MEAN FIELD GAMES MASTER EQUATIONS WITH NONSEPARABLE HAMILTONIANS AND DISPLACEMENT MONOTONICITY

By Wilfrid Gangbo ${ }^{1, \mathrm{a}}$, Alpár R. Mészáros ${ }^{2, \mathrm{~b}}$, Chenchen Mou ${ }^{3, \mathrm{c}}$ and Jianfeng Zhang ${ }^{4, \mathrm{~d}}$
${ }^{1}$ Department of Mathematics, University of California, Los Angeles, ${ }^{\text {a }}$ wgangbo@math.ucla.edu
${ }^{2}$ Department of Mathematical Sciences, University of Durham, ${ }^{\text {b alpar.r.meszaros@durham.ac.uk }}$
${ }^{3}$ Department of Mathematics, City University of Hong Kong, ${ }^{\text {c }}$ chencmou@ cityu.edu.hk
${ }^{4}$ Department of Mathematics, University of Southern California, ${ }^{\text {d }}$ jianfenz@usc.edu

In this manuscript we propose a structural condition on nonseparable Hamiltonians, which we term displacement monotonicity condition, to study second-order mean field games master equations. A rate of dissipation of a bilinear form is brought to bear a global (in time) well-posedness theory, based on a priori uniform Lipschitz estimates on the solution in the measure variable. Displacement monotonicity being sometimes in dichotomy with the widely used Lasry-Lions monotonicity condition, the novelties of this work persist even when restricted to separable Hamiltonians.

1. Introduction. In this manuscript, $T>0$ is a given arbitrary time horizon and $\beta \geq 0$. We consider evolutive equations, which represent games where the players are in motion in the space \mathbb{R}^{d} and their distributions at each time are represented by elements of $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the set of Borel probability measures on \mathbb{R}^{d}, with finite second moments. The data governing the game are a Hamiltonian H and a terminal cost function G such that

$$
H: \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R} \quad \text { and } \quad G: \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}
$$

For our description we assume to be given a rich enough underlying probability measure space $(\Omega, \mathcal{F}, \mathbb{P})$. The problem at hand is to find a real valued function V which depends on the time variable t, the space variable x and the probability measure variable μ such that

$$
\begin{cases}-\partial_{t} V-\frac{\widehat{\beta}^{2}}{2} \operatorname{tr}\left(\partial_{x x} V\right)+H\left(x, \mu, \partial_{x} V\right)-\mathcal{N} V=0 & \text { in }(0, T) \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \tag{1.1}\\ V(T, x, \mu)=G(x, \mu) & \text { in } \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\end{cases}
$$

This second-order equation is called the master equation in mean field games, in presence of both idiosyncratic and common noise (if $\beta>0$), where \mathcal{N} is the nonlocal operator defined by

$$
\begin{align*}
& \mathcal{N} V(t, x, \mu) \\
&:= \operatorname{tr}\left(\overline { \tilde { E } } \left[\frac{\widehat{\beta}^{2}}{2} \partial_{\tilde{x}} \partial_{\mu} V(t, x, \mu, \tilde{\xi})+\frac{\beta^{2}}{2} \partial_{\mu \mu} V(t, x, \mu, \bar{\xi}, \tilde{\xi})\right.\right. \tag{1.2}\\
&\left.\left.+\beta^{2} \partial_{x} \partial_{\mu} V(t, x, \mu, \tilde{\xi})-\partial_{\mu} V(t, x, \mu, \tilde{\xi})\left(\partial_{p} H\right)^{\top}\left(\tilde{\xi}, \mu, \partial_{x} V(t, \tilde{\xi}, \mu)\right)\right]\right) .
\end{align*}
$$

Above, β stands for the intensity of the common noise; the idiosyncratic noise is supposed to be nondegenerate (for simplicity, its intensity is set to be 1), and we use the notation

[^0]$\widehat{\beta}^{2}:=1+\beta^{2}$. We always assume $H(x, \mu, \cdot)$ to be convex; however, we emphasize already at this point the fact that, in general, it can have a "nonseparable structure," that is, we do not assume to have a decomposition of the form
\[

$$
\begin{equation*}
H(x, \mu, p)=H_{0}(x, p)-F(x, \mu) \tag{1.3}
\end{equation*}
$$

\]

In (1.1)-(1.2), ∂_{t} stands for the time derivative while ∂_{x} stands for the gradient operator on \mathbb{R}^{d}. We postpone to Section 2, comments on the W_{2}-Wasserstein gradient ∂_{μ} and the W_{2}-Wasserstein second gradient $\partial_{\mu \underline{\mu}}$. Given $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \tilde{\xi}$ and $\bar{\xi}$ are independent random variables with the same law μ, and $\overline{\tilde{E}}$ is the expectation with respect to their joint law.

First introduced by Lions in lectures [36], the master equation appeared in the context of the theory of mean field games, a theory initiated independently by Lasry-Lions [33-35] and Huang-Malhamé-Caines [32]. It is a time dependent equation which serves to describe the interaction between an individual agent and a continuum of other agents. The master equation characterizes the equilibrium cost of a representative agent within a continuum of players, provided there is a unique mean field equilibrium. Roughly speaking, it plays the role of the Hamilton-Jacobi-Bellman equation in the stochastic control theory. We refer the reader to [19, 24, 25] for a comprehensive exposition on the subject.

The master equation (1.1) is known to admit a local (in time) classical solution when the data H and G are sufficiently smooth, even when the noises are absent (cf. [13, 29, 37]). Local solutions are known to be unique (cf. [20, 25]), including cases where the Hamiltonians are local functions of the measure variable (cf. [6]). Nevertheless, it is much more challenging to obtain global classical solutions, as they are expected to exist only under additional structural assumptions on the data. Such a sufficient condition is typically a sort of monotonicity condition that provides uniqueness of solutions to the underlying mean field game system (a phenomenon that heuristically corresponds to the noncrossing of generalized characteristics of the master equation). For a nonexhaustible list of results on the global in time well-posedness theory of mean field games master equations in various settings, we refer the reader to [21, 24-26] and in the realm of potential mean field games to [11, 12, 28]. We also refer to [15, 22, 39] for global existence and uniqueness of weak solutions and to [$8-10,14,16,17]$ for finite state mean field games master equations. All the above global well-posedness results require the Hamiltonian H to be separable in μ and p; that is, it is of the form (1.3), for some H_{0} and F. Moreover, as highlighted above, F and G need to satisfy a certain monotonicity condition which, in particular, ensures the uniqueness of mean field equilibria of the corresponding mean field games. We remark that nonseparable Hamiltonians appear naturally in applications (such as economical models, problems involving congestions effects, etc.; see, e.g., $[1,2,5,31])$. We shall also note that [18] establishes the global in time well-posedness result for a linear master equation, without requiring separability or monotonicity conditions. However, since the Hamiltonian H is linear in p, there is no underlying game involved in [18].

A typical condition, extensively used in the literature [10, 16, 21, 24-26, 39], is the socalled Lasry-Lions monotonicity condition. For a function $G: \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, this can be formulated as

$$
\begin{equation*}
\mathbb{E}\left[G\left(\xi_{1}, \mathcal{L}_{\xi_{1}}\right)+G\left(\xi_{2}, \mathcal{L}_{\xi_{2}}\right)-G\left(\xi_{1}, \mathcal{L}_{\xi_{2}}\right)-G\left(\xi_{2}, \mathcal{L}_{\xi_{1}}\right)\right] \geq 0 \tag{1.4}
\end{equation*}
$$

for any random variables ξ_{1}, ξ_{2} with appropriate integrability assumptions. Here, $\mathcal{L}_{\xi}:=\xi_{\#} \mathbb{P}$ stands for the law of the random variable ξ.

In this manuscript we turn to a different condition. The main condition we impose here on G is what we term the displacement monotonicity condition which can be formulated as

$$
\begin{equation*}
\mathbb{E}\left[\left[\partial_{x} G\left(\xi_{1}, \mathcal{L}_{\xi_{1}}\right)-\partial_{x} G\left(\xi_{2}, \mathcal{L}_{\xi_{2}}\right)\right]\left[\xi_{1}-\xi_{2}\right]\right] \geq 0 \tag{1.5}
\end{equation*}
$$

When G is sufficiently smooth, displacement monotonicity means that the bilinear form

$$
\begin{equation*}
\left(\eta_{1}, \eta_{2}\right) \mapsto\left(d_{x} d\right)_{\xi} G\left(\eta_{1}, \eta_{2}\right):=\tilde{\mathbb{E}}\left[\left\langle\partial_{x \mu} G(\xi, \mu, \tilde{\xi}) \tilde{\eta}_{1}, \eta_{2}\right\rangle\right]+\mathbb{E}\left[\left\langle\partial_{x x} G(\xi, \mu) \eta_{1}, \eta_{2}\right\rangle\right] \tag{1.6}
\end{equation*}
$$

is nonnegative definite for all square integrable random variables ξ. Here, $\left(\tilde{\xi}, \tilde{\eta}_{1}\right)$ is an independent copy of $\left(\xi, \eta_{1}\right)$, and $\tilde{\mathbb{E}}$ is the expectation with respect to the joint law of $\left(\xi, \eta_{1}, \eta_{2}, \tilde{\xi}, \tilde{\eta_{1}}\right)$.

Our terminology is inspired by the so-called displacement convexity condition, a popular notion in the theory of optimal transport theory (cf. [38]). Indeed, when G is derived from a potential, that is, there exists $g: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ such that $\partial_{x} G=\partial_{\mu} g$, then (1.5) is equivalent to the displacement convexity of g. Let us underline that, in the current study, we never need to require that G is derived from a potential.

Displacement convexity and monotonicity have some sparse history in the framework of mean field games and control problems of McKean-Vlasov type. In the context of mean field game systems, the first work using this seems to be the one of Ahuja [3] (see also [4]), whose weak monotonicity condition is essentially equivalent to the displacement monotonicity. In the context of control problems of McKean-Vlasov type, displacement convexity assumptions appeared first in [23] and [26]. It seems that [26] is the first work that relied on displacement convexity in the study of well posedness of a master equation arising in a McKean-Vlasov control problem. However, let us emphasize that this master equation is different from the master equation appearing in the theory of mean field games, and the techniques developed in [26] are not applicable in our setting. In the framework of potential master equations and, in particular, in more classical infinite dimensional control problems on Hilbert spaces, the displacement convexity condition has been used in [11, 12] ${ }^{1}$ and [28].

Our main contribution in this manuscript is the discovery of a condition on H which allows a global well-posedness theory of classical solution for the master equation (1.1). This condition, which we continue to term displacement monotonicity condition for Hamiltonians, amounts to impose that the bilinear form

$$
\begin{aligned}
\left(\eta_{1}, \eta_{2}\right) \mapsto & \left(\operatorname{displ}_{\xi}^{\varphi} H\right)\left(\eta_{1}, \eta_{2}\right) \\
:= & \left(d_{x} d\right)_{\xi} H(\cdot, \varphi(\xi))\left(\eta_{1}, \eta_{2}\right) \\
& +\frac{1}{4} \tilde{\mathbb{E}}\left[\left(\left(\partial_{p p} H(\xi, \mu, \varphi(\xi))\right)^{-1} \partial_{p \mu} H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta}_{1}, \partial_{p \mu} H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta}_{2}\right\rangle\right]
\end{aligned}
$$

is nonpositive definite for all $\mu \in \mathcal{P}_{2}, \xi \in \mathbb{L}^{2}(\mathcal{F}, \mu)$ and all appropriate $\varphi \in C^{1}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$; see Definition 3.4 below for the precise condition. In the previous formula we clearly assume strict convexity on H the p variable. This condition is instrumental for our global well-posedness theory of classical solutions to the master equation (1.1). To the best of our knowledge, this is the first global well-posedness result in the literature of mean field games master equations with nonseparable Hamiltonians. When H is separable (i.e., of the form (1.3)) and $H_{0}=H_{0}(p)$, the nonpositive definiteness assumption on $\operatorname{displ}{ }_{\xi}^{\varphi} H$, is equivalent to (1.5) for F. For certain Hamiltonians, displacement monotonicity is in dichotomy with the Lasry-Lions monotonicity. Thus, not only are our well-posedness results new for a wide class of data functions but we shall also soon see that the novelty in our results extends to a class of separable Hamiltonians. For discussions on displacement monotone functions that fail to be Lasry-Lions monotone, we refer to [3,28] and to Section 2.3 below.

[^1]We show, at the heart of our analysis, that under the displacement monotonicity condition on H and (1.5) on $G, V(t, \cdot, \cdot)$, the solution to the master equation (1.1), which has sufficient a priori regularity, also satisfies (1.5) for all $t \in[0, T]$. Let us recall that when H is separable and both G and F satisfy the Lasry-Lions monotonicity condition (1.4), then $V(t, \cdot, \cdot)$ inherits (1.4) as well for all $t \in[0, T]$. However, when H is nonseparable, it remains a challenge to find an appropriate condition on H which ensures that if G satisfies the Lasry-Lions monotonicity so does $V(t, \cdot, \cdot)$ for all $t \in[0, T]$ (see Remark 4.2(iii) below).

For separable H the Lasry-Lions monotonicity of $V(t, \cdot, \cdot)$ is typically proven through the mean field game system, the corresponding coupled system of forward backward (stochastic) PDEs or SDEs for which V serves as the decoupling field (see Remark 2.10 below). We instead follow a different route and derive the displacement monotonicity of $V(t, \cdot, \cdot)$ by using the master equation itself. We show that if V is a smooth solution to the master equation, then for any $\mu \in \mathcal{P}_{2}$ and $\eta \in \mathbb{L}^{2}\left(\mathcal{F}_{0}\right)$ there exists a path $t \mapsto\left(X_{t}, \delta X_{t}\right)$ of random variables starting at (ξ, η), with $\mu=\mathcal{L}_{\xi}$, such that

$$
\begin{equation*}
\left(d_{x} d\right)_{X_{T}} V_{T}\left(\delta X_{T}, \delta X_{T}\right)-\int_{0}^{T}\left(\operatorname{displ}_{X_{t}}^{\varphi_{t}} H\right)\left(\delta X_{t}, \delta X_{t}\right) d t \leq\left(d_{x} d\right)_{X_{0}} V_{0}(\eta, \eta) \tag{1.7}
\end{equation*}
$$

Here (see Remark 4.2 for a more accurate formulation),

$$
\varphi_{t}=\partial_{x} V\left(t, \cdot, \mu_{t}\right), \quad \mu_{t}=X_{t \#} \mathbb{P}
$$

Note that (1.7) provides us an explicit "rate of dissipation of displacement monotonicity" of the bilinear form $\left(d_{x} d\right) V(t, \cdot, \cdot)$, from smaller to larger times. This favors our terminal value problem, as we are provided with a "rate at which the displacement monotonicity is built in" from larger to smaller times.

Our approach seems new, even when restricted to separable H. We are also able to obtain a variant of (1.7) that is applicable to the Lasry-Lions monotonicity case, but only for separable H. One trade-off in our approach is that, since we apply Itô's formula on the derivatives of V, we need higher-order a priori regularity estimates on V and, consequently, require regularity of the data slightly higher than what is needed for the existence of local classical solutions (cf. [25]). We believe that, thanks to the smooth mollification technique developed in [39], one could relax these regularity requirements. In fact, we expect a well-posedness theory of weak solutions in the sense of [39]. In this work our main goal is to overcome the challenge of dealing with nonseparable Hamiltonians, and so this manuscript postpones the optimal regularity issue to future studies.

The displacement monotonicity of $V(t, \cdot, \cdot)$ has a noticeable implication: it yields an a priori uniform W_{2}-Lipschitz continuity estimate for V in the μ variable. Here is the main principle to emphasize: any possible alternative condition to the nonpositive definiteness assumption on $\operatorname{displ}_{\xi}^{\varphi} H$, which ensures the monotonity of V (either in Lasry-Lions sense or in displacement sense), will also provide the uniform Lipschitz continuity of V in μ (with respect to either W_{1} or W_{2}). As a consequence, this yields the global well posedness of the master equation. We shall next elaborate on this observation which seems to be new in the literature and interesting on its own right.

Uniform W_{1}-Lipschitz continuity of V is known to be the key ingredient for constructing even local in time classical solutions of the master equation (cf. [25, 39]) in mean field games with common noise. The uniform W_{2}-Lipschitz property we obtain is not final. We complement this in light of a crucial observation: when the data H and G are uniformly W_{1}-Lipschitz continuous in μ, we can show that the uniform W_{2}-Lipschitz continuity of V actually implies its uniform W_{1}-Lipschitz continuity in the μ variable. We achieve this by a delicate analysis on the pointwise representation formula for $\partial_{\mu} V$, developed in [39], tailored to our setting.

In our final step to establish the global well-posedness of the master equation, we follow the by now standard approach in [25, 26, 39]. That is, based on the a priori uniform Lipschitz continuity property of V in the μ variable (with respect to W_{1}), we construct the local classical solution and then extend it backwardly in time. Another important point in our argument is that the length of the time intervals, used for the local solutions, depends only on the W_{2}-Lipschitz constants of the data.

The rest of the paper is organized as follows. Section 2 contains the setting of our problem and some preliminary results. In Section 3 we present our technical assumptions and introduce the new notion of displacement monotonicity for nonseparable H. In Section 4 we show that any solution of the master equation, which is regular enough, preserves the displacement monotonicity property. Section 5 is devoted to uniform a priori W_{2}-Lipschitz estimates on V. In Section 6 we derive the uniform W_{1}-Lipschitz estimates and establish the global well posedness of the master equation (1.1).

2. Preliminaries.

2.1. The product probability space. In this paper we shall use a probabilistic approach. In order to reach out to the largest community of people working on mean field games, in this subsection we present our probabilistic setting in details, which we think will facilitate the reading of those who are not experts in stochastic analysis.

Throughout the paper we fix $T>0$ to be a given arbitrary time horizon. Let $\left(\Omega_{0}, \mathbb{F}^{0}, \mathbb{P}_{0}\right)$ and $\left(\Omega_{1}, \mathbb{F}^{1}, \mathbb{P}_{1}\right)$ be two filtered probability spaces on which there are defined d-dimensional Brownian motions B^{0} and B, respectively. For $\mathbb{F}^{i}=\left\{\mathcal{F}_{t}^{i}\right\}_{0 \leq t \leq T}, i=0$, 1 , we assume $\mathcal{F}_{t}^{0}=$ $\mathcal{F}_{t}^{B^{0}}, \mathcal{F}_{t}^{1}=\mathcal{F}_{0}^{1} \vee \mathcal{F}_{t}^{B}$ and \mathbb{P}_{1} has no atom in \mathcal{F}_{0}^{1}, so it can support any measure on \mathbb{R}^{d} with finite second moment. Consider the product spaces

$$
\begin{align*}
& \Omega:=\Omega_{0} \times \Omega_{1}, \quad \mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{0 \leq t \leq T}:=\left\{\mathcal{F}_{t}^{0} \otimes \mathcal{F}_{t}^{1}\right\}_{0 \leq t \leq T}, \tag{2.1}\\
& \mathbb{P}:=\mathbb{P}_{0} \otimes \mathbb{P}_{1}, \quad \mathbb{E}:=\mathbb{E}^{\mathbb{P}} .
\end{align*}
$$

In particular, $\mathcal{F}_{t}:=\sigma\left(A_{0} \times A_{1}: A_{0} \in \mathcal{F}_{t}^{0}, A_{1} \in \mathcal{F}_{t}^{1}\right\}$ and $\mathbb{P}\left(A_{0} \times A_{1}\right)=\mathbb{P}_{0}\left(A_{0}\right) \mathbb{P}_{1}\left(A_{1}\right)$. We shall automatically extend $B^{0}, B, \mathbb{F}^{0}, \mathbb{F}^{1}$ to the product space in the obvious sense but using the same notation. For example, $B^{0}(\omega)=B^{0}\left(\omega^{0}\right)$ for $\omega=\left(\omega^{0}, \omega^{1}\right) \in \Omega$, and $\mathcal{F}_{t}^{0}=\left\{A_{0} \times \Omega_{1}\right.$: $\left.A_{0} \in \mathcal{F}_{t}^{0}\right\}$. In particular, this implies that B^{0} and B^{1} are independent \mathbb{P}-Brownian motions and are independent of \mathcal{F}_{0}.

It is convenient to introduce another filtered probability space $\left(\tilde{\Omega}_{1}, \tilde{\mathbb{F}}^{1}, \tilde{B}, \tilde{\mathbb{P}}_{1}\right)$ in the same manner as $\left(\Omega_{1}, \mathbb{F}^{1}, B, \mathbb{P}_{1}\right)$ and to consider the larger filtered probability space given by

$$
\begin{align*}
& \tilde{\Omega}:=\Omega \times \tilde{\Omega}_{1}, \quad \tilde{\mathbb{F}}=\left\{\tilde{\mathcal{F}}_{t}\right\}_{0 \leq t \leq T}:=\left\{\mathcal{F}_{t} \otimes \tilde{\mathcal{F}}_{t}^{1}\right\}_{0 \leq t \leq T}, \tag{2.2}\\
& \tilde{\mathbb{P}}:=\mathbb{P} \otimes \tilde{\mathbb{P}}_{1}, \quad \tilde{\mathbb{E}}:=\mathbb{E}^{\tilde{\mathbb{P}}} .
\end{align*}
$$

Given an \mathcal{F}_{t}-measurable random variable $\xi=\xi\left(\omega^{0}, \omega^{1}\right)$, we say $\tilde{\xi}=\tilde{\xi}\left(\omega^{0}, \tilde{\omega}^{1}\right)$ is a conditionally independent copy of ξ if, for each ω^{0}; the \mathbb{P}_{1}-distribution of $\xi\left(\omega^{0}, \cdot\right)$ is equal to the $\tilde{\mathbb{P}}_{1}$-distribution of $\tilde{\xi}\left(\omega^{0}, \cdot\right)$. That is, conditional on \mathcal{F}_{t}^{0}, by extending to $\tilde{\Omega}$ the random variables ξ and $\tilde{\xi}$ are conditionally independent and have the same conditional distribution under $\tilde{\mathbb{P}}$. Note that, for any appropriate deterministic function φ,

$$
\begin{gather*}
\tilde{\mathbb{E}}_{\mathcal{F}_{t}^{0}}[\varphi(\xi, \tilde{\xi})]\left(\omega^{0}\right)=\mathbb{E}^{\mathbb{P}_{1} \otimes \tilde{\mathbb{P}}_{1}}\left[\varphi\left(\xi\left(\omega^{0}, \cdot\right), \tilde{\xi}\left(\omega^{0}, \tilde{)}\right)\right)\right], \quad \mathbb{P}_{0} \text {-a.e. } \omega^{0} \tag{2.3}\\
\tilde{\mathbb{E}}_{\mathcal{F}_{t}}[\varphi(\xi, \tilde{\xi})]\left(\omega^{0}, \omega^{1}\right)=\mathbb{E}^{\tilde{\mathbb{P}}_{1}}\left[\varphi\left(\xi\left(\omega^{0}, \omega^{1}\right), \tilde{\xi}\left(\omega^{0}, \tilde{\cdot}\right)\right)\right], \quad \mathbb{P} \text {-a.e. }\left(\omega^{0}, \omega^{1}\right) .
\end{gather*}
$$

Here, $\mathbb{E}^{\tilde{\mathbb{P}}_{1}}$ is the expectation on $\tilde{\omega}^{1}$, and $\mathbb{E}^{\mathbb{P}_{1} \times \tilde{\mathbb{P}}_{1}}$ is on $\left(\omega^{1}, \tilde{\omega}^{1}\right)$. Throughout the paper we will use the probability space $(\Omega, \mathbb{F}, \mathbb{P})$. However, when conditionally independent copies of random variables or processes are needed, we will tacitly use the extension to the larger space $(\tilde{\Omega}, \tilde{\mathbb{F}}, \tilde{\mathbb{P}})$ without mentioning.

When we need two conditionally independent copies, we introduce further ($\bar{\Omega}_{1}, \overline{\mathbb{F}}^{1}, \bar{B}, \overline{\mathbb{P}}_{1}$) and the product space $(\bar{\Omega}, \overline{\mathbb{F}}, \overline{\mathbb{P}}, \overline{\mathbb{E}})$, as in (2.2), and set the joint product space

$$
\begin{align*}
& \overline{\tilde{\Omega}}:=\Omega \times \tilde{\Omega}_{1} \times \bar{\Omega}_{1}, \quad \overline{\tilde{\mathbb{P}}}=\left\{\overline{\tilde{\mathcal{F}}}_{t}\right\}_{0 \leq t \leq T}:=\left\{\mathcal{F}_{t} \otimes \tilde{\mathcal{F}}_{t}^{1} \otimes \overline{\mathcal{F}}_{t}^{1}\right\}_{0 \leq t \leq T}, \\
& \overline{\tilde{\mathbb{P}}}:=\mathbb{P} \otimes \tilde{\mathbb{P}}_{1} \otimes \overline{\mathbb{P}}_{1}, \quad \overline{\tilde{\mathbb{E}}}:=\mathbb{E}^{\overline{\tilde{\mathbb{P}}}} \tag{2.4}
\end{align*}
$$

Then, given \mathcal{F}_{t}-measurable $\xi=\xi\left(\omega^{0}, \omega^{1}\right)$, we may have two conditionally independent copies under $\overline{\tilde{\mathbb{P}}}: \tilde{\xi}(\overline{\tilde{\omega}})=\tilde{\xi}\left(\omega^{0}, \tilde{\omega}^{1}\right)$ and $\bar{\xi}(\overline{\tilde{\omega}})=\bar{\xi}\left(\omega^{0}, \bar{\omega}^{1}\right), \overline{\tilde{\omega}}=\left(\omega^{0}, \omega^{1}, \tilde{\omega}^{1}, \bar{\omega}^{1}\right) \in \overline{\tilde{\Omega}}$.

