THE WELLPOSEDNESS OF FBSDES

Jianfeng Zhang
USC Mathematics Department
3620 Vermont Ave, KAP 108
Los Angeles, CA 90089, USA

Abstract

In this paper we investigate the wellposedness of a class of ForwardBackward SDEs. Compared to the existing methods in the literature, our result has the following features: (i) arbitrary time duration; (ii) random coefficients; (iii) (possibly) degenerate forward diffusion; and (iv) no monotonicity condition. As a trade off, we impose some assumptions on the derivatives of the coefficients. A comparison theorem is also proved under the same conditions. This work is motivated by studying numerical methods for FBSDEs.

1. Introduction. In this paper we study the wellposedness of the following Forward Backward SDE (FBSDE):

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(\omega, s, X_{s}, Y_{s}, Z_{s}\right) d s+\int_{0}^{t} \sigma\left(\omega, s, X_{s}, Y_{s}, Z_{s}\right) d W_{s} \tag{1}\\
Y_{t}=g\left(\omega, X_{T}\right)+\int_{t}^{T} f\left(\omega, s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

where W is a standard Brownian Motion. The first seminal work on BSDE theory is [15]. Since then BSDEs and FBSDEs have been extensively studied and their applications have been found in many areas, including finance and stochastic control. In particular, [16] studies decoupled FBSDEs where b and σ do not involve Y or Z. We refer the readers to [6] and [7] for more details on BSDE theories, and [13] for FBSDEs .

There are mainly three approaches for the wellposedness of FBSDEs in the literature, each of which has its constraints. The first one is to use the fixed point theorem. This method works very well for BSDEs (and decoupled FBSDEs), but for FBSDEs one has to assume that T is small enough (see, e.g. [1) or to assume some monotonicity conditions (see, e.g. [17]). The second one is the four step scheme [13], which allows T to be arbitrary large, but requires the coefficients to be deterministic and σ to be nondegenerate. To be precise, the authors assume that σ is independent of z and relate the FBSDE (1) to the following PDE

$$
\left\{\begin{array}{l}
u_{t}+\frac{1}{2} \sigma^{2}(t, x, u) u_{x x}+b\left(t, x, u, \sigma(t, x, u) u_{x}\right) u_{x}+f\left(t, x, u, \sigma(t, x, u) u_{x}\right)=0 \\
u(T, x)=g(x)
\end{array}\right.
$$

in the sense that

$$
Y_{t}=u\left(t, X_{t}\right) ; \quad Z_{t}=\sigma\left(t, X_{t}, u\left(t, X_{t}\right)\right) u_{x}\left(t, X_{t}\right)
$$

2000 Mathematics Subject Classification. Primary: 60H10.
Key words and phrases. Forward-backward SDEs, wellposedness, comparison theorem.
The author is supported in part by NSF grant DMS-0403575.
[5] also follows this line. The third one is the method of continuation, see e.g. [10], [18] and [20]. This method allows T to be large and the coefficients to be random, however, it requires some monotonicity conditions. For example, 10 assumes that, for some constant $\beta>0$ and for any $\theta_{i}=\left(x_{i}, y_{i}, z_{i}\right), i=1,2$,

$$
\begin{aligned}
& {\left[b\left(t, \theta_{1}\right)-b\left(t, \theta_{2}\right)\right] \Delta y+\left[\sigma\left(t, \theta_{1}\right)-\sigma\left(t, \theta_{2}\right)\right] \Delta z-\left[f\left(t, \theta_{1}\right)-f\left(t, \theta_{2}\right)\right] \Delta x} \\
& \quad \geq \beta\left[|\Delta x|^{2}+|\Delta y|^{2}+|\Delta z|^{2}\right] \\
& {\left[g\left(x_{1}\right)-g\left(x_{2}\right)\right] \Delta x \leq-\beta|\Delta x|^{2}}
\end{aligned}
$$

We would also like to mention that there are some works on linear FBSDEs (e.g. [21] and [22]) and some works on FBSDEs with nonsmooth coefficients (e.g. [2], [8, [9] and [14]).

Despite all these efforts, the FBSDE theories are far from complete. In this paper we provide a different approach. This work is motivated by our study of numerical methods for some FBSDEs, in which we need the wellposedness of a linear FBSDE with random coefficients. It turns out that none of the existing methods works in our case. We think our new result is interesting in its own right and is potentially useful in more applications, so we decide to publish it separately.

Our main idea is to obtain some uniform estimates of the solution to the FBSDE over small time interval, and then prove by induction that the time interval can be extended piece by piece while still keeping that estimate. Such an idea was also used by Delarue [5]. While [5] relies heavily on PDE arguments (so its coefficients have to be deterministic), we use purely probabilistic arguments. As a trade off, we need to impose a key compatibility condition (3).

Another main result of this paper is a comparison theorem. Unlike the BSDE case, in general comparison theorem does not hold true for FBSDEs. There are some positive results along this line (see, e.g. 3] and [19). We prove the comparison result under the same conditions as for the wellposedness result.

The rest of the paper is organized as follows. In next section we state the main theorems. In $\S 3$ we study the small time duration case, in particular we obtain the key estimate in Lemma 2. In $\S 4$ we prove the wellposedness result and in $\S 5$ we prove the comparison theorem.
2. Main Theorems. Assume (Ω, \mathcal{F}, P) is a complete probability space, $\mathcal{F}_{0} \subset \mathcal{F}$ and W is a Brownian motion independent of \mathcal{F}_{0}. Let $\mathbf{F} \triangleq\left\{\mathcal{F}_{t}\right\}_{0 \leq t \leq T}$ be the filtration generated by W and \mathcal{F}_{0}, augmented by the null sets as usual. We study the following FBSDE:

$$
\left\{\begin{array}{l}
X_{t}=X_{0}+\int_{0}^{t} b\left(\omega, s, \Theta_{s}\right) d s+\int_{0}^{t} \sigma\left(\omega, s, X_{s}, Y_{s}\right) d W_{s} \tag{2}\\
Y_{t}=g\left(\omega, X_{T}\right)+\int_{t}^{T} f\left(\omega, s, \Theta_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

where $\Theta \triangleq(X, Y, Z), X_{0} \in \mathcal{F}_{0}$ and b, σ, f, g are progressively measurable. Moreover, for any $\theta \triangleq(x, y, z), b, \sigma, f$ are \mathbf{F}-adapted and $g(\cdot, x) \in \mathcal{F}_{T}$. For technical reasons in this paper we assume all processes are 1-dimensional, and for notational simplicity we will always omit the variable ω. Some more general results are proved in an accompanying paper [23].

Our main result is the following theorem.

Theorem 1. Assume that b, σ, f, g are differentiable with respect to x, y, z with uniformly bounded derivatives; and that

$$
\begin{equation*}
\sigma_{y} b_{z}=0 ; \quad b_{y}+\sigma_{x} b_{z}+\sigma_{y} f_{z}=0 \tag{3}
\end{equation*}
$$

Assume further that

$$
I_{0}^{2} \triangleq E\left\{\left|X_{0}\right|^{2}+|g(0)|^{2}+\int_{0}^{T}\left[|b(t, 0,0,0)|^{2}+|\sigma(t, 0,0)|^{2}+|f(t, 0,0,0)|^{2}\right] d t\right\}<\infty
$$

Then FBSDE (2) has a unique solution Θ such that

$$
\begin{equation*}
\|\Theta\|^{2} \triangleq E\left\{\sup _{0 \leq t \leq T}\left[\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right]+\int_{0}^{T}\left|Z_{t}\right|^{2} d t\right\} \leq C I_{0}^{2} \tag{4}
\end{equation*}
$$

Remark 1. (3) can be replaced by the following stronger condition

$$
\begin{equation*}
\left\|\sigma_{y}\right\|_{\infty}\left\|b_{z}\right\|_{\infty}=0 ; \quad\left\|b_{y}\right\|_{\infty}+\left\|\sigma_{x}\right\|_{\infty}\left\|b_{z}\right\|_{\infty}+\left\|\sigma_{y}\right\|_{\infty}\left\|f_{z}\right\|_{\infty}=0 \tag{5}
\end{equation*}
$$

Remark 2. The following three classes of FBSDEs satisfy condition (5) (and (3)):

$$
\begin{aligned}
& \left\{\begin{array}{l}
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \\
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s} .
\end{array}\right. \\
& \left\{\begin{array}{l}
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}, Z_{s}\right) d s+\int_{0}^{t} \sigma(s) d W_{s} \\
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s} .
\end{array}\right. \\
& \left\{\begin{array}{l}
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}, Y_{s}\right) d W_{s} \\
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s} .
\end{array}\right.
\end{aligned}
$$

Also, instead of differentiability, it suffices to assume uniform Lipschitz continuity in these cases.

