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Abstract

In this paper we study mean field games with possibly multiple mean field equilibria.
Instead of focusing on the individual equilibria, we propose to study the set of values
over all possible equilibria, which we call the set value of the mean field game. When
the mean field equilibrium is unique, typically under certain monotonicity conditions,
our set value reduces to the singleton of the standard value function which solves the
master equation. The set value is by nature unique, and we shall establish two crucial
properties: (i) the dynamic programming principle, also called time consistency; and
(ii) the convergence of the set values of the corresponding N-player games, which can be
viewed as a type of stability result. To our best knowledge, this is the first work in the
literature which studies the dynamic value of mean field games without requiring the
uniqueness of mean field equilibria. We emphasize that the set value is very sensitive
to the choice of the admissible controls. In particular, for the convergence one has to
restrict to corresponding types of equilibria for the N-player game and for the mean
field game. We shall illustrate this point by investigating three cases, two in finite state

space models and the other in a diffusion model.
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1 Introduction

In this paper we study Mean Field Games (MFG, for short) without monotonicity condi-
tions. There are typically multiple Mean Field Equilibria (MFE, for short) with possibly
different values. Instead of focusing on the individual equilibria, we propose to study the set
of values over all equilibria, which we call the set value of the MFG. Note that the set value
always exists (with empty set as a possible value) and is by definition unique. When the
MFE is unique, typically under certain monotonicity conditions, our set value is reduced to
the singleton of the standard value function of the game, which solves the so called master
equation. So the set value can be viewed as the counterpart of the standard value function
for MFGs without monotonicity conditions, and it indeed shares many nice properties. In

this paper, we focus particularly on two crucial properties of the set value:
e the Dynamic Programming Principle (DPP, for short), or say the time consistency;

e the convergence of the set values of the corresponding N-player games, which can be

viewed as a type of stability result in terms of model perturbation.

For general theory of MFGs, we refer to Caines-Huang-Malhame [7], Lasry-Lions [34], Lions
[36], Cardaliaguet [8], Bensoussan-Frehse-Yam [6], and Camona-Delarue [13], [14].

In standard stochastic control theory, it is well known that the dynamic value function
satisfies the DPP. In fact, this is the underlying reason for the PDE approach to work. For
MFGs under appropriate monotonicity conditions, the value function (at the unique MFE)
also satisfies the DPP, which, together with the It6 formula, leads to the master equation.
However, with the presence of multiple equilibria (see, e.g., Bardi-Fischer [2] for some
examples), to our best knowledge this is the first work in the literature to study the MFG
dynamically and to address the time consistency issue. We show that, when formulated
properly, the dynamic set value function satisfies the DPP. This also opens the door to
a possible PDE approach for these general games by introducing the so called set valued
PDE. We refer to our work [30] for set valued PDEs induced by multivariate stochastic
control problems, and Ma-Zhang-Zhang [37] for numerical methods for set valued PDEs,
and we leave their extension to mean field games for future research. Our set value approach
follows from Feinstein-Rudloff-Zhang [24], which studies nonzero sum games with finitely
many players. See also the related works Abreu-Pearce-Stacchetti [I] and Sannikov [42] in
economics literature, and Feinstein [23] which studies the set of equilibria instead of values.

We note that the set value of games relies heavily on the types of admissible controls

we use. In this paper we shall consider closed loop controls. The open loop equilibria of



games are typically time inconsistent, see e.g. Buckdahn’s counterexample in Pham-Zhang
[40, Appendix E] for a two person zero sum game, and consequently, the set value of games
with open loop controls would violate the DPP. For the MFG, noting that the required
symmetry decomposes the game problem into a standard control problem and a fixed point
problem of measures, and that open loop and closed loop controls yield the same value
function for a standard control problem, it is possible that the set value with open loop
controls still satisfies the DPP. Nevertheless, bearing in mind the DPP of the set value for
more general (non-symmetric) games, as well as the practical consideration in terms of the
information available to the players, we shall focus on closed loop controls. There is also
a very subtle path dependence issue. While the game parameters are state dependent, we
may consider both state dependent and path dependent controls. For general non-zero sum
games (not mean field type), [24] shows that DPP holds for the set value for path dependent
controls, but in general fails for the set value for state dependent controls. For MFGs with
closed loop controls, again due to the required symmetric properties, the set values for both
state dependent controls and path dependent controls will satisfy the DPP, but they are in
general not equal. For MFGs with closed loop relaxed controls, or say closed loop mixed
strategies, however, it turns out that the state dependent controls and the path dependent
controls induce the same set value which still satisfies the DPP.

We next turn to the convergence issue. Let V and V& denote the set values of the MFG
and the corresponding N-player games, respectively, under appropriate closed-loop controls.

Our convergence result reads roughly as follows (the precise form is slightly different):

N—oo

N
1
lim VN(0,%) = V(0,1), when p2 := N Z‘Sri — W (1.1)
i=1

In the realm of master equations, again under certain monotonicity conditions and hence
with unique MFE, one can show that the values of the N-player games converge to the value
of the MFG. See Cardaliaguet-Delarue-Lasry-Lions [10], followed by Bayraktar-Cohen [3],
Cardaliaguet [9], Cecchin-Pelino [I7], Delarue-Lacker-Ramanan [20} 21], Gangbo-Meszaros
[29], and Mou-Zhang [38], to mention a few. So (1)) can be viewed as their natural
extension to MFGs without monotonicities.

We emphasize again that the set value is very sensitive to the types of admissible controls.
To ensure the convergence, one simple but crucial observation is that the N-player game
and the MFG should use the "same” type of controls (more precisely, corresponding types of
controls in appropriate sense). We illustrate this point by considering two cases. Note that

in the standard literature each player is required to use the same closed loop control along an



MFE. For the first case, we will obtain the desired convergence by restricting the N-player
game to homogeneous equilibria, namely each player also uses the same closed loop control.
In the second case, we remove such restriction and consider heterogenous equilibria for the
N-player games. Note that a closed loop control means the control depends only on the
state. In this heterogenous case players with the same state may choose different controls,
then one can not expect in the limit they will have to use the same contro. Indeed, in
this case the limit is characterized by the MFG with closed loop relaxed controls, or say
closed loop mixed strategies, which exactly means players with the same state may still
have a distribution of controls to choose from. However, since our relax control for MFG is
still homogeneous, namely each player uses the same relax control, the controls for N-player
game and for MFG appear to be in different forms. Our approach is to introduce a new
formulation for the MFG, which embeds the structure of heterogenous controls and shares
the same set value as the relax control formulation of the MFG. For the homogeneous case,
we will investigate both a discrete time model with finite state space and a continuous time
diffusion model with drift controls. But for the heterogeneous case we will investigate the
discrete model only. The diffusion model in such case involves some technical challenges for
the convergence and we shall leave it for future research. We shall point out that, however,
the DPP would hold in much more general models without significant difficulties.

To ensure the convergence, another main feature is that we define the set value as
the limit of the approximate set values over approximate equilibria, rather than the true
equilibria. We call the latter the raw set value, and both the set value and the raw set value
satisfy the DPP. However, the raw set value is extremely sensitive to small perturbations
of the game parameters, in fact, in general even its measurability is not clear, so one can
hardly expect the convergence for the raw set values. In the standard control theory, the
value function is defined as the infimum of controlled values, which is exactly the limit of
values over approximate optimal controls, rather than the value over true optimal controls
which may not even exist. So our set value, not the raw set value, is the natural extension of
the standard value function in control theory. Moreover, since we are considering infinitely
many players, an approximate equilibrium means it is approximately optimal for most
players, but possibly with a small portion of exceptions, as introduced in Carmona [I1].

At this point we should mention that, for MFGs without monotonicity conditions, there

have been many publications on the convergence of N-player games, in terms of equilibria

"When the MFE is unique, under appropriate monotonicity conditions, the set value becomes a singleton
and it is not sensitive to the type of admissible controls anymore. Consequently, the convergence becomes

possible even if the N-player games and the MFG use different types of controls, see e.g. [10]



instead of values. For open loop controls, we refer to Camona-Delarue [12], Feleqi [25],
Fischer [26], Fischer-Silva [27], Lacker [31], Lasry-Lions [34], Lauriere-Tangpi [35], and Nutz-
San Martin-Tan [39], to mention a few. In particular, [31] provides the full characterization
for the convergence: any limit of approximate Nash equilibria of N-player games is a weak
MFE, and conversely any weak MFE can be obtained as such a limit. The work [26] is also
in this direction. For closed loop controls, which we are mainly interested in, the situation

becomes much more subtle. The seminal paper Lacker [32] established the following result:
{Strong MFEs} C {Limits of N-player approx. equilibria} C {Weak MFEs}. (1.2)

Here an MFE is strong if it depends only on the state processes, and weak if it allows for
additional randomness. The left inclusion in (2] was known to be strict in general. This
work has very interesting further developments recentl by Lacker-Flem [33] and Djete
[22]. In particular, [22] shows that the right inclusion in ([2]) is actually an equality.

We emphasize again that we are considering the convergence of sets of values, rather
than sets of equilibria as in ([.2]). For standard control problems, the focus is typically
to characterize the (unique) value and to find one (approximate) optimal control, and the
player is less interested in finding all optimal controls since they have the same value. The
situation is quite different for games, because different equilibria can lead to different values.
Then it is not satisfactory to find just one equilibrium (especially if it is not Pareto optimal).
However, for different equilibria which lead to the same value, the players are indifferent on
them. So for practical purpose the players would be more interested in finding all possible
ValueEH and then to find one (approximate) equilibrium for each value. This is one major
motivation that we focus on the set value, rather than the set of all equilibria. We also note
that in general the set value could be much simpler than the set of equilibria. For example,
in the trivial case that both the terminal and the running cost functions are constants, the
set value is a singleton, while the set of equilibria consists of all admissible controls.

We should point out that our admissible controls differ from those in [22, [32] [33] in two
aspects, due to both practical and technical considerations. First, for the N-player games,
[22, 132], 33] use full information controls a;(t, X}, -+, X}V), while we consider symmetric
controls o (t, X}, uf’), where X} is the state of Player 4, and p¥ = + Zjvzl 5th- is the
empirical measure of all the players’ states. Note that, as a principle the controls should

depend only on the information the players observe. While both settings are very interesting,

2These two works [22] [33] were circulated slightly after our present paper.
3 Another very interesting question is how to choose an optimal (in appropriate sense) value after char-

acterizing the set value. We shall leave this for future research.



since N is large, the full information may not be available in many practical situations.

The second difference is that we assume each control is Lipschitz continuous in y, while
[22, 32 [33] allow for measurable controls. We shall emphasize though we allow the Lips-
chitz constant to depend on the control, and thus our set value does not depend on any
fixed Lipschitz constant. Roughly speaking, we are considering game values which can be
approximated by Lipschitz continuous approximate equilibria. This is typically the case in
the standard control theory: even if the optimal control is discontinuous, in most reasonable
framework we should be able to find Lipschitz continuous approximate optimal controls.
The situation is more subtle for games. There indeed may exist (closed loop) equilibrium
whose value cannot be approximated by any Lipschitz continuous approximate equilibria.
While clearly more general and very interesting mathematically, such measurable equilibria
are hard to implement in practice, since inevitably we have all sorts of errors in terms of
the information, or say, data. Their numerical computation is another serious challenge.
For example, in the popular machine learning algorithm, the key idea is to approximate the
controls via composition of linear functions and the activation function, then by definition
the optimal controls/equilibria provided by these algorithms are (locally) Lipschitz continu-
ous. That is, the game values falling out of our set value are essentially out of reach of these
algorithms, see e.g. [37]. Moreover, as a consequence of our constraints, our proof of (L))
is technically a lot easier than the compactness arguments for (L2)) used in [22] [32] 33].

Finally we would like to mention some other approaches for MFGs with multiple equi-
libria. One is to add sufficient (possibly infinitely dimensional) noise so that the new game
will become non-degenerate and hence have unique MFE, see e.g. Bayraktar-Cecchin-
Cohen-Delarue [4}, 5], Delarue [1§], Delarue-Foguen Tchuendom [19], Foguen Tchuendom
[28]. Another approach is to study a special type of MFEs, see e.g. Cecchin-Dai Pra-Fisher-
Pelino [15], Cecchin-Delarue [16], and [19]. Another interesting work is Possamai-Tangpi
[41] which introduces an additional parameter function A such that the MFE corresponding
to any fixed A is unique and then the desired convergence is obtained.

The rest of the paper is organized as follows. In Section 2] we introduce the set value for
an MFG in a discrete time model on finite state space and establish the DPP, and in Sec-
tion [B] we prove the convergence for the corresponding N-player games with homogeneous
equilibria. Sections @ and [l are devoted to MFGs with relaxed controls and the correspond-
ing N-player games with heterogenous equilibria. In Section [l we study a diffusion model.
Finally in Appendix we provide some discussion on the subtle path dependence issue, and

complete some technical proofs.



2 Mean field games on finite space with closed loop controls

In this section we consider an MFG on finite space (both time and state are finite) with
closed loop controls, and for simplicity we restrict to state dependent setting. Since the
game typically has multiple MFEs which may induce different values, see Example [.1]
below for an example, we shall introduce the set value of the game over all MFEs. Our goal
is to establish the DPP for the MFG set value, and we shall show in the next section that

the set values of the corresponding N-player games converge to the MFG set value.

2.1 The basic setting

Let T := jﬁ, ,T} be the set of discrete times; T; := {¢,--- ,T} for t € T; S the finite
state spacd’ with size |[S| = d; P(S) the set of probability measures on S, equipped with
the 1-Wasserstein distance Wi. Since S is finite, W7 is equivalent to the total variation

distanca? which is convenient for our purpose: by abusing the notation W7y,

Wi(p,v) =Y |u) = v(@)l,  p,vePS). (2.1)

T€S
Let Py(S) denote the subset of € P(S) which has full support, namely u(xz) > 0 for all
x € S. Moreover, let A C R% be a measurable set from which the controls take values; and

g:TxSxP(S)xAxS— (0,1) be a transition probability function:

Zq(t,az,,u,a;:ﬁ) =1, V(t,z,pu,a) € TxSxP(S)xA.
TEeS
We shall use the weak formulation which is more convenient for closed loop controls.
That is, we fix the canonical space and consider controlled probability measures on it. To
be precise, let  := X := ST+!

Xi(w) = wy; F = {Fiher := FX the filtration generated by X; and Az the set of state

be the canonical space; X : T x  — S the canonical process:

dependent admissible controls o : T x S — A. Introduce the concatenation for controls:
(@ @1, @)(s,7) := als, ) lisemyy + a(s, 7)oy, @& € Astate- (2.2)
It is clear that o @71, & € Astate. Given (¢, p, ) € T x P(S) X Astate, let P44 denote the
probability measure on Fr determined recursively by: for s =¢,--- T,
Pho Xt =, P (X = 31X, = 2) = q(s,2, 417, s, 2); 0);

(2.3)
where p :=Phe o X1,

We may allow the state space S; to depend on time ¢ and all the results in this paper will remain true.
5More precisely, the total variation distance is %Wl for the W1 in (Z1)).



We note that u® := {u }ser, are uniquely determined and X is a Markov chain on T; under
PH# We also note that u® depends on (¢, 1) as well, but we omit it for notational simplicity.
However, the distribution of {X,}s—0,... t—1 is not specified and is irrelevant, and {c }o<s<t
is also irrelevant. Moreover, given {i.} := {ps}ser,, € S, and & € Agqre, let Pibitoa

denote the probability measure on Fr determined recursively by: for s =¢,--- ;T — 1,
plebted x, — g) =1, PEB2O(X | = 7|X, =) = (s, & ps, a(s,2); 7). (2.4)

As in the standard MFG literature, here we are assuming that the population uses the
common control « while the individual player is allowed to use a different control a&.

