we consider a special form of H.

Assumption 6.1 H takes the following form:

H(x, µ, p) = 〈A0x, p〉+H0(x, µ, p) (6.1)

where A0 ∈ R
d×d is a constant matrix and H0 : R

d × P2 × R
d → R is a function satisfying

(i) H0 ∈ C2(Rd × P2 × R
d) and there exist constants LH0

xx , L
H0

xx ,L
H0

2 > 0 such that

κ(∂xxH0) ≥ LH0

xx , |∂xxH0| ≤ L
H0

xx , (6.2)

|∂xpH0|, |∂ppH0|, |∂xµH0|, |∂pµH0| ≤ LH0

2 on R
d × P2 × R

d. (6.3)

(ii) H0 satisfies Assumption 3.1-(ii).
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Given A0, consider its Jordan decomposition:

A0 = Q0J0Q
−1
0 , (6.4)

where J0 ∈ C
d×d is the Jordan normal form of A0 and Q0 ∈ C

d×d is invertible. Let Q̄0 denote

the conjugate of Q0 and thus Q0Q̄
⊤
0 is positive definite. The following estimate will be crucial.

Lemma 6.2 Recall (3.1). For any t ≥ 0, we have

|e−A0t| ≤
√
LA0e[1−κ′(A0)]t, where LA0 := inf

Q0

κ(Q0Q̄
⊤
0 )

κ(Q0Q̄
⊤
0 )

. (6.5)

Here the infimum is over all Q0 satisfying (6.4).

Proof. Fix J0, Q0 as in (6.4). It is obvious that e−A0t = Q0e
−J0tQ−1

0 . We claim that

∣∣〈e−J0tx, y〉
∣∣ ≤ e[1−κ′(A0)]t|x||y|, ∀x, y ∈ C

d. (6.6)

Then, for any x, y ∈ R
d with |x| = |y| = 1, we have

∣∣∣
〈
e−A0tx, y

〉∣∣∣ =
∣∣∣
〈
e−J0tQ−1

0 x,Q0⊤y
〉∣∣∣ ≤ e[1−κ′(A0)]t|Q−1

0 x||Q0⊤y|

≤ e[1−κ′(A0)]t
√
κ(Q−1

0 (Q̄⊤
0 )

−1)
√

κ(Q0Q̄
⊤
0 ) = e[1−κ′(A0)]t

√
κ(Q0Q̄

⊤
0 )

κ(Q0Q̄
⊤
0 )

.

Since Q0 is arbitrary, this implies (6.5) immediately.

To see (6.6), assume the Jordan normal form J0 = diag(J1, · · · , Jk). Here d1 + · · · + dk = d;

Ji = λiIdi + Udi ∈ R
di×di , i = 1, · · · , k; λ1, · · · , λk are all the eigenvalues of A0; and Udi is the

matrix whose (j, j + 1)-component is 1, j = 1, · · · , di − 1, and all other components are 0. It is

straightforward to see that

e−J0t = diag(e−J1t, · · · , e−Jkt).

Note that, for each i, since Idi and Udi can commute, and Udi
di

= 0,

e−Jit = e−λite−Udi
t = e−λit

di−1∑

n=0

(−t)n

n!
Un
di
.

For any x(i), y(i) ∈ C
di , it is clear that

∣∣∣〈Un
di
x(i), y(i)〉

∣∣∣ ≤ 1

2
[|x(i)|2 + |y(i)|2].

21



Then, for x = (x(1), · · · , x(k)), y = (y(1), · · · , y(k)) ∈ C
d with |x| = |y| = 1, we have

∣∣∣〈e−J0tx, y〉
∣∣∣ =

∣∣∣
k∑

i=1

〈e−Jitx(i), y(i)〉
∣∣∣ ≤

k∑

i=1

|e−λit|
di−1∑

n=0

tn

n!

∣∣∣〈Un
di
x(i), y(i)〉

∣∣∣

≤ e−κ′(A0)t
k∑

i=1

di−1∑

n=0

tn

n!

1

2
[|x(i)|2 + |y(i)|2] ≤ e−κ′(A0)t

d−1∑

n=0

tn

n!
.