Another main result of this paper is the following comparison theorem.
Theorem 2. Consider the following two FBSDEs:

$$
\left\{\begin{array}{l}
X_{t}^{i}=X_{0}+\int_{0}^{t} b\left(s, \Theta_{s}^{i}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{i}, Y_{s}^{i}\right) d W_{s} \\
Y_{t}^{i}=g^{i}\left(X_{T}^{i}\right)+\int_{t}^{T} f^{i}\left(s, \Theta_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d W_{s}
\end{array} \quad i=0,1\right.
$$

Assume
(i) $\left(b, \sigma, f^{i}, g^{i}\right), i=0,1$ satisfy all the conditions in Theorem 1;
(ii) for any $(\omega, t, \theta), g^{0}(x) \leq g^{1}(x)$ and $f^{0}(t, \theta) \leq f^{1}(t, \theta)$.

Then $Y_{0}^{0} \leq Y_{0}^{1}$.
3. Small Time Duration. It is well known that (2) has a unique solution when T is small. For any function φ, let L_{φ} denote its Lipschitz constant in (x, y, z).

Lemma 1. Assume $L_{b}, L_{\sigma}, L_{f} \leq K$ and $L_{g} \leq K_{0}$. Then there exist δ_{0}, C_{0} and C_{1}, depending on K and K_{0}, such that for $T \leq \delta_{0}$, if $I_{0}^{2}<\infty$, then (2) has a unique solution and it holds that

$$
\|\Theta\| \leq C_{0} I_{0}
$$

Moreover, the following estimate holds true:

$$
\begin{aligned}
& E\left\{\sup _{0 \leq t \leq T}\left[\left|X_{t}\right|^{4}+\left|Y_{t}\right|^{4}\right]+\left(\int_{0}^{T}\left|Z_{t}\right|^{2} d t\right)^{2}\right\} \\
\leq & C_{1} E\left\{\left|X_{0}\right|^{4}+|g(0)|^{4}+\int_{0}^{T}\left[|b(t, 0,0,0)|^{4}+|\sigma(t, 0,0)|^{4}+|f(t, 0,0,0)|^{4}\right] d t\right\}
\end{aligned}
$$

given the right side at above is finite.
Proof. The existence and uniqueness as well as the first estimate are due to Antonelli [1]. The second estimate is standard (see, e.g. [5]).

The following result is the key step of this paper.
Lemma 2. Consider the following linear FBSDE:

$$
\left\{\begin{array}{l}
X_{t}=1+\int_{0}^{t}\left[\alpha_{s}^{1} X_{s}+\beta_{s}^{1} Y_{s}+\gamma_{s}^{1} Z_{s}\right] d s+\int_{0}^{t}\left[\alpha_{s}^{2} X_{s}+\beta_{s}^{2} Y_{s}\right] d W_{s} \tag{6}\\
Y_{t}=G X_{T}+\int_{t}^{T}\left[\alpha_{s}^{3} X_{s}+\beta_{s}^{3} Y_{s}+\gamma_{s}^{3} Z_{s}\right] d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

Assume $\left|\alpha_{t}^{i}\right|,\left|\beta_{t}^{i}\right|,\left|\gamma_{t}^{i}\right| \leq K, i=1,2,3$ and $|G| \leq K_{0}$. Let δ_{0} be as in Lemma 1. Assume further that

$$
\begin{equation*}
\beta_{t}^{2} \gamma_{t}^{1}=0 ; \quad \beta_{t}^{1}+\alpha_{t}^{2} \gamma_{t}^{1}+\beta_{t}^{2} \gamma_{t}^{3}=0 \tag{7}
\end{equation*}
$$

Then for $T \leq \delta_{0}$, (6) has a unique solution (X, Y, Z) such that $\left|Y_{t}\right| \leq \bar{K}_{0}\left|X_{t}\right|$, where

$$
\begin{equation*}
\bar{K}_{0} \triangleq\left[K_{0}+1\right] e^{\left(2 K+K^{2}\right) T}-1 \tag{8}
\end{equation*}
$$

In particular, $\left|Y_{0}\right| \leq \bar{K}_{0}$.
Proof. First by Lemma (1) (6) has a unique solution. For any $t \in[0, T)$ and any $\xi \in L^{\infty}\left(\mathcal{F}_{t}\right)$, denote $\hat{\Theta}_{s} \triangleq \Theta_{s} \xi, s \in[t, T]$. Then $\hat{\Theta}$ satisfies the following FBSDE

$$
\left\{\begin{array}{l}
\hat{X}_{s}=X_{t} \xi+\int_{t}^{s}\left[\alpha_{r}^{1} \hat{X}_{r}+\beta_{r}^{1} \hat{Y}_{r}+\gamma_{r}^{1} \hat{Z}_{r}\right] d r+\int_{t}^{s}\left[\alpha_{r}^{2} \hat{X}_{r}+\beta_{r}^{2} \hat{Y}_{r}\right] d W_{r} \\
\hat{Y}_{s}=G \hat{X}_{T}+\int_{s}^{T}\left[\alpha_{r}^{3} \hat{X}_{r}+\beta_{r}^{3} \hat{Y}_{r}+\gamma_{r}^{3} \hat{Z}_{r}\right] d r-\int_{s}^{T} \hat{Z}_{r} d W_{r}
\end{array}\right.
$$

By Lemma 1 again, we have

$$
E\left\{\left|Y_{t} \xi\right|^{2}\right\}=E\left\{\left|\hat{Y}_{t}\right|^{2}\right\} \leq C_{0}^{2} E\left\{\left|X_{t} \xi\right|^{2}\right\} .
$$

Since ξ is arbitrary, we have $\left|Y_{t}\right| \leq C_{0}\left|X_{t}\right|, P$-a.s., $\forall t$. Moreover, both X and Y are continuous, thus

$$
\left|Y_{t}\right| \leq C_{0}\left|X_{t}\right|, \forall t, P-\text { a.s. }
$$

Denote

$$
\tau \triangleq \inf \left\{t>0: X_{t}=0\right\} \wedge T ; \quad \tau_{n} \triangleq \inf \left\{t>0: X_{t}=\frac{1}{n}\right\} \wedge T
$$

Then $\tau_{n} \uparrow \tau$ and $X_{t}>0$ for $t \in[0, \tau)$. Denote

$$
\tilde{Y}_{t}=Y_{t}\left[X_{t}\right]^{-1} ; \quad \tilde{Z}_{t} \triangleq Z_{t}\left[X_{t}\right]^{-1}-\tilde{Y}_{t}\left[\alpha_{t}^{2}+\beta_{t}^{2} \tilde{Y}_{t}\right] ; \quad t \in[0, \tau)
$$

Then $\left|\tilde{Y}_{t}\right| \leq C_{0}$ and

$$
\begin{aligned}
d \tilde{Y}_{t}= & {\left[X_{t}\right]^{-1} d Y_{t}-Y_{t}\left[X_{t}\right]^{-2} d X_{t}-\left[X_{t}\right]^{-2} d<X, Y>_{t}+Y_{t}\left[X_{t}\right]^{-3} d<X>_{t} } \\
= & Z_{t}\left[X_{t}\right]^{-1} d W_{t}-\left[\alpha_{t}^{3}+\beta_{t}^{3} \tilde{Y}_{t}+\gamma_{t}^{3} Z_{t}\left[X_{t}\right]^{-1}\right] d t \\
& -\tilde{Y}_{t}\left[\alpha_{t}^{1}+\beta_{t}^{1} \tilde{Y}_{t}+\gamma_{t}^{1} Z_{t}\left[X_{t}\right]^{-1}\right] d t \\
& -\tilde{Y}_{t}\left[\alpha_{t}^{2}+\beta_{t}^{2} \tilde{Y}_{t}\right] d W_{t}-\left[\alpha_{t}^{2}+\beta_{t}^{2} \tilde{Y}_{t}\right] Z_{t}\left[X_{t}\right]^{-1} d t+\tilde{Y}_{t}\left[\alpha_{t}^{2}+\beta_{t}^{2} \tilde{Y}_{t}\right]^{2} d t \\
= & \tilde{Z}_{t} d W_{t}-\left[\gamma_{t}^{3}+\gamma_{t}^{1} \tilde{Y}_{t}+\alpha_{t}^{2}+\beta_{t}^{2} \tilde{Y}_{t}\right] Z_{t}\left[X_{t}\right]^{-1} d t \\
& -\left[\alpha_{t}^{3}+\beta_{t}^{3} \tilde{Y}_{t}+\tilde{Y}_{t}\left[\alpha_{t}^{1}+\beta_{t}^{1} \tilde{Y}_{t}\right]-\tilde{Y}_{t}\left[\alpha_{t}^{2}+\beta_{t}^{2} \tilde{Y}_{t}\right]^{2}\right] d t \\
= & \tilde{Z}_{t} d W_{t}-\left[\gamma_{t}^{3}+\gamma_{t}^{1} \tilde{Y}_{t}+\alpha_{t}^{2}+\beta_{t}^{2} \tilde{Y}_{t}\right] \tilde{Z}_{t} d t \\
& -\left[\gamma_{t}^{3}+\gamma_{t}^{1} \tilde{Y}_{t}+\alpha_{t}^{2}+\beta_{t}^{2} \tilde{Y}_{t}\right] \tilde{Y}_{t}\left[\alpha_{t}^{2}+\beta_{t}^{2} \tilde{Y}_{t}\right] d t \\
& -\left[\alpha_{t}^{3}+\beta_{t}^{3} \tilde{Y}_{t}+\tilde{Y}_{t}\left[\alpha_{t}^{1}+\beta_{t}^{1} \tilde{Y}_{t}\right]-\tilde{Y}_{t}\left[\alpha_{t}^{2}+\beta_{t}^{2} \tilde{Y}_{t}\right]^{2}\right] d t \\
= & \tilde{Z}_{t} d W_{t}-\left[\gamma_{t}^{3}+\gamma_{t}^{1} \tilde{Y}_{t}+\alpha_{t}^{2}+\beta_{t}^{2} \tilde{Y}_{t}\right] \tilde{Z}_{t} d t \\
& -\left[\beta_{t}^{2} \gamma_{t}^{1} \tilde{Y}_{t}^{3}+\left[\beta^{1}+\alpha^{2} \gamma^{1}+\beta^{2} \gamma^{3}\right] \tilde{Y}_{t}^{2}+\left[\alpha_{t}^{1}+\beta_{t}^{3}+\alpha_{t}^{2} \gamma_{t}^{3}\right] \tilde{Y}_{t}+\alpha_{t}^{3}\right] d t \\
= & \tilde{Z}_{t} d W_{t}-\left[\left[\gamma_{t}^{3}+\alpha_{t}^{2}\right]+\left[\gamma_{t}^{1}+\beta_{t}^{2}\right] \tilde{Y}_{t}\right] \tilde{Z}_{t} d t-\left[\left[\alpha_{t}^{1}+\beta_{t}^{3}+\alpha_{t}^{2} \gamma_{t}^{3}\right] \tilde{Y}_{t}+\alpha_{t}^{3}\right] d t
\end{aligned}
$$

