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Abstract

In this paper we study mean field games with possibly multiple mean field equilibria.

Instead of focusing on the individual equilibria, we propose to study the set of values

over all possible equilibria, which we call the set value of the mean field game. When

the mean field equilibrium is unique, typically under certain monotonicity conditions,

our set value reduces to the singleton of the standard value function which solves the

master equation. The set value is by nature unique, and we shall establish two crucial

properties: (i) the dynamic programming principle, also called time consistency; and

(ii) the convergence of the set values of the corresponding N -player games, which can be

viewed as a type of stability result. To our best knowledge, this is the first work in the

literature which studies the dynamic value of mean field games without requiring the

uniqueness of mean field equilibria. We emphasize that the set value is very sensitive

to the choice of the admissible controls. In particular, for the convergence one has to

restrict to corresponding types of equilibria for the N-player game and for the mean

field game. We shall illustrate this point by investigating three cases, two in finite state

space models and the other in a diffusion model.
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1 Introduction

In this paper we study Mean Field Games (MFG, for short) without monotonicity condi-

tions. There are typically multiple Mean Field Equilibria (MFE, for short) with possibly

different values. Instead of focusing on the individual equilibria, we propose to study the set

of values over all equilibria, which we call the set value of the MFG. Note that the set value

always exists (with empty set as a possible value) and is by definition unique. When the

MFE is unique, typically under certain monotonicity conditions, our set value is reduced to

the singleton of the standard value function of the game, which solves the so called master

equation. So the set value can be viewed as the counterpart of the standard value function

for MFGs without monotonicity conditions, and it indeed shares many nice properties. In

this paper, we focus particularly on two crucial properties of the set value:

• the Dynamic Programming Principle (DPP, for short), or say the time consistency;

• the convergence of the set values of the corresponding N -player games, which can be

viewed as a type of stability result in terms of model perturbation.

For general theory of MFGs, we refer to Caines-Huang-Malhame [7], Lasry-Lions [34], Lions

[36], Cardaliaguet [8], Bensoussan-Frehse-Yam [6], and Camona-Delarue [13, 14].

In standard stochastic control theory, it is well known that the dynamic value function

satisfies the DPP. In fact, this is the underlying reason for the PDE approach to work. For

MFGs under appropriate monotonicity conditions, the value function (at the unique MFE)

also satisfies the DPP, which, together with the Itô formula, leads to the master equation.

However, with the presence of multiple equilibria (see, e.g., Bardi-Fischer [2] for some

examples), to our best knowledge this is the first work in the literature to study the MFG

dynamically and to address the time consistency issue. We show that, when formulated

properly, the dynamic set value function satisfies the DPP. This also opens the door to

a possible PDE approach for these general games by introducing the so called set valued

PDE. We refer to our work [30] for set valued PDEs induced by multivariate stochastic

control problems, and Ma-Zhang-Zhang [37] for numerical methods for set valued PDEs,

and we leave their extension to mean field games for future research. Our set value approach

follows from Feinstein-Rudloff-Zhang [24], which studies nonzero sum games with finitely

many players. See also the related works Abreu-Pearce-Stacchetti [1] and Sannikov [42] in

economics literature, and Feinstein [23] which studies the set of equilibria instead of values.

We note that the set value of games relies heavily on the types of admissible controls

we use. In this paper we shall consider closed loop controls. The open loop equilibria of
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games are typically time inconsistent, see e.g. Buckdahn’s counterexample in Pham-Zhang

[40, Appendix E] for a two person zero sum game, and consequently, the set value of games

with open loop controls would violate the DPP. For the MFG, noting that the required

symmetry decomposes the game problem into a standard control problem and a fixed point

problem of measures, and that open loop and closed loop controls yield the same value

function for a standard control problem, it is possible that the set value with open loop

controls still satisfies the DPP. Nevertheless, bearing in mind the DPP of the set value for

more general (non-symmetric) games, as well as the practical consideration in terms of the

information available to the players, we shall focus on closed loop controls. There is also

a very subtle path dependence issue. While the game parameters are state dependent, we

may consider both state dependent and path dependent controls. For general non-zero sum

games (not mean field type), [24] shows that DPP holds for the set value for path dependent

controls, but in general fails for the set value for state dependent controls. For MFGs with

closed loop controls, again due to the required symmetric properties, the set values for both

state dependent controls and path dependent controls will satisfy the DPP, but they are in

general not equal. For MFGs with closed loop relaxed controls, or say closed loop mixed

strategies, however, it turns out that the state dependent controls and the path dependent

controls induce the same set value which still satisfies the DPP.

We next turn to the convergence issue. Let V and V
N denote the set values of the MFG

and the correspondingN -player games, respectively, under appropriate closed-loop controls.

Our convergence result reads roughly as follows (the precise form is slightly different):

lim
N→∞

V
N (0, ~x) = V(0, µ), when µN~x :=

1

N

N
∑

i=1

δxi
→ µ. (1.1)

In the realm of master equations, again under certain monotonicity conditions and hence

with unique MFE, one can show that the values of the N -player games converge to the value

of the MFG. See Cardaliaguet-Delarue-Lasry-Lions [10], followed by Bayraktar-Cohen [3],

Cardaliaguet [9], Cecchin-Pelino [17], Delarue-Lacker-Ramanan [20, 21], Gangbo-Meszaros

[29], and Mou-Zhang [38], to mention a few. So (1.1) can be viewed as their natural

extension to MFGs without monotonicities.

We emphasize again that the set value is very sensitive to the types of admissible controls.

To ensure the convergence, one simple but crucial observation is that the N -player game

and the MFG should use the ”same” type of controls (more precisely, corresponding types of

controls in appropriate sense). We illustrate this point by considering two cases. Note that

in the standard literature each player is required to use the same closed loop control along an
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MFE. For the first case, we will obtain the desired convergence by restricting the N -player

game to homogeneous equilibria, namely each player also uses the same closed loop control.

In the second case, we remove such restriction and consider heterogenous equilibria for the

N -player games. Note that a closed loop control means the control depends only on the

state. In this heterogenous case players with the same state may choose different controls,

then one can not expect in the limit they will have to use the same control1. Indeed, in

this case the limit is characterized by the MFG with closed loop relaxed controls, or say

closed loop mixed strategies, which exactly means players with the same state may still

have a distribution of controls to choose from. However, since our relax control for MFG is

still homogeneous, namely each player uses the same relax control, the controls for N-player

game and for MFG appear to be in different forms. Our approach is to introduce a new

formulation for the MFG, which embeds the structure of heterogenous controls and shares

the same set value as the relax control formulation of the MFG. For the homogeneous case,

we will investigate both a discrete time model with finite state space and a continuous time

diffusion model with drift controls. But for the heterogeneous case we will investigate the

discrete model only. The diffusion model in such case involves some technical challenges for

the convergence and we shall leave it for future research. We shall point out that, however,

the DPP would hold in much more general models without significant difficulties.

To ensure the convergence, another main feature is that we define the set value as

the limit of the approximate set values over approximate equilibria, rather than the true

equilibria. We call the latter the raw set value, and both the set value and the raw set value

satisfy the DPP. However, the raw set value is extremely sensitive to small perturbations

of the game parameters, in fact, in general even its measurability is not clear, so one can

hardly expect the convergence for the raw set values. In the standard control theory, the

value function is defined as the infimum of controlled values, which is exactly the limit of

values over approximate optimal controls, rather than the value over true optimal controls

which may not even exist. So our set value, not the raw set value, is the natural extension of

the standard value function in control theory. Moreover, since we are considering infinitely

many players, an approximate equilibrium means it is approximately optimal for most

players, but possibly with a small portion of exceptions, as introduced in Carmona [11].

At this point we should mention that, for MFGs without monotonicity conditions, there

have been many publications on the convergence of N -player games, in terms of equilibria

1When the MFE is unique, under appropriate monotonicity conditions, the set value becomes a singleton

and it is not sensitive to the type of admissible controls anymore. Consequently, the convergence becomes

possible even if the N-player games and the MFG use different types of controls, see e.g. [10]

4



instead of values. For open loop controls, we refer to Camona-Delarue [12], Feleqi [25],

Fischer [26], Fischer-Silva [27], Lacker [31], Lasry-Lions [34], Lauriere-Tangpi [35], and Nutz-

San Martin-Tan [39], to mention a few. In particular, [31] provides the full characterization

for the convergence: any limit of approximate Nash equilibria of N -player games is a weak

MFE, and conversely any weak MFE can be obtained as such a limit. The work [26] is also

in this direction. For closed loop controls, which we are mainly interested in, the situation

becomes much more subtle. The seminal paper Lacker [32] established the following result:

{Strong MFEs} ⊂ {Limits of N -player approx. equilibria} ⊂ {Weak MFEs}. (1.2)

Here an MFE is strong if it depends only on the state processes, and weak if it allows for

additional randomness. The left inclusion in (1.2) was known to be strict in general. This

work has very interesting further developments recently2 by Lacker-Flem [33] and Djete

[22]. In particular, [22] shows that the right inclusion in (1.2) is actually an equality.

We emphasize again that we are considering the convergence of sets of values, rather

than sets of equilibria as in (1.2). For standard control problems, the focus is typically

to characterize the (unique) value and to find one (approximate) optimal control, and the

player is less interested in finding all optimal controls since they have the same value. The

situation is quite different for games, because different equilibria can lead to different values.

Then it is not satisfactory to find just one equilibrium (especially if it is not Pareto optimal).

However, for different equilibria which lead to the same value, the players are indifferent on

them. So for practical purpose the players would be more interested in finding all possible

values3 and then to find one (approximate) equilibrium for each value. This is one major

motivation that we focus on the set value, rather than the set of all equilibria. We also note

that in general the set value could be much simpler than the set of equilibria. For example,

in the trivial case that both the terminal and the running cost functions are constants, the

set value is a singleton, while the set of equilibria consists of all admissible controls.

We should point out that our admissible controls differ from those in [22, 32, 33] in two

aspects, due to both practical and technical considerations. First, for the N -player games,

[22, 32, 33] use full information controls αi(t,X
1
t , · · · ,XN

t ), while we consider symmetric

controls αi(t,X
i
t , µ

N
t ), where Xi

t is the state of Player i, and µNt := 1
N

∑N
j=1 δXj

t
is the

empirical measure of all the players’ states. Note that, as a principle the controls should

depend only on the information the players observe. While both settings are very interesting,

2These two works [22, 33] were circulated slightly after our present paper.
3Another very interesting question is how to choose an optimal (in appropriate sense) value after char-

acterizing the set value. We shall leave this for future research.
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since N is large, the full information may not be available in many practical situations.

The second difference is that we assume each control is Lipschitz continuous in µ, while

[22, 32, 33] allow for measurable controls. We shall emphasize though we allow the Lips-

chitz constant to depend on the control, and thus our set value does not depend on any

fixed Lipschitz constant. Roughly speaking, we are considering game values which can be

approximated by Lipschitz continuous approximate equilibria. This is typically the case in

the standard control theory: even if the optimal control is discontinuous, in most reasonable

framework we should be able to find Lipschitz continuous approximate optimal controls.

The situation is more subtle for games. There indeed may exist (closed loop) equilibrium

whose value cannot be approximated by any Lipschitz continuous approximate equilibria.

While clearly more general and very interesting mathematically, such measurable equilibria

are hard to implement in practice, since inevitably we have all sorts of errors in terms of

the information, or say, data. Their numerical computation is another serious challenge.

For example, in the popular machine learning algorithm, the key idea is to approximate the

controls via composition of linear functions and the activation function, then by definition

the optimal controls/equilibria provided by these algorithms are (locally) Lipschitz continu-

ous. That is, the game values falling out of our set value are essentially out of reach of these

algorithms, see e.g. [37]. Moreover, as a consequence of our constraints, our proof of (1.1)

is technically a lot easier than the compactness arguments for (1.2) used in [22, 32, 33].

Finally we would like to mention some other approaches for MFGs with multiple equi-

libria. One is to add sufficient (possibly infinitely dimensional) noise so that the new game

will become non-degenerate and hence have unique MFE, see e.g. Bayraktar-Cecchin-

Cohen-Delarue [4, 5], Delarue [18], Delarue-Foguen Tchuendom [19], Foguen Tchuendom

[28]. Another approach is to study a special type of MFEs, see e.g. Cecchin-Dai Pra-Fisher-

Pelino [15], Cecchin-Delarue [16], and [19]. Another interesting work is Possamai-Tangpi

[41] which introduces an additional parameter function Λ such that the MFE corresponding

to any fixed Λ is unique and then the desired convergence is obtained.

The rest of the paper is organized as follows. In Section 2 we introduce the set value for

an MFG in a discrete time model on finite state space and establish the DPP, and in Sec-

tion 3 we prove the convergence for the corresponding N -player games with homogeneous

equilibria. Sections 4 and 5 are devoted to MFGs with relaxed controls and the correspond-

ing N -player games with heterogenous equilibria. In Section 6 we study a diffusion model.

Finally in Appendix we provide some discussion on the subtle path dependence issue, and

complete some technical proofs.
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2 Mean field games on finite space with closed loop controls

In this section we consider an MFG on finite space (both time and state are finite) with

closed loop controls, and for simplicity we restrict to state dependent setting. Since the

game typically has multiple MFEs which may induce different values, see Example 7.1

below for an example, we shall introduce the set value of the game over all MFEs. Our goal

is to establish the DPP for the MFG set value, and we shall show in the next section that

the set values of the corresponding N -player games converge to the MFG set value.

2.1 The basic setting

Let T := {0, · · · , T} be the set of discrete times; Tt := {t, · · · , T} for t ∈ T; S the finite

state space4 with size |S| = d; P(S) the set of probability measures on S, equipped with

the 1-Wasserstein distance W1. Since S is finite, W1 is equivalent to the total variation

distance5 which is convenient for our purpose: by abusing the notation W1,

W1(µ, ν) :=
∑

x∈S
|µ(x)− ν(x)|, µ, ν ∈ P(S). (2.1)

Let P0(S) denote the subset of µ ∈ P(S) which has full support, namely µ(x) > 0 for all

x ∈ S. Moreover, let A ⊂ R
d0 be a measurable set from which the controls take values; and

q : T× S× P(S)× A× S → (0, 1) be a transition probability function:

∑

x̃∈S
q(t, x, µ, a; x̃) = 1, ∀(t, x, µ, a) ∈ T× S× P(S)× A.

We shall use the weak formulation which is more convenient for closed loop controls.

That is, we fix the canonical space and consider controlled probability measures on it. To

be precise, let Ω := X := S
T+1 be the canonical space; X : T×Ω → S the canonical process:

Xt(ω) = ωt; F := {Ft}t∈T := F
X the filtration generated by X; and Astate the set of state

dependent admissible controls α : T× S → A. Introduce the concatenation for controls:

(α⊕T0 α̃)(s, x) := α(s, x)1{s<T0} + α̃(s, x)1{s≥T0}, α, α̃ ∈ Astate. (2.2)

It is clear that α ⊕T0 α̃ ∈ Astate. Given (t, µ, α) ∈ T × P(S) × Astate, let P
t,µ,α denote the

probability measure on FT determined recursively by: for s = t, · · · , T ,

P
t,µ,α ◦X−1

t = µ, P
t,µ,α(Xs+1 = x̃|Xs = x) = q(s, x, µαs , α(s, x); x̃);

where µαs := P
t,µ,α ◦X−1

s .
(2.3)

4We may allow the state space St to depend on time t and all the results in this paper will remain true.
5More precisely, the total variation distance is 1

2
W1 for the W1 in (2.1).
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We note that µα := {µαs }s∈Tt are uniquely determined and X is a Markov chain on Tt under

P
t,µ,α. We also note that µα depends on (t, µ) as well, but we omit it for notational simplicity.

However, the distribution of {Xs}s=0,··· ,t−1 is not specified and is irrelevant, and {αs}0≤s<t

is also irrelevant. Moreover, given {µ·} := {µs}s∈Tt , x ∈ S, and α̃ ∈ Astate, let P
{µ·};t,x,α̃

denote the probability measure on FT determined recursively by: for s = t, · · · , T − 1,

P
{µ·};t,x,α̃(Xt = x) = 1, P

{µ·};t,x,α̃(Xs+1 = x̄|Xs = x̃) = q(s, x̃, µs, α̃(s, x̃); x̄). (2.4)

As in the standard MFG literature, here we are assuming that the population uses the

common control α while the individual player is allowed to use a different control α̃.

We remark that, since we assume q > 0, then for any (t, µ) and α, µαs ∈ P0(S) for all

s > t. For the convenience of presentation, in this section we shall restrict our discussion to

the case µ ∈ P0(S). The general case that the initial measure µ is not fully supported can

be treated fairly easily, as we will do in Section 6 below. The situation with degenerate q,

however, is more subtle and we shall leave for future research.

We finally introduce the cost functional for the MFG: for the µα = {µα· } in (2.3),

J(t, µ, α;x, α̃) := J(µα; t, x, α̃), v({µ·}; s, x) := inf
α̃∈Astate

J({µ·}; s, x, α̃);

where J({µ·}; s, x, α̃) := E
P{µ·};s,x,α̃

[

G(XT , µT ) +
T−1
∑

r=s

F (r,Xr, µr, α̃(r,Xr))
]

.

(2.5)

Here, since T and S are finite, F and G are arbitrary measurable functions satisfying

inf
a∈A

F (t, x, µ, a) > −∞ for all (t, x, µ).

We remark that here v({µ·}; ·, ·) is the value function of a standard stochastic control

problem with parameter {µ·}. In particular, in continuous time models, µα and v(µα; ·, ·)
will satisfy the Fokker-Planck equation and the HJB equation, respectively.

Definition 2.1 Given (t, µ) ∈ T× P0(S), we say α∗ ∈ Astate is a state dependent MFE at

(t, µ), denoted as α∗ ∈ Mstate(t, µ), if

J(t, µ, α∗;x, α∗) = v(µα
∗
; t, x), for all x ∈ S. (2.6)

In this and the next section, we will use the following conditions.

Assumption 2.2 (i) q ≥ cq for some constant cq > 0;

(ii) q is Lipschitz continuous in (µ, a), with a Lipschitz constant Lq;

(iii) F,G are bounded by a constant C0 and uniformly continuous in (µ, a), with a

modulus of continuity function ρ.
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2.2 The raw set value V0

We introduce the raw set value for the MFG over all state dependent MFEs:

V0(t, µ) :=
{

J(t, µ, α∗; ·, α∗) : α∗ ∈ Mstate(t, µ)
}

⊂ L
0(S;R). (2.7)

Here the elements of V0(t, µ) are functions from S to R, which coincide with R
d by identifying

ϕ ∈ L
0(S;R) with (ϕ(x) : x ∈ S) ∈ R

d. We call V0(t, µ) the raw set value and we will

introduce the set value V(t, µ) of the MFG in the next subsection.

Next, for any T0 ∈ Tt, ψ ∈ L
0(S× P0(S);R), we introduce the MFG on {t, · · · , T0}:

J(T0, ψ; t, µ, α;x, α̃) := E
Pµα;t,x,α̃

[

ψ(XT0 , µ
α
T0
) +

T0−1
∑

s=t

F (s,Xs, µ
α
s , α̃(s,Xs))

]

. (2.8)

In the obvious sense we define α∗ ∈ Mstate(T0, ψ; t, µ) by: for any x ∈ S,

J(T0, ψ; t, µ, α
∗;x, α∗) = v(T, ψ;µα

∗
; t, x) := inf

α̃∈Astate

J(T, ψ; t, µ, α∗;x, α̃). (2.9)

At below we will repeatedly use the following simple fact due to the tower property of

conditional expectations:

J(t, µ, α;x, α̃) = J(T0, ψ; t, µ, α;x, α̃), where ψ(y, ν) := J(T0, ν, α; y, α̃). (2.10)

The following time consistency of MFE is the essence of the DPP for the raw set value.

Proposition 2.3 Fix 0 ≤ t < T0 ≤ T and µ ∈ P0(S). For any α∗, α̃∗ ∈ Astate, denote

α̂∗ := α∗ ⊕T0 α̃
∗ and ψ(y, ν) := J(T0, ν, α̃

∗; y, α̃∗). Then α̂∗ ∈ Mstate(t, µ) if and only if

α∗ ∈ Mstate(T0, ψ; t, µ) and α̃∗ ∈ Mstate(T0, µ
α∗

T0
).

Proof (i) We first prove the if part. Let α∗ ∈ Mstate(T0, ψ; t, µ) and α̃
∗ ∈ Mstate(T0, µ

α∗

T0
).

For arbitrary α ∈ Astate and x ∈ S, by (2.10) we have

J(t, µ, α̂∗;x, α) = E
Pµα

∗
;t,x,α

[

J(T0, µ
α∗

T0
, α̃∗;XT0 , α) +

T0−1
∑

s=t

F (s,Xs, µ
α∗

s , α(s,Xs))
]

≥ E
Pµα

∗
;t,x,α

[

J(T0, µ
α∗

T0
, α̃∗;XT0 , α̃

∗) +
T0−1
∑

s=t

F (s,Xs, µ
α∗

s , α(s,Xs))
]

= E
Pµα

∗
;t,x,α

[

ψ(XT0 , µ
α∗

T0
) +

T0−1
∑

s=t

F (s,Xs, µ
α∗

s , α(s,Xs))
]

= J(T0, ψ; t, µ, α
∗;x, α) ≥ J(T0, ψ; t, µ, α

∗;x, α∗) = J(t, µ, α̂∗;x, α̂∗),

9



where the first inequality is due to α̃∗ ∈ Mstate(T0, µ
α∗

T0
) and the second inequality is due

to α∗ ∈ Mstate(T0, ψ; t, µ). Then α̂
∗ ∈ Mstate(t, µ).