This implies (6.6) immediately.

Remark 6.3 (i) The form (6.1) is assumed for the estimate (6.5) and for the property

de−A0t = −e−A0tA0dt = −A0e
−A0tdt, (6.7)

required in the proof of Theorem 6.4 below. In general e−
∫ t

0
∂xpHds does not enjoy these properties.

When d = 1, however, e−
∫ t

0
∂xpHds obviously satisfies similar properties and thus we do not need

the special form (6.1). Moreover, we remark that any alternative structures which could ensure

a uniform a priori bound for ∂xxu can serve our purpose.

(ii) It is clear that, under (6.1), (6.2), and (6.3), we may set

LH
xp := κ(A0)− LH0

2 , L
H
xp := |A0|+ LH0

2 ; LH
xx := LH0

xx , L
H
xx := L

H0

xx , LH
2 := LH0

2 . (6.8)

Then (3.3) and (3.18) hold true. We shall remark though that the term κ(A0) and the condition

κ(∂xxH0) ≥ LH0

xx are not used in Theorem 6.4 below.

(iii) When A0 is symmetric, one can easily see that LA0 = 1, and in this case (6.5) can be

improved: |e−A0t| ≤ e−κ′(A0)t.

Then we have the following uniform a priori estimate.

Theorem 6.4 Let Assumptions 3.2-(i), 6.1 hold and ρ : [0, T ] × Ω → P2 be F
0-progressively

measurable with sup
t∈[0,T ]

E
[ ∫

Rd

|x|2ρt(dx)
]
< +∞. Assume (u, v) is a classical solution to the

backward SPDE in (2.4) for the given ρ here (ρ is not necessarily a solution to the forward

SPDE in (2.4)) such that ∂xxu is bounded and, for some fixed constant L
A ≥ 1,

LA0 ≤ L
A
, κ′(A0) ≥ θ2 := max

{
θ3,

L
H0
xx

2L
G
xx

+ 1
}
,

where θ3 := 1 + LH0

2 L
A
[
1 + L

G
xxL

A
+

√
(1 + L

G
xxL

A
)2 − 1

]
.

(6.9)

Then the following estimate holds:

|∂xxu(t, x)| ≤ Lu
xx(θ3), ∀(t, x), where

Lu
xx(θ) :=

θ − 1− LH0

2 L
A −

√
(θ − 1− LH0

2 L
A
)2 − 2LH0

2 L
G
xx(L

A
)2[θ − 1]

LH0

2 L
A

, θ ≥ θ3.

(6.10)
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We note that (6.9) implies Lu
xx(θ) is well-defined for θ ≥ θ3, and we emphasize that the bound

Lu
xx(θ3) depends only on LH0

2 , L
G
xx and L

A
, in particular not on T , κ′(A0), or L

H0

xx .

Proof. Fix (t0, x). First, under our conditions it is clear that the following FBSDE on [t0, T ]

has a unique solution (Xx,∇Y x,∇Zx,∇Z0,x):

Xx
t = x−

∫ t

t0

∂pH(Xx
s , ρs,∇Y x

s )ds +Bt0
t + βB

0,t0
t ;

∇Y x
t = ∂xG(Xx

T , ρT )−
∫ T

t

∂xH(Xx
s , ρs,∇Y x

s )ds −
∫ T

t

∇Zx
s · dBs −

∫ T

t

∇Z0,x
s · dB0

s .

(6.11)

In particular, ∂xu serves as the decoupling field:

∇Y x
t = ∂xu(t,X

x
t ), t ∈ [t0, T ]. (6.12)

Next, denote L0 := Lu
xx(κ

′(A0)), and consider the following BSDE on [t0, T ]:

∇2Y x
t = ∂xxG(Xx

T , ρT )−
∫ T

t

∇2Zx
s · dBs −

∫ T

t

∇2Z0,x
s · dB0

s

−
∫ T

t

[
∇2Y x

s

[
A⊤

0 + ∂pxH0(X
x
s , ρs,∇Y x

s )
]
+

[
A0 + ∂xpH0(X

x
s , ρs,∇Y x

s )
]
∇2Y x

s

+∂xxH0(X
x
s , ρs,∇Y x

s ) +
[
∇2Y x

s ∧ L0

]
∂ppH0(X

x
s , ρs,∇Y x

s )
[
∇2Y x

s ∧ L0

]]
ds.