thanks to (7).
For each n, we have
$\tilde{Y}_{0}=\tilde{Y}_{\tau_{n}}-\int_{0}^{\tau_{n}} \tilde{Z}_{s} d W_{t}+\int_{0}^{\tau_{n}}\left[\left[\left[\gamma_{t}^{3}+\alpha_{t}^{2}\right]+\left[\gamma_{t}^{1}+\beta_{t}^{2}\right] \tilde{Y}_{t}\right] \tilde{Z}_{t}+\left[\left[\alpha_{t}^{1}+\beta_{t}^{3}+\alpha_{t}^{2} \gamma_{t}^{3}\right] \tilde{Y}_{t}+\alpha_{t}^{3}\right]\right] d t$.
Denote

$$
\begin{aligned}
& M_{t}=1+\int_{0}^{t} M_{s}\left[\left[\gamma_{s}^{3}+\alpha_{s}^{2}\right]+\left[\gamma_{s}^{1}+\beta_{s}^{2}\right] \tilde{Y}_{s}\right] 1_{\{\tau>s\}} d W_{s} \\
& \Gamma_{t}=1+\int_{0}^{t} \Gamma_{s}\left[\alpha_{s}^{1}+\beta_{s}^{3}+\alpha_{s}^{2} \gamma_{s}^{3}\right] 1_{\{\tau>s\}} d s
\end{aligned}
$$

Then

$$
d\left(\Gamma_{t} M_{t} \tilde{Y}_{t}\right)=(\cdots) d W_{t}-\Gamma_{t} M_{t} \alpha_{t}^{3} 1_{\{\tau>t\}} d t
$$

and thus,

$$
\begin{equation*}
\tilde{Y}_{0}=E\left\{\Gamma_{\tau_{n}} M_{\tau_{n}} \tilde{Y}_{\tau_{n}}+\int_{0}^{\tau_{n}} \Gamma_{t} M_{t} \alpha_{t}^{3} d t\right\} \tag{9}
\end{equation*}
$$

Since $\left|\tilde{Y}_{t}\right| \leq C_{0}, M$ is a martingale and $\left|\Gamma_{t}\right| \leq e^{\left(2 K+K^{2}\right) t}$. Moreover, if $\tau=T$, then $\left|Y_{\tau}\right|=\left|Y_{T}\right|=\left|G X_{T}\right|=\left|G X_{\tau}\right| \leq K_{0}\left|X_{\tau}\right|$. If $\tau<T$, then $X_{\tau}=0$, and thus $\left|Y_{\tau}\right| \leq C_{0}\left|X_{\tau}\right|=0$. Therefore, in both cases it holds that $\left|Y_{\tau}\right| \leq K_{0}\left|X_{\tau}\right|$. By standard arguments, we have

$$
\begin{aligned}
& \left|Y_{\tau_{n}}\right|^{2}+E_{\tau_{n}}\left\{\int_{\tau_{n}}^{\tau}\left|Z_{t}\right|^{2} d t\right\} \\
= & E_{\tau_{n}}\left\{\left|Y_{\tau}\right|^{2}+2 \int_{\tau_{n}}^{\tau} Y_{t}\left[\alpha_{t}^{3} X_{t}+\beta_{t}^{3} Y_{t}+\gamma_{t}^{3} Z_{t}\right] d t\right\} \\
\leq & E_{\tau_{n}}\left\{K_{0}^{2}\left|X_{\tau}\right|^{2}+C \int_{\tau_{n}}^{\tau}\left[\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right] d t+\frac{1}{2} \int_{\tau_{n}}^{\tau}\left|Z_{t}\right|^{2} d t\right\}
\end{aligned}
$$

Similarly,

$$
E_{\tau_{n}}\left\{\left|X_{\tau}\right|^{2}\right\} \leq E_{\tau_{n}}\left\{\left|X_{\tau_{n}}\right|^{2}+C \int_{\tau_{n}}^{\tau}\left[\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right] d t+\frac{1}{2 K_{0}^{2}} \int_{\tau_{n}}^{\tau}\left|Z_{t}\right|^{2} d t\right\}
$$

Thus

$$
\left|Y_{\tau_{n}}\right|^{2} \leq E_{\tau_{n}}\left\{K_{0}^{2}\left|X_{\tau_{n}}\right|^{2}+C \int_{\tau_{n}}^{\tau}\left[\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right] d t\right\}
$$

Note that $\left|X_{\tau_{n}}\right| \geq \frac{1}{n}$, then
$\left|\tilde{Y}_{\tau_{n}}\right| \leq K_{0}+C E_{\tau_{n}}^{\frac{1}{2}}\left\{\int_{\tau_{n}}^{\tau}\left[\left|\bar{X}_{t}\right|^{2}+\left|\bar{Y}_{t}\right|^{2}\right] d t\right\} \leq K_{0}+C E_{\tau_{n}}^{\frac{1}{2}}\left\{\sup _{\tau_{n} \leq t \leq \tau}\left[\left|\bar{X}_{t}\right|^{2}+\left|\bar{Y}_{t}\right|^{2}\right]\left[\tau-\tau_{n}\right]\right\}$,
where

$$
\bar{X}_{t} \triangleq X_{t}\left[X_{\tau_{n}}\right]^{-1} ; \quad \bar{Y}_{t} \triangleq Y_{t}\left[X_{\tau_{n}}\right]^{-1}
$$

Now by (9),

$$
\begin{aligned}
\left|\tilde{Y}_{0}\right| \leq & K \int_{0}^{T} e^{\left(2 K+K^{2}\right) t} d t \\
& +E\left\{e^{\left(2 K+K^{2}\right) T} M_{\tau_{n}}\left[K_{0}+C E_{\tau_{n}}^{\frac{1}{2}}\left\{\sup _{\tau_{n} \leq t \leq \tau}\left[\left|\bar{X}_{t}\right|^{2}+\left|\bar{Y}_{t}\right|^{2}\right]\left[\tau-\tau_{n}\right]\right\}\right]\right\} \\
\leq & e^{\left(2 K+K^{2}\right) T}-1+K_{0} e^{\left(2 K+K^{2}\right) T} \\
& +C E\left\{M_{\tau_{n}} E_{\tau_{n}}^{\frac{1}{2}}\left\{\sup _{\tau_{n} \leq t \leq \tau}\left[\left|\bar{X}_{t}\right|^{2}+\left|\bar{Y}_{t}\right|^{2}\right]\left[\tau-\tau_{n}\right]\right\}\right\} \\
\leq & \bar{K}_{0}+C E^{\frac{1}{2}}\left\{\left|M_{\tau_{n}}\right|^{2}\right\} E^{\frac{1}{2}}\left\{\sup _{\tau_{n} \leq t \leq \tau}\left[\left|\bar{X}_{t}\right|^{2}+\left|\bar{Y}_{t}\right|^{2}\right]\left[\tau-\tau_{n}\right]\right\} \\
\leq & \bar{K}_{0}+C E^{\frac{1}{4}}\left\{\sup _{\tau_{n} \leq t \leq \tau}\left[\left|\bar{X}_{t}\right|^{4}+\left|\bar{Y}_{t}\right|^{4}\right]\right\} E^{\frac{1}{4}}\left\{\left|\tau-\tau_{n}\right|^{2}\right\}
\end{aligned}
$$

