
The Annals of Applied Probability
2017, Vol. 27, No. 6, 3435–3477
https://doi.org/10.1214/17-AAP1284
© Institute of Mathematical Statistics, 2017

DYNAMIC APPROACHES FOR SOME TIME-INCONSISTENT
OPTIMIZATION PROBLEMS

BY CHANDRASEKHAR KARNAM, JIN MA1 AND JIANFENG ZHANG2

University of Southern California

In this paper, we investigate possible approaches to study general time-
inconsistent optimization problems without assuming the existence of opti-
mal strategy. This leads immediately to the need to refine the concept of time
consistency as well as any method that is based on Pontryagin’s maximum
principle. The fundamental obstacle is the dilemma of having to invoke the
Dynamic Programming Principle (DPP) in a time-inconsistent setting, which
is contradictory in nature. The main contribution of this work is the intro-
duction of the idea of the “dynamic utility” under which the original time-
inconsistent problem (under the fixed utility) becomes a time-consistent one.
As a benchmark model, we shall consider a stochastic controlled problem
with multidimensional backward SDE dynamics, which covers many exist-
ing time-inconsistent problems in the literature as special cases; and we argue
that the time inconsistency is essentially equivalent to the lack of comparison
principle. We shall propose three approaches aiming at reviving the DPP in
this setting: the duality approach, the dynamic utility approach and the mas-
ter equation approach. Unlike the game approach in many existing works in
continuous time models, all our approaches produce the same value as the
original static problem.

1. Introduction. In this paper, we propose some possible approaches to
tackle the general time-inconsistent optimization problems in continuous time set-
ting. These approaches are different from all the existing ones in the literature,
and are based on our new understanding of the time inconsistency. We note that
the time inconsistency appears naturally and frequently in economics and finance
(see, e.g., Kydland–Prescott [25] and Kahneman–Tversky [22, 23]). We refer to the
frequently cited survey by Strotz [32] for the fundamentals of this problem, and
Zhou [36] for some recent development on continuous time models. We should
point out that it was [36] that brought the time inconsistency issue to our attention.

I. Time inconsistency. We begin by briefly describing the time inconsistency in
an optimization problem that has been understood so far. Consider an optimization
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problem over a time interval [0, T ]:
(1.1) V0 := sup

u∈U[0,T ]
J (u),

where U[0,T ] is an appropriate set of admissible controls u defined on [0, T ], and
J (u) is a certain utility functional associated to u. Clearly, the problem (1.1) is
static. Its dynamic counterpart is the following optimization problem over [t, T ],
for any t ∈ [0, T ]:
(1.2) Vt := esssup

u∈U[t,T ]
Jt (u).

Here, U[t,T ] is the corresponding set of admissible controls on [t, T ] and the utility
functional Jt usually involves some conditional expectation, and thus could be
random.

An admissible control u∗ ∈ U[0,T ] is called “optimal” for the problem (1.1)
if J (u∗) = V0. Defining optimal control ut,∗ for the problem (1.2) similarly and
assuming their existence, we say the problem (1.2) is time consistent if, for any
t ∈ [0, T ], it holds that

(1.3) ut,∗
s = u∗

s , t ≤ s ≤ T .

The relation (1.3) amounts to saying that a (temporally) global optimum must be a
local one. The optimization problem (1.2) is called time inconsistent if (1.3) fails
to hold. Intuitively, time inconsistency means an optimal strategy today may not
be optimal tomorrow.

Since the early work [32], there have been typically two approaches for treat-
ing the time-inconsistent problems, both focusing on the optimal control: (i) the
strategy of precommitment, and (ii) the strategy of consistent planning. The for-
mer is to solve the static optimization problem (1.1), and then simply insist on
using u∗ (assuming it exists) throughout [0, T ], despite the fact that it may not
be optimal anymore when t > 0. The latter one has developed into the popu-
lar “game approach” in the literature, in which the player plays with infinitely
many future selves. To illustrate the idea, let us consider the discrete time set-
ting: 0 = t0 < · · · < tn = T . The “consistent planning” amounts to saying that at
any ti , the player tries to find optimal strategy u on [ti , ti+1) by assuming the fu-
ture selves have already found the optimal strategies and will actually use them
on [ti+1, T ] = [ti+1, ti+2) ∪ · · · ∪ [tn−1, T ]. We note that an equilibrium in such a
game approach should be similar to that of a principal agent problem, that is, in
the sense of a sequential optimization problem, rather than a Nash equilibrium.