(6.13)

Here A ∧ L0 := [(−L0) ∨ aij ∧ L0]i,j is the truncated matrix. The above BSDE has a Lipschitz

continuous driver and thus is well-posed. Recalling (6.7) and applying Itô’s formula we have

e−A0t∇2Y x
t e

−A⊤

0
t = e−A0T∂xxG(Xx

T , ρT )e
−A⊤

0
T −

∫ T

t

e−A0s
[
∇2Zx

s · dBs +∇2Z0,x
s · dB0

s

]
e−A0s

−
∫ T

t

e−A0s
[
∇2Y x

s ∂pxH0(X
x
s , ρs,∇Y x

s ) + ∂xpH0(X
x
s , ρs,∇Y x

s )∇2Y x
s

+∂xxH0(X
x
s , ρs,∇Y x

s ) +
[
∇2Y x

s ∧ L0

]
∂ppH0(X

x
s , ρs,∇Y x

s )
[
∇2Y x

s ∧ L0

]]
e−A⊤

0
sds.

Take conditional expectation EFt on both sides, we obtain

∇2Y x
t = eA0(t−T )

EFt

[
∂xxG(Xx

T , ρT )
]
eA

⊤

0
(t−T )

−
∫ T

t

eA0(t−s)
EFt

[
∇2Y x

s ∂pxH0(X
x
s , ρs,∇Y x

s ) + ∂xpH0(X
x
s , ρs,∇Y x

s )∇2Y x
s

+∂xxH0(X
x
s , ρs,∇Y x

s ) +
[
∇2Y x

s ∧ L0

]
∂ppH0(X

x
s , ρs,∇Y x

s )
[
∇2Y x

s ∧ L0

]]
eA

⊤

0
(t−s)ds.

Recall (3.2) and apply Lemma 6.2, we have

∣∣∇2Y x
t

∣∣ ≤ e2[1−κ′(A0)](T−t)L
G
xxL

A
+

L
H0

xxL
A

2[κ′(A0)− 1]
[1− e2[1−κ′(A0)](T−t)]

+LH0

2 L
A
[2 + L0]

∫ T

t

e2[1−κ′(A0)](s−t)
EFt [|∇2Y x

s |]ds.
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Taking the conditional expectation EFt0
and noting that κ′(A0) ≥ θ2 ≥ L

H0
xx

2L
G
xx

+ 1, we derive

EFt0

[∣∣∇2Y x
t

∣∣] ≤ e2[1−κ′(A0)](T−t)L
G
xxL

A
+ L

G
xxL

A
[1− e2[1−κ′(A0)](T−t)]

+LH0

2 L
A
[2 + L0]

∫ T

t

e2[1−κ′(A0)](s−t)
EFt0

[|∇2Y x
s |]ds

≤ L
G
xxL

A
+ LH0

2 L
A
[2 + L0]

∫ T

t

e2[1−κ′(A0)](s−t)
EFt0

[|∇2Y x
s |]ds.

Then by Grönwall’s inequality we have

EFt0

[∣∣∇2Y x
t

∣∣] ≤ L
G
xxL

A
+

L
G
xxL

H0

2 |LA|2[2 + L0]

2[κ′(A0)− 1]− LH0

2 L
A
[2 + L0]

×

[
1− e−

[
2[κ′(A0)−1]−L

H0

2
L
A
[2+L0]

]
[T−t]

]
.

(6.14)

Recall (6.10), one can check straightforwardly that

d

dθ
Lu
xx(θ) =

1

LH0

2 L
A

[
1− (θ − 1− LH0

2 L
A
)− LH0

2 L
G
xx(L

A
)2√

(θ − 1− LH0

2 L
A
)2 − 2LH0

2 L
G
xx(L

A
)2[θ − 1]

]
< 0, ∀θ ≥ θ3. (6.15)

Then, since κ′(A0) ≥ θ2 ≥ θ3 and L0 = Lu
xx(κ

′(A0)), by (6.9) and (6.10) we have

2[κ′(A0)− 1]− LH0

2 L
A
[2 + L0] ≥ 2[θ3 − 1]− LH0

2 L
A
[2 + Lu

xx(θ3)] ≥ 0.