Note that (\bar{X}, \bar{Y}) satisfies the following FBSDE:

$$
\left\{\begin{aligned}
\bar{X}_{t}= & 1+\int_{0}^{t}\left[\alpha_{s}^{1} 1_{\left\{\tau_{n}<s\right\}} \bar{X}_{s}+\beta_{s}^{1} 1_{\left\{\tau_{n}<s\right\}} \bar{Y}_{s}+\gamma_{s}^{1} 1_{\left\{\tau_{n}<s\right\}} \bar{Z}_{s}\right] d s \\
& +\int_{0}^{t}\left[\alpha_{s}^{2} 1_{\left\{\tau_{n}<s\right\}} \bar{X}_{s}+\beta_{s}^{2} 1_{\left\{\tau_{n}<s\right\}} \bar{Y}_{s}\right] d W_{s} ; \\
\bar{Y}_{t}= & G \bar{X}_{T}+\int_{t}^{T}\left[\alpha_{s}^{3} 1_{\left\{\tau_{n}<s\right\}} \bar{X}_{s}+\beta_{s}^{3} 1_{\left\{\tau_{n}<s\right\}} \bar{Y}_{s}+\gamma_{s}^{3} 1_{\left\{\tau_{n}<s\right\}} \bar{Z}_{s}\right] d s-\int_{t}^{T} \bar{Z}_{s} d W_{s}
\end{aligned}\right.
$$

By Lemma 1,

$$
E\left\{\sup _{\tau_{n} \leq t \leq \tau}\left[\left|\bar{X}_{t}\right|^{4}+\left|\bar{Y}_{t}\right|^{4}\right]\right\} \leq E\left\{\sup _{0 \leq t \leq T}\left[\left|\bar{X}_{t}\right|^{4}+\left|\bar{Y}_{t}\right|^{4}\right]\right\} \leq C_{1}
$$

Thus

$$
\left|\tilde{Y}_{0}\right| \leq \bar{K}_{0}+C E^{\frac{1}{4}}\left\{\left|\tau-\tau_{n}\right|^{2}\right\}
$$

Let $n \rightarrow \infty$, we get $\left|\tilde{Y}_{0}\right| \leq \bar{K}_{0}$. That is, $\left|Y_{0}\right| \leq \bar{K}_{0}\left|X_{0}\right|=\bar{K}_{0}$. Similarly, $\left|Y_{t}\right| \leq$ $\bar{K}_{0}\left|X_{t}\right|$ for all $t \in[0, T]$.

The following result is important.
Corollary 1. Assume that all the conditions in Lemma 1 hold true; and that (3) holds true. Let $\Theta^{i}, i=0,1$, be the solution to FBSDEs:

$$
\left\{\begin{array}{l}
X_{t}^{i}=x_{i}+\int_{0}^{t} b\left(s, \Theta_{s}^{i}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{i}, Y_{s}^{i}\right) d W_{s} \\
Y_{t}^{i}=g\left(X_{T}^{i}\right)+\int_{t}^{T} f\left(s, \Theta_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d W_{s}
\end{array}\right.
$$

Then $\left|Y_{0}^{1}-Y_{0}^{0}\right| \leq \bar{K}_{0}\left|x_{1}-x_{0}\right|$, where \bar{K}_{0} is defined in (8).

Proof. For $0 \leq \lambda \leq 1$, let $\Theta^{\lambda} \triangleq\left(X^{\lambda}, Y^{\lambda}, Z^{\lambda}\right)$ and $\nabla \Theta^{\lambda} \triangleq\left(\nabla X^{\lambda}, \nabla Y^{\lambda}, \nabla Z^{\lambda}\right)$ be the solutions to FBSDEs:

$$
\left\{\begin{array}{l}
X_{t}^{\lambda}=x_{0}+\lambda\left(x_{1}-x_{0}\right)+\int_{0}^{t} b\left(s, \Theta_{s}^{\lambda}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{\lambda}, Y_{s}^{\lambda}\right) d W_{s} \\
Y_{t}^{\lambda}=g\left(X_{T}^{\lambda}\right)+\int_{t}^{T} f\left(s, \Theta_{s}^{\lambda}\right) d s-\int_{t}^{T} Z_{s}^{\lambda} d W_{s}
\end{array}\right.
$$

and

$$
\left\{\begin{align*}
\nabla X_{t}^{\lambda}= & 1+\int_{0}^{t}\left[b_{x}\left(s, \Theta_{s}^{\lambda}\right) \nabla X_{s}^{\lambda}+b_{y}\left(s, \Theta_{s}^{\lambda}\right) \nabla Y_{s}^{\lambda}+b_{z}\left(s, \Theta_{s}^{\lambda}\right) \nabla Z_{s}^{\lambda}\right] d s \tag{10}\\
& +\int_{0}^{t}\left[\sigma_{x}\left(s, \Theta_{s}^{\lambda}\right) \nabla X_{s}^{\lambda}+\sigma_{y}\left(s, \Theta_{s}^{\lambda}\right) \nabla Y_{s}^{\lambda}\right] d W_{s} \\
\nabla Y_{t}^{\lambda}= & g^{\prime}\left(X_{T}^{\lambda}\right) \nabla X_{T}^{\lambda}+\int_{t}^{T}\left[f_{x}\left(s, \Theta_{s}^{\lambda}\right) \nabla X_{s}^{\lambda}+f_{y}\left(s, \Theta_{s}^{\lambda}\right) \nabla Y_{s}^{\lambda}\right. \\
& \left.+f_{z}\left(s, \Theta_{s}^{\lambda}\right) \nabla Z_{s}^{\lambda}\right] d s-\int_{t}^{T} \nabla Z_{s}^{\lambda} d W_{s}
\end{align*}\right.
$$

respectively. One can easily prove that

$$
\Theta_{t}^{1}-\Theta_{t}^{0}=\int_{0}^{1} \frac{d}{d \lambda} \Theta_{t}^{\lambda} d \lambda=\left[x_{1}-x_{0}\right] \int_{0}^{1} \nabla \Theta_{t}^{\lambda} d \lambda
$$

In particular,

$$
Y_{0}^{1}-Y_{0}^{0}=\left[x_{1}-x_{0}\right] \int_{0}^{1} \nabla Y_{0}^{\lambda} d \lambda
$$

Note that (3) implies (7) for FBSDE (10). Then by Lemma 2 we have $\left|\nabla Y_{0}^{\lambda}\right| \leq \bar{K}_{0}$, and thus

$$
\left|Y_{0}^{1}-Y_{0}^{0}\right| \leq\left|x_{1}-x_{0}\right| \int_{0}^{1}\left|\nabla Y_{0}^{\lambda}\right| d \lambda \leq \bar{K}_{0}\left|x_{1}-x_{0}\right|
$$

proving the lemma.
4. Proof of Theorem 1. We now consider arbitrary large T. Let K and K_{0} be as in Lemma 1, and \bar{K}_{0} be defined by (8). Let δ_{0} be a constant as in Lemma 1, but corresponding to (K, \bar{K}_{0}) instead of $\left(K, K_{0}\right)$. Assume $(n-1) \delta_{0}<T \leq n \delta_{0}$ for some integer n. Denote $T_{i} \triangleq \frac{i T}{n}, i=0, \cdots, n$. Define a mapping $F_{n}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ by $F_{n}(\omega, x) \triangleq g(\omega, x)$. Now for $t \in\left[T_{n-1}, T_{n}\right]$, consider the following FBSDE:

$$
\left\{\begin{array}{l}
X_{t}^{n}=x+\int_{T_{n-1}}^{t} b\left(s, \Theta_{s}^{n}\right) d s+\int_{T_{n-1}}^{t} \sigma\left(s, X_{s}^{n}, Y_{s}^{n}\right) d W_{s} \\
Y_{t}^{n}=F_{n}\left(X_{T_{n}}^{n}\right)+\int_{t}^{T_{n}} f\left(s, \Theta_{s}^{n}\right) d s-\int_{t}^{T_{n}} Z_{s}^{n} d W_{s}
\end{array}\right.
$$

Note that $L_{F_{n}} \leq K_{0} \leq \bar{K}_{0}$, by Lemma 1 the above FBSDE has a unique solution for any x. Define $F_{n-1}(x) \triangleq Y_{T_{n-1}}^{n}$. Then for fixed $x, F_{n-1}(x) \in \mathcal{F}_{T_{n-1}}$. Moreover, by Corollary 1 we have

$$
L_{F_{n-1}} \leq K_{1} \triangleq\left[K_{0}+1\right] e^{\left(2 K+K^{2}\right)\left(T_{n}-T_{n-1}\right)}-1 \leq \bar{K}_{0}
$$