We remark that, since we assume ¢ > 0, then for any (¢, ) and «, pu$ € Po(S) for all
s > t. For the convenience of presentation, in this section we shall restrict our discussion to
the case u € Py(S). The general case that the initial measure u is not fully supported can
be treated fairly easily, as we will do in Section [f] below. The situation with degenerate ¢,
however, is more subtle and we shall leave for future research.

We finally introduce the cost functional for the MFG: for the u® = {u®} in ([23)),

J(t, w5z, &) = J(u™t,z, &), v({u.};s, ) = deinf J({u.}; s, z,a);

state

_ T-1 (2.5)
where J({u};s,2,G) = E" [G(XT, pr) + Y F(r, Xo, i, a(r, Xr)>]-

r=Ss

Here, since T and S are finite, F' and G are arbitrary measurable functions satisfying
inf F(t,z,p,a) > —oco for all (¢t,z,u).
a€hA

We remark that here v({u.};-,-) is the value function of a standard stochastic control
problem with parameter {y.}. In particular, in continuous time models, p® and v(u®;-,-)

will satisfy the Fokker-Planck equation and the HJB equation, respectively.

Definition 2.1 Given (t,u) € T x Py(S), we say a* € Agiate s a state dependent MFE at
(t, ), denoted as o € Mgpare(t, 1), if

J(t, oz, %) = v(u® st x), forallx €S. (2.6)
In this and the next section, we will use the following conditions.

Assumption 2.2 (i) ¢ > ¢, for some constant cq; > 0;
(1) q is Lipschitz continuous in (p,a), with a Lipschitz constant Lg;
(iii) F,G are bounded by a constant Cy and uniformly continuous in (u,a), with a

modulus of continuity function p.



2.2 The raw set value V|

We introduce the raw set value for the MFG over all state dependent MFEs:
Vo(t, ) = {J(t,,u,a*; La¥)iat e Msm(t,u)} c L°(S; R). (2.7)

Here the elements of Vo(¢, 1) are functions from S to R, which coincide with R? by identifying
o € LY(S;R) with (¢(z) : 2 € S) € R%. We call Vy(t, 1) the raw set value and we will
introduce the set value V(t, 1) of the MFG in the next subsection.

Next, for any Ty € Ty, ¥ € LY(S x Po(S); R), we introduce the MFG on {t,--- ,To}:

Ytx,a T()_l
J(T07w;t7uaa;x7d) = EPH o |:¢(XTO7N%0) + Z F(S7X87N?7d(S7X8)) . (28)
s=t

In the obvious sense we define a* € Mga1e (T, 15 t, 1) by: for any x € S,

J(To, s t, gy a*sm,0%) = o(T, by p® sty 2) == inf J(T, 95t 075 2,@), (2.9)
aEAstate

At below we will repeatedly use the following simple fact due to the tower property of

conditional expectations:
J(ta o, o5 T, d) = J(T07 1/}7 t, un, o5, d)a where 1/’(% V) = J(T07 v, a3y, d) (210)
The following time consistency of MFE is the essence of the DPP for the raw set value.

Proposition 2.3 Fix 0 <t < Ty < T and p € Py(S). For any o*,&* € Astate, denote
&* = o @, & and Y(y,v) = J(To,v,a*;y,a*). Then &* € Mgare(t, ) if and only if
ot € Mstate(qu/};tnu) and &* € Mstate(TmN%;)'

Proof (i) We first prove the if part. Let a* € Mgyare(To, ;5 t, 1) and &* € M sgare (1o, ,U%;)
For arbitrary a € Agqe and x € S, by (210) we have

ot To—1
J(t,p, 652, 0) = BP0 [J(TOaN%Ovd*SXToaO‘) + > F(s, Xe, 12, (s, X))
s=t
* To—1
o 2% ey * o x ~ % *
> B (T, i, 6 Xy, @)+ Y F s, X a(s, X,)|
s=t
Pua*;t,z,a a* TO—l a*
=E (X, 5) + Y Fls, X1 a(s, X,))]
s=t

= J(To, Y5t p, a5, 00) > J(To, st p, oy, %) = J(t, p, &5, 67),



where the first inequality is due to &* € Mgyqe (70, ,u%;) and the second inequality is due
to a* € Mstate(To, 15 t, ). Then &* € Miate(t, ).

(ii) We now prove the only if part. Let &* € Mgate(t, ). For any o € Aspqre, we have
a @7, @ € Agate- Then, since &* € Miqre(t, 1), for any « € S, by (2.10) we have

J(To, Y5t p, a5z, 0%) = J(t, p, &5 0,6") < J(t,p, &% 2,0 @1, &) = J(T,¢5t, p, ™5 2, ).

This implies that a* € Mgt (T0, V5 t, 11).

Moreover, note that a* @7, o € Agiare and again since &* € Mgiqre(t, 1), we have

. To—1
[J(To,u%o,d*;XTo,d*) + 3 F(s, X u8 ,a*(s,Xs))}
s=t

*
o st,x, o

EP
= J(t,pu, &2, &%) < J(t,p, &5 x, 0" B, )

. To—1
I (T, 5,655 Xy, 0) + 30 Fls, X, 8,0 (5, X)) .
s=t

st,x, o

_ E]P’“a*

This implies that, recalling the v in (2.5) and by the standard stochastic control theory,

]E]P’Ma i@, [J(TO,M%;,d*; XTO,d*):| < ae‘i}‘lf; t EIPHQ it,x, ot [J(TO,M%;,d*;XToya)}
= P [»u(,ﬂ*;TO,XTO)]. (2.11)

On the other hand, by definition v(u®"; Ty, &) < J(Tp, u%;,&*; Z,a*) for all £ € S. Then
J(To, 1y, &5 Xy, &%) = v(u®; To, Xy, ), pr T’ g,

Since ¢ > 0, then clearly PE* #a” (X1, = &) > 0 for all Z € S. Thus J(To, ugy, , &*; ,6%) =

I

v(u Ty, 7), for all & € S. This implies that &* € M gaze (Th, ,u%;) [ ]
We then have the following DPP.

Theorem 2.4 For any 0 <t < Ty <T, and p € Py(S), we have

Vo(t, ) := {J(To,zp; £, at) : for all € LOS x Po(S):R) and o € Astate o1
such that (-, u$; ) € Vo(To, 5, ) and o € Mrare(Th, ); t,u)}-

Proof Let Vo(t, 1) denote the right side of [2I2). First, for any J(Ty, 1 t, u, ;- a*) €
Vo(t, ) with desired v, a* as in (2I2). Since 1[)(',,11%;) € Vo(T(],,u%;), there exists a* €
Mstate(To,M%;) such that w(',,u%;) = J(Tg,u%;,&*;-,&*). By Proposition 2.3] we have
a* = ot @To are Mstate(tmu)' Then7 by (m)7 J(T07¢;tyﬂa Oé*; ',Oé*) = J(tvl%éé*; 76‘*) €
VO(t7 M)7 and thus QO(R M) - VO(tv M)

10



On the other hand, let J(¢, p,a*;-,a*) € Vo(t, pu) with o € Mgate(t, ). Introduce
Y(x,v) = J(Ty, v, a*; z,a*). By Proposition [2.3] again we see that a* € Mpare(To, 15 t, 1)
and o € Mgare(T0, ,u%;), and the latter implies further that (-, ,u%;) € Vo (T, u%;). Then
by the definition of Vo(¢, u) that J(¢, p, o*; -, a*) = J(To, s t, p, ;- ) € Vo(t, ). That
is, Vo(t, 1) C Vo(t, ). u

2.3 The set value V.

While Theorem [24] is elegant, the raw set value Vi (t, u) is very sensitive to small pertur-
bations of the coefficients F,G and the variable p. Indeed, even the measurability of the
subset Vo(t, u) € R? and the measurability of the mapping u +— Vo(t, 1) are not clear to
us. Moreover, in general it does not look possible to have the convergence of the raw set
value of the corresponding N-player games to Vo(¢, ). Therefore, in this subsection we

shall modify Vy(¢, 1) and introduce the set value Ve (t, 1) of the MFG as follows.

Definition 2.5 (i) For any (t,u) € T x Po(S) and € > 0, let M, (t, 1) denote the set of

state
o € Agiare such that
J(t, oz, o) <o(p® it x)+e, forallzeS. (2.13)
(ii) The set value of the MFG at (t, ) is defined as:

Vstate (t, 1) := ﬂ Viiare(t, 1),  where (2.14)
e>0

Vitate(tmu) = {90 € LO(SvR) : H(p - J(t,/L,Oé*; '704*)H00 é € fOT some Oé* € Mitate(tmu)}'

Recall (23)), then (2I3) and (ZI4) imply that
0< J(t7uva*;x7a*) - U(Ma*;t7$) <e H(p - U(:ua*;t’ )HOO < 2e. (215)

£

So we may alternatively define V&,,,.(¢, 1) by using ||¢ — v(u®";t, )|l < €.

Remark 2.6 (i) In the case that there is only one player, namely q, F,G do not depend on
W, PHTita = PEO does not depend on p and o. Let

T—1
V(t,z):= inf EF"™° [G(XT)+ZF(S,XS,a(s,XS))

aEAstate o—t

denote the value function of the standard stochastic control problem. One can easily see

that, when there exists an optimal control o, Vo(t, ) = Vgtate(t, n) = {V(t,-)}. However,

11



when there is no optimal control, we still have Vsqre(t, ) = {V (¢,-)} but Vo(t, ) = 0. So
the natural extension of the value function V is the set value V sqte, not V.
(ii) We remark that (\.oq Mare(ts 1) = Matare(t, 1), however, in general it is possible

that Vgate(t, 1) is strictly larger than Vo(t, p). Indeed, Vgiare(t, 1) can be even larger than

the closure of Vo(t, p), where the latter is still empty when there is no optimal control.

Similarly, given Ty and v, (To, 5 t, 1) denotes the set of a* € Agyqre such that

£
state

J(To, 95 t, p, 0™, 0%) < inf J(To, st p, a5 m,0) +6, VaeS. (2.16)
a€Astate

The DPP remains true for Ve after appropriate modifications as follows.
Theorem 2.7 Under Assumption[2.2 (i), for any 0 <t < Ty <T and p € Po(S),

Vstate(tuu) = ﬂ {QO S LO(S’R) : ”90 - J(T07¢7 tuu7a*; 7a*)HOO S 3
e>0
for some ¢ € ]LO(S X Po(S);R) and a* € Agiate such that (2.17)

w('vu%;) € Vitate(T07ﬂ%;)7 at € Mimte(me;t?:u)}'

This theorem can be proved by modifying the arguments in Theorem 2.4] and Proposition
2.3l However, since the proof is very similar to that of Theorem below, except that the

latter is in the more complicated path dependent setting, we thus postpone it to Appendix.

3 The N-player game with homogeneous equilibria
In this section we study the N-player game whose set value will converge to Vg ate.

3.1 The N-player game

Set OV := X with canonical processes X = (X1, ..., XN), where X? stands for the state

process of Player ¢. The empirical measure of X is denoted as: with the Dirac measure é.,
1 N

pl = u% where pl = N Z‘Swi € P(S), for & = (x1,--- ,xn) € SV, (3.1)
i=1

The player i will have control o. In the literature, a closed loop control o' may depend
on the full information X. However, since we are talking about large NV, in practice it may
not be feasible for each player to observe all other players’ states individually. Moreover,

in the MFG setting the population state is characterized by its distribution, not by each

12



player’s individual state. So in this section we consider only symmetric controls, namely o
depends on his/her own state X’ and on the others through the empirical measure p'.

For technical reasons, we introduce another parameter L > 0. Denote

Al = {0 TxSxPE) = A [alt,, 1) — alt,2,0)| < LWi(, ), V2,10 ), (3.2)

and A%, = ULzo AL .. Givent € T, Z € SV, and @ = (a!,-- , o) € (A%,,.)Y, let

P74 denote the probability measure on ]::,)1{ determined recursively by: for s =¢,--- ,T—1,
N

PO Xy =8) =1, PPN X, = 3| X, = &) = Hq(s,x;,uév,a’(s,x;,uév);x;'), (3.3)
i=1

and the cost function of Player ¢ is:

-1
Jilt,7,@) = B G(Xh, i) + Y Fls XDl 0l (s, XL ). (3.4)
s=t
Remark 3.1 (i) It is obvious that A%,,. = Astate for the Astase in the previous subsection.

For the MFG, there is no need to consider A.... Indeed, given (t,u) € T x Py(S), for any
a € AR, let PLY be defined as in [Z3): again denoting pg := PbH o X1,

Ph o X, =p, PO ( Xy = 3|X, =) = q(s,2, 18, as, @, ul); ).

Introduce a(s,z) == a(s,xz,u%). Then & € Agsate and one can easily verify that p® = p®.
In particular, the set value Vga1e(t, 1) will remain the same by allowing o € AS,,.. For the
N -player game, however, since " is random, the dependence on u makes the difference.

(ii) In the literature one typically uses ,uiv’_i = ﬁ Z#i 5th-, rather than i , in (3.3)
i

and B4). The convergence results in this section will remain true if we use ™~ instead.

However, we find it more convenient to use ,u{v.

There is another crucial issue concerning the equilibria. Note that an MFE requires by
definition that each player takes the same control a*. To achieve the desired convergence, for
the N-player game it is natural to consider only the homogeneous equilibria: oy = - -+ = ay,
which we will do in the rest of this section. We note that, for a homogeneous control «, the
PLEe = P& (@) in @3) and J;(t, 7, @) == Ji(t, &, (o, - - ,)) in B4 are also symmetric

in &, or say invariant in terms of its empirical measure:

PhEe = ]P’t’“i“v’o‘, Ji(t, %, a) = JN(t,a;i,ufcy,a). (3.5)
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Definition 3.2 For anye > 0,L > 0, we say o* € AL, is a homogeneous state dependent
(e, L)-equilibrium of the N-player game at (t,Z), denoted as o* € MN’e’L(t,f), i

state

Ji(t, 7, ") <oNE(t, & af) = inf  Ji(t, E (o)) +e, i=1,---,N,
O‘e‘Astate (36)
where (a,@); denote the vector @ such that o' = & and o = « for all j # i.