Thus (6.14) implies

EFt0

[∣∣∇2Y x
t

∣∣] ≤ L
G
xxL

A
+

L
G
xxL

H0

2 |LA|2[2 + L0]

2[κ′(A0)− 1]− LH0

2 L
A
[2 + L0]

=
2L

G
xxL

A
[κ′(A0)− 1]

2[κ′(A0)− 1]− LH0

2 L
A
[2 + L0]

= L0,

where the last equality is due to the straightforward calculation. In particular, by setting t = t0,

we have
∣∣∇2Y x

t0

∣∣ ≤ L0. Similarly we can show
∣∣∇2Y x

t

∣∣ ≤ L0 for all t ∈ [t0, T ]. Then ∇2Y x
s ∧L0 =

∇2Y x
s and thus (6.13) becomes

∇2Y x
t = ∂xxG(Xx

T , ρT )−
∫ T

t

∇2Zx
s · dBs −

∫ T

t

∇2Z0,x
s · dB0

s

−
∫ T

t

[
∇2Y x

s

[
A⊤

0 + ∂pxH0(X
x
s , ρs,∇Y x

s )
]
+

[
A0 + ∂xpH0(X

x
s , ρs,∇Y x

s )
]
∇2Y x

s

+∂xxH0(X
x
s , ρs,∇Y x

s ) +∇2Y x
s ∂ppH0(X

x
s , ρs,∇Y x

s )∇2Y x
s

]
ds.

(6.16)

By considering the equation for ∂xxu derived from the BSPDE in (2.4), one can readily see

from (6.11), (6.12), and (6.16) that ∇2Y x
t = ∂xxu(t,X

x
t ). In particular, |∂xxu(t0, x)| = |∇2Y x

t0
| ≤

L0. Since (t0, x) is arbitrary, we have |∂xxu(t, x)| ≤ L0 = Lu
xx(κ

′(A0)) for all (t, x). This, together

with (6.15), implies (6.10).
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7 Global well-posedness

In this section we establish the global well-posedness of the master equation. We shall first

construct the global well-posedness of the vectorial master equation (5.11). Following the idea in

[23, 22, 43, 32], the key is to extend a local classical solution to a global one through an a priori

uniform Lipschitz continuity estimate of the solution in µ. We note that Theorem 6.4 implies the

uniform a priori bound of ∂xxV . Then, by applying Theorem 4.1 and 5.1, we obtain the uniform

a priori Lipschitz continuity of ~U = ∂xV with respect to µ under W2. Moreover, by Proposition

5.2 we derive the desired uniform a priori Lipschitz continuity of ~U with respect to µ under W1.

We now present the main well-posedness result. Note that the dependence on the parameters

is quite subtle, so we will introduce them carefully. Following the order of the assumptions

below, one can easily construct a class of G and H satisfying all of them, see e.g. Example 7.2.

In particular, in light of Lemma 6.3 (iii), we may set L
A
= 1 and consider symmetric A0.

Theorem 7.1 Let Assumption 3.2 with L
G
xx, L

G
2 and Assumption 3.12 (i) with ~λ ∈ D4 hold true,

and H takes the form (6.1) such that Assumption 6.1 (ii) holds and there exists LH0

2 satisfying

the requirements in (6.3). Fix an arbitrary L
A ≥ 1 and set θ3 as in (6.9) and LV

xx := Lu
xx(θ3) as

in (6.10). Assume further the following hold true.

(i) There exist 0 < γ < γ such that γ ≤ L
G
xx, γ > 1, and (4.2) holds true.