Next we consider the following FBSDE over [T_{n-2}, T_{n-1}]:

$$
\left\{\begin{array}{l}
X_{t}^{n-1}=x+\int_{T_{n-2}}^{t} b\left(s, \Theta_{s}^{n-1}\right) d s+\int_{T_{n-1}}^{t} \sigma\left(s, X_{s}^{n-1}, Y_{s}^{n-1}\right) d W_{s} \\
Y_{t}^{n-1}=F_{n-1}\left(X_{T_{n-1}}^{n-1}\right)+\int_{t}^{T_{n-1}} f\left(s, \Theta_{s}^{n-1}\right) d s-\int_{t}^{T_{n-1}} Z_{s}^{n-1} d W_{s}
\end{array}\right.
$$

Similarly we may define $F_{n-2}(x)$ such that

$$
\begin{aligned}
L_{F_{n-2}} \leq K_{2} & \triangleq\left[K_{1}+1\right] e^{\left(2 K+K^{2}\right)\left(T_{n-1}-T_{n-2}\right)}-1 \\
& =\left[K_{0}+1\right] e^{\left(2 K+K^{2}\right)\left(T_{n}-T_{n-2}\right)}-1 \leq \bar{K}_{0} .
\end{aligned}
$$

Repeat the arguments for $i=n, \cdots, 1$, we may define F_{i} such that

$$
L_{F_{i}} \leq K_{n-i} \triangleq\left[K_{0}+1\right] e^{\left(2 K+K^{2}\right)\left(T_{n}-T_{i}\right)}-1 \leq \bar{K}_{0}
$$

Now for any $X_{0} \in L^{2}\left(\mathcal{F}_{0}\right)$, we construct a solution for (2) as follows. For $i=$ $1,2, \cdots, n$,

$$
\left\{\begin{array}{l}
X_{t}=X_{T_{i-1}}+\int_{T_{i-1}}^{t} b\left(s, \Theta_{s}\right) d s+\int_{T_{i}-1}^{t} \sigma\left(s, X_{s}, Y_{s}\right) d W_{s} ; \\
Y_{t}=F_{i}\left(X_{T_{i}}\right)+\int_{t}^{T_{i}} f\left(s, \Theta_{s}\right) d s-\int_{t}^{T_{i}} Z_{s} d W_{s}
\end{array} \quad t \in\left[T_{i-1}, T_{i}\right]\right.
$$

Obviously this provides a solution to (2). From the construction and the uniqueness of each step, we know this solution is unique.

We next prove (4). Denote

$$
I_{t}^{2} \triangleq|b(t, 0,0,0)|^{2}+|\sigma(t, 0,0)|^{2}+|f(t, 0,0,0)|^{2}
$$

By Lemma 1 and the definition of F_{i}, we have

$$
E\left\{\left|F_{i-1}(0)\right|^{2}\right\} \leq C_{0} E\left\{\left|F_{i}(0)\right|^{2}+\int_{T_{i-1}}^{T_{i}} I_{t}^{2} d t\right\}
$$

By induction one can easily prove that

$$
\max _{0 \leq i \leq n} E\left\{\left|F_{i}(0)\right|^{2}\right\} \leq C_{0}^{n} E\left\{|g(0)|^{2}+\int_{0}^{T} I_{t}^{2} d t\right\}=C E\left\{|g(0)|^{2}+\int_{0}^{T} I_{t}^{2} d t\right\}
$$

We note that $n \leq \frac{T}{\delta_{0}}+1$ is a fixed constant depending only on K, K_{0} and T, then so is C. Now for $t \in\left[T_{0}, T_{1}\right]$, by Lemma (1,

$$
\begin{aligned}
E\left\{\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right\} & \leq C E\left\{\left|X_{0}\right|^{2}+\left|F_{1}(0)\right|^{2}+\int_{T_{0}}^{T_{1}} I_{t}^{2} d t\right\} \\
& \leq C E\left\{\left|X_{0}\right|^{2}+|g(0)|^{2}+\int_{0}^{T} I_{t}^{2} d t\right\}
\end{aligned}
$$

Then by induction one can prove

$$
\sup _{0 \leq t \leq T} E\left\{\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right\} \leq C E\left\{\left|X_{0}\right|^{2}+|g(0)|^{2}+\int_{0}^{T} I_{t}^{2} d t\right\}
$$

Now by Ito's formula,

$$
\begin{aligned}
E\left\{\left|Y_{0}\right|^{2}+\int_{0}^{T}\left|Z_{t}\right|^{2} d t\right\}= & E\left\{\left|Y_{T}\right|^{2}+2 \int_{0}^{T} Y_{t} f\left(t, \Theta_{t}\right) d t\right\} \\
\leq & E\left\{\left|Y_{T}\right|^{2}+C \int_{0}^{T}\left[|f(t, 0,0,0)|^{2}+\left|X_{t}\right|^{2}\right.\right. \\
& \left.\left.+\left|Y_{t}\right|^{2}\right] d t+\frac{1}{2} \int_{0}^{T}\left|Z_{t}\right|^{2} d t\right\}
\end{aligned}
$$

Then

$$
E\left\{\int_{0}^{T}\left|Z_{t}\right|^{2} d t\right\} \leq C E\left\{\left|X_{0}\right|^{2}+|g(0)|^{2}+\int_{0}^{T} I_{t}^{2} d t\right\}
$$

Finally, (4) follows the Burkholder-Davis-Gundy Inequality.
5. Stability and Comparison Theorem. We shall prove Theorem 2 in this section. First we establish the stability result for (2).
Theorem 3. Assume $\left(b^{i}, \sigma^{i}, f^{i}, g^{i}, X_{0}^{i}\right), i=0,1$, satisfy all the conditions in Theorem 11. Let Θ^{i} be the corresponding solutions, $\Delta \Theta \triangleq \Theta^{1}-\Theta^{0}, \Delta g \triangleq g_{1}-g_{0}$, and define other terms similarly. Then

$$
\|\Delta \Theta\|^{2} \leq C E\left\{\left|\Delta X_{0}\right|^{2}+\left|\Delta g\left(X_{T}^{1}\right)\right|^{2}+\int_{0}^{T}\left[|\Delta b|^{2}+|\Delta \sigma|^{2}+|\Delta f|^{2}\right]\left(t, \Theta_{t}^{1}\right) d t\right\}
$$

Proof. For $0 \leq \lambda \leq 1$, let Θ^{λ} and $\nabla \Theta^{\lambda}$ be the solutions to the following FBSDEs:

$$
\left\{\begin{aligned}
X_{t}^{\lambda}= & X_{0}^{0}+\lambda \Delta X_{0}+\int_{0}^{t}\left[b^{0}\left(s, \Theta_{s}^{\lambda}\right)+\lambda \Delta b\left(s, \Theta_{s}^{1}\right)\right] d s \\
& +\int_{0}^{t}\left[\sigma^{0}\left(s, \Theta_{s}^{\lambda}\right)+\lambda \Delta \sigma\left(s, \Theta_{s}^{1}\right)\right] d W_{s} ; \\
Y_{t}^{\lambda}= & {\left[g^{0}\left(X_{T}^{\lambda}\right)+\lambda \Delta g\left(X_{T}^{1}\right)\right]+\int_{t}^{T}\left[f^{0}\left(s, \Theta_{s}^{\lambda}\right)+\lambda \Delta f\left(s, \Theta_{s}^{1}\right)\right] d s-\int_{t}^{T} Z_{s}^{\lambda} d W_{s} . }
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
\nabla X_{t}^{\lambda}= & \Delta X_{0}+\int_{0}^{t}\left[\sigma_{x}^{0}\left(s, \Theta_{s}^{\lambda}\right) \nabla X_{s}^{\lambda}+\sigma_{y}^{0}\left(s, \Theta_{s}^{\lambda}\right) \nabla Y_{s}^{\lambda}+\Delta \sigma\left(s, \Theta_{s}^{1}\right)\right] d W_{s} \\
& +\int_{0}^{t}\left[b_{x}^{0}\left(s, \Theta_{s}^{\lambda}\right) \nabla X_{s}^{\lambda}+b_{y}^{0}\left(s, \Theta_{s}^{\lambda}\right) \nabla Y_{s}^{\lambda}\right. \\
& \left.+b_{z}^{0}\left(s, \Theta_{s}^{\lambda}\right) \nabla Z_{s}^{\lambda}+\Delta b\left(s, \Theta_{s}^{1}\right)\right] d s \\
\nabla Y_{t}^{\lambda}= & {\left[g_{x}^{0}\left(X_{T}^{\lambda}\right) \nabla X_{T}^{\lambda}+\Delta g\left(X_{T}^{1}\right)\right]-\int_{t}^{T} \nabla Z_{s}^{\lambda} d W_{s} } \\
& +\int_{t}^{T}\left[f_{x}^{0}\left(s, \Theta_{s}^{\lambda}\right) \nabla X_{s}^{\lambda}+f_{y}^{0}\left(s, \Theta_{s}^{\lambda}\right) \nabla Y_{s}^{\lambda}\right. \\
& \left.+f_{z}^{0}\left(s, \Theta_{s}^{\lambda}\right) \nabla Z_{s}^{\lambda}+\Delta f\left(s, \Theta_{s}^{1}\right)\right] d s
\end{aligned}\right.
$$

respectively. By the uniqueness of solutions, we know that the two definitions of $\left(\Theta^{0}, \Theta^{1}\right)$ are consistent. Also, one can show that

$$
\begin{equation*}
\Delta \Theta_{t}=\int_{0}^{1} \frac{d}{d \lambda} \Theta_{t}^{\lambda} d \lambda=\int_{0}^{1} \nabla \Theta_{t}^{\lambda} d \lambda \tag{11}
\end{equation*}
$$