To avoid possible notation confusion, we emphasize that

$$
\begin{equation*}
\text { when } \xi=\xi\left(\omega^{1}\right) \text { is } \mathcal{F}_{t}^{1} \text {-measurable, then } \tilde{\xi}, \bar{\xi} \text { are independent copies of } \xi \text { under } \overline{\tilde{P}} \text {; } \tag{2.5}
\end{equation*}
$$ the expectation $\tilde{\mathbb{E}}$ is on $\tilde{\omega}=\left(\omega^{0}, \omega^{1}, \tilde{\omega}^{1}\right)$, not just on $\tilde{\omega}^{1}$; similarly, $\overline{\mathbb{E}}$ is acting on

$$
\bar{\omega}=\left(\omega^{0}, \omega^{1}, \bar{\omega}^{1}\right), \text { not just on } \bar{\omega}^{1}, \text { and } \overline{\tilde{\mathbb{E}}} \text { is an expectation on } \overline{\tilde{\omega}}=\left(\omega^{0}, \omega^{1}, \tilde{\omega}^{1}, \bar{\omega}^{1}\right)
$$

2.2. Preliminary analysis on the Wasserstein space. Let $\mathcal{P}:=\mathcal{P}\left(\mathbb{R}^{d}\right)$ be the set of all probability measures on \mathbb{R}^{d}, and $\delta_{x} \in \mathcal{P}$ denotes the Dirac mass at $x \in \mathbb{R}^{d}$. For any $q \geq 1$ and any measure $\mu \in \mathcal{P}$, we set

$$
\begin{equation*}
M_{q}(\mu):=\left(\int_{\mathbb{R}^{d}}|x|^{q} \mu(d x)\right)^{\frac{1}{q}} \quad \text { and } \quad \mathcal{P}_{q}:=\mathcal{P}_{q}\left(\mathbb{R}^{d}\right):=\left\{\mu \in \mathcal{P}: M_{q}(\mu)<\infty\right\} \tag{2.6}
\end{equation*}
$$

For any sub- σ-field $\mathcal{G} \subset \mathcal{F}_{T}$ and $\mu \in \mathcal{P}_{q}$, denote by $\mathbb{L}^{q}(\mathcal{G})$ the set of \mathbb{R}^{d}-valued, \mathcal{G} measurable and q-integrable random variables ξ, and $\mathbb{L}^{q}(\mathcal{G} ; \mu)$ the set of $\xi \in \mathbb{L}^{q}(\mathcal{G})$ such that $\mathcal{L}_{\xi}=\mu$. Here, $\mathcal{L}_{\xi}=\xi_{\#} \mathbb{P}$ is the law of ξ, obtained as the push-forward of \mathbb{P} by ξ. Also, for $\mu \in \mathcal{P}_{q}$, let $\mathbb{L}_{\mu}^{q}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ denote the set of Borel measurable functions $v: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $\|v\|_{\mathbb{L}_{\mu}^{q}}^{q}:=\int_{\mathbb{R}^{d}}|v(x)|^{q} \mu(d x)<\infty$. Moreover, for any $\mu, v \in \mathcal{P}_{q}$, their W_{q}-Wasserstein distance is defined as follows:

$$
\begin{equation*}
W_{q}(\mu, \nu):=\inf \left\{\left(\mathbb{E}\left[|\xi-\eta|^{q}\right]\right)^{\frac{1}{q}}: \text { for all } \xi \in \mathbb{L}^{q}\left(\mathcal{F}_{T} ; \mu\right), \eta \in \mathbb{L}^{q}\left(\mathcal{F}_{T} ; v\right)\right\} . \tag{2.7}
\end{equation*}
$$

According to the terminology in [7], the Wasserstein gradient of a function $U: \mathcal{P}_{2} \rightarrow \mathbb{R}$ at μ is an element $\partial_{\mu} U(\mu, \cdot)$ of $\overline{\nabla C_{c}^{\infty}\left(\mathbb{R}^{d}\right)} \mathbb{L}^{2}$ (the closure of gradients of C_{c}^{∞} functions in $\mathbb{L}_{\mu}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$), and so it is a priori defined μ-almost everywhere. The theory developed in [19, $30,36,40$] shows that $\partial_{\mu} U(\mu, \cdot)$ can be characterized by the property

$$
\begin{equation*}
U\left(\mathcal{L}_{\xi+\eta}\right)-U(\mu)=\mathbb{E}\left[\left\langle\partial_{\mu} U(\mu, \xi), \eta\right\rangle\right]+o\left(\|\eta\|_{2}\right) \quad \forall \xi, \eta, \text { with } \mathcal{L}_{\xi}=\mu \tag{2.8}
\end{equation*}
$$

Let $\mathcal{C}^{0}\left(\mathcal{P}_{2}\right)$ denote the set of W_{2}-continuous functions $U: \mathcal{P}_{2} \rightarrow \mathbb{R}$. For $k \in\{1,2\}$, we next define a subset of $\mathcal{C}^{k}\left(\mathcal{P}_{2}\right)$, referred to as functions of full \mathcal{C}^{k} regularity in [24], Chapter 5, as follows. By $\mathcal{C}^{1}\left(\mathcal{P}_{2}\right)$, we mean the space of functions $U \in C^{0}\left(\mathcal{P}_{2}\right)$ such that $\partial_{\mu} U$ exists for all $\mu \in \mathcal{P}_{2}$, and it has a unique jointly continuous extension to $\mathcal{P}_{2} \times \mathbb{R}^{d}$, which we continue to denote by

$$
\mathbb{R}^{d} \times \mathcal{P}_{2} \ni(\tilde{x}, \mu) \mapsto \partial_{\mu} U(\mu, \tilde{x}) \in \mathbb{R}^{d}
$$

We sometimes refer to the extension as the global version, and we note that our requirement of pointwise continuity property of this global version is stronger than the \mathbb{L}^{2}-continuity
requirement made in some of the mean field game literature (cf., e.g., [26]). Similarly, $\mathcal{C}^{2}\left(\mathcal{P}_{2}\right)$ stands for the set of functions $U \in \mathcal{C}^{1}\left(\mathcal{P}_{2}\right)$ such that the global version of $\partial_{\mu} U$ is differentiable in the sense that the following maps exist and have unique jointly continuous extensions:

$$
\begin{aligned}
\mathbb{R}^{d} \times \mathcal{P}_{2} \ni(\tilde{x}, \mu) & \mapsto \partial_{\tilde{x} \mu} U(\mu, \tilde{x}) \in \mathbb{R}^{d} \quad \text { and } \\
\mathbb{R}^{2 d} \times \mathcal{P}_{2} \ni(\tilde{x}, \bar{x}, \mu) & \mapsto \partial_{\mu \mu} U(\mu, \tilde{x}, \bar{x}) \in \mathbb{R}^{d \times d}
\end{aligned}
$$

$\mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right)$ is the set of continuous functions $U: \mathbb{R}^{d} \times \mathcal{P}_{2} \rightarrow \mathbb{R}$ satisfying the following:
(i) $\partial_{x} U, \partial_{x x} U$ exist and are jointly continuous on $\mathbb{R}^{d} \times \mathcal{P}_{2}$;
(ii) The following maps exist and have unique jointly continuous extensions:

$$
\begin{aligned}
& \mathbb{R}^{2 d} \times \mathcal{P}_{2} \ni(x, \tilde{x}, \mu) \mapsto \partial_{\mu} U(x, \mu, \tilde{x}) \in \mathbb{R}^{d} \quad \text { and } \\
& \mathbb{R}^{2 d} \times \mathcal{P}_{2} \ni(x, \tilde{x}, \mu) \mapsto \partial_{x \mu} U(x, \mu, \tilde{x}) \in \mathbb{R}^{d \times d}
\end{aligned}
$$

(iii) Finally, the following maps exist and have unique jointly continuous extensions:

$$
\begin{aligned}
\mathbb{R}^{2 d} \times \mathcal{P}_{2} \ni(x, \tilde{x}, \mu) \mapsto \partial_{\tilde{x} \mu} U(x, \mu, \tilde{x}) \in \mathbb{R}^{d \times d} \text { and } \\
\mathbb{R}^{3 d} \times \mathcal{P}_{2} \ni(x, \tilde{x}, \bar{x}, \mu) \mapsto \partial_{\mu \mu} U(x, \mu, \tilde{x}, \bar{x}) \in \mathbb{R}^{d \times d}
\end{aligned}
$$

Lastly, we fix the state space for our master equation as

$$
\Theta:=[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{2}
$$

and let $\mathcal{C}^{1,2,2}(\Theta)$ denote the set of $U \in C^{0}(\Theta ; \mathbb{R})$ such that the following maps exist and have a unique jointly continuous extensions, as previously described: $\partial_{t} U, \partial_{x} U, \partial_{x x} U, \partial_{\mu} U$, $\partial_{x} \partial_{\mu} U, \partial_{\tilde{x}} \partial_{\mu} U, \partial_{\mu \mu} U$.

We underline that, for notational conventions, we always denote the "new spacial variables," appearing in Wasserstein derivatives with "tilde" symbols (for first-order Wasserstein derivatives), with "bar" symbols (for second-order Wasserstein derivatives) and so on, and we place them right after the corresponding measures variables. For example, when $U: \mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is typically evaluated as $U(x, \mu, p)$, we use the notations $\partial_{\mu} U(x, \mu, \tilde{x}, p), \partial_{\tilde{x}} \partial_{\mu} U(x, \mu, \tilde{x}, p), \partial_{\mu} \partial_{\mu} U(x, \mu, \tilde{x}, \bar{x}, p)$, and so on. This convention will be carried through to compositions with random variables too, for example $\partial_{\mu} U(x, \mu, \tilde{\xi}, p)$, when $\tilde{\xi}$ is an \mathbb{R}^{d}-valued random variable.

Throughout the paper, we shall also use the following notations: for any $R>0$,

$$
\begin{align*}
& B_{R}^{o}:=\left\{p \in \mathbb{R}^{d}:|p|<R\right\}, \quad B_{R}:=\left\{p \in \mathbb{R}^{d}:|p| \leq R\right\}, \tag{2.9}\\
& D_{R}:=\mathbb{R}^{d} \times \mathcal{P}_{2} \times B_{R}
\end{align*}
$$

The following simple technical lemma (not to confuse with [25], Remark 4.16) is useful.
LEMMA 2.1. For any $U \in \mathcal{C}^{2}\left(\mathcal{P}_{2}\right)$ and $(\mu, \tilde{x}) \in \mathcal{P}_{2} \times \mathbb{R}^{d}, \partial_{\tilde{x} \mu} U(\mu, \tilde{x})$ is a symmetric matrix.

Proof. Since U is of class $\mathcal{C}^{2}\left(\mathcal{P}_{2}\right)$, we may assume without loss of generality that μ is supported by a closed ball B_{R}, it is absolutely continuous and has a smooth density ρ with $c:=\inf _{x \in B_{R}} \rho(x)>0$. By the fact that $\partial_{\mu} U(\mu, \cdot) \in{\overline{\nabla C_{c}^{\infty}\left(\mathbb{R}^{d}\right)}}^{\mathbb{L}_{\mu}^{2}}$, there exists a sequence $\left(\varphi_{n}\right)_{n} \subset \nabla C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
0=\lim _{n}\left\|\partial_{\tilde{x}} \varphi_{n}-\partial_{\mu} U(\mu, \cdot)\right\|_{\mathbb{L}_{\mu}^{2}} \geq c \lim _{n}\left\|\partial_{\tilde{x}} \varphi_{n}-\partial_{\mu} U(\mu, \cdot)\right\|_{L^{2}\left(B_{R}\right)} \tag{2.10}
\end{equation*}
$$

where $L^{2}\left(B_{R}\right)$ stands for the standard Lebesgue space. Set

$$
\bar{\varphi}_{n}:=\varphi_{n}-\frac{1}{\mathcal{L}^{d}\left(B_{R}\right)} \int_{B_{R}} \varphi_{n}(x) d x .
$$

By the Poincaré-Wirtinger inequality there exists a universal constant c_{d} such that

$$
\left\|\bar{\varphi}_{n}\right\|_{L^{2}\left(B_{R}\right)} \leq c_{d}\left\|\partial_{\tilde{x}} \bar{\varphi}_{n}\right\|_{L^{2}\left(B_{R}\right)}
$$

Thanks to the Sobolev embedding theorem and the strong convergence of $\left(\partial_{\tilde{x}} \bar{\varphi}_{n}\right)_{n}$ in $L^{2}\left(B_{R}\right)$, we conclude that there exists φ in the Sobolev space $H^{1}\left(B_{R}\right)$ such that $\left(\bar{\varphi}_{n}\right)_{n}$ converges to φ in $H^{1}\left(B_{R}\right)$. By (2.10) we have

$$
\begin{equation*}
\partial_{\mu} U(\mu, \cdot)=\partial_{\tilde{x}} \varphi, \quad \int_{B_{R}} \varphi(x) d x=0 . \tag{2.11}
\end{equation*}
$$

Since $\partial_{\mu} U(\mu, \cdot)$ is continuously differentiable, the representation formula

$$
\varphi(\tilde{x})=\varphi(0)+\int_{0}^{1} \partial_{\mu} U(\mu, t \tilde{x}) \cdot \tilde{x} d t
$$

implies that φ is continuously differentiable. Since $\partial_{\tilde{x}} \varphi=\partial_{\mu} U(\mu, \cdot)$ is continuously differentiable, we conclude that φ is twice continuously differentiable. Thus, $\partial_{\tilde{x}} \partial_{\mu} U(\mu, \cdot)=\partial_{\tilde{x} \tilde{x}} \varphi$ is symmetric.

An interesting property of $\mathcal{C}^{1,2,2}(\Theta)$ functions is their use in a general Itô formula. Let $U \in C^{1,2,2}(\Theta)$ be such that, for any compact subset $K \subset \mathbb{R}^{d} \times \mathcal{P}_{2}$,

$$
\begin{aligned}
& \quad \sup _{(t, x, \mu) \in[0, T] \times K}\left[\int_{\mathbb{R}^{d}}\left(\left|\partial_{\mu} U(t, x, \mu, \tilde{x})\right|^{2}+\left|\partial_{\tilde{x}} \partial_{\mu} U(t, x, \mu, \tilde{x})\right|^{2}+\left|\partial_{x} \partial_{\mu} U(t, x, \mu, \tilde{x})\right|^{2}\right) \mu(d \tilde{x})\right. \\
& \left.\quad+\int_{\mathbb{R}^{2 d}}\left|\partial_{\mu \mu} U(t, x, \mu, \tilde{x}, \bar{x})\right|^{2} \mu(\tilde{x}) \mu(\bar{x})\right]<+\infty
\end{aligned}
$$

For $i=1,2$, consider \mathbb{F}-progressively measurable and bounded processes

$$
b^{i}:[0, T] \times \Omega \rightarrow \mathbb{R}^{d} \quad \text { and } \quad \sigma^{i}, \sigma^{i, 0}:[0, T] \times \Omega \rightarrow \mathbb{R}^{d \times d}
$$

Set

$$
d X_{t}^{i}:=b_{t}^{i} d t+\sigma_{t}^{i} d B_{t}+\sigma_{t}^{i, 0} d B_{t}^{0} \quad \text { and } \quad \text { introduce the conditional law } \rho_{t}:=\mathcal{L}_{X_{t}^{2} \mid \mathcal{F}_{t}^{0}} .
$$

Then (cf., e.g., [25], Theorem 4.17, [18, 26]), recalling the notations for conditionally independent copies and (2.5),

$$
\begin{aligned}
& d U\left(t, X_{t}^{1}, \rho_{t}\right) \\
&= {\left[\partial_{t} U+\partial_{x} U \cdot b_{t}^{1}+\frac{1}{2} \operatorname{tr}\left(\partial_{x x} U\left[\sigma_{t}^{1}\left(\sigma_{t}^{1}\right)^{\top}+\sigma_{t}^{1,0}\left(\sigma_{t}^{1,0}\right)^{\top}\right]\right)\right]\left(t, X_{t}^{1}, \rho_{t}\right) d t } \\
&+\partial_{x} U\left(t, X_{t}^{1}, \rho_{t}\right) \cdot \sigma_{t}^{1} d B_{t} \\
&+\left[\left(\sigma_{t}^{1,0}\right)^{\top} \partial_{x} U+\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\left(\tilde{\sigma}_{t}^{2,0}\right)^{\top} \partial_{\mu} U\left(\cdot, \tilde{X}_{t}^{2}\right)\right]\right]\left(t, X_{t}^{1}, \rho_{t}\right) \cdot d B_{t}^{0} \\
&+\operatorname{tr}\left(\overline { \tilde { \mathbb { E } } } _ { \mathcal { F } _ { t } } \left[\partial_{\mu} U\left(\cdot, \tilde{X}_{t}^{2}\right)\left(\tilde{b}_{t}^{2}\right)^{\top}+\frac{1}{2} \partial_{\tilde{x}} \partial_{\mu} U\left(\cdot, \tilde{X}_{t}^{2}\right)\left[\tilde{\sigma}_{t}^{2}\left(\tilde{\sigma}_{t}^{2}\right)^{\top}+\tilde{\sigma}_{t}^{2,0}\left(\tilde{\sigma}_{t}^{2,0}\right)^{\top}\right]\right.\right. \\
&\left.\left.+\partial_{x} \partial_{\mu} U\left(\cdot, \tilde{X}_{t}^{2}\right) \sigma_{t}^{1,0}\left(\tilde{\sigma}_{t}^{2,0}\right)^{\top}+\frac{1}{2} \partial_{\mu \mu} U\left(\cdot, \tilde{X}_{t}^{2}, \bar{X}_{t}^{2}\right) \tilde{\sigma}_{t}^{2,0}\left(\bar{\sigma}_{t}^{2,0}\right)^{\top}\right]\left(t, X_{t}^{1}, \rho_{t}\right)\right) d t
\end{aligned}
$$

Throughout this paper the elements of \mathbb{R}^{d} are viewed as column vectors; $\partial_{x} U, \partial_{\mu} U \in \mathbb{R}^{d}$ are also column vectors; $\partial_{x \mu} U:=\partial_{x} \partial_{\mu} U:=\partial_{x}\left[\left(\partial_{\mu} U\right)^{\top}\right] \in \mathbb{R}^{d \times d}$, where ${ }^{\top}$ denotes the transpose and, similarly, for the other second-order derivatives; both the notations "." and $\langle\cdot, \cdot\rangle$ denote the inner product of column vectors. Moreover, the term $\partial_{x} U \cdot \sigma_{t}^{1} d B_{t}$ means $\partial_{x} U \cdot\left(\sigma_{t}^{1} d B_{t}\right)$, but we omit the parentheses for notational simplicity.
2.3. The Lasry-Lions monotonicity and the displacement monotonicity. In this subsection we discuss two types of monotonicity conditions and provide more convenient alternative formulations.

DEFINITION 2.2. Let $U: \mathbb{R}^{d} \times \mathcal{P}_{2} \rightarrow \mathbb{R}$:
(i) U is called Lasry-Lions monotone, if for any $\xi_{1}, \xi_{2} \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}\right)$,

$$
\begin{equation*}
\mathbb{E}\left[U\left(\xi_{1}, \mathcal{L}_{\xi_{1}}\right)+U\left(\xi_{2}, \mathcal{L}_{\xi_{2}}\right)-U\left(\xi_{1}, \mathcal{L}_{\xi_{2}}\right)-U\left(\xi_{2}, \mathcal{L}_{\xi_{1}}\right)\right] \geq 0 \tag{2.13}
\end{equation*}
$$

(ii) U is called displacement monotone if $U(\cdot, \mu) \in C^{1}\left(\mathbb{R}^{d}\right)$ for all $\mu \in \mathcal{P}_{2}$ and for any $\xi_{1}, \xi_{2} \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}\right)$,

$$
\begin{equation*}
\mathbb{E}\left[\left\langle\partial_{x} U\left(\xi_{1}, \mathcal{L}_{\xi_{1}}\right)-\partial_{x} U\left(\xi_{2}, \mathcal{L}_{\xi_{2}}\right), \xi_{1}-\xi_{2}\right\rangle\right] \geq 0 \tag{2.14}
\end{equation*}
$$

REMARK 2.3. Assume $U \in \mathcal{C}^{1}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right)$:
(i) If $\partial_{\mu} U(\cdot, \mu, \tilde{x}) \in C^{1}\left(\mathbb{R}^{d}\right)$, for all $(\mu, \tilde{x}) \in \mathcal{P}_{2} \times \mathbb{R}^{d}$, then the inequality (2.13) implies

$$
\begin{aligned}
0 & \leq \mathbb{E}\left[U\left(\xi, \mathcal{L}_{\xi}\right)+U\left(\xi+\varepsilon \eta, \mathcal{L}_{\xi+\varepsilon \eta}\right)-U\left(\xi, \mathcal{L}_{\xi+\varepsilon \eta}\right)-U\left(\xi+\varepsilon \eta, \mathcal{L}_{\xi}\right)\right] \\
& =\varepsilon^{2} \int_{0}^{1} \int_{0}^{1} \tilde{\mathbb{E}}\left[\left\langle\partial_{x \mu} U\left(\xi+\theta_{1} \varepsilon \eta, \mathcal{L}_{\xi+\theta_{2} \varepsilon \eta}, \tilde{\xi}+\theta_{2} \varepsilon \tilde{\eta}\right) \tilde{\eta}, \eta\right\rangle\right] d \theta_{1} d \theta_{2}
\end{aligned}
$$

for any $\xi, \eta \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}\right)$ and any $\varepsilon>0$, where $(\tilde{\xi}, \tilde{\eta})$ is an independent copy of (ξ, η). Thus,

$$
\begin{equation*}
\tilde{\mathbb{E}}\left[\left\langle\partial_{x \mu} U\left(\xi, \mathcal{L}_{\xi}, \tilde{\xi}\right) \tilde{\eta}, \eta\right\rangle\right] \geq 0 \quad \forall \xi, \eta \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}\right) \tag{2.15}
\end{equation*}
$$

(ii) If $\partial_{x} U \in \mathcal{C}^{1}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right)$, then the inequality (2.14) implies

$$
\begin{aligned}
0 & \leq \mathbb{E}\left[\left\langle\partial_{x} U\left(\xi+\varepsilon \eta, \mathcal{L}_{\xi+\varepsilon \eta}\right)-\partial_{x} U\left(\xi, \mathcal{L}_{\xi}\right), \varepsilon \eta\right\rangle\right] \\
& =\varepsilon^{2} \int_{0}^{1} \tilde{\mathbb{E}}\left[\left\langle\partial_{x x} U\left(\xi+\theta \varepsilon \eta, \mathcal{L}_{\xi+\theta \varepsilon \eta}\right) \eta, \eta\right\rangle+\left\langle\partial_{x \mu} U\left(\xi+\theta \varepsilon \eta, \mathcal{L}_{\xi+\theta \varepsilon \eta}, \tilde{\xi}+\theta \varepsilon \tilde{\eta}\right) \tilde{\eta}, \eta\right\rangle\right] d \theta
\end{aligned}
$$

for any $\xi, \eta \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}\right)$ and $\varepsilon>0$, where $(\tilde{\xi}, \tilde{\eta})$ is an independent copy of (ξ, η), and thus,

$$
\begin{equation*}
\left(d_{x} d\right)_{\xi} U(\eta, \eta):=\tilde{\mathbb{E}}\left[\left\langle\partial_{x \mu} U\left(\xi, \mathcal{L}_{\xi}, \tilde{\xi}\right) \tilde{\eta}, \eta\right\rangle+\left\langle\partial_{x x} U\left(\xi, \mathcal{L}_{\xi}\right) \eta, \eta\right\rangle\right] \geq 0 \tag{2.16}
\end{equation*}
$$

(iii) Assume $\mathcal{U} \in \mathcal{C}^{2}\left(\mathcal{P}_{2}\right)$ and $U \in \mathcal{C}^{1}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right)$ are such that $\partial_{\mu} \mathcal{U} \equiv \partial_{x} U(x, \mu)$ on $\mathbb{R}^{d} \times$ \mathcal{P}_{2}. Then, U is displacement monotone if and only if \mathcal{U} is displacement convex, cf. [38].

REMARK 2.4. Throughout this manuscript, given $U \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right)$, we call (2.15) the Lasry-Lions monotonicity condition and call (2.16) the displacement monotonicity condition. Indeed, it is obvious that (2.14) and (2.16) are equivalent. We prove in the Appendix that (2.13) and (2.15) are also equivalent.

REMARK 2.5. (i) (2.16) implies that U is convex in x, namely, $\partial_{x x} U$ is nonnegative definite. We provide a simple proof in Lemma 2.6 below, and we refer to [28], Proposition B.6, for a more general result. Note that, in particular, (2.15) does not imply (2.16). Indeed, let $U(x, \mu)=U_{0}(x)+U_{1}(\mu)$ such that $\partial_{x x} U_{0}$ is not nonnegative definite. Then, $\partial_{x \mu} U(x, \mu, \tilde{x}) \equiv 0$, and so (2.15) holds while $\partial_{x x} U=\partial_{x x} U_{0}$ is not nonnegative definite. Thus, (2.16) fails.
(ii) For any function $U \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right)$ with $\left|\partial_{x x} U\right|$ and $\left|\partial_{x \mu} U\right|$ bounded above by $C>0$, the function $\bar{U}(x, \mu):=U(x, \mu)+C|x|^{2}$ will always satisfy (2.16),

$$
\begin{aligned}
\left(d_{x} d\right)_{\xi} \bar{U}(\eta, \eta) & =\tilde{\mathbb{E}}\left[\left\langle\partial_{x \mu} U(\xi, \mu, \tilde{\xi}) \tilde{\eta}, \eta\right\rangle+\left\langle\partial_{x x} U(\xi, \mu) \eta, \eta\right\rangle+2 C|\eta|^{2}\right] \\
& \geq \tilde{\mathbb{E}}\left[-C|\eta||\tilde{\eta}|-C|\eta|^{2}+2 C|\eta|^{2}\right]=C\left[\mathbb{E}\left[|\eta|^{2}\right]-|\mathbb{E}[\eta]|^{2}\right] \geq 0
\end{aligned}
$$

This means that (2.16) does not imply (2.15) either. Indeed, if U is a function violating (2.15) but having bounded derivatives, then the above \bar{U} satisfies (2.16). But, since $\partial_{x \mu} \bar{U}=\partial_{x \mu} U$, \bar{U} violates (2.15).
(iii) We note that, for the function \bar{U} above, $\partial_{x} \bar{U}$ is unbounded. For our main results later, we need displacement monotone functions with bounded derivatives. One can construct such an example as follows. Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex, even and smooth with bounded derivatives. Set $U(x, \mu):=\int_{\mathbb{R}^{d}} \phi(x-y) \mu(d y)$. Then, U satisfies (2.16), and its derivatives are bounded.

LEMMA 2.6. Assume $\partial_{x} U \in \mathcal{C}^{1}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right)$ and U satisfies (2.16). Then, $\partial_{x x} U$ is nonnegative definite.

Proof. Without loss of generality, we assume that μ has a positive and smooth density ρ. For $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}, \mu\right), x_{0} \in \mathbb{R}^{d}$ and $\eta_{\varepsilon}=v_{\varepsilon}(\xi)$, where $v \in C_{c}^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ and for $\varepsilon>0$, denote $v_{\varepsilon}(x):=\varepsilon^{-d} v\left(\frac{x-x_{0}}{\varepsilon}\right)$. We see that $\tilde{\eta}_{\varepsilon}=v_{\varepsilon}(\tilde{\xi})$. Then, straightforward calculation reveals

$$
\begin{aligned}
\left(d_{x} d\right)_{\xi} U\left(\eta_{\varepsilon}, \eta_{\varepsilon}\right)= & \int_{\mathbb{R}^{2 d}}\left\langle\partial_{x \mu} U\left(x_{0}+\varepsilon z, \mu, x_{0}+\varepsilon \tilde{z}\right) v(\tilde{z}), v(z)\right\rangle \rho\left(x_{0}+\varepsilon z\right) \rho\left(x_{0}+\varepsilon \tilde{z}\right) d z d \tilde{z} \\
& +\varepsilon^{-d} \int_{\mathbb{R}^{d}}\left\langle\partial_{x x} U\left(x_{0}+\varepsilon z, \mu\right) v(z), v(z)\right\rangle \rho\left(x_{0}+\varepsilon z\right) d z
\end{aligned}
$$

Thus, by (2.16) we have

$$
0 \leq \lim _{\varepsilon \rightarrow 0}\left[\varepsilon^{d}\left(d_{x} d\right)_{\xi} U\left(\eta_{\varepsilon}, \eta_{\varepsilon}\right)\right]=\rho\left(x_{0}\right) \int_{\mathbb{R}^{d}}\left\langle\partial_{x x} U\left(x_{0}, \mu\right) v(z), v(z)\right\rangle d z
$$

Since $\rho\left(x_{0}\right)>0$ and v is arbitrary, this implies immediately that $\partial_{x x} U\left(x_{0}, \mu\right)$ is nonnegative definite.

In Section 5 below, we will also use the following notion of displacement semimonotonicity, inspired by the displacement semiconvexity in potential games (cf. [7, 12]).

DEFINITION 2.7. Assume $U, \partial_{x} U \in \mathcal{C}^{1}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right)$. We say U is displacement semimonotone if there exists a constant $\lambda \geq 0$ such that, for any $\xi, \eta \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}\right)$,

$$
\begin{equation*}
\left(d_{x} d\right)_{\xi} U(\eta, \eta) \geq-\lambda \mathbb{E}\left[|\eta|^{2}\right] \tag{2.17}
\end{equation*}
$$

REMARK 2.8. It is obvious that displacement semimonotonicity is weaker than the displacement monotonicity. Moreover, when $\partial_{x x} U$ is bounded, the Lasry-Lions monotonicity (2.13) also implies the displacement semimonotonicity.
2.4. The master equation and mean field games. In this subsection we summarize, in an informal and elementary way, the well-known connection between the solutions of the master equation (1.1) and the value functions arising in mean field games (cf., e.g., [24, 25]). We recall $\beta \geq 0$ represents the intensity of the common noise and L, G are two given functions,

$$
L: \mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d} \rightarrow \mathbb{R} \quad \text { and } \quad G: \mathbb{R}^{d} \times \mathcal{P}_{2} \rightarrow \mathbb{R}
$$

that are continuous in all variables. As usual, the Legendre-Fenchel transform of the Lagrangian L with respect to the last variable is the Hamiltonian H defined as

$$
\begin{equation*}
H(x, \mu, p):=\sup _{a \in \mathbb{R}^{d}}[-\langle a, p\rangle-L(x, \mu, a)], \quad(x, p, \mu) \in \mathbb{R}^{2 d} \times \mathcal{P}_{2} \tag{2.18}
\end{equation*}
$$

Given $t \in[0, T]$, we set

$$
B_{s}^{t}:=B_{s}-B_{t}, \quad B_{s}^{0, t}:=B_{s}^{0}-B_{t}^{0} \quad \forall s \in[t, T]
$$

and denote by \mathcal{A}_{t} the set of admissible controls $\alpha:[t, T] \times \mathbb{R}^{d} \times C\left([t, T] ; \mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{d}$ that are uniformly Lipschitz continuous in the second variable, progressively measurable and adapted. For any $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{t}\right)$ and $\alpha \in \mathcal{A}_{t}$, by the Lipschitz continuity property of α, the SDE

$$
\begin{equation*}
X_{s}^{t, \xi, \alpha}=\xi+\int_{t}^{s} \alpha_{r}\left(X_{r}^{t, \xi, \alpha}, B_{\cdot}^{0, t}\right) d r+B_{s}^{t}+\beta B_{s}^{0, t}, \quad s \in[t, T] \tag{2.19}
\end{equation*}
$$

has a unique strong solution. We note that, by the adaptedness, the control α actually takes the form $\alpha_{r}\left(X_{r}^{t, \xi, \alpha}, B_{[t, r]}^{0, t}\right)$, where, $B_{[t, r]}^{0, t}$ stands for the restriction of $B^{0, t}$ to the interval $[t, r]$. Consider the conditionally expected cost functional for the mean field game,

$$
\begin{align*}
J\left(t, x, \xi ; \alpha, \alpha^{\prime}\right):= & \mathbb{E}_{\mathcal{F}_{t}^{0}}^{\mathbb{P}}\left[G\left(X_{T}^{t, x, \alpha^{\prime}}, \mathcal{L}_{X_{T}^{t, \xi, \alpha} \mid \mathcal{F}_{T}^{0}}\right)\right. \\
& \left.+\int_{t}^{T} L\left(X_{s}^{t, x, \alpha^{\prime}}, \mathcal{L}_{X_{s}^{t, \xi, \alpha} \mid \mathcal{F}_{s}^{0}}, \alpha_{s}^{\prime}\left(X^{t, x, \alpha^{\prime}}, B_{\cdot}^{0, t}\right)\right) d s\right] \tag{2.20}
\end{align*}
$$

Here, ξ represents the initial state of the "other" players, α is the common control of the other players and $\left(x, \alpha^{\prime}\right)$ is the initial state and control of the individual player. When $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{t}^{1}\right)$ is independent of \mathcal{F}_{t}^{0}, it is clear that $J\left(t, x, \xi ; \alpha, \alpha^{\prime}\right)$ is deterministic. One shows that

$$
\xi^{\prime} \in \mathbb{L}^{2}\left(\mathcal{F}_{t}^{1}\right), \quad \mathcal{L}_{\xi^{\prime}}=\mathcal{L}_{\xi} \quad \Longrightarrow \quad J\left(t, x, \xi^{\prime} ; \alpha, \alpha^{\prime}\right)=J\left(t, x, \xi ; \alpha, \alpha^{\prime}\right) \quad \forall x, \alpha, \alpha^{\prime}
$$

Therefore, we may define

$$
\begin{equation*}
J\left(t, x, \mu ; \alpha, \alpha^{\prime}\right):=J\left(t, x, \xi ; \alpha, \alpha^{\prime}\right), \quad \xi \in \mathbb{L}^{2}\left(\mathcal{F}_{t}^{1}, \mu\right) \tag{2.21}
\end{equation*}
$$

Now, for any $(t, x, \mu) \in \Theta$ and $\alpha \in \mathcal{A}_{t}$, we consider the infimum

$$
\begin{equation*}
V(t, x, \mu ; \alpha):=\inf _{\alpha^{\prime} \in \mathcal{A}_{t}} J\left(t, x, \mu ; \alpha, \alpha^{\prime}\right) \tag{2.22}
\end{equation*}
$$

Definition 2.9. We say $\alpha^{*} \in \mathcal{A}_{t}$ is a mean field Nash equilibrium of (2.22) at (t, μ) if

$$
V\left(t, x, \mu ; \alpha^{*}\right)=J\left(t, x, \mu ; \alpha^{*}, \alpha^{*}\right) \quad \text { for } \mu \text {-a.e. } x \in \mathbb{R}^{d} .
$$

When there is a unique mean field equilibrium for each (t, μ), denoted as $\alpha^{*}(t, \mu)$, it makes sense to define

$$
\begin{equation*}
V(t, x, \mu):=V\left(t, x, \mu ; \alpha^{*}(t, \mu)\right) \tag{2.23}
\end{equation*}
$$

Using the Itô formula (2.12), one shows that if V is sufficiently regular, then it is a classical solution to the master equation (1.1). However, we would like to point out that the theory of the global well-posedness of (1.1) that we develop will not rely explicitly on this connection.