(ii) Set A1, A2 as in (4.3). The matrix A0 satisfies:

LA0 ≤ L
A
, κ(A0) ≥ [1 + κ(A−1

1 A2)]L
H0

2 , κ′(A0) ≥ θ3, |A0|+ LH0

2 ≤ γ[κ(A0)− LH0

2 ]. (7.1)

(iii) There exist 0 < LH0

xx ≤ L
H0

xx satisfying (6.2) and

γ[κ(A0)− LH0

2 ] ≤ LH0

xx ≤ L
H0

xx ≤
[
γ[κ(A0)− LH0

2 ]
]
∧
[
2L

G
xx[κ

′(A0)− 1]
]
. (7.2)

Then the master equation (1.1) on [0, T ] admits a unique classical solution V with bounded ∂xV ,

∂xxV and ∂xµV .

Furthermore, the McKean-Vlasov FBSDEs (5.12), (5.13), (5.14), (5.15), (5.16) and (5.19)

are also well-posed on [0, T ] and the representation formula (5.17) remains true on [0, T ].

Proof. The uniqueness as well as the wellposedness of the involved FBSDEs and the represen-

tation formula (5.17) follow exactly the same arguments as in [32, Theorem 6.3]. Thus we shall

only prove the existence.

Set LH
xp, L

H
xp, L

H
xx, L

H
xx, L

H
2 as in (6.8). Then clearly Assumptions 3.1 and 3.12 hold true.

By (7.1) and (7.2) we see that (6.9) holds true and thus we have the a priori estimate (6.10).

Moreover, by (7.1) we have LH
xp ≥ κ(A−1

1 A2)L
H
2 , and thus the result of Theorem 4.1 holds true.
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We now let Cµ
2 be the a priori (global) uniform Lipschitz estimate of ∂xV with respect to µ

under W2, as established by Theorems 4.1 and 5.1. Let δ > 0 be the constant in Proposition

5.2, but with L
G
xx replaced with LV

xx and LG
2 replaced with C

µ
2 . Let 0 = T0 < · · · < Tn = T be a

partition such that Ti+1 − Ti ≤ δ
2 , i = 0, · · · , n− 1.

First, since Tn − Tn−2 ≤ δ, by Proposition 5.2 the master equation (1.1) on [Tn−2, Tn] with

terminal condition G has a unique classical solution V . For each t ∈ [Tn−2, Tn], applying Theorem

6.4 we have |∂xxV (Tn−1, ·, ·)| ≤ LV
xx. Note that by Proposition 5.2-(iii)(iv) V (t, ·, ·) has further

regularities, this enables us to apply Theorems 4.1 and 5.1 and obtain that ∂xV (t, ·, ·) is uniform
Lipschitz continuous in µ underW2 with Lipschitz constant Cµ

2 . Moreover, by Proposition 5.2-(ii)

∂xV (Tn−1, ·, ·) is also uniformly Lipschitz continuous in µ under W1.

We next consider the master equation (1.1) on [Tn−3, Tn−1] with terminal condition V (Tn−1, ·, ·).
We emphasize that ∂xV (Tn−1, ·, ·) has the above uniform regularity with the same constants

LV
xx, C

µ
2 , then we may apply Proposition 5.2 with the same δ and obtain a classical solution

V on [Tn−3, Tn−1] with the additional regularities specified in Proposition 5.2-(iii)(iv). Clearly

this extends the classical solution of the master equation to [Tn−3, Tn]. We emphasize again

that, while the bound of ∂xµV (t, ·) may become larger for t ∈ [Tn−3, Tn−2] because the C
µ
1 in

(5.18) now depends on ‖∂xµV (Tn−1, ·)‖L∞ instead of ‖∂xµV (Tn, ·)‖L∞ , by the global a priori

estimates in Theorems 4.1 and 5.1 we see that ∂xV (t, ·) corresponds to the same LV
xx and C

µ
2

for all t ∈ [Tn−3, Tn]. This enables us to consider the master equation (1.1) on [Tn−4, Tn−2] with

terminal condition V (Tn−2, ·, ·), and then we obtain a classical solution on [Tn−4, Tn] with the

desired uniform estimates and additional regularities.

Repeat the arguments backwardly in time, we may construct a classical solution V for the

original master equation (1.1) on [0, T ] with terminal condition G. Moreover, since this procedure

is repeated only n times, by applying (5.18) repeatedly we see that (5.18) indeed holds true on

[0, T ].