(ii) We now prove the only if part. Let α̂∗ ∈ Mstate(t, µ). For any α ∈ Astate, we have

α⊕T0 α̃
∗ ∈ Astate. Then, since α̂

∗ ∈ Mstate(t, µ), for any x ∈ S, by (2.10) we have

J(T0, ψ; t, µ, α
∗;x, α∗) = J(t, µ, α̂∗;x, α̂∗) ≤ J(t, µ, α̂∗;x, α⊕T0 α̃

∗) = J(T, ψ; t, µ, α∗;x, α).

This implies that α∗ ∈ Mstate(T0, ψ; t, µ).

Moreover, note that α∗ ⊕T0 α ∈ Astate and again since α̂∗ ∈ Mstate(t, µ), we have

E
Pµα

∗
;t,x,α∗[

J(T0, µ
α∗

T0
, α̃∗;XT0 , α̃

∗) +
T0−1
∑

s=t

F (s,Xs, µ
α∗

s , α∗(s,Xs))
]

= J(t, µ, α̂∗;x, α̂∗) ≤ J(t, µ, α̂∗;x, α∗ ⊕T0 α)

= E
Pµα

∗
;t,x,α∗[

J(T0, µ
α∗

T0
, α̃∗;XT0 , α) +

T0−1
∑

s=t

F (s,Xs, µ
α∗

s , α∗(s,Xs))
]

.

This implies that, recalling the v in (2.5) and by the standard stochastic control theory,

E
Pµα

∗
;t,x,α∗[

J(T0, µ
α∗

T0
, α̃∗;XT0 , α̃

∗)
]

≤ inf
α∈Astate

E
Pµα

∗
;t,x,α∗[

J(T0, µ
α∗

T0
, α̃∗;XT0 , α)

]

= E
Pµα

∗
;t,x,α∗[

v(µα̂
∗
;T0,XT0)

]

. (2.11)

On the other hand, by definition v(µα̂
∗
;T0, x̃) ≤ J(T0, µ

α∗

T0
, α̃∗; x̃, α̃∗) for all x̃ ∈ S. Then

J(T0, µ
α∗

T0
, α̃∗;XT0 , α̃

∗) = v(µα̂
∗
;T0,XT0), P

µα∗
;t,x,α∗

-a.s.

Since q > 0, then clearly P
µα∗

;t,x,α∗
(XT0 = x̃) > 0 for all x̃ ∈ S. Thus J(T0, µ

α∗

T0
, α̃∗; x̃, α̃∗) =

v(µα̂
∗
;T0, x̃), for all x̃ ∈ S. This implies that α̃∗ ∈ Mstate(T0, µ

α∗

T0
).

We then have the following DPP.

Theorem 2.4 For any 0 ≤ t < T0 ≤ T , and µ ∈ P0(S), we have

V0(t, µ) :=
{

J(T0, ψ; t, µ, α
∗; ·, α∗) : for all ψ ∈ L

0(S× P0(S);R) and α
∗ ∈ Astate

such that ψ(·, µα∗

T0
) ∈ V0(T0, µ

α∗

T0
) and α∗ ∈ Mstate(T0, ψ; t, µ)

}

.
(2.12)

Proof Let Ṽ0(t, µ) denote the right side of (2.12). First, for any J(T0, ψ; t, µ, α
∗; ·, α∗) ∈

Ṽ0(t, µ) with desired ψ,α∗ as in (2.12). Since ψ(·, µα∗

T0
) ∈ V0(T0, µ

α∗

T0
), there exists α̃∗ ∈

Mstate(T0, µ
α∗

T0
) such that ψ(·, µα∗

T0
) = J(T0, µ

α∗

T0
, α̃∗; ·, α̃∗). By Proposition 2.3 we have

α̂∗ := α∗ ⊕T0 α̃
∗ ∈ Mstate(t, µ). Then, by (2.10), J(T0, ψ; t, µ, α

∗; ·, α∗) = J(t, µ, α̂∗; ·, α̂∗) ∈
V0(t, µ), and thus Ṽ0(t, µ) ⊂ V0(t, µ).
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On the other hand, let J(t, µ, α∗; ·, α∗) ∈ V0(t, µ) with α∗ ∈ Mstate(t, µ). Introduce

ψ(x, ν) := J(T0, ν, α
∗;x, α∗). By Proposition 2.3 again we see that α∗ ∈ Mstate(T0, ψ; t, µ)

and α∗ ∈ Mstate(T0, µ
α∗

T0
), and the latter implies further that ψ(·, µα∗

T0
) ∈ V0(T0, µ

α∗

T0
). Then

by the definition of Ṽ0(t, µ) that J(t, µ, α
∗; ·, α∗) = J(T0, ψ; t, µ, α

∗; ·, α∗) ∈ Ṽ0(t, µ). That

is, V0(t, µ) ⊂ Ṽ0(t, µ).

2.3 The set value Vstate

While Theorem 2.4 is elegant, the raw set value V0(t, µ) is very sensitive to small pertur-

bations of the coefficients F,G and the variable µ. Indeed, even the measurability of the

subset V0(t, µ) ⊂ R
d and the measurability of the mapping µ 7→ V0(t, µ) are not clear to

us. Moreover, in general it does not look possible to have the convergence of the raw set

value of the corresponding N -player games to V0(t, µ). Therefore, in this subsection we

shall modify V0(t, µ) and introduce the set value Vstate(t, µ) of the MFG as follows.

Definition 2.5 (i) For any (t, µ) ∈ T×P0(S) and ε > 0, let Mε
state(t, µ) denote the set of

α∗ ∈ Astate such that

J(t, µ, α∗;x, α∗) ≤ v(µα
∗
; t, x) + ε, for all x ∈ S. (2.13)

(ii) The set value of the MFG at (t, µ) is defined as:

Vstate(t, µ) :=
⋂

ε>0

V
ε
state(t, µ), where (2.14)

V
ε
state(t, µ) :=

{

ϕ ∈ L
0(S;R) : ‖ϕ − J(t, µ, α∗; ·, α∗)‖∞ ≤ ε for some α∗ ∈ Mε

state(t, µ)
}

.

Recall (2.5), then (2.13) and (2.14) imply that

0 ≤ J(t, µ, α∗;x, α∗)− v(µα
∗
; t, x) ≤ ε, ‖ϕ− v(µα

∗
; t, ·)‖∞ ≤ 2ε. (2.15)

So we may alternatively define V
ε
state(t, µ) by using ‖ϕ− v(µα

∗
; t, ·)‖∞ ≤ ε.

Remark 2.6 (i) In the case that there is only one player, namely q, F,G do not depend on

µ, Pµα∗
;t,x,α = P

t,x,α does not depend on µ and α∗. Let

V (t, x) := inf
α∈Astate

E
Pt,x,α

[

G(XT ) +

T−1
∑

s=t

F (s,Xs, α(s,Xs))
]

denote the value function of the standard stochastic control problem. One can easily see

that, when there exists an optimal control α∗, V0(t, µ) = Vstate(t, µ) = {V (t, ·)}. However,
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when there is no optimal control, we still have Vstate(t, µ) = {V (t, ·)} but V0(t, µ) = ∅. So

the natural extension of the value function V is the set value Vstate, not V0.

(ii) We remark that
⋂

ε>0Mε
state(t, µ) = Mstate(t, µ), however, in general it is possible

that Vstate(t, µ) is strictly larger than V0(t, µ). Indeed, Vstate(t, µ) can be even larger than

the closure of V0(t, µ), where the latter is still empty when there is no optimal control.

Similarly, given T0 and ψ, Mε
state(T0, ψ; t, µ) denotes the set of α∗ ∈ Astate such that

J(T0, ψ; t, µ, α
∗;x, α∗) ≤ inf

α∈Astate

J(T0, ψ; t, µ, α
∗;x, α) + ε, ∀ x ∈ S. (2.16)

The DPP remains true for Vstate after appropriate modifications as follows.

Theorem 2.7 Under Assumption 2.2 (i), for any 0 ≤ t < T0 ≤ T and µ ∈ P0(S),

Vstate(t, µ) :=
⋂

ε>0

{

ϕ ∈ L
0(S;R) : ‖ϕ− J(T0, ψ; t, µ, α

∗; ·, α∗)‖∞ ≤ ε

for some ψ ∈ L
0(S× P0(S);R) and α∗ ∈ Astate such that

ψ(·, µα∗

T0
) ∈ V

ε
state(T0, µ

α∗

T0
), α∗ ∈ Mε

state(T0, ψ; t, µ)
}

.

(2.17)

This theorem can be proved by modifying the arguments in Theorem 2.4 and Proposition

2.3. However, since the proof is very similar to that of Theorem 4.2 below, except that the

latter is in the more complicated path dependent setting, we thus postpone it to Appendix.

3 The N-player game with homogeneous equilibria

In this section we study the N -player game whose set value will converge to Vstate.

3.1 The N-player game

Set ΩN := X
N with canonical processes ~X = (X1, · · · ,XN ), where Xi stands for the state

process of Player i. The empirical measure of ~X is denoted as: with the Dirac measure δ·,

µNt := µN~Xt
where µN~x :=

1

N

N
∑

i=1

δxi
∈ P(S), for ~x = (x1, · · · , xN ) ∈ S

N . (3.1)

The player i will have control αi. In the literature, a closed loop control αi may depend

on the full information ~X . However, since we are talking about large N , in practice it may

not be feasible for each player to observe all other players’ states individually. Moreover,

in the MFG setting the population state is characterized by its distribution, not by each
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player’s individual state. So in this section we consider only symmetric controls, namely αi

depends on his/her own state Xi and on the others through the empirical measure µN .

For technical reasons, we introduce another parameter L ≥ 0. Denote

AL
state :=

{

α : T× S× P(S) → A :
∣

∣α(t, x, µ) − α(t, x, ν)
∣

∣ ≤ LW1(µ, ν),∀t, x, µ, ν
}

, (3.2)

and A∞
state :=

⋃

L≥0AL
state. Given t ∈ T, ~x ∈ S

N , and ~α = (α1, · · · , αN ) ∈ (A∞
state)

N , let

P
t,~x,~α denote the probability measure on F ~X

T determined recursively by: for s = t, · · · , T−1,

P
t,~x,~α( ~Xt = ~x) = 1, Pt,~x,~α( ~Xs+1 = ~x′′| ~Xs = ~x′) =

N
∏

i=1

q(s, x′i, µ
N
s , α

i(s, x′i, µ
N
s );x′′i ), (3.3)

and the cost function of Player i is:

Ji(t, ~x, ~α) := E
Pt,~x,~α

[

G(Xi
T , µ

N
T ) +

T−1
∑

s=t

F (s,Xi
s, µ

N
s , α

i(s,Xi
s, µ

N
s ))

]

. (3.4)

Remark 3.1 (i) It is obvious that A0
state = Astate for the Astate in the previous subsection.

For the MFG, there is no need to consider A∞
state. Indeed, given (t, µ) ∈ T×P0(S), for any

α ∈ A∞
state, let P

t,µ,α be defined as in (2.3): again denoting µαs := P
t,µ,α ◦X−1

s ,

P
t,µ,α ◦X−1

t = µ, P
t,µ,α(Xs+1 = x̃|Xs = x) = q(s, x, µαs , α(s, x, µ

α
s ); x̃).

Introduce α̃(s, x) := α(s, x, µαs ). Then α̃ ∈ Astate and one can easily verify that µα̃ = µα.

In particular, the set value Vstate(t, µ) will remain the same by allowing α ∈ A∞
state. For the

N -player game, however, since µN is random, the dependence on µN makes the difference.

(ii) In the literature one typically uses µN,−i
t := 1

N−1

∑

j 6=i δXj
t
, rather than µNt , in (3.3)

and (3.4). The convergence results in this section will remain true if we use µN,−i instead.

However, we find it more convenient to use µNt .

There is another crucial issue concerning the equilibria. Note that an MFE requires by

definition that each player takes the same control α∗. To achieve the desired convergence, for

the N -player game it is natural to consider only the homogeneous equilibria: α1 = · · · = αN ,

which we will do in the rest of this section. We note that, for a homogeneous control α, the

P
t,~x,α := P

t,~x,(α,··· ,α) in (3.3) and Ji(t, ~x, α) := Ji(t, ~x, (α, · · · , α)) in (3.4) are also symmetric

in ~x, or say invariant in terms of its empirical measure:

P
t,~x,α = P

t,µN
~x
,α, Ji(t, ~x, α) = JN (t, xi, µ

N
~x , α). (3.5)
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Definition 3.2 For any ε > 0, L ≥ 0, we say α∗ ∈ AL
state is a homogeneous state dependent

(ε, L)-equilibrium of the N -player game at (t, ~x), denoted as α∗ ∈ MN,ε,L
state (t, ~x), if:

Ji(t, ~x, α
∗) ≤ v

N,L
i (t, ~x, α∗) := inf

α̃∈AL
state

Ji(t, ~x, (α
∗, α̃)i) + ε, i = 1, · · · , N,

where (α, α̃)i denote the vector ~α such that αi = α̃ and αj = α for all j 6= i.

(3.6)

In light of (3.5), clearly MN,ε,L
state (t, ~x) is law invariant: MN,ε,L

state (t, ~x) = MN,ε,L
state (t, ~x

′) when-

ever µN~x = µN~x′ . Thus, by abusing the notation, we may denoteMN,ε,L
state (t, ~x) = MN,ε,L

state (t, µ
N
~x )

and call α∗ a homogeneous state dependent (ε, L)-equilibrium at (t, µN~x ).

Note again that q > 0, then similar to Subsection 2.1, for convenience in this section we

restrict to only those ~x such that µN~x has full support, and we denote

S
N
0 :=

{

~x ∈ S
N : µN~x ∈ P0(S)

}

, PN (S) :=
{

µN~x : ~x ∈ S
N
0

}

⊂ P0(S). (3.7)

We now define the set value of the homogeneous N -player game: recalling (3.5),

V
N
state(t, µ) :=

⋂

ε>0

V
N,ε
state(t, µ) :=

⋂

ε>0

⋃

L≥0

V
N,ε,L
state (t, µ), ∀(t, µ) ∈ T× PN (S), where

V
N,ε,L
state (t, µ) :=

{

ϕ ∈ L
0(S;R) : ∃α∗ ∈ MN,ε,L

state (t, µ) s.t. ‖ϕ− JN (t, ·, µ, α∗)‖∞ ≤ ε
}

.

(3.8)

3.2 Convergence of the empirical measures

Theorem 3.3 Let Assumption 2.2 (ii) hold. Then, for any L ≥ 0, there exists a constant

CL, which depends only on T, d, Lq, and L such that, for any t ∈ T, ~x ∈ S
N
0 , µ ∈ P0(S),

α, α̃ ∈ AL
state, and s ≥ t, i = 1, · · · , N ,

E
Pt,~x,(α,α̃)i

[

W1(µ
N
s , µ

α
s )
]

≤ CLθN , where θN := W1(µ
N
~x , µ) +

1√
N

; (3.9)

W1

(

P
t,~x,(α,α̃)i ◦ (Xi

s)
−1, P

µα;t,xi,α̃ ◦X−1
s

)

≤ CLθN . (3.10)

Proof We first recall Remark 3.1 and extend all the notations in Subsection 2.1 to those

α ∈ AL
state in the obvious sense. Fix t, i and denote P

N := P
t,~x,(α,α̃)i .

Step 1. We first prove (3.9) for s = t + 1. Note that X1
t+1, · · · ,XN

t+1 are independent
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under PN . By (2.1), we have

E
PN [

W1(µ
N
t+1, µ

α
t+1)

]

=
∑

x̃∈S
E
PN [|µNt+1(x̃)− µαt+1(x̃)|

]

≤
∑

x̃∈S

(

E
PN [|µNt+1(x̃)− µαt+1(x̃)|2

]

)
1
2

=
∑

x̃∈S

[

V arP
N [

µNt+1(x̃)
]

+
(

E
PN [

µNt+1(x̃)− µαt+1(x̃)
])2

]
1
2

(3.11)

=
∑

x̃∈S

[ 1

N2

N
∑

j=1

V arP
N [

1{Xj
t+1=x̃}

]

+
( 1

N

N
∑

j=1

P
N (Xj

t+1 = x̃)− µαt+1(x̃)
)2
]

1
2

≤ C√
N

+
∑

x̃∈S

∣

∣

1

N

N
∑

j=1

P
N(Xj

t+1 = x̃)− µαt+1(x̃)
∣

∣.

Note that, by the desired Lipschitz continuity of q in µ and that |S| = d is finite,

∣

∣

1

N

N
∑

j=1

P
N(Xj

t+1 = x̃)− µαt+1(x̃)
∣

∣

=
∣

∣

∣

1

N

∑

x∈S

[

∑

j 6=i

q(t, x, µN~x , α(t, x, µ
N
~x ); x̃)1{xj=x} + q(t, x, µN~x , α̃(t, x, µ

N
~x ); x̃)1{xi=x}

]

−
∑

x∈S
q(t, x, µ, α(t, x, µ); x̃)µ(x)

∣

∣

∣

≤
∣

∣

∣

1

N

∑

x∈S

N
∑

j=1

q(t, x, µN~x , α(t, x, µ
N
~x ); x̃)1{xj=x} −

∑

x∈S
q(t, x, µ, α(t, x, µ); x̃)µ(x)

∣

∣

∣

+
1

N

∑

x∈S

∣

∣q(t, x, µN~x , α(t, x, µ
N
~x ); x̃)− q(t, x, µN~x , α̃(t, x, µ

N
~x ); x̃)

∣

∣1{xi=x}

≤
∣

∣

∑

x∈S
q(t, x, µN~x , α(t, x, µ

N
~x ); x̃)µN~x (x)−

∑

x∈S
q(t, x, µ, α(t, x, µ); x̃)µ(x)

∣

∣+
1

N

≤
∑

x∈S

[

|µN~x (x)− µ(x)|+ CLW1(µ
N
~x , µ)µ(x)

]

+
1

N
≤ CLθN .

Then, EPN [W1(µ
N
t+1, µ

α
t+1)

]

≤ C√
N

+ CLθN ≤ CLθN .

Step 2. We next prove (3.9) by induction. For any s = t, · · · , T − 1, by Step 1 we have

E
PN [W1(µ

N
s+1, µ

α
s+1)

∣

∣F ~X
s

]

≤ CL

[

W1(µ
N
s , µ

α
s ) +

1√
N

]

, P
N -a.s.

Then

E
PN [W1(µ

N
s+1, µ

α
s+1)

]

= E
PN

[

E
PN [W1(µ

N
s+1, µ

α
s+1)

∣

∣ ~XN
s

]

]

≤ CLE
PN [W1(µ

N
s , µ

α
s )
]

+
CL√
N
.
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Since T is finite, by induction we obtain (3.9) immediately.

Step 3. We now prove (3.10). Denote

κs :=W1

(

P
N ◦ (Xi

s)
−1, Pi ◦X−1

s

)

where P
i := P

µα;t,xi,α̃.

Then κt = 0, and for s = t, · · · , T − 1,

κs+1 =
∑

x̃∈S

∣

∣P
N (Xi

s+1 = x̃)− P
i(Xs+1 = x̃)

∣

∣

=
∑

x̃∈S

∣

∣

∣
E
PN [

q(s,Xi
s, µ

N
s , α̃(s,X

i
s, µ

N
s ); x̃)

]

− E
Pi[

q(s,Xs, µ
α
s , α̃(s,Xs, µ

α
s ); x̃)

]

∣

∣

∣

≤
∑

x̃∈S

∣

∣

∣
E
PN [

q(s,Xi
s, µ

N
s , α̃(s,X

i
s, µ

N
s ); x̃)

]

− E
PN [

q(s,Xi
s, µ

α
s , α̃(s,X

i
s, µ

α
s ); x̃)

]

∣

∣

∣

+
∑

x̃∈S

∣

∣

∣
E
PN [

q(s,Xi
s, µ

α
s , α̃(s,X

i
s, µ

α
s ); x̃)

]

− E
Pi[

q(s,Xs, µ
α
s , α̃(s,Xs, µ

α
s ); x̃)

]

∣

∣

∣

≤ CLE
PN [

W1(µ
N
s , µ

α
s )
]

+
∑

x,x̃∈S
q(s, x, µαs , α̃(s, x, µ

α
s ); x̃)

∣

∣P
N (Xi

s = x)− P
i(Xs = x)

∣

∣

≤ CLθN + κs,

where the last inequality thanks to (3.9). Now by induction one can easily prove (3.10).

3.3 Convergence of the set values

We first study the convergence of the cost functions. Recall the θN in (3.9) and the functions

v in (2.5) and vN,L
i in (3.6).