The master equation (1.1) is also associated to the following forward-backward McKeanVlasov SDEs on $\left[t_{0}, T\right]$: given t_{0} and $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{t_{0}}\right)$,

$$
\left\{\begin{array}{l}
X_{t}^{\xi}=\xi-\int_{t_{0}}^{t} \partial_{p} H\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right) d s+B_{t}^{t_{0}}+\beta B_{t}^{0, t_{0}} \tag{2.24}\\
Y_{t}^{\xi}=G\left(X_{T}^{\xi}, \rho_{T}\right)+\int_{t}^{T} \widehat{L}\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right) d s-\int_{t}^{T} Z_{s}^{\xi} \cdot d B_{s}-\int_{t}^{T} Z_{s}^{0, \xi} \cdot d B_{s}^{0}
\end{array}\right.
$$

where

$$
\begin{aligned}
\widehat{L}(x, \mu, p) & :=L\left(x, \mu, \partial_{p} H(x, \mu, p)\right)=p \cdot \partial_{p} H(x, \mu, p)-H(x, \mu, p), \\
\rho_{t} & :=\rho_{t}^{\xi}:=\mathcal{L}_{X_{t}^{\xi} \mid \mathcal{F}_{t}^{0}} .
\end{aligned}
$$

Given ρ as above and $x \in \mathbb{R}^{d}$, we consider on $\left[t_{0}, T\right]$ the standard decoupled FBSDE

$$
\left\{\begin{align*}
X_{t}^{x}=x & +B_{t}^{t_{0}}+\beta B_{t}^{0, t_{0}} \tag{2.25}\\
Y_{t}^{x, \xi}= & G\left(X_{T}^{x}, \rho_{T}\right)-\int_{t}^{T} H\left(X_{s}^{x}, \rho_{s}, Z_{s}^{x, \xi}\right) d s \\
& \quad-\int_{t}^{T} Z_{s}^{x, \xi} \cdot d B_{s}-\int_{t}^{T} Z_{s}^{0, x, \xi} \cdot d B_{s}^{0}
\end{align*}\right.
$$

Alternatively, we may consider the coupled FBSDE, instead of the decoupled one (2.25),

$$
\left\{\begin{align*}
X_{t}^{\xi, x}= & x-\int_{t_{0}}^{t} \partial_{p} H\left(X_{s}^{\xi, x}, \rho_{s}, Z_{s}^{\xi, x}\right) d s+B_{t}^{t_{0}}+\beta B_{t}^{0, t_{0}} \tag{2.26}\\
Y_{t}^{\xi, x}= & G\left(X_{T}^{\xi, x}, \rho_{T}\right)+\int_{t}^{T} \widehat{L}\left(X_{s}^{\xi, x}, \rho_{s}, Z_{s}^{\xi, x}\right) d s \\
& -\int_{t}^{T} Z_{s}^{\xi, x} \cdot d B_{s}-\int_{t}^{T} Z_{s}^{0, \xi, x} \cdot d B_{s}^{0}
\end{align*}\right.
$$

These FBSDEs connect to the master equation (1.1) as follows: if V is a classical solution to (1.1) and if the above FBSDEs have strong solution, then

$$
\begin{align*}
Y_{t}^{\xi} & =V\left(t, X_{t}^{\xi}, \rho_{t}\right), Y_{t}^{x, \xi}=V\left(t, X_{t}^{x}, \rho_{t}\right), Y_{t}^{\xi, x}=V\left(t, X_{t}^{\xi, x}, \rho_{t}\right) \tag{2.27}\\
Z_{t}^{\xi} & =\partial_{x} V\left(t, X_{t}^{\xi}, \rho_{t}\right), Z_{t}^{x, \xi}=\partial_{x} V\left(t, X_{t}^{x}, \rho_{t}\right), Z_{t}^{\xi, x}=\partial_{x} V\left(t, X_{t}^{\xi, x}, \rho_{t}\right)
\end{align*}
$$

REMARK 2.10. (i) The forward-backward SDE system (2.24)-(2.25) or (2.24)-(2.26) is called the mean field game system. Equivalently, one may also consider the following forward-backward stochastic PDE system as the mean field system on $\left[t_{0}, T\right]$:

$$
\left\{\begin{align*}
d \rho(t, x)= & {\left[\frac{\widehat{\beta}^{2}}{2} \operatorname{tr}\left(\partial_{x x} \rho(t, x)\right)+\operatorname{div}\left(\rho(t, x) \partial_{p} H\left(x, \rho(t, \cdot), \partial_{x} u(t, x)\right)\right)\right] d t } \tag{2.28}\\
& -\beta \partial_{x} \rho(t, x) \cdot d B_{t}^{0} ; \\
d u(t, x)= & v(t, x) \cdot d B_{t}^{0}-\left[\operatorname{tr}\left(\frac{\widehat{\beta}^{2}}{2} \partial_{x x} u(t, x)+\beta \partial_{x} v^{\top}(t, x)\right)\right. \\
& \left.-H\left(x, \rho(t, \cdot), \partial_{x} u(t, x)\right)\right] d t \\
\rho\left(t_{0}, \cdot\right)= & \mathcal{L}_{\xi}, \quad u(T, x)=G(x, \rho(T, \cdot))
\end{align*}\right.
$$

Here, the solution triple (ρ, u, v) is \mathbb{F}^{0}-progressively measurable, and $\rho(t, \cdot, \omega)$ is a (random) probability measure. The solution V to the master equation also serves as the decoupling field for this forward-backward system, that is,

$$
\begin{equation*}
u(t, x, \omega)=V(t, x, \rho(t, \cdot, \omega)) \tag{2.29}
\end{equation*}
$$

(ii) In this paper we focus on the well-posedness of the master equation (1.1). It is now a folklore in the literature that, once we obtain a classical solution V (with suitably bounded derivatives), we immediately get existence and uniqueness of a mean field equilibrium α^{*} in (2.22) in the sense of Definition 2.9. Indeed, given V, in light of (2.27) we may decouple the forward-backward system (2.24) (or, similarly, decouple (2.28)) as

$$
\begin{equation*}
X_{t}^{\xi}=\xi-\int_{t_{0}}^{t} \partial_{p} H\left(X_{s}^{\xi}, \rho_{s}, \partial_{x} V\left(s, X_{s}^{\xi}, \rho_{s}\right)\right) d s+B_{t}^{t_{0}}+\beta B_{t}^{0, t_{0}}, \quad \rho_{t}:=\mathcal{L}_{X_{t}^{\xi} \mid \mathcal{F}_{t}^{0}} \tag{2.30}
\end{equation*}
$$

If V is sufficiently regular, this SDE has a unique solution (X^{ξ}, ρ), and then we can easily see that

$$
\alpha^{*}(t, x, \omega):=-\partial_{p} H\left(x, \rho_{t}(\omega), \partial_{x} V\left(t, x, \rho_{t}(\omega)\right)\right.
$$

is the unique mean field equilibrium of the game.
(iii) Given a classical solution V with bounded derivatives, in particular with bounded $\partial_{\mu \mu} V$, we can show the convergence of the corresponding N-player game. The arguments are more or less standard; see [21, 25], and we leave the details to interested readers.
3. The displacement monotonicity of nonseparable \boldsymbol{H}. In this section we collect all our standing assumptions on the data that are used in this manuscript to prove our main theorems. In particular, we shall introduce our new notion of displacement monotonicity for nonseparable H. Under appropriate condition on H and recalling (1.2) for the nonlocal operator \mathcal{N}, it is convenient in the sequel to define the operator

$$
\mathscr{L} V(t, x, \mu):=-\partial_{t} V-\frac{\widehat{\beta}^{2}}{2} \operatorname{tr}\left(\partial_{x x} V\right)+H\left(x, \mu, \partial_{x} V\right)-\mathcal{N} V
$$

which acts on the set of smooth functions on $[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{2}$.
We first specify the technical conditions on G and H. Recall the B_{R} and D_{R} in (2.9).
Assumption 3.1. We make the following assumptions on G :
(i) $G \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right)$ with $\left|\partial_{x} G\right|,\left|\partial_{x x} G\right| \leq L_{0}^{G}$ and $\left|\partial_{\mu} G\right|,\left|\partial_{x \mu} G\right| \leq L_{1}^{G}$;
(ii) $G, \partial_{x} G, \partial_{x x} G \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right)$, and $\partial_{\mu} G, \partial_{x \mu} G \in C^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d}\right)$, and the supremum norms of all their derivatives are uniformly bounded.

ASSUMPTION 3.2. We make the following assumptions on H :
(i) $H \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d}\right)$, and, for any $R>0$, there exists $L^{H}(R)$ such that

$$
\begin{aligned}
\left|\partial_{x} H\right|,\left|\partial_{p} H\right|,\left|\partial_{x x} H\right|,\left|\partial_{x p} H\right|,\left|\partial_{p p} H\right| & \leq L^{H}(R)
\end{aligned} \begin{aligned}
& \text { on } D_{R} ; \\
\left|\partial_{\mu} H\right|,\left|\partial_{x \mu} H\right|,\left|\partial_{p \mu} H\right| & \leq L^{H}(R)
\end{aligned} \quad \text { on } \mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d} \times B_{R} ; ~ \$
$$

(ii) $H \in \mathcal{C}^{3}\left(\mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d}\right)$, and

$$
H, \partial_{x} H, \partial_{p} H, \partial_{x x} H, \partial_{x p} H, \partial_{p p} H, \partial_{x x p} H, \partial_{x p p} H, \partial_{p p p} H \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d}\right),
$$

the supremum norms of all their derivatives are uniformly bounded on D_{R} and

$$
\partial_{\mu} H, \partial_{x \mu} H, \partial_{p \mu} H, \partial_{x p \mu} H, \partial_{p p \mu} H \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{2 d}\right)
$$

and the supremum norms of all their derivatives are bounded on $\mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d} \times B_{R}$;
(iii) There exists $C_{0}>0$ such that

$$
\left|\partial_{x} H(x, \mu, p)\right| \leq C_{0}(1+|p|) \quad \text { for any }(x, \mu, p) \in \mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d}
$$

(iv) H is strictly convex in p, and, for any $R>0$, there exists $L^{H}(R)$ such that

$$
\begin{aligned}
& \left|\left(\partial_{p p} H(x, \mu, p)\right)^{-\frac{1}{2}} \partial_{p \mu} H(x, \mu, \tilde{x}, p)\right| \leq L^{H}(R) \\
& \quad \text { for any }(x, \mu, \tilde{x}, p) \in \mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d} \times B_{R}
\end{aligned}
$$

REmARK 3.3. (i) Given a function $U \in \mathcal{C}^{1}\left(\mathcal{P}_{2}\right)$, one can easily see that U is uniformly W_{1}-Lipschitz continuous if and only if $\partial_{\mu} U$ is bounded.
(ii) Under Assumption 3.1 and by the above remark, we see that G and $\partial_{x} G$ are uniformly Lipschitz continuous in μ under W_{1} on $\mathbb{R}^{d} \times \mathcal{P}_{2}$ with Lipschitz constant L_{1}^{G}. This implies further the Lipchitz continuity of $G, \partial_{x} G$ in μ under W_{2} on $\mathbb{R}^{d} \times \mathcal{P}_{2}$, and we denote the Lipschitz constant by $L_{2}^{G} \leq L_{1}^{G}$,

$$
\begin{equation*}
\tilde{\mathbb{E}}\left[\left|\partial_{\mu} G(x, \mu, \tilde{\xi}) \tilde{\eta}\right|\right] \leq L_{2}^{G}\left(\mathbb{E}\left[|\eta|^{2}\right]\right)^{\frac{1}{2}}, \quad \tilde{\mathbb{E}}\left[\left|\partial_{x \mu} G(x, \mu, \tilde{\xi}) \tilde{\eta}\right|\right] \leq L_{2}^{G}\left(\mathbb{E}\left[|\eta|^{2}\right]\right)^{\frac{1}{2}} \tag{3.1}
\end{equation*}
$$

for all $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}, \mu\right), \eta \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}\right)$. Similarly, under Assumption 3.2, $H, \partial_{x} H, \partial_{p} H$ are uniformly Lipschitz continuous in μ under W_{1} (or W_{2}) on $\mathbb{R}^{d} \times \mathcal{P}_{2} \times B_{R}$ with Lipschitz constant $L^{H}(R)$.

We now introduce the crucial notion of displacement monotonicity for nonseparable H.
Definition 3.4. Let H be a Hamiltonian satisfying 3.2(i) and (iv). We say that H is displacement monotone if, for any $\mu \in \mathcal{P}_{2}, \xi \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}, \mu\right)$ and any bounded Lipschitz continuous function $\varphi \in C^{1}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$, the following bilinear form is nonpositive definite on $\eta \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}\right)$:

$$
\begin{align*}
\left(\operatorname{displ} \xi_{\xi}^{\varphi} H\right)(\eta, \eta) & :=\left(d_{x} d\right)_{\xi}^{\varphi} H(\eta, \eta)+Q_{\xi}^{\varphi} H(\eta, \eta) \leq 0 \quad \text { where } \\
\left(d_{x} d\right)_{\xi}^{\varphi} H(\eta, \eta) & :=\tilde{\mathbb{E}}\left[\left\langle\partial_{x \mu} H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta}+\partial_{x x} H(\xi, \mu, \varphi(\xi)) \eta, \eta\right\rangle\right] \tag{3.2}\\
Q_{\xi}^{\varphi} H(\eta, \eta) & :=\frac{1}{4} \mathbb{E}\left[\left|\left(\partial_{p p} H(\xi, \mu, \varphi(\xi))\right)^{-\frac{1}{2}} \tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{p \mu} H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta}\right]\right|^{2}\right] .
\end{align*}
$$

The following assumptions are central in our work.

ASSUMPTION 3.5. (i) G satisfies Assumption 3.1(i), and it is displacement monotone; namely, it satisfies (2.16).
(ii) H satisfies Assumptions 3.2(i), (iv) and is displacement monotone; namely, (3.2) holds.

REMARK 3.6. (i) When $H(x, \mu, p)=H_{0}(p)-F(x, \mu)$, (3.2) reads off

$$
\left(\operatorname{displ}_{\xi}^{\varphi} H\right)(\eta, \eta)=-\left(d_{x} d\right)_{\xi} F(\eta, \eta) \leq 0
$$

This is precisely the displacement monotonicity condition (2.16) on F, and so (3.2) is an extension of the displacement monotonicity to the functions on $\mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d}$.
(ii) Under Assumptions 3.1 and 3.2, we may weaken the requirement in Definition 3.4 such that (3.2) holds true only for those φ satisfying $|\varphi| \leq C_{1}^{x},\left|\partial_{x} \varphi\right| \leq C_{2}^{x}$ for the constants C_{1}^{x}, C_{2}^{x} determined in (6.2) below. All the results in this paper will remain true under this weaker condition.
(iii) As in Remark 2.5(i), one can easily see that (3.2) implies $\partial_{x x} H$ is nonpositive definite. This will be useful in the proof of Proposition 3.7.

Proposition 3.7. Under Assumptions 3.2(i) and (iv), H is displacement monotone if and only if (3.2) holds true for $\sigma(\xi)$-measurable η; namely, $\eta=v(\xi)$ for some deterministic function v. That is, by writing in integral form, H is displacement monotone if and only if, for any $\mu \in \mathcal{P}_{2}, v \in \mathbb{L}_{\mu}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ (defined in Section 2.2) and any bounded Lipschitz continuous function $\varphi \in C^{1}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$, it holds

$$
\begin{aligned}
& \int_{\mathbb{R}^{2 d}}\left\langle\partial_{x \mu} H(x, \mu, \tilde{x}, \varphi(x)) v(\tilde{x})+\partial_{x x} H(x, \mu, \varphi(x)) v(x), v(x)\right\rangle \mu(d x) \mu(d \tilde{x}) \\
& \quad+\frac{1}{4} \int_{\mathbb{R}^{d}}\left[\left|\left(\partial_{p p} H(x, \mu, \varphi(x))\right)^{-\frac{1}{2}} \int_{\mathbb{R}^{d}}\left[\partial_{p \mu} H(x, \mu, \tilde{x}, \varphi(x)) v(\tilde{x})\right] \mu(d \tilde{x})\right|^{2}\right] \mu(d x) \\
& \quad \leq 0 .
\end{aligned}
$$

In particular, when H is separable, namely, $\partial_{p \mu} H=0$ and hence $Q_{\xi}^{\varphi} H(\eta, \eta)=0$, then (3.3) reduces to

$$
\begin{equation*}
\int_{\mathbb{R}^{2 d}}\left\langle\partial_{x \mu} H(x, \mu, \tilde{x}, \varphi(x)) v(\tilde{x})+\partial_{x x} H(x, \mu, \varphi(x)) v(x), v(x)\right\rangle \mu(d x) \mu(d \tilde{x}) \leq 0 \tag{3.4}
\end{equation*}
$$

Proof. First, assume (3.2) holds. For any desired μ, v, φ, let $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}, \mu\right)$ and $\eta:=$ $v(\xi)$. Note that $\tilde{\eta}=v(\tilde{\xi})$ for the same function v. Then, (3.3) is exactly the integral form of (3.2).

We now prove the opposite direction. Assume (3.3) holds true. Following the same line of arguments as in the proof of Remark 2.5(i), one first shows that $\partial_{x x} H$ is nonpositive definite. Now, for any $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}, \mu\right)$ and $\eta \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}\right)$, denote $\eta^{\prime}:=\mathbb{E}[\eta \mid \xi]$. Then, there exists $v \in \mathbb{L}_{\mu}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ such that $\eta^{\prime}=v(\xi)$. Note that

$$
\tilde{\eta}^{\prime}:=\tilde{\mathbb{E}}\left[\tilde{\eta} \mid \mathcal{F}_{T}^{1}, \tilde{\xi}\right]=\tilde{\mathbb{E}}[\tilde{\eta} \mid \tilde{\xi}]=v(\tilde{\xi})
$$

for the same function v. Then, (3.3) implies that (3.2) holds for $\left(\eta^{\prime}, \tilde{\eta}^{\prime}\right)$. Note that, by the independence of $(\tilde{\xi}, \tilde{\eta})$ and (ξ, η), we have

$$
\begin{aligned}
\tilde{\mathbb{E}}\left[\left\langle\partial_{x \mu} H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta}, \eta\right\rangle\right] & =\tilde{\mathbb{E}}\left[\left\langle\partial_{x \mu} H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta}^{\prime}, \eta^{\prime}\right\rangle\right], \\
\tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{p \mu} H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta}\right] & =\tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{p \mu} H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta}^{\prime}\right] .
\end{aligned}
$$

Since $\partial_{x x} H$ is nonpositive definite, we have

$$
\mathbb{E}\left[\left\langle\partial_{x x} H(\xi, \mu, \varphi(\xi)) \eta, \eta\right\rangle\right] \leq \mathbb{E}\left[\left\langle\partial_{x x} H(\xi, \mu, \varphi(\xi)) \eta^{\prime}, \eta^{\prime}\right\rangle\right] .
$$

We combine all these to obtain

$$
\left(\operatorname{displ}_{\xi}^{\varphi} H\right)(\eta, \eta) \leq\left(\operatorname{displ}_{\xi}^{\varphi} H\right)\left(\eta^{\prime}, \eta^{\prime}\right) \leq 0
$$

which completes the proof.
We next provide an example of nonseparable H which satisfies all of our assumptions. We first note that, similar to Remark 2.5 (ii), for any $H \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d}\right)$ with bounded second-order derivates, the function $H(x, \mu, p)-C|x|^{2}$ always satisfies (3.2) for $C>0$ large enough. However, this function $H(x, \mu, p)-C|x|^{2}$ fails to be Lipschitz in x. We thus modify it as follows.

Let $H_{0}(x, \mu, p)$ be any smooth function with bounded derivatives up to the appropriate order so that H_{0} satisfies Assumption 3.2(i)-(ii). Suppose for some constant $R_{0}>0$,

$$
\begin{equation*}
H_{0}(x, \mu, p)=0 \quad \text { when }|x|>R_{0} \quad \text { and } \quad \partial_{\mu} H_{0}(x, \mu, \tilde{x}, p)=0 \quad \text { when }|\tilde{x}|>R_{0} \tag{3.5}
\end{equation*}
$$

A particular example of H_{0} satisfying both conditions in (3.5) is

$$
H_{0}(x, \mu, p)=h\left(x, p, \int_{\mathbb{R}^{d}} f(x, \tilde{x}, p) \mu(d \tilde{x})\right)
$$

where f and h are smooth, $h(x, p, r)=0$ for $|x|>R_{0}$ and $\partial_{\tilde{x}} f(x, \tilde{x}, p)=0$ for $|\tilde{x}| \geq R_{0}$. Let $\psi_{C}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a smooth and convex function such that $\psi_{C}(x)=C|x|^{2}$ when $|x| \leq R_{0}$ and $\psi_{C}(x)$ growth linearly when $|x| \geq R_{0}+1$. Then, we have the following result.

Lemma 3.8. If C_{0} is sufficiently large, then the Hamiltonian

$$
\begin{equation*}
H(x, \mu, p):=H_{0}(x, \mu, p)+C_{0}|p|^{2}-\psi_{C_{0}}(x) \tag{3.6}
\end{equation*}
$$

satisfies Assumption 3.2 and is displacement monotone.
Proof. It is straightforward to verify Assumption 3.2(i), (ii), (iii), and H also satisfies Assumption 3.2(iv) when C_{0} is large enough. Then, it remains to prove (3.2). Let $C>0$ be a bound of $\partial_{x \mu} H_{0}, \partial_{x x} H_{0}, \partial_{p \mu} H_{0}$, and choose C_{0} such that

$$
2 C_{0}>3 C, \partial_{p p} H_{0}+2 C_{0} I_{d} \geq I_{d}
$$

We first note that

$$
\begin{aligned}
\partial_{x \mu} H & =\partial_{x \mu} H_{0}, \quad \partial_{p \mu} H=\partial_{p \mu} H_{0}, \quad \partial_{p p} H=\partial_{p p} H_{0}+2 C_{0} I_{d} \geq I_{d}, \\
\partial_{x x} H(x, \mu, p) & =\partial_{x x} H_{0}(x, \mu, p)-2 C_{0} I_{d} \mathbf{1}_{\left\{|x| \leq R_{0}\right\}}-\partial_{x x} \psi_{C_{0}}(x) \mathbf{1}_{\left\{|x|>R_{0}\right\}} .
\end{aligned}
$$

By (3.5) we have

$$
\begin{aligned}
\left(\operatorname{displ}_{\xi}^{\varphi} H\right)(\eta, \eta)= & \mathbb{E}\left[\left(\tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{x \mu} H_{0}(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta}\right], \eta\right\rangle\right. \\
& +\mathbf{1}_{\left\{|\xi| \leq R_{0}\right\}}\left\langle\left[\partial_{x x} H_{0}(\xi, \mu, \varphi(\xi))-2 C_{0} I_{d}\right] \eta, \eta\right\rangle \\
& -\mathbf{1}_{\left\{|\xi|>R_{0}\right\}}\left[\left\langle\partial_{x x} \psi_{C_{0}}(\xi) \eta, \eta\right\rangle\right. \\
& \left.+\frac{1}{4}\left|\left[2 C_{0} I_{d}+\partial_{p p} H_{0}(\xi, \mu, \varphi(\xi))\right]^{-\frac{1}{2}} \tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{p \mu} H_{0}(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta}\right]\right|^{2}\right] .
\end{aligned}
$$

We use Jensen's inequality, the assumption on C_{0} and by the convexity of $\psi_{C_{0}}$ to obtain

$$
\begin{aligned}
\left(\operatorname{displ}_{\xi}^{\varphi} H\right)(\eta, \eta) \leq & \mathbb{E}\left[C \mathbf{1}_{\left\{|\xi| \leq R_{0}\right\}}|\eta| \tilde{\mathbb{E}}\left[\mathbf{1}_{\left\{|\tilde{\xi}| \leq R_{0}\right\}}|\tilde{\eta}|\right]+\left[C-2 C_{0}\right] \mathbf{1}_{\left\{|\xi| \leq R_{0}\right\}}|\eta|^{2}\right. \\
& +C\left[\tilde{E}\left[\mathbf{1}_{\left\{|\tilde{\xi}| \leq R_{0}\right\}}|\tilde{\eta}|\right]\right]^{2}-\mathbf{1}_{\left\{|\xi|>R_{0}\right\}}\left\langle\left[\partial_{x x} \psi_{C_{0}}(\xi) \eta, \eta\right\rangle\right] \\
\leq & {\left[C-2 C_{0}\right] \mathbb{E}\left[\mathbf{1}_{\left\{|\xi| \leq R_{0}\right\}}|\eta|^{2}\right]+2 C\left(\mathbb{E}\left[\mathbf{1}_{\left\{|\xi| \leq R_{0}\right\}}|\eta|\right]\right)^{2} } \\
& -\mathbb{E}\left[\mathbf{1}_{\left\{|\xi|>R_{0}\right\}} \mid\left[\partial_{x x} \psi_{C_{0}}(\xi) \eta, \eta\right\rangle\right] \leq 0 .
\end{aligned}
$$

Thus, H satisfies (3.2).

We next express the displacement monotonicity of H in terms of L, defined through (2.18).

Proposition 3.9. Let H be such that Assumptions 3.2(i) and (iv) hold. Let $\mu \in \mathcal{P}_{2}$:
(i) H satisfies (3.2) if and only if L satisfies the following:

$$
\begin{aligned}
& \tilde{\mathbb{E}}\left[\left\langle\partial_{x \mu} L(\xi, \mu, \tilde{\xi}, \psi(\xi)) \tilde{\eta}, \eta\right\rangle+\left\langle\partial_{x x} L(\xi, \mu, \psi(\xi)) \eta, \eta\right\rangle\right] \\
& \quad \geq \mathbb{E}\left[\left|\left[\partial_{a a} L(\xi, \mu, \psi(\xi))\right]^{-\frac{1}{2}}\left[\frac{1}{2} \tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{a \mu} L(\xi, \mu, \tilde{\xi}, \psi(\xi)) \tilde{\eta}\right]+\partial_{a x} L(\xi, \mu, \psi(\xi)) \eta\right]\right|^{2}\right]
\end{aligned}
$$

for all μ, ξ, η, φ, as in Definition 3.4, and $\psi(x):=-\partial_{p} H(x, \mu, \varphi(x))$.
(ii) A sufficient condition for L to satisfy (3.7) and hence for H to satisfy (3.2) is

$$
\begin{equation*}
\Lambda:=\left.\frac{d^{2}}{d \varepsilon d \delta} \mathbb{E}\left[L\left(\xi+(\varepsilon+\delta) \eta, \mathcal{L}_{\xi+\varepsilon \eta}, \xi^{\prime}+(\varepsilon+\delta) \eta^{\prime}\right)\right]\right|_{(\varepsilon, \delta)=(0,0)} \geq 0 \tag{3.8}
\end{equation*}
$$

for all $\xi, \xi^{\prime}, \eta, \eta^{\prime} \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}\right)$.

Proof. (i) First, standard convex analysis theory ensures regularity properties of L. The optimal argument $a^{*}=a^{*}(x, \mu, p)$ satisfies
$H(x, \mu, p)=-L\left(x, \mu, a^{*}\right)-\left\langle a^{*}, p\right\rangle, \quad \partial_{a} L\left(x, \mu, a^{*}\right)+p=0, \quad a^{*}=-\partial_{p} H(x, \mu, p)$.