In light of (35), clearly MY:5E (¢, 7) is law invariant: M55 (8, 7) = MY (t, ) when-

state state

ever 1Y = ply. Thus, by abusing the notation, we may denote MESEt 7)) = MY, ud)
and call a* a homogeneous state dependent (e, L)-equilibrium at (¢, pu3 M.
Note again that ¢ > 0, then similar to Subsection 2.1], for convenience in this section we

restrict to only those & such that ,uiy has full support, and we denote
Sy == {Ze SN uY € Po(S)}, Pn(S):={ud :FeS)} CPu(S). (3.7)
We now define the set value of the homogeneous N-player game: recalling (3.3]),

state ﬂ Vstate t N ﬂ U Vé\iaieL t :u' V(t,u) eTx ,PN(S)v where
e>0 e>0L>0 (3.8)

Vil ) = {p € LASIR) : 30" € MUZE(E ) st llp = TV (E - 0l < 2.

state

3.2 Convergence of the empirical measures

Theorem 3.3 Let Assumption[2.2 (ii) hold. Then, for any L > 0, there exists a constant
Cr, which depends only on T,d, Ly, and L such that, for any t € T, T € SN, ue Po(S),
a,a € AL ands>t,i=1,--- N,

& (a,8) a
E” Wi(pl, ud)] < Cron,  where Oy := Wi(uf, p) + (3.9)

1
VN’
Wy (Pt,i(ad)i o (X;)_l, Pua;t,xmd ° Xs_1> < CrOy. (3‘10)

Proof We first recall Remark B.1] and extend all the notations in Subsection 2.1l to those
o € AL . in the obvious sense. Fix t,i and denote PV := Ph#:(d):

Step 1. We first prove ([8.9]) for s = ¢t + 1. Note that Xt1+1, e ,Xﬁl are independent
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under PV. By (Z1)), we have

EX (W (g ig)] = S B [0 (2) — gy, (2)]]

zeS
1
<> (B (10 (@) — pga (0]
zeS
1
=3 [vear™ [ @) + B [0 (@) - pia @))°] (3.11)
zeS
N ) 1
a [~ 2
= Z [Ng ZVC”’ g+1_~ Z X1 =) — uia(2)) ]
zeS j=1
> —+Z|_ZPN t—l—l Nt+1(~)|
zeS j=1
Note that, by the desired Lipschitz continuity of ¢ in p and that |S| = d is finite,
ZPN = Mt+1( )|
= ‘— { qt, z, 1y oty 2, p); 81y, —0 +q(t,a:,uiy,d(t,w,uiy);iz)l{xi:x}]
TES  j#U
_ZQ(t7$7#7a(t7x7ﬂ)aj)u(x)‘
€S
< (—ZZ (2, pf, alt, @, 17); B)1gg;—a) —Zq(t,x,u,a<t,x,u>;:z>u<x)(
:EGS] 1 €S
+— Z\q too,ud alt, o, )l )i 2) — q(t, 2, pd &t o, 1 ); 8)| g2
mGS
- _ 1
€S €S
1
<[5 @) = @) + CoWi (s ()| + - < Cub.
T€S

C
Then, B Wy (uly, p'1)] < 7+ Oy < Cuby.
Step 2. We next prove ([B.9) by induction. For any s =t,--- ,7 — 1, by Step 1 we have

(0% X (0% 1
EP (s n) |F] < Co [Wl(uévaus) + \/—N:|7 PV-a.s.

Then

= C
EPN [Wl(/jé\g-lvﬂg—i-l)} = EPN [EPN [Wl(ué\g-h//'?—i-l)‘XéV” < CLEPN [Wl(ﬂévw(;)] + \/—%
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Since T is finite, by induction we obtain ([8.9]) immediately.
Step 3. We now prove (B.I0). Denote

ks == W1 <]P’N o (X3~ Plo Xs_l) where P .= PribTod,
Then x; =0, and for s =¢,--- ;T — 1,

Kop1 = > _|PY(XI ) = 3) = P/ (X1 = 1)

TES
= > [E Y [as, X2 il s, X2 i) @)] — B [als, X, i, (s, X, 25 ) |
zeS
< Z‘EP (s, X5, N a(s, X5, 1), )] - EPN[ (s, XL, u2, a(s, Xz,u?);:i)]‘
zeS

+Z‘EP S thu’sv (S Xshu’s) )] EP [ (S XS?NS’ (S XS?/J’S) )]‘

zeS
S CLEPN [Wl(ﬂévyﬂ(;)} + Z q(S x Ns7 (S x Ns ‘]P)N XZ - .Z') ]P)Z(XS = ‘T)‘
z,Z€S
< CLOn + ks,

where the last inequality thanks to ([8.9]). Now by induction one can easily prove (3.10). B

3.3 Convergence of the set values

We first study the convergence of the cost functions. Recall the 6 in (3.9) and the functions

v in (23) and vZN’L in (B.6]).

Theorem 3.4 Let Assumption[2.2 (ii) and (iii) hold. For any L > 0, there exists a modulus
of continuity function pr,, which depends only on T,d, Ly, Co, p, and L such that, for any
teT, ul € Pn(S), p € Po(S), and any a,a € AL, i=1,--- N,

| Ji(t, Z, (v, @)i) — J(E, gy 0 4, @) + ‘fu (t, & o) —v(p®;t,2)| < pr(On). (3.12)
Proof Clearly the uniform estimates for .J implies that for v, so we shall only prove the

former one. Recall (3.4)), (2.5]), and the notations PV, P! in the proof of Theorem [3.:3 Then

T-1
Ji(t, @, (a, &);) — J(t, p, iy 4, & )‘ <Ir+ ZIS’ where

s=t
— ‘EPN [G(XE, )] — B [G(Xr, 1)) (;

I, o= [E7Y [P (s, X0 Y s, X0 )] = B [F(s, Xy 1€, (s, X, 12))]

, s<T.
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Note that, for s < T, by (310)),
I, < ‘EP (s Xz,us ,a(s, XZ,,ui,V))] —EPY [F(S,XZ,/LS, (s, Xl,ug‘))]‘
BT [P (s, XL (s, XL )] — B [F(s, X, 12, (s, X, i) |

< EP[p(CoWa(ul, )] + Y |F s, @, 1S, als, o, 1)) | [PV (XE = 2) — PU(X, = 2)]
€S

< BT [p(Cumi(ud,1))] + Crbn.

Similarly we have the estimate for I7, and thus

Ji(tafy (Oé,d) ) J(t My O T, ‘ ZEP CLWI(:US Hu’s))] + CLon.

This, together with ([B.9]), implies (312 for some appropriately defined modulus of conti-

nuity function pr,. |

Our main result of this section is the following convergence of the set values. Recall, for

a sequence of sets {En}n>1, N@OOEN = m U Ey, ]\}1m Ey = U m En.
n>1 N>n n>1 N>n

Theorem 3.5 Let Assumption[Z2 (i), (iti) hold and pYY € Pn(S) — p € Po(S). Then

N, L N.e,0
ﬂ U hm Vstaete t y Mg ) - VStat@(t lu’) ﬂ hm Vstcfte (tvlu]fv) (313)
500350 e Ve
In particular, since lim Vé\;aig t, 1) U hm Vé\;aieL t, 1Y), actually equalities hold.
N—oo L>0

Note that ¥ € Sév obviously depends on N, so more rigorously we should write # in the
above statements. For notational simplicity we omit this N here. We also remark that at
above we are not able to switch the order of limy_ o, and ﬂ€>0 ULzo in the left side, or the
order of limy _, ., and (1), in the right side.

Proof (i) We first prove the right inclusion in (3I3]). Fix ¢ € Vgare(t, 1), € > 0, and
set e1 := 5. Note that Agqre = Ayqre- By @I4), there exists a* € MG, (t, ) such that
llp — J(t, p, ;- )]0 < €1. Recall (2.13]), we have

J(t, oz, o) <o(p® it,x)+e, forallzes.

For any a € A% . = Agiate, by Theorem [3.4] we have

state

Ji(t7f7 Oé*) < J(t7uaa*;xi7a*) + pO(HN)
<ot x) + &1+ po(On) < vNE(, Z, o) + &1 4 2p0(0n).
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Choose N large enough such that po(fnx) < §, then J;(t,7, o) < UZN’L(t,:E, a*) +e. This

implies that o* € Mgo(t,ug). Moreover,
lle — JN(t, -,ug,a*)Hoo < ey +sup |Ji(t, &, %) — J(t, pu, 5 xp, o)
i

€
< 51+P0(9N)§51+Z§5-

N,e,0
Vstate

Then ¢ € (t, ) for all N large enough. That is, ¢ € limy_, . VN’E’O(t,,uéV). Since

state

© € Vgiate(t, ) and € > 0 are arbitrary, we obtain the right inclusion in (B.13]).
(ii)) We next show the left inclusion in [BI3]). Fix ¢ € ﬂ U N@OO V=Lt i) and

state
>0 L>0
e > 0. Then, for e; := § > 0, there exist L. > 0 and an infinite sequence {Nj}r>1
such that ¢ € VEetle (t,,uiyk) for all K > 1. Recall ([3.8), for each k > 1 there exists

o € Mg’;il’Ls (t, ug") such that [|p — JV (¢, , ,uiyk, )|l < €1. By Definition 8.2, we have
Ji(t, 7, oF) < vk (¢, Z ok) + 1. Similar to (i), by Theorem 34l we have

i
J(tau7ak7 xi7ak) S U(/’Lak;t7xi) + €1 + 2PL5(0Nk) S U(Mak; tu‘rl) + g,

for k large enough. That is, a* € MS,,,.(t, ). Similar to (i) again, for k large enough we

have || — J(t, 1, @¥; -, )]0 < &. Then ¢ € V&, ;. (, 1t). Since e > 0 is arbitrary, we obtain
© € Vate(t, i), and hence derive the left inclusion in (B.13)). [ ]

Remark 3.6 (i) From Theorem (i) we see that, for any o € ./\/ls%tate(t,,u), we have
a* e Mﬁ;;f(t, ,uéV) when N is large enough. Moreover, by [3.9) we have the desired estimate
for the approximate equilibrium measure EPY [W1(,uév,,u‘§‘*)] < CLOn. This verifies the
standard result in the literature that an approximate MFFE is an approximate equilibrium of
the N-player game.

(ii) From Theorem (ii) we see that, for any o € MZZELE (t,uiyk), we have oF €
Miate(t, ) when k is large enough, and we again have the estimate for the approzimate
equilibrium measure EPt’f'ak [Wl( Ni| stxk)] < CrOn,. This is in the spirit that any limit

point of the N-player equilibrium measures is an MEFE measure.

Remark 3.7 (i) We should point out that the key to obtain the convergence here is to
consider homogeneous equilibria for the N-player games. If we use heterogeneous equilibria
for the N-player games, it turns out that we will have the desired convergence when we
consider relaxed controls for the MFG, as we will do in the next two sections.

(ii) Another technical trick we are using is the uniform Lipschitz continuity requirement
on the admissible controls. The convergence analysis will become more subtle when we

remove such reqularity requirement, see e.g. [32].
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4 Mean field games on finite space with relaxed controls

In this section we study MFG with relaxed controls, or say mixed strategies. Besides its
independent interest, our main motivation is to characterize the limit of N-player games
with heterogeneous equilibria. We shall still consider the finite space in Section 2, however,

for the purpose of generality in this section we consider path dependent setting.

4.1 The relaxed set value with path dependent controls

We start with some notations for the path dependent setting. For x = (x¢)o<i<7 € X, denote
by x¢n. = (X0, ,Xt, X, -+ ,X¢) the path stopping at ¢ and X; := {xr. : x € X} C X
For x,x € X, we say x =; X if xyn. = Xsa.. Denote X0* := {x € X : x = x} and

Xé’x = Xt* N X, for s > t. Introduce the concatenation x @; X € X by
(x Dt X)s = Xslpocpy + Xsl(sngy, and (X Dy 2)s 1= Xslgocpy +Tlienyy, T €S
For each t € T, let P(X;) denote the set of probability measures on (2, F;¥), equipped with

Wi, v) == > |ux) —vx)|, Yu,ve Py,
xeXy
and Py(X;) the subset of p € P(X;) with full support X;. Again this is just for convenience
of presentation. For a measure u € P(X) = P(Xr), denote . = po X;b € P(Xy).
We remark that, by abusing the notation u, here uss. denote the joint law of the stopped
process X¢a., while in Section 2] {i.} denote the family of marginal laws.

For a path dependent function ¢ on T x X x P(X), we say ¢ is adapted if p(t,x, u) =
o(t, X¢n., pien.). Throughout this section, all the path dependent functions are required to
be adapted. In particular, the data of the game ¢ : T x X x P(X) x A xS — (0,1),
F:TxXxPX)xA—R,and G: X x P(X) — R are path dependent with ¢, F' adapted.
By adapting to the path dependent setting, we shall still assume Assumption 2.2

Let A, cjq: denote the set of path dependent adapted relaxed controls v : T x X — P(A).
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Givent € T, u € P(Xy), v € Aretaz, and x € Xy, x € XEX 5 € A, 010z, We introduce:
PU#Y o Xph =, PR (X = E|X =, x) = / q(s,%, 17, a;2)y(s, x; da);
A
h L ]P>t7M77 X_l > ¢
where  figh. : O AXAgn.y S22

PHEI(X = x) =1, PY (X = 2]X =, %) = / als, % 17, D)Y(s i da);
A .

T-1
T8, %,7) = BP0 [G(X, TESY / F(r, X, 1", a)y(r, X, da)‘X =s 5‘];
r=s A

T 1%, 9) = T, x,9),  v(wis,X) = _ inf  J(u;s,%,7).
’YE relax

Definition 4.1 (i) For any t € T, p € Py(Xy), and € > 0, let M, .(t, 1) denote the set
of relazed e-MFE v* € Ayejar Such that

J(t, oy %,y <o) i t,x)+e,  for all x € X,. (4.2)
(ii) The relazed set value of the MFG at (t,u) is defined as:

Vietaz (t 12) 7= [ | Viewaa(t: 1), where ||¢]x, := sup |o(x)|, and (4.3)
>0 xeXt

etas(t 1) = {9 € LY X6 R) 39" € Misiqu(t 1) sit Nl = Tt 17757 | < 2.

Similarly, given Ty and ¢ : X7, x P(X7,) — R, as in (2.8)) define

To—1
Vit x5 -
J(T07¢7tau7’77x7;}}) = EPH . ’l/}(XTO/\v/’L;/b/\-)—i_ Z/AF(S7X7 Nﬂna)f}/(‘g?X? da)]’ (44)
s=t

and let M?_, (To,v;t, 1) denote the set of v* € Aycjqq such that, Vx € Xy,

J(To, sty i, "5 %, %) < o(T, b p758,%) i= Eif{lf J(To, 3t 1,y 5%,7) + €. (4.5)
Y relax

Note that the tower property in (2.10]) remains true for relaxed controls:

J(t 1,73 %,9) = J(To, it 3%, ), where  ¢(y,v) == J(To,v,7:y, 7). (4.6)
The DPP for V,¢,, takes the following form.
Theorem 4.2 Under Assumption[2.2 (i), for any t € T, Ty € Ty, and p € Po(Xy),

Veetao(t 1) = () {9 € LYK R) ¢ lp = J(To, 5, 1 775,7 I, < &
e>0
for some 1 € ]LO(XTO X Po(X7,);R) and v* € Ayeiar Such that (4.7)

O ihn) € Vietas(Tos 1)y 7 € Mietas (To, it ) }-
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Proof  We shall follow the arguments in Theorem [2.4], in particular, we shall extend
Proposition 23l Let Vyejaq(t, 1) = N0 V2,1, (t, 1t) denote the right side of @T).

(i) We first prove VTelaw(t, 1) C Vyerae(t,p). Fix p € VTelaw(t, p), € > 0, and set &1 := .
Since ¢ € V!, (¢, 1), then

relax

| — J(To, 5 t, 1, v"5 7" )|lx, < €1 for some desirable ¥,7* as in (7).