Theorem 3.4 Let Assumption 2.2 (ii) and (iii) hold. For any L ≥ 0, there exists a modulus

of continuity function ρL, which depends only on T, d, Lq, C0, ρ, and L such that, for any

t ∈ T, µN~x ∈ PN (S), µ ∈ P0(S), and any α, α̃ ∈ AL
state, i = 1, · · · , N ,

∣

∣Ji(t, ~x, (α, α̃)i)− J(t, µ, α;xi, α̃)
∣

∣+
∣

∣v
N,L
i (t, ~x, α) − v(µα; t, xi)

∣

∣ ≤ ρL(θN ). (3.12)

Proof Clearly the uniform estimates for J implies that for v, so we shall only prove the

former one. Recall (3.4), (2.5), and the notations PN , Pi in the proof of Theorem 3.3. Then

∣

∣

∣
Ji(t, ~x, (α, α̃)i)− J(t, µ, α;xi, α̃)

∣

∣

∣
≤ IT +

T−1
∑

s=t

Is, where

IT :=
∣

∣

∣
E
PN [

G(Xi
T , µ

N
T )

]

− E
Pi[

G(XT , µ
α
T )
]

∣

∣

∣
;

Is :=
∣

∣

∣
E
PN [

F (s,Xi
s, µ

N
s , α̃(s,X

i
s, µ

N
s ))

]

− E
Pi[

F (s,Xs, µ
α
s , α̃(s,Xs, µ

α
s ))

]

∣

∣

∣
, s < T.
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Note that, for s < T , by (3.10),

Is ≤
∣

∣

∣
E
PN [

F (s,Xi
s, µ

N
s , α̃(s,X

i
s, µ

N
s ))

]

− E
PN [

F (s,Xi
s, µ

α
s , α̃(s,X

i
s, µ

α
s ))

]

∣

∣

∣

+
∣

∣

∣
E
PN [

F (s,Xi
s, µ

α
s , α̃(s,X

i
s, µ

α
s ))

]

− E
Pi[

F (s,Xs, µ
α
s , α̃(s,Xs, µ

α
s ))

]

∣

∣

∣

≤ E
PN [

ρ
(

CLW1(µ
N
s , µ

α
s )
)]

+
∑

x∈S

∣

∣F (s, x, µαs , α̃(s, x, µ
α
s ))

∣

∣

∣

∣P
N (Xi

s = x)− P
i(Xs = x)

∣

∣

≤ E
PN [

ρ
(

CLW1(µ
N
s , µ

α
s )
)]

+ CLθN .

Similarly we have the estimate for IT , and thus

∣

∣

∣
Ji(t, ~x, (α, α̃)i)− J(t, µ, α;xi, α̃)

∣

∣

∣
≤

T
∑

s=t

E
PN [

ρ
(

CLW1(µ
N
s , µ

α
s )
)]

+ CLθN .

This, together with (3.9), implies (3.12) for some appropriately defined modulus of conti-

nuity function ρL.

Our main result of this section is the following convergence of the set values. Recall, for

a sequence of sets {EN}N≥1, lim
N→∞

EN :=
⋂

n≥1

⋃

N≥n

EN , lim
N→∞

EN :=
⋃

n≥1

⋂

N≥n

EN .

Theorem 3.5 Let Assumption 2.2 (ii), (iii) hold and µN~x ∈ PN (S) → µ ∈ P0(S). Then

⋂

ε>0

⋃

L≥0

lim
N→∞

V
N,ε,L
state (t, µ

N
~x ) ⊂ Vstate(t, µ) ⊂

⋂

ε>0

lim
N→∞

V
N,ε,0
state (t, µ

N
~x ) (3.13)

In particular, since lim
N→∞

V
N,ε,0
state (t, µ

N
~x ) ⊂

⋃

L≥0

lim
N→∞

V
N,ε,L
state (t, µ

N
~x ), actually equalities hold.

Note that ~x ∈ S
N
0 obviously depends on N , so more rigorously we should write ~xN in the

above statements. For notational simplicity we omit this N here. We also remark that at

above we are not able to switch the order of limN→∞ and
⋂

ε>0

⋃

L≥0 in the left side, or the

order of limN→∞ and
⋂

ε>0 in the right side.

Proof (i) We first prove the right inclusion in (3.13). Fix ϕ ∈ Vstate(t, µ), ε > 0, and

set ε1 := ε
2 . Note that Astate = A0

state. By (2.14), there exists α∗ ∈ Mε1
state(t, µ) such that

‖ϕ− J(t, µ, α∗; ·, α∗)‖∞ ≤ ε1. Recall (2.13), we have

J(t, µ, α∗;x, α∗) ≤ v(µα
∗
; t, x) + ε1, for all x ∈ S.

For any α ∈ A0
state = Astate, by Theorem 3.4 we have

Ji(t, ~x, α
∗) ≤ J(t, µ, α∗;xi, α

∗) + ρ0(θN )

≤ v(µα
∗
; t, x) + ε1 + ρ0(θN ) ≤ v

N,L
i (t, ~x, α∗) + ε1 + 2ρ0(θN ).
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Choose N large enough such that ρ0(θN ) ≤ ε
4 , then Ji(t, ~x, α

∗) ≤ v
N,L
i (t, ~x, α∗) + ε. This

implies that α∗ ∈ MN
ε,0(t, µ

N
~x ). Moreover,

‖ϕ− JN (t, ·, µN~x , α∗)‖∞ ≤ ε1 + sup
i

∣

∣

∣
Ji(t, ~x, α

∗)− J(t, µ, α∗;xi, α
∗)
∣

∣

∣

≤ ε1 + ρ0(θN ) ≤ ε1 +
ε

4
≤ ε.

Then ϕ ∈ V
N,ε,0
state (t, µ

N
~x ) for all N large enough. That is, ϕ ∈ limN→∞V

N,ε,0
state (t, µ

N
~x ). Since

ϕ ∈ Vstate(t, µ) and ε > 0 are arbitrary, we obtain the right inclusion in (3.13).

(ii) We next show the left inclusion in (3.13). Fix ϕ ∈
⋂

ε>0

⋃

L≥0

lim
N→∞

V
N,ε,L
state (t, µ

N
~x ) and

ε > 0. Then, for ε1 := ε
2 > 0, there exist Lε > 0 and an infinite sequence {Nk}k≥1

such that ϕ ∈ V
Nk,ε1,Lε

state (t, µNk

~x ) for all k ≥ 1. Recall (3.8), for each k ≥ 1 there exists

αk ∈ MNk ,ε1,Lε

state (t, µNk

~x ) such that ‖ϕ− JN (t, ·, µNk

~x , αk)‖∞ ≤ ε1. By Definition 3.2, we have

Ji(t, ~x, α
k) ≤ v

Nk ,Lε

i (t, ~x, αk) + ε1. Similar to (i), by Theorem 3.4 we have

J(t, µ, αk;xi, α
k) ≤ v(µα

k

; t, xi) + ε1 + 2ρLε(θNk
) ≤ v(µα

k

; t, xi) + ε,

for k large enough. That is, αk ∈ Mε
state(t, µ). Similar to (i) again, for k large enough we

have ‖ϕ−J(t, µ, αk ; ·, αk)‖∞ ≤ ε. Then ϕ ∈ V
ε
state(t, µ). Since ε > 0 is arbitrary, we obtain

ϕ ∈ Vstate(t, µ), and hence derive the left inclusion in (3.13).

Remark 3.6 (i) From Theorem 3.5 (i) we see that, for any α∗ ∈ M
ε
2
state(t, µ), we have

α∗ ∈ MN,ε,0
state (t, µ

N
~x ) when N is large enough. Moreover, by (3.9) we have the desired estimate

for the approximate equilibrium measure E
Pt,~x,α∗

[

W1(µ
N
s , µ

α∗

s )
]

≤ CLθN . This verifies the

standard result in the literature that an approximate MFE is an approximate equilibrium of

the N -player game.

(ii) From Theorem 3.5 (ii) we see that, for any αk ∈ MNk ,
ε
2
,Lε

state (t, µNk

~x ), we have αk ∈
Mε

state(t, µ) when k is large enough, and we again have the estimate for the approximate

equilibrium measure E
Pt,~x,αk

[

W1(µ
Nk
s , µα

k

s )
]

≤ CLθNk
. This is in the spirit that any limit

point of the N -player equilibrium measures is an MFE measure.

Remark 3.7 (i) We should point out that the key to obtain the convergence here is to

consider homogeneous equilibria for the N -player games. If we use heterogeneous equilibria

for the N -player games, it turns out that we will have the desired convergence when we

consider relaxed controls for the MFG, as we will do in the next two sections.

(ii) Another technical trick we are using is the uniform Lipschitz continuity requirement

on the admissible controls. The convergence analysis will become more subtle when we

remove such regularity requirement, see e.g. [32].
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4 Mean field games on finite space with relaxed controls

In this section we study MFG with relaxed controls, or say mixed strategies. Besides its

independent interest, our main motivation is to characterize the limit of N -player games

with heterogeneous equilibria. We shall still consider the finite space in Section 2, however,

for the purpose of generality in this section we consider path dependent setting.

4.1 The relaxed set value with path dependent controls

We start with some notations for the path dependent setting. For x = (xt)0≤t≤T ∈ X, denote

by xt∧· = (x0, · · · ,xt,xt, · · · ,xt) the path stopping at t and Xt := {xt∧· : x ∈ X} ⊂ X.

For x, x̃ ∈ X, we say x =t x̃ if xt∧· = x̃t∧·. Denote X
t,x := {x̃ ∈ X : x̃ =t x} and

X
t,x
s := X

t,x ∩ Xs, for s ≥ t. Introduce the concatenation x⊕t x̃ ∈ X by

(x⊕t x̃)s := xs1{s≤t} + x̃s1{s>t}, and (x⊕t x)s := xs1{s≤t} + x1{s>t}, x ∈ S.

For each t ∈ T, let P(Xt) denote the set of probability measures on (Ω,FX
t ), equipped with

W1(µ, ν) :=
∑

x∈Xt

|µ(x)− ν(x)|, ∀µ, ν ∈ P(Xt),

and P0(Xt) the subset of µ ∈ P(Xt) with full support Xt. Again this is just for convenience

of presentation. For a measure µ ∈ P(X) = P(XT ), denote µt∧· := µ ◦ X−1
t∧· ∈ P(Xt).

We remark that, by abusing the notation µ, here µt∧· denote the joint law of the stopped

process Xt∧·, while in Section 2 {µ·} denote the family of marginal laws.

For a path dependent function ϕ on T× X × P(X), we say ϕ is adapted if ϕ(t,x, µ) =

ϕ(t,xt∧·, µt∧·). Throughout this section, all the path dependent functions are required to

be adapted. In particular, the data of the game q : T × X × P(X) × A × S → (0, 1),

F : T×X×P(X)×A → R, and G : X×P(X) → R are path dependent with q, F adapted.

By adapting to the path dependent setting, we shall still assume Assumption 2.2.

Let Arelax denote the set of path dependent adapted relaxed controls γ : T×X → P(A).
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Given t ∈ T, µ ∈ P(Xt), γ ∈ Arelax, and x ∈ Xt, x̃ ∈ X
t,x, γ̃ ∈ Arelax, we introduce:

P
t,µ,γ ◦X−1

t∧· = µ, P
t,µ,γ(Xs+1 = x̃|X =s x) =

∫

A

q(s,x, µγ , a; x̃)γ(s,x; da);

where µ
γ
s∧· := P

t,µ,γ ◦X−1
s∧·, s ≥ t;

P
µγ ;t,x,γ̃(X =t x) = 1, P

µγ ;t,x,γ̃(Xs+1 = x̄|X =s x̃) =

∫

A

q(s, x̃, µγ , a; x̄)γ̃(s, x̃; da);

J(µγ ; s, x̃, γ̃) := E
Pµγ ;t,x,γ̃

[

G(X,µγ) +

T−1
∑

r=s

∫

A

F (r,X, µγ , a)γ̃(r,X, da)
∣

∣

∣
X =s x̃

]

;

J(t, µ, γ;x, γ̃) := J(µγ ; t,x, γ̃), v(µγ ; s, x̃) := inf
γ̃∈Arelax

J(µγ ; s, x̃, γ̃).

(4.1)

Definition 4.1 (i) For any t ∈ T, µ ∈ P0(Xt), and ε > 0, let Mε
relax(t, µ) denote the set

of relaxed ε-MFE γ∗ ∈ Arelax such that

J(t, µ, γ∗;x, γ∗) ≤ v(µγ
∗
; t,x) + ε, for all x ∈ Xt. (4.2)

(ii) The relaxed set value of the MFG at (t, µ) is defined as:

Vrelax(t, µ) :=
⋂

ε>0

V
ε
relax(t, µ), where ‖ϕ‖Xt := sup

x∈Xt

|ϕ(x)|, and (4.3)

V
ε
relax(t, µ) :=

{

ϕ ∈ L
0(Xt;R) : ∃γ∗ ∈ Mε

relax(t, µ) s.t. ‖ϕ− J(t, µ, γ∗; ·, γ∗)‖Xt ≤ ε
}

.

Similarly, given T0 and ψ : XT0 × P(XT0) → R, as in (2.8) define

J(T0, ψ; t, µ, γ;x, γ̃) := E
Pµγ ;t,x,γ̃

[

ψ(XT0∧·, µ
γ
T0∧·)+

T0−1
∑

s=t

∫

A

F (s,X, µγ , a)γ̃(s,X, da)
]

, (4.4)

and let Mε
relax(T0, ψ; t, µ) denote the set of γ∗ ∈ Arelax such that, ∀x ∈ Xt,

J(T0, ψ; t, µ, γ
∗;x, γ∗) ≤ v(T, ψ;µγ ; s,x) := inf

γ∈Arelax

J(T0, ψ; t, µ, γ
∗;x, γ) + ε. (4.5)

Note that the tower property in (2.10) remains true for relaxed controls:

J(t, µ, γ;x, γ̃) = J(T0, ψ; t, µ, γ;x, γ̃), where ψ(y, ν) := J(T0, ν, γ;y, γ̃). (4.6)

The DPP for Vrelax takes the following form.

Theorem 4.2 Under Assumption 2.2 (i), for any t ∈ T, T0 ∈ Tt, and µ ∈ P0(Xt),

Vrelax(t, µ) =
⋂

ε>0

{

ϕ ∈ L
0(Xt;R) : ‖ϕ− J(T0, ψ; t, µ, γ

∗; ·, γ∗)‖Xt ≤ ε

for some ψ ∈ L
0(XT0 × P0(XT0);R) and γ

∗ ∈ Arelax such that

ψ(·, µγ∗

T0∧·) ∈ V
ε
relax(T0, µ

γ∗

T0∧·), γ
∗ ∈ Mε

relax(T0, ψ; t, µ)
}

.

(4.7)
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Proof We shall follow the arguments in Theorem 2.4, in particular, we shall extend

Proposition 2.3. Let Ṽrelax(t, µ) =
⋂

ε>0 Ṽ
ε
relax(t, µ) denote the right side of (4.7).

(i) We first prove Ṽrelax(t, µ) ⊂ Vrelax(t, µ). Fix ϕ ∈ Ṽrelax(t, µ), ε > 0, and set ε1 :=
ε
4 .

Since ϕ ∈ Ṽ
ε1
relax(t, µ), then

‖ϕ− J(T0, ψ; t, µ, γ
∗; ·, γ∗)‖Xt ≤ ε1 for some desirable ψ, γ∗ as in (4.7).

Since ψ(·, µγ∗

T0∧·) ∈ V
ε1
relax(T0, µ

γ∗

T0∧·), there exists γ̃∗ ∈ Mε1
relax(T0, µ

γ∗

T0∧·) such that

‖ψ(·, µγ∗

T0∧·)− J(T0, µ
γ∗

T0∧·, γ̃
∗; ·, γ̃∗)‖XT0

≤ ε1.

As in (2.2) denote γ̂∗ := γ∗⊕T0 γ̃
∗ := γ∗1{s<T0} + γ̃∗1{s≥T0} ∈ Arelax. Then, for any x ∈ Xt

and γ ∈ Arelax, similarly to Proposition 2.3 (i) we have

J(t, µ, γ̂∗;x, γ)

= E
Pµγ

∗
;t,x,γ

[

J(T0, µ
γ∗

T0∧·, γ̃
∗;XT0∧·, γ) +

T0−1
∑

s=t

∫

A

F (s,X, µγ
∗
, a)γ(s,X, da)

]

≥ E
Pµγ

∗
;t,x,γ

[

J(T0, µ
γ∗

T0∧·, γ̃
∗;XT0∧·, γ̃

∗) +
T0−1
∑

s=t

∫

A

F (s,X, µγ
∗
, a)γ(s,X, da)

]

− ε1

≥ E
Pµγ

∗
;t,x,γ

[

ψ(XT0∧·, µ
γ∗

T0∧·) +
T0−1
∑

s=t

∫

A

F (s,X, µγ
∗
, a)γ(s,X, da)

]

− 2ε1

= J(T0, ψ; t, µ, γ
∗;x, γ) − 2ε1 ≥ J(T0, ψ; t, µ, γ

∗;x, γ∗)− 3ε1

= E
Pµγ

∗
;t,x,γ∗

[

ψ(XT0∧·, µ
γ∗

T0∧·) +
T0−1
∑

s=t

∫

A

F (s,X, µγ
∗
, a)γ∗(s,X, da)

]

− 3ε1

≥ E
Pµγ

∗
;t,x,γ∗

[

J(T0, µ
γ∗

T0∧·, γ̃
∗;XT0∧·, γ̃

∗) +
T0−1
∑

s=t

∫

A

F (s,X, µγ
∗
, a)γ∗(s,X, da)

]

− 4ε1

= J(t, µ, γ̂∗;x, γ̂∗)− 4ε1 = J(t, µ, γ̂∗;x, γ̂∗)− ε.

That is, γ̂∗ ∈ Mε
relax(t, µ). Moreover, note that, by (4.6),

‖ϕ− J(t, µ, γ̂∗; ·, γ̂∗)‖Xt ≤ ε1 + ‖J(T0, ψ; t, µ, γ∗; ·, γ∗)− J(t, µ, γ̂∗; ·, γ̂∗)‖Xt

= ε1 + sup
x∈Xt

∣

∣

∣
E
Pµγ

∗
;t,x,γ∗ [

ψ(XT0∧·, µ
γ∗

T0∧·)− J(T0, µ
γ∗

T0∧·, γ̃
∗;XT0∧·, γ̃

∗)
]

∣

∣

∣
≤ 2ε1 < ε.

Then ϕ ∈ V
ε
relax(t, µ). Since ε > 0 is arbitrary, we obtain ϕ ∈ Vrelax(t, µ).

(ii) We now prove the opposite inclusion. Fix ϕ ∈ Vrelax(t, µ) and ε > 0. Let ε2 > 0 be

a small number which will be specified later. Since ϕ ∈ V
ε2
relax(t, µ), then

‖ϕ− J(t, µ, γ∗; ·, γ∗)‖Xt ≤ ε2 for some γ∗ ∈ Mε2
relax(t, µ).

21



Introduce ψ(y, ν) := J(T0, ν, γ
∗;y, γ∗) and recall (4.6). Then

‖ϕ − J(T0, ψ; t, µ, γ
∗; ·, γ∗)‖Xt = ‖ϕ(x) − J(t, µ, γ∗;x, γ∗)‖Xt ≤ ε2.

Moreover, since γ∗ ∈ Mε2
relax(t, µ), for any γ ∈ Arelax and x ∈ Xt, we have

J(T0, ψ; t, µ, γ
∗;x, γ∗) = J(t, µ, γ∗;x, γ∗)

≤ J(t, µ, γ∗;x, γ ⊕T0 γ
∗) + ε2 = J(T0, ψ; t, µ, γ

∗;x, γ) + ε2.

This implies that γ∗ ∈ Mε2
relax(T0, ψ; t, µ). We claim further that

ψ(·, µγ∗

T0∧·) ∈ V
Cε2
relax(T0, µ

γ∗

T0∧·), (4.8)

for some constant C ≥ 1. Then by (4.7) we see that ϕ ∈ Ṽ
Cε2
relax(t, µ) ⊂ Ṽ

ε
relax(t, µ) by

setting ε2 ≤ ε
C . Since ε > 0 is arbitrary, we obtain ϕ ∈ Ṽrelax(t, µ).

To see (4.8), recalling (4.1), for any γ ∈ Arelax we have

E
Pµγ

∗
;t,x,γ∗

[

J(T0, µ
γ∗

T0∧·, γ
∗;XT0∧·, γ

∗)
]

− E
Pµγ

∗
;t,x,γ∗

[

J(T0, µ
γ∗

T0∧·, γ
∗;XT0∧·, γ)

]

= J(t, µ, γ∗;x, γ∗)− J(t, µ, γ∗;x, γ∗ ⊕T0 γ) ≤ ε2.

Then, by taking infimum over γ ∈ Arelax, it follows from the standard control theory that

E
Pµγ

∗
;x,γ∗

[

J(T0, µ
γ∗

T0∧·, γ
∗;XT0∧·, γ

∗)
]

≤ E
Pµγ

∗
;t,x,γ∗

[

v(µγ
∗
;T0,XT0∧·)

]

+ ε2, ∀x ∈ Xt.

On the other hand, it is obvious that v(µγ
∗
;T0, x̃) ≤ J(T0, µ

γ∗

T0∧·, γ
∗; x̃, γ∗) for all x̃ ∈ XT0 .