One can easily derive further the following identities (some of them are well known in convex analysis):

$$
\begin{align*}
\partial_{x} H(x, \mu, p) & =-\partial_{x} L\left(x, \mu, a^{*}\right) ; \quad \partial_{\mu} H(x, \mu, \tilde{x}, p)=-\partial_{\mu} L\left(x, \mu, \tilde{x}, a^{*}\right) ; \\
\partial_{a a} L & \geq \frac{1}{L^{H}(R)} I_{d} \quad \text { on } D_{R} \quad \text { and } \quad \partial_{p p} H(x, \mu, p)=\left[\partial_{a a} L\left(x, \mu, a^{*}\right)\right]^{-1} ; \\
\partial_{x p} H(x, \mu, p) & =\partial_{x a} L\left(x, \mu, a^{*}\right)\left[\partial_{a a} L\left(x, \mu, a^{*}\right)\right]^{-1} ; \\
\partial_{x x} H(x, \mu, p) & =-\partial_{x x} L\left(x, \mu, a^{*}\right)+\partial_{x p} H(x, \mu, p) \partial_{a x} L\left(x, \mu, a^{*}\right) \\
& =\left[-\partial_{x x} L+\partial_{x a} L\left[\partial_{a a} L\right]^{-1} \partial_{a x} L\right]\left(x, \mu, a^{*}\right) ; \tag{3.9}\\
\partial_{x \mu} H(x, \mu, \tilde{x}, p) & =-\partial_{x \mu} L\left(x, \mu, \tilde{x}, a^{*}\right)+\partial_{x p} H(x, \mu, p) \partial_{a \mu} L\left(x, \mu, \tilde{x}, a^{*}\right) \\
& =\left[-\partial_{x \mu} L+\partial_{x a} L\left[\partial_{a a} L\right]^{-1} \partial_{a \mu} L\right]\left(x, \mu, \tilde{x}, a^{*}\right) ; \\
\partial_{p \mu} H(x, \mu, \tilde{x}, p) & =\partial_{p p} H(x, \mu, p) \partial_{a \mu} L\left(x, \mu, \tilde{x}, a^{*}\right) \\
& =\left[\partial_{a a} L\left(x, \mu, a^{*}\right)\right]^{-1} \partial_{a \mu} L\left(x, \mu, \tilde{x}, a^{*}\right) .
\end{align*}
$$

Now, let φ be chosen as in Definition 3.4 and $\psi(x):=-\partial_{p} H(x, \mu, \varphi(x))$, then we have $-\left(\operatorname{displ}_{\xi}^{\varphi} H\right)(\eta, \eta)$

$$
\begin{aligned}
= & \tilde{\mathbb{E}}\left[\left\langle\left[\partial_{x \mu} L-\partial_{x a} L\left[\partial_{a a} L\right]^{-1} \partial_{a \mu} L\right](\xi, \mu, \tilde{\xi}, \psi(\xi)) \tilde{\eta}, \eta\right\rangle\right. \\
& +\left\langle\left[\partial_{x x} L-\partial_{x a} L\left[\partial_{a a} L\right]^{-1} \partial_{a x} L\right](\xi, \mu, \psi(\xi)) \eta, \eta\right\rangle \\
& \left.-\frac{1}{4}\left|\left[\partial_{a a} L(\xi, \mu, \psi(\xi))\right]^{-\frac{1}{2}} \tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{a \mu} L(\xi, \mu, \tilde{\xi}, \psi(\xi)) \tilde{\eta}\right]\right|^{2}\right] \\
= & \tilde{\mathbb{E}}\left[\left\langle\partial_{x \mu} L(\xi, \mu, \tilde{\xi}, \psi(\xi)) \tilde{\eta}, \eta\right\rangle+\left\langle\partial_{x x} L(\xi, \mu, \psi(\xi)) \eta, \eta\right\rangle\right. \\
& \left.-\left|\left[\partial_{a a} L(\xi, \mu, \psi(\xi))\right]^{-\frac{1}{2}}\left[\frac{1}{2} \tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{a \mu} L(\xi, \mu, \tilde{\xi}, \psi(\xi)) \tilde{\eta}\right]+\partial_{a x} L(\xi, \mu, \psi(\xi)) \eta\right]\right|^{2}\right]
\end{aligned}
$$

Then clearly, (3.2) is equivalent to (3.7).
(ii) Assume (3.8) holds and $\xi, \xi^{\prime}, \eta, \eta^{\prime} \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}\right)$. By straightforward calculations we have

$$
\begin{aligned}
\Lambda= & \left.\frac{d}{d \varepsilon} \mathbb{E}\left[\left\langle\partial_{x} L\left(\xi+\varepsilon \eta, \mathcal{L}_{\xi+\varepsilon \eta}, \xi^{\prime}+\varepsilon \eta^{\prime}\right), \eta\right\rangle+\left\langle\partial_{a} L\left(\xi+\varepsilon \eta, \mathcal{L}_{\xi+\varepsilon \eta}, \xi^{\prime}+\varepsilon \eta^{\prime}\right), \eta^{\prime}\right\rangle\right]\right|_{\varepsilon=0} \\
= & \tilde{\mathbb{E}}\left[\left\langle\partial_{x x} L\left(\xi, \mathcal{L}_{\xi}, \xi^{\prime}\right) \eta, \eta\right\rangle+\left\langle\partial_{x \mu} L\left(\xi, \mathcal{L}_{\xi}, \tilde{\xi}, \xi^{\prime}\right) \tilde{\eta}, \eta\right\rangle\right. \\
& \left.+2\left\langle\partial_{a x} L\left(\xi, \mathcal{L}_{\xi}, \xi^{\prime}\right) \eta, \eta^{\prime}\right\rangle+\left\langle\partial_{a \mu} L\left(\xi, \mathcal{L}_{\xi}, \tilde{\xi}, \xi^{\prime}\right) \tilde{\eta}, \eta^{\prime}\right\rangle+\left\langle\partial_{a a} L\left(\xi, \mathcal{L}_{\xi}, \xi^{\prime}\right) \eta^{\prime}, \eta^{\prime}\right\rangle\right] .
\end{aligned}
$$

The expression Λ remains nonnegative in particular when

$$
\begin{aligned}
\xi^{\prime} & :=\psi(\xi) \quad \text { and } \\
\eta^{\prime} & :=-\left(\partial_{a a} L\left(\xi, \mathcal{L}_{\xi}, \xi^{\prime}\right)\right)^{-1}\left(\frac{1}{2} \tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{a \mu} L\left(\xi, \mathcal{L}_{\xi}, \tilde{\xi}, \xi^{\prime}\right) \tilde{\eta}\right]+\partial_{a x} L\left(\xi, \mathcal{L}_{\xi}, \xi^{\prime}\right) \eta\right)
\end{aligned}
$$

Omitting the variables $\left(\xi, \mathcal{L}_{\xi}, \tilde{\xi}, \xi^{\prime}\right)$ inside the derivatives of L, we have

$$
\begin{aligned}
0 & \leq \Lambda=\mathbb{E}\left[\left\langle\partial_{x x} L \eta, \eta\right\rangle+\left\langle\tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{x \mu} L \tilde{\eta}\right], \eta\right\rangle+2\left\langle\partial_{a x} L \eta+\frac{1}{2} \tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{a \mu} L \tilde{\eta}\right], \eta^{\prime}\right\rangle+\left\langle\partial_{a a} L \eta^{\prime}, \eta^{\prime}\right\rangle\right] \\
& =\mathbb{E}\left[\left\langle\partial_{x x} L \eta, \eta\right\rangle+\left\langle\tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{x \mu} L \tilde{\eta}\right], \eta\right\rangle+\left|\left[\partial_{a a} L\right]^{\frac{1}{2}} \eta^{\prime}+\left[\partial_{a a} L\right]^{-\frac{1}{2}}\left[\partial_{a x} L \eta+\frac{1}{2} \tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{a \mu} L \tilde{\eta}\right]\right]\right|^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left|\left[\partial_{a a} L\right]^{-\frac{1}{2}}\left[\partial_{a x} L \eta+\frac{1}{2} \tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{a \mu} L \tilde{\eta}\right]\right]\right|^{2}\right] \\
= & \mathbb{E}\left[\left\langle\partial_{x x} L \eta, \eta\right\rangle+\left\langle\tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{x \mu} L \tilde{\eta}\right], \eta\right\rangle-\left|\left[\partial_{a a} L\right]^{-\frac{1}{2}}\left[\partial_{a x} L \eta+\frac{1}{2} \tilde{\mathbb{E}}_{\mathcal{F}_{T}^{1}}\left[\partial_{a \mu} L \tilde{\eta}\right]\right]\right|^{2}\right] .
\end{aligned}
$$

This is exactly (3.7).

REMARK 3.10. Observe that (3.8) expresses a certain convexity property of L. To illustrate this, consider the separable case, where $L(x, \mu, a):=L_{0}(x, \mu)+L_{1}(x, a)$. Then, $\Lambda=\Lambda_{0}+\Lambda_{1}$, where

$$
\begin{aligned}
& \Lambda_{0}:=\left.\frac{d^{2}}{d \varepsilon d \delta} \mathbb{E}\left[L_{0}\left(\xi+\varepsilon \eta+\delta \eta, \mathcal{L}_{\xi+\varepsilon \eta}\right)\right]\right|_{(\varepsilon, \delta)=(0,0)} \\
& \Lambda_{1}:=\left.\frac{d^{2}}{d \varepsilon d \delta} \mathbb{E}\left[L_{1}\left(\xi+\varepsilon \eta+\delta \eta, \xi^{\prime}+\varepsilon \eta^{\prime}+\delta \eta^{\prime}\right)\right]\right|_{(\varepsilon, \delta)=(0,0)}
\end{aligned}
$$

and so $\Lambda_{0} \geq 0, \Lambda_{1} \geq 0$ implies (3.7). Note that $\Lambda_{1} \geq 0$ exactly means L_{1} is convex in (x, a). Moreover, consider the potential game case for $L_{0}: \partial_{x} L_{0}(x, \mu)=\partial_{\mu} \widehat{L}_{0}(\mu, x)$ for some function $\widehat{L}_{0}(\mu)$. Then,

$$
\begin{aligned}
\Lambda_{0} & =\left.\frac{d}{d \varepsilon} \mathbb{E}\left[\left\langle\partial_{x} L_{0}\left(\xi+\varepsilon \eta, \mathcal{L}_{\xi+\varepsilon \eta}\right), \eta\right\rangle\right]\right|_{\varepsilon=0}=\left.\frac{d}{d \varepsilon} \mathbb{E}\left[\left\langle\partial_{\mu} \widehat{L}_{0}\left(\mathcal{L}_{\xi+\varepsilon \eta}, \xi+\varepsilon \eta\right), \eta\right\rangle\right]\right|_{\varepsilon=0} \\
& =\left.\frac{d^{2}}{d \varepsilon^{2}} \widehat{L}_{0}\left(\mathcal{L}_{\xi+\varepsilon \eta}\right)\right|_{\varepsilon=0}
\end{aligned}
$$

Thus, $\Lambda_{0} \geq 0$ exactly means \widehat{L}_{0} is displacement convex, namely, the mapping $\xi \mapsto \widehat{L}_{0}\left(\mathcal{L}_{\xi}\right)$ is convex. These are the same displacement convexity assumptions on the data for potential deterministic mean field master equations imposed in [28]. In particular, (3.8) is reminiscent to the joint convexity assumption on the Lagrangian (Assumption (H7)) in [28].
4. The displacement monotonicity of \boldsymbol{V}. In this section we show that, under our standing assumptions, the displacement monotonicity condition is propagated along any classical solution of the master equation. More precisely, let H and G satisfy our standing assumptions of the previous section, and in particular, suppose that they are displacement monotone in the sense of Assumption 3.5.

THEOREM 4.1. Let Assumptions 3.1 and 3.2(i), (iv) and 3.5 hold, and V be a classical solution of the master equation (1.1). Assume further that

$$
\begin{aligned}
V(t, \cdot, \cdot), \partial_{x} V(t, \cdot, \cdot), \partial_{x x} V(t, \cdot, \cdot) & \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right) \\
\partial_{\mu} V(t, \cdot, \cdot, \cdot), \partial_{x \mu} V(t, \cdot, \cdot, \cdot) & \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d}\right),
\end{aligned}
$$

and all their derivatives in the state and probability measure variables are also continuous in the time variable and are uniformly bounded. Then, $V(t, \cdot, \cdot)$ satisfies (2.16) for all $t \in[0, T]$.

Proof. Without loss of generality, we shall prove the thesis of the theorem only for $t_{0}=0$, that is, that $V(0, \cdot, \cdot)$ satisfies (2.16).

Fix $\xi, \eta \in \mathbb{L}^{2}\left(\mathcal{F}_{0}\right)$. Let us consider the following decoupled McKean-Vlasov SDEs:

$$
\begin{align*}
X_{t}= & \xi-\int_{0}^{t} \partial_{p} H\left(X_{s}, \mu_{s}, \partial_{x} V\left(s, X_{s}, \mu_{s}\right)\right) d s+B_{t}+\beta B_{t}^{0}, \quad \mu_{t}:=\mathcal{L}_{X_{t} \mid \mathcal{F}_{t}^{0}} \\
\delta X_{t}= & \eta-\int_{0}^{t}\left[H_{p x}\left(X_{s}\right) \delta X_{s}+\frac{1}{2} \tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[H_{p \mu}\left(X_{s}, \tilde{X}_{s}\right) \delta \tilde{X}_{s}\right]+H_{p p}\left(X_{s}\right) N_{s}\right] d s \quad \text { where } \tag{4.1}\\
N_{t}:= & \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]+\partial_{x x} V\left(X_{t}\right) \delta X_{t} \\
& +\frac{1}{2} H_{p p}\left(X_{t}\right)^{-1} \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[H_{p \mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right] .
\end{align*}
$$

Here and in the sequel, for simplicity of notation we omit the variables $\left(t, \mu_{t}\right)$ as well as the dependence on $\partial_{x} V$ and denote

$$
\begin{align*}
H_{p}\left(X_{t}\right) & :=\partial_{p} H\left(X_{t}, \mu_{t}, \partial_{x} V\left(t, X_{t}, \mu_{t}\right)\right), \\
H_{p \mu}\left(X_{t}, \tilde{X}_{t}\right) & :=\partial_{p \mu} H\left(X_{t}, \mu_{t}, \tilde{X}_{t}, \partial_{x} V\left(t, X_{t}, \mu_{t}\right)\right), \tag{4.2}
\end{align*}
$$

and, similarly, for $H_{x p}, H_{p p}, H_{x \mu}, \partial_{x x} V, \partial_{x \mu} V$. Since V is assumed to be regular enough with $\partial_{x} V, \partial_{x x} V, \partial_{x \mu} V$ uniformly bounded and H satisfies Assumption 3.2(i), the driving vector field is globally Lipschitz continuous. Therefore, classical results imply the existence of unique solutions X_{t} and δX_{t}. We also observe that δX_{t} can be interpreted as $\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left[X_{t}^{\xi+\varepsilon \eta}-X_{t}^{\xi}\right]$ (cf. [18]).

Below, we shall use the notation, for $\theta \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\theta^{\top} \partial_{x x \mu} V(x, \tilde{x}):=\sum_{i=1}^{d} \theta_{i} \partial_{x_{i} x \mu} V(x, \tilde{x}), \quad \operatorname{tr}\left(\partial_{\mu \mu}\right) \partial_{x \mu} V:=\sum_{i=1}^{d} \partial_{\mu_{i} \mu_{i}} \partial_{x \mu} V \tag{4.3}
\end{equation*}
$$

and, similarly, for other higher-order derivatives of V. Introduce

$$
I(t):=\tilde{\mathbb{E}}\left[\left\langle\partial_{x \mu} V\left(t, X_{t}, \mu_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}, \delta X_{t}\right\rangle\right], \quad \bar{I}(t):=\mathbb{E}\left[\left\langle\partial_{x x} V\left(t, X_{t}, \mu_{t}\right) \delta X_{t}, \delta X_{t}\right\rangle\right] .
$$

We remark that, since $\left(\tilde{X}_{t}, \delta \tilde{X}_{t}\right)$ is a conditionally independent copy of $\left(X_{t}, \delta X_{t}\right)$ and μ_{t} is \mathcal{F}_{t}^{0}-measurable, for the notations in Section 2.1 we have

$$
\begin{equation*}
I(t)+\bar{I}(t)=\mathbb{E}\left[\left(d_{x} d\right)_{X_{t}\left(\omega^{0}, \cdot\right)} V(t, \cdot)\left(\delta X_{t}\left(\omega^{0}, \cdot\right), \delta X_{t}\left(\omega^{0}, \cdot\right)\right)\right] \tag{4.4}
\end{equation*}
$$

Our plan is to show that

$$
\begin{equation*}
\dot{I}(t)+\dot{\bar{I}}(t) \leq 0 \tag{4.5}
\end{equation*}
$$

Then, recalling $V(T, \cdot)=G$ and applying Assumption 3.5(i),

$$
\begin{aligned}
\left(d_{x} d\right)_{\xi} V(0, \cdot)(\eta, \eta) & =I(0)+\bar{I}(0) \geq I(T)+\bar{I}(T) \\
& =\mathbb{E}\left[\left(d_{x} d\right)_{X_{T}\left(\omega^{0}, \cdot\right)} G\left(\delta X_{T}\left(\omega^{0}, \cdot\right), \delta X_{T}\left(\omega^{0}, \cdot\right)\right)\right] \geq 0
\end{aligned}
$$

That is, $V(0, \cdot)$ satisfies (2.16).
To show (4.5), we apply Itô's formula (2.12) to obtain

$$
\begin{equation*}
\dot{I}(t)=I_{1}+I_{2}+I_{3} \tag{4.6}
\end{equation*}
$$

where, introducing another conditionally independent copy \hat{X} of X and defining $\hat{\tilde{\tilde{E}}}$ in the manner of (2.4),

$$
\begin{aligned}
I_{1}:= & \hat{\hat{\mathbb{E}}}
\end{aligned}\left[\left\{\partial_{t x \mu} V\left(X_{t}, \tilde{X}_{t}\right)+\frac{\widehat{\beta}^{2}}{2}\left(\left(\operatorname{tr} \partial_{x x}\right) \partial_{x \mu} V\right)\left(X_{t}, \tilde{X}_{t}\right)-H_{p}\left(X_{t}\right)^{\top} \partial_{x x \mu} V\left(X_{t}, \tilde{X}_{t}\right)\right)\right.
$$

$$
\begin{aligned}
& +\beta^{2}\left(\operatorname{tr}\left(\partial_{\tilde{x} x}\right) \partial_{x \mu} V\right)\left(X_{t}, \tilde{X}_{t}\right)+\frac{\beta^{2}}{2}\left(\operatorname{tr}\left(\partial_{\mu \mu}\right) \partial_{x \mu} V\right)\left(X_{t}, \hat{X}_{t}, \bar{X}_{t}, \tilde{X}_{t}\right) \\
& +\frac{\widehat{\beta}^{2}}{2}\left(\operatorname{tr}\left(\partial_{\bar{x} \mu}\right) \partial_{x \mu} V\right)\left(X_{t}, \bar{X}_{t}, \tilde{X}_{t}\right)-H_{p}\left(\bar{X}_{t}\right)^{\top} \partial_{\mu x \mu} V\left(X_{t}, \bar{X}_{t}, \tilde{X}_{t}\right) \\
& \left.\left.\left.+\frac{\widehat{\beta}^{2}}{2}\left(\operatorname{tr}\left(\partial_{\tilde{x} \tilde{x}}\right) \partial_{x \mu} V\right)\left(X_{t}, \tilde{X}_{t}\right)-H_{p}\left(\tilde{X}_{t}\right)^{\top} \partial_{\tilde{x} x \mu} V\left(X_{t}, \tilde{X}_{t}\right)\right\} \delta \tilde{X}_{t}, \delta X_{t}\right)\right],
\end{aligned}
$$

and, rewriting $(\tilde{X}, \delta \tilde{X}, \tilde{\mathbb{E}})$ in the expression of N as $(\bar{X}, \delta \bar{X}, \overline{\mathbb{E}}$) (which does not change the value of N),

$$
\begin{aligned}
I_{2} & :=-\overline{\tilde{\mathbb{E}}}\left[\left\langle\partial_{\mu x} V\left(X_{t}, \tilde{X}_{t}\right)\left\{\left[H_{p x}\left(X_{t}\right)+H_{p p}\left(X_{t}\right) \partial_{x x} V\left(X_{t}\right)\right] \delta X_{t}+\mathbf{I I}_{\mathbf{2}}\right\}, \delta \tilde{X}_{t}\right\rangle\right], \\
\mathbf{I I}_{\mathbf{2}} & :=\left[H_{p \mu}\left(X_{t}, \bar{X}_{t}\right)+H_{p p}\left(X_{t}\right) \partial_{x \mu} V\left(X_{t}, \bar{X}_{t}\right)\right] \delta \bar{X}_{t}, \\
I_{3} & :=-\overline{\tilde{\mathbb{E}}}\left[\left\langle\partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right)\left\{\left[H_{p x}\left(\tilde{X}_{t}\right)+H_{p p}\left(\tilde{X}_{t}\right) \partial_{x x} V\left(\tilde{X}_{t}\right)\right] \delta \tilde{X}_{t}+\mathbf{I I I}_{3}\right\}, \delta X_{t}\right\rangle\right], \\
\mathbf{I I I}_{3} & :=\left[H_{p \mu}\left(\tilde{X}_{t}, \bar{X}_{t}\right)+H_{p p}\left(\tilde{X}_{t}\right) \partial_{x \mu} V\left(\tilde{X}_{t}, \bar{X}_{t}\right)\right] \delta \bar{X}_{t} .
\end{aligned}
$$

We apply $-\partial_{x \mu}$ to (1.1) and rewrite $(\tilde{\xi}, \bar{\xi}, \overline{\tilde{E}})$ in (1.2) as $(\bar{\xi}, \hat{\xi}, \hat{\mathbb{E}})$ to obtain

$$
\begin{equation*}
0=-\left(\partial_{x \mu} \mathscr{L} V\right)(t, x, \mu, \tilde{x})=J_{1}+J_{2}+J_{3} . \tag{4.7}
\end{equation*}
$$

Here, we have set, recalling the notation in (4.3),

$$
\begin{aligned}
J_{1}:= & \partial_{t x \mu} V(x, \tilde{x})+\frac{\widehat{\beta}^{2}}{2}\left(\operatorname{tr}\left(\partial_{x x}\right) \partial_{x \mu} V\right)(x, \tilde{x})-H_{x \mu}(x, \tilde{x})-\partial_{x x} V(x) H_{p \mu}(x, \tilde{x}) \\
& -\left(H_{x p}(x)+\partial_{x x} V(x) H_{p p}(x)\right) \partial_{x \mu} V(x, \tilde{x})-H_{p}(x)^{\top} \partial_{x x \mu} V(x, \tilde{x}), \\
J_{2}:= & \frac{\widehat{\beta}^{2}}{2}\left(\partial_{x \tilde{x}} \operatorname{tr}\left(\partial_{\tilde{x} \mu}\right) V\right)(x, \tilde{x})-H_{p}(\tilde{x})^{\top} \partial_{\tilde{x} x \mu} V(x, \tilde{x}) \\
& -\partial_{x \mu} V(x, \tilde{x})\left(H_{p x}(\tilde{x})+H_{p p}(\tilde{x}) \partial_{x x} V(\tilde{x})\right) \\
& +\beta^{2}\left(\partial_{x \tilde{x}} \operatorname{tr}\left(\partial_{x \mu}\right) V\right)(x, \tilde{x})+\beta^{2} \overline{\mathbb{E}}\left[\left(\partial_{x \tilde{x}} \operatorname{tr}\left(\partial_{\mu \mu}\right) V\right)(x, \bar{\xi}, \tilde{x})\right], \\
J_{3}:= & \hat{\overline{\mathbb{E}}}\left[\frac{\widehat{\beta}^{2}}{2}\left(\operatorname{tr}\left(\partial_{\bar{x} \mu}\right) \partial_{x \mu} V\right)(x, \tilde{x}, \bar{\xi})-H_{p}(\bar{\xi})^{\top} \partial_{\mu x \mu} V(x, \tilde{x}, \bar{\xi})\right. \\
& -\partial_{x \mu} V(x, \bar{\xi})\left[H_{p \mu}(\bar{\xi}, \tilde{x})+H_{p p}(\bar{\xi}) \partial_{x \mu} V(\bar{\xi}, \tilde{x})\right] \\
& \left.+\beta^{2}\left(\operatorname{tr}\left(\partial_{x \mu}\right) \partial_{x \mu} V\right)(x, \tilde{x}, \bar{\xi})+\frac{\beta^{2}}{2}\left(\operatorname{tr}\left(\partial_{\mu \mu}\right) \partial_{x \mu} V\right)(x, \tilde{x}, \hat{\xi}, \bar{\xi})\right] .
\end{aligned}
$$

Note that we can switch the order of the differentiation in $\partial_{x} \partial_{\mu}, \partial_{x} \partial_{\tilde{x}}$, etc. We emphasize that special care is needed when considering $\partial_{\mu} \partial_{\tilde{x}}$ (since we cannot change here the order of differentiation). For such terms we use their symmetric properties, given in Lemma 2.1. By evaluating (4.7) along ($X_{t}, \mu_{t}, \tilde{X}_{t}$) and plugging into (4.6), one can cancel many terms and simplify the previous derivation as

$$
\begin{aligned}
\dot{I}(t)= & \overline{\tilde{\mathbb{E}}}\left[-\left\langle\partial_{\mu x} V\left(X_{t}, \tilde{X}_{t}\right)\left[H_{p \mu}\left(X_{t}, \bar{X}_{t}\right)+H_{p p}\left(X_{t}\right) \partial_{x \mu} V\left(X_{t}, \bar{X}_{t}\right)\right] \delta \bar{X}_{t}, \delta \tilde{X}_{t}\right\rangle\right. \\
& \left.+\left\langle\left[H_{x \mu}\left(X_{t}, \tilde{X}_{t}\right)+\partial_{x x} V\left(X_{t}\right) H_{p \mu}\left(X_{t}, \tilde{X}_{t}\right)\right] \delta \tilde{X}_{t}, \delta X_{t}\right\rangle\right] .
\end{aligned}
$$

Thus, by using the tower property of conditional expectations and the conditional i.i.d. property of $(X, \delta X),(\tilde{X}, \delta \tilde{X}),(\bar{X}, \delta \bar{X})$, we have

$$
\begin{align*}
\dot{I}(t)= & \mathbb{E}\left[-\left\langle H_{p p}\left(X_{t}\right) \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right], \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]\right\rangle\right. \\
& -\left\langle\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[H_{p \mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right], \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]-\partial_{x x} V\left(X_{t}\right) \delta X_{t}\right\rangle \tag{4.8}\\
& \left.+\left\langle\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[H_{x \mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right], \delta X_{t}\right)\right] .
\end{align*}
$$

Similarly as above, we apply Itô formula (2.12) to $\bar{I}(t)$ to obtain

$$
\dot{\bar{I}}(t)=\bar{I}_{1}+\bar{I}_{2}+\bar{I}_{3},
$$

where

$$
\begin{aligned}
\bar{I}_{1}:= & \tilde{\mathbb{E}}\left[\left\{\left\{\partial_{t x x} V\left(X_{t}\right)+\frac{\widehat{\beta}^{2}}{2}\left(\operatorname{tr}\left(\partial_{x x}\right) \partial_{x x} V\right)\left(X_{t}\right)-H_{p}\left(X_{t}\right)^{\top} \partial_{x x x} V\left(X_{t}\right)\right.\right.\right. \\
& \left.\left.\left.+\beta^{2}\left(\operatorname{tr}\left(\partial_{x \mu}\right) \partial_{x x} V\right)\left(X_{t}, \tilde{X}_{t}\right)\right\} \delta X_{t}, \delta X_{t}\right\rangle\right], \\
\bar{I}_{2}:= & \overline{\tilde{E}}\left[\left\langle\left\{\frac{\beta^{2}}{2}\left(\operatorname{tr}\left(\partial_{\mu \mu}\right) \partial_{x x} V\right)\left(X_{t}, \tilde{X}_{t}, \bar{X}_{t}\right)\right.\right.\right. \\
& \left.\left.\left.+\frac{\widehat{\beta}^{2}}{2}\left(\operatorname{tr}\left(\partial_{\tilde{x} \mu}\right) \partial_{x x} V\right)\left(X_{t}, \tilde{X}_{t}\right)-H_{p}\left(\tilde{X}_{t}\right)^{\top} \partial_{\mu x x} V\left(X_{t}, \tilde{X}_{t}\right)\right\} \delta X_{t}, \delta X_{t}\right\rangle\right], \\
\bar{I}_{3}:= & \tilde{\mathbb{E}}\left[-2\left(\partial _ { x x } V (X _ { t }) \left\{\left[H_{p x}\left(X_{t}\right)+H_{p p}\left(X_{t}\right) \partial_{x x} V\left(X_{t}\right)\right] \delta X_{t}\right.\right.\right. \\
& \left.\left.\left.+\left[H_{p \mu}\left(X_{t}, \tilde{X}_{t}\right)+H_{p p}\left(X_{t}\right) \partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right)\right] \delta \tilde{X}_{t}\right\}, \delta X_{t}\right)\right] .
\end{aligned}
$$

On the other hand, applying $-\partial_{x x}$ to (1.1), we obtain

$$
\begin{equation*}
0=-\left(\partial_{x x} \mathscr{L} V\right)(t, x, \mu)=\bar{J}_{1}+\bar{J}_{2} \tag{4.9}
\end{equation*}
$$

where

$$
\begin{aligned}
\bar{J}_{1}:= & \partial_{t x x} V+\frac{\widehat{\beta}^{2}}{2}\left(\operatorname{tr}\left(\partial_{x x}\right) \partial_{x x} V\right)-H_{x x}(x)-2 H_{x p}(x) \partial_{x x} V(x) \\
& -\partial_{x x} V(x) H_{p p}(x) \partial_{x x} V(x)-H_{p}(x)^{\top} \partial_{x x x} V(x), \\
\bar{J}_{2}:= & \overline{\tilde{\mathbb{E}}}\left[\frac{\widehat{\beta}^{2}}{2}\left(\operatorname{tr}\left(\partial_{\tilde{x} \mu}\right) \partial_{x x} V\right)(x, \tilde{\xi})-H_{p}(\tilde{\xi})^{\top} \partial_{\mu x x} V(x, \tilde{\xi})\right. \\
& \left.+\beta^{2}\left(\operatorname{tr}\left(\partial_{x \mu}\right) \partial_{x x} V\right)(x, \tilde{\xi})+\frac{\beta^{2}}{2}\left(\operatorname{tr}\left(\partial_{\mu \mu}\right) \partial_{x x} V\right)(x, \bar{\xi}, \tilde{\xi})\right] .
\end{aligned}
$$

We evaluate the previous expression along $\left(X_{t}, \mu_{t}\right)$ to obtain, after a simplification,

$$
\begin{align*}
\dot{\bar{I}}(t)= & \mathbb{E}\left[-\left\langle H_{p p}\left(X_{t}\right) \partial_{x x} V\left(X_{t}\right) \delta X_{t}, \partial_{x x} V\left(X_{t}\right) \delta X_{t}\right\rangle\right. \\
& -2\left\langle H_{p p}\left(X_{t}\right) \partial_{x x} V\left(X_{t}\right) \delta X_{t}, \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]\right\rangle \tag{4.10}\\
& \left.-2\left\langle\partial_{x x} V\left(X_{t}\right) \delta X_{t}, \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[H_{p \mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]\right\rangle+\left\langle H_{x x}\left(X_{t}\right) \delta X_{t}, \delta X_{t}\right\rangle\right] .
\end{align*}
$$

We combine (4.8) and (4.10) to deduce that

$$
\begin{align*}
\dot{I}(t)+\dot{\bar{I}}(t)= & \mathbb{E}\left[-\left|H_{p p}^{\frac{1}{2}}\left(X_{t}\right)\left\{\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]+\partial_{x x} V\left(X_{t}\right) \delta X_{t}\right\}\right|^{2}\right. \\
& -\left\langle\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[H_{p \mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right], \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]+\partial_{x x} V\left(X_{t}\right) \delta X_{t}\right\rangle \\
& \left.+\left\langle\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[H_{x \mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]+H_{x x}\left(X_{t}\right) \delta X_{t}, \delta X_{t}\right\rangle\right] \\
= & \mathbb{E}\left[-\left\lvert\, H_{p p}^{\frac{1}{2}}\left(X_{t}\right)\left\{\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]+\partial_{x x} V\left(X_{t}\right) \delta X_{t}\right\}\right.\right. \tag{4.11}\\
& +\left.\frac{1}{2} H_{p p}^{-\frac{1}{2}}\left(X_{t}\right) \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[H_{p \mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]\right|^{2}+\left\langle\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[H_{x \mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right], \delta X_{t}\right\rangle \\
& \left.+\left\langle H_{x x}\left(X_{t}\right) \delta X_{t}, \delta X_{t}\right\rangle+\frac{1}{4}\left|H_{p p}^{-\frac{1}{2}}\left(X_{t}\right) \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[H_{p \mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]\right|^{2}\right] \\
= & -\mathbb{E}\left[\left|H_{p p}^{\frac{1}{2}}\left(X_{t}\right) N_{t}\right|^{2}\right]+\mathbb{E}^{\mathbb{P}_{0}}\left[\left(\operatorname{displ}_{X_{t}\left(\omega^{0}, \cdot\right)}^{\varphi} H\right)\left(\delta \tilde{X}_{t}\left(\omega^{0}, \cdot\right), \delta \tilde{X}_{t}\left(\omega^{0}, \cdot\right)\right)\right],
\end{align*}
$$

where we have set $\varphi(x):=\partial_{x} V\left(t, x, \mu_{t}\left(\omega^{0}\right)\right)$ and the last line is in the spirit of (4.4). Applying (3.2), we obtain (4.5) immediately.