Since ¢('7,U%;A,) %

relax

(To, /[%;Av), there exists * € M:L, (T, N%ZA-) such that

H’l/}(uu%o/\) - J(T07/’L;/‘O/\.7:Y*; ’7’?*)“XTO S 61’

As in 2.2)) denote " := " ©1, 7 := Y Lisemy) + 7 L{s>7) € Aretar- Then, for any x € X;
and v € A ejqz, similarly to Proposition 2.3] (i) we have

J(t, 1 A5 x,7)
To—1

J(T07M%;/\.7’?*;XTO/\-7’7) + Z /AF(S,X,,UA/*,CL)’V(S,X,CZ(I)]
s=t

_ To—1
I oty ¥ X7+ Y [ Fls, X a5, X, da)]| =4
- s=t A

) To—1
Vi) + 2 [ Pl X (s, X d)] =224
B s=t

= J(To, ¥ t, u, v %,7) — 261 > J(To, 5 t, p, "5 %,7") — 321
To—1

'Y*;t,x, * * * *
=B o)+ X [ Pl X o, X da)] = 3
s=t

) To—1
v x, * * ~ % ~ % * *
> EP e [J(To,,u:}o/\.,'V s X 7°) + Z /AF(S’XHLﬂ ,a)y (S’X’da)] — e
s=t

* -
i Ep;ﬂ %,y
¥
PrYstxy

>E

X
uY X,y

> EF

= J(t, 1, Y55 x,9%) —dey = J(t, 1, 7% %,5%) — €.
That is, * € M5, (t, ;). Moreover, note that, by (4.6,

lo — Tt 135 A%, < €1+ ([T (To, sty v 5 7") — T (& 1, 775 %,
'Y*;t,x, * * * ~ % ~%
EPH ! [TZJ(XTO/\.,M;CO/\,) - J(T(]a/[jy“o/\.a’y ;XT()/\w’V )]‘ <2 <e.

= €1+ sup
xeX¢

Then ¢ € V¢, (t, ). Since € > 0 is arbitrary, we obtain ¢ € V,.¢jq.(t, 1).

relax

(ii) We now prove the opposite inclusion. Fix ¢ € V.4, (¢, 1) and € > 0. Let g2 > 0 be

a small number which will be specified later. Since ¢ € V2, (¢, 1), then

relax
o — J(t ™57 )lx, < ea for some v* € M2, (¢, ).
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Introduce ¥(y,v) := J(To,v,v*;y,7") and recall ([£.6]). Then
I = J(To, 3ty 1,757 )see = llo(x) = (& "5 %77 %, < e

Moreover, since v* € M%2, (t, ), for any v € Acjor and x € X, we have

relax

J(To, sty i, v"5x,7%) = J(t, o, "5 %x,77)
< J(t %,y By v°) + €2 = J(To, sty 1, v %,7) + €2,

This implies that v* € M2, (Ty,1;t, ). We claim further that

relax

* C *
’l/)('7 /J;/"O/\.) 6 Vrealzx(T()? /“L%OA.)7 (48)

for some constant C' > 1. Then by (A7) we see that ¢ € @T(,’;Elzx(t,u) C Ve,,,.(t, 1) by

setting e2 < &. Since € > 0 is arbitrary, we obtain ¢ € \Nfrelam(t, ).
To see ([d8), recalling (4.1]), for any v € A,¢jqr We have

EP

* *
Tostx |: wstx,y* [

J(T07 M%OAJ /7*; XTo/\~7 /7*):| - EP J(T(]v M%@N’ 7*; XTo/\'a 7)]

= J(t 75 x,7") = St 1%, 7" @y ) < e
Then, by taking infimum over v € A, ¢4z, it follows from the standard control theory that
Ty * * * it *
EF |:J(T07:u;/"o/\-7’7 s XA Y )} <E™ i [U(lﬂ QTOaXTo/\')] +e2, VxeX.

On the other hand, it is obvious that v(u?";Tp, %) < J(TOM%ZA,;’Y*;?EKY*) for all x € Xqy,.

. *, * ~ _ ~ t
Moreover, since q > ¢, clearly PH" 5% (X =7 %) > C;FO ¢t for any x € XT’:. Thus,

0

IN

J(T07 /LPJY“O/\J 7*7 5(7 /7*) - U(M’y* ; T07 i)
7*;t,x, * * * * *
S C]E]P)u ! |:[J(T07NF’]Y’O/\.7’Y ;XT()/\W’Y ) - 'U(:u’ﬁ{ ;T07XT0/\~)] 1{X:T05(}:|

"
itx, ™ |:

CEP"’

IN

J(TO7 M%;A.v 7*7 XT()/\'? 7*) - U(:uﬁ/* ; TOa XTO/\')] < 0527

where C := /=70, This implies that v* € M2 (T, /[%; ). Then ([J) follows directly

q relax

from Tp('nu%;/\.) = J(T07M%;A.7’7*; '77*)7 and hence NS vrelax(tnu)' u

Remark 4.3 Consider the setting that q, F, G are state dependent, as in Section[d. There
18 a very subtle issue between state dependence and path dependence of the controls.
(i) For a standard non-zero sum game problems where the players may have different

cost functions F;, G;, if one uses state dependent controls, in general the set value does not
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satisfy DPP. See a counterexample in [2])]. However, with path dependent controls the set
value of the game satisfies the DPP.

(ii) In Section[d, since all players have the same cost function, as we saw the set value
with state dependent controls satisfies DPP. If we consider path dependent controls o €
Apatn, the set value will also satisfy DPP. However, the set values in these two settings are
in general not equal, see Example[71) in Appendiz for a counterezample.

(iii) For relazed controls, again restricting to state dependent q,F,G, it turns out that
state dependent and path dependent controls lead to the same set value, see Theorem n
Appendiz. The main reason is that the convexr combination of relaxed controls remains a

relazed control, while the controls a in Section[d does not share this property.

4.2 An alternative formulation of the relaxed mean field game

In this subsection we provide an alternative formulation for the MFG with relaxed controls.
This new formulation is motivated from the heterogenous controls for the N-player games,
and thus is crucial for the convergence result in the next section.

Let Apqn denote the set of adapted path dependent controls a : T x X — A, and for
each t € T, A;ath = {(a(t,-),--- yo(T —1,) :a € .Apath}. Denote E; := P(X; x A;ath),
and for each A € Z;, define recursively: for s > t, x € Xy, and x € XbX,

s—1
pin (%) = A6 Aboy), i (%) == » [Tatr% 1t a(r, %); %ep1)A(x, da).  (4.9)
path 1=t

Here, noting that o € .Afmth can be equivalently expressed as {a(s,x) :t<s<T-1,%x€

Xé’x}, we are using the following interpretation on da: for any ¢ : A;ath — R,
T—1
/ o(a)da := / / e({a(s,%)}) H H do(s,x). (4.10)
Aparn A 4 5=t zexL™

Next, for p € Po(Xy), denote Z¢(u) := {A € Zy : . = u}. Moreover, recall I)),
J(t, A x,a) = (Mt x,a), ot Ax) = o(pht,x), xeX,ac AL i (4.11)

To simplify the notations, we introduce:

s—1
QL({u )%, ) = [ a(r, %, p, alr, %); %pp1). (4.12)

r=t

In particular, Qi({u.};x,a) = 1. Then we have, for any x € X\,

[ (%) = / QL™ %, )A(x,da), PHIRC(X = %) = QL(ph; %, a). (4.13)
At

path
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Definition 4.4 For anyt € T, p € Po(Xy), and € > 0, we call A* € Z¢(u) a global e-MFE
at (t,p), denoted as A* € Mg, ., (t, 1), if

/ [J(t, A" x,0) —v(t, A" x)|A*(x,da) < e, Vx e Xy (4.14)
AL n

Note that the above « is global in time, so we call A* a global equilibrium. Moreover, since
there are infinitely many o € .Atath, it is hard to require J(t, A*;x, ) — v(t,A*;x) < ¢ for
each o € A! pathy We thus use the above L'-type of optimality condition. For the x part,
however, since there are only finitely many x and each of them has positive probability, we
may require the optimality for each x.

The main result of this subsection is the following equivalence result.
Theorem 4.5 For anyt € T and p € Py(Xs), we have

V?“elam(taﬂ) = Vglobal(t ,Uf ﬂ Vglobal t :u') where
e>0 (4.15)

Vglobal(taﬂ) = {90 € LO(Xt7R) tJAT € MZlobal(tvu) s.1. ”4,0 - U(t7A*; ')HXt < E}'

We shall prove the mutual inclusion of the two sides separately. First, given (¢, A), we

construct a relaxed control as follows: for any t € T, x € X, and s > t, X € Xé’x,

(s % da) = ——— [ QLM% 0)n(e) (d0) A, do). (4.16)
:us/\-(x) At

path

On the opposite direction, given t € T, u € Py(Xy), v € Apelaz, recalling [AI0) we construct

N7 (x,do) H H v(s, %, da(s, X)), VxeX,ae A . (4.17)

In particular, the following calculation implies A7 € Z;(p):
A'Y(X,A;,ath = H H (s, %,A) = H H l=u
s=t zext* s=t gext>

Lemma 4.6 For anyt € T, p € Po(Xy), and A € E¢(u), v € Apelaz, we have ,LﬂA =pu

and ' = 7. Moreover,

J(t,u,’yA;x,’yA) = /Aﬁ J(t, Ay x, a)A(x,da), Vx e X (4.18)

11(x)
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Proof We first prove ,uzi = u,. by induction. The case s = t follows from the definitions.
Assume it holds for all » < s. For s +1 and x € th:l, by Fubini Theorem we have

A
MZS-!-I)/\- (X)
AL
MzA-(XsN)
1

~ A ~
:/Q(Saxa/ﬂ ,CL;X8+1) A
A

s (N) At

path

1 N L N
7/ q(s, %, i, a(s, %); %s11) QL (1™ %; @) A(x, dav)
:u's/\ ( ) At

~ A ~
= / q(S,X,/Lﬂy ,CL;XS+1)’7A(S,X, da)
A

Ql; (MA; X; a)(sa(s,i) (da)A(Xa dOé)

path
A ~
Ko X
- [ QR a)A G da) = Harn )
:u's/\( ) AZath :u's/\( )

A
Then ,uE’S IR ,u?s Ao and we complete the induction argument.
We next prove MQX = )., by induction. Again the case s = t is obvious. Assume it
holds for all < s. Now for s, recalling (AI0) we have

pon(X) = / [Hq(r,f{,;ﬂ,a(r X); Xp11)] H H v(r, %, da(r, x))]

t
'Apath r=t r=t Eth

s—1
= 6o IT [ a0 0501511 da(r )]

s—1
[H H ’y(rxA} [HH’}/TXA}
=t xeX M\ (%} =S xeXp
s—1
X) H /Aq(hi)lf/)a;i?“-l-l)’y(r)iv da) = M;Y/\(i)
r=t

We finally prove ([@I8]). For each s >t and x € xE, by Fubini Theorem again we have

F = A
/ F(s, % 1, )y (s, %, da) = / Bl pa) [ o (5 % 0)dage.n (da)A(x, do)
A A ks (X)) Ja,,

= ﬁ(i)/ F(SvivﬂAva(Svi))Qé(ﬂ ;5(; O‘)A(X’ dOé)
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By (@) we have Pr¢x7* (X =, %) = £ Thus

T(t, 1%, 7
T-1

1 = ~ ~
= —){ EX: :uT/\( ) + Z Z Né\/\.(x)/AF(S,X,/,LA,CL)’)/A(S,)Q da)

s=t ieXi’x

/ Z Qr (1" %; )

path xeXtx

T—1
+Y ) Fls,xut als, %)QL (1" xa)]A(x da).

s=t iEXé'x

This implies (£18) immediately. [ |

(A7)

Remark 4.7 We can actually show that v = for all v € Ayelaz, see Appendiz. How-

ever, it is not clear that we would have AO™) = A for all A € Er(p).

Proof [Proof of Theorem 5] Since p € Py(X;) has full support, then ¢, := inf pu(x) > 0.
x€X¢

(i) We first prove Vgiopai(t, 1) C Vierao(t, ). Fix ¢ € Vgopa(t, ) and € > 0. Let

€1 > 0 be a small number which will be specified later. Since ¢ € Vglobal( , 1t), there exists

At e Mglobal
p" = p, by @I), @) we have v(p?";t,%,7%) = v(t, A*;x), and, by @IF), @I,

J(t v x,y") —o(t, A x) = ﬁ/ [J(t, A";x, ) —v(t, A";x)|A* (x, da) < 1 <e,
At

C
path H

(t, 1) such that || — v(t, A*;-)|lx, < e1. Set v* := 42", For any x € X, since

provided €1 > 0 is small enough. This implies v* € M5, (¢, 1).
Moreover, it is clear now that, for any x € X; and for a possibly smaller 1,
(%) = T (8, 1,775,977 S &1+ [olt, A% %) = J(t 55 x,77)| S a1+ — <e,
o
Then ¢ € V7,..(t, 1), and since € > 0 is arbitrary, we obtain ¢ € V,¢q.(t, 11).
(ii) We next prove Viejaz (t, i) C Vgiopar(t, it). Fix ¢ € Vieraq(t, 1), € > 0, and set €2 := 5.
Since p € V32, (¢,

Set A*:= A", then " = p7". Since v* € M2, (¢, ), we have

1), there exists v* € M:2, (t, p) such that |[o—J(t, 1,75+, 7")|x, < 2.

(%) — v(t, A5 x)| = [p(x) —v(u?5t,%)| <269 <&, VxeEX;.
Moreover, note that, by (£.I8]) again,

/ (8, A% %, ) — o(t, A*; x)] A" (x, da)
Apatn (4.19)

= p(X)[J(E 7" %,77) —v(t, AT x)] < p(x)ez < ex <e.

This implies ¢ € Vgl obal(ts 1), and hence by the arbitrariness of €, ¢ € V giopq(, p1). |
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5 The N-player game with heterogeneous equilibria

In this section we drop the requirement a' = --- = o for the N-player game, and show
that the corresponding set value converges to V,.;:, which in general is strictly larger than
Vstate- We note that we shall still use the pure strategies, rather than mixed strategies, for
the N-player game. Moreover, since we used path dependent controls in Section [, we shall

also use path dependent controls here.

5.1 The N-player game

Let 2V and X be as in Section B, and denote

N
1 "
pd = ,ui\f)?m_, where ,ui\fi =5 E 5yi € P(Xy), ®=(x1, -, xM) e x. (5.1)
i=1

Similarly to (3.7), for the convenience of the presentation we introduce

Xé\ft = {i e X : supp (ui\;) = Xt}, Prn(Xy) = {,uivi X € Xé\ft}. (5.2)

We shall consider path dependent symmetric controls: A;’gfh =U L>0 A;;;;h, where

AL {oz At T — 1 x X x P(X) —>A‘ a is adapted and

path =

uniformly Lipschitz continuous in p (under Wj) with Lipschitz constant L}.

Givent €T, X € Xé\ft, and @ = (al,---,a) € (A;’jfh)N, introduce, for s > t,

- =

N
]Pyt,x,a()z = }—(») — 1’ ]P;t,ﬁ,&()zs_i_l _ a—:»/l‘X’ - )—(»/) _ Hq(S,XIiHU,N,ai(S,X/i,,U,N);Z'”),
=1

)

T—-1
Ji(t, %, &) = EP"° [G(Xi, 1Ny + 3 Ps, XN ol (s, X V) | (5.3)
s=t
ot R, @) = inf Ji(t,%,a7a), i=1,---,N.
acAbL

path

Here (@~%, &) is the vector obtained by replacing of in @ with &.

Definition 5.1 For any e > 0,L > 0, we say d € (A;’éh)N is an (g, L)-equilibrium of the

N-player game at (t,X), denoted as & € MhNe’fe’fo(t,i), if:
| N
= D AR &) — o) (R, 6)] < e (5.4)

1=1
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Here, since there are N players and we will send N — oo, similar to (4.14]) we do not require
the optimality for each player. In fact, by (5.4]) one can easily show that

%‘{z‘ =1, N:Ji(t,%,a&) — v F(t, R, a) > \/E}‘ < Ve (5.5)

)

This is exactly the (1/e, /¢)-equilibrium in [11].