We conclude the paper by providing an example which satisfies all the assumptions in Theorem

7.1. We emphasize that there is no smallness assumption imposed here.

Example 7.2 For simplicity let d = 1. Fix positive constants 0 < α ≤ α and 0 < γ < γ with

γ > 1, and fix (λ1, λ2, λ3) satisfying the requirements in (3.9). Set L
A
:= 1 and let M0 be a large

number which will be specified later. Assume

(i) G satisfies Assumption 3.2 with

− αM0 ≤ ∂xxG(x, µ) ≤ −αM0 on R× P2(R); (7.3)

(ii) H satisfies Assumption 6.1 with A0 := M3
0 > LH0

2 in (6.1), and

γ[A0 − LH0

2 ] ≤ ∂xxH0(x, µ, p) ≤ γ[A0 − LH0

2 ] on R× P2(R)×R. (7.4)
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Then, for M0 large enough, which may depend on α,α, γ, γ, (λ1, λ2, λ3), and LG
2 , L

H0

2 , one can

choose appropriate λ0 such that all the conditions in Theorem 7.1 hold true.

Proof. We first emphasize that (7.3) and (7.4) involve only ∂xxG and ∂xxH0. Note that the

parameters LG
2 , L

H0

2 , which M0 will depend on, do not involve these derivatives. So it is rather

easy to construct G and H0 satisfy both Assumptions 3.2, 6.1, and (7.3), (7.4) with arbitrarily

large M0. Moreover, recall (3.4) and (6.2), by (7.3) and (7.4) it is clear that

L
G
xx = αM0, LH0

xx = γ[A0 − LH0

2 ], L
H0

xx = γ[A0 − LH0

2 ]. (7.5)

Then the θ3 in (6.9) and Lu
xx(θ3) in (6.10) become: recalling L

A
= 1,

θ3 := 1 + LH0

2

[
1 + αM0 +

√
(1 + αM0)2 − 1

]
,

LV
xx = Lu

xx(θ3) :=
2αM0(θ3 − 1)

θ3 − 1− LH0

2 +
√

(θ3 − 1− LH0

2 )2 − 2LH0

2 αM0(θ3 − 1)
.

(7.6)

We now show that the following λ0 satisfies all the requirements:

λ0 =
γ̄2[1 + LV

xx]
2 − 8λ3

4γ
+ 1. (7.7)

First, by the choice of λ0, it is obvious that λ0 >
γ̄2[1+LV

xx]
2−8λ3

4γ , which verifies (4.2).

Next, let O(M) denote a generic positive function of M such that O(M)
M

is bounded both from

above and away from 0. Then we see that

θ3 = O(M0), LV
xx = O(M0), λ0 = O(M2

0 ). (7.8)

By (3.10) we have

(AntiMon)
~λ
ξU(η, η) ≤

[
− λ0αM0 + α2M2

0 − λ3

]
E[|η|2] +

[
|λ1|LG

2 + λ2|LG
2 |2

]∣∣E[η]
∣∣2.

Since λ0M0 = O(M3
0 ), it is clear that G is ~λ-anti-monotone when M0 is large enough.

Moreover, since d = 1, we have κ(A0) = κ(A0) = κ′(A0) = A0 and LA0 = 1 ≤ L
A
= 1. Recall

(4.2) and (4.3). When M0 is large, it is clear that 1 − θ1 is uniformly away from 0 and then it

follows from (7.8) that κ(A−1
1 A2) = O(M2

0 ). Thus, since A0 = M3
0 and γ > 1, for M0 sufficiently

large we have the following inequalities which verify (7.1):

A0 ≥ 1 + κ(A−1
1 A2)L

H0

2 , A0 ≥ θ3 and A0 + LH0

2 ≤ γ[A0 − LH0

2 ].

Finally, since L
G
xx = αM0, it is clear that 2L

G
xx[A0 − 1] ≥ γ[A0 − LH0

2 ] for M0 large enough.

Then (7.4) implies (7.2).
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