Moreover, since q ≥ cq, clearly P
µγ∗ ;t,x,γ∗

(X =T0 x̃) ≥ cT0−t
q , for any x̃ ∈ X

t,x
T0

. Thus,

0 ≤ J(T0, µ
γ∗

T0∧·, γ
∗; x̃, γ∗)− v(µγ

∗
;T0, x̃)

≤ CE
Pµγ

∗
;t,x,γ∗

[

[

J(T0, µ
γ∗

T0∧·, γ
∗;XT0∧·, γ

∗)− v(µγ
∗
;T0,XT0∧·)

]

1{X=T0
x̃}
]

≤ CE
Pµγ

∗
;t,x,γ∗

[

J(T0, µ
γ∗

T0∧·, γ
∗;XT0∧·, γ

∗)− v(µγ
∗
;T0,XT0∧·)

]

≤ Cε2,

where C := ct−T0
q . This implies that γ∗ ∈ MCε2

relax(T0, µ
γ∗

T0∧·). Then (4.8) follows directly

from ψ(·, µγ∗

T0∧·) = J(T0, µ
γ∗

T0∧·, γ
∗; ·, γ∗), and hence ϕ ∈ Ṽrelax(t, µ).

Remark 4.3 Consider the setting that q, F,G are state dependent, as in Section 2. There

is a very subtle issue between state dependence and path dependence of the controls.

(i) For a standard non-zero sum game problems where the players may have different

cost functions Fi, Gi, if one uses state dependent controls, in general the set value does not
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satisfy DPP. See a counterexample in [24]. However, with path dependent controls the set

value of the game satisfies the DPP.

(ii) In Section 2, since all players have the same cost function, as we saw the set value

with state dependent controls satisfies DPP. If we consider path dependent controls α ∈
Apath, the set value will also satisfy DPP. However, the set values in these two settings are

in general not equal, see Example 7.1 in Appendix for a counterexample.

(iii) For relaxed controls, again restricting to state dependent q, F,G, it turns out that

state dependent and path dependent controls lead to the same set value, see Theorem 7.4 in

Appendix. The main reason is that the convex combination of relaxed controls remains a

relaxed control, while the controls α in Section 2 does not share this property.

4.2 An alternative formulation of the relaxed mean field game

In this subsection we provide an alternative formulation for the MFG with relaxed controls.

This new formulation is motivated from the heterogenous controls for the N -player games,

and thus is crucial for the convergence result in the next section.

Let Apath denote the set of adapted path dependent controls α : T × X → A, and for

each t ∈ T, At
path =

{

(α(t, ·), · · · , α(T − 1, ·)) : α ∈ Apath

}

. Denote Ξt := P(Xt × At
path),

and for each Λ ∈ Ξt, define recursively: for s ≥ t, x ∈ Xt, and x̃ ∈ X
t,x,

µΛt∧·(x) := Λ(x,At
path), µΛs∧·(x̃) :=

∫

At
path

s−1
∏

r=t

q(r, x̃, µΛ, α(r, x̃); x̃r+1)Λ(x, dα). (4.9)

Here, noting that α ∈ At
path can be equivalently expressed as {α(s, x̃) : t ≤ s ≤ T − 1, x̃ ∈

X
t,x
s }, we are using the following interpretation on dα: for any ϕ : At

path → R,

∫

At
path

ϕ(α)dα :=

∫

A

· · ·
∫

A

ϕ
(

{α(s, x̃)}
)

T−1
∏

s=t

∏

x̃∈Xt,x
s

dα(s, x̃). (4.10)

Next, for µ ∈ P0(Xt), denote Ξt(µ) := {Λ ∈ Ξt : µ
Λ
t∧· = µ}. Moreover, recall (4.1),

J(t,Λ;x, α) := J(µΛ; t,x, α), v(t,Λ;x) := v(µΛ; t,x), x ∈ Xt, α ∈ At
path. (4.11)

To simplify the notations, we introduce:

Qt
s({µ·}; x̃, α) :=

s−1
∏

r=t

q(r, x̃, µ, α(r, x̃); x̃r+1). (4.12)

In particular, Qt
t({µ·};x, α) = 1. Then we have, for any x̃ ∈ X

t,x,

µΛs (x̃) :=

∫

At
path

Qt
s(µ

Λ; x̃, α)Λ(x, dα), P
µΛ;t,x,α(X =s x̃) = Qt

s(µ
Λ; x̃, α). (4.13)
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Definition 4.4 For any t ∈ T, µ ∈ P0(Xt), and ε > 0, we call Λ∗ ∈ Ξt(µ) a global ε-MFE

at (t, µ), denoted as Λ∗ ∈ Mε
global(t, µ), if

∫

At
path

[J(t,Λ∗;x, α) − v(t,Λ∗;x)]Λ∗(x, dα) ≤ ε, ∀x ∈ Xt. (4.14)

Note that the above α is global in time, so we call Λ∗ a global equilibrium. Moreover, since

there are infinitely many α ∈ At
path, it is hard to require J(t,Λ∗;x, α) − v(t,Λ∗;x) ≤ ε for

each α ∈ At
path, we thus use the above L

1-type of optimality condition. For the x part,

however, since there are only finitely many x and each of them has positive probability, we

may require the optimality for each x.

The main result of this subsection is the following equivalence result.

Theorem 4.5 For any t ∈ T and µ ∈ P0(Xt), we have

Vrelax(t, µ) = Vglobal(t, µ) :=
⋂

ε>0

V
ε
global(t, µ), where

V
ε
global(t, µ) :=

{

ϕ ∈ L
0(Xt,R) : ∃Λ∗ ∈ Mε

global(t, µ) s.t. ‖ϕ − v(t,Λ∗; ·)‖Xt ≤ ε
}

.

(4.15)

We shall prove the mutual inclusion of the two sides separately. First, given (t,Λ), we

construct a relaxed control as follows: for any t ∈ T, x ∈ Xt, and s ≥ t, x̃ ∈ X
t,x
s ,

γΛ(s, x̃, da) :=
1

µΛs∧·(x̃)

∫

At
path

Qt
s(µ

Λ; x̃;α)δα(s,x̃)(da)Λ(x, dα). (4.16)

On the opposite direction, given t ∈ T, µ ∈ P0(Xt), γ ∈ Arelax, recalling (4.10) we construct

Λγ(x, dα) := µ(x)
T−1
∏

s=t

∏

x̃∈Xt,x
s

γ(s, x̃, dα(s, x̃)), ∀x ∈ Xt, α ∈ At
path. (4.17)

In particular, the following calculation implies Λγ ∈ Ξt(µ):

Λγ(x,At
path) = µ(x)

T−1
∏

s=t

∏

x̃∈Xt,x
s

γ(s, x̃,A) = µ(x)

T−1
∏

s=t

∏

x̃∈Xt,x
s

1 = µ(x).

Lemma 4.6 For any t ∈ T, µ ∈ P0(Xt), and Λ ∈ Ξt(µ), γ ∈ Arelax, we have µγ
Λ
= µΛ

and µΛ
γ
= µγ . Moreover,

J(t, µ, γΛ;x, γΛ) =
1

µ(x)

∫

At
path

J(t,Λ;x, α)Λ(x, dα), ∀x ∈ Xt. (4.18)
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Proof We first prove µγ
Λ

s∧· = µΛs∧· by induction. The case s = t follows from the definitions.

Assume it holds for all r ≤ s. For s+ 1 and x̃ ∈ X
t,x
s+1, by Fubini Theorem we have

µ
γΛ

(s+1)∧·(x̃)

µ
γΛ

s∧·(x̃s∧·)
=

∫

A

q(s, x̃, µγ
Λ
, a; x̃s+1)γ

Λ(s, x̃, da)

=

∫

A

q(s, x̃, µγ
Λ
, a; x̃s+1)

1

µΛs∧·(x̃)

∫

At
path

Qt
s(µ

Λ; x̃;α)δα(s,x̃)(da)Λ(x, dα)

=
1

µΛs∧·(x̃)

∫

At
path

q(s, x̃, µΛ, α(s, x̃); x̃s+1)Q
t
s(µ

Λ; x̃;α)Λ(x, dα)

=
1

µΛs∧·(x̃)

∫

At
path

Qt
s+1(µ

Λ; x̃;α)Λ(x, dα) =
µΛ(s+1)∧·(x̃)

µΛs∧·(x̃)
.

Then µγ
Λ

(s+1)∧· = µΛ(s+1)∧·, and we complete the induction argument.

We next prove µΛ
γ

s∧· = µ
γ
s∧· by induction. Again the case s = t is obvious. Assume it

holds for all r < s. Now for s, recalling (4.10) we have

µΛ
γ

s∧·(x̃) =

∫

At
path

[

s−1
∏

r=t

q(r, x̃, µγ , α(r, x̃); x̃r+1)
][

µ(x)

T−1
∏

r=t

∏

x̄∈Xt,x
r

γ(r, x̄, dα(r, x̄))
]

= µ(x)
[

s−1
∏

r=t

∫

A

q(r, x̃, µγ , α(r, x̃); x̃r+1)γ(r, x̃, dα(r, x̄))
]

×

[

s−1
∏

r=t

∏

x̄∈Xt,x
r \{x̃}

γ(r, x̄,A)
]

×
[

T−1
∏

r=s

∏

x̄∈Xt,x
r

γ(r, x̄,A)
]

= µ(x)

s−1
∏

r=t

∫

A

q(r, x̃, µγ , a; x̃r+1)γ(r, x̃, da) = µ
γ
s∧·(x̃).

We finally prove (4.18). For each s ≥ t and x̃ ∈ X
t,x
s , by Fubini Theorem again we have

∫

A

F (s, x̃, µΛ, a)γΛ(s, x̃, da) =

∫

A

F (s, x̃, µΛ, a)

µΛs∧·(x̃)

∫

At
path

Qt
s(µ

Λ; x̃;α)δα(s,x̃)(da)Λ(x, dα)

=
1

µΛs∧·(x̃)

∫

At
path

F (s, x̃, µΛ, α(s, x̃))Qt
s(µ

Λ; x̃;α)Λ(x, dα)
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By (4.1) we have P
µΛ;t,x,γΛ

(X =s x̃) =
µΛ
s∧·(x̃)
µ(x) . Thus

J(t, µ, γΛ;x, γΛ)

=
1

µ(x)

[

∑

x̃∈Xt,x

G(x̃, µΛ)µΛT∧·(x̃) +
T−1
∑

s=t

∑

x̃∈Xt,x
s

µΛs∧·(x̃)
∫

A

F (s, x̃, µΛ, a)γΛ(s, x̃, da)
]

=
1

µ(x)

∫

At
path

[

∑

x̃∈Xt,x

G(x̃, µΛ)Qt
T (µ

Λ; x̃;α)

+

T−1
∑

s=t

∑

x̃∈Xt,x
s

F (s, x̃, µΛ, α(s, x̃))Qt
s(µ

Λ; x̃;α)
]

Λ(x, dα).

This implies (4.18) immediately.

Remark 4.7 We can actually show that γ(Λ
γ) = γ for all γ ∈ Arelax, see Appendix. How-

ever, it is not clear that we would have Λ(γΛ) = Λ for all Λ ∈ Ξt(µ).

Proof [Proof of Theorem 4.5] Since µ ∈ P0(Xt) has full support, then cµ := inf
x∈Xt

µ(x) > 0.

(i) We first prove Vglobal(t, µ) ⊂ Vrelax(t, µ). Fix ϕ ∈ Vglobal(t, µ) and ε > 0. Let

ε1 > 0 be a small number which will be specified later. Since ϕ ∈ V
ε1
global(t, µ), there exists

Λ∗ ∈ Mε1
global(t, µ) such that ‖ϕ − v(t,Λ∗; ·)‖Xt ≤ ε1. Set γ∗ := γΛ

∗
. For any x ∈ Xt, since

µγ
∗
= µΛ

∗
, by (4.1), (4.11) we have v(µγ

∗
; t,x, γ∗) = v(t,Λ∗;x), and, by (4.18), (4.14),

J(t, µ, γ∗;x, γ∗)− v(t,Λ∗;x) =
1

µ(x)

∫

At
path

[J(t,Λ∗;x, α) − v(t,Λ∗;x)]Λ∗(x, dα) ≤ ε1

cµ
≤ ε,

provided ε1 > 0 is small enough. This implies γ∗ ∈ Mε
relax(t, µ).

Moreover, it is clear now that, for any x ∈ Xt and for a possibly smaller ε1,

∣

∣ϕ(x) − J(t, µ, γ∗;x, γ∗)
∣

∣ ≤ ε1 +
∣

∣v(t,Λ∗;x) − J(t, µ, γ∗;x, γ∗)
∣

∣ ≤ ε1 +
ε1

cµ
≤ ε,

Then ϕ ∈ V
ε
relax(t, µ), and since ε > 0 is arbitrary, we obtain ϕ ∈ Vrelax(t, µ).

(ii) We next prove Vrelax(t, µ) ⊂ Vglobal(t, µ). Fix ϕ ∈ Vrelax(t, µ), ε > 0, and set ε2 :=
ε
2 .

Since ϕ ∈ V
ε2
relax(t, µ), there exists γ

∗ ∈ Mε2
relax(t, µ) such that ‖ϕ−J(t, µ, γ∗; ·, γ∗)‖Xt ≤ ε2.

Set Λ∗ := Λγ∗
, then µΛ

∗
= µγ

∗
. Since γ∗ ∈ Mε2

relax(t, µ), we have

|ϕ(x) − v(t,Λ∗;x)| = |ϕ(x) − v(µγ
∗
; t,x)| ≤ 2ε2 ≤ ε, ∀x ∈ Xt.

Moreover, note that, by (4.18) again,
∫

At
path

[J(t,Λ∗;x, α) − v(t,Λ∗;x)]Λ∗(x, dα)

= µ(x)[J(t, µ, γ∗;x, γ∗)− v(t,Λ∗;x)] ≤ µ(x)ε2 ≤ ε2 ≤ ε.

(4.19)

This implies ϕ ∈ V
ε
global(t, µ), and hence by the arbitrariness of ε, ϕ ∈ Vglobal(t, µ).
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5 The N-player game with heterogeneous equilibria

In this section we drop the requirement α1 = · · · = αN for the N -player game, and show

that the corresponding set value converges to Vrelax, which in general is strictly larger than

Vstate. We note that we shall still use the pure strategies, rather than mixed strategies, for

the N -player game. Moreover, since we used path dependent controls in Section 4, we shall

also use path dependent controls here.

5.1 The N-player game

Let ΩN and ~X be as in Section 3, and denote

µNt∧· := µN
t, ~Xt∧·

, where µNt,~x :=
1

N

N
∑

i=1

δ
x
i ∈ P(Xt), ~x = (x1, · · · ,xN ) ∈ X

N
t . (5.1)

Similarly to (3.7), for the convenience of the presentation we introduce

X
N
0,t :=

{

~x ∈ X
N
t : supp (µNt,~x) = Xt

}

, PN (Xt) :=
{

µNt,~x : ~x ∈ X
N
0,t

}

. (5.2)

We shall consider path dependent symmetric controls: At,∞
path :=

⋃

L≥0A
t,L
path, where

At,L
path :=

{

α : {t, · · · , T − 1} ×X× P(X) → A

∣

∣

∣
α is adapted and

uniformly Lipschitz continuous in µ (under W1) with Lipschitz constant L
}

.

Given t ∈ T, ~x ∈ X
N
0,t, and ~α = (α1, · · · , αN ) ∈ (At,∞

path)
N , introduce, for s ≥ t,

P
t,~x,~α( ~X =t ~x) = 1, Pt,~x,~α( ~Xs+1 = ~x′′| ~X =s ~x

′) =
N
∏

i=1

q(s,x′i, µN , αi(s,x′i, µN );x′′i ),

Ji(t, ~x, ~α) := E
Pt,~x,~α

[

G(Xi, µN ) +

T−1
∑

s=t

F (s,Xi, µN , αi(s,Xi, µN ))
]

;

v
N,L
i (t, ~x, ~α) := inf

α̃∈At,L
path

Ji(t, ~x, ~α
−i, α̃), i = 1, · · · , N.

(5.3)

Here (~α−i, α̃) is the vector obtained by replacing αi in ~α with α̃.

Definition 5.1 For any ε > 0, L ≥ 0, we say ~α ∈ (At,L
path)

N is an (ε, L)-equilibrium of the

N -player game at (t, ~x), denoted as ~α ∈ MN,ε,L
hetero(t, ~x), if:

1

N

N
∑

i=1

[

Ji(t, ~x, ~α)− v
N,L
i (t, ~x, ~α)

]

≤ ε. (5.4)
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Here, since there are N players and we will send N → ∞, similar to (4.14) we do not require

the optimality for each player. In fact, by (5.4) one can easily show that

1

N

∣

∣

∣

{

i = 1, · · · , N : Ji(t, ~x, ~α)− v
N,L
i (t, ~x, ~α) ≥ √

ε
}

∣

∣

∣
≤ √

ε. (5.5)

This is exactly the (
√
ε,
√
ε)-equilibrium in [11].

We then define the set value of the N -player game with heterogeneous equilibria:

V
N
hetero(t, ~x) :=

⋂

ε>0

V
N,ε
hetero(t, ~x) :=

⋂

ε>0

⋃

L≥0

V
N,ε,L
hetero(t, ~x),

where V
N,ε,L
hetero(t, ~x) :=

{

ϕ ∈ L
0(Xt;R) : ∃~α ∈ MN,ε,L

hetero(t, ~x) such that

max
x∈Xt

min
{i: x

i=x}

∣

∣ϕ(x) − v
N,L
i (t, ~x, ~α)

∣

∣ ≤ ε
}

.

(5.6)

Remark 5.2 (i) An alternative definition of VN,ε,L
hetero(t, ~x) is to require ϕ satisfying

max
i=1,··· ,N

∣

∣ϕ(xi)− v
N,L
i (t, ~x, ~α)

∣

∣ = max
x∈Xt

max
{i: x

i=x}

∣

∣ϕ(x) − v
N,L
i (t, ~x, ~α)

∣

∣ ≤ ε. (5.7)

Indeed, the convergence result Theorem 5.3 below remains true if we use (5.7). However, in

general it is possible that xi = xj but vN,L
i (t, ~x, ~α) 6= v

N,L
j (t, ~x, ~α). Then, by fixing N and

sending ε→ 0, under (5.7) we would have V
N
hetero(t, ~x) :=

⋂

ε>0V
N,ε
hetero(t, ~x) = ∅.

(ii) In the homogeneous case, vN,L
i (t, ~x, ~α) = v

N,L
j (t, ~x, ~α) whenever xi = xj , so we don’t

have this issue in (3.8).

(iii) Note that µNt,~x = µNt,~x′ if and only if ~x is a permutation of ~x′, and one can easily

verify that vN,L
i (t, ~x, ~α) = v

N,L
π(i) (t, (xπ(1), · · · ,xπ(N)), (απ(1), · · · , απ(N))) for any permutation

π on {1, · · · , N}, . Then, similar to the homogenous case, VN,ε,L
hetero(t, ~x) is invariant in µNt,~x

and we will denote is as V
N,ε,L
hetero(t, µ

N
t,~x).

The following convergence result of the set value is in the same spirit of Theorem 3.5.

Theorem 5.3 Let Assumption 2.2 hold and µNt,~x ∈ PN (Xt) → µ ∈ P0(Xt) under W1. Then

⋂

ε>0

⋃

L≥0

lim
N→∞

V
N,ε,L
hetero(t, µ

N
t,~x) ⊂ Vrelax(t, µ) ⊂

⋂

ε>0

lim
N→∞

V
N,ε,0
hetero(t, µ

N
t,~x). (5.8)

In particular, since lim
N→∞

V
N,ε,0
hetero(t, µ

N
t,~x) ⊂

⋃

L≥0

lim
N→∞

V
N,ε,L
hetero(t, µ

N
t,~x), actually equalities hold.

Unlike Theorem 3.5, here the N -player game and the MFG take different types of

controls ~α and γ, respectively. The key for the convergence is the global formulation in
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Subsection 4.2 for MFG. Indeed, given t ∈ T, ~x ∈ X
N
0,t, and ~α ∈ (At,L

path)
N , the N -player

game is naturally related to the following ΛN ∈ P(Xt ×At,L
path):

ΛN (x, dα) :=
1

N

∑

i∈I(x)
δαi

(dα), where I(x) :=
{

i = 1, · · · , N : xi = x
}

, x ∈ Xt. (5.9)

By the symmetry of the problem, there exists a function JN , independent of i, such that

Ji(t, ~x, ~α) = JN (ΛN ; t,xi, αi), i = 1, · · · , N. (5.10)

We shall use this and Theorem 4.5 to prove Theorem 5.3 in the rest of this section. We also

make the following obvious observation:

ΛN (x,At
path) =

|I(x)|
N

= µNt,~x(x), ∀x ∈ Xt. (5.11)

Remark 5.4 (i) In this section we are using symmetric controls and we obtain the con-

vergence in Theorem 5.3. If we use full information controls αi(t, ~X), as observed in [32]

in terms of the equilibrium measure, one may expect the limit set value will be strictly

larger than Vrelax. It will be interesting to find an appropriate notion of MFE so that the

corresponding MFG set value will be equal to the above limit, in the sense of Theorem 5.3.