REMARK 4.2. (i) The main trick here is that we may complete the square in (4.11) for the terms involving $\partial_{x x} V$ and, more importantly, $\partial_{x \mu} V$, which is hard to estimate a priori. Since the identity is exact, (3.2) seems essential for not loosing displacement monotonicity.

Moreover, recalling (4.4), we see that

$$
\begin{align*}
& \frac{d}{d t} \mathbb{E}^{\mathbb{P}_{0}}\left[\left(d_{x} d\right)_{X_{t}\left(\omega^{0}, \cdot\right)} V(t, \cdot, \cdot)\left(\delta X_{t}\left(\omega^{0}, \cdot\right), \delta X_{t}\left(\omega^{0}, \cdot\right)\right)\right] \tag{4.12}\\
& \quad \leq \mathbb{E}^{\mathbb{P}_{0}}\left[\left(\operatorname{displ}_{X_{t}\left(\omega^{0}, \cdot\right)}^{\partial_{X} V\left(t, \cdot, \mu_{t}\left(\omega^{0}\right)\right)} H\right)\left(\delta \tilde{X}_{t}\left(\omega^{0}, \cdot\right), \delta \tilde{X}_{t}\left(\omega^{0}, \cdot\right)\right)\right] .
\end{align*}
$$

So, roughly speaking, displ H measures the rate of dissipation of the displacement monotonicity of V through the bilinear form $\left(d_{x} d\right) V(t, \cdot, \cdot)$.
(ii) In the separable case, that is, $H(x, \mu, p)=H_{0}(x, p)-F(x, \mu)$ for some H_{0} and F, (4.8) becomes

$$
\dot{I}(t)=-\mathbb{E}\left[\left|\left[\left(H_{0}\right)_{p p}\left(X_{t}\right)\right]^{\frac{1}{2}} \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]\right|^{2}+\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left\langle\left[\partial_{x \mu} F\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right], \delta X_{t}\right\rangle\right]
$$

The term involving $\partial_{x \mu} V$ is again in a complete square, and it is no surprise that $V(t, \cdot, \cdot)$ would satisfy Lasry-Lions monotonicity condition (2.15), provided that the data G and F also satisfy (2.15). So, our arguments provide an alternative proof for the propagation of the Lasry-Lions monotonicity along $V(t, \cdot, \cdot)$ (and for the global well-posedness of the master equation, as a consequence of it, just as in the rest of the paper) in the case of separable Hamiltonians and Lasry-Lions monotone data.
(iii) When H is nonseparable, however, it remains a challenge to find sufficient conditions on H that could ensure the right-hand side of (4.8) being negative (for arbitrary times). This makes the propagation of the Lasry-Lions monotonicity condition along $V(t, \cdot, \cdot)$ hard to envision. In [36] a notion of monotonicity condition for nonseparable Hamiltonians that depend locally on the measure variable was proposed (see also [2]). This condition allows to obtain uniqueness of solutions for the corresponding MFG system.
5. The uniform Lipschitz continuity of \boldsymbol{V} under $\boldsymbol{W}_{\mathbf{2}}$. The main result in this section is that the displacement semimonotone solutions to the master equation (1.1) are always
uniformly W_{2}-Lipschitz continuous. We note in this observation that the Lipschitz continuity of $V(t, \cdot, \cdot)$ in μ (under W_{2}) is the consequence of the displacement semimonotonicity of $V(t, \cdot, \cdot)$ only (other than the technical conditions), which seems to be new even in the separable case. We remark again that the displacement semimonotonicity is weaker than both the displacement monotonicity and the Lasry-Lions monotonicity (if $\partial_{x x} V$ is uniformly bounded); see Remark 2.8.

THEOREM 5.1. Let all the conditions in Theorem 4.1 hold, except that we do not require Assumption 3.5(ii). Assume further that $V(t, \cdot, \cdot)$ satisfies the displacement semimonotonicity (2.17) for each $t \in[0, T]$. Then, V and $\partial_{x} V$ are uniformly Lipschitz continuous in μ under W_{2} with Lipschitz constant C_{2}^{μ}, where $C_{2}^{\mu}>0$ depends only on $d, T,\left\|\partial_{x} V\right\|_{L^{\infty}},\left\|\partial_{x x} V\right\|_{L^{\infty}}$, the L_{2}^{G} in Remark 3.3(ii), the $L^{H}\left(\left\|\partial_{x} V\right\|_{L^{\infty}}\right)$ in Assumption 3.2(i) and the λ in (2.17).

Proof. In this proof, $C>0$ denotes a generic constant depending only on quantities mentioned in the statement of the theorem. Without loss of generality, we show the thesis of the theorem only for $t_{0}=0$. We fix $\xi, \eta \in \mathbb{L}^{2}\left(\mathcal{F}_{0}\right)$ and continue to use the notation, as in the proof of Theorem 4.1. In particular, δX is defined by (4.1). First, we emphasize that the equality (4.11) does not rely on (3.2). Then, integrating (4.11) over [0, t] we obtain

$$
\begin{aligned}
\int_{0}^{t} \mathbb{E}\left[\left|H_{p p}\left(X_{s}\right)^{\frac{1}{2}} N_{s}\right|^{2}\right] d s= & {[I(0)+\bar{I}(0)]-[I(t)+\bar{I}(t)] } \\
& +\int_{0}^{t} \mathbb{E}\left[\left\langle\tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[H_{x \mu}\left(X_{s}, \tilde{X}_{s}\right) \delta \tilde{X}_{s}\right], \delta X_{s}\right\rangle+\left\langle H_{x x}\left(X_{s}\right) \delta X_{s}, \delta X_{s}\right\rangle\right. \\
& \left.+\frac{1}{4}\left|H_{p p}^{-\frac{1}{2}}\left(X_{s}\right) \tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[H_{p \mu}\left(X_{s}, \tilde{X}_{s}\right) \delta \tilde{X}_{s}\right]\right|^{2}\right] d s \\
\leq & I(0)-[I(t)+\bar{I}(t)]+C \mathbb{E}\left[|\eta|^{2}\right]+C \int_{0}^{t} \mathbb{E}\left[\left|\delta X_{s}\right|^{2}\right] d s,
\end{aligned}
$$

where we used the bound of $\partial_{x x} V, H_{x \mu}, H_{x x}, H_{p \mu}$. Since $V(t, \cdot, \cdot)$ satisfies (2.17), by (4.4) we have $I(t)+\bar{I}(t) \geq-\lambda \mathbb{E}\left[\left|\delta X_{t}\right|^{2}\right]$. Then,

$$
\begin{equation*}
\int_{0}^{t} \mathbb{E}\left[\left|H_{p p}\left(X_{s}\right)^{\frac{1}{2}} N_{s}\right|^{2}\right] d s \leq I(0)+C \mathbb{E}\left[\left|\delta X_{t}\right|^{2}\right]+C \mathbb{E}\left[|\eta|^{2}\right]+C \int_{0}^{t} \mathbb{E}\left[\left|\delta X_{s}\right|^{2}\right] d s \tag{5.1}
\end{equation*}
$$

Next, using (4.1) and Young's inequality, we have, for any $\epsilon>0$,

$$
\left|\delta X_{t}\right|^{2} \leq|\eta|^{2}+C_{\epsilon} \int_{0}^{t}\left|\delta X_{s}\right|^{2} d s+\epsilon \int_{0}^{t}\left|H_{p p}\left(X_{s}\right)^{\frac{1}{2}} N_{s}\right|^{2} d s
$$

Taking expectations on both sides and choosing $\epsilon>0$ small enough, by (5.1) we obtain

$$
\mathbb{E}\left[\left|\delta X_{t}\right|^{2}\right] \leq C \int_{0}^{t} \mathbb{E}\left[\left|\delta X_{s}\right|^{2}\right] d s+C \mathbb{E}\left[|\eta|^{2}\right]+C|I(0)|
$$

Then, it follows from Grönwall's inequality that

$$
\begin{align*}
& \sup _{t \in[0, T]} \mathbb{E}\left[\left|\delta X_{t}\right|^{2}\right] \leq C \mathbb{E}\left[|\eta|^{2}\right]+C|I(0)| \leq C \mathbb{E}\left[|\eta|^{2}+|\eta|\left|\Upsilon_{0}\right|\right] \tag{5.2}\\
& \quad \text { where } \Upsilon_{t}:=\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} V\left(t, X_{t}, \mu_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right] .
\end{align*}
$$

We shall follow the arguments in Theorem 4.1 to estimate Υ. We first observe that

$$
\begin{equation*}
\Upsilon_{t}=\tilde{\mathbb{E}}_{\mathcal{F}_{T}}\left[\partial_{x \mu} V\left(t, X_{t}, \mu_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right] \tag{5.3}
\end{equation*}
$$

So, by applying Itô formula (2.12) on $\partial_{x \mu} V\left(t, X_{t}, \mu_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}$, taking conditional expectation $\tilde{\mathbb{E}}_{\mathcal{F}_{T}}$ and then changing back to $\tilde{\mathbb{E}}_{\mathcal{F}_{t}}$ as in (5.3), we obtain

$$
\begin{equation*}
d \Upsilon_{t}=\left(d B_{t}\right)^{\top} K_{1}(t)+\beta\left(d B_{t}^{0}\right)^{\top} K_{2}(t)+\left[K_{3}(t)-K_{4}(t)\right] d t \tag{5.4}
\end{equation*}
$$

where, recalling the notation in (4.3) (in particular, the stochastic integral terms above are column vectors),

$$
\begin{aligned}
K_{1}(t):= & \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x x \mu} V\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right], \\
K_{2}(t):= & K_{1}(t)+\overline{\tilde{\mathbb{E}}}_{\mathcal{F}_{t}}\left[\left\{\left(\partial_{\mu x \mu} V\right)\left(X_{t}, \bar{X}_{t}, \tilde{X}_{t}\right)+\partial_{\tilde{x} x \mu} V\left(X_{t}, \tilde{X}_{t}\right)\right\} \delta \tilde{X}_{t}\right], \\
K_{3}(t):= & \hat{\tilde{\tilde{E}}}_{\mathcal{F}_{t}}\left[\left\{\partial_{t x \mu} V\left(X_{t}, \tilde{X}_{t}\right)-H_{p}\left(X_{t}\right)^{\top} \partial_{x x \mu} V\left(X_{t}, \tilde{X}_{t}\right)\right.\right. \\
& -H_{p}\left(\tilde{X}_{t}\right)^{\top} \partial_{\tilde{x} x \mu} V\left(X_{t}, \tilde{X}_{t}\right)-H_{p}\left(\bar{X}_{t}\right)^{\top} \partial_{\mu x \mu} V\left(X_{t}, \bar{X}_{t}, \tilde{X}_{t}\right) \\
& +\frac{\widehat{\beta}^{2}}{2}\left[\left(\operatorname{tr}\left(\partial_{x x}\right) \partial_{x \mu} V\right)\left(X_{t}, \tilde{X}_{t}\right)\right. \\
& \left.+\left(\operatorname{tr}\left(\partial_{\tilde{x} \tilde{x}}\right) \partial_{x \mu} V\right)\left(X_{t}, \tilde{X}_{t}\right)+\left(\operatorname{tr}\left(\partial_{\bar{x} \mu}\right) \partial_{x \mu} V\right)\left(X_{t}, \bar{X}_{t}, \tilde{X}_{t}\right)\right] \\
& +\beta^{2}\left[\left(\operatorname{tr}\left(\partial_{x \mu}\right) \partial_{x \mu} V\right)\left(X_{t}, \bar{X}_{t}, \tilde{X}_{t}\right)+\left(\operatorname{tr}\left(\partial_{\tilde{x} x}\right) \partial_{x \mu} V\right)\left(X_{t}, \tilde{X}_{t}\right)\right. \\
& \left.\left.\left.+\left(\operatorname{tr}\left(\partial_{\tilde{x} \mu}\right) \partial_{x \mu} V\right)\left(X_{t}, \bar{X}_{t}, \tilde{X}_{t}\right)+\frac{1}{2}\left(\operatorname{tr}\left(\partial_{\mu \mu}\right) \partial_{x \mu} V\right)\left(X_{t}, \hat{X}_{t}, \bar{X}_{t}, \tilde{X}_{t}\right)\right]\right\} \delta \tilde{X}_{t}\right], \\
K_{4}(t):= & \overline{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial _ { x \mu } V (X _ { t } , \tilde { X } _ { t }) \left\{\left[H_{p x}\left(\tilde{X}_{t}\right)+H_{p p}\left(\tilde{X}_{t}\right) \partial_{x x} V\left(\tilde{X}_{t}\right)\right] \delta \tilde{X}_{t}\right.\right. \\
& \left.\left.+\left[H_{p \mu}\left(\tilde{X}_{t}, \bar{X}_{t}\right)+H_{p p}\left(\tilde{X}_{t}\right) \partial_{x \mu} V\left(\tilde{X}_{t}, \bar{X}_{t}\right)\right] \delta \bar{X}_{t}\right\}\right] .
\end{aligned}
$$

In light of (4.7), by straightforward calculation and simplification and setting

$$
\begin{aligned}
& K_{5}(t):=H_{x p}\left(X_{t}\right)+\partial_{x x} V\left(X_{t}\right) H_{p p}\left(X_{t}\right), \\
& K_{6}(t):=\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\left[H_{x \mu}\left(X_{t}, \tilde{X}_{t}\right)+\partial_{x x} V\left(X_{t}\right) H_{p \mu}\left(X_{t}, \tilde{X}_{t}\right)\right] \delta \tilde{X}_{t}\right],
\end{aligned}
$$

we derive that

$$
\begin{equation*}
d \Upsilon_{t}=\left(d B_{t}\right)^{\top} K_{1}(t)+\beta\left(d B_{t}^{0}\right)^{\top} K_{2}(t)+\left[K_{5}(t) \Upsilon_{t}+K_{6}(t)\right] d t \tag{5.5}
\end{equation*}
$$

We have

$$
\Upsilon_{t}=\Upsilon_{T}-\int_{t}^{T}\left(d B_{s}\right)^{\top} K_{1}(s)-\int_{t}^{T} \beta\left(d B_{s}^{0}\right)^{\top} K_{2}(s)-\int_{t}^{T}\left[K_{5}(s) \Upsilon_{s}+K_{6}(s)\right] d s
$$

Take conditional expectation $\tilde{\mathbb{E}}_{\mathcal{F}_{t}}$ and recall (5.2), we have

$$
\begin{equation*}
\Upsilon_{t}=\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} G\left(X_{T}, \mu_{T}, \tilde{X}_{T}\right) \delta \tilde{X}_{T}\right]-\int_{t}^{T} \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[K_{5}(s) \Upsilon_{s}+K_{6}(s)\right] d s \tag{5.6}
\end{equation*}
$$

Then, by (5.5) and the required regularity of G, H and V, in particular (3.1), we have

$$
\left|\Upsilon_{t}\right|^{2} \leq C \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\left|\delta \tilde{X}_{T}\right|^{2}\right]+C \int_{t}^{T} \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\left|\Upsilon_{S}\right|^{2}+\left|\delta \tilde{X}_{s}\right|^{2}\right] d s
$$

Now, take conditional expectation $\tilde{\mathbb{E}}_{\mathcal{F}_{0}}$; we get

$$
\tilde{\mathbb{E}}_{\mathcal{F}_{0}}\left[\left|\Upsilon_{t}\right|^{2}\right] \leq C \tilde{\mathbb{E}}_{\mathcal{F}_{0}}\left[\left|\delta \tilde{X}_{T}\right|^{2}\right]+C \int_{t}^{T} \tilde{\mathbb{E}}_{\mathcal{F}_{0}}\left[\left|\Upsilon_{s}\right|^{2}+\left|\delta \tilde{X}_{s}\right|^{2}\right] d s
$$

Thus, by the Grönwall inequality we have

$$
\begin{equation*}
\left|\Upsilon_{0}\right|^{2}=\tilde{\mathbb{E}}_{\mathcal{F}_{0}}\left[\left|\Upsilon_{0}\right|^{2}\right] \leq C \tilde{\mathbb{E}}_{\mathcal{F}_{0}}\left[\left|\delta \tilde{X}_{T}\right|^{2}\right]+C \int_{0}^{T} \tilde{\mathbb{E}}_{\mathcal{F}_{0}}\left[\left|\delta \tilde{X}_{S}\right|^{2}\right] d s \tag{5.7}
\end{equation*}
$$

Plug this into (5.2), for any $\varepsilon>0$, we have

$$
\sup _{t \in[0, T]} \mathbb{E}\left[\left|\delta X_{t}\right|^{2}\right] \leq C_{\varepsilon} \mathbb{E}\left[|\eta|^{2}\right]+\varepsilon \mathbb{E}\left[\left|\Upsilon_{0}\right|^{2}\right] \leq C_{\varepsilon} \mathbb{E}\left[|\eta|^{2}\right]+C \varepsilon \sup _{t \in[0, T]} \mathbb{E}\left[\left|\delta X_{t}\right|^{2}\right]
$$

Set $\varepsilon=\frac{1}{2 C}$ as above; we have

$$
\begin{equation*}
\sup _{t \in[0, T]} \mathbb{E}\left[\left|\delta X_{t}\right|^{2}\right] \leq C \mathbb{E}\left[|\eta|^{2}\right] . \tag{5.8}
\end{equation*}
$$

Note that, recalling the setting in Section 2.1, $\delta \tilde{X}_{t}$ is measurable with respect to $\mathcal{F}_{t}^{0} \vee \tilde{\mathcal{F}}_{t}^{1}$ which is independent of \mathcal{F}_{0} under $\tilde{\mathbb{P}}$. Then, the conditional expectation in the right side of (5.7) is actually an expectation. Plug (5.8) into (5.7); we have

$$
\begin{equation*}
\left|\tilde{\mathbb{E}}_{\mathcal{F}_{0}}\left[\partial_{x \mu} V(0, \xi, \mu, \tilde{\xi}) \tilde{\eta}\right]\right|^{2}=\left|\Upsilon_{0}\right|^{2} \leq C \mathbb{E}\left[|\eta|^{2}\right] . \tag{5.9}
\end{equation*}
$$

This implies

$$
\left|\tilde{\mathbb{E}}\left[\partial_{x \mu} V(0, x, \mu, \tilde{\xi}) \tilde{\eta}\right]\right| \leq C\left(\mathbb{E}|\eta|^{2}\right)^{\frac{1}{2}}, \quad \mu \text {-a.e. } x .
$$

Since $\partial_{x \mu} V$ is continuous, we have

$$
\left|\mathbb{E}\left[\partial_{x \mu} V(0, x, \mu, \xi) \eta\right]\right| \leq C\left(\mathbb{E}|\eta|^{2}\right)^{\frac{1}{2}} \quad \text { for all } x, \mu, \xi, \eta
$$

In particular, this implies that there exists a constant $C_{2}^{\mu}>0$ such that

$$
\left|\partial_{x} V\left(0, x, \mathcal{L}_{\xi+\eta}\right)-\partial_{x} V\left(0, x, \mathcal{L}_{\xi}\right)\right|=\left|\int_{0}^{1} \mathbb{E}\left[\partial_{x \mu} V\left(0, x, \mathcal{L}_{\xi+\theta \eta}, \xi+\theta \eta\right) \eta\right] d \theta\right| \leq C_{2}^{\mu}\left(\mathbb{E}|\eta|^{2}\right)^{\frac{1}{2}}
$$

Now, taking random variables ξ, η such that $W_{2}^{2}\left(\mathcal{L}_{\xi+\eta}, \mathcal{L}_{\xi}\right)=\mathbb{E}|\eta|^{2}$, the above inequality exactly means that $\partial_{x} V(0, x, \cdot)$ is uniformly Lipschitz continuous in μ under W_{2} with uniform Lipschitz constant C_{2}^{μ}.

Finally, denote

$$
\bar{\Upsilon}_{t}:=\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{\mu} V\left(t, X_{t}, \mu_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]
$$

Following similar arguments as in (5.4), we have

$$
\begin{equation*}
d \bar{\Upsilon}_{t}=\left(d B_{t}\right)^{\top} \bar{K}_{1}(t)+\beta\left(d B_{t}^{0}\right)^{\top} \bar{K}_{2}(t)+\left[\bar{K}_{3}(t)-\bar{K}_{4}(t)\right] d t \tag{5.10}
\end{equation*}
$$

where

$$
\begin{aligned}
\bar{K}_{1}(t):= & \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right] \\
\bar{K}_{2}(t):= & K_{1}(t)+\overline{\tilde{\mathbb{E}}}_{\mathcal{F}_{t}}\left[\left\{\left(\partial_{\mu \mu} V\right)\left(X_{t}, \bar{X}_{t}, \tilde{X}_{t}\right)+\partial_{\tilde{x} \mu} V\left(X_{t}, \tilde{X}_{t}\right)\right\} \delta \tilde{X}_{t}\right] \\
\bar{K}_{3}(t):= & \hat{\tilde{\mathbb{E}}}_{\mathcal{F}_{t}}\left[\left\{\partial_{t \mu} V\left(X_{t}, \tilde{X}_{t}\right)-H_{p}\left(X_{t}\right)^{\top} \partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right)\right.\right. \\
& -H_{p}\left(\tilde{X}_{t}\right)^{\top} \partial_{\tilde{x} \mu} V\left(X_{t}, \tilde{X}_{t}\right)-H_{p}\left(\bar{X}_{t}\right)^{\top} \partial_{\mu \mu} V\left(X_{t}, \bar{X}_{t}, \tilde{X}_{t}\right) \\
& +\frac{\widehat{\beta}^{2}}{2}\left[\left(\operatorname{tr}\left(\partial_{x x}\right) \partial_{\mu} V\right)\left(X_{t}, \tilde{X}_{t}\right)+\left(\operatorname{tr}\left(\partial_{\tilde{x} \tilde{x}}\right) \partial_{\mu} V\right)\left(X_{t}, \tilde{X}_{t}\right)+\left(\operatorname{tr}\left(\partial_{\bar{x} \mu}\right) \partial_{\mu} V\right)\left(X_{t}, \bar{X}_{t}, \tilde{X}_{t}\right)\right] \\
& +\beta^{2}\left[\left(\operatorname{tr}\left(\partial_{x \mu}\right) \partial_{\mu} V\right)\left(X_{t}, \bar{X}_{t}, \tilde{X}_{t}\right)+\left(\operatorname{tr}\left(\partial_{\tilde{x} x}\right) \partial_{\mu} V\right)\left(X_{t}, \tilde{X}_{t}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.+\left(\operatorname{tr}\left(\partial_{\tilde{x} \mu}\right) \partial_{\mu} V\right)\left(X_{t}, \bar{X}_{t}, \tilde{X}_{t}\right)+\frac{1}{2}\left(\operatorname{tr}\left(\partial_{\mu \mu}\right) \partial_{\mu} V\right)\left(X_{t}, \hat{X}_{t}, \bar{X}_{t}, \tilde{X}_{t}\right)\right]\right\} \delta \tilde{X}_{t}\right], \\
\bar{K}_{4}(t):= & \overline{\tilde{\mathbb{E}}}_{\mathcal{F}_{t}}\left[\partial _ { \mu } V (X _ { t } , \tilde { X } _ { t }) \left\{\left[H_{p x}\left(\tilde{X}_{t}\right)+H_{p p}\left(\tilde{X}_{t}\right) \partial_{x x} V\left(\tilde{X}_{t}\right)\right] \delta \tilde{X}_{t}\right.\right. \\
& \left.\left.+\left[H_{p \mu}\left(\tilde{X}_{t}, \bar{X}_{t}\right)+H_{p p}\left(\tilde{X}_{t}\right) \partial_{x \mu} V\left(\tilde{X}_{t}, \bar{X}_{t}\right)\right] \delta \bar{X}_{t}\right\}\right] .
\end{aligned}
$$

On the other hand, by taking $-\partial_{\mu}$ of (1.1) and omitting the variables (t, μ) we have

$$
\begin{aligned}
0= & -\partial_{\mu}(\mathscr{L} V)(t, x, \mu, \tilde{x}) \\
= & \partial_{t \mu} V(x, \tilde{x})+\frac{\widehat{\beta}^{2}}{2}\left(\operatorname{tr}\left(\partial_{x x}\right) \partial_{\mu} V\right)(x, \tilde{x})-H_{\mu}(x, \tilde{x})-H_{p}(x)^{\top} \partial_{x \mu} V(x, \tilde{x}) \\
& +\frac{\widehat{\beta}^{2}}{2}\left(\partial_{\tilde{x}} \operatorname{tr}\left(\partial_{\tilde{x} \mu}\right) V\right)(x, \tilde{x})+\beta^{2}\left(\partial_{\tilde{x}} \operatorname{tr}\left(\partial_{x \mu}\right) V\right)(x, \tilde{x})+\beta^{2} \overline{\mathbb{E}}\left[\left(\partial_{\tilde{x}} \operatorname{tr}\left(\partial_{\mu \mu}\right) V\right)(x, \bar{\xi}, \tilde{x})\right] \\
& -H_{p}(\tilde{x})^{\top} \partial_{\tilde{x} \mu} V(x, \tilde{x})-\partial_{\mu} V(x, \tilde{x})\left(H_{p x}(\tilde{x})+H_{p p}(\tilde{x}) \partial_{x x} V(\tilde{x})\right) \\
& +\hat{\overline{\mathbb{E}}}\left[\frac{\widehat{\beta}^{2}}{2}\left(\operatorname{tr}\left(\partial_{\bar{x}} \mu\right) \partial_{\mu} V\right)(x, \tilde{x}, \bar{\xi})+\beta^{2}\left(\operatorname{tr}\left(\partial_{x \mu}\right) \partial_{\mu} V\right)(x, \tilde{x}, \bar{\xi})+\frac{\beta^{2}}{2}\left(\operatorname{tr}\left(\partial_{\mu \mu}\right) \partial_{\mu} V\right)(x, \tilde{x}, \hat{\xi}, \bar{\xi})\right. \\
& \left.-H_{p}(\bar{\xi})^{\top} \partial_{\mu \mu} V(x, \tilde{x}, \bar{\xi})-\partial_{\mu} V(x, \bar{\xi})\left(H_{p \mu}(\bar{\xi}, \tilde{x})+H_{p p}(\bar{\xi}) \partial_{x \mu} V(\bar{\xi}, \tilde{x})\right)\right] .
\end{aligned}
$$

Plug this into (5.10), we have

$$
d \bar{\Upsilon}_{t}=\left(d B_{t}\right)^{\top} \bar{K}_{1}(t)+\beta\left(d B_{t}^{0}\right)^{\top} \bar{K}_{2}(t)+\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[H_{\mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right] d t
$$

Then,

$$
\begin{aligned}
\bar{\Upsilon}_{0} & =\tilde{\mathbb{E}}_{\mathcal{F}_{0}}\left[\bar{\Upsilon}_{T}-\int_{0}^{T} H_{\mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t} d t\right] \\
& =\tilde{\mathbb{E}}_{\mathcal{F}_{0}}\left[\partial_{\mu} G\left(X_{T}, \tilde{X}_{T}\right) \delta \tilde{X}_{T}-\int_{0}^{T} H_{\mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t} d t\right]
\end{aligned}
$$

and thus, by (3.1) again,

$$
\left|\tilde{\mathbb{E}}_{\mathcal{F}_{0}}\left[\partial_{\mu} V(0, \xi, \mu, \tilde{\xi}) \tilde{\eta}\right]\right|^{2}=\left|\bar{\Upsilon}_{0}\right|^{2} \leq C \tilde{\mathbb{E}}_{\mathcal{F}_{0}}\left[\left|\delta \tilde{X}_{T}\right|^{2}+\int_{0}^{T}\left|\delta \tilde{X}_{t}\right|^{2} d t\right]
$$

Now, by (5.8), follow the arguments for (5.9) and the analysis afterward; we see that $V(0, x, \cdot)$ is also uniformly Lipschitz continuous in μ under W_{2} with uniform Lipschitz constant C_{2}^{μ}.