Since $\left(b^{0}, \sigma^{0}, f^{0}\right)$ satisfies (3), by Lemma 2 we have

$$
\left\|\nabla \Theta^{\lambda}\right\|^{2} \leq C E\left\{\left|\Delta X_{0}\right|^{2}+\left|\Delta g\left(X_{T}^{1}\right)\right|^{2}+\int_{0}^{T}\left[|\Delta b|^{2}+|\Delta \sigma|^{2}+|\Delta f|^{2}\right]\left(t, \Theta_{t}^{1}\right) d t\right\}
$$

which obviously proves the theorem.
Corollary 2. Assume $\left(b^{n}, \sigma^{n}, f^{n}, g^{n}, X_{0}^{n}\right), n=0,1, \cdots$ satisfy all the conditions in Theorem 1 uniformly; $X_{0}^{n} \rightarrow X_{0}^{0}$ in L^{2}; for $\varphi=b, \sigma, f, g$ and for any (t, θ), $\varphi^{n}(t, \theta) \rightarrow \varphi^{0}(t, \theta)$ as $n \rightarrow \infty ;$ and
$E\left\{\left|X_{0}^{n}-X_{0}\right|^{2}+\left|g^{n}-g^{0}\right|^{2}(0)+\int_{0}^{T}\left[\left|b^{n}-b^{0}\right|^{2}+\left|\sigma^{n}-\sigma^{0}\right|^{2}+\left|f^{n}-f^{0}\right|^{2}\right](t, 0,0,0) d t\right\} \rightarrow 0$.
Let Θ^{n} denote the corresponding solutions. Then

$$
\left\|\Theta^{n}-\Theta^{0}\right\| \rightarrow 0
$$

Proof. By Theorem 3,

$$
\begin{aligned}
\left\|\Theta^{n}-\Theta^{0}\right\|^{2} \leq & C E\left\{\left|X_{0}^{n}-X_{0}^{0}\right|^{2}+\left|g^{n}-g^{0}\right|^{2}\left(X_{T}^{0}\right)\right. \\
& \left.+\int_{0}^{T}\left[\left|b^{n}-b\right|^{2}+\left|\sigma^{n}-\sigma\right|^{2}+\left|f^{n}-f^{0}\right|^{2}\right]\left(t, \Theta_{t}^{0}\right) d t\right\}
\end{aligned}
$$

Let $n \rightarrow \infty$ and apply the Dominated Convergence Theorem we prove the result.
Next lemma is the linear version of Theorem 2.
Lemma 3. Assume $\left|\alpha^{i}\right|,\left|\beta^{i}\right|,\left|\gamma^{i}\right| \leq K,|G| \leq K_{0}$, and (3) holds true. Assume further that $\xi \geq 0$ and $\eta \geq 0$. Let (X, Y, Z) be the solution to the following linear FBSDE:

$$
\left\{\begin{array}{l}
X_{t}=\int_{0}^{t}\left[\alpha_{s}^{1} X_{s}+\beta_{s}^{1} Y_{s}+\gamma_{s}^{1} Z_{s}\right] d s+\int_{0}^{t}\left[\alpha_{s}^{2} X_{s}+\beta_{s}^{2} Y_{s}\right] d W_{s} \\
Y_{t}=G X_{T}+\xi+\int_{t}^{T}\left[\alpha_{s}^{3} X_{s}+\beta_{s}^{3} Y_{s}+\gamma_{s}^{3} Z_{s}+\eta_{s}\right] d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

Then $Y_{0} \geq 0$.
Proof. We prove the result in several steps.
Step 1. Assume $G=0, \eta=0$. If $Y_{0}<0$, let

$$
\tau \triangleq \inf \left\{t: Y_{t}=0\right\} \wedge T
$$

Since $Y_{T}=\xi \geq 0$, we have $Y_{\tau}=0$. Denote

$$
\begin{aligned}
& \bar{\alpha}_{t}^{i} \triangleq \alpha_{t}^{i} 1_{\{\tau>t\}} ; \bar{\beta}_{t}^{i} \triangleq \beta_{t}^{i} 1_{\{\tau>t\}} ; \bar{\gamma}_{t}^{i} \triangleq \gamma_{t}^{i} 1_{\{\tau>t\}} \\
& \bar{X}_{t} \triangleq X_{\tau \wedge t} ; \quad \bar{Y}_{t} \triangleq Y_{\tau \wedge t} ; \quad \bar{Z}_{t} \triangleq Z_{t} 1_{\{\tau>t\}}
\end{aligned}
$$

Then

$$
\left\{\begin{array}{l}
\bar{X}_{t}=\int_{0}^{t}\left[\bar{\alpha}_{s}^{1} \bar{X}_{s}+\bar{\beta}_{s}^{1} \bar{Y}_{s}+\bar{\gamma}_{s}^{1} \bar{Z}_{s}\right] d s+\int_{0}^{t}\left[\bar{\alpha}_{s}^{2} \bar{X}_{s}+\bar{\beta}_{s}^{2} \bar{Y}_{s}\right] d W_{s} \\
\bar{Y}_{t}=\int_{t}^{T}\left[\bar{\alpha}_{s}^{3} \bar{X}_{s}+\bar{\beta}_{s}^{3} \bar{Y}_{s}+\bar{\gamma}_{s}^{3} \bar{Z}_{s}\right] d s-\int_{t}^{T} \bar{Z}_{s} d W_{s}
\end{array}\right.
$$

By uniqueness $\bar{Y}_{t}=0$. Then $Y_{0}=\bar{Y}_{0}=0$, contradiction. Thus $Y_{0} \geq 0$.
Step 2. Assume $\eta=0$ and $|g| \leq C$ where $G=E\{G\}+\int_{0}^{T} g_{t} d W_{t}$. Denote

$$
G_{t} \triangleq E\{G\}+\int_{0}^{t} g_{s} d W_{s} ; \quad \tilde{Y}_{t} \triangleq Y_{t}-G_{t} X_{t} ; \quad \tilde{Z}_{t} \triangleq Z_{t}-G_{t}\left[\alpha_{t}^{2} X_{t}+\beta_{t}^{2} Y_{t}\right]-g_{t} X_{t}
$$

Then

$$
\begin{aligned}
d X_{t}= & {\left[\alpha_{t}^{1} X_{t}+\beta_{t}^{1}\left[\tilde{Y}_{t}+G_{t} X_{t}\right]+\gamma_{s}^{1}\left[\tilde{Z}_{t}+G_{t} \alpha_{t}^{2} X_{t}+G_{t} \beta_{t}^{2}\left[\tilde{Y}_{t}+G_{t} X_{t}\right]+g_{t} X_{t}\right]\right] d t } \\
& +\left[\alpha_{t}^{2} X_{t}+\beta_{t}^{2}\left[\tilde{Y}_{t}+G_{t} X_{t}\right]\right] d W_{t} \\
= & {\left[\tilde{\alpha}_{t}^{1} X_{t}+\tilde{\beta}_{t}^{1} \tilde{Y}_{t}+\tilde{\gamma}_{t}^{1} \tilde{Z}_{t}\right] d t+\left[\tilde{\alpha}_{t}^{2} X_{t}+\tilde{\beta}_{t}^{2} \tilde{Y}_{t}\right] d W_{t} ; }
\end{aligned}
$$