(ii) While the convergence in Theorem 5.3 is about set values, the proofs in the rest of

this section confirm the convergence of the approximate equilibria as well, exactly in the

same manner as in Remark 3.6.

5.2 From N-player games to mean field games

In this subsection we prove the left inclusion in (5.8). Notice that the ΛN in (5.9) is defined

on At,L
path, rather than At

path = At,0
path. For this purpose, recall (4.12) and introduce

νNt∧·(x) := µNt,~x(x), ν
N
s∧·(x̃) :=

1

N

∑

i∈I(x)
Qt

s(ν
N ; x̃, αi(·, ·, νN )), x ∈ Xt, x̃ ∈ X

t,x
s , s ≥ t;

Λ̄N (x, dα) :=
µ(x)

|I(x)|
∑

i∈I(x)
δᾱi

(dα), where ᾱi(s, x̃) := αi(s, x̃, ν
N ).

(5.12)

Then it is obvious that ᾱi ∈ At
path and Λ̄N ∈ Ξt(µ). Moreover, when µ = µNt,~x, by (4.13)

and (5.11) it is straightforward to verify by induction that µΛ̄
N
= νN .

Theorem 5.5 Let Assumption 2.2 (ii) hold. Then, for any L ≥ 0, there exists a constant

CL, depending only on T, d, Lq, and L such that, for any t ∈ T, ~x ∈ X
N
0,t, µ ∈ P0(Xt),

~α ∈ (At,L
path)

N , α̃ ∈ At,L
path, and for the νN , Λ̄N defined in (5.12), we have

max
1≤i≤N

max
t≤s≤T

E
Pt,~x,(~α−i,α̃)[W1(µ

N
s∧·, µ

Λ̄N

s∧· )
]

≤ CLθN , θN :=W1(µ
N
t,~x, µ) +

1√
N
. (5.13)
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Proof Fix i and denote α̃j := αj for j 6= i, and α̃i := α̃i. We first show that

κs := E
PN [W1(µ

N
s∧·, ν

N
s∧·)

]

≤ CL√
N
, where P

N := P
t,~x,(~α−i,α̃). (5.14)

Indeed, for s ≥ t, by the conditional independence of {Xj
s+1}1≤j≤N under PN , conditional

on Fs, it follows from the same arguments as in (3.11) that

κs+1 = E
PN

[

E
PN

Fs

[

W1(µ
N
(s+1)∧·, ν

N
(s+1)∧·)

]

]

≤ C√
N

+C
∑

x∈Xs+1

E
PN

[∣

∣

∣

1

N

N
∑

j=1

P
N (Xj =s+1 x|Fs)− νN(s+1)∧·(x)

∣

∣

∣

]

.

Note that,

∣

∣

∣

1

N

N
∑

j=1

P
N (Xj =s+1 x|Fs)−

1

N

N
∑

j=1

1{Xj=sx}q(s,x, ν
N , αj(s,x, ν

N );xs+1)
∣

∣

∣

=
∣

∣

∣

1

N

N
∑

j=1

1{Xj=sx}
[

q(s,x, µN , α̃j(s,x, µ
N );xs+1)− q(s,x, νN , αj(s,x, ν

N );xs+1)
]

∣

∣

∣

≤ CLW1(µ
N
s∧·, ν

N
s∧·) +

1

N
= CLκs +

1

N
,

where in the last inequality, the first term is due to the sum over all j 6= i. Then

κs+1 ≤ CLκs +
C√
N

+ E
PN

[

∑

x∈Xs+1

∣

∣

∣

1

N

N
∑

j=1

1{Xj=sx}q(s,x, ν
N , αj(s,x, ν

N );xs+1)

− 1

N

∑

j∈I(xt∧·)

Qt
s(ν

N ;x, ᾱj)q(s,x, ν
N , αj(s,x, ν

N );xs+1)
∣

∣

∣

]

= CLκs +
C√
N

+ E
PN

[

∑

x∈Xs

∣

∣

∣

1

N

N
∑

j=1

1{Xj=sx} −
1

N

∑

j∈I(xt∧·)

Qt
s(ν

N ;x, ᾱj)
∣

∣

∣

]

= CLκs +
C√
N

+ E
PN

[

∑

x∈Xs

∣

∣µNs∧·(x)− νNs∧·(x)
∣

∣

]

≤ CLκs +
C√
N
.

It is obvious that κt = 0. Then by induction we obtain (5.14).
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Next, denote κ̄s :=W1(ν
N
s∧·, µ

Λ̄N

s∧· ). For s ≥ t, by (5.12), (4.13), and (4.12), we have

κ̄s+1 =
∑

x∈Xt

∑

x̃∈Xt,x
s+1

∣

∣νN(s+1)∧·(x̃)− µΛ̄
N

(s+1)∧·(x̃)
∣

∣

=
∑

x∈Xt

∑

x̃∈Xt,x
s+1

∣

∣

1

N

∑

j∈I(x)
Qt

s+1(ν
N ; x̃, ᾱj)−

µ(x)

|I(x)|
∑

j∈I(x)
Qt

s+1(µ
Λ̄N

; x̃, ᾱj)
∣

∣

=
∑

x∈Xt

∑

x̃∈Xt,x
s+1

[ 1

N

∑

j∈I(x)

∣

∣Qt
s+1(ν

N ; x̃, ᾱj)−Qt
s+1(µ

Λ̄N

; x̃, ᾱj)
∣

∣

+
∣

∣

∣

1

N
− µ(x)

|I(x)|
∣

∣

∣

∑

j∈I(x)
Qt

s+1(µ
Λ̄N

; x̃, ᾱj)
]

≤ C
∑

x∈Xt

∑

x̃∈Xt,x
s+1

[ 1

N

∑

j∈I(x)

s
∑

r=t

W1(ν
N
r∧·, µ

Λ̄N

r∧·) +
∣

∣

∣

1

N
− µ(x)

|I(x)|
∣

∣

∣
|I(x)|

]

≤ C

s
∑

r=t

κ̄r + C
∑

x∈Xt

∣

∣µNt,~x(x)− µ(x)
∣

∣ ≤ C

s
∑

r=t

κ̄r.

Obviously k̄t = W1(µ
N
t,~x, µ). Then by induction we have sup

t≤s≤T

κ̄s ≤ CW1(µ
N
t,~x, µ). This,

together with (5.14), implies (5.13) immediately.

Theorem 5.6 For the setting in Theorem 5.5 and assuming further Assumption 2.2 (iii),

there exists a modulus of continuity function ρL, depending on T, d, Lq, C0, ρ, L, s.t.
∣

∣

∣
Ji(t, ~x, (~α

−i, α̃))− J(t, Λ̄N ;xi, α̃(·, νN ))
∣

∣

∣
+

∣

∣v
N,L
i (t, ~x, ~α)− v(µΛ̄

N

; t,xi)
∣

∣ ≤ ρL(θN ). (5.15)

Moreover, assume ~α ∈ MN,ε1,L
hetero (t, ~x) for some ε1 > 0, then

∫

At
path

[J(t, Λ̄N ;x, α) − v(t, Λ̄N ;x)]Λ̄N (x, dα) ≤ ε1 + 2ρL(θN ), ∀x ∈ Xt. (5.16)

In particular, if ε1 + 2ρL(θN ) ≤ ε, then Λ̄N ∈ Mε
global(t, µ).

Proof First, given Theorem 5.5, (5.15) follows from the arguments in Theorem 3.4.

Then, for ~α ∈ MN,ε1,L
hetero (t, ~x) and x ∈ Xt, by (5.4) we have

∫

At
path

[J(t, Λ̄N ;x, α) − v(t, Λ̄N ;x)]Λ̄N (x, dα) =
1

N

∑

i∈I(x)

[

J(t, Λ̄N ;x, ᾱi)− v(t, Λ̄N ;x)
]

≤ 1

N

∑

i∈I(x)

[

∣

∣J(t, Λ̄N ;xi, ᾱi)− Ji(t, ~x, ~α)
∣

∣+
[

Ji(t, ~x, ~α)− v
N,L
i (t, ~x, ~α)

]

+
∣

∣v
N,L
i (t, ~x, ~α)− v(µΛ̄

N

; t,xi)
∣

∣

]

≤ ρL(θN ) + ε1 + ρL(θN ) = ε1 + 2ρL(θN ),
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completing the proof.

Proof of Theorem 5.3: the left inclusion. We first fix an arbitrary function ϕ ∈
⋂

ε>0

⋃

L≥0 limN→∞V
N,ε,L
hetero(t, µ

N
t,~x), ε > 0, and set ε1 := ε

2 . Then there exists Lε ≥ 0 and

and a sequence Nk → ∞ (possibly depending on ε) such that ϕ ∈ V
Nk,ε1,Lε1
hetero (t, µNk

t,~x
), for

all k ≥ 1. Now choose k large enough so that 2ρLε(θNk
) ≤ ε1. By (5.6) there exists

~α ∈ MNk,ε1,Lε

hetero (t, ~x) such that maxx∈Xt mini∈I(x) |ϕ(x) − v
N,L
i (t, ~x, ~α)| ≤ ε1. By Theorem

5.6 we see that Λ̄Nk ∈ Mε
global(t, µ) and, by (5.15),

‖ϕ− v(µΛ̄
N

; t, ·)‖Xt ≤ max
x∈Xt

min
i∈I(x)

[

∣

∣ϕ(x) − v
N,L
i (t, ~x, ~α)

∣

∣+
∣

∣v
N,L
i (t, ~x, ~α)− v(µΛ̄

N

; t,x)
∣

∣

]

≤ ε1 + ρLε(θN ) ≤ ε.

Then ϕ ∈ V
ε
global(t, µ). Since ε > 0 is arbitrary, by Theorem 4.5 we get ϕ ∈ Vrelax(t, µ).

5.3 From mean field games to N-player games

We now turn to the right inclusion in (5.8). Fix t ∈ T, ~x ∈ X
N
0,t, µ ∈ P0(Xt), and γ ∈ Arelax.

Our goal is to construct a desired ~α ∈ (At,0
path)

N . However, since ~α, or equivalently the

corresponding ΛN , is discrete, we need to discretize γ first. We note that it is slightly easier

to discretize γ than a general Λ ∈ Ξt(µ).

First, given ε > 0, there exists a partition A = ∪nε

k=0Ak with nε depending on ε (and γ)

such that, for some arbitrarily fixed ak ∈ Ak, k = 0, · · · , nε,

γ(s,x, A0) ≤ ε,∀s ∈ Tt,x ∈ Xs, and |a− ak| ≤ ε,∀a ∈ Ak, k = 1, · · · , nε. (5.17)

Denote by At,ε
path the subset of α ∈ At,0

path taking values in Aε := {ak : k = 0, · · · , nε}. Define

γε(s,x, da) :=

nε
∑

k=0

γ(s,x, Ak)δak (da). (5.18)

Recall (4.17), we see that supp (Λγε
(x, dα)) = At,ε

path ⊂ At,0
path for all x ∈ Xt.

Next, recall (5.11) that NµNt,~x(x) = |I(x)| is a positive integer for all x ∈ Xt. Let

Λε
t,~x ∈ P(Xt ×At,ε

path) be a modification of Λγε
such that,

Λε
t,~x(x,At,ε

path) = µNt,~x(x) and NΛε
t,~x(x, α) is an integer;

|Λε
t,~x(x, α) − Λγε

(x, α)| ≤ 1

N
+ |µNt,~x(x)− µ(x)|;

∀(x, α) ∈ Xt ×At,ε
path. (5.19)

Note that, since At,ε
path is finite, such a construction is easy.

32



We now construct ~α ∈ (At,ε
path)

N , which relies on γε and hence on ε. Note that
∑

α∈At,ε
path

[NΛε
t,~x(x, α)] = NΛε

t,~x(x,At,ε
path) = NµNt,~x(x) = |I(x)|,

and each NΛε
t,~x(x, α) is an integer. Let I(x) = ∪

α∈At,ε
path

I(x, α) be a partition of I(x) such

that |I(x, α)| = NΛε
t,~x(x, α). We then set

αi := α, i ∈ I(x, α), (x, α) ∈ Xt ×At,ε
path. (5.20)

Let ΛN be the one defined by (5.9) corresponding to this ~α. It is clear that ΛN = Λε
t,~x.

Theorem 5.7 (i) Let Assumption 2.2 (ii) hold. Then there exists a constant C, depending

only on T, d, Lq, such that, for any t ∈ T, ~x ∈ X
N
0,t, µ ∈ P0(Xt), γ ∈ Arelax, ε > 0, and for

the ~α ∈ (At,ε
path)

N constructed above, we have, for the θN in (5.13) and for any α̃ ∈ At,0
path,

max
1≤i≤N

max
t≤s≤T

E
Pt,~x,(~α−i,α̃)[

W1(µ
N
s∧·, µ

γ
s∧·)

]

≤ Cε+ CεθN , (5.21)

where Cε may depend on ε as well.

(ii) Assume further Assumption 2.2 (iii), then there exists a modulus of continuity

function ρ0, depending only on T, d, Lq, C0, and ρ, such that,
∣

∣

∣
Ji(t, ~x, (~α

−i, α̃))− J(µγ ; t,xi, α̃)
∣

∣

∣
+

∣

∣v
N,0
i (t, ~x, ~α)− v(µγ ; t,xi)

∣

∣ ≤ ρ0
(

Cε+ CεθN
)

. (5.22)

Moreover, assume γ ∈ Mε
relax(t, µ), then

1

N

N
∑

i=1

[

Ji(t, ~x, ~α)− v
N,0
i (t, ~x, ~α)

]

≤ ε+ 2ρ0
(

Cε+ CεθN
)

, ∀x ∈ Xt. (5.23)

In particular, this means that ~α ∈ MN,ε̃,0
hetero(t, ~x) with ε̃ := ε+ 2ρ0

(

Cε+ CεθN
)

.

Proof (i) We first show by induction that

κs :=W1

(

µ
γ
s∧·, µ

γε

s∧·
)

≤ Cε, s = t, · · · , T. (5.24)

Indeed, it is obvious that κt = 0. For s ≥ t, by (4.1), (5.17), and (5.18), we have

κs+1 =
∑

x∈Xs+1

∣

∣µ
γ
(s+1)∧·(x)− µ

γε

(s+1)∧·(x)
∣

∣

=
∑

x∈Xs,x∈S

∣

∣

∣
µ
γ
s∧·(x)

∫

A

q(s,x, µγ , a;x)γ(s,x, da) − µ
γε

s∧·(x)
∫

A

q(s,x, µγ
ε

, a;x)γε(s,x, da)
∣

∣

∣

≤
∑

x∈Xs,x∈S

[

∣

∣µ
γ
s∧·(x)− µ

γε

s∧·(x)
∣

∣+
nε
∑

k=1

∫

Ak

∣

∣q(s,x, µγ , a;x)− q(s,x, µγ
ε

, ak;x)
∣

∣γ(s,x, da)

+

∫

A0

q(s,x, µγ , a;x)γ(s,x, da) +

∫

A0

q(s,x, µγ
ε

, a;x)γε(s,x, da)

≤ Cκs + Cε.
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Then by induction we have (5.24).

We next show by induction that, recalling (5.12),

κ̄s :=W1

(

νNs∧·, µ
γε

s∧·
)

≤ CεθN , s = t, · · · , T. (5.25)

Indeed, κ̄t = W1(µ
N
t,~x, µ). For s ≥ t, noting that αi ∈ At,ε

path ⊂ At,0
path and recalling from

Lemma 4.6 that µΛ
γε

= µγ
ε
, then by (5.12) and (4.13) that

κ̄s+1 =W1

(

νNs+1∧·, µ
Λγε

(s+1)∧·
)

=
∑

x∈Xt

∑

x̃∈Xt,x
s+1

∣

∣

∣

1

N

∑

α∈At,ε
path

∑

i∈I(x,α)
Qt

s+1(ν
N ; x̃, α)−

∫

At
path

Qt
s+1(µ

γε

; x̃, α)Λγε

(x, dα)
∣

∣

∣

=
∑

x∈Xt

∑

x̃∈Xt,x
s+1

∣

∣

∣

∑

α∈At,ε
path

[

Λε
t,~x(x, α)Q

t
s+1(ν

N ; x̃, α) − Λγε

(x, α)Qt
s+1(µ

γε

; x̃, α)
]

∣

∣

∣

≤
∑

x∈Xt

∑

x̃∈Xt,x
s+1

∑

α∈At,ε
path

[

∣

∣Λε
t,~x(x, α) − Λγε

(x, α)
∣

∣Qt
s+1(ν

N ; x̃, α)

+Λγε

(x, α)
∣

∣Qt
s+1(ν

N ; x̃, α) −Qt
s+1(µ

γε

; x̃, α)
∣

∣

]

.

Then, by (5.19) and noting that Cε := |At,ε
path| is independent of N , we have

κ̄s+1 ≤
∑

x∈Xt

∑

x̃∈Xt,x
s+1

∑

α∈At,ε
path

[

θNQ
t
s+1(ν

N ; x̃, α) + CΛγε

(x, α)

s
∑

r=t

W1

(

νNr∧·, µ
γε

r∧·
)

]

≤ CεθN + C

s
∑

r=t

κ̄r.

This implies (5.25) immediately.

Finally, combining (5.24), (5.25), and (5.13), we obtain (5.21).

(ii) First, similar to (5.15), by (5.21) we have (5.22) following from the arguments in

Theorem 3.4. Next, for γ ∈ Mε
relax(t, µ), by (4.19) we have Λγ ∈ Mε

global(t, µ). Then (5.23)

follows from similar arguments as those for (5.16).

Proof of Theorem 5.3: the right inclusion. Fix ϕ ∈ Vrelax(t, µ) and ε > 0. Let ε1 > 0

be a small number which will be specified later. There exists γ ∈ Mε1
relax(t, µ) such that

‖ϕ− J(t, µ, γ; ·, γ)‖Xt ≤ ε1. Let γ
ε1 and ~α be constructed as above. By (5.23) we have

1

N

N
∑

i=1

[

Ji(t, ~x, ~α)− v
N,0
i (t, ~x, ~α)

]

≤ ε1 + 2ρ0
(

Cε1 + Cε1θN
)

, ∀x ∈ Xt.

Choose ε1 small enough such that ε1+2ρ0(Cε1+ε1) < ε. Then, for all N large enough such

that θN ≤ ε1
Cε1

, we have 1
N

∑N
i=1

[

Ji(t, ~x, ~α)− v
N,0
i (t, ~x, ~α)

]

≤ ε. That is, ~α ∈ V
N,ε,0
hetero(t, µ

N
t,~x)
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for all N large enough. Then, following the same arguments as those in the proof for

the left inclusion, we can easily get ϕ ∈ V
N,ε,0
hetero(t, µ

N
t,~x) for all N large enough, and thus

ϕ ∈ limN→∞V
N,ε,0
hetero(t, µ

N
t,~x). Since ε > 0 is arbitrary, we get the desired inclusion.

6 A diffusion model with state dependent drift controls

In this section we study a diffusion model with closed loop drift controls, where the laws of

the controlled state process are all equivalent. The volatility control case involves mutually

singular measures (corresponding to degenerate q in the discrete setting) and is much more

challenging. We shall leave that for future research. To ensure the convergence, we consider

state dependent homogeneous controls for the N -player games, as we did in Section 3.

6.1 The mean field game and the dynamic programming principle

Let T > 0 be a fixed terminal time, (Ω,F ,F = {Ft}0≤t≤T ,P) a filtered probability space

where F0 is atomless; B a d-dimensional Brownian motion; and the set A ⊂ R
d0 a Borel

measurable set. The state process X will also take values in R
d. Its law lies in the space

P2 := P2(R
d) equipped with the 2-Wasserstein distance W2. We remark that in the finite

state space case W1 and W2 are equivalent, while in diffusion models they are not. In

fact, at below we shall require W1-regularity, which is stronger than the W2-regularity, and

obtain W1-convergence, which is weaker than the W2-convergence. This is not surprising

in the mean field literature, see, e.g. [38]. The main advantage of the W1-distance is the

following well known representation, see e.g. [13]: for any µ, µ̃ ∈ P1(R
d),

W1(µ, µ̃) = sup
{

∫

Rd

ϕ(x)[µ(dx)− µ̃(dx)] : ϕ ∈ CLip(R
d) s.t. |ϕ(x)−ϕ(x̃)| ≤ |x− x̃|

}

. (6.1)

Here CLip(R
d) denote the set of uniformly Lipschitz continuous functions ϕ : R

d → R.

Moreover, for each (t, µ) ∈ [0, T ]×P2, let L
2(t, µ) denote the set of Ft-measurable random

variables ξ whose law (under P) Lξ = µ.

We consider coefficients (b, f) : [0, T ] × R
d × P2 × A → (Rd,R) and g : Rd × P2 → R.

Throughout this section, the following assumptions will always be in force.

Assumption 6.1 (i) b, f, g are Borel measurable in t and bounded by C0 (for simplicity);

(ii) b, f, g are uniformly Lipschitz continuous in (x, µ, a) with a Lipschitz constant L0,

where the Lipschitz continuity in µ is under W1.
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Let Acont denote the set of admissible controls α : [0, T ]×R
d → A which is measurable

in t and Lipschitz continuous in x, with the Lipschitz constant Lα possibly depending on α.