We note that the a priori W_{2}-Lipschitz continuity of V in μ is not sufficient for the global well-posedness of the master equation. We shall prove in the next section that, together with other properties, it actually implies the uniform W_{1}-Lipschitz continuity. The following proposition, which can be viewed as an analogue of Theorem 5.1 for the version of LasryLions monotonicity, obtains the W_{1}-Lipschtiz estimate directly. Since the proof should be standard for experts and is very similar to that of Theorem 5.1, we only sketch it and focus on the main differences.

Proposition 5.2. Let all the conditions in Theorem 4.1 hold, except that we do not require Assumption 3.5. Assume further that there exists $\lambda>0$ such that, for any $\xi, \eta \in \mathbb{L}^{2}\left(\mathcal{F}_{T}^{1}\right)$,

$$
\begin{equation*}
\mathbb{E}\left[\left\langle\partial_{x \mu} V\left(t, \xi, \mathcal{L}_{\xi}, \tilde{\xi}\right) \tilde{\eta}, \eta\right\rangle\right] \geq-\lambda(\mathbb{E}[|\eta|])^{2} \quad \text { for each } t \in[0, T] \tag{5.11}
\end{equation*}
$$

where $(\tilde{\xi}, \tilde{\eta})$ is an independent copy of (ξ, η). Then, V and $\partial_{x} V$ are uniformly Lipschitz continuous in μ under W_{1} with Lipschitz constant C_{1}^{μ}, where $C_{1}^{\mu}>0$ depends only on d, T, $\left\|\partial_{x} V\right\|_{L^{\infty}},\left\|\partial_{x x} V\right\|_{L^{\infty}}$, the L_{1}^{G} in Assumption 3.1(i), the $L^{H}\left(\left\|\partial_{x} V\right\|_{L^{\infty}}\right)$ in Assumption 3.2(i) and the λ in (5.11).

Proof. Denote

$$
N_{t}^{\prime}:=\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{x \mu} V\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]+\frac{1}{2} H_{p p}\left(X_{t}\right)^{-1} \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[H_{p \mu}\left(X_{t}, \tilde{X}_{t}\right) \delta \tilde{X}_{t}\right]
$$

First, by using (4.8) and (5.11), similar to (5.1), we can show

$$
\begin{array}{rl}
\int_{0}^{t} & \mathbb{E}\left[\left|H_{p p}\left(X_{s}\right)^{\frac{1}{2}} N_{s}^{\prime}\right|^{2}\right] d s \\
& \leq I(0)+C \mathbb{E}\left[\left(\mathbb{E}_{\mathcal{F}_{t}^{0}}\left[\left|\delta X_{t}\right|\right]\right)^{2}\right]+C \int_{0}^{t} \mathbb{E}\left[\left|\delta X_{s}\right| \tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\left|\delta \tilde{X}_{s}\right|\right]\right] d s \tag{5.12}\\
\quad=I(0)+C \mathbb{E}\left[\left(\mathbb{E}_{\mathcal{F}_{t}^{0}}\left[\left|\delta X_{t}\right|\right]\right)^{2}\right]+C \int_{0}^{t} \mathbb{E}\left[\left(\mathbb{E}_{\mathcal{F}_{s}^{0}}\left[\left|\delta X_{s}\right|\right]\right)^{2}\right] d s .
\end{array}
$$

Next, by (4.1), Young's inequality and noting that \mathcal{F}_{0} is independent of \mathcal{F}_{t}^{0}, we have

$$
\left(\mathbb{E}_{\mathcal{F}_{t}^{0}}\left[\left|\delta X_{t}\right|\right]\right)^{2} \leq(\mathbb{E}[|\eta|])^{2}+C_{\epsilon} \int_{0}^{t}\left(\mathbb{E}_{\mathcal{F}_{s}^{0}}\left[\left|\delta X_{s}\right|\right]\right)^{2} d s+\epsilon \int_{0}^{t}\left(\mathbb{E}_{\mathcal{F}_{s}^{0}}\left[H_{p p}^{\frac{1}{2}}\left(X_{s}\right)\left|N_{s}^{\prime}\right|\right]\right)^{2} d s
$$

Taking expectation on both sides, choosing $\epsilon>0$ small enough, together with (5.12) and for the same Υ in (5.2), it then follows from Grönwall's inequality that

$$
\begin{equation*}
\sup _{t \in[0, T]} \mathbb{E}\left[\left(\mathbb{E}_{\mathcal{F}_{t}^{0}}\left[\left|\delta X_{t}\right|\right]\right)^{2}\right] \leq C(\mathbb{E}[|\eta|])^{2}+C|I(0)| \leq C(\mathbb{E}[|\eta|])^{2}+C \mathbb{E}\left[|\eta|\left|\Upsilon_{0}\right|\right] . \tag{5.13}
\end{equation*}
$$

Now by (5.5) and (5.6) and noting that $\left|\partial_{x \mu} G\right| \leq L_{1}^{G}$, we have

$$
\begin{aligned}
\left|\Upsilon_{t}\right| & \leq C \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\left|\delta \tilde{X}_{T}\right|\right]+C \int_{t}^{T} \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\left|\Upsilon_{s}\right|+\left|\delta \tilde{X}_{s}\right|\right] d s \\
& =C \mathbb{E}_{\mathcal{F}_{t}^{0}}\left[\left|\delta \tilde{X}_{T}\right|\right]+C \int_{t}^{T}\left[\mathbb{E}_{\mathcal{F}_{t}}\left[\left|\Upsilon_{s}\right|\right]+\mathbb{E}_{\mathcal{F}_{t}^{0}}\left[\left|\delta \tilde{X}_{s}\right|\right]\right] d s
\end{aligned}
$$

Then, since \mathcal{F}_{0}^{0} is degenerate, namely, it reduced to $\left\{\varnothing, \Omega_{0}\right\}$

$$
\left|\Upsilon_{0}\right| \leq C \mathbb{E}\left[\left|\delta X_{T}\right|\right]+C \int_{0}^{T} \mathbb{E}\left[\left|\delta X_{s}\right|\right] d s \leq C \sup _{0 \leq t \leq T} \mathbb{E}\left[\left|\delta X_{t}\right|\right]
$$

Combine this with (5.13), we have

$$
\begin{equation*}
\left|\tilde{\mathbb{E}}_{\mathcal{F}_{0}}\left[\partial_{x \mu} V(0, \xi, \mu, \tilde{\xi}) \tilde{\eta}\right]\right|^{2}=\left|\Upsilon_{0}\right|^{2} \leq C \sup _{t \in[0, T]} \mathbb{E}\left[\left(\mathbb{E}_{\mathcal{F}_{t}^{0}}\left[\left|\delta X_{t}\right|\right]\right)^{2}\right] \leq C(\mathbb{E}[|\eta|])^{2} \tag{5.14}
\end{equation*}
$$

This is the counterpart of (5.9). Then, following similar arguments as after (5.9), we conclude as follows. First, one obtains

$$
\left|\mathbb{E}\left[\partial_{x \mu} V(0, x, \mu, \xi) \eta\right]\right| \leq C \mathbb{E}[|\eta|] \quad \forall x, \mu, \xi, \eta
$$

In particular, this implies that there exists a constant $C_{1}^{\mu}>0$ such that

$$
\left|\partial_{x} V\left(0, x, \mathcal{L}_{\xi+\eta}\right)-\partial_{x} V\left(0, x, \mathcal{L}_{\xi}\right)\right|=\left|\int_{0}^{1} \mathbb{E}\left[\partial_{x \mu} V\left(0, x, \mathcal{L}_{\xi+\theta \eta}, \xi+\theta \eta\right) \eta\right] d \theta\right| \leq C_{1}^{\mu} \mathbb{E}[|\eta|]
$$

Now, taking random variables ξ, η such that $W_{1}\left(\mathcal{L}_{\xi+\eta}, \mathcal{L}_{\xi}\right)=\mathbb{E}[|\eta|]$, the above inequality implies that $\partial_{x} V(0, x, \cdot)$ is uniformly Lipschitz continuous in μ under W_{1} with uniform Lipschitz constant C_{1}^{μ}.

By analyzing $\bar{\Upsilon}$ similarly, we show that V is also uniformly Lipschitz continuous in μ under W_{1}.

REMARK 5.3. (i) Proposition 5.2 indicates that the a priori W_{1}-Lipschitz continuity of V and $\partial_{x} V$ is a consequence of (5.11), even if H is nonseparable. However, we emphasize that, although (5.11) is weaker than the Lasry-Lions monotonicity (2.15), it is stronger than the displacement semimonotonicity condition (2.17). Unfortunately, for nonseparable H, we are not able to find sufficient conditions to ensure (5.11) a priori for V.
(ii) We note that, in general, for displacement monotone Hamiltonians considered in this manuscript, the displacement semimonotonicity of the terminal datum is not propagated in time along the solution of the master equation (cf. [28], Section B.4).
6. The global well-posedness. In this section we establish the global well-posedness of master equation (1.1). As illustrated in [25, 26, 39], the key to extend a local classical solution to a global one is the a priori uniform Lipschitz continuity estimate of the solution. We first investigate the regularity of V with respect to x. The following result is somewhat standard, while our technical conditions could be slightly different from those in the literature. For completeness we provide a proof in the Appendix. We remark that the regularity of G and H in μ is actually not needed in this result.

Proposition 6.1. Let Assumptions 3.1(i) and 3.2(i), (iii) hold and $\rho:[0, T] \times$ $\Omega \rightarrow \mathcal{P}_{2}$ be \mathbb{F}^{0}-progressively measurable (not necessarily a solution to (2.24)) with $\sup _{t \in[0, T]} \mathbb{E}\left[M_{2}^{2}\left(\rho_{t}\right)\right]<+\infty$:
(i) For any $x \in \mathbb{R}^{d}$ and for the X^{x} in (2.25), the following BSDE on $\left[t_{0}, T\right]$ has a unique solution with bounded Z^{x} :

$$
\begin{equation*}
Y_{t}^{x}=G\left(X_{T}^{x}, \rho_{T}\right)-\int_{t}^{T} H\left(X_{s}^{x}, \rho_{s}, Z_{s}^{x}\right) d s-\int_{t}^{T} Z_{s}^{x} \cdot d B_{s}-\int_{t}^{T} Z_{s}^{0, x} \cdot d B_{s}^{0} \tag{6.1}
\end{equation*}
$$

(ii) Denote $u\left(t_{0}, x\right):=Y_{t_{0}}^{x}$, then there exist $C_{1}^{x}, C_{2}^{x}>0$, depending only on d, T, the C_{0} in Assumption 3.2(iii), the constant L_{0}^{G} in Assumption 3.1 and the function L^{H} in Assumption 3.2, such that

$$
\begin{equation*}
\left|\partial_{x} u\left(t_{0}, x\right)\right| \leq C_{1}^{x}, \quad\left|\partial_{x x} u\left(t_{0}, x\right)\right| \leq C_{2}^{x} \tag{6.2}
\end{equation*}
$$

Here, the notation C_{i}^{x} denotes the bound of the i th-order derivative of u with respect to x, in particular, it is not a function of x.

The above result, combined with Theorems 4.1 and 5.1, implies immediately the uniform a priori Lipschitz continuity of V with respect to μ under W_{2}, with the uniform Lipschitz estimate depending only on the parameters in the assumptions but not on the additional regularities required in Theorem 4.1. However, the existence of local classical solutions to the master equation (1.1) requires the Lipschitz continuity under W_{1}, cf. [25], Theorem 5.10. To show that, eventually, the W_{2}-Lipschitz continuity of V together with our standing assumptions on the data imply its Lipschitz continuity under W_{1}, we rely on a pointwise representation formula for $\partial_{\mu} V$, developed in [39], tailored to our setting.

For this purpose we fix $t_{0} \in[0, T], x \in \mathbb{R}^{d}, \xi \in \mathbb{L}^{2}\left(\mathcal{F}_{t_{0}}\right)$ and let ρ be given in (2.24), provided its well-posedness. We then consider the following FBSDEs on $\left[t_{0}, T\right]$, which can
be interpreted as a formal differentiation of (2.26) with respect to x_{k},

$$
\left\{\begin{align*}
\nabla_{k} X_{t}^{\xi, x}= & e_{k}-\int_{t_{0}}^{t}\left[\left(\nabla_{k} X_{s}^{\xi, x}\right)^{\top} \partial_{x p} H\left(X_{s}^{\xi, x}, \rho_{s}, Z_{s}^{\xi, x}\right)\right. \tag{6.3}\\
& \left.+\left(\nabla_{k} Z_{s}^{\xi, x}\right)^{\top} \partial_{p p} H\left(X_{s}^{\xi, x}, \rho_{s}, Z_{s}^{\xi, x}\right)\right] d s \\
\nabla_{k} Y_{t}^{\xi, x}= & \partial_{x} G\left(X_{T}^{\xi, x}, \rho_{T}\right) \cdot \nabla_{k} X_{T}^{\xi, x}-\int_{t}^{T} \nabla_{k} Z_{s}^{\xi, x} \cdot d B_{s}^{t_{0}}-\int_{t}^{T} \nabla_{k} Z_{s}^{0, \xi, x} \cdot d B_{s}^{0, t_{0}} \\
& +\int_{t}^{T} \partial_{x} \widehat{L}\left(X_{s}^{\xi, x}, \rho_{s}, Z_{s}^{\xi, x}\right) \cdot \nabla_{k} X_{s}^{\xi, x}+\partial_{p} \widehat{L}\left(X_{s}^{\xi, x}, \rho_{s}, Z_{s}^{\xi, x}\right) \cdot \nabla_{k} Z_{s}^{\xi, x} d s,
\end{align*}\right.
$$

the following McKean-Vlasov FBSDE on $\left[t_{0}, T\right]$:

$$
\left\{\begin{align*}
\nabla_{k} \mathcal{X}_{t}^{\xi, x}= & -\int_{t_{0}}^{t}\left\{\left(\nabla_{k} \mathcal{X}_{s}^{\xi, x}\right)^{\top} \partial_{x p} H\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right)+\left(\nabla_{k} \mathcal{Z}_{s}^{\xi, x}\right)^{\top} \partial_{p p} H\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right)\right. \tag{6.4}\\
& +\tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\left(\nabla_{k} \tilde{X}_{s}^{\xi, x}\right)^{\top}\left(\partial_{\mu p} H\right)\left(X_{S}^{\xi}, \rho_{s}, \tilde{X}_{s}^{\xi, x}, Z_{s}^{\xi}\right)\right. \\
& \left.\left.+\left(\nabla_{k} \tilde{\mathcal{X}}_{s}^{\xi, x}\right)^{\top} \partial_{\mu p} H\left(X_{S}^{\xi}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{\xi}\right)\right]\right\} d s ; \\
\nabla_{k} \mathcal{Y}_{t}^{\xi, x}= & \partial_{x} G\left(X_{T}^{\xi}, \rho_{T}\right) \cdot \nabla_{k} \mathcal{X}_{T}^{\xi, x} \\
& +\tilde{\mathbb{E}}_{\mathcal{F}_{T}}\left[\partial_{\mu} G\left(X_{T}^{\xi}, \rho_{T}, \tilde{X}_{T}^{\xi, x}\right) \cdot \nabla_{k} \tilde{X}_{T}^{\xi, x}+\partial_{\mu} G\left(X_{T}^{\xi}, \rho_{T}, \tilde{X}_{T}^{\xi}\right) \cdot \nabla_{k} \tilde{\mathcal{X}}_{T}^{\xi, x}\right] \\
& +\int_{t}^{T}\left\{\partial_{x} \widehat{L}\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right) \cdot \nabla_{k} \mathcal{X} \mathcal{X}_{s}^{\xi, x}+\partial_{p} \widehat{L}\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right) \cdot \nabla_{k} \mathcal{Z}_{s}^{\xi, x}\right. \\
& \left.+\tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\partial_{\mu} \widehat{L}\left(X_{s}^{\xi}, \rho_{s}, \tilde{X}_{s}^{\xi, x}, Z_{s}^{\xi}\right) \cdot \nabla_{k} \tilde{X}_{s}^{\xi, x}+\partial_{\mu} \widehat{L}\left(X_{s}^{\xi}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{\xi}\right) \cdot \nabla_{k} \tilde{\mathcal{X}}_{s}^{\xi, x}\right]\right\} d s \\
& -\int_{t}^{T} \nabla_{k} \mathcal{Z}_{s}^{\xi, x} \cdot d B_{s}^{t_{0}}-\int_{t}^{T} \nabla_{k} \mathcal{Z}_{s}^{0, \xi, x} \cdot d B_{s}^{0, t_{0}}
\end{align*}\right.
$$

and the following McKean-Vlasov BSDE on $\left[t_{0}, T\right]$:

$$
\begin{align*}
\nabla_{\mu_{k}} Y_{t}^{x, \xi, \tilde{x}}= & \tilde{\mathbb{E}}_{\mathcal{F}_{T}}\left[\partial_{\mu} G\left(X_{T}^{x}, \rho_{T}, \tilde{X}_{T}^{\xi, \tilde{x}}\right) \cdot \nabla_{k} \tilde{X}_{T}^{\xi, \tilde{x}}+\partial_{\mu} G\left(X_{T}^{x}, \rho_{T}, \tilde{X}_{T}^{\xi}\right) \cdot \nabla_{k} \tilde{\mathcal{X}}_{T}^{\xi, \tilde{x}}\right] \\
& -\int_{t}^{T}\left\{\partial_{p} H\left(X_{s}^{x}, \rho_{s}, Z_{s}^{x, \xi}\right) \cdot \nabla_{\mu_{k}} Z_{s}^{x, \xi, \tilde{x}}\right. \\
& +\tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\partial_{\mu} H\left(X_{s}^{x}, \rho_{s}, \tilde{X}_{s}^{\xi, \tilde{x}}, Z_{s}^{x, \xi}\right) \cdot \nabla_{k} \tilde{X}_{s}^{\xi, \tilde{x}}\right. \tag{6.5}\\
& \left.\left.+\partial_{\mu} H\left(X_{s}^{x}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{x, \xi}\right) \cdot \nabla_{k} \tilde{\mathcal{X}}_{s}^{\xi, \tilde{x}}\right]\right\} d s \\
& -\int_{t}^{T} \nabla_{\mu_{k}} Z_{s}^{x, \xi, \tilde{x}} \cdot d B_{s}-\int_{t}^{T} \nabla_{\mu_{k}} Z_{s}^{0, x, \xi, \tilde{x}} \cdot d B_{s}^{0} .
\end{align*}
$$

The following result provides the crucial W_{1}-Lipschitz continuity of V. In particular, this extends [39], Theorem 9.2, to our setting.

Proposition 6.2. Let Assumptions 3.1(i) and 3.2(i), (iii) hold. Recall the constants C_{1}^{x} in (6.2), L_{0}^{G}, L_{1}^{G} in Assumption 3.1, L_{2}^{G} in Remark 3.3, and the function L^{H} in Assumption 3.2. Then, there exists a constant $\delta>0$, depending only $d, L_{0}^{G}, L_{2}^{G}, L^{H}\left(C_{1}^{x}\right)$, such that, whenever $T-t_{0} \leq \delta$, the following hold:
(i) The McKean-Vlasov FBSDEs (2.24), (2.25), (2.26), (6.3), (6.4) and (6.5) are wellposed on $\left[t_{0}, T\right]$, for any $\mu \in \mathcal{P}_{2}$ and $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{t_{0}}, \mu\right)$.
(ii) Define $V\left(t_{0}, x, \mu\right):=Y_{t_{0}}^{x, \xi}$. We have the pointwise representation,

$$
\begin{equation*}
\partial_{\mu_{k}} V\left(t_{0}, x, \mu, \tilde{x}\right)=\nabla_{\mu_{k}} Y_{t_{0}}^{x, \xi, \tilde{x}} \tag{6.6}
\end{equation*}
$$

Moreover, there exists a constant $C_{1}^{\mu}>0$, depending only on d, $L_{0}^{G}, L_{1}^{G}, L^{H}\left(C_{1}^{x}\right)$, such that

$$
\begin{equation*}
\left|\partial_{\mu} V\left(t_{0}, x, \mu, \tilde{x}\right)\right| \leq C_{1}^{\mu}, \quad\left|\partial_{x \mu} V\left(t_{0}, x, \mu, \tilde{x}\right)\right| \leq C_{1}^{\mu} \tag{6.7}
\end{equation*}
$$

(iii) Assume further that Assumptions 3.1(ii) and 3.2(ii) hold true. Then, the master equation (1.1) has a unique classical solution V on $\left[t_{0}, T\right]$ and (2.27) holds. Moreover,

$$
\begin{aligned}
V(t, \cdot, \cdot), \partial_{x} V(t, \cdot, \cdot), \partial_{x x} V(t, \cdot, \cdot) & \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right) \\
\partial_{\mu} V(t, \cdot, \cdot, \cdot), \partial_{x \mu} V(t, \cdot, \cdot, \cdot) & \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d}\right)
\end{aligned}
$$

and all their derivatives in the state and probability measure variables are continuous in the time variable and are uniformly bounded.

Proof. Since this proof is essentially the same as that in [39], Section 9, we postpone it to the Appendix.

We emphasize that the δ in the above result depends on L_{2}^{G}, but not on L_{1}^{G}, while the C_{1}^{μ} in (6.7) depends on L_{1}^{G}. This observation is crucial. We now establish the main result of the paper.

THEOREM 6.3. Let Assumptions 3.1, 3.2 and 3.5 hold. Then, the master equation (1.1) on $[0, T]$ admits a unique classical solution V with bounded $\partial_{x} V, \partial_{x x} V, \partial_{\mu} V$ and $\partial_{x \mu} V$.

Moreover, the McKean-Vlasov FBSDEs (2.24), (2.25), (2.26), (6.3), (6.4) and (6.5) are also well-posed on $[0, T]$, and the representation formula (6.6) remains true on $[0, T]$.

Proof. Let C_{1}^{x}, C_{2}^{x} be as in (6.2) and C_{2}^{μ} be the a priori (global) uniform Lipschitz estimate of V with respect to μ under W_{2}, as established by Theorems 4.1 and 5.1. Let $\delta>0$ be the constant in Proposition 6.2, but with L_{0}^{G} replaced with $C_{1}^{x} \vee C_{2}^{x}$ and L_{2}^{G} replaced with C_{2}^{μ}. Let $0=T_{0}<\cdots<T_{n}=T$ be a partition such that $T_{i+1}-T_{i} \leq \frac{\delta}{2}, i=0, \ldots, n-1$. We proceed in three steps:

Step 1. Existence. First, since $T_{n}-T_{n-2} \leq \delta$, by Proposition 6.2 the master equation (1.1) on $\left[T_{n-2}, T_{n}\right.$] with terminal condition G has a unique classical solution V. For each $t \in$ $\left[T_{n-2}, T_{n}\right]$, applying Proposition 6.1, we have $\left|\partial_{x} V\left(T_{n-1}, \cdot, \cdot\right)\right| \leq C_{1}^{x},\left|\partial_{x x} V\left(T_{n-1}, \cdot, \cdot\right)\right| \leq$ C_{2}^{x}. Note that, by Proposition 6.2(iii), $V(t, \cdot, \cdot)$ has further regularities; this enables us to apply Theorems 4.1 and 5.1 and obtain that $V(t, \cdot, \cdot)$ is uniform Lipschitz continuous in μ under W_{2} with Lipschitz constant C_{2}^{μ}. Moreover, by Proposition 6.2(ii) $V\left(T_{n-1}, \cdot, \cdot\right)$ is also uniformly Lipschitz continuous in μ under W_{1}.

We next consider the master equation (1.1) on $\left[T_{n-3}, T_{n-1}\right]$ with terminal condition $V\left(T_{n-1}, \cdot, \cdot\right)$. We emphasize that $V\left(T_{n-1}, \cdot, \cdot\right)$ has the above uniform regularity with the same constants $C_{1}^{x}, C_{2}^{x}, C_{2}^{\mu}$; then, we may apply Proposition 6.2 with the same δ and obtain a classical solution V on $\left[T_{n-3}, T_{n-1}\right]$ with the additional regularities specified in Proposition 6.2(iii). Clearly, this extends the classical solution of the master equation to [T_{n-3}, T_{n}]. We emphasize again that, while the bound of $\partial_{\mu} V(t, \cdot), \partial_{x \mu} V(t, \cdot)$ may become larger for $t \in\left[T_{n-3}, T_{n-2}\right]$ because the C_{1}^{μ} in (6.7) now depends on $\left\|\partial_{\mu} V\left(T_{n-1}, \cdot\right)\right\|_{L^{\infty}}$ instead of $\left\|\partial_{\mu} V\left(T_{n}, \cdot\right)\right\|_{L^{\infty}}$, by the global a priori estimates in Theorems 4.1 and 5.1 we see that $V(t, \cdot)$ corresponds to the same C_{1}^{x}, C_{2}^{x} and C_{2}^{μ} for all $t \in\left[T_{n-3}, T_{n}\right]$. This enables us to consider the master equation (1.1) on $\left[T_{n-4}, T_{n-2}\right]$ with terminal condition $V\left(T_{n-2}, \cdot, \cdot\right)$, and then we obtain a classical solution on $\left[T_{n-4}, T_{n}\right]$ with the desired uniform estimates and additional regularities.

Now, repeat the arguments backwards in time; we may construct a classical solution V for the original master equation (1.1) on $[0, T]$ with terminal condition G. Moreover, since this procedure is repeated only n times, by applying (6.7) repeatedly we see that (6.7) indeed holds true on $[0, T]$.

Step 2. Uniqueness. This follows directly from the local uniqueness in Proposition 6.2. Indeed, assume V^{\prime} is another classical solution with bounded $\partial_{x} V^{\prime}, \partial_{x x} V^{\prime}, \partial_{\mu} V^{\prime}$ and $\partial_{x \mu} V^{\prime}$.

By otherwise choosing larger $C_{1}^{x}, C_{2}^{x}, C_{2}^{\mu}$, we assume $\left|\partial_{x} V^{\prime}\right| \leq C_{1}^{x},\left|\partial_{x x} V^{\prime}\right| \leq C_{2}^{x}$, and C_{2}^{μ} also serves as a Lipschitz constant for the W_{2}-Lipschitz continuity of V^{\prime} in μ. Then, applying Proposition 6.2 on the master equation on $\left[T_{n-1}, T_{n}\right.$] with terminal condition G, by the uniqueness in Proposition 6.2(iii) (or in (i)) we see that $V^{\prime}(t, \cdot)=V(t, \cdot)$ for $t \in\left[T_{n-1}, T_{n}\right]$. Next, consider the master equation on [T_{n-2}, T_{n-1}] with terminal condition $V^{\prime}\left(T_{n-1}, \cdot\right)=V\left(T_{n-1}, \cdot\right)$, by the uniqueness in Proposition 6.2(iii), again we see that $V^{\prime}(t, \cdot)=V(t, \cdot)$ for $t \in\left[T_{n-2}, T_{n-1}\right]$. Repeat the arguments backwards in time we prove the uniqueness on $[0, T]$.

Step 3. Let V be the unique classical solution to the master equation (1.1) on $[0, T]$ with bounded $\partial_{x} V$ and $\partial_{x x} V$. Then, for $t_{0} \in[0, T]$ and $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{t_{0}}\right)$, the McKean-Vlasov SDE (2.30) on $\left[t_{0}, T\right]$ has a unique solution X^{ξ} and ρ. Set

$$
\begin{aligned}
Y_{t}^{\xi} & :=V\left(t, X_{t}^{\xi}, \rho_{t}\right), \quad Z_{t}^{\xi}:=\partial_{x} V\left(t, X_{t}^{\xi}, \rho_{t}\right) \\
Z_{t}^{0, \xi} & :=\beta\left(\partial_{x} V\left(t, X_{t}^{\xi}, \rho_{t}\right)+\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{\mu} V\left(t, X_{t}^{\xi}, \rho_{t}, \tilde{X}_{t}^{\xi}\right)\right]\right)
\end{aligned}
$$

By (1.1) and Itô formula (2.12), one verifies that ($X^{\xi}, Y^{\xi}, Z^{\xi}, Z^{0, \xi}$) satisfies FBSDE (2.24). The uniqueness follows from the same arguments, as in Step 2.