We then define the set value of the N-player game with heterogeneous equilibria:

N 3 N7 <) — N7 7L yd
VheteTO(t’X) = ﬂ Vhefero(t7x) T ﬂ U Vhezfero(t7x)7
e>0 e>0L>0

where VoL (4 %) = {90 € LOXy;R) : 3@ € Mo-=E (¢, %) such that (5.6)

hetero hetero

. N,L - =
max min x)—uv T (t, X, <€}.
xeX¢ {i: xt=x} ‘(’D( ) ! ( T )| B

Remark 5.2 (i) An alternative definition of VhN’E’L (t,X) is to require ¢ satisfying

etero
i N,Li, & = NL;, - =
— .’ t = 1 10 — .’ t < . 57
i:ml,%?fN ‘gp(x ) —v; (X, oz)! xez)mgt( i x?zx} ‘gp(x) v; (X, oz)! <e (5.7)

Indeed, the convergence result Theorem[5.3 below remains true if we use (5.1). However, in
general it is possible that x' = x7 but fuZN’L(t,i, a) # véV’L(t,)_(', a). Then, by firing N and
sending £ — 0, under (51) we would have Vi, (t,%) := (.~ VhNéfem(t, X) = 0.

(ii) In the homogeneous case, fuZN’L(t, X,d) = vjV’L(t, %, @) whenever X' = x/, so we don’t
have this issue in (B.8]).

iii) Note that pN. = uNo, if and only if X is a permutation of X', and one can easil
'utx lutx Y Y

, NL; = = N,L ,
verify that v, " (t, X, &) = Ur iy (t, (Xr(1), s Xn (V) ()5 5 Qn(vy)) for any permutation
mon{l,--- N}, . Then, similar to the homogenous case, VhNe’fe’TL,o(t,i) is invariant in ,uivi

. . N,e,L N
and we will denote is as V)00 (E, 1y 5)-

The following convergence result of the set value is in the same spirit of Theorem

Theorem 5.3 Let Assumption[2.2 hold and ,uivi € Pn(Xy) = p € Po(Xy) under Wy. Then

T N7 7L N 1 N7 70 N
ﬂ U ]\}E)noo Vhe:e'ro(t7 /J/t,)_(') - Vrelam (t7 lu) - m h—m Vhetaero(t7 Nt,)_(')' (58)
e>0 L>0 e>0 Vo0
In particular, since lim VhNe’fcjgo(t, ,uivi) - lim VhNe’fcjfo(t, ,uivi), actually equalities hold.
N—oo ’ L>0 N—o0 ’

Unlike Theorem B3 here the N-player game and the MFG take different types of

controls & and -y, respectively. The key for the convergence is the global formulation in
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Subsection [£2] for MFG. Indeed, given t € T, X € Xom and & € (.Apath)N , the N-player
game is naturally related to the following AV € P(X; x A;fth)'

AN (x,da) = — Z 0o, (da), where I(x):={i=1,--- ,N:x' =x}, x€X;,. (5.9
zEI(x)

By the symmetry of the problem, there exists a function J%, independent of 4, such that
Jit,%,d) = JN(AN; t,x o), i=1,---,N. (5.10)

We shall use this and Theorem to prove Theorem [5.3]in the rest of this section. We also

make the following obvious observation:

I
Ve M) = TN = s, v e (5.11)

Remark 5.4 (i) In this section we are using symmetric controls and we obtain the con-
vergence in Theorem [5.3. If we use full information controls ozi(t,)z), as observed in [32]
in terms of the equilibrium measure, one may expect the limit set value will be strictly
larger than V.. It will be interesting to find an appropriate notion of MFFE so that the
corresponding MFG set value will be equal to the above limit, in the sense of Theorem [5.3.

(i) While the convergence in Theorem is about set values, the proofs in the rest of
this section confirm the convergence of the approximate equilibria as well, exactly in the

same manner as in Remark [3.0.

5.2 From N-player games to mean field games

In this subsection we prove the left inclusion in (5.8). Notice that the A in (5.9) is defined

on .Ap .., rather than A’ path = A;gth For this purpose, recall (£I2]) and introduce
V(%) = ppg(x), vIL(R) = — Z QLwN:x, a5(-, ), x € Xy, x € XEX 5 > t;
- (x) B (5.12)
AN (x, do) ) Z ba,(da), where a;(s, %) = ay(s, %, V).
zEI(x)

Then it is obvious that a; € A;,ath and AN € Z;(u). Moreover, when y = ,ui\fi, by (@I3)
and (B.11)) it is straightforward to verify by induction that ,uAN =N,

Theorem 5.5 Let Assumption[22 (ii) hold. Then, for any L > 0, there exists a constant
Cr, depending only on T,d, Ly, and L such that, for any t € T, X € Xé\ft, w € Po(Xy),

ae (A;aLth)N, Y€ A;fth, and for the vV, AN defined in (5.12), we have

t.%,(a%a)
max max E¥

N AN ,_ N
1SN 1<s<T [Wl(us/\-aus/\-)] < CL9N7 GN = Wl(/iugﬂ) +

1
ok (5.13)
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Proof Fix ¢ and denote & := «; for j # i, and &; := &;. We first show that

C 74 ~
ke = EF W (v )] < =&, where PN = PREETD) 5.14
[ (:u A+ A+ )] — \/N ( )
Indeed, for s > ¢, by the conditional independence of {X g 4111<j<n under PY conditional

on Fy, it follows from the same arguments as in (3.I1)) that

s = B ER DG v )]
< \/i_ nggﬂ EPNHNZ]}DN (X7 =441 x| Fy) — u(s+1) (x)H.
Note that,
‘N Z]P’N XJ =s11 X|Fs) — Z;l{xg_sx}q(s x, v ,ai(s, %, I/N);X5+1)‘
J

1 -
= ‘N Z 1{Xj:Sx} [q(s,x,,uN, O‘j(syxnuN);Xs-l-l) - Q(87X7 VNv Oéj(S,X, VN);XS-l-l)] ‘
=1
1
< CoWa(pdh, vii) + N = CrLks + N

where in the last inequality, the first term is due to the sum over all j % ¢. Then

C N 1
Ket1l < Crks + ﬁ +EP |: Z ‘Nzl{Xj:Sx}Q(syxa VN,O‘j(Saxy VN);XS-‘:-l)
x€Xs41 Jj=1

1 _
_N Z QZ(VN;X7()4]')Q(S,X,VN,Oéj(S,X7I/N);X8+1)H

JEI(xtn.)

CLHS+\/%+EPN[Z‘N21{XJ_SX} 5 2 Qi x,aj)H

xEXs JEI(x¢n.)

C
—CL"is"i_\/——"i_EP [xg%é‘us/\ Vs ( )‘] SCLRS—’_W’

It is obvious that x; = 0. Then by induction we obtain (5.14)).
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Next, denote kg := Wl(l/é\k,uf}ﬁ). For s > t, by (5.12), (£13), and [@I2]), we have

Rs+1 = Z Z |Vs+1 (Afil) (i)‘

xeXtXEth
X ~ p—
—ZZ\—Z@M %.85) ~ T Z@m "ix, )]
x€Xt xexXY jel(x
AN o -
:Z Z { Z |Q8+1 X, 07) — Qipa (1 SX,Oéj)‘
x€Xt xexlY, JEI(x)

+‘% i}\ Z Qi (5% )
DL > ZW1 )+~ 6]

xeX¢ )}gXt’x JEI(x

<CZ/{T+C’Z‘,utx —,u(x)‘ﬁCZRT.
r=t

xeX¢

Obviously k, = W, (ui\fi,u) Then by induction we have sup &g < C’Wl( <> /). This,
’ t<s<T

together with (5.14)), implies (5.13) immediately. [ ]

Theorem 5.6 For the setting in Theorem and assuming further Assumption [2.2 (iii),

there exists a modulus of continuity function pr, depending on T, d, Ly, Cy, p, L, s.t.

Ji(t, Z, (@7 &) — J(t, AV X' al-, v ‘ + |v (t,X,d) — fu(uAN;t,xiﬂ < pr(On). (5.15)
Moreover, assume & € MhNefel;o (t,X) for some €1 > 0, then
/ LAY x,0) — ot AV x)]AN (x, da) < &1 + 200(0n), VX EX,  (5.16)
‘Az)ath

In particular, if 1 + 2p1(0n) < €, then AN € Mglobal(t,,u).

Proof First, given Theorem b5 (5.15]) follows from the arguments in Theorem [3.41
Then, for & € MY0E(¢ %) and x € X,, by (5.4) we have

hetero
/ 08V, 0) = o, B8 G do) = 37 [0 AN x,a0) = (A% %)
At N
path ZEI(X)
< Z U‘](t AN x' @) = Ji(t, R, @) + [Di(t, R, @) — vt (4, R, @)
N i€1(x) ’ o T 7 i )y X,

+‘UN’L(t,}_i, a) — U(,uAN;t,xi)‘]

)

< pr(On) +e1+pr(On) =1+ 2pL(0N),
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completing the proof. [ ]

Proof of Theorem [5.3t the left inclusion. We first fix an arbitrary function ¢ €

NesoUz>0 im0 VhNefefo(t 14, N.), e > 0, and set &1 := 5. Then there exists L. > 0 and

and a sequence Ny — oo (possibly depending on €) such that ¢ € VhNQ; O’le (t, ,uiv}%), for
all £ > 1. Now choose k large enough so that 2p;_(0n,) < 1. By (5.0) there exists
a € MIYmrle 2y such that maxyex, minger(x) [p(x) — N’L(t,)_i, a@)| < 1. By Theorem

hetero

B.6 we see that AN € MS (¢, 1) and, by (m),

AN . NL AN
o — v 5t,)|lx, < max min “cp(x) —v; a)l + |v (t,%, &) — v(p ;t,x)‘]
x€X¢ i€l (x)

< e1+pr.(On) <e.

Then ¢ € Vglobal(t7 w). Since € > 0 is arbitrary, by Theorem we get © € Viear(t,p). W

5.3 From mean field games to N-player games

We now turn to the right inclusion in (5.8)). Fixt € T, X € Xé\ft, € Po(Xy), and v € Apejaz-
Our goal is to construct a desired & € (.Apath)N . However, since &, or equivalently the
corresponding A, is discrete, we need to discretize v first. We note that it is slightly easier
to discretize v than a general A € Zy(u).

First, given € > 0, there exists a partition A = U= Ay, with n. depending on € (and 7)
such that, for some arbitrarily fixed a, € Ag, k=0,--- , n,,

v(s,x,A0) <e,Vs € Ty, x € Xy, and |a—ag| <e,Va€ Ag, k=1, ne. (5.17)

Denote by .A =, the subset of o € A o, taking values in A, := {ay : k=0, - ,n.}. Define

v (s,x%,da) 27 (s,x, Ag)dq, (da). (5.18)
k=0
Recall ([IT), we see that supp (A" (x,da)) = A;,; c A parn for all x € Xy
Next, recall (5.I1]) that Nui?;.(x) = |I(x)| is a positive integer for all x € X;. Let
Af . € P(Xy x A;’;h) be a modification of A" such that,

tx(x .Apath) ,ui\fi(x) and NA7 ;(x, @) is an integer;

. 1
|A§,§(Xa a) = A7 (x,0)] < % + |upx(x) — p(x)];

V(x,a) € X, x A%

path- (5.19)

: te . . . .
Note that, since Ap’ath is finite, such a construction is easy.
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We now construct @ € (A", )N, which relies on 7¢ and hence on . Note that

path
D INAg(x )] = NAG4(x, A%y, ) = Nupk(x) = [1(x)],
aEA;’;th

and each NA7 4(x, ) is an integer. Let I(x) = U_ 4u.e h[(x, «) be a partition of I(x) such
) pat
that [I(x, )| = NA] 4(x, ). We then set
a =, i€l(xa), (xa)cX;x A;’Zth. (5.20)

Let AN be the one defined by (59) corresponding to this @. It is clear that AV = A° _.

Theorem 5.7 (i) Let Assumption[2.2 (ii) hold. Then there exists a constant C', depending
only on T,d, Ly, such that, for anyt € T, X € Xé\ft, we Po(Xy), v € Arelaz, € >0, and for

the a € (A?Zth)N constructed above, we have, for the Oy in (B.I3) and for any & € A;((z)th’
max max BTV [ (i )] < O+ Cuty (5.21)
1<i<N ¢t<s<T s\ Fsn- /] = eVUN,

where Cz may depend on € as well.
(ii) Assume further Assumption [2.3 (iii), then there exists a modulus of continuity

function pg, depending only on T,d, Ly, Cy, and p, such that,

Ji(t, T, (a7 &) — J(,Lﬂ;t,xi,d)‘ + |va’0(t,>_<’, a) — v(,tﬂ;t,x"ﬂ < po(C’e + C’eﬁN). (5.22)

Moreover, assume v € M:,,  (t, 1), then

7

N
% > [t %,6) — 00t R, @)] < e +2p0(Ce+ Ceby),  Vx € X (5.23)
1=1

N0
hetero

In particular, this means that & € M (t,X) with € := ¢ + 2pg (CE + C€9N).

Proof (i) We first show by induction that
ks 1= W1 (,uzA,,,uz;,) <Ce s=t,---,T. (5.24)

Indeed, it is obvious that x; = 0. For s > ¢, by (@), (5.17), and (5.I8]), we have

€

Rs+1 = Z ‘N?SH)A-(X) - N?s—i—l)/\-(x)‘

x€Xs41
- Z ‘M;/A(X) /Q(‘SvX) ,UV,CZQ x)y(s,x, d(l) - M;//\(X) /Q(‘SvX) /Jﬁ/eva;$)/7€(s7xv da)‘
x€X;,z€S A A
Ne
< Y [!uZA.(X) — (X)) + Z/ lq(s,x, 17, a3 ) — q(s,%, 177, ag; ) |y (s, %, da)
x€X,,z€S k=1 Ak

+ [ atsxtaon(sxda) + [ alsx o (s.x,do
Ao AO
< Cks + Ce.
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Then by induction we have (5.24)).
We next show by induction that, recalling (5.12)),

Rs = Wi (Vo iln) < Cly, s=t,---,T. (5.25)

Indeed, 7y = Wl(uivi, w). For s > t, noting that «; € .Apath c A patn, and recalling from
Lemma [0 that 12" = 17, then by (512) and (4I3) that

Ks+1 = Wl( s+1/\7lu(s+1) )

-y ¥ ‘N >y QtSH(VN;i,a)—/t Q§+1(u”;i,a)m€(x,da)‘

xeXy iEXt'x (XEAZ Eth €l (x,a) path

S Y | Y e )@ (i 5%,0) — AT, 0)Q (4715, ]|

x€Xe zexV¥, aeA;;h

<2 XX [Mikto0) — A (x0)] QL (Vi % )

t,x
XEXs ReX(Y, a€ Al

€

FAT (x,0)| Qi (V3 %, @) = QL (077 %,0) .

Then, by (5.19) and noting that C; := \Apath] is independent of N, we have

Z Z Z [GNQS_H x,a)+Cm€(x,a)ZWl(uﬁ\ﬁ,,pZ;.)]

Rs+1 é
x€X¢t xeXl¥, aeApath r=t
< COy+C E Rp.
r=t

This implies (525 immediately.

Finally, combining (5.24)), (5.25]), and (5.13]), we obtain (5.2T]).

(i) First, similar to (5.15), by (5.2I) we have (5.22) following from the arguments in
Theorem 3.4l Next, for v € M7, (¢, 1), by I9) we have AT € Mg, (¢, p1). Then (5.23)

follows from similar arguments as those for (5.16]). [ |

Proof of Theorem [5.3t the right inclusion. Fix ¢ € V.. (t, 1) and € > 0. Let €1 > 0
i) such that

rela:c(

be a small number which will be specified later. There exists v € M
llp — J(t, v 7)|lx, < e1. Let 4°t and @ be constructed as above. By (5.23]) we have

N
% > O [Ji(t R, &) — v 0t %, @) < et +2p0(Cer + CeyOy), VxEX.