and

$$
\begin{aligned}
d \tilde{Y}_{t}= & -\left[\alpha_{t}^{3} X_{t}+\beta_{t}^{3} Y_{t}+\gamma_{t}^{3} Z_{t}\right] d t+Z_{t} d W_{t}-g_{t}\left[\alpha_{t}^{2} X_{t}+\beta_{t}^{2} Y_{t}\right] d t \\
& -G_{t}\left[\alpha_{t}^{1} X_{t}+\beta_{t}^{1} Y_{t}+\gamma_{t}^{1} Z_{t}\right] d t-G_{t}\left[\alpha_{t}^{2} X_{t}+\beta_{t}^{2} Y_{t}\right] d W_{t}-g_{t} X_{t} d W_{t} \\
= & \tilde{Z}_{t} d W_{t}-\left[\left[\alpha_{t}^{3}+g_{t} \alpha_{t}^{2}+G_{t} \alpha_{t}^{1}\right] X_{t}+\left[\beta_{t}^{3}+g_{t} \beta_{t}^{2}+G_{t} \beta_{t}^{1}\right]\left[\tilde{Y}_{t}+G_{t} X_{t}\right]\right. \\
& \left.+\left[\gamma_{t}^{3}+G_{t} \gamma_{t}^{1}\right]\left[\tilde{Z}_{t}+\left[g_{t}+G_{t} \alpha_{t}^{2}\right] X_{t}+G_{t} \beta_{t}^{2}\left[\tilde{Y}_{t}+G_{t} X_{t}\right]\right]\right] d t \\
= & -\left[\tilde{\alpha}_{t}^{3} X_{t}+\tilde{\beta}_{t}^{3} \tilde{Y}_{t}+\tilde{\gamma}_{t}^{3} \tilde{Z}_{t}\right] d t+\tilde{Z}_{t} d W_{t},
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
\tilde{\alpha}_{t}^{1} \triangleq \alpha_{t}^{1}+G_{t} \beta_{t}^{1}+G_{t} \alpha_{t}^{2} \gamma_{t}^{1}+\left|G_{t}\right|^{2} \beta_{t}^{2} \gamma_{t}^{1}+g_{t} \gamma_{t}^{1} \\
\tilde{\beta}_{t}^{1} \triangleq \beta_{t}^{1}+G_{t} \beta_{t}^{2} \gamma_{t}^{1}=\beta_{t}^{1} \\
\tilde{\gamma}_{t}^{1} \triangleq \gamma_{t}^{1} \\
\tilde{\alpha}_{t}^{2} \triangleq \alpha^{2}+G_{t} \beta_{t}^{2} \\
\tilde{\beta}_{t}^{2} \triangleq \beta_{t}^{2} \\
\tilde{\alpha}_{t}^{3} \triangleq \alpha_{t}^{3}+g_{t} \alpha_{t}^{2}+G_{t} \alpha_{t}^{1}+\left[\beta_{t}^{3}+g_{t} \beta_{t}^{2}+G_{t} \beta_{t}^{1}\right] G_{t} \\
\\
\quad+\left[\gamma_{t}^{3}+G_{t} \gamma_{t}^{1}\right]\left[g_{t}+G_{t} \alpha_{t}^{2}+\left|G_{t}\right|^{2} \beta_{t}^{2}\right] \\
\tilde{\beta}_{t}^{3} \triangleq \beta_{t}^{3}+g_{t} \beta_{t}^{2}+G_{t} \beta_{t}^{1}+G_{t} \beta_{t}^{2} \gamma_{t}^{3}+\left|G_{t}\right|^{2} \beta_{t}^{2} \gamma_{t}^{1} \\
\tilde{\gamma}_{t}^{3} \triangleq \gamma_{t}^{3}+G_{t} \gamma_{t}^{1}
\end{array}\right.
$$

One can easily check that $\tilde{\alpha}^{i}, \tilde{\beta}^{i}, \tilde{\gamma}^{i}$ are bounded and still satisfy (3). Note that $\tilde{Y}_{T}=\xi \geq 0$. By Step 1 we know $Y_{0}=\tilde{Y}_{0} \geq 0$.

Step 3. Assume $\eta=0$. One can find G_{n} such that $\left|G_{n}\right| \leq K, G_{n} \rightarrow G$ a.s., and G_{n} satisfies the condition in Step 2. Let $\left(X^{n}, Y^{n}, Z^{n}\right)$ denote the solution corresponding to G_{n}. By Step 2 we have $Y_{0}^{n} \geq 0$. Then by Corollary 2 we get $Y_{0}=\lim _{n \rightarrow \infty} Y_{0}^{n} \geq 0$.

Step 4. Assume $\xi=0, \frac{1}{m} \leq \eta \leq m$ and $T \leq \delta$ where $\delta>0$ is a small constant depending only on K, K_{0} and m. By otherwise applying the Girsanov Theorem, without loss of generality we assume $\gamma_{t}^{3}=0$. By standard arguments (see, e.g. [1]), for and $\varepsilon>0$ we have

$$
\begin{aligned}
& \sup _{0 \leq t \leq T} E\left\{\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right\}+E\left\{\int_{0}^{T}\left|Z_{t}\right|^{2} d t\right\} \\
\leq & C \varepsilon^{-1} E\left\{\int_{0}^{T}\left[\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right] d t\right\}+\frac{\varepsilon}{2} E\left\{\int_{0}^{T}\left|\eta_{t}\right|^{2} d t\right\} \\
\leq & C \varepsilon^{-1} T \sup _{0 \leq t \leq T} E\left\{\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right\}+\frac{\varepsilon}{2} m^{2} T
\end{aligned}
$$

We choose $\delta=\frac{\varepsilon}{2 C}$ and will specify ε later. Then for $T \leq \delta$, we have

$$
\sup _{0 \leq t \leq T} E\left\{\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right\}+E\left\{\int_{0}^{T}\left|Z_{t}\right|^{2} d t\right\} \leq m^{2} \varepsilon T
$$

Moreover,

$$
\begin{aligned}
E\left\{\left|X_{T}\right|^{2}\right\} & \leq C E\left\{\left|\int_{0}^{T}\left[\alpha_{t}^{1} X_{t}+\beta_{t}^{1} Y_{t}+\gamma_{t}^{1} Z_{t}\right] d t\right|^{2}+\left|\int_{0}^{T}\left[\alpha_{t}^{2} X_{t}+\beta_{t}^{2} Y_{t}\right] d W_{t}\right|^{2}\right\} \\
& \leq C E\left\{T \int_{0}^{T}\left[\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}+\left|Z_{t}\right|^{2}\right] d t+\int_{0}^{T}\left[\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right] d t\right\} \\
& \leq C m^{2} \varepsilon T^{2} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left|E\left\{G X_{T}+\int_{0}^{T}\left[\alpha_{t}^{3} X_{t}+\beta_{t}^{3} Y_{t}\right] d t\right\}\right| \\
\leq & C E^{\frac{1}{2}}\left\{\left|X_{T}\right|^{2}\right\}+C T \sup _{0 \leq t \leq T} E^{\frac{1}{2}}\left\{\left|X_{t}\right|^{2}+\left|Y_{t}\right|^{2}\right\} \leq C m \sqrt{\varepsilon} T
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
Y_{0} & =E\left\{G X_{T}+\int_{0}^{T}\left[\alpha_{t}^{3} X_{t}+\beta_{t}^{3} Y_{t}+\eta_{t}\right] d t\right\} \\
& \geq m^{-1} T-\left|E\left\{G X_{T}+\int_{0}^{T}\left[\alpha_{t}^{3} X_{t}+\beta_{t}^{3} Y_{t}\right] d t\right\}\right| \\
& \geq m^{-1} T-C m \sqrt{\varepsilon} T
\end{aligned}
$$

Now choose $\varepsilon=C^{-2} m^{-4}$, we get $Y_{0} \geq 0$.
Step 5. Assume $\frac{1}{m} \leq \eta \leq m$ and $T \leq \delta$ where δ is the same as in Step 4. Denote

$$
\left\{\begin{array}{l}
X_{t}^{1}=\int_{0}^{t}\left[\alpha_{s}^{1} X_{s}^{1}+\beta_{s}^{1} Y_{s}^{1}+\gamma_{s}^{1} Z_{s}^{1}\right] d s+\int_{0}^{t}\left[\alpha_{s}^{2} X_{s}^{1}+\beta_{s}^{2} Y_{s}^{1}\right] d W_{s} \\
Y_{t}^{1}=G X_{T}^{1}+\xi+\int_{t}^{T}\left[\alpha_{s}^{3} X_{s}^{1}+\beta_{s}^{3} Y_{s}^{1}+\gamma_{s}^{3} Z_{s}^{1}\right] d s-\int_{t}^{T} Z_{s}^{1} d W_{s}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
X_{t}^{2}=\int_{0}^{t}\left[\alpha_{s}^{1} X_{s}^{2}+\beta_{s}^{1} Y_{s}^{2}+\gamma_{s}^{1} Z_{s}^{2}\right] d s+\int_{0}^{t}\left[\alpha_{s}^{2} X_{s}^{2}+\beta_{s}^{2} Y_{s}^{2}\right] d W_{s} \\
Y_{t}^{2}=G X_{T}^{2}+\int_{t}^{T}\left[\alpha_{s}^{3} X_{s}^{2}+\beta_{s}^{3} Y_{s}^{2}+\gamma_{s}^{3} Z_{s}^{2}+\eta_{s}\right] d s-\int_{t}^{T} Z_{s}^{2} d W_{s}
\end{array}\right.
$$