Given (t, µ) ∈ [0, T ]× P2, ξ ∈ L
2(t, µ), and α ∈ Acont, consider the McKean-Vlasov SDE:

Xt,ξ,α
s = ξ +

∫ s

t

b(r,Xt,ξ,α
r , µαr , α(r,X

t,ξ,α
r ))dr +Bs −Bt, µαs := L

X
t,ξ,α
s

. (6.2)

By the required Lipschitz continuity, the above SDE is wellposed, and it is obvious that

µαt = µ and µαs does not depend on the choice of ξ ∈ L
2(t, µ). Then, when only the law is

involved, by abusing the notations we may also denote Xt,ξ,α as Xt,µ,α.

Next, for any x ∈ R
d, and α̃ ∈ Acont, we introduce

J(t, µ, α;x, α̃) := J(µα; t, x, α̃), v(µα; s, x) := inf
α̃∈Acont

J(µα; s, x, α̃), s ≥ t, where

Xµα;s,x,α̃
r = x+

∫ r

s

b(l,Xµα ;s,x,α̃
l , µαl , α̃(l,X

µα ;s,x,α̃
l ))dl +Br −Bs, r ≥ s;

J(µα; s, x, α̃) := E

[

g(Xµα ;s,x,α̃
T , µαT ) +

∫ T

s

f(r,Xµα ;s,x,α̃
r , µαr , α̃(r,X

µα ;s,x,α̃
r ))dr

]

.

(6.3)

Here we abuse the notations by using the same notations as in the discrete setting. Clearly

u(s, x) := J(µα; s, x, α̃) and v(s, x) := v(µα; s, x) satisfy the following linear PDE and

standard HJB equation on [t, T ]× R
d, respectively, with parameter µα:

∂su(s, x) +
1

2
tr
(

∂xxu(s, x)
)

+ b(s, x, µαs , α̃(s, x)) · ∂xu(s, x) + f(s, x, µαs , α̃(s, x)) = 0;

∂tv(s, x) +
1

2
tr
(

∂xxv(s, x)
)

+ inf
a∈A

[

b(s, x, µαs , a) · ∂xv(s, x) + f(s, x, µαs , a)
]

= 0;

u(T, x) = v(T, x) = g(x, µαT ).

(6.4)

Definition 6.2 Fix (t, µ) ∈ [0, T ] × P2. For any ε > 0, we say α∗ ∈ Acont is an ε-MFE at

(t, µ), denoted as α∗ ∈ Mε
cont(t, µ), if

∫

Rd

[

J(t, µ, α∗;x, α∗)− v(µα
∗
; t, x)

]

µ(dx) ≤ ε. (6.5)

Remark 6.3 Similar to (5.4) and (5.5), here we do not require α∗ to be optimal for every

player x. In fact, alternatively, we may replace (6.5) with

µ
{

x : |J(t, µ, α∗;x, α∗)− v(µα
∗
; t, x)| > ε

}

< ε. (6.6)

The intuition is that, since there are infinitely many players, we shall tolerate that a small

portion of players may not be happy for the α∗, as in [11], and their possible deviation from

α∗ won’t change the equilibrium measure µα
∗
significantly. We note that, although (6.6)

and (6.5) are not equivalent for fixed ε, they define the same set value in (6.8) below, and

the proofs are slightly easier by using (6.5).
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However, if we require the ε-optimality for µ-a.e. x, namely the probability in the left

side of (6.6) becomes 0, then the set value will be different and may not satisfy the DPP.

Such difference would disappear in the discrete model though.

To define the set value, we need the following simple but crucial regularity result, whose

proof is postponed to Appendix.

Lemma 6.4 Let Assumption 6.1 hold. There exists a constant C > 0, depending only on

T, d,C0, L0, such that, for any t, µ, α, α̃ and s ≥ t,

∣

∣J(µα; α̃, s, x)− J(µα; α̃, s, x̃)
∣

∣+
∣

∣v(µα; s, x)− v(µα; s, x̃)
∣

∣ ≤ C|x− x̃|, ∀x, x̃. (6.7)

We then define the set value of the mean field game:

Vcont(t, µ) :=
⋂

ε>0

V
ε
cont(t, µ), where

V
ε
cont(t, µ) :=

{

ϕ ∈ CLip(R
d) : there exists α∗ ∈ Mε

cont(t, µ) such that
∫

Rd

∣

∣ϕ(x)− J(t, µ, α∗;x, α∗)
∣

∣µ(dx) ≤ ε
}

.

(6.8)

In particular, since J(t, µ, α∗;x, α∗) ≥ v(µα
∗
; t, x), then by (6.7) and (6.5) we see that both

J(t, µ, α∗; ·, α∗) and v(µα
∗
; t, ·) belong to Vcont(t, µ). Moreover, again due to (6.5), we may

replace the inequality in the last line of (6.8) with
∫

Rd

∣

∣ϕ(x)− v(µα
∗
; t, x)

∣

∣µ(dx) ≤ ε.

Similarly, given T0 and ψ ∈ CLip(R
d), we may define the functions J(T0, ψ; t, µ, α;x, α̃),

J(T0, ψ;µ
α; s, x, α̃), v(T0, ψ;µ

α; s, x), as well as the sets Mε
cont(T0, ψ; t, µ), V

ε
cont(T0, ψ; t, µ),

Vcont(T0, ψ; t, µ) in the obvious sense. In particular, we have the following tower property:

J(t, µ, α;x, α̃) = J(T0, ψ; t, µ, α;x, α̃), where ψ(x) := J(T0, µ
α
T0
, α;x, α̃);

v(µα; t, x) = v(T0, ψ̃;µ
α; t, x), where ψ̃(x) := v(µα;T0, x).

(6.9)

We now establish the DPP for Vcont(t, µ).

Theorem 6.5 Let Assumption 6.1 hold. For any 0 ≤ t ≤ T0 ≤ T and µ ∈ P2, it holds

Vcont(t, µ) = Ṽcont(t, µ) :=
⋂

ε>0

Ṽ
ε
cont(t, µ), where

Ṽ
ε
cont(t, µ) :=

{

ϕ ∈ CLip(R
d) :

∫

Rd

|ϕ(x) − J(T0, ψ; t, µ, α
∗;x, α∗)|µ(dx) ≤ ε,

for some (ψ,α∗) satisfying: ψ ∈ V
ε
cont(T0, µ

α∗

T0
), α∗ ∈ Mε

cont(T0, ψ; t, µ)
}

.

(6.10)
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Proof (i) We first prove Vcont(t, µ) ⊂ Ṽcont(t, µ). Fix ϕ ∈ Vcont(t, µ), ε > 0, and set

ε1 :=
ε
2 . Since ϕ ∈ V

ε1
cont(t, µ), there exists α∗ ∈ Mε1

cont(t, µ) satisfying (6.8) for ε1. Denote

ψ(x) := J(T0, µ
α∗

T0
, α∗;x, α∗), ψ̃(x) := v(µα

∗
;T0, x).

By (6.9) we have J(T0, ψ; t, µ, α
∗;x, α∗) = J(t, µ, α∗;x, α∗) and thus

∫

Rd

∣

∣ϕ(x)− J(T0, ψ; t, µ, α
∗;x, α∗)

∣

∣µ(dx) ≤ ε1 ≤ ε.

We shall show that ψ ∈ V
ε
cont(T0, µ

α∗

T0
) and α∗ ∈ Mε

cont(T0, ψ; t, µ). Then ϕ ∈ Ṽ
ε
cont(t, µ),

and therefore, since ε > 0 is arbitrary, we have ϕ ∈ Ṽ(t, µ).

Step 1. In this step we show that
∫

Rd

[

J(T0, µ
α∗

T0
, α∗;x, α∗)− v(µα

∗
;T0, x)

]

µα
∗

T0
(dx) =

∫

Rd

[ψ(x)− ψ̃(x)]µα
∗

T0
(dx) ≤ ε1. (6.11)

Then α∗ ∈ Mε
cont(T0, µ

α∗

T0
), which, together with the regularity of ψ from Lemma 6.4, implies

immediately that ψ ∈ V
ε
cont(T0, µ

α∗

T0
).

To see this, we recall (6.2) with ξ ∈ L
2(t, µ). Since α∗ ∈ Mε1

cont(t, µ), by (6.9) we have

ε1 ≥ E

[

J(t, µ, α∗; ξ, α∗)− v(µα
∗
; t, ξ)

]

= E

[

J(T0, ψ; t, µ, α
∗; ξ, α∗)− v(T0, ψ̃;µ

α∗
; t, ξ)

]

≥ E

[

J(T0, ψ; t, µ, α
∗; ξ, α∗)− J(T0, ψ̃; t, µ, α

∗; ξ, α∗)
]

= E

[

ψ(Xt,ξ,α∗

T0
)− ψ̃(Xt,ξ,α∗

T0
)
]

.

Note that L
X

t,ξ,α∗

T0

= µα
∗

T0
, then this is exactly (6.11).

Step 2. It remains to show that α∗ ∈ Mε
cont(T0, ψ; t, µ). By the definition of v and its

regularity from Lemma 6.4, there exists α̃∗ ∈ Acont such that

J(T0, ψ; t, µ, α
∗;x, α̃∗) ≤ v(T0, ψ;µ

α∗
; t, x) + ε1, ∀x ∈ R

d.

Then, denoting α̂∗ := α̃∗ ⊕T0 α
∗ ∈ Acont, by (6.9) again we have

E

[

J(T0, ψ; t, µ, α
∗; ξ, α∗)− v(T0, ψ;µ

α∗
; t, ξ)

]

≤ E

[

J(T0, ψ; t, µ, α
∗; ξ, α∗)− J(T0, ψ; t, µ, α

∗; ξ, α̃∗)
]

+ ε1

= E

[

J(t, µ, α∗; ξ, α∗)− J(t, µ, α∗; ξ, α̂∗)
]

+ ε1

≤ E

[

J(t, µ, α∗; ξ, α∗)− v(µα
∗
; t, ξ)

]

+ ε1 ≤ ε1 + ε1 = ε,

This means α∗ ∈ Mε
cont(T0, ψ; t, µ).

(ii) We next prove Ṽcont(t, µ) ⊂ Vcont(t, µ). Fix ϕ ∈ Ṽcont(t, µ), ε > 0, and set ε1 := ε
4 .

Since ϕ ∈ Ṽ
ε1
cont(t, µ), there exist (ψ,α∗) satisfying the desired properties in (6.10) for ε1.
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In particular, since ψ ∈ V
ε1
cont(T0, µ

α∗

T0
), there exists desired α̃∗ ∈ Mε1

cont(T0, µ
α∗

T0
) required in

(6.8) for ε1. Denote α̂∗ := α∗ ⊕T0 α̃
∗ ∈ Acont and

ψ̂(x) := J(T0, µ
α∗

T0
, α̃∗;x, α̃∗), ψ̃(x) := v(µα̂

∗
;T0, x).

By (6.10),

E

[

∣

∣J(T0, ψ; t, µ, α
∗; ξ, α∗)− J(T0, ψ̂; t, µ, α

∗; ξ, α∗)
∣

∣

]

(6.12)

= E

[

∣

∣ψ(Xµα∗
;t,ξ,α∗

T0
)− ψ̂(Xµα∗

;t,ξ,α∗

T0
)
∣

∣

]

=

∫

Rd

∣

∣ψ(x)− J(T0, µ
α∗

T0
, α̃∗;x, α̃∗)

∣

∣µα
∗

T0
(dx) ≤ ε1

Then, since ϕ ∈ Ṽ
ε1
cont(t, µ) with corresponding (ψ,α∗), by (6.9) and (6.12) we have

E

[

∣

∣ϕ(ξ)− J(t, µ, α̂∗; ξ, α̂∗)
∣

∣

]

≤ E

[

∣

∣ϕ(ξ) − J(T0, ψ; t, µ, α
∗; ξ, α∗)

∣

∣

]

+ ε1 ≤ 2ε1 ≤ ε,

where ξ ∈ L
2(t, µ). We claim further that α̂∗ ∈ Mε

cont(t, µ). Then ϕ ∈ V
ε
cont(t, µ), and thus

ϕ ∈ Vcont(t, µ), since ε > 0 is arbitrary.

To see the claim, since α∗ ∈ Mε1
cont(T0, ψ; t, µ), α̃

∗ ∈ Mε1
cont(T0, µ

α∗

T0
), by (6.9) we have

E

[

J(t, µ, α̂∗; ξ, α̂∗)− v(µα̂
∗
; t, ξ)

]

= E

[

J(T0, ψ̂; t, µ, α
∗; ξ, α∗)− v(T0, ψ̃;µ

α∗
; t, ξ)

]

≤ E

[

J(T0, ψ; t, µ, α
∗; ξ, α∗)− v(T0, ψ̃;µ

α∗
; t, ξ)

]

+ ε1

≤ E

[

v(T0, ψ;µ
α∗
; t, ξ)− v(T0, ψ̃;µ

α∗
; t, ξ)

]

+ 2ε1

≤ sup
α̃∈Acont

E

[

J(T0, ψ; t, µ, α
∗; ξ, α̃)− J(T0, ψ̃; t, µ, α

∗; ξ, α̃)
]

+ 2ε1

= E
[

ψ(Xt,ξ,α∗

T0
)− ψ̃(Xt,ξ,α∗

T0
)
]

+ 2ε1 ≤ E
[

ψ̂(Xt,ξ,α∗

T0
)− ψ̃(Xt,ξ,α∗

T0
)
]

+ 3ε1 ≤ ε1 + 3ε1 = ε.

This means α̂∗ ∈ Mε
cont(t, µ), and hence completes the proof.

Remark 6.6 (i) Our set value Vcont(t, µ) is defined for each (t, µ) with elements in CLip(R
d),

instead of V(t, x, µ) ⊂ R for each (t, x, µ). This is consistent with (2.7) in the discrete model,

and is due to the fact that an ε-MFE α∗ in Definition 6.2 depends on (t, µ), but is common

for all initial states x. Indeed, if we define Vcont(t, x, µ) in an obvious manner, it will not

satisfy the DPP.

(ii) The above observation is also consistent with the fact that the following master

equation is local in (t, µ), but non-local in x due to the term ∂xV (t, x̃, µ):

∂tV (t, x, µ) +
1

2
tr (∂xxV ) +H(x, µ, ∂xV )

+

∫

Rd

[1

2
tr (∂x̃µV (t, x, µ, x̃)) + ∂pH(x̃, µ, ∂xV (t, x̃, µ))∂µV (t, x, µ, x̃)

]

µ(dx̃) = 0.
(6.13)
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Under appropriate conditions, in particular under certain monotonicity conditions, the

above master equation has a unique solution and we have Vcont(t, µ) = {V(t, µ)} is a single-

ton, where V(t, µ)(x) := V (t, x, µ) is a function of x. In this way, we may also view (6.13)

as a first order ODE on the space C2(Rd) (the regularity in x is a lot easier to obtain):

∂tV(t, µ) +H(µ,V(t, µ)) +M(µ,V(t, µ), ∂µV(t, µ)) = 0,

where H(µ, v(·))(x) := 1

2
tr (∂xxv(x)) +H(x, µ, ∂xv(x)),

M(µ, v(·), ṽ(·, ·))(x) :=
∫

Rd

[1

2
tr (∂x̃ṽ(x, x̃)) + ∂pH(x̃, µ, ∂xv(x̃))ṽ(x, x̃)

]

µ(dx̃).

(6.14)

It could be interesting to explore master equations from this perspective as well.

6.2 Convergence of the N-player game

By enlarging the filtered probability space (Ω,F ,F,P), if necessary, we let B1, · · · , BN be

independent d-dimensional Brownian motions on it. Set A∞
cont := ∪L≥0AL

cont, where, for

each L ≥ 0, AL
cont denotes the set of admissible controls α : [0, T ]×R

d ×P2 → A such that

|α(t, x, µ) − α(t, x̃, µ̃)| ≤ Lα|x− x̃|+ LW1(µ, µ̃).

Here the Lipschitz constant Lα may depend on α, hence the Lipschitz continuity in x is not

uniform in α. We emphasize that the Lipschitz continuity in µ is under W1, rather than

W2, so that we can use the representation (6.1). Note that Acont = A0
cont, and by Remark

3.1 (i), all the results in the previous subsection remain true if we replace Acont with A∞
cont.

Given t ∈ [0, T ], ~x = (x1, · · · , xN ) ∈ R
dN and ~α = (α1, · · · , αN ) ∈ (AL

cont)
N , consider

Xt,~x,~α;i
s = xi +

∫ s

t

b
(

r,Xt,~x,~α;i
r , µt,~x,~αr , αi(r,X

t,~x,~α;i
r , µt,~x,~αr )

)

dr +Bi
s −Bi

t , i = 1, · · · , N ;

where µt,~x,~αs :=
1

N

N
∑

i=1

δ
X

t,~x,~α;i
s

;

Ji(t, ~x, ~α) := E

[

g(Xt,~x,~α;i
T , µ

t,~x,~α
T ) +

∫ T

t

f
(

s,Xt,~x,~α;i
s , µt,~x,~αs , αi(s,X

t,~x,~α;i
s , µt,~x,~αs )

)

ds
]

,

v
N,L
i (t, ~x, ~α) := inf

α̃∈AL
cont

Ji(t, ~x, (~α
−i, α̃)).

(6.15)

In light of Lemma 6.4, the following regularity result is interesting in its own right.

However, since it will not be used for our main result, we postpone its proof to Appendix.

Proposition 6.7 Let Assumption 6.1 hold. For any L ≥ 0, there exists a constant CL > 0,

depending only on T, d,C0, L0, and L, such that, for any (t, ~x) ∈ [0, T ] × R
dN , x̄, x̃ ∈ R

d,

and ~α ∈ (AL
cont)

N , we have

∣

∣v
N,L
i

(

t, (~x−i, x̄), ~α
)

− v
N,L
i

(

t, (~x−i, x̃), ~α
)
∣

∣ ≤ CL|x̄− x̃|, i = 1, · · · , N. (6.16)
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Given α ∈ AL
cont, by viewing it as the homogeneous control (α, · · · , α), we may use the

simplified notations Xt,~x,α;i, µt,~x,α, Ji(t, ~x, α), and v
N,L
i (t, ~x, α) in the obvious sense.

Definition 6.8 (i) For (t, ~x) ∈ [0, T ]×R
dN, ε > 0, L ≥ 0, we call α∗ ∈ AL

cont a homogeneous

(ε, L)-equilibrium of the N -player game at (t, ~x), denoted as α∗∈MN,ε,L
cont (t, ~x), if

1

N

N
∑

i=1

[

Ji(t, ~x, α
∗)− v

N,L
i (t, ~x, α∗)

]

≤ ε. (6.17)

(ii) The set value for the N -player game is defined as:

V
N
cont(t, ~x) :=

⋂

ε>0

V
N,ε
cont(t, ~x) :=

⋂

ε>0

⋃

L≥0

V
N,ε,L
cont (t, ~x), where (6.18)

V
N,ε,L
cont (t, ~x) :=

{

ϕ ∈ CLip(R
d) : ∃α∗ ∈ MN,ε,L

cont (t, ~x) s.t.
1

N

N
∑

i=1

|ϕ(xi)− Ji(t, ~x, α
∗)| ≤ ε

}

.

We remark that, although V
N,ε,L
cont (t, ~x) involves only the values {ϕ(xi)}1≤i≤N , for the

convenience of the convergence analysis we consider its elements as ϕ ∈ CLip(R
d).

Remark 6.9 (i) Recall (3.1). By the required symmetry, obviously there exist functions

JN , vN,L : [0, T ]× P2 ×AL
cont × R

d → R such that

Ji(t, ~x, α) = JN (t, µN~x , α;xi), v
N,L
i (t, ~x, α) = vN,L(t, µN~x , α;xi), i = 1, · · · , N. (6.19)

Moreover, VN
cont(t, ~x) is invariant in µN~x and thus can be denoted as V

N
cont(t, µ

N
~x ).

(ii) The required inequalities in Definition 6.8 are equivalent to:

∫

Rd

[JN − vN,L](t, µN~x , α
∗;x)µN~x (dx) ≤ ε,

∫

Rd

[

ϕ(x)− JN (t, µN~x , α
∗;x)

]

µN~x (dx) ≤ ε.

We now turn to the convergence, starting with the convergence of the equilibrium mea-

sures. Recall the vector (α, α̃)i introduced in (3.6).

Theorem 6.10 Let Assumption 6.1 hold. For any L ≥ 0, there exists a constant CL > 0,

depending only on T, d,C0, L0, and L, such that, for any t ∈ [0, T ], ~x ∈ R
dN , µ ∈ P2,

α, α̃ ∈ AL
cont, and i = 1, · · · , N ,

sup
t≤s≤T

E

[

W1(µ
t,~x,(α,α̃)i
s , µαs )

]

≤ CLθN , (6.20)

where θN :=W1(µ
N
~x , µ) +N− 1

d∨3 ‖~x‖2 +N−1, ‖~x‖22 :=
1

N

N
∑

i=1

|xi|2.
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Proof Recall (6.15) and introduce, for j = 1, · · · , N ,

X̃j
s = xj +

∫ s

t

b(r, X̃j
r , µ

α
r , α(r, X̃

j
r , µ

α
r ))dr +Bj

s −B
j
t , µ̃Ns :=

1

N

N
∑

j=1

δ
X̃

j
s
;

X̃s = ξ̃ +

∫ s

t

b(r, X̃r , µ
α
r , α(r, X̃r , µ

α
r ))dr +Bs −Bt, where ξ̃ ∈ L

2(F0;µ
N
~x ).