2

Choose 1 small enough such that &1 +2pg(Ce;+e1) < . Then, for all N large enough such
that fy < £, we have + P L i, %, @) — v oMt %, )] <e. That is, @ € VhNefego(t,uivi)

34



for all N large enough. Then, following the same arguments as those in the proof for

the left inclusion, we can easily get ¢ € VhNe’fe’Eo(t, ,ui\;) for all N large enough, and thus
pelimy_, o VhNef é70~ J(t, 11N>, Since £ > 0 is arbitrary, we get the desired inclusion. [ |

6 A diffusion model with state dependent drift controls

In this section we study a diffusion model with closed loop drift controls, where the laws of
the controlled state process are all equivalent. The volatility control case involves mutually
singular measures (corresponding to degenerate ¢ in the discrete setting) and is much more
challenging. We shall leave that for future research. To ensure the convergence, we consider

state dependent homogeneous controls for the N-player games, as we did in Section 3.

6.1 The mean field game and the dynamic programming principle

Let T' > 0 be a fixed terminal time, (2, F,F = {F;}o<i<7,P) a filtered probability space
where Fj is atomless; B a d-dimensional Brownian motion; and the set A C R% a Borel
measurable set. The state process X will also take values in R%. Its law lies in the space
Py := Po(R?) equipped with the 2-Wasserstein distance Ws. We remark that in the finite
state space case W7 and Wy are equivalent, while in diffusion models they are not. In
fact, at below we shall require Wi-regularity, which is stronger than the Ws-regularity, and
obtain Wj-convergence, which is weaker than the Ws-convergence. This is not surprising
in the mean field literature, see, e.g. [38]. The main advantage of the Wj-distance is the
following well known representation, see e.g. [I3]: for any u, i € Pi(R?),

Wiy, = sup { | ola)n(da)—ldo)] s ¢ € Cuip(®R?) st p(e) = (@) < [o=3l}. (6.1)

Here Cp;p(RY) denote the set of uniformly Lipschitz continuous functions ¢ : RY — R.
Moreover, for each (t, 1) € [0,T] x Pa, let L2(¢, 1) denote the set of F;-measurable random
variables ¢ whose law (under P) L¢ = p.

We consider coefficients (b, f) : [0,T] x R? x Py x A — (R4 R) and g : R x Py — R.

Throughout this section, the following assumptions will always be in force.

Assumption 6.1 (i) b, f,g are Borel measurable in t and bounded by Cy (for simplicity);
(ii) b, f,g are uniformly Lipschitz continuous in (x,u,a) with a Lipschitz constant Ly,

where the Lipschitz continuity in p is under W7.
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Let Agont denote the set of admissible controls « : [0, 7] x R? — A which is measurable
in ¢t and Lipschitz continuous in x, with the Lipschitz constant L, possibly depending on .
Given (t,u) € [0,T] x Pa, € € L2(t, ), and o € Acont, consider the McKean-Vlasov SDE:
S
X;f,i,a =¢ _,_/t b(r, Xﬁ’g’a,uf,a(r, Xﬁ’s’a))dr + By — By, pd:= ,ng,g,a_ (6.2)
By the required Lipschitz continuity, the above SDE is wellposed, and it is obvious that
p& = p and p¢ does not depend on the choice of & € L2(¢, ). Then, when only the law is
involved, by abusing the notations we may also denote X5&® ag Xt

Next, for any = € Rd, and & € Acont, we introduce

J(t, oz, a) = J(p*t,z,aq), v(p®;s,z) = i}gf J(u*; s,x,a),s >t, where
acAcont
r - o -
XK — g g / b(l, X" 00w a(l, X)) dl 4+ By — B, T > s; (6.3)
S

~ T a ~ o ~
T(u 5,,0) = B[g(XF ™, i) + [ XY i Xp 0.
S

Here we abuse the notations by using the same notations as in the discrete setting. Clearly
u(s,z) = J(p*;s,z,a) and v(s,z) = v(u;s,z) satisfy the following linear PDE and
standard HJB equation on [t,T] x R?, respectively, with parameter p®:

8Su(sv$) + %tr (amru(87$)) + b(S,ﬂj‘,,u?, 5[(8,3)‘)) : amu(87$) + f(87$mu?7 5[(8,3)‘)) = 0;

Ov(s,z) + %tr (amv(s,x)) + in [b(s,az,ug‘,a) - 0yv(s, ) + f(s,a:,ug‘,a)] =0; (6.4)

f
a€cA
U(T,l‘) = ’U(T,ﬂj‘) = g(x,,u%).

Definition 6.2 Fiz (t,u) € [0,T] X Pa. For any € > 0, we say a* € Acont is an e-MFE at
(tnu): denoted as o™ € Miont(tnu)) if

/]Rd [J(t, p, a5, 0) — v(ua*;t,:n)]u(dx) <e. (6.5)

Remark 6.3 Similar to (5.4) and (5.5]), here we do not require o to be optimal for every
player x. In fact, alternatively, we may replace ([6.35]) with

u{x st o) —u(p® st )| > E} <e. (6.6)

The intuition is that, since there are infinitely many players, we shall tolerate that a small
portion of players may not be happy for the o*, as in [11)], and their possible deviation from
o* won’t change the equilibrium measure p®  significantly. We note that, although (6.6)
and ([6.35]) are not equivalent for fized €, they define the same set value in (6.8]) below, and
the proofs are slightly easier by using (G.5]).
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Howewver, if we require the e-optimality for p-a.e. x, namely the probability in the left
side of ([6.6]) becomes 0, then the set value will be different and may not satisfy the DPP.

Such difference would disappear in the discrete model though.

To define the set value, we need the following simple but crucial regularity result, whose

proof is postponed to Appendix.

Lemma 6.4 Let Assumption [61] hold. There exists a constant C > 0, depending only on
T,d,Cy, Ly, such that, for any t,u,a, & and s > t,

‘J(uo‘;d,s,x) — J(,uo‘;d,s,a?)‘ + ‘U(,uo‘;s,x) — (% s,a?)‘ <Clx—2z|, Vez,z. (6.7)
We then define the set value of the mean field game:

Veont (t, 1) m Veone(t,p), where
e>0

Ve ont (t 1) == {cp € CLip(RY) : there exists o € ME,,(t, 1) such that (6.8)
/ !gp(x) — J(t,u,a*;x,a*)‘,u(da;) < E}.
R4

In particular since J(t, u, a*; 2, o) > v(pu® ;t, ), then by (6.7) and (6.5) we see that both
J(t, p, ;- %) and v(pu® ;t,-) belong to Veont(t, 1t). Moreover, again due to (6.5]), we may
replace the inequality in the last line of [@8) with [o4 |o(z) — v(u® ;t,2)|u(dz) <e.
Similarly, given T and ¢ € Cp;,(R?), we may define the functions J(Tp,v;t, u, a; x, @),
J(To, ¥, u*; s, z, &), v(To, ¥; p%; s, x), as well as the sets M, . (To, V5 t, 1), Vo, .. (To, ¥; t, 1),

Veont(To, 15 t, 1) in the obvious sense. In particular, we have the following tower property:

J(t, p,a;w,&) = J(To, ¥5t, py a5 ,&),  where  (z) == J(To, u, o; @, &); (6.9)
v(u®t @) = v(To, ;s 3 t, ), where (x) = v(u®; Tp, z). .

We now establish the DPP for V .y, (¢, p).

Theorem 6.5 Let Assumption [61] hold. For any 0 <t < Ty <T and u € Po, it holds

Vcont(taﬂ) Vcont(t ,u ﬂ Vcont t :u) ’LUhIE’/“e
e>0

Tt 1= {0 € CLig®D) s [ lola) = T(Bovts s 0*s,0°) o)

<o (6.10)
for some (¥, ™) satisfying: ¢ € Vcont(TO,,uTO) af € M, (To, st p }
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Proof (i) We first prove Vi, (t, n) C Vcom(t ). Fix ¢ € Vegne(t,p), € > 0, and set

€1 := 5. Since ¢ € V¢! (¢, ), there exists o € Mg} (¢, p) satisfying (6.8) for ;. Denote

cont

¢($) = J(T(],/L%;,Oé*;x,()é*), ¢($) = ’U(/La*;TO’$).

By (69) we have J(Tpy,v;t, p, o*;z, ) = J(t, p, ™5z, a*) and thus
[ o) = Ittt |ulde) < &1 <=
R

We shall show that ¢ € Vcont(To,,u%;) and a* € ME, (Ty,¢;t,p). Then ¢ € Ve, .(t, ),
and therefore, since € > 0 is arbitrary, we have ¢ € V(t, ).
Step 1. In this step we show that

[ oo~ ol o) (d) = | [0le) ~ S (d) < 0. (6.10)
R4 Rd

Then o* € M&,,,,(To, ,u%*) which, together with the regularity of ¢ from Lemmal[6.4], implies
immediately that ¢ € V¢, ,(To, ,u%;)
To see this, we recall ([6.2]) with & € L2(¢, ). Since a* € MEL (¢, 1), by (63) we have

e1 2 E[J (0%, 0%) — o ,6)| = E[J(To, sty a5 €, 0) = v(To i i 51,6 |
> E[J(To, ¥t 1,075 €, 07) = T (To, it 0”36, 07) | = E[p(XEE) = H(XEE).

Note that ﬁXt car = (i, , then this is exactly (EIT).
Step 2. It remains to show that o* € M:,,.(To,¥;t, ). By the definition of v and its
regularity from Lemma [6.4] there exists &* € Ao, such that

J(To, i t, 032, &%) < o(Th, ¥ u® s t,2) +e1, Vo € RY

Then, denoting &* := &* ®p, o € Acont, by ([6.9) again we have

E[J(To, it 1,073, 0%) = v(To, 5 1" 1,6)|
<E[J(To, it 056 a") = J(To, it pa’i6,67)] +1
—E|J(t,n,0%5€,0%) = J(t 1,036, 67)] + &1

E[J (t, ;& a") —v(,ua*;t,{)] +e1 <ep+e =c¢,

This means a* € M¢ ., (To, ¥;t, p).
(ii) We next prove Vcant(t,,u) C Veont(t,p). Fix ¢ € Vcom(t,,u), € >0, and set €1 := 3.
Since ¢ € VS (¢, 1), there exist (1, a*) satisfying the desired properties in (GI0) for &;.
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In particular, since 1 € Vi), (To, pg, ), there exists desired &* € MZ},,(To, pg, ) required in
(68) for £;. Denote &* := o* &1, &* € Agont and

T/J(@ = J(T(],/L%;,d*,x,d*), ¢($) = U(M&*;T07$)‘

By (6.10),
E|:|J(T07¢;t7ﬂva*;£7a*) - J(TO,Qﬁ;t,/,L,OZ*;g,Oé*)” (612)
:E[W(X:l;: ;t’g’a*) —Qﬁ(X;: ;t’g’a H W) TOaMTO,Oé r,a" ‘MTO (dr) < &

Then, since ¢ € V! (¢, 1) with corresponding (¥, ), by ([6.39) and (.12) we have

E|:|(p( (t o, & a € a )|:| < EU@(&) - J(To,ﬂ);t,,u,oz*;f,oz*)” +e1 <2 <g,

where ¢ € L2(t, u). We claim further that &* € M%,,,(¢, ). Then ¢ € VE_ (¢, 1), and thus
© € Veont(t, 1), since € > 0 is arbitrary.
To see the claim, since o* € ML (To, ¥;t, p), &* € MEL (To, ,u%;), by ([€9) we have

E[J(t 6756, 67) = v(ui4,)|
= E[J(Ty, st 1,0%16,07) = o(Tp, b1 31,)|
< E[J(me;t,u,a*;&a*) - U(Toﬂﬁ;u”‘*;t,é)] +e1
E[ (To, ¥ 1™ 3t,€) —U(Toﬂﬁ;u“*;t,é)} +2¢1
sup B[ J(To, vit, 0% €,&) — J(To, it 0", @)] + 261

dEAcont

=E[p(X5%) — (X)) + 261 SE[D(XRY) = h(X55)] +3e1 <1+ 3e1 =&

IN

This means &* € M¢ (¢, 1), and hence completes the proof. [ |

Remark 6.6 (i) Our set value Veoni(t, 1) is defined for each (t, 1) with elements in Cp;,(RY),
instead of V(t,x, ) C R for each (t,x,p). This is consistent with 7)) in the discrete model,
and is due to the fact that an e-MFE «* in Definition[6.2 depends on (t, ), but is common
for all initial states x. Indeed, if we define V oni(t, x, 1) in an obvious manner, it will not
satisfy the DPP.

(ii) The above observation is also consistent with the fact that the following master

equation is local in (t, ), but non-local in x due to the term 0,V (t,Z,pn):

OV (t,x,u) + %tr (022V) + H(z, p, 0, V)

) (6.13)
+ /R [t @V (11, 2)) + OpH (g1, 00V (1, 7, 1),V (12,1, 8)] () =
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Under appropriate conditions, in particular under certain monotonicity conditions, the
above master equation has a unique solution and we have V oni(t, 1) = {V(t, 1)} is a single-
ton, where V(t, p)(x) := V(t,z,u) is a function of x. In this way, we may also view (6.13)
as a first order ODE on the space C*(R?) (the regularity in x is a lot easier to obtain):
OV (t, ) + H(p, V(E, 1) + M(p, V(E, 1), V(¢ 1)) = 0,
where H(u,v()(@) = i1 (Or0(@) + H(z, 1, 0y0(a). (6.14)

M0, 5 )a) = [ (5 050 2)) + 0, (., 0o0(@)) i, 3) ().

It could be interesting to explore master equations from this perspective as well.

6.2 Convergence of the N-player game

By enlarging the filtered probability space (€2, F,F,P), if necessary, we let B',--- , BY be
independent d-dimensional Brownian motions on it. Set A2, := UrsoAL ., where, for

each L >0, AL . denotes the set of admissible controls « : [0,T] x R? x P, — A such that
|Oé(t, €T, /L) - Oé(t, ja ﬂ)| < La|$ - j| + LWl(M) ,LNL)

Here the Lipschitz constant L, may depend on «, hence the Lipschitz continuity in = is not
uniform in a. We emphasize that the Lipschitz continuity in p is under Wy, rather than
Who, so that we can use the representation (G.1). Note that Aqon; = A%,.;, and by Remark
311 (i), all the results in the previous subsection remain true if we replace Acont with A2, ;.

Given t € [0,T), = (x1,--- ,xy) € R¥™ and @ = (o, -+ ,an) € (AL )V, consider

s

t,Z,050 . t,Z,an |, 6T,a t, @, a1 tT,a i i .

Xs _:El"i'/b(rer » Moy ) Z(TX y Moy ))dr—i—Bs_Bth_la""Nv
t

where /sza NZ(Sthaz7

. (6.15)
Ji(t,.’f, C_f) — E[Q(X%f’&;i,ﬂgi&) +/ f(st;t,m,a;zhuz;,w,ajai(S’Xz,f,d';z twa))ds]
t
UZN’L(t,f, &) := inf Ji(t, 7, (@7% @&)).
acAL

cont
In light of Lemma [6.4] the following regularity result is interesting in its own right.

However, since it will not be used for our main result, we postpone its proof to Appendix.