Similarly, by the above decoupling technique we can easily see that the other McKeanVlasov FBSDEs (2.25), (2.26), (6.3), (6.4) and (6.5) are also well-posed. In particular, besides (2.27) we have the following:

$$
\begin{aligned}
\nabla_{k} Y_{t}^{\xi, x}= & \partial_{x_{k}} V\left(t, X_{t}^{\xi, x}, \rho_{t}\right) \nabla_{k} X_{t}^{\xi, x}, \\
\nabla_{k} \mathcal{Y}_{t}^{\xi, x}= & \partial_{x} V\left(t, X_{t}^{\xi}, \rho_{t}\right) \cdot \nabla_{k} \mathcal{X}_{t}^{\xi, x} \\
& +\tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{\mu} V\left(t, X_{t}^{\xi}, \rho_{t}, \tilde{X}_{t}^{\xi, x}\right) \cdot \nabla_{k} \tilde{X}_{t}^{\xi, x}+\partial_{\mu} V\left(X_{t}^{\xi}, \rho_{t}, \tilde{X}_{t}^{\xi}\right) \cdot \nabla_{k} \tilde{\mathcal{X}}_{t}^{\xi, x}\right], \\
\nabla_{\mu_{k}} Y_{t}^{x, \xi, \tilde{x}}= & \tilde{\mathbb{E}}_{\mathcal{F}_{t}}\left[\partial_{\mu} V\left(t, X_{t}^{x}, \rho_{t}, \tilde{X}_{t}^{\xi, \tilde{x}}\right) \cdot \nabla_{k} \tilde{X}_{t}^{\xi, \tilde{x}}+\partial_{\mu} V\left(t, X_{t}^{x}, \rho_{t}, \tilde{X}_{t}^{\xi}\right) \cdot \nabla_{k} \tilde{\mathcal{X}}_{t}^{\xi, \tilde{x}}\right] .
\end{aligned}
$$

Set $t=t_{0}$, and note that $\nabla_{k} \tilde{X}_{t_{0}}^{\xi, \tilde{x}}=e_{k}$ and $\nabla_{k} \tilde{\mathcal{X}}_{t_{0}}^{\xi, \tilde{x}}=0$; then, the last equation above implies

$$
\nabla_{\mu_{k}} Y_{t_{0}}^{x, \xi, \tilde{x}}=\tilde{\mathbb{E}}_{\mathcal{F}_{t_{0}}}\left[\partial_{\mu} V\left(t_{0}, x, \rho_{t_{0}}, \tilde{x}\right) \cdot e_{k}\right]=\partial_{\mu_{k}} V\left(t_{0}, x, \mathcal{L}_{\xi}, \tilde{x}\right)
$$

which is exactly (6.6).

APPENDIX: PROOFS OF SOME TECHNICAL RESULTS

Proof of Remark 2.4. We show the equivalence of (2.13) and (2.15) for any $U \in$ $\mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathcal{P}_{2}\right)$. In fact, by Remark 2.3(i), we only need to prove that (2.15) implies (2.13). We now assume (2.15) holds, and we want to show the following which is equivalent to (2.13): for any $\mu_{0}, \mu_{1} \in \mathcal{P}_{2}$,

$$
\begin{equation*}
J_{0}:=\int_{\mathbb{R}^{d}}\left[U\left(x, \mu_{1}\right)-U\left(x, \mu_{0}\right)\right]\left[\mu_{1}(d x)-\mu_{0}(d x)\right] \geq 0 \tag{A.1}
\end{equation*}
$$

Recall (2.9). Since U is continuous, by the standard density argument it suffices to show (A.1) for $\mu_{i}, i \in\{0,1\}$, which have densities $\rho_{i} \in C^{\infty}\left(B_{R}\right)$ such that $\min _{B_{R}} \rho_{i}>0$. Consider one of the W_{1}-geodesic interpolations, such as in [27],

$$
\mu_{t}:=\rho_{t} \mathcal{L}^{d}, \quad \rho_{t}=(1-t) \rho_{0}+t \rho_{1} \quad \forall t \in[0,1] .
$$

Since ρ is bounded away from 0 on $[0,1] \times B_{R}$, then, for each t, there is a unique solution $\phi_{t} \in H_{0}^{1}\left(B_{R}^{o}\right) \cap C^{\infty}\left(B_{R}\right)$ to the elliptic equation

$$
\nabla \cdot\left(\rho_{t} \nabla \phi_{t}\right)=\rho_{0}-\rho_{1} \quad \text { that is } \quad \partial_{t} \rho_{t}+\nabla \cdot\left(\rho_{t} \nabla \phi_{t}\right)=0 .
$$

Note that ϕ_{t} and $\nabla \phi_{t}$ are continuous in t too. Setting $v_{t}:=\nabla \phi_{t}$, we see that v is a velocity for $t \rightarrow \mu_{t}$, and thus the following chain rule holds, cf. [29], Lemma 9.8:

$$
\begin{equation*}
\frac{d}{d t} U\left(x, \mu_{t}\right)=\int_{\mathbb{R}^{d}}\left\langle\partial_{\mu} U\left(x, \mu_{t}, \tilde{x}\right), v_{t}(\tilde{x})\right\rangle \rho_{t}(\tilde{x}) d \tilde{x} \tag{A.2}
\end{equation*}
$$

We now compute J_{0},

$$
\begin{aligned}
J_{0} & =\int_{\mathbb{R}^{d}}\left[U\left(x, \mu_{1}\right)-U\left(x, \mu_{0}\right)\right]\left[\rho_{1}(x)-\rho_{0}(x)\right] d x=-\int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{d}{d t} U\left(x, \mu_{t}\right) \nabla \cdot\left(\rho_{t} v_{t}\right) d x d t \\
& =-\int_{0}^{1} \int_{\mathbb{R}^{2 d}}\left\langle\partial_{\mu} U\left(x, \mu_{t}, \tilde{x}\right), v_{t}(\tilde{x})\right\rangle \rho_{t}(\tilde{x})\left[\nabla \cdot\left(\rho_{t}(x) v_{t}(x)\right)\right] d \tilde{x} d x d t
\end{aligned}
$$

By integration by parts formula and recalling that $\partial_{x \mu} U:=\partial_{x}\left[\partial_{\mu} U\right]^{\top}$, we have

$$
J_{0}=\int_{0}^{1} \int_{\mathbb{R}^{2} d}\left\langle\partial_{x} \partial_{\mu} U\left(x, \mu_{t}, \tilde{x}\right) v_{t}(\tilde{x}), v_{t}(x)\right\rangle \rho_{t}(\tilde{x}) \rho_{t}(x) d \tilde{x} d x d t
$$

Choose $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{t}^{1}, \mu_{t}\right)$, and set $\eta:=v_{t}(\xi)$; we see immediately that

$$
J_{0}=\tilde{\mathbb{E}}\left[\left\langle\partial_{x} \partial_{\mu} U\left(\xi, \mu_{t}, \tilde{\xi}\right) \tilde{\eta}, \eta\right\rangle\right] \geq 0
$$

where the inequality is due to (2.15). This proves (A.1).
Proof of Proposition 6.1. We proceed in three steps:
Step 1. We first show the well-posedness of the BSDE (6.1) in the case when $\left[T-t_{0}\right] C_{0}<$ 1, where C_{0} is given in Assumption 3.2(iii). We note that H is only locally Lipschitz continuous. For this purpose, let $R>0$ be a constant which will be specified later. Let $I_{R} \in C^{\infty}\left(\mathbb{R}^{d}\right)$ be a truncation function such that $I_{R}(p)=p$ for $|p| \leq R,\left|\partial_{p} I_{R}(p)\right|=0$ for $|p| \geq R+1$ and $\left|\partial_{p} I_{R}(p)\right| \leq 1$ for $p \in \mathbb{R}^{d}$. Denote $H_{R}(x, \mu, p)=H\left(x, \mu, I_{R}(p)\right)$. Then, clearly, $\left|\partial_{p} H_{R}(x, \mu, p)\right| \leq L^{H}(R+1)$ and $\left|\partial_{x} H_{R}(x, \mu, p)\right| \leq \tilde{L}^{H}(R+1)$ for all $(x, \mu, p) \in \mathbb{R}^{d} \times \mathcal{P}_{2} \times \mathbb{R}^{d}$, where $\tilde{L}^{H}(R):=\sup _{(x, \mu, p) \in D_{R}}\left|\partial_{x} H_{R}(x, \mu, p)\right|$. Consider the following BSDE on $\left[t_{0}, T\right]$ (abusing the notation here):

$$
\begin{equation*}
Y_{t}^{x}=G\left(X_{T}^{x}, \rho_{T}\right)-\int_{t}^{T} H_{R}\left(X_{s}^{x}, \rho_{s}, Z_{s}^{x}\right) d s-\int_{t}^{T} Z_{s}^{x} \cdot d B_{s}^{t_{0}}-\int_{t}^{T} Z_{s}^{0, x} \cdot d B_{s}^{0, t_{0}} \tag{A.3}
\end{equation*}
$$

and denote $u\left(t_{0}, x\right):=Y_{t_{0}}^{x}$ which is $\mathcal{F}_{t_{0}}^{0}$-measurable. By standard BSDE arguments, clearly the above system is well-posed, and it holds $Y_{t}^{x}=u\left(t, X_{t}^{x}\right), Z_{t}^{x}=\partial_{x} u\left(t, X_{t}^{x}\right)$. Moreover, we have $\partial_{x} u\left(t_{0}, x\right)=\nabla Y_{t_{0}}^{x}$, where

$$
\begin{align*}
\nabla Y_{t}^{x}= & \partial_{x} G\left(X_{T}^{x}, \rho_{T}\right)-\int_{t}^{T}\left[\partial_{x} H_{R}\left(X_{s}^{x}, \rho_{s}, Z_{s}^{x}\right)+\nabla Z_{s}^{x} \partial_{p} H_{R}\left(X_{s}^{x}, \rho_{s}, Z_{s}^{x}\right)\right] d s \tag{A.4}\\
& -\int_{t}^{T} \nabla Z_{s}^{x} d B_{s}^{t_{0}}-\int_{t}^{T} \nabla Z_{s}^{0, x} d B_{s}^{0, t_{0}}, \quad t_{0} \leq t \leq T
\end{align*}
$$

Note that $\left|\partial_{x} G\right| \leq L_{0}^{G}$ and $\left|\partial_{x} H_{R}\right| \leq \tilde{L}^{H}(R+1)$; one can easily see that

$$
\left|\partial_{x} u\left(t_{0}, x\right)\right|=\left|\nabla Y_{t_{0}}^{x}\right| \leq L_{0}^{G}+T \tilde{L}^{H}(R+1)
$$

Note that

$$
\varlimsup_{R \rightarrow \infty} \frac{L_{0}^{G}+T \tilde{L}^{H}(R+1)}{R}=\varlimsup_{R \rightarrow \infty} \frac{T \tilde{L}^{H}(R+1)}{R+1} \leq T C_{0}<1 .
$$

We may choose $R>0$ large enough such that

$$
\left|\partial_{x} u\left(t_{0}, x\right)\right| \leq L_{0}^{G}+T \tilde{L}^{H}(R+1) \leq R .
$$

This proves $\left|\partial_{x} u(t, x)\right| \leq C_{1}^{x}$ by setting $C_{1}^{x}:=R$. Moreover, since $\left|Z_{t}^{x}\right|=\left|\partial_{x} u\left(t, X_{t}^{x}\right)\right| \leq R$, we see that $H_{R}\left(X_{t}^{x}, \rho_{t}, Z_{t}^{x}\right)=H\left(X_{t}^{x}, \rho_{t}, Z_{t}^{x}\right)$. Thus, $\left(Y^{x}, Z^{x}, Z^{0, x}\right)$ actually satisfies (6.1).

On the other hand, for any solution $\left(Y^{x}, Z^{x}, Z^{0, x}\right)$ with bounded Z^{x}, let $R>0$ be larger than the bound of Z^{x}. Then, we see that $\left(Y^{x}, Z^{x}, Z^{0, x}\right)$ satisfies (A.3). Now, the uniqueness follows from the uniqueness of the BSDE (A.3) which has Lipschitz continuous data.

Step 2. We next estimate $\partial_{x x} u$, again in the case $\left[T-t_{0}\right] C_{0}<1$. First, applying standard BSDE estimates on (A.4), we see that

$$
\begin{equation*}
\mathbb{E}\left[\left(\int_{t_{0}}^{T}\left|\nabla Z_{s}^{x}\right|^{2} d s\right)^{2}\right] \leq C \quad \text { a.s. } \tag{A.5}
\end{equation*}
$$

Then, we have $\partial_{x x} u\left(t_{0}, x\right)=\nabla^{2} Y_{t_{0}}^{x}$, where, by differentiating (A.4) formally in x,

$$
\begin{align*}
\nabla^{2} Y_{t}^{x}= & \partial_{x x} G\left(X_{T}^{x}, \rho_{T}\right)-\int_{t}^{T} \sum_{i=1}^{d}\left[\nabla^{2} Z_{s}^{i, x} d B_{s}^{i, t_{0}}+\nabla^{2} Z_{s}^{0, i, x} d B_{s}^{0, i, t_{0}}\right] \\
& -\int_{t}^{T}\left[\partial_{x x} H_{R}(\cdot)+2 \nabla Z_{s}^{x} \partial_{x p} H_{R}(\cdot)+\nabla Z_{s}^{x} \partial_{p p} H_{R}(\cdot)\left[\nabla Z_{s}^{x}\right]^{\top}\right. \tag{A.6}\\
& \left.+\sum_{i=1}^{d} \nabla^{2} Z_{s}^{i, x} \partial_{p_{i}} H_{R}(\cdot)\right]\left(X_{s}^{x}, \rho_{s}, Z_{s}^{x}\right) d s
\end{align*}
$$

Denote

$$
M_{T}^{x}:=\exp \left(-\int_{t_{0}}^{T} \partial_{p} H_{R}\left(X_{s}^{x}, \rho_{s}, Z_{s}^{x}\right) \cdot d B_{s}^{t_{0}}-\frac{1}{2} \int_{t_{0}}^{T}\left|\partial_{p} H_{R}\left(X_{s}^{x}, \rho_{s}, Z_{s}^{x}\right)\right|^{2} d s\right)
$$

Then,

$$
\begin{aligned}
\nabla^{2} Y_{t_{0}}^{x}= & \mathbb{E}_{\mathcal{F}_{t_{0}}}\left[M_{T}^{x} \partial_{x x} G\left(X_{T}^{x}, \rho_{T}\right)-M_{T}^{x} \int_{t_{0}}^{T}\left\{\partial_{x x} H_{R}(\cdot)+2 \nabla Z_{s}^{x} \partial_{x p} H_{R}(\cdot)\right.\right. \\
& \left.\left.+\nabla Z_{s}^{x} \partial_{p p} H_{R}(\cdot)\left[\nabla Z_{s}^{x}\right]^{\top}\right\}\left(X_{s}^{x}, \rho_{s}, Z_{s}^{x}\right) d s\right]
\end{aligned}
$$

Thus, by (A.5) there exists some $C_{2}^{x}>0$ such that

$$
\begin{aligned}
\left|\partial_{x x} u\left(t_{0}, x\right)\right| & =\left|\nabla^{2} Y_{t_{0}}^{x}\right| \leq C \mathbb{E}_{\mathcal{F}_{t_{0}}}\left[M_{T}^{x}+M_{T}^{x} \int_{t_{0}}^{T}\left[1+\left|\nabla Z_{s}^{x}\right|^{2}\right] d s\right] \\
& \leq C+C\left(\mathbb{E}_{\mathcal{F}_{t_{0}}}\left[\left|M_{T}^{x}\right|^{2}\right]\right)^{\frac{1}{2}}\left(\mathbb{E}_{\mathcal{F}_{t_{0}}}\left[\left(\int_{t_{0}}^{T}\left|\nabla Z_{s}^{x}\right|^{2} d s\right)^{2}\right]\right)^{\frac{1}{2}} \leq C_{2}^{x} .
\end{aligned}
$$

Step 3. We now consider the general case. Fix a partition $t_{0}<\cdots<t_{n}=T$ such that $\left[t_{i+1}-t_{i}\right] C_{0}<1$ for all $i=0, \ldots, n-1$. We proceed backwardly in time by induction. Denote $u\left(t_{n}, \cdot\right):=G$. Assume we have defined $u\left(t_{i+1}, \cdot\right)$ with bounded first- and secondorder derivatives in x. Consider the $\operatorname{BSDE}(6.1)$ on $\left[t_{i}, t_{i+1}\right]$ with terminal condition $u\left(t_{i+1}, \cdot\right)$. Applying the well-posedness result in Step 1 we obtain $u\left(t_{i}, x\right)$ satisfying (6.2), for a possibly larger C_{1}^{x}, C_{2}^{x} which depend on the same parameters. Since n is finite, we obtain (6.2) for all i. Now, it follows from standard arguments in FBSDE literature, cf. [41], Theorem 8.3.4, that the BSDE (6.1) on $\left[t_{0}, T\right]$ is well-posed, and (6.2) holds for all $t \in\left[t_{0}, T\right]$.

Proof of Proposition 6.2. (i) We first note that, given another initial value $\xi^{\prime} \in$ $\mathbb{L}^{2}\left(\mathcal{F}_{t_{0}}\right)$ in (2.24), by (3.1) the following estimate depends on L_{0}^{G}, L_{2}^{G} but not on L_{1}^{G} :

$$
\begin{align*}
\mathbb{E}\left[\left|G\left(X_{T}^{\xi}, \rho_{T}^{\xi}\right)-G\left(X_{T}^{\xi^{\prime}}, \rho_{T}^{\xi^{\prime}}\right)\right|^{2}\right] & \leq 2 \mathbb{E}\left[\left|L_{0}^{G}\right|^{2}\left|X_{T}^{\xi}-X_{T}^{\xi^{\prime}}\right|^{2}+\left|L_{2}^{G}\right|^{2} W_{2}^{2}\left(\rho_{T}^{\xi}, \rho_{T}^{\xi^{\prime}}\right)\right] \tag{A.7}\\
& \leq 2\left[\left|L_{0}^{G}\right|^{2}+\left|L_{2}^{G}\right|^{2}\right] \mathbb{E}\left[\left|X_{T}^{\xi}-X_{T}^{\xi^{\prime}}\right|^{2}\right]
\end{align*}
$$

By first replacing H with H_{R}, as in the proof of Proposition 6.1, it follows from the standard contraction mapping argument in FBSDE literature, cf. [41], Theorem 8.2.1, there exists $\delta=\delta_{R}>0$ such that the McKean-Vlasov FBSDE (2.24) with H_{R} is well-posed whenever $T-t_{0} \leq \delta$. Noticing that, in the contraction mapping argument, G is used exactly in the form of (A.7), here δ_{R} depends on d, L_{0}^{G}, L_{2}^{G}, the function L^{H} and R but not on L_{1}^{G}. By Proposition 6.1 we can see that $\left|Z^{\xi}\right| \leq C_{1}^{x}$, for the C_{1}^{x} in (6.2) which does not depend on R. Now, set $R=C_{1}^{x}$, and hence δ depends only on $d, L_{0}^{G}, L_{2}^{G}, L_{2}^{H}\left(C_{1}^{x}\right)$; we see that $H_{R}\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right)=H\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right)$, and thus (2.24) is well-posed, which includes existence, uniqueness and, in particular, stability. Similarly in (2.25), (2.26), (6.3), (6.4) and (6.5), the difference of the terminal condition also appears like (A.7), and thus they are also well-posed when $T-t_{0} \leq \delta$. In particular, we point out that, in the terminal condition of (6.4),

$$
\tilde{\mathbb{E}}_{\mathcal{F}_{T}}\left[\partial_{\mu} G\left(X_{T}^{\xi}, \rho_{T}, \tilde{X}_{T}^{\xi, x}\right) \cdot \nabla_{k} \tilde{X}_{T}^{\xi, x}+\partial_{\mu} G\left(X_{T}^{\xi}, \rho_{T}, X_{T}^{\xi}\right) \cdot \nabla_{k} \tilde{\mathcal{X}}_{T}^{\xi, x}\right],
$$

only $\nabla_{k} \tilde{\mathcal{X}}_{T}^{\xi, x}$ is part of the solution, while all other involved random variables are already obtained from the other FBSDEs. Then, in the contraction mapping argument, the random coefficient $\partial_{\mu} G\left(X_{T}^{\xi}, \rho_{T}, X_{T}^{\xi}\right)$ of the solution term $\nabla_{k} \tilde{\mathcal{X}}_{T}^{\xi, x}$ again appears in \mathbb{L}^{2}-sense,

$$
\tilde{\mathbb{E}}\left[\left|\partial_{\mu} G\left(X_{T}^{\xi}, \rho_{T}, \tilde{X}_{T}^{\xi}\right) \cdot \tilde{\zeta}_{1}-\partial_{\mu} G\left(X_{T}^{\xi}, \rho_{T}, \tilde{X}_{T}^{\xi}\right) \cdot \tilde{\zeta}_{2}\right|^{2}\right] \leq\left|L_{2}^{G}\right|^{2} \mathbb{E}\left[\left|\zeta_{1}-\zeta_{2}\right|^{2}\right] .
$$

(ii) The proof of this point is rather lengthy but follows almost the same arguments as in [39], Theorem 9.2. Given (6.6), the first estimate of (6.7) follows directly from the estimate for BSDE (6.5). Indeed, by Proposition 6.1 we obtained $\left|Z^{\xi}\right|,\left|Z^{x, \xi}\right|,\left|Z^{\xi, x}\right| \leq C_{1}^{x}$. Then, using Assumptions 3.1(i) and 3.2(i), the coefficients in the linear FBSDEs (6.3) and (6.4) and the linear BSDE (6.5) are bounded by $L_{0}^{G}, L_{1}^{G}, L^{H}\left(C_{1}^{x}\right)$ correspondingly. Therefore, there exists $C_{1}^{\mu}>0$, depending on these constants and d. such that

$$
\left|\partial_{\mu_{k}} V\left(t_{0}, x, \mu, \tilde{x}\right)\right|=\left|\nabla_{\mu_{k}} Y_{t_{0}}^{x, \xi, \tilde{x}}\right| \leq C_{1}^{\mu}
$$

Moreover, by differentiating (6.5) with respect to x, we can derive the representation formula for $\partial_{x \mu} V$ from (6.6), and then the second estimate of (6.7) also follows directly from the estimate for the differentiated BSDE.

We now prove (6.6) in four steps. Without loss of generality, we prove only the case that $k=1$ and $t_{0}=0$. Throughout the proof, it is sometimes convenient to use the notation $X^{x, \xi}:=X^{x}$:

Step 1. For any $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{0}, \mu\right)$ and any scalar random variable $\eta \in \mathbb{L}^{2}\left(\mathcal{F}_{0}, \mathbb{R}\right)$, following standard arguments and by the stability property of the involved systems, we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\frac{1}{\varepsilon}\left[X_{t}^{\xi+\varepsilon \eta e_{1}}-X_{t}^{\xi}\right]-\delta X_{t}^{\xi, \eta e_{1}}\right|^{2}\right]=0 \tag{A.8}
\end{equation*}
$$

where $\left(\delta X^{\xi, \eta e_{1}}, \delta Y^{\xi, \eta e_{1}}, \delta Z^{\xi, \eta e_{1}}, \delta Z^{0, \xi, \eta e_{1}}\right)$ satisfies the linear McKean-Vlasov FBSDE,

$$
\left\{\begin{align*}
\delta X_{t}^{\xi, \eta e_{1}}= & \eta e_{1}-\int_{0}^{t}\left(\delta X_{s}^{\xi, \eta e_{1}}\right)^{\top} \partial_{x p} H\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right)+\left(\delta Z_{s}^{\xi, \eta e_{1}}\right)^{\top} \partial_{p p} H\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right) \tag{A.9}\\
& +\tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\partial_{p \mu} H\left(X_{s}^{\xi}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{\xi}\right) \cdot \delta \tilde{X}_{s}^{\xi, \eta e_{1}}\right] d s ; \\
\delta Y_{t}^{\xi, \eta e_{1}}= & \partial_{x} G\left(X_{T}^{\xi}, \rho_{T}\right) \cdot \delta X_{T}^{\xi, \eta e_{1}}+\tilde{\mathbb{E}}_{\mathcal{F}_{T}}\left[\partial_{\mu} G\left(X_{T}^{\xi}, \rho_{T}, \tilde{X}_{T}^{\xi}\right) \cdot \delta \tilde{X}_{T}^{\xi, \eta e_{1}}\right] \\
& +\int_{t}^{T} \partial_{x} \widehat{L}\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right) \cdot \delta X_{s}^{\xi, \eta e_{1}}+\partial_{p} \widehat{L}\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right) \cdot \delta Z_{s}^{\xi, \eta e_{1}} \\
& +\tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\partial_{\mu} \widehat{L}\left(X_{s}^{\xi}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{\xi}\right) \cdot \delta \tilde{X}_{s}^{\xi, \eta e_{1}}\right] d s \\
& -\int_{t}^{T} \delta Z_{s}^{\xi, \eta e_{1}} \cdot d B_{s}-\int_{t}^{T} \delta Z_{s}^{0, \xi, \eta e_{1}} \cdot d B_{s}^{0} .
\end{align*}\right.
$$

Similarly, by (A.8) and (2.25), one can show that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\frac{1}{\varepsilon}\left[Y_{t}^{x, \xi+\varepsilon \eta e_{1}}-Y_{t}^{x, \xi}\right]-\delta Y_{t}^{x, \xi, \eta e_{1}}\right|^{2}\right]=0 \tag{A.10}
\end{equation*}
$$

where ($\delta Y^{x, \xi, \eta e_{1}}, \delta Z^{x, \xi, \eta e_{1}}, \delta Z^{0, x, \xi, \eta e_{1}}$) satisfies the linear (standard) BSDE,

$$
\begin{aligned}
\delta Y_{t}^{x, \xi, \eta e_{1}}= & \tilde{\mathbb{E}}_{\mathcal{F}_{T}^{0}}\left[\partial_{\mu} G\left(X_{T}^{x}, \rho_{T}, \tilde{X}_{T}^{\xi}\right) \cdot \delta \tilde{X}_{T}^{\xi, \eta e_{1}}\right] \\
& -\int_{t}^{T} \partial_{p} H\left(X_{s}^{x, \xi}, \rho_{s}, Z_{s}^{x, \xi}\right) \cdot \delta Z_{s}^{x, \xi, \eta e_{1}} \\
& +\tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\partial_{\mu} H\left(X_{s}^{x, \xi}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{x, \xi}\right) \cdot \delta \tilde{X}_{s}^{\xi, \eta e_{1}}\right] d s \\
& -\int_{t}^{T} \delta Z_{s}^{x, \xi, \eta e_{1}} \cdot d B_{s}-\int_{t}^{T} \delta Z_{s}^{0, x, \xi, \eta e_{1}} \cdot d B_{s}^{0} .
\end{aligned}
$$

In particular, (A.10) implies

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left|\frac{1}{\varepsilon}\left[V\left(0, x, \mathcal{L}_{\xi+\varepsilon \eta e_{1}}\right)-V\left(0, x, \mathcal{L}_{\xi}\right)\right]-\delta Y_{0}^{x, \xi, \eta e_{1}}\right|^{2}=0 \tag{A.12}
\end{equation*}
$$

Thus, by the definition of $\partial_{\mu} V$,

$$
\begin{equation*}
\mathbb{E}\left[\partial_{\mu_{1}} V(0, x, \mu, \xi) \eta\right]=\delta Y_{0}^{x, \xi, \eta e_{1}} \tag{A.13}
\end{equation*}
$$

Step 2. In this step we assume ξ (or say, μ) is discrete: $p_{i}=\mathbb{P}\left(\xi=x_{i}\right), i=1, \ldots, n$. Fix i; consider the following system of McKean-Vlasov FBSDEs: for $j=1, \ldots, n$,
(A.14)

$$
\left\{\begin{aligned}
\nabla_{\mu_{1}} X_{t}^{i, j}= & \mathbf{1}_{\{i=j\}} e_{1}-\int_{0}^{t} \sum_{k=1}^{n} p_{k} \tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\left(\nabla_{\mu_{1}} \tilde{X}_{s}^{i, k}\right)^{\top} \partial_{\mu p} H\left(X_{s}^{\xi, x_{j}}, \rho_{s}, \tilde{X}_{T}^{\xi, x_{k}}, Z_{s}^{\xi, x_{j}}\right)\right] \\
& +\left(\nabla_{\mu_{1}} X_{s}^{i, j}\right)^{\top} \partial_{x p} H\left(X_{s}^{\xi, x_{j}}, \rho_{s}, Z_{s}^{\xi, x_{j}}\right) \\
& +\left(\nabla_{\mu_{1}} Z_{s}^{i, j}\right)^{\top} \partial_{p p} H\left(X_{s}^{\xi, x_{j}}, \rho_{s}, Z_{s}^{\xi, x_{j}}\right) d s ; \\
\nabla_{\mu_{1}} Y_{t}^{i, j}= & \partial_{x} G\left(X_{T}^{\xi, x_{j}}, \rho_{T}\right) \cdot \nabla_{\mu_{1}} X_{T}^{i, j} \\
& +\sum_{k=1}^{n} p_{k} \tilde{\mathbb{E}}_{\mathcal{F}_{T}}\left[\partial_{\mu} G\left(X_{T}^{\xi, x_{j}}, \rho_{T}, \tilde{X}_{T}^{\xi, x_{k}}\right) \cdot \nabla_{\mu_{1}} \tilde{X}_{T}^{i, k}\right] \\
& +\int_{t}^{T} \partial_{x} \widehat{L}\left(X_{s}^{\xi, x_{j}}, \rho_{s}, Z_{s}^{\xi, x_{j}}\right) \cdot \nabla_{\mu_{1}} X_{s}^{i, j} \\
& +\partial_{p} \widehat{L}\left(X_{s}^{\xi, x_{j}}, \rho_{s}, Z_{s}^{\xi, x_{j}}\right) \cdot \nabla_{\mu_{1}} Z_{s}^{i, j} \\
& +\sum_{k=1}^{n} p_{k} \tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\partial_{\mu} \widehat{L}\left(X_{s}^{\xi, x_{j}}, \rho_{s}, \tilde{X}_{s}^{\xi, x_{k}}, Z_{s}^{\xi, x_{j}}\right) \cdot \nabla_{\mu_{1}} \tilde{X}_{s}^{i, k} d s\right. \\
& -\int_{t}^{T} \nabla_{\mu_{1}} Z_{s}^{i, j} \cdot d B_{s}-\beta \int_{t}^{T} \nabla_{\mu_{1}} Z_{s}^{0, i, j} \cdot d B_{s}^{0} .
\end{aligned}\right.
$$

For any $\Phi \in\left\{X, Y, Z, Z^{0}\right\}$, we define

$$
\nabla_{1} \Phi^{\xi, x_{i}}:=\nabla_{\mu_{1}} \Phi^{i, i}, \quad \nabla_{1} \Phi^{\xi, x_{i}, *}:=\frac{1}{p_{i}} \sum_{j \neq i} \nabla_{\mu_{1}} \Phi^{i, j} \mathbf{1}_{\left\{\xi=x_{j}\right\}}
$$