(6.21)

Note that X̃1, · · · , X̃N are independent. We proceed the rest of the proof in two steps.

Step 1. In this step we estimate E
[

W1(µ̃
N
s , µ

α
s )
]

. First, by [38, Lemma 8.4] we have

E
[

W1(µ̃
N
s ,LX̃s

)
]

≤ CN− 1
d∨3‖~x‖2.

Next, fix an ϕ in (6.1) and let u = uϕ denote the solution to the following PDE on [t, s]:

∂ru+
1

2
tr
(

∂xxu
)

+ b(r, x, µαs , α(r, x, µ
α
r )) · ∂xu = 0, u(s, x) = ϕ(x). (6.22)

Applying Lemma 6.4 with α̃(r, x) := α(r, x, µαr ) and f = 0, we see that u is uniformly

Lipschitz continuous in x, with a Lipschitz constant C independent of ϕ and L. Thus,

E
[

ϕ(X̃s)− ϕ(Xα
s )

]

= E
[

u(t, ξ̃)− u(t, ξ)
]

≤ CE[|ξ̃ − ξ|].

Since F0 is atomless, we may choose ξ, ξ̃ such that E[|ξ̃−ξ|] =W1(µ
N
~x , µ), then (6.1) implies

W1(LX̃s
, µαs ) ≤ CW1(µ

N
~x , µ). Put together, we have

E
[

W1(µ̃
N
s , µ

α
s )
]

≤ CW1(µ
N
~x , µ) + CN− 1

d∨3‖~x‖2 ≤ CθN , t ≤ s ≤ T. (6.23)

Step 2. We next estimate E
[

W1(µ
t,~x,(α,α̃)i
s , µαs )

]

. Denote αi := α̃, αj := α for j 6= i, and

β
j
s := b(s, X̃j

s , µ̃
N
s , αj(s, X̃

j
s , µ̃

N
s ))− b(s, X̃j

s , µ
α
s , α(s, X̃

j
s , µ

α
s )), 1 ≤ j ≤ N

Ms :=
∏N

j=1M
j
s , M

j
s := exp

(

∫ s

t
β
j
rdB

j
r − 1

2

∫ s

t
|βjr |2dr

)

.

Then, by the Girsanov theorem we have

E
[

W1(µ
t,~x,(α,α̃)i
s , µαs )

]

= E
[

MsW1(µ̃
N
s , µ

α
s )
]

= E
[

[Ms − 1]W1(µ̃
N
s , µ

α
s )
]

+ E
[

W1(µ̃
N
s , µ

α
s )
]

=
N
∑

j=1

E

[

∫ s

t

Mrβ
j
rdB

j
r W1(µ̃

N
s , µ

α
s )
]

+ E
[

W1(µ̃
N
s , µ

α
s )
]

. (6.24)

By the martingale representation theorem, we have

W1(µ̃
N
s , µ

α
s ) = E

[

W1(µ̃
N
s , µ

α
s )
]

+

N
∑

j=1

∫ s

t

Zj
rdB

j
r . (6.25)
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Note that X̃j are independent. Consider the following linear PDE on [t, s]× R
dN :

∂ru(r, ~x
′) +

1

2

N
∑

j=1

tr
(

∂xjxj
u(r, ~x′)

)

+

N
∑

j=1

b(r, x′j , µ
α
s , α(r, x

′
j , µ

α
r )) · ∂xj

u(r, ~x′) = 0,

u(s, ~x′) =W1(µ
N
~x′ , µ

α
s ).

(6.26)

By standard BSDE theory, see e.g. [43, Chapter 5], we have Zj
r = ∂xj

u(r, ~Xt,~x
r ), where

X
t,~x,j
r := xj + B

j
r − B

j
t . Note that the terminal condition u(s, ~x′) is Lipschitz continuous

in x′j with Lipschitz constant 1
N . Then, similarly to (6.22), by Lemma 6.4 we see that

|Zj| ≤ |∂xj
u| ≤ C

N for some constant C independent of α and L. Thus, by (6.24) and (6.25),

E

[

W1(µ
t,~x,(α,α̃)i
s , µαs )−W1(µ̃

N
s , µ

α
s )
]

=

N
∑

j=1

E

[

∫ s

t

Mrβ
j
r · Zj

rdr
]

≤ C

N

N
∑

j=1

E

[

∫ s

t

Mr|βjr |dr
]

.

Note that |βi| ≤ C and, for j 6= i, |βjr | ≤ CLW1(µ̃
N
r , µ

α
r ). Then, by (6.23),

E

[

W1(µ
t,~x,(α,α̃)i
s , µαs )

]

≤ E
[

W1(µ̃
N
s , µ

α
s )
]

+
C

N
E

[

∫ s

t

Mr|βir|dr +
∑

j 6=i

∫ s

t

Mr|βjr |dr
]

≤ E
[

W1(µ̃
N
s , µ

α
s )
]

+
C

N
+
CL

N

∑

j 6=i

E

[

∫ s

t

MrW1(µ̃
N
r , µ

α
r )dr

]

=
C

N
+ CLθN ≤ CLθN ,

proving (6.20).

Theorem 6.11 For the setting in Theorem 6.10, we have
∣

∣

∣
Ji(t, ~x, (α, α̃)i)− J(t, µ, α;xi, α̃)

∣

∣

∣
+

∣

∣

∣
v
N,L
i (t, ~x, α)− v(µα; t, xi)

∣

∣

∣
≤ CLθ

1
4
N . (6.27)

Proof Fix i. First, by taking supremum over α̃ ∈ AL
cont, the uniform estimate for J

implies that for v immediately. So it suffices to prove the former estimate.

For this purpose, recall (6.15) and denote

J̃i(t, ~x, (α, α̃)i) := E
P

[

g(X
t,~x,(α,α̃)i;i
T , µαT ) +

∫ T

t

f(s,Xt,~x,(α,α̃)i;i
s , µαs , α̃(s,X

t,~x,(α,α̃)i;i
s , µαs ))ds

]

.

Then one can easily see that, by applying Theorem 6.10,

∣

∣Ji(t, ~x, (α, α̃)i)− J̃i(t, ~x, (α, α̃)i)
∣

∣ ≤ CL sup
t≤s≤T

E
[

W1(µ
t,~x,(α,α̃)i
s , µαs )

]

≤ CLθN . (6.28)

Next, denote

Xi
s := xi +Bi

s −Bi
t , µ̃

N,i
s := 1

N

[

∑

j 6=i δXt,~x,(α,α̃)i;j
s

+ δXi
s

]

;

βs := b(s,Xi
s, µ

α
s , α̃(s,X

i
s, µ

α
s )), Ms := exp

(

∫ s

t
βrdB

i
r − 1

2

∫ s

t
|βr|2dr

)

;

β̃s := b(s,Xi
s, µ̃

N,i
s , α̃(s,Xi

s, µ̃
N,i
s )), M̃s := exp

(

∫ s

t
β̃rdB

i
r − 1

2

∫ s

t
|β̃r|2dr

)

.
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By (6.3) and (6.15), it follows from the Girsanov theorem again that
∣

∣

∣
J̃i(t, ~x, (α, α̃)i)− J(t, µ, α;xi, α̃)

∣

∣

∣

=
∣

∣

∣
E

[

[

M̃T −MT

][

g(Xi
T , µ

α
T ) +

∫ T

t

f(s,Xi
s, µ

α
s , α̃(s,X

i
s, µ

α
s )ds

]

]∣

∣

∣
≤ CE

[

|M̃T −MT |
]

.

(6.29)

Denote ∆Ms := M̃s −Ms, ∆βs := β̃s − βs. Then, since b is bounded,

E[|∆Ms|2] = E

[

(

∫ s

t

[M̃rβ̃r −Mrβr]dB
i
r

)2
]

= E

[

∫ s

t

[M̃rβ̃r −Mrβr]
2dr

]

≤ C

∫ s

t

E[|∆Mr|2]dr + CE

[

∫ s

t

|M̃r|2|∆βr|2dr
]

≤ C

∫ s

t

E[|∆Mr|2]dr + CE

[

∫ s

t

M̃
3
2
r M̃

1
2
r |∆βr|

1
2dr

]

≤ C

∫ s

t

E[|∆Mr|2]dr + C
(

E

[

∫ s

t

M̃r|∆βr|dr
])

1
2

≤ C

∫ s

t

E[|∆Mr|2]dr + CL

(

E

[

∫ s

t

M̃rW1(µ̃
N,i
r , µαr )dr

])
1
2

= C

∫ s

t

E[|∆Mr|2]dr + CL

(

E

[

∫ s

t

W1(µ
t,~x,(α,α̃)i
r , µαr )dr

])
1
2

≤ C

∫ s

t

E[|∆Mr|2]dr + CLθ
1
2
N ,

where the last inequality thanks to Theorem 6.10. Then, by the Grownwall inequality we

obtain E[|∆Ms|2] ≤ CLθ
1
2
N , and thus (6.29) implies

∣

∣

∣
J̃i(t, ~x, (α, α̃)i)− J(t, µ, α;xi, α̃)

∣

∣

∣
≤ CLθ

1
4
N .

This, together with (6.28), implies the estimate for J in (6.27) immediately.

Theorem 6.12 Let Assumption 6.1 hold. Assume further that lim
N→∞

W1(µ
N
~x , µ) = 0, and

there exists a constant C > 0 such that6 ‖~x‖2 ≤ C for all N . Then

⋂

ε>0

⋃

L≥0

lim
N→∞

V
N,ε,L
cont (t, µN~x ) ⊂ Vcont(t, µ) ⊂

⋂

ε>0

lim
N→∞

V
N,ε,0
cont (t, µ

N
~x ) (6.30)

In particular, since lim
N→∞

V
N,ε,0
cont (t, µ

N
~x ) ⊂

⋃

L≥0

lim
N→∞

V
N,ε,L
cont (t, µN~x ), actually equalities hold.

Proof (i) We first prove the right inclusion in (6.30). Fix ϕ ∈ Vcont(t, µ), ε > 0, and set

ε1 :=
ε
2 . By (6.8) and (6.5), there exists α∗ ∈ Mε1

cont(t, µ) such that
∫

Rd

[

J(t, µ, α∗;x, α∗)− v(µα
∗
; t, x)

]

µ(dx) ≤ ε1,

∫

Rd

∣

∣ϕ(x)− J(t, µ, α∗;x, α∗)
∣

∣µ(dx) ≤ ε1.

6Note again that ~x depends on N . Also, the conditions here are slightly weaker than lim
N→∞

W2(µ
N
~x , µ) = 0.
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Recall Lemma 6.4 and note that ϕ ∈ CLip(R
d), then by (6.1) we have

∫

Rd

[

J(t, µ, α∗;x, α∗)− v(µα
∗
; t, x)

]

µN~x (dx) ≤ ε1 + CW1(µ
N
~x , µ),

∫

Rd

∣

∣ϕ(x)− J(t, µ, α∗;x, α∗)
∣

∣µN~x (dx) ≤ ε1 + CϕW1(µ
N
~x , µ),

where Cϕ may depend on the Lipschitz constant of ϕ. Moreover, by (6.27) we have

1

N

N
∑

i=1

[

Ji(t, ~x, α
∗)− v

N,L
i (t, ~x, α∗)

]

≤ 1

N

N
∑

i=1

[

J(t, µ, α∗;xi, α
∗)− v(µα

∗
; t, xi)

]

+ CLθ
1
4
N

=

∫

Rd

[

J(t, µ, α∗;x, α∗)− v(µα
∗
; t, x)

]

µN~x (dx) + CLθ
1
4
N ≤ ε1 +CLθ

1
4
N ;

1

N

N
∑

i=1

|ϕ(xi)− Ji(t, ~x, α
∗)| ≤ 1

N

N
∑

i=1

|ϕ(xi)− J(t, µ, α∗;xi, α
∗)|+ CLθ

1
4
N

=

∫

Rd

∣

∣ϕ(x)− J(t, µ, α∗;x, α∗)
∣

∣µN~x (dx) +CLθ
1
4
N ≤ ε1 + CL,ϕθ

1
4
N .

We emphasize again that ‖~x‖2 ≤ C is independent of N . Then, by choosing N large enough

such that CLθ
1
4
N ≤ ε1, CL,ϕθ

1
4
N ≤ ε1, we obtain

1

N

N
∑

i=1

[

Ji(t, ~x, α
∗)− v

N,L
i (t, ~x, α∗)

]

≤ ε;
1

N

N
∑

i=1

|ϕ(xi)− Ji(t, ~x, α
∗)| ≤ ε.

This implies that α∗ ∈ MN,ε,0
cont (t, ~x) and ϕ ∈ V

N,ε,0
cont (t, µ

N
~x ), for all N large enough. That is,

ϕ ∈ limN→∞V
N,ε,0
cont (t, ~x) for any ε > 0.

(ii) We next show the left inclusion in (6.30). Fix ϕ ∈
⋂

ε>0

⋃

L≥0

lim
N→∞

V
N,ε,L
cont (t, µN~x ), ε > 0,

and set ε1 := ε
2 . There exist Lε ≥ 0 and an infinite sequence {Nk}k≥1 such that ϕ ∈

V
Nk,ε1,Lε

cont (t, µN~x ) for all k ≥ 1. Recall (6.17) and (6.18), there exists αk ∈ ALε
cont such that

1

Nk

Nk
∑

i=1

[

Ji(t, ~x, α
k)− v

Nk ,Lε

i (t, ~x, αk)
]

≤ ε1;
1

Nk

Nk
∑

i=1

|ϕ(xi)− Ji(t, ~x, α
k)| ≤ ε1.

Note that Lε is fixed, in particular it is independent of k. In light of Remark 3.1 (i) and

denote α̃k(s, x) := αk(s, x, µα
k
), then µα̃

k
= µα

k
. Similarly to (i), by (6.27) we have

∫

Rd

[

J(t, µ, α̃k;x, α̃k)− v(µα
k

; t, x)
]

µ
Nk

~x (dx) ≤ ε1 + CLεθ
1
4
Nk
,

∫

Rd

∣

∣ϕ(x) − J(t, µ, α̃k ;x, α̃k)
∣

∣µN~x (dx) ≤ ε1 + CLεθ
1
4
Nk
.

Then, by Lemma 6.4 and (6.1) we have
∫

Rd

[

J(t, µ, α̃k;x, α̃k)− v(µα
k

; t, x)
]

µ(dx) ≤ ε1 + CLεθ
1
4
Nk

+ CW1(µ
Nk

~x , µ),

∫

Rd

∣

∣ϕ(x)− J(t, µ, α̃k;x, α̃k)
∣

∣µ(dx) ≤ ε1 +CLεθ
1
4
Nk

+ CϕW1(µ
Nk

~x , µ).
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Now choose k large enough (possibly depending on ε and ϕ) such that

CLεθ
1
4
Nk

+ CW1(µ
Nk

~x , µ) ≤ ε1, CLεθ
1
4
Nk

+ CϕW1(µ
Nk

~x , µ) ≤ ε1.

Then we have
∫

Rd

[

J(t, µ, α̃k;x, α̃k)− v(µα
k

; t, x)
]

µ(dx) ≤ ε,

∫

Rd

∣

∣ϕ(x)− J(t, µ, α̃k;x, α̃k)
∣

∣µ(dx) ≤ ε.

This implies that α̃k ∈ Mε
cont(t, µ) and ϕ ∈ V

ε
cont(t, µ). Since ε > 0 is arbitrary, we obtain

ϕ ∈ Vcont(t, µ).

7 Appendix

7.1 The subtle path dependence issue in Remark 4.3

In this subsection we elaborate Remark 4.3 (ii) and (iii). Throughout the subsection, q, F,G

are state dependent as in Section 2. For simplicity, we compare state dependent controls and

path dependent controls only for the raw set values. We set t = 0 hence µ ∈ P0(X0) = P0(S).

We first provide a counterexample to show that the raw set value V0(0, µ) is in general

not equal to the corresponding raw set value V0,path(0, µ) with controls α ∈ Apath.

Example 7.1 Set T = 2, S = {x, x}, A = [a0, 1− a0] for some 0 < a0 <
1
2 , and

q(0, x, µ, a;x) = q(0, x, µ, a;x) =
1

2
, q(1, x, µ, a;x) = a, q(1, x, µ, a;x) = 1− a;

F (0, x, µ, a) = 0, F (1, x, µ, a) = a[1− a], G(x, µ) = µ(x).

Then V0(0, µ) 6= V0,path(0, µ) for general µ ∈ P0(S).

Proof Since |S| = 2, for any µ ∈ P0(S) clearly it suffices to specify µ(x). Fix µ ∈ P0(S).

We first compute V0(0, µ). For any α, α̃ ∈ Astate, it is straightforward to compute:

µα1 (x) =
∑

x0∈S
µ(x0)q(0, x0, µ, α(0, x0);x) =

∑

x0∈S
µ(x0)

1

2
=

1

2
;

µα2 (x) =
∑

x1∈S
µα1 (x1)q(1, x1, µ

α
1 , α(1, x1);x) =

1

2

∑

x1∈S
α(1, x1);

P
µα;0,x0,α̃(X1 = x) = q(0, x0, µ, α(0, x0);x) =

1

2
;

J(0, µ, α;x0, α̃) = E
Pµα;0,x0,α̃

[

G(X2, µ
α
2 ) +

∑

t=0,1

F (t,Xt, µ
α
t , α̃(t,Xt))

]

= µα2 (x) + E
Pµα;0,x0,α̃

[

α̃(1,X1)[1 − α̃(1,X1)]
]

=
1

2

∑

x1∈S
α(1, x1) +

1

2

∑

x1∈S
α̃(1, x1)[1 − α̃(1, x1)]
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Given α, we see that α̃ is a minimizer if and only if α̃(1, x1) ∈ {a0, 1− a0}, ∀x1 ∈ S. Thus,

α∗ ∈ Mstate(0, µ) if and only if α∗(1, x1) ∈ {a0, 1− a0}, ∀x1 ∈ S, and

J(0, µ, α∗;x0, α
∗) =

1

2

∑

x1∈S
α∗(1, x1)[2− α∗(1, x1)]

is independent of x0 (and µ). This implies that V0(0, µ) consists of 3 constant values:

V0(0, µ) =
{

a0[2− a0],
1

2
+ a0 − a20, 1− a20

}

. (7.1)

We next compute V0,path(0, µ). For any α, α̃ ∈ Apath, we still have µα1 (x) = 1
2 and

P
µα;0,x0,α̃(X1 = x) = 1

2 . Moreover,

µα2 (x) =
∑

x0,x1∈S
µ(x0)q(0, x0, µ, α(0, x0);x1)q(1, x1, µ

α
1 , α(1, x0, x1);x)

=
1

2

∑

x0,x1∈S
µ(x0)α(1, x0, x1);

J(0, µ, α;x0, α̃) = E
Pµα;0,x0,α̃

[

G(X2, µ
α
2 ) + F (1,X1, µ

α
1 , α̃(1,X0,X1))

]

= µα2 (x) + E
Pµα;0,x0,α̃

[

α̃(1,X0,X1)[1 − α̃(1,X0,X1)]
]

=
1

2

∑

x̃0,x1∈S
µ(x̃0)α(1, x̃0, x1) +

1

2

∑

x1∈S
α̃(1, x0, x1)[1− α̃(1, x0, x1)].

Similarly, α∗ ∈ Apath is an MFE if and only if α∗(1, x0, x1) ∈ {a0, 1− a0}, ∀x0, x1 ∈ S, and

J(0, µ, α∗;x0, α
∗) =

1

2

∑

x̃0,x1∈S
µ(x̃0)α

∗(1, x̃0, x1) +
1

2

∑

x1∈S
α∗(1, x0, x1)[1 − α∗(1, x0, x1)].

Choose one particular α∗:

α∗(1, x, x1) = a0, α∗(1, x, x1) = 1− a0, ∀x1 ∈ S.

Then

J(0, µ, α∗;x, α∗) =
1

2

[

∑

x1∈S
µ(x)α∗(1, x, x1) +

∑

x1∈S
µ(x)α∗(1, x, x1)

]

+
1

2

∑

x1∈S
α∗(1, x, x1)[1− α∗(1, x, x1)]

= µ(x)a0 + µ(x)[1 − a0] + a0[1− a0],

and similarly,

J(0, µ, α∗;x, α∗) = µ(x)a0 + µ(x)[1− a0] + [1− a0]a0 = J(0, µ, α∗;x, α∗).
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So V0,path(0, µ) contains the constant value µ(x)a0+µ(x)[1−a0]+[1−a0]a0, which depends

on µ and is in general not in the V0(0, µ) in (7.1).

We next turn to relaxed controls. Let Arelax be the path dependent ones in Section 4,

and Astate
relax denote the subset taking the form γ(t, x, da). We emphasize again that here we

are considering state dependent q, F,G. Fix t = 0 and µ ∈ P0(S).

Lemma 7.2 For any γ ∈ Arelax, define

γ̃(s, x, da) :=
1

µ
γ
s (x)

∑

x∈Xs:xs=x

µ
γ
s∧·(x)γ(s,x, da), where µγs (x) :=

∑

x∈Xs:xs=x

µ
γ
s∧·(x). (7.2)

Then γ̃ ∈ Astate
relax and µγ̃s = µ

γ
s .