Proposition 6.7 Let Assumption[6.1 hold. For any L > 0, there exists a constant Cp, > 0,
depending only on T,d,Cy, Lo, and L, such that, for any (t,Z) € [0,T] x R, z,& ¢ RY,

and & € (AL, )N, we have

[V (¢ (70 7),d) — o) P (¢ (@ 7),d)| < Oplz — 7], i=1,---,N. (6.16)

(2
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Given a € AL .. by viewing it as the homogeneous control (o, --- ,a), we may use the

_— . i tE S NL,, = - .
simplified notations X*%% (b5 Ji(¢, 7, o), and v; (¢, Z, ) in the obvious sense.

Definition 6.8 (i) For (t,%) € [0, T]xR™ ¢ >0, L > 0, we call a* € AL, a homogeneous
(e, L)-equilibrium of the N -player game at (t,Z), denoted as o eriﬁtL( t, %), if

1
N Z UZN’L(t,:i’, o) <e. (6.17)
1=1

(ii) The set value for the N-player game is defined as:

N, L _.
cont ﬂ Vcont m U chft » L ’ where (6'18)
e>0 e>0L>0
Vi\;ﬁgL(t,f) = {90 € CrLip(RY) : 3a* € Mi\;,ftL t,%) s.t. — Z lo(xi) — Ji(t, Z,a")] < 6}
N,e,L

We remark that, although V_

comi (t, Z) involves only the values {p(x;)}1<i<n, for the

convenience of the convergence analysis we consider its elements as ¢ € Cp;,(R%).

Remark 6.9 (i) Recall (31)). By the required symmetry, obviously there exist functions
JN NE 0, T) x Py x AL x RT — R such that

Ji(t, %, a) = JN(t,uév,a; x;), UN’L(t,f, a) = UN’L(t,,uiy,a;xi), i=1,---,N. (6.19)

Moreover, VY (¢, %) is invariant in pY and thus can be denoted as V2, ,(t, u).

(i) The required inequalities in Definition [6.8 are equivalent to:

[ = @t ) <2, [ o) - IV el ot (de) < e
R4 R4

We now turn to the convergence, starting with the convergence of the equilibrium mea-

sures. Recall the vector (o, @); introduced in (3.6]).

Theorem 6.10 Let Assumption [6.1] hold. For any L > 0, there exists a constant Cp, > 0,
depending only on T,d,Cy, Lo, and L, such that, for any t € [0,T], £ € R¥™, u € Py,
a,ac AL . andi=1,--- N,

sup E|Wq(ub®@i 1) < Crn, (6.20)
t<s<T
1 1 N
where  Ox == Wi(pg p) + N7 |7l + N7 |73 = Zl |z 2.
1=
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Proof Recall (6.I5) and introduce, for j =1,--- | N,

N
iy s y - , . 1
X =yt [ bl X))+ B - Bl i =y L
t (6.21)
L2

j=
X, =&+ / b(r, Xy, 12, a(r, Xy, 5))dr + By — By, where € € L2(Fo; i),
t

Note that X!,---, X" are independent. We proceed the rest of the proof in two steps.
Step 1. In this step we estimate E[Wy (2, u2)]. First, by [38, Lemma 8.4] we have

E[Wi (il Lx,)] < ON~73|7]l2.
Next, fix an ¢ in (6.1) and let u = u,, denote the solution to the following PDE on [t, s]:
1
oru + §tr (Ozau) + b(r, @, ud, olr, @, 1)) - Opu =0,  u(s,x) = (). (6.22)

Applying Lemma with &(r,z) = a(r,z,pd) and f = 0, we see that w is uniformly

Lipschitz continuous in x, with a Lipschitz constant C' independent of ¢ and L. Thus,

E[p(Xs) — o(X2)] = E[u(t,§) — u(t,§)] < CE[I€ — ]

Since Fy is atomless, we may choose &, € such that E[|€ —&|] = Wi (uY, u), then (B1)) implies
Wi(Lg,,png) < CWi(pl, p). Put together, we have

E[Wi (i, u2)] < CWi(ud 1) + ON~ 73 |F|y < COy, t<s<T. (6.23)

tf:(a7d)i

Step 2. We next estimate E[Wl(,us’ ,,u‘;)]. Denote a; := &, o := « for j # i, and
Bl = b(s, X3, AL, (s, X3, AlY)) — bls, X2, &, als, X2, p2)), 1<j<N
M, = vazl M!, M :=exp (f: BldBl — % : |ﬁ¥|2dr>.

Then, by the Girsanov theorem we have

B (W (uh™ (%%, 1)) E[MWy(i), 1)) = B[[My — UW1 (i), p2)] + E[Wa(iy), pg)]

N s
- YE| /t M BB Wi, )] + B[N 4] (6:24)
j=1

By the martingale representation theorem, we have

N

Wi i) = B[ )] + - [ Zlab. (6.25)
j=1"1
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Note that X7 are independent. Consider the following linear PDE on [t, s] x R%V:
| N N
') + 3 Ztr (O jayulr, @) + Z b(r, ay, p, alr, @, pl)) - Opyu(r, @) =0,
— = (6.26)
u(s, @) = Wipgy, 7).

By standard BSDE theory, see e.g. [43, Chapter 5], we have Zi = Oz u(r, Xﬁf), where
X0 = rj + Bl — Bg . Note that the terminal condition u(s,#’) is Lipschitz continuous

in o with Lipschitz constant % Then, similarly to (6.22]), by Lemma [6.4] we see that

|Z7] < |0, ul < % for some constant C' independent of o and L. Thus, by ([6.24]) and ([6.25]),
E[Wl( L ()i ey — W ( us,us ZE /MTBJ ZJdr <—ZE / Myﬁﬂydr

Note that |5| < C and, for j # i, | 5] < CLW1(/1,N,M,‘3‘). Then, by (6.23)),

B[Wa e )] < B )] + B[ [ Migiiar + 3 [arlsiiar]

J#i
N oan C C c
E[Wi(i), pg)] + N —LZE / MW (Y ,ur)dr] =y T Crbn =< Crhy,

J#i
proving ([6.20]). [ |

Theorem 6.11 For the setting in Theorem [0.10, we have

1

oM, E o) — o(pst, )| < CLok. (6.27)

Z

Ji(taf7 (aa d)z) - J(t,,u, a5 T, d)‘ +

Proof Fix i. First, by taking supremum over & € AL . the uniform estimate for J

cont’

implies that for v immediately. So it suffices to prove the former estimate.

For this purpose, recall (6.I5]) and denote

I T o I

Ji(t,f, (Oé, d)z) — E]P’ g(X;m,(a,a)i,l’M%) _|_/ f(S,X;’x’(a’a)i;l,/L?,6&(8,X;’x’(a’a)i;z,ﬂ?))ds] ]
t

Then one can easily see that, by applying Theorem [6.10]

| Ji(t, @, (o, @);) — Ji(t, &, (0, @);)] < Cp sup E[Wy(ub™ @i u2)] < Croy.  (6.28)
t<s<T

Next, denote
X!:=ux;+ B. - Bj, TAREES % |:Zj7£i 5xzva(a;a)i§j + 5)(;‘];
Bs := b(S Xsn“s) (S inu(sx))’ M; = exp (j;,s BTdB;: B % ts |ﬁ7«|2d7");

B = bls, XL i als, X0 ), My = exp ([ BdBE— 4 [ |5, Par).
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By (63]) and (615, it follows from the Girsanov theorem again that

(£, (0, @)) = J (b 1, i, @)

= [E[[¥tr — M) [g(XF ) + / F (s, X212 (s, X2, 1)ds) | | < CE[|8r — Mr].
(6.29)
Denote AM, := M, — My, ABs := Bs — Bs. Then, since b is bounded,

BAM.P) = B[( [ [(¥,5, ~ M5r)aB)"] B[ [ 11,5, - M5 Par]

<c [ Elam P+ cE] [ 15nPias ]
t t

N

<C /t E[|AM, | ]dr+CE[/SMT%MT%|ABTI%dr]
< /t []AM\]errC /M!Aﬂr’dr])é
<C /t E[|AM, ldr + Cy (E /MWl( ,ur)er%

E[|AM, [2dr + Cp (B /W1 p R i) ar] )

<c/ |AM, [2)dr + C16%,

where the last 1nequahty thanks to Theorem [6.10l Then, by the Grownwall inequality we
obtain E[|AM,|?] < C’LGN, and thus (6:29) implies

Ji(t, %, (a, @);) — J(t, p, a; 24, &)| < CL94

This, together with (6.28]), implies the estimate for J in (6.27) immediately. [ |

Theorem 6.12 Let Assumption [61] hold. Assume further that A}im Wi (ul, pu) =0, and
— 00
there exists a constant C > 0 such that) ||Z||2 < C for all N. Then

NeL N,e,0
m U hm Vcorit y Bz ) - VCOnt(t lu’) ﬂ hm Vcorft ( nuiy) (630)
e>0L50" e Ve
In particular, since lim Vi\;,fto t, ud) U hm Vi\;,ftL t, 1Y), actually equalities hold.
N—oo L>0

Proof (i) We first prove the right inclusion in ([€.30). Fix ¢ € Ve oni(t, 1), € > 0, and set
g1 := £. By (6.8) and (6.3, there exists a* € MSL (¢, 1) such that

/[J(t,u,a*;x,a*) o(u® st @) p(de) < e, /\cp J(t, py 052, 08 ) | p(de) < e
Rd

SNote again that Z depends on N. Also, the conditions here are slightly weaker than A}im Wa (ujfv7 u) =0.
— 00
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Recall Lemma [6.4] and note that ¢ € Cp;,(R?), then by (6.I) we have
/ [J(t7 22 Oé*; z, Oé*) - ,U(Ma* ity $)] ij“v(d$) <e+ CWl(/Lnyv #)7
R4

[ Je@) = Tttt | (dn) < 21+ WG ),

where C, may depend on the Lipschitz constant of ¢. Moreover, by (6.27) we have

N
1 = % * * * 1
N E [Ji(t,x,oz )—le’L(t E J(t, py s x, a) —o(p® ;t,:z:i)] + Croz

:/d [J(t, p, 0%z, 0%) —o(u®; ta;)]uév( )+CL9 <€1+CL9N,
R

N
1 * * 3

1

1 1
- /]Rd ‘(p(ﬂj) — J(t,u,a*;x,a*)‘ug(dx) + OOy <e1+Cp 0y

We emphasize again that ||Z]|o < C'is independent of N. Then, by choosing N large enough
1 1
such that Cr0y <e1, Cp 05 < €1, we obtain

N
L =% N,L -
NZ[Jz‘(t,x,Oz)—viv (t,7,a* Z|gpx2 Ji(t,Z,a")| <e.
i=1
This implies that o™ € Mivoﬁ,;o(t Z) and ¢ € Vi\;,fto(t pd), for all N large enough. That is,

p € limy ., Vi (£, &) for any e > 0.

(ii) We next show the left inclusion in ([6.30). Fix ¢ € ﬂ U Lim VYLt u) e > o0,
e>0130 7%
and set £1 := 5. There exist L. > 0 and an infinite sequence {N;}z>1 such that ¢ €

yikeute 1N for all k > 1. Recall (6I7) and (B.I8), there exists o € AL, such that

cont

1 M
Ny — [Ji(t, &, o) — UZNk,Ls(t,f, ak)] < ey; N ZZ:; lp(ai) — Ji(t, Z, oF)| < ey.

Note that L. is fixed, in particular it is independent of k. In light of Remark BT (i) and
denote &*(s,z) := of (s, z, "), then p&" = p®*. Similarly to (i), by ([627) we have

/ [J(tnu7dka x7dk) - U(Mak; t7$)] Nk(dx) <e+ C(LEGN]C
Rd

1
[ o) = It a50,69) | (o) < 1+ €03,
R4
Then, by Lemma and (6.1 we have

1
/ [J(tnu7dka x7dk) - U(Mak7t7x)]u(d$) < €1+ C’Lgeft\[]C + CWI(M;]cykvﬂ)v
Rd

1
/Rd lo(x) = J(t, p, 6% 2, 6F) | u(dz) < 1 + Cp.0%, + CoWi(pg*, ).
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Now choose k large enough (possibly depending on € and ¢) such that
1 1
Cr.b%, +CWi(ut*,p) <er, Cr.by +CoWi(uy*,p) < ei.
Then we have
/ [T(t, 1, 652, 6F) —w(u®" st 2) ] plde) < e, | Jp(a) = J(t 1, 682,67 u(de) < e
Rd Rd

This implies that &* € Mé,,,(t, ) and ¢ € V¢, ,(t, ). Since € > 0 is arbitrary, we obtain

cont

@ € Vcont(ty :u') n

7 Appendix

7.1 The subtle path dependence issue in Remark [4.3]

In this subsection we elaborate Remark [4.3] (ii) and (iii). Throughout the subsection, ¢, F, G
are state dependent as in Section[2l For simplicity, we compare state dependent controls and
path dependent controls only for the raw set values. We set ¢t = 0 hence p € Py(Xp) = Po(S).

We first provide a counterexample to show that the raw set value Vy(0, u) is in general

not equal to the corresponding raw set value Vg pqu, (0, 1) with controls o € Apgsp.
Example 7.1 Set T =2, S = {z,T}, A = [ag,1 — ag] for some 0 < ap < %, and

(0, @, p,a52) = q(0, 2, 1, ;T) = % gLz, p,asz) = a, q(l,z,p,6T)=1-a;
F0,z,pu,a) =0, F(l,z,pu,a) =all —al], G(x,u)=px).
Then Vo(0, 1) # Vo patn (0, 1) for general p € Py(S).
Proof Since [S| = 2, for any p € Py(S) clearly it suffices to specify p(z). Fix p € Po(S).
We first compute V(0, u). For any o, & € Agiate, it is straightforward to compute:

11
i (@) = (x0)g(0, 0, p, (0, m0);2) = » wzo)z = 3
To€ES ToES
1
p(z) = D pf(e)a(l oy, pf a(lar)iz) = 5 ) a(la);
z1E€S z1E€S

o. ~ 1
]PU y07:00706()(1 = &) = Q(07x07,u7a(07x0);£) = 57

J(O,M,Oé, .Z'(),&) = E]Pw oo |:G(X27:u’(2x) + Z F(t7Xt7Mta7&(t7Xt))
t=0,1

= @) + BT a0, X0 - a1, %)
1 1 -
=3 a(l,zy) + 5 Z a(l,z)[1 — a1, z1)]
r1E€S 1 €S
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Given «, we see that & is a minimizer if and only if &(1,z1) € {ag,1 —ag}, Vo1 € S. Thus,
a* € Mtate(0, ) if and only if a*(1,21) € {ag,1 — ap}, Vo1 € S, and
* * 1 * *
J(0, 4,075 20,07) = 5 > ()2 —a*(1,21)]

T1ES

is independent of zy (and p). This implies that V(0, 1) consists of 3 constant values:

1
Vo(0,p) = {a0[2—a0], §—|—a0—ag, 1—a(2)}. (7.1)

We next compute Vg e (0, 1). For any o, & € Apgn, we still have pf(z) = % and

. v
PH*i020.4( X, = z) = . Moreover,

py@) = Y ulwe)q(0, 20, 1, (0, m0); 21)q(L, 1, puf, (1, 20, 21); )

z0,T1€S

:% Z p(zo)o(l, zg, x1);

x0,71€S

J(O,,LL, a;To, d) = EPH Hros |:G(X27Ng) + F(17X17N?7&(17X07X1)):|

- M2( ) +EPM e |:d(17X07X1)[1 - d(LXO)Xl)]

1 1
=5 > uFEo)a(l, Eo, 1) + 3 > a(l, @, 21)[1 — (1, x0, 1))
%0,21€S z1€S

Similarly, o € Apq, is an MFE if and only if a*(1,z¢,21) € {ap,1 — ao}, Vzo, 21 € S, and

* * 1 ~ * ~ 1 * *
J(0, p, @%520,0%) = 5 > ulEo)a (L, Zo, 1) + 5 > (1o, 21)[1 — (1,20, 21)].