Note that $\Phi^{\xi}=\sum_{j=1}^{n} \Phi^{\xi, x_{j}} \mathbf{1}_{\left\{\xi=x_{j}\right\}}$. Since (A.14) is linear, one can easily check that
(A.17)
(A.18)

$$
+\int_{t}^{T}\left\{\partial_{x} \widehat{L}\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right) \cdot \nabla_{1} X_{s}^{\xi, x_{i}, *}\right.
$$

$$
\left.+\partial_{p} \widehat{L}\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right) \cdot \nabla_{1} Z_{s}^{\xi, x_{i}, *}\right]
$$

$$
+\tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\partial_{\mu} \widehat{L}\left(X_{s}^{\xi}, \rho_{s}, \tilde{X}_{s}^{\xi, x_{i}}, Z_{s}^{\xi}\right) \cdot \nabla_{1} \tilde{X}_{s}^{\xi, x_{i}}\right.
$$

$$
\left.\left.\left.+\partial_{\mu} \widehat{L}\left(X_{s}^{\xi}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{\xi}\right) \cdot \nabla_{1} \tilde{X}_{T}^{\xi, x_{i}-}\right)\right] \mathbf{1}_{\left\{\xi \neq x_{i}\right\}}\right\} d s
$$

Since (A.9) is also linear, one can easily check that, for $\Phi \in\left\{X, Y, Z, Z^{0}\right\}$,

$$
\begin{equation*}
\delta \Phi^{\xi, \mathbf{1}_{\left\{\xi=x_{i}\right\}} e_{1}}=\nabla_{1} \Phi^{\xi, x_{i}} \mathbf{1}_{\left\{\xi=x_{i}\right\}}+p_{i} \nabla_{1} \Phi^{\xi, x_{i}, *} \tag{A.19}
\end{equation*}
$$

$$
\begin{align*}
& \nabla_{1} X_{t}^{\xi, x_{i}}=e_{1}-\int_{0}^{t}\left\{\left(\nabla_{1} X_{s}^{\xi, x_{i}}\right)^{\top} \partial_{x p} H\left(X_{s}^{\xi, x_{i}}, \rho_{s}, Z_{s}^{\xi, x_{i}}\right)\right. \\
& +\left(\nabla_{1} Z_{S}^{\xi, x_{i}}\right)^{\top} \partial_{p p} H\left(X_{s}^{\xi, x_{i}}, \rho_{s}, Z_{s}^{\xi, x_{i}}\right) \tag{A.15}\\
& +p_{i} \tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\left(\nabla_{1} \tilde{X}_{s}^{\xi, x_{i}}\right)^{\top} \partial_{\mu p} H\left(X_{s}^{\xi, x_{i}}, \rho_{s}, \tilde{X}_{s}^{\xi, x_{i}}, Z_{s}^{\xi, x_{i}}\right)\right. \\
& \left.\left.+\left(\nabla_{1} \tilde{X}_{s}^{\xi, x_{i}, *}\right)^{\top} \partial_{\mu p} H\left(X_{s}^{\xi, x_{i}}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{\xi, x_{i}}\right)\right]\right\} d s, \\
& \nabla_{1} X_{t}^{\xi, x_{i}, *}=-\int_{0}^{t}\left\{\left(\nabla_{1} X_{s}^{\xi, x_{i}, *}\right)^{\top} \partial_{x p} H\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right)\right. \\
& +\left(\nabla_{1} Z_{s}^{\xi, x_{i}, *}\right)^{\top} \partial_{p p} H\left(X_{s}^{\xi}, \rho_{s}, Z_{s}^{\xi}\right) \tag{A.16}\\
& +\tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\left(\nabla_{1} \tilde{X}_{s}^{\xi, x_{i}}\right)^{\top} \partial_{\mu p} H\left(X_{s}^{\xi}, \rho_{s}, \tilde{X}_{s}^{\xi, x_{i}}, Z_{s}^{\xi}\right)\right. \\
& \left.\left.+\left(\nabla_{1} \tilde{X}_{s}^{\xi, x_{i}, *}\right)^{\top} \partial_{\mu p} H\left(X_{s}^{\xi}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{\xi}\right)\right] \mathbf{1}_{\left\{\xi \neq x_{i}\right\}}\right\} d s, \\
& \nabla_{1} Y_{t}^{\xi, x_{i}}=\partial_{x} G\left(X_{T}^{\xi, x_{i}}, \rho_{T}\right) \cdot \nabla_{1} X_{T}^{\xi, x_{i}}-\int_{t}^{T} \nabla_{1} Z_{s}^{\xi, x_{i}} d B_{s} \\
& -\int_{t}^{T} \nabla_{1} Z_{s}^{0, \xi, x_{i}} d B_{s}^{0} \\
& +p_{i} \tilde{\mathbb{E}}_{\mathcal{F}_{T}}\left[\partial_{\mu} G\left(X_{T}^{\xi, x_{i}}, \rho_{T}, \tilde{X}_{T}^{\xi, x_{i}}\right) \cdot \nabla_{1} \tilde{X}_{s}^{\xi, x_{i}}\right. \\
& \left.+\partial_{\mu} G\left(X_{T}^{\xi, x_{i}}, \rho_{T}, \tilde{X}_{T}^{\xi}\right) \cdot \nabla_{1} \tilde{X}_{T}^{\xi, x_{i}, *}\right] \\
& +\int_{t}^{T}\left\{\partial_{x} \widehat{L}\left(X_{s}^{\xi, x_{i}}, \rho_{s}, Z_{s}^{\xi, x_{i}}\right) \cdot \nabla_{1} X_{s}^{\xi, x_{i}}\right. \\
& +\partial_{p} \widehat{L}\left(X_{s}^{\xi, x_{i}}, \rho_{s}, Z_{s}^{\xi, x_{i}}\right) \cdot \nabla_{1} Z_{s}^{\xi, x_{i}}+p_{i} \\
& \times \tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\partial_{\mu} \widehat{L}\left(X_{s}^{\xi, x_{i}}, \rho_{s}, \tilde{X}_{s}^{\xi, x_{i}}, Z_{s}^{\xi, x_{i}}\right) \cdot \nabla_{1} \tilde{X}_{s}^{\xi, x_{i}}\right. \\
& \left.\left.\left.+\partial_{\mu} \widehat{L}\left(X_{s}^{\xi, x_{i}}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{\xi, x_{i}}\right) \cdot \nabla_{1} \tilde{X}_{T}^{\xi, x_{i}, *}\right)\right]\right\} d s, \\
& \nabla_{1} Y_{t}^{\xi, x_{i}, *}=\partial_{x} G\left(X_{T}^{\xi}, \rho_{T}\right) \cdot \nabla_{1} X_{T}^{\xi, x_{i}, *} \\
& -\int_{t}^{T} \nabla_{1} Z_{s}^{\xi, x_{i}, *} \cdot d B_{s}-\int_{t}^{T} \nabla_{1} Z_{s}^{0, \xi, x_{i}, *} \cdot d B_{s}^{0} \\
& +\tilde{\mathbb{E}}_{\mathcal{F}_{T}}\left[\partial_{\mu} G\left(X_{T}^{\xi}, \rho_{T}, \tilde{X}_{T}^{\xi, x_{i}}\right) \cdot \nabla_{1} \tilde{X}_{S}^{\xi, x_{i}}\right. \\
& \left.+\partial_{\mu} G\left(X_{T}^{\xi}, \rho_{T}, \tilde{X}_{T}^{\xi}\right) \cdot \nabla_{1} \tilde{X}_{T}^{\xi, x_{i}, *}\right] \mathbf{1}_{\left\{\xi \neq x_{i}\right\}}
\end{align*}
$$

Moreover, note that

$$
\begin{aligned}
& \tilde{\mathbb{E}}_{\mathcal{F}_{T}}\left[\partial_{\mu} G\left(X_{T}^{x, \xi}, \rho_{T}, \tilde{X}_{T}^{\xi}\right) \cdot \delta \tilde{X}_{T}^{\xi, \mathbf{1}_{\left\{\xi=x_{i}\right.} e_{1}}\right] \\
& \quad=\tilde{\mathbb{E}}_{\mathcal{F}_{T}}\left[\partial_{\mu} G\left(X_{T}^{x, \xi}, \rho_{T}, \tilde{X}_{T}^{\xi}\right) \cdot\left[\nabla_{1} \tilde{X}_{T}^{\xi, x_{i}} \mathbf{1}_{\left\{\tilde{\xi}=x_{i}\right\}}+p_{i} \nabla_{1} \tilde{X}_{T}^{\xi, x_{i}, *}\right]\right] \\
& \quad=p_{i} \tilde{\mathbb{E}}_{\mathcal{F}_{T}}\left[\partial_{\mu} G\left(X_{T}^{x, \xi}, \rho_{T}, \tilde{X}_{T}^{\xi, x_{i}}\right) \cdot \nabla_{1} \tilde{X}_{T}^{\xi, x_{i}}+\partial_{\mu} G\left(X_{T}^{x, \xi}, \rho_{T}, \tilde{X}_{T}^{\xi}\right) \cdot \nabla_{1} \tilde{X}_{T}^{\xi, x_{i}, *}\right]
\end{aligned}
$$

and, similarly,

$$
\begin{aligned}
& \tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\partial_{\mu} H\left(X_{s}^{x, \xi}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{x, \xi}\right) \cdot \delta \tilde{X}_{s}^{\xi, \mathbf{1}_{\left\{\xi=x_{i}\right.} e_{1} e_{1}}\right] \\
& \left.\quad=p_{i} \tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\partial_{\mu} H\left(X_{s}^{x, \xi}, \rho_{s}, \tilde{X}_{s}^{\xi, x_{i}}, Z_{s}^{x, \xi}\right) \cdot \nabla_{1} \tilde{X}_{s}^{\xi, x_{i}}+\partial_{\mu} H\left(X_{s}^{x, \xi}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{x, \xi}\right) \cdot \nabla_{1} \tilde{X}_{s}^{\xi, x_{i}, *}\right)\right] .
\end{aligned}
$$

Plug this into (A.11); we obtain

$$
\begin{equation*}
\delta \Phi_{t}^{x, \xi, \mathbf{1}_{\left\{\xi=x_{i}\right\}} e_{1}}=p_{i} \nabla_{\mu_{1}} \Phi_{t}^{x, \xi, x_{i}}, \tag{A.20}
\end{equation*}
$$

where

$$
\begin{align*}
\nabla_{\mu_{1}} Y_{t}^{x, \xi, x_{i}}= & \tilde{\mathbb{E}}_{\mathcal{F}_{T}}\left[\partial_{\mu} G\left(X_{T}^{x}, \rho_{T}, \tilde{X}_{T}^{\xi, x_{i}}\right) \cdot \nabla_{1} \tilde{X}_{T}^{\xi, x_{i}}\right. \\
& \left.\left.+\partial_{\mu} G\left(X_{T}^{x}, \rho_{T}, \tilde{X}_{T}^{\xi}\right) \cdot \nabla_{1} \tilde{X}_{T}^{\xi, x_{i}, *}\right)\right] \\
& -\int_{t}^{T}\left\{\partial_{p} H\left(X_{s}^{x, \xi}, \rho_{s}, Z_{s}^{x, \xi}\right) \cdot \nabla_{\mu_{1}} Z_{s}^{x, \xi, x_{i}}\right. \tag{A.21}\\
& +\tilde{\mathbb{E}}_{\mathcal{F}_{s}}\left[\partial_{\mu} H\left(X_{s}^{x, \xi}, \rho_{s}, \tilde{X}_{s}^{\xi, x_{i}}, Z_{s}^{x, \xi}\right) \cdot \nabla_{1} \tilde{X}_{s}^{\xi, x_{i}}\right. \\
& \left.\left.+\partial_{\mu} H\left(X_{s}^{x, \xi}, \rho_{s}, \tilde{X}_{s}^{\xi}, Z_{s}^{x, \xi}\right) \cdot \nabla_{1} \tilde{X}_{s}^{\xi, x_{i}, *}\right]\right\} d s \\
& -\int_{t}^{T} \nabla_{\mu_{1}} Z_{s}^{x, \xi, x_{i}} \cdot d B_{s}-\int_{t}^{T} \nabla_{\mu_{1}} Z_{s}^{0, x, \xi, x_{i}} \cdot d B_{s}^{0} .
\end{align*}
$$

In particular, by setting $\eta=\mathbf{1}_{\left\{\xi=x_{i}\right\}}$ in (A.13), we obtain

$$
\begin{equation*}
\partial_{\mu_{1}} V\left(0, x, \mu, x_{i}\right)=\nabla_{\mu_{1}} Y_{0}^{x, \xi, x_{i}} \tag{A.22}
\end{equation*}
$$

We shall note that (A.15)-(A.16), (A.17)-(A.18) is different from (6.3) and (6.4), so (A.22) provides an alternative discrete representation.

Step 3. We now prove (6.6) in the case that μ is absolutely continuous. For each $n \geq 3$, set

$$
x_{\vec{i}}^{n}:=\frac{\vec{i}}{n}, \quad \Delta_{\vec{i}}^{n}:=\left[\frac{i_{1}}{n}, \frac{i_{1}+1}{n}\right) \times \cdots \times\left[\frac{i_{d}}{n}, \frac{i_{d}+1}{n}\right), \quad \vec{i}=\left(i_{1}, \ldots, i_{d}\right)^{\top} \in \mathbb{Z}^{d} .
$$

For any $x \in \mathbb{R}^{d}$, there exists $\vec{i}(x):=\left(i_{1}(x), \ldots, i_{d}(x)\right) \in \mathbb{Z}^{d}$ such that $x \in \Delta_{\vec{i}(x)}^{n}$. Let

$$
\vec{i}^{n}(x):=\left(i_{1}^{n}(x), \ldots, i_{d}^{n}(x)\right) \in \mathbb{Z}^{d} \quad \text { where } i_{l}^{n}(x):=\min \left\{\max \left\{i_{l},-n^{2}\right\}, n^{2}\right\}, l=1, \ldots, d
$$

Denote $Q_{n}:=\left\{x \in \mathbb{R}^{d}:\left|x_{i}\right| \leq n, i=1, \ldots, d\right\}, \mathbb{Z}_{n}^{d}:=\left\{\vec{i} \in \mathbb{Z}^{d}: \Delta_{\vec{i}}^{n} \cap Q_{n} \neq \varnothing\right\}$ and

$$
\begin{equation*}
\xi_{n}:=\sum_{\vec{i} \in \mathbb{Z}_{n}^{d}} x_{\vec{i}}^{n} \mathbf{1}_{\Delta_{i}^{n}}(\xi)+\frac{\vec{i}^{n}(\xi)}{n} \mathbf{1}_{Q_{n}^{c}}(\xi) \tag{A.23}
\end{equation*}
$$

It is clear that $\lim _{n \rightarrow+\infty} \mathbb{E}\left[\left|\xi_{n}-\xi\right|^{2}\right]=0$, and thus $\lim _{n \rightarrow \infty} W_{2}\left(\mathcal{L}_{\xi_{n}}, \mathcal{L}_{\xi}\right)=0$. Then, for any scalar random variable η, by stability of FBSDE (A.9) and BSDE (A.11), we derive from (A.13) that

$$
\begin{equation*}
\mathbb{E}\left[\partial_{\mu_{1}} V(0, x, \mu, \xi) \eta\right]=\delta Y_{0}^{x, \xi, \eta e_{1}}=\lim _{n \rightarrow \infty} \delta Y_{0}^{x, \xi, \xi, \eta e_{1}} \tag{A.24}
\end{equation*}
$$

For each $\tilde{x} \in \mathbb{R}^{d}$, let $\vec{i}(\tilde{x})$ be the i such that $\tilde{x} \in \Delta_{\tilde{i}}^{n}$ which holds when $n>|\tilde{x}|$. Then, $\left(\mathcal{L}_{\xi_{n}}, \frac{\tilde{i}(\tilde{x})}{n}\right) \rightarrow(\mu, \tilde{x})$ as $n \rightarrow \infty$. By the stability of FBSDEs (2.24)-(2.25), we have $\left(X^{\xi_{n}, \frac{\vec{i}(\tilde{x})}{n}}, Z^{\xi_{n}, \frac{i(\tilde{x})}{n}}\right) \rightarrow\left(X^{\xi, \tilde{x}}, Z^{\xi, \tilde{x}}\right)$ under appropriate norms. Moreover, since μ is absolutely continuous,

$$
\mathbb{P}\left(\xi_{n}=\frac{\vec{i}(\tilde{x})}{n}\right)=\mathbb{P}\left(\xi \in \Delta_{\vec{i}}^{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Then, by the stability of (A.15)-(A.16), (A.17)-(A.18) and (A.21) we can check that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\nabla_{1} \Phi^{\xi_{n}, \frac{\vec{i}(\tilde{x})}{n}}, \nabla_{1} \Phi^{\xi_{n}, \frac{\vec{i}(\tilde{x})}{n}, *}, \nabla_{\mu_{1}} \Phi^{x, \xi_{n}, \frac{\tilde{i}(\tilde{x})}{n}}\right)=\left(\nabla_{1} \Phi^{\xi, \tilde{x}}, \nabla_{1} \Phi^{\xi, \tilde{x}, *}, \nabla_{\mu_{1}} \Phi^{x, \xi, \tilde{x}}\right) \tag{A.25}
\end{equation*}
$$

Now, for any bounded function $\varphi \in C\left(\mathbb{R}^{d}\right)$, set $\eta=\varphi(\xi)$ in (A.24); by (A.20) we have

$$
\mathbb{E}\left[\partial_{\mu_{1}} V(0, x, \mu, \xi) \varphi(\xi)\right]=\lim _{n \rightarrow \infty} \delta Y_{0}^{x, \xi_{n}, \varphi\left(\xi_{n}\right) e_{1}}=\lim _{n \rightarrow \infty} \sum_{i \in \mathbb{Z}_{n}^{d}} \varphi\left(x_{i}^{n}\right) \delta Y_{0}^{x, \xi_{n}, \mathbf{1}_{\left\{\xi_{n}=x_{i}^{n}\right\}}^{e_{1}}}
$$

and so,

$$
\begin{aligned}
\mathbb{E}\left[\partial_{\mu_{1}} V(0, x, \mu, \xi) \varphi(\xi)\right] & =\lim _{n \rightarrow \infty} \sum_{\vec{i} \in \mathbb{Z}_{n}^{d}} \varphi\left(x_{\vec{i}}^{n}\right) \nabla_{\mu_{1}} Y_{0}^{x, \xi_{n}, x_{i}^{n}} \mathbb{P}\left(\xi \in \Delta_{\vec{i}}\right) \\
& =\int_{\mathbb{R}^{d}} \varphi(\tilde{x}) \nabla_{\mu_{1}} Y_{0}^{x, \xi, \tilde{x}} \mu(d \tilde{x})
\end{aligned}
$$

This implies (6.6) immediately.
Step 4. We finally prove the general case. Denote $\psi(x, \mu, \tilde{x}):=\nabla_{\mu_{1}} Y_{0}^{x, \xi, \tilde{x}}$. By the stability of FBSDEs, ψ is continuous in all the variables. Fix an arbitrary (μ, ξ). One can easily construct ξ_{n} such that $\mathcal{L}_{\xi_{n}}$ is absolutely continuous, and $\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|\xi_{n}-\xi\right|^{2}\right]=0$. Then, for any $\eta=\varphi(\xi)$, as in Step 3, by (A.13) and Step 3 we have

$$
\begin{aligned}
\mathbb{E}\left[\partial_{\mu_{1}} V(0, x, \mu, \xi) \varphi(\xi)\right] & =\lim _{n \rightarrow \infty} \delta Y_{0}^{x, \xi_{n}, \varphi\left(\xi_{n}\right) e_{1}}=\lim _{n \rightarrow \infty} \mathbb{E}\left[\psi\left(x, \mathcal{L}_{\xi_{n}}, \xi_{n}\right) \varphi\left(\xi_{n}\right)\right] \\
& =\mathbb{E}[\psi(x, \mu, \xi) \varphi(\xi)]
\end{aligned}
$$

which implies (6.6) in the general case.
(iii) This result follows immediately from well-known facts. Indeed, given the uniform estimate of $\partial_{\mu} V$ in (6.7), the well-posedness of the master equation (1.1) on [$\left.t_{0}, T\right]$ follows from the arguments in [25], Theorem 5.10. This, together with Itô formula (2.12), will easily lead to (2.27). Under the additional Assumptions 3.1(ii) and 3.2(ii), the representation formulas and the boundedness of higher-order derivatives in state and probability variables can be proved by further differentiating the McKean-Vlasov FBSDEs (2.24)-(2.26), (6.3)-(6.4) and BSDE (6.5) with respect to the state and probability variables. The calculation is lengthy but very similar to that in [39], Section 9.2. We omit the details.

Acknowledgments. We thank the anonymous referees for their thoughtful comments which helped to improve our manuscript greatly.

Funding. The research of WG was supported by NSF Grant DMS-1700202 and Air Force Grant FA9550-18-1-0502. ARM was partially supported by the King Abdullah University of Science and Technology Research Funding (KRF) under Award No. ORA-2021-CRG10-4674.2. CM gratefully acknowledges the support by CityU Start-up Grant 7200684 and Hong Kong RGC Grant ECS 9048215 . The research of JZ was supported in part by NSF Grant DMS-1908665.

REFERENCES

[1] Achdou, Y., Han, J., Lasry, J.-M., Lions, P.-L. and Moll, B. (2022). Income and wealth distribution in macroeconomics: A continuous-time approach. Rev. Econ. Stud. 89 45-86. MR4365976 https://doi.org/10.1093/restud/rdab002
[2] Achdou, Y. and Porretta, A. (2018). Mean field games with congestion. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 443-480. MR3765549 https://doi.org/10.1016/j.anihpc.2017.06.001
[3] Ahuja, S. (2016). Wellposedness of mean field games with common noise under a weak monotonicity condition. SIAM J. Control Optim. 54 30-48. MR3439756 https://doi.org/10.1137/140974730
[4] Ahuja, S., Ren, W. and Yang, T.-W. (2019). Forward-backward stochastic differential equations with monotone functionals and mean field games with common noise. Stochastic Process. Appl. 129 38593892. MR3997664 https://doi.org/10.1016/j.spa.2018.11.005
[5] Ambrose, D. M. (2018). Strong solutions for time-dependent mean field games with non-separable Hamiltonians. J. Math. Pures Appl. (9) 113 141-154. MR3784807 https://doi.org/10.1016/j.matpur.2018.03. 003
[6] Ambrose, D. M. and MészÁros, A. R. (2021). Well-posedness of mean field games master equations involving nonseparable local Hamiltonians. Preprint. Available at arXiv:2105.03926.
[7] Ambrosio, L., Gigli, N. and Savaré, G. (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel. MR2401600
[8] Bayraktar, E., Cecchin, A., Cohen, A. and Delarue, F. (2021). Finite state mean field games with Wright-Fisher common noise. J. Math. Pures Appl. (9) 147 98-162. MR4213680 https://doi.org/10. 1016/j.matpur.2021.01.003
[9] Bayraktar, E., Cecchin, A., Cohen, A. and Delarue, F. (2022). Finite state mean field games with Wright-Fisher common noise as limits of N-player weighted games. Preprint. Available at arXiv:2012.04845.
[10] Bayraktar, E. and Cohen, A. (2018). Analysis of a finite state many player game using its master equation. SIAM J. Control Optim. 56 3538-3568. MR3860894 https://doi.org/10.1137/17M113887X
[11] Bensoussan, A., Graber, P. J. and Yam, S. C. P. (2019). Stochastic control on space of random variables. Preprint. Available at arXiv:1903.12602.
[12] Bensoussan, A., Graber, P. J. and Yam, S. C. P. (2020). Control on Hilbert spaces and application to mean field type control theory. Preprint. Available at arXiv:2005.10770.
[13] Bensoussan, A. and Yam, S. C. P. (2019). Control problem on space of random variables and master equation. ESAIM Control Optim. Calc. Var. 25 Paper No. 10, 36 pp. MR3943358 https://doi.org/10. 1051/cocv/2018034
[14] Bertucci, C. (2021). Monotone solutions for mean field games master equations: Finite state space and optimal stopping. J. Éc. Polytech. Math. 8 1099-1132. MR4275225 https://doi.org/10.5802/jep. 167
[15] Bertucci, C. (2021). Monotone solutions for mean field games master equations: Continuous state space and common noise. Preprint. Available at arXiv:2107.09531.
[16] Bertucci, C., Lasry, J.-M. and Lions, P.-L. (2019). Some remarks on mean field games. Comm. Partial Differential Equations 44 205-227. MR3941633 https://doi.org/10.1080/03605302.2018.1542438
[17] Bertucci, C., Lasry, J.-M. and Lions, P.-L. (2021). Master equation for the finite state space planning problem. Arch. Ration. Mech. Anal. 242 327-342. MR4302761 https://doi.org/10.1007/ s00205-021-01687-8
[18] Buckdahn, R., Li, J., Peng, S. and Rainer, C. (2017). Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45 824-878. MR3630288 https://doi.org/10.1214/15-AOP1076
[19] Cardaliaguet, P. (2012). Notes on mean field games. Lectures by P.L. Lions at the Collège de France.
[20] Cardaliaguet, P., Cirant, M. and Porretta, A. (2022). Splitting methods and short time existence for the master equations in mean field games. J. Eur. Math. Soc. (JEMS). To appear. Preprint. Available at arXiv:2001.10406.
[21] Cardaliaguet, P., Delarue, F., Lasry, J.-M. and Lions, P.-L. (2019). The Master Equation and the Convergence Problem in Mean Field Games. Annals of Mathematics Studies 201. Princeton Univ. Press, Princeton, NJ. MR3967062 https://doi.org/10.2307/j.ctvckq7qf
[22] Cardaliaguet, P. and Souganidis, P. (2021). Weak solutions of the master equation for mean field games with no idiosyncratic noise. Preprint. Available at arXiv:2109.14911.
[23] Carmona, R. and Delarue, F. (2015). Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics. Ann. Probab. 43 2647-2700. MR3395471 https://doi.org/10.1214/ 14-AOP946
[24] Carmona, R. and Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications. I. Mean Field FBSDEs, Control, and Games. Probability Theory and Stochastic Modelling 83. Springer, Cham. MR3752669
[25] Carmona, R. and Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications. II. Mean Field Games with Common Noise and Master Equations. Probability Theory and Stochastic Modelling 84. Springer, Cham. MR3753660
[26] Chassagneux, J.-F., Crisan, D. and Delarue, F. (2022). A probabilistic approach to classical solutions of the master equation for large population equilibria. Mem. Amer. Math. Soc. To appear. Preprint. Available at arXiv:1411.3009.
[27] Evans, L. C. and Gangbo, W. (1999). Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137 viii+66. MR1464149 https://doi.org/10.1090/memo/ 0653
[28] Gangbo, W. and MéSzÁros, A. R. (2022). Global well-posedness of master equations for deterministic displacement convex potential mean field games. Comm. Pure Appl. Math. To appear. Preprint. Available at arXiv:2004.01660.
[29] Gangbo, W. and Swiech, A. (2015). Existence of a solution to an equation arising from the theory of mean field games. J. Differential Equations 259 6573-6643. MR3397332 https://doi.org/10.1016/j. jde.2015.08.001
[30] Gangbo, W. and Tudorascu, A. (2019). On differentiability in the Wasserstein space and wellposedness for Hamilton-Jacobi equations. J. Math. Pures Appl. (9) 125 119-174. MR3944201 https://doi.org/10.1016/j.matpur.2018.09.003
[31] Gomes, D. A. and Voskanyan, V. K. (2015). Short-time existence of solutions for mean-field games with congestion. J. Lond. Math. Soc. (2) 92 778-799. MR3431662 https://doi.org/10.1112/jlms/jdv052
[32] Huang, M., Malhamé, R. P. and Caines, P. E. (2006). Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 221-251. MR2346927
[33] Lasry, J.-M. and Lions, P.-L. (2006). Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 619-625. MR2269875 https://doi.org/10.1016/j.crma.2006.09.019
[34] Lasry, J.-M. and Lions, P.-L. (2006). Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 679-684. MR2271747 https://doi.org/10.1016/j.crma.2006.09.018
[35] Lasry, J.-M. and Lions, P.-L. (2007). Mean field games. Jpn. J. Math. 2 229-260. MR2295621 https://doi.org/10.1007/s11537-007-0657-8
[36] Lions, P.-L. Cours au Collège de France. Available at http://www.college-de-france.
[37] Mayorga, S. (2020). Short time solution to the master equation of a first order mean field game. J. Differential Equations 268 6251-6318. MR4069006 https://doi.org/10.1016/j.jde.2019.11.031
[38] MCCANN, R. J. (1997). A convexity principle for interacting gases. Adv. Math. 128 153-179. MR1451422 https://doi.org/10.1006/aima.1997.1634
[39] Mou, C. and Zhang, J. (2022). Wellposedness of second order master equations for mean field games with nonsmooth data. Mem. Amer. Math. Soc. To appear. Preprint. Available at arXiv:1903.09907.
[40] Wu, C. and Zhang, J. (2017). An elementary proof for the structure of Wasserstein derivatives. Unpublished note. Available at arXiv:1705.08046.
[41] Zhang, J. (2017). Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory. Probability Theory and Stochastic Modelling 86. Springer, New York. MR3699487 https://doi.org/10. 1007/978-1-4939-7256-2

[^0]: Received May 2021; revised January 2022.
 MSC2020 subject classifications. 35R15, 49N80, 49Q22, 60H30, 91A16, 93E20.
 Key words and phrases. Mean field games, master equation, displacement monotonicity, Lasry-Lions monotonicity.

[^1]: ${ }^{1}$ These references essentially used a notion of λ-convexity in displacement sense and obtained local in time classical solutions for the master equation. However, it is clear from their results that the solution is global when the data are actually displacement convex.