Proof First it is obvious that

γ̃(s, x,A) =
1

µ
γ
s (x)

∑

x∈Xs:xs=x

µ
γ
s∧·(x)γ(s,x,A) =

1

µ
γ
s (x)

∑

x∈Xs:xs=x

µ
γ
s∧·(x) = 1,

so γ̃ ∈ Astate
relax. Next, by definition µγ̃0 = µ = µ

γ
0 . Assume µγ̃s = µ

γ
s , then for s+ 1,

µ
γ̃
s+1(x) =

∑

x̃∈S
µγ̃s (x̃)

∫

A

q(s, x̃, µγ̃s , a;x)γ̃(s, x̃, da)

=
∑

x̃∈S
µγs (x̃)

∫

A

q(s, x̃, µγs , a;x)
1

µ
γ
s (x̃)

∑

x∈Xs:xs=x̃

µ
γ
s∧·(x)γ(s,x, da)

=
∑

x∈Xs

µ
γ
s∧·(x)

∫

A

q(s,xs, µ
γ
s , a;x)γ(s,x, da) = µ

γ
s+1(x).

This completes the induction argument.

Lemma 7.3 If γ∗ ∈ Arelax is a relaxed MFE at (0, µ), then the corresponding γ̃∗ ∈ Astate
relax

is a state dependent relaxed MFE at (0, µ). Moreover, in this case we have

J(0, µ, γ∗;x, γ∗) = J(0, µ, γ̃∗;x, γ̃∗). (7.3)

Proof First, by Lemma 7.2 it is straightforward to verify that
∫

S

J(0, µ, γ;x, γ)µ(dx) =

∫

S

J(0, µ, γ̃;x, γ̃)µ(dx).

On the other hand, since γ∗ ∈ Arelax, by the standard control theory we have

inf
γ∈Arelax

J(0, µ, γ∗;x, γ) = v(µγ
∗
; 0, x) = v(µγ̃

∗
; 0, x) = inf

γ′∈Astate
relax

J(0, µ, γ̃∗;x, γ′). (7.4)
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Then

∫

S

J(0, µ, γ̃∗;x, γ̃∗)µ(dx) =
∫

S

J(0, µ, γ∗;x, γ∗)µ(dx) =
∫

S

v(µγ̃
∗
; 0, x)µ(dx).

Since J(0, µ, γ̃∗;x, γ̃∗) ≥ v(µγ̃
∗
; 0, x) and supp (µ) = S, then J(0, µ, γ̃∗;x, γ̃∗) = v(µγ̃

∗
; 0, x)

for all x ∈ S. This implies that γ̃∗ ∈ Astate
relax is a state dependent relaxed MFE at (0, µ), and

consequently (7.4) leads to (7.3).

Theorem 7.4 The MFGs with state dependent relaxed controls and path dependent relaxed

controls have the same relaxed raw set value.

Proof By Lemma 7.3, clearly the path dependent raw set value is included in the state

dependent raw set value. On the other hand, for any state dependent relaxed control

γ̂∗ ∈ Astate
relax, we may still view γ∗ := γ̂∗ as a path dependent relaxed control7, and

it is straightforward to verify that the γ̃∗ ∈ Astate
relax corresponding to γ∗ is equal to γ̂∗.

Then, following the arguments in Lemma 7.3, in particular (7.4), one can easily show

that J(0, µ, γ∗;x, γ∗) = v(µγ
∗
; 0, x) and thus γ∗ is also an MFE among Arelax. Therefore,

J(0, µ, γ∗; ·, γ∗) belong to the path dependent raw set value as well.

7.2 Some technical proofs

Proof of Theorem 2.7. Let Ṽstate(t, µ) =
⋂

ε>0 Ṽ
ε
state(t, µ) denote the right side of (2.17)

in the obvious sense. We shall follow the arguments in Theorem 2.4.

(i) We first prove Ṽstate(t, µ) ⊂ Vstate(t, µ). Fix ϕ ∈ Ṽstate(t, µ), ε > 0, and set

ε1 := ε
4 . Since ϕ ∈ Ṽ

ε1
state(t, µ), there exist desirable ψ and α∗ ∈ Mε1

state(T0, ψ; t, µ) as

in (2.17), and the property ψ(·, µα∗

T0
) ∈ V

ε1
state(T0, µ

α∗

T0
) implies further that there exists

α̃∗ ∈ Mε1
state(T0, µ

α∗

T0
) such that

‖ϕ− J(T0, ψ; t, µ, α
∗; ·, α∗)‖∞ ≤ ε1, ‖ψ(·, µα∗

T0
)− J(T0, µ

α∗

T0
, α̃∗; ·, α̃∗)‖∞ ≤ ε1.

Denote α̂∗ := α∗ ⊕T0 α̃
∗ ∈ Astate. Then, for any α ∈ Astate and x ∈ S, similar to the

7While it is trivial that A
state
relax ⊂ A

path
relax := Arelax, as stated here, in general it is not trivial that

M
state
relax ⊂ M

path
relax, because for the latter one has to compare with other path dependent relax controls, which

is a stronger requirement than that for Mstate
relax. The rest of the proof is exactly to prove M

state
relax ⊂ M

path
relax.
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arguments in Proposition 2.3 (i), we have

J(t, µ, α̂∗;x, α) = E
Pµα

∗
;t,x,α

[

J(T0, µ
α∗

T0
, α̃∗;XT0 , α) +

T0−1
∑

s=t

F (s,Xs, µ
α∗

s , α(s,Xs))
]

≥ E
Pµα

∗
;t,x,α

[

J(T0, µ
α∗

T0
, α̃∗;XT0 , α̃

∗) +
T0−1
∑

s=t

F (s,Xs, µ
α∗

s , α(s,Xs))
]

− ε1

≥ E
Pµα

∗
;t,x,α

[

ψ(XT0 , µ
α∗

T0
) +

T0−1
∑

s=t

F (s,Xs, µ
α∗

s , α(s,Xs))
]

− 2ε1

= J(T0, ψ; t, µ, α
∗;x, α) − 2ε1 ≥ J(T0, ψ; t, µ, α

∗;x, α∗)− 3ε1

= E
Pµα

∗
;t,x,α∗[

ψ(XT0 , µ
α∗

T0
) +

T0−1
∑

s=t

F (s,Xs, µ
α∗

s , α∗(s,Xs))
]

− 3ε1

≥ E
Pµα

∗
;t,x,α∗[

J(T0, µ
α∗

T0
, α̃∗;XT0 , α̃

∗) +
T0−1
∑

s=t

F (s,Xs, µ
α∗

s , α∗(s,Xs))
]

− 4ε1

= J(t, µ, α̂∗;x, α̂∗)− ε.

That is, α̂∗ ∈ Mε
state(t, µ). Moreover, note that

‖ϕ− J(t, µ, α̂∗; ·, α̂∗)‖∞ ≤ ε1 + ‖J(T0, ψ; t, µ, α∗; ·, α∗)− J(t, µ, α̂∗; ·, α̂∗)‖∞
= ε1 + sup

x∈S

∣

∣

∣
E
Pµα

∗
;t,x,α∗[

ψ(XT0 , µ
α∗

T0
)− J(T0, µ

α∗

T0
, α̃∗;XT0 , α̃

∗)
]
∣

∣

∣
≤ 2ε1 ≤ ε.

Then ϕ ∈ V
ε
state(t, µ). Since ε > 0 is arbitrary, we obtain ϕ ∈ Vstate(t, µ).

(ii) We now prove the opposite inclusion. Fix ϕ ∈ Vstate(t, µ) and ε > 0. Let ε1 > 0

be a small number which will be specified later. Since ϕ ∈ V
ε1
state(t, µ), there exists α∗ ∈

Mε1
state(t, µ) such that ‖ϕ−J(t, µ, α∗; ·, α∗)‖∞ ≤ ε1. Introduce ψ(x, ν) := J(T0, ν, α

∗;x, α∗).

By (2.10) we have

‖ϕ− J(T0, ψ; t, µ, α
∗; ·, α∗)‖∞ = ‖ϕ− J(t, µ, α∗; ·, α∗)‖∞ ≤ ε1.

Moreover, since α∗ ∈ Mε1
state(t, µ), for any α ∈ Astate and x ∈ S, we have

J(T0, ψ; t, µ, α
∗;x, α∗) = J(t, µ, α∗;x, α∗)

≤ J(t, µ, α∗;x, α⊕T0 α
∗) + ε1 = J(T, ψ; t, µ, α∗;x, α) + ε1.

This implies that α∗ ∈ Mε1
state(T0, ψ; t, µ). We claim further that

ψ(·, µα∗

T0
) ∈ VCε1(T0, µ

α∗

T0
), (7.5)

for some constant C ≥ 1. Then by (2.17) we see that ϕ ∈ Ṽ
Cε1
state(t, µ) ⊂ Ṽ

ε
state(t, µ) by

setting ε1 ≤ ε
C
. Since ε > 0 is arbitrary, we obtain ϕ ∈ Ṽstate(t, µ).
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To show (7.5), we follow the arguments in Proposition 2.3 (ii). Recall v in (2.5) and the

standard DPP (2.11) for v, for any x ∈ S we have

E
Pµα

∗
;t,x,α∗[

J(T0, µ
α∗

T0
, α∗;XT0 , α

∗)
]

≤ inf
α∈Astate

E
Pµα

∗
;t,x,α∗[

J(T0, µ
α∗

T0
, α∗;XT0 , α)

]

+ ε1

= E
Pµα

∗
;t,x,α∗[

v(µα
∗
;T0,XT0)

]

+ ε1,

It is obvious that v(µα
∗
;T0, ·) ≤ J(T0, µ

α∗

T0
, α∗; ·, α∗). Moreover, since q ≥ cq, clearly

P
µα∗

;t,x,α∗
(XT0 = x̃) ≥ cT0−t

0 , for any x̃ ∈ S. Thus, for C := ct−T0
0 ,

0 ≤ J(T0, µ
α∗

T0
, α∗; x̃, α∗)− v(µα

∗
;T0, x̃)

≤ CE
Pµα

∗
;t,x,α∗[

[

J(T0, µ
α∗

T0
, α∗;XT0 , α

∗)− v(µα
∗
;T0,XT0)

]

1{XT0
=x̃}

]

≤ CE
Pµα

∗
;t,x,α∗[

[

J(T0, µ
α∗

T0
, α∗;XT0 , α

∗)− v(µα
∗
;T0,XT0)

]

]

≤ Cε1.

This implies that α∗ ∈ MCε1
state(T0, µ

α∗

T0
). Since ψ(·, µα∗

T0
) = J(T0, µ

α∗

T0
, α∗; ·, α∗), we obtain

(7.5) immediately, and hence ϕ ∈ Ṽstate(t, µ).

Proof of the claim in Remark 4.7. By (4.16) and (4.17) we have

γ(Λ
γ )(s, x̃, da) :=

1

µ
γ
s∧·(x̃)

∫

At
path

Qt
s(µ

γ ; x̃;α)δα(s,x̃)(da)Λ
γ(x, dα)

=
1

µ
γ
s∧·(x̃)

∫

A

· · ·
∫

A

[

s−1
∏

r=t

q(r, x̃, µγ , α(r, x̃);xr+1)
]

× δα(s,x̃)(da)×

[

µ(x)
T−1
∏

r=t

∏

x̄∈Xt,x
s

γ(r, x̄, dα(r, x̄))
]

=
µ(x)

µ
γ
s∧·(x̃)

∫

A

· · ·
∫

A

[

s−1
∏

r=t

q(r, x̃, µγ , α(r, x̃);xr+1)γ(r, x̃, dα(r, x̃))
]

×
[

δα(s,x̃)(da)γ(s, x̃, dα(s, x̃))
∏

x̄∈Xt,x
s \{x̃}

γ(s, x̄, dα(s, x̄))
]

×

[

s−1
∏

r=t

∏

x̄∈Xt,x
s \{x̃}

γ(r, x̄, dα(r, x̄))
][

T−1
∏

r=s

∏

x̄∈Xt,x
s

γ(r, x̄, dα(r, x̄))
]

=
µ(x)

µ
γ
s∧·(x̃)

[

s−1
∏

r=t

∫

A

q(r, x̃, µγ , ā;xr+1)γ(r, x̃, dā)
]

×
[

γ(s, x̃, da)
]

=
µ(x)

µ
γ
s∧·(x̃)

Qt
s(µ

γ ; x̃, γ)γ(s, x̃, da) = γ(s, x̃, da).

That is, γ(Λ
γ) = γ.
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Proof of Lemma 6.4. Clearly the uniform estimate for J(µα; ·) implies that for v(µα; ·),
so we shall only prove the former one. Fix (t, µ) ∈ [0, T ]×P2 and α, α̃ ∈ Acont, and denote

u(s, x) := J(µα; α̃, s, x). By standard PDE theory u is a classical solution to the linear PDE

in (6.4) and we have the following formula: denoting Xs,x
r := x+Br −Bs,

∂xu(s, x) = E
P

[

[g(Xs,x
T , µαT )− g(x, µαT )]

BT −Bs

T − s

+

∫ T

s

[

b(r,Xs,x
t , µαr , α̃(r,X

s,x
r )) · ∂xu(r,Xs,x

r ) + f(r,Xs,x
t , µαr , α̃(r,X

s,x
r ))

]Br −Bs

r − s
dr

]

.

Then, by the Lipschitz continuity of g and the boundedness of b and f ,

|∂xu(s, x)| ≤ E

[

L0
|BT −Bs|2
T − s

+ C0

∫ T

s

[

|∂xu(r,Xs,x
r )|+ 1

] |Br −Bs|
r − s

dr
]

≤ C + C0E

[

∫ T

s

|∂xu(r,Xs,x
r )| |Br −Bs|

r − s
dr

]

.

Denote Ks := eλs supx |∂xu(s, x)|, K̄ := supt≤s≤T Ks, for some constant λ > 0. Then

Ks ≤ Ceλs + C0

∫ T

s

Kre
−λ(r−s)

√
r − s

dr ≤ Ceλs + C0K̄

∫ T

s

e−λ(r−s)

√
r − s

dr

≤ Ceλs + C0K̄

∫ ∞

s

e−λ(r−s)

√
r − s

dr = Ceλs + C0K̄

∫ ∞

0

e−λr

√
r
dr = Ceλs +

C0√
πλ
K̄.

Thus K̄ ≤ C0√
πλ
K̄ + CeλT . Set λ :=

4C2
0

π so that C0√
πλ

= 1
2 , we obtain K̄ ≤ C1 := 2CeλT ,

which implies the desired estimate immediately.

Proof of Proposition 6.7. Fix (t, ~x, ~α, x̄, x̃) and i. For any α̃ ∈ AL
cont, introduce

ᾱ(s, x, µ) := α̃(s, x− x̄+ x̃, µ), and denote

X̄i
s := x̄+Bi

s −Bi
t, Xj

s := xj +Bj
s −B

j
t , j 6= i, ;

µ̄Ns :=
1

N

[

δX̄i
s
+

∑

j 6=i

δ
X

j
s

]

, M̄ j
s := exp

(

∫ s

t

b̄jrdB
j
r −

1

2

∫ s

t

|b̄jr|2dr
)

, j ≥ 1, where

b̄is := b(s, X̄i
s, µ̄

N
s , ᾱ(s, X̄

i
s, µ̄

N
s )), b̄js := b(s,Xj

s , µ̄
N
s , αj(s,X

j
s , µ̄

N
s )), j 6= i.

By the Girsanov Theorem we have

Ji(t, (~x
−i, x̄), (~α−i, ᾱ)) = E

[

[

N
∏

j=1

M̄
j
T

][

g(X̄i
T , µ̄

N
T ) +

∫ T

t

f(s, X̄i
s, µ̄

N
s , ᾱ(s, X̄

i
s, µ̄

N
s ))

]

ds
]

.

Similarly define X̃i, µ̃N , M̃ j , b̃i, b̃j corresponding to (x̃, α̃) in the obvious sense. Then we

have a similar expression as above and ᾱ(s, X̄i
s, µ) = α̃(s, X̃i

s, µ). Therefore,

v
N,L
i

(

t, (~x−i, x̄), ~α
)

− Ji(t, (~x
−i, x̃), (~α−i, α̃))

≤ Ji(t, (~x
−i, x̄), (~α−i, ᾱ))− Ji(t, (~x

−i, x̃), (~α−i, α̃)) ≤ C

N
∑

j=1

K
j
T +K0,

(7.6)
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where

Kj
s := E

[

[

∏

k<j

M̄k
s

][

∏

k>j

M̃k
s

]
∣

∣M̄ j
s − M̃ j

s |
]

, j ≥ 1;

K0 := E

[

N
∏

j=1

M̄
j
T

[

|g(X̄i
T , µ̄

N
T )− g(X̃i

T , µ̃
N
T )|

+

∫ T

t

|f(s, X̄i
s, µ̄

N
s , ᾱ(s, X̄

i
s, µ̄

N
s ))− f(s, X̃i

s, µ̃
N
s , α̃(s, X̃

i
s, µ̃

N
s ))|ds

]

]

.

Denote ∆x := x̄− x̃. Note that

X̄i
s − X̃i

s = ∆x, W1(µ̄
N
s , µ̃

N
s ) ≤ |∆x|

N
,

∣

∣ᾱ(s, X̄i
s, µ̄

N
s )− α̃(s, X̃i

s, µ̃
N
s )

∣

∣ =
∣

∣α̃(s, X̃i
s, µ̄

N
s )− α̃(s, X̃i

s, µ̃
N
s )

∣

∣ ≤ L

N
|∆x|.

(7.7)

By the required Lipschitz continuity, we have

K0 ≤ CE
P

[

N
∏

j=1

M̄
j
T

[

[1 +
1

N
]|∆x|+

∫ T

t

[1 +
L

N
]|∆x|ds

]

]

≤ C|∆x|. (7.8)

Next, introduce

Γj
s := E

[

[

∏

k<j

M̄k
s

][

∏

k>j

M̃k
s

]
∣

∣M̄ j
s |2

]

, ∆Γj
s := E

[

[

∏

k<j

M̄k
s

][

∏

k>j

M̃k
s

]
∣

∣M̄ j
s − M̃ j

s |2
]

.

Note that B1, · · · , BN are independent. By applying the Itô formula, we have

Γj
s = 1 +

∫ s

t

E

[

[

∏

k<j

M̄k
r

][

∏

k>j

M̃k
r

]
∣

∣M̄ j
r b̄

j
r|2

]

dr ≤ 1 + C

∫ s

t

Γj
rdr,

Then Γj
s ≤ C. Thus, by applying the Itô formula again we have

∆Γj
s =

∫ s

t

E

[

[

∏

k<j

M̄k
r

][

∏

k>j

M̃k
r

][

M̄ j
r b̄

j
r − M̃ j

r b̃
j
r]
2
]

dr

≤ C

∫ s

t

E

[

[

∏

k<j

M̄k
r

][

∏

k>j

M̃k
r

][

|M̄ j
r − M̃ j

r |+ M̄ j
r |b̄jr − b̃jr|

]2
]

dr

≤ C

∫ s

t

∆Γj
rdr + C

∫ s

t

E

[

[

∏

k<j

M̄k
r

][

∏

k>j

M̃k
r

][

M̄ j
r |b̄jr − b̃jr|]2

]

dr.

Note that, by (7.7),

|b̄ir − b̃ir| =
∣

∣

∣
b(s, X̄i

s, µ̄
N
s , α̃(s, X̃

i
s, µ̄

N
s ))− b(s, X̃i

s, µ̃
N
s , α̃(s, X̃

i
s, µ̃

N
s ))

∣

∣

∣
≤ CL|∆x|

|b̄jr − b̃jr| ≤
CL

N
|∆x|, j 6= i.
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Then, since Γj
s ≤ C,

∆Γi
s ≤ C

∫ s

t

∆Γi
rdr + CL|∆x|2, ∆Γj

s ≤ C

∫ s

t

∆Γj
rdr +

CL

N2
|∆x|2, j 6= i.

and thus

∆Γi
s ≤ CL|∆x|2, Ki

s ≤
|∆x|
2

+
∆Γi

s

2|∆x| ≤ CL|∆x|;

∆Γj
s ≤

CL

N2
|∆x|2, Kj

s ≤ |∆x|
2N

+
N∆Γj

s

2|∆x| ≤ CL

N
|∆x|, j 6= i.

(7.9)

Then, by (7.6), (7.8) and (7.9) we have

v
N,L
i

(

t, (~x−i, x̄), ~α
)

− Ji(t, (~x
−i, x̃), (~α−i, α̃)) ≤ K0 + CKi

s + C
∑

j 6=i

Kj
s

≤ C|∆x|+ CL|∆x|+ CL

∑

j 6=i

|∆x|
N

≤ CL|∆x|.

Since α̃ ∈ AL is arbitrary, we obtain v
N,L
i

(

t, (~x−i, x̄), ~α
)

− v
N,L
i

(

t, (~x−i, x̃), ~α
)

≤ CL|∆x|.
Similarly we have vN,L

i

(

t, (~x−i, x̃), ~α
)

− v
(

t, (~x−i, x̄), ~α
)

≤ CL|∆x|, and hence (6.16).
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