Zo,r1E€S z1ES

Choose one particular o*:

o (l,z,x1) =ap, o (1,T,21)=1—ag, Vi €S.

Then
* * 1
JO.ma%za’) = 5| p@at(tza) + Y p@a (LE o))
:C16S T1E€S
+= Z (Lz,z1)[1 — (1,2, 21)]
m1€S

= p(z)ao + p(@)[1 — ag] + ao[l — ao,
and similarly,
J(Ov 12 Oé*;f, Oé*) = M(&)ao =+ /L(E)[l - aO] + [1 - aO]ao = J(07 Ky OZ*;Q, O[*).
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S0 Vo.path (0, 1) contains the constant value p(x)ag + p(Z)[1 —ao] + [1 — aglag, which depends
on p and is in general not in the Vy(0, x) in (Z1)). [ |

We next turn to relaxed controls. Let A, be the path dependent ones in Section [,
and A% denote the subset taking the form ~(¢,z,da). We emphasize again that here we

relax

are considering state dependent ¢, F,G. Fix t = 0 and p € Py(S).

Lemma 7.2 For any v € Ayelaz, define

- 1
(s, 2,da) = — > wa)(s,x,da), where pl(z) = Y pla(x). (7.2)
s (l‘) xeXs:Xs=x xeXs:xXs=x

Then 7 € Astte and N;Y = ug.

relax

Proof First it is obvious that

b= = 3 WA = e Yl =1,

xEXs:Xs=x xEXs:Xs=T

so 7 € Astte  Next, by definition ,ug = g = pg. Assume ,u:’ = uJ, then for s + 1,

relax*

W) = S ul@) /A a(s,3, 13, s 2 (s, &, da)

zesS

= Zﬂz(i’)/ q(s,:%,,uz,a; .’1’) fy(j) Z MZ/\.(X)’Y(S,X, da)
zeS A fs x€Xs5:1Xs=2
= 36 [ alsxiai ) (sxda) = i (@)
x€Xs A
This completes the induction argument. |

Lemma 7.3 If v* € Ayejar 18 a relaved MFE at (0, ), then the corresponding * € AState

relax

is a state dependent relaxed MFE at (0, ). Moreover, in this case we have
J(O, 1,7 5 2,97) = J(0, 1,752, 57). (7.3)
Proof First, by Lemma it is straightforward to verify that

/SJ(O,/M; z,y)p(dr) = /SJ(O,M,’Y; z,y)p(dz).
On the other hand, since v* € A,¢jqz, by the standard control theory we have

inf  J(0,p,v"52,7) =v(p;0,2) = v(p? ;0,2) = inf  J(0,p4,5%2,9).  (7.4)
YEArelan .yleAstate

relax
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Then

/S)J(O,uﬂ*;xﬂ*)u(d:ﬂ) Z/SJ(O,M,W*;w,V*)M(dw) Z/Sv(lﬂ ;0,7)p(dx).

Since J(0, p, 7*;2,5%) > v(p7";0,2) and supp (1) =S, then J(0, u,7*;2,5*) = v(u?";0,z)
for all x € S. This implies that 7* € A% is a state dependent relaxed MFE at (0, 1), and

relax

consequently (Z.4]) leads to (Z3)). |

Theorem 7.4 The MFGs with state dependent relazed controls and path dependent relazed

controls have the same relaxed raw set value.

Proof By Lemmal[l.3] clearly the path dependent raw set value is included in the state
dependent raw set value. On the other hand, for any state dependent relaxed control
A* € ASte  we may still view 7* := 4* as a path dependent relaxed control’, and

relax’

it is straightforward to verify that the 7* € A5% € corresponding to 7* is equal to 4*.
Then, following the arguments in Lemma [73] in particular (74]), one can easily show
that J(0, u,v*;2,7*) = v(p?";0,2) and thus v* is also an MFE among A,¢jq;. Therefore,

J(0, p,v*;-,v*) belong to the path dependent raw set value as well. |

7.2 Some technical proofs

Proof of Theorem 7 Let Ve (t, 1) = Neo Ve, ate(t, 1) denote the right side of (ZI7)
in the obvious sense. We shall follow the arguments in Theorem 2.4

(i) We first prove \N/smte(t,,u) C Vgate(t,pu). Fix ¢ € @smte(t,,u), e > 0, and set
g1 = £. Since ¢ € Vi, (t ), there exist desirable ¢ and a* € M3, (To, ¥;t, 1) as

in (2I7), and the property ¢(-,,u%;) € Vi;ate(To,p%;) implies further that there exists
a* € Mg, (To, pug, ) such that

HQO - J(Touw;t7/”'7a*; 7a*)HOO S €1, ”¢(7,U%;) - J(T07N%;7&*7 7d*)”00 S £1-

Denote &* := o* &, &* € Asiate- Then, for any o € Agqee and & € S, similar to the

"While it is trivial that Afte%; C .Alet:x := Ayeiaz, as stated here, in general it is not trivial that

Meigte ¢ MP2 :z, because for the latter one has to compare with other path dependent relax controls, which

state

is a stronger requirement than that for M:LE . The rest of the proof is exactly to prove MELjEe /\/lletfz
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arguments in Proposition 23] (i), we have

* To—1
J(t 65, 0) =EP (T, 65 Xy, @) + Y Pls, Xl als, X))
s=t
% To—1
Y tr,a g ~% *
>E™ [J(To,u%o,oz (X, @)+ Y F(s, Xo, pd ,Oé(Ssz))] — &
s=t
* To—1
Q@ ta,a * *
2 EPH |:¢(XT0,,U%O) + Z F(S7XS7M? ,OZ(S,XS))] - 261
s=t
= J(T07¢;tuu7a*;x7a) - 281 2 J(TO,Q/J;t,,u,a*;x,a*) - 361
. To—1
[0y, ) + Y Fls, X1, 0%(s, X,)| = 321

s=t

_ Epua*;t,x,a
To—1
|:J(T07 /’L%; ) d*v XT()7 d*) + Z F(Sa XS7 ,LL?* ) a*(s, XS))i| - 45:l

s=t

st,x, o

> Epua*,
= J(t,p, & x,a") —e.
That is, &* € M%,,..(t, ). Moreover, note that

ng - J(tau7&*7 7(54*)“00 S €1 + HJ(T()awvtnuaa*v ',Oé*) - J(t7/”'7d*7 7d*)”00

=¢e1+ sug ‘EP“ e |:1/}(XTO7/’I‘%;) — J(To, uf, , &*; X, d*)] ‘ <2 <e.
HAS

Then ¢ € V&, (t, ). Since € > 0 is arbitrary, we obtain ¢ € Ve (t, ).
(ii) We now prove the opposite inclusion. Fix ¢ € Vgae(t, 1) and € > 0. Let 1 > 0

€1
state

Ml (t, 1) such that || —J(t, p, o*; -, a*)||e < €1. Introduce ¢(z,v) := J(To,v,a*;z,a*).

state —

By (2.10) we have

”90 - J(T07¢7tau7a*7 '7a*)”00 = ng - J(tau7a*7 7a*)HOO S £1-

be a small number which will be specified later. Since ¢ € V (t, 1), there exists o* €

€1
state

Moreover, since o € M (t, ), for any o € Agpqre and x € S, we have

J(T()a’l/};u,uaa*;xaa*) - J(tuu7a*;x7a*)
< J(t,p, o5z, a0, ) +ep = J(T, 0t p, a5z, 0) + €.

This implies that o* € MZ},,.(To,¥;t, ). We claim further that

s

1)[)(7#%;) € VC(—:l (T())M%;)’ (75)
for some constant C' > 1. Then by ([ZI7) we see that ¢ € VS (¢, 1) € V&,,,.(t, 1) by

setting g1 < % Since € > 0 is arbitrary, we obtain ¢ € %N’smte (t, ).
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To show (.0]), we follow the arguments in Proposition 23] (ii). Recall v in (2.5]) and the
standard DPP (2.1I1]) for v, for any = € S we have

*
H 2% NeY H 2% NeY

[J(To,u%:,a*;XTo,a*) < inf E¥
a€Astate

— EPH st,x,a |:’U(/La* ’ TO’ XTO):| + 61’

EPH |:J(T07M%;7a*;XToya)} +El

It is obvious that v(u®";Tp,) < J(To,u%;,oz*;-,a*). Moreover, since ¢ > ¢4, clearly

PHe it (X = &) > cgo_t, for any £ € S. Thus, for C := CB_TO,

0 S J(TO,M%;,CY*;‘%,CY*) _'U(,ua*;TO7j)
O‘*;t,:c,a* * * * *
< CE™ T[0T, sy 0 Xy, o) = 0(n 3 Ty, X)) x5y
< CE™ T [I(Ty, uy, 0 Xy, 0) — o(n® i Ty, X)) | < Cen.

This implies that a* € MEL (Tg,,u%;). Since ¢(-,,u%;) = J(To,,u%;,oz*; -, ), we obtain

state

([C5) immediately, and hence ¢ € Vstate (t, ). [ |

Proof of the claim in Remark 4.7l By (4I6]) and (£I7]) we have
1

frin. (%) AL i

s—1
1 ~ -
= mA/A [Hq(r,x,,u“/,a(r,x);xrﬂ)] X 5a(s,i)(da) x
SA r=t

YA (s,%, da) := QL (173 %5 @) (s %) (da) A (x, dcv)

T—1
['“(X)H H v(r, %, da(r,x))]

r=t )ZGX?X

s—1
— _px) /A-../A[HQ(r,fc,M,a(r,i);xrﬂ)v(ﬂi,da(“i))] %

MZ/\~(5()
[5a(s7,~()(da)7(s, x,da(s, X)) H (s, %, dafs, )2))] X

xEXS™\ (%}

s—1 T-1
[H H ’y(r,)‘(,da(r,i))] [ H H ~(r, %, da(r,i))]

r=t gext*\{x} T=5 gext*

s—1
= ’,Zf}((;) [g/Aq(r,i,u“’,d;xrﬂ)y(r,i,dd)] x [y(s, %, da)]

7

f1(x)
MZ/\~ (i)

That is, yA7) = 4. |

QLW %,7)v(s, %, da) = y(s,%, da).
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Proof of Lemma [6.4] Clearly the uniform estimate for J(u®;-) implies that for v(u®;-),
so we shall only prove the former one. Fix (¢, ) € [0,T] x Py and o, & € Acont, and denote
u(s,z) = J(u*; &, s, x). By standard PDE theory u is a classical solution to the linear PDE
in (6.4]) and we have the following formula: denoting X;* := x + B, — B,

Dot 2) = B[l 1) — gt i 2

r S,T S,T S,& Br - Bs
+ [b(r7Xt nurv (7" X )) 'amu(r7Xr7 ) +f(r7Xt Hu’?”? (7" X ))] r—s dr:|
Then, by the Lipschitz continuity of ¢ and the boundedness of b and f,
‘BT—BS‘2 4 8,z ‘Br—Bs,
< l - 0 ) Ll —_ =7
|0u(s,z)| < E[Lo T + Co/s [|0pu(r, X27)| 4+ 1] — dr]

IN

T
Br B Bs
C+ COE[/ |9u(r, Xﬁ’w)]%dr}.
Denote K := e sup, |0, u(s,r)|, K := sup;<s<7 Ks, for some constant A > 0. Then

T —)\(T’ s)

K, < CeAs+C’/der<CeAs+CK/
° = ° Vr—s ’ \/m

T M4 K/ ey D g
Vr—s 0 o VT Vaa

_ — 2 _
Thus K < So K + CeM'. Set \ = % so that 4o = 1 we obtain K < C; := 2Ce,

< 0A8+00K/

VZoN Vo T2
which implies the desired estimate immediately. |

Proof of Proposition Fix (t,#,d,%,%) and i. For any a € AL ., introduce

cont’

a(s,x, ) :=a(s,x — = + &, u), and denote

Xi::j+Bi—B§, X7 +BI—Bl, j#i,

1 _ — 1 /5 .
-N . . 2 .
s = 5Xz +Z#:5XJ M :=exp / bldB) — §/t b | dT‘),] > 1, where
Jj#i
BZ b(S stus ’ (3 leﬂév))v bj b(S Xs?:u’s ,Oé](S stus ))7] 7& .

By the Girsanov Theorem we have

Rt (5,3, @ [H o008+ [ o, KE Y. K2 )]s

Similarly define X¢, gV, M7, bi, b corresponding to @) in the obvious sense. Then we

(z,
have a similar expression as above and a(s, X?, u) = a(s, X, ). Therefore,

of (1, (@ 2),6) — i, (#7186, 6))

L RN N (7.6)
< Ji(t (@7 3), (@7 @) — it (@ 2), (67 a) < O K+ Ko,

Jj=1



where

K = E[[HM;“][HMS’“HW—MM, j>1;
k<j k>j
N — —_ .

Ky = E[H rlo(XE, 57) — 9(X, i)

/ 7o, XL Y s, XE ) — (s, X2 (s, X1, ) Jas] |

Denote Az := Z — Z. Note that

_ . ~ . A
XioXizAr, W) < 22

- . - N I (7.7)
‘d(saX;7ﬂév) - d(saX;7ﬂéV)| = |d(S7X;7ﬂ£V) ( Xs?:u‘s )| N’A‘r‘
By the required Lipschitz continuity, we have
P r L
< — < . .
Ky < CE [H |Am| +/ 1+ N]|Ax|dsﬂ < C|Az| (7.8)

Next, introduce
vy = B[ [] o] [T o28)|32]. - ary o= g[[ [T a2 [ T] #2832 - 32,
k<j k>j k<j k>j
Note that B!,--- , BN are independent. By applying the Ité formula, we have
rg=1+/ [ T 329 [ T a2¥ |25 }dré 1+C/ T4 dr,
k<j k>j t

Then I'] < C. Thus, by applying the It6 formula again we have

arj — ["e[[ ] 5] [ T] 5] (3278, - 32767

k<j k>j
< 0/ B[ [ TT 2 [T 3241198 — 88| + N5 — 531 ar
t k<j k>j
< C/ APZLerrC/ [TT a2y [T o) (w2187 — %) .
t t

k<j k>j

Note that, by (Z.1),
B, = Bl = [b(s, X4, s, K2, i) = b(s, X, (s, XL, )| < Crldal

I



Then, since Fg < C,
AT < C/ ATidr + Cp|Az|?, ATV < C/ ATV dr + %mx\?, g #i.
t t

and thus

, . |Ax| AT
AT < Op|Ax]? K’<‘— — 5 < LAzl
s = L| $|7 s = 2 +2‘ALL”_ L| $|a

. CL . |Az| NATY Cp
ATY < ZL|A Ki< 1= <L
Sl KOs ST SR SN

(7.9)

Azl, j#i.

Then, by (7.6), (7Z.8]) and ([.9) we have

v Pt (3 7),d) — Ji(t, (T, %), (@7, a4)) < Ko+ CKL+C Y K]

7

J#i
< C|Az|+ Cp|Az|+CLY e |Az|
= TN = R
JFi
o a AL i CONL(y (mei ooy =\ o NL( (2 oy s

Since @ € A" is arbitrary, we obtain v; (t, (z ,x),a) — (t, (2 ,x),a) < CL|Az|.
Similarly we have ’UZN’L (t,(&%,2),d) —v(t, (@7, 7),d) < CrL|Azl|, and hence (GIG). [ |
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