By Step 3, $Y_{0}^{1} \geq 0$, and by Step $4, Y_{0}^{2} \geq 0$. Therefore, $Y_{0}=Y_{0}^{1}+Y_{0}^{2} \geq 0$.
Step 6. Assume $\frac{1}{m} \leq \eta \leq m$. Let δ be as in Step 4 but corresponding to $\left(K, \bar{K}_{0}, m\right)$ instead of $\left(K, K_{0}, m\right)$, and assume $(n-1) \delta<T \leq n \delta$. Denote $T_{i} \triangleq \frac{i T}{n}$. Denote $G_{n} \triangleq G, \xi_{n} \triangleq \xi$. For $t \in\left[T_{n-1}, T_{n}\right]$, let

$$
\left\{\begin{aligned}
X_{t}^{n, 1}= & 1+\int_{T_{n-1}}^{t}\left[\alpha_{s}^{1} X_{s}^{n, 1}+\beta_{s}^{1} Y_{s}^{n, 1}+\gamma_{s}^{1} Z_{s}^{n, 1}\right] d s \\
& +\int_{T_{n-1}}^{t}\left[\alpha_{s}^{2} X_{s}^{n, 1}+\beta_{s}^{2} Y_{s}^{n, 1}\right] d W_{s} \\
Y_{t}^{n, 1}= & G_{n} X_{T_{n}}^{n, 1}+\int_{t}^{T_{n}}\left[\alpha_{s}^{3} X_{s}^{n, 1}+\beta_{s}^{3} Y_{s}^{n, 1}+\gamma_{s}^{3} Z_{s}^{n, 1}\right] d s-\int_{t}^{T_{n}} Z_{s}^{n, 1} d W_{s}
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
X_{t}^{n, 2}= & \int_{T_{n-1}}^{t}\left[\alpha_{s}^{1} X_{s}^{n, 2}+\beta_{s}^{1} Y_{s}^{n, 2}+\gamma_{s}^{1} Z_{s}^{n, 2}\right] d s+\int_{0}^{t}\left[\alpha_{s}^{2} X_{s}^{n, 2}+\beta_{s}^{2} Y_{s}^{n, 2}\right] d W_{s} \\
Y_{t}^{n, 2}= & G_{n} X_{T}^{n}+\xi_{n}+\int_{t}^{T_{n}}\left[\alpha_{s}^{3} X_{s}^{n, 2}+\beta_{s}^{3} Y_{s}^{n, 2}+\gamma_{s}^{3} Z_{s}^{n, 2}+\eta_{s}\right] d s \\
& -\int_{t}^{T_{n}} Z_{s}^{n, 2} d W_{s}
\end{aligned}\right.
$$

Denote $G_{n-1} \triangleq Y_{T_{n-1}}^{n, 1}, \xi_{n-1} \triangleq Y_{T_{n-1}}^{n, 2}$. By the proof of Theorem 1 we know $\left|G_{n-1}\right| \leq$ $K_{1} \leq \bar{K}_{0}$. By Step 5, $\xi_{n-1} \geq 0$. We note that, for $t \in\left[0, T_{n-1}\right],(X, Y, Z)$ satisfies

$$
\left\{\begin{array}{l}
X_{t}=\int_{0}^{t}\left[\alpha_{s}^{1} X_{s}+\beta_{s}^{1} Y_{s}+\gamma_{s}^{1} Z_{s}\right] d s+\int_{0}^{t}\left[\alpha_{s}^{2} X_{s}+\beta_{s}^{2} Y_{s}\right] d W_{s} \\
Y_{t}=G_{n-1} X_{T_{n-1}}+\xi_{n-1}+\int_{t}^{T_{n-1}}\left[\alpha_{s}^{3} X_{s}+\beta_{s}^{3} Y_{s}+\gamma_{s}^{3} Z_{s}+\eta_{s}\right] d s-\int_{t}^{T_{1}} Z_{s} d W_{s}
\end{array}\right.
$$

Repeat the arguments we may define G_{1} and $\xi_{1} \geq 0$, and it holds that

$$
\left\{\begin{array}{l}
X_{t}=\int_{0}^{t}\left[\alpha_{s}^{1} X_{s}+\beta_{s}^{1} Y_{s}+\gamma_{s}^{1} Z_{s}\right] d s+\int_{0}^{t}\left[\alpha_{s}^{2} X_{s}+\beta_{s}^{2} Y_{s}\right] d W_{s} \\
Y_{t}=G_{1} X_{T_{1}}+\xi_{1}+\int_{t}^{T_{1}}\left[\alpha_{s}^{3} X_{s}+\beta_{s}^{3} Y_{s}+\gamma_{s}^{3} Z_{s}+\eta_{s}\right] d s-\int_{t}^{T_{1}} Z_{s} d W_{s}
\end{array}\right.
$$

By Step 5 again, $Y_{0} \geq 0$.

Step 7. In general case, denote $\eta^{m} \triangleq(\eta \wedge m) \vee \frac{1}{m}$ and let $\left(X^{m}, Y^{m}, Z^{m}\right)$ denote the solution corresponding to η^{m}. By Step $6, Y_{0}^{m} \geq 0$. Then by Corollary 2, $Y_{0}=\lim _{m \rightarrow \infty} Y_{0}^{m} \geq 0$.

Remark 3. In general one cannot expect $Y_{t} \geq 0$.
Proof. Consider the following FBSDE:

$$
\left\{\begin{array}{l}
X_{t}=\int_{0}^{t} Y_{s} d W_{s} \\
Y_{t}=X_{T}+\int_{t}^{T} d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

Assume $Y_{T} \geq 0$. By the BSDE we have $X_{T}=Y_{T} \geq 0$. Since $E\left\{X_{T}\right\}=0$, we get $X_{T}=0$ a.s. Then on one hand, by the FSDE we have $Y_{t}=0$. On the other hand, by the BSDE we get $Y_{t}=T-t$. Contradiction!

Proof of Theorem [2: Let Θ^{λ} and $\nabla \Theta^{\lambda}$ be as in the proof of Theorem 3. Then

$$
\Delta X_{0}=0, \quad \Delta b=0, \quad \Delta \sigma=0, \Delta f \geq 0, \quad \Delta g \geq 0
$$

By Lemma 3, $\nabla Y_{0}^{\lambda} \geq 0$. The result follows (11) now.
Acknowledgements. I am very grateful to an anonymous referee for pointing out a serious mistake in the first version of the paper.

REFERENCES

[1] F. Antonelli, Backward-forward stochastic differential equations, Ann. Appl. Probab., 3 (1993), no. 3, 777-793.
[2] F. Antonelli and J. Ma, Weak solutions of forward-backward SDE's, Stochastic Anal. Appl., 21 (2003), no. 3, 493-514.
[3] J. Cvitanić and J. Ma, Hedging options for a large investor and forward-backward SDE's, Ann. Appl. Probab., 6 (1996), no. 2, 370-398.
[4] J. Cvitanić and J. Zhang, The steepest decent method for FBSDEs, Electric Journal of Probability, 10 (2005), 1468-1495.
[5] F. Delarue, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stochastic Process. Appl., 99 (2002), no. 2, 209-286.
[6] N. El Karoui and L. Mazliak, Backward Stochastic Differential Equations, Pitman research notes in mathematics series, (1997), 364.
[7] N. El Karoui, S. Peng, and M.C. Quenez, Backward stochastic differential equations in finance, Mathmatical Finance, 7 (1997), 1-72.
[8] Y. Hu, On the solution of forward-backward SDEs with monotone and continuous coefficients, Nonlinear Anal., 42 (2000), no. 1, Ser. A: Theory Methods, 1-12.
[9] Y. Hu, On the existence of solution to one-dimensional forward-backward SDEs, Stochastic Anal. Appl., 18 (2000), no. 1, 101-111.
[10] Y. Hu and S. Peng, Solution of forward-backward stochastic differential equations, Probab. Theory Related Fields, 103 (1995), no. 2, 273-283.
[11] Y. Hu and J. Yong, Forward-backward stochastic differential equations with nonsmooth coefficients, Stochastic Process. Appl., 87 (2000), no. 1, 93-106.
[12] J. Ma, P. Protter, and J. Yong, Solving forward-backward stochastic differential equations explicitly - a four step scheme, Probab. Theory Relat. Fields., 98 (1994), 339-359.
[13] J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications, Lecture Notes in Math., 1702, Springer, 1999.
[14] J. Ma, J. Zhang, and Z. Zheng, Weak Solutions for Forward-Backward SDEs - A Martingale Problem Approach, submitted.
[15] E. Pardoux and S. Peng S., Adapted solutions of backward stochastic equations, System and Control Letters, 14 (1990), 55-61.
[16] E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, Lecture Notes in CIS, Springer, 176 (1992), 200-217.
[17] E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Related Fields, 114 (1999), no. 2, 123-150.
[18] S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 37 (1999), no. 3, 825-843.
[19] Z. Wu, The comparison theorem of FBSDE, Statist. Probab. Lett., 44 (1999), no. 1, 1-6.
[20] J. Yong, Finding adapted solutions of forward-backward stochastic differential equations: method of continuation, Probab. Theory Related Fields, 107 (1997), no. 4, 537-572.
[21] J. Yong, Linear forward-backward stochastic differential equations, Appl. Math. Optim., 39 (1999), no. 1, 93-119.
[22] J. Yong, Linear forward-backward stochastic differential equations with random coefficients, Probab. Theory Related Fields, to appear.
[23] J. Zhang, The wellposedness of FBSDEs (II), submitted.
Received January 2005; revised September 2005.
E-mail address: jianfenz@usc.edu