The game approach makes sense in many applications, but is very challenging in
continuous time setting (being a game with uncountably many players). There have
been some successful applications of this approach in continuous time models;
see, for example, Bjork–Murgoci [2], Ekeland–Lazrak [11], Hu–Jin–Zhou [20]
and Yong [34], to mention a few. It is worth noting that since under the game
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framework the problem is time consistent, which enables one to apply the standard
tools such as dynamic programming and HJB equations. However, typically the
value of the game problem at t = 0 is different from the original value V0 in (1.1)
(unless the problem is time consistent), thus the solution of the game approach,
even if it exists, does not really solve the problem (1.1).

In this paper, we will focus on the value V0 of the original static problem (1.1).
We would like to emphasize that the problem (1.1), or its “precommitment” nature,
actually makes more sense in some applications. For example, in the so-called
principal-agent problem (see Section 2.3 below), practically the principal cannot
change the contract once it commenced (at least not as frequently as the game
approach requires), therefore, one is obliged to follow the contract designed at
t = 0 for the whole contractual period. In fact, problem (1.1) is a mathematically
interesting problem in its own right.

Another main feature of this paper is that, unlike most of the works in the “time
inconsistency” literature to date, we shall remove the presumption of the existence
of optimal strategy. In fact, as is well known in stochastic control literature, it is
not unusual that the optimal control fail to exist. It has been noted, however, that
without the optimal control (or equilibrium in game approach) it is not even clear
how to define the notion of time consistency/inconsistency in most of the current
literature. But on the other hand, the value V0 is always well defined, regardless the
existence of optimal control. Our main task is thus to find the new (time consistent)
methods to solve the original value V0 without using optimal controls, and to revive
the dynamical programming method in a novel context.

II. Our main observation. It is well understood that there are typically two
approaches to solve the optimization problem (1.1): the Dynamic Programming
Principle (DPP for short) and the Stochastic Maximum Principle (SMP for short).
The former relies fundamentally on the time consistency; whereas the latter re-
quires the existence of optimal control. We then immediately find ourselves facing
the dilemma: on the one hand the SMP, as a necessary condition, is no longer rel-
evant without an optimal control; but on the other hand, DPP does not make sense
either due to the lack of time consistency.

To “revive” the DPP for the static problem (1.1), our first plan is based on the
following simple but crucial observation: the problem (1.2) is time inconsistent
partially due to the fact that, modulus some conditional expectation, the utility Jt

in (1.2) is essentially the same as the utility J in (1.1), which could be in conflict
with the nature of the problem and causing the time inconsistency. Therefore, if
we allow Jt to vary more freely with the time t , denoting it by J (t, u), then it is
hopeful that the new dynamic optimization problem

(1.4) Ṽt := sup
u∈U[t,T ]

J (t, u)

could become time consistent with the right choice of J (t, ·). In particular, if we
require that J (0, u) = J (u), then Ṽ0 = V0 and we are indeed solving the original
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problem (1.1). In fact, as we will see in the next section, when the optimal control
u∗ exists, one can easily construct such J (t, ·) by utilizing the optimal u∗. The real
challenge is, of course, to find a desired J (t, ·) without using u∗ or in the situation
where u∗ does not exist.

We remark that, given the initial value J (0, u) = J (u), the dynamic J (·, ·) will
be sought forwardly (in time), and thus it is in spirit similar to the notion of forward
utility proposed in [28, 29]. However, it should be emphasized that the forward util-
ity U(t, ·) in [28, 29] is applied on an optimization problem over time period [0, t],
while our utility J (t, ·) is over time period [t, T ]. Namely, there is a fundamental
difference between the two notions.

Finally, we should point out that similar ideas of “dynamic utilities” have also
appeared in the literature under various different context that are time inconsistent
in nature; see, for example, Bouchard–Elie–Touzi [4], Cohen–Elliot [6], Cui–Li–
Wang-Zhu [8], Feinstein–Rudloff [19] and Miller [27].

III. The proposed approaches. Our second main observation in this paper is
that many time-inconsistent problems in the literature can be transformed into
control problems on multidimensional (possibly infinite dimensional) forward-
backward SDEs (see Section 2 for details). Therefore, in what follows we shall
focus on the following benchmark optimization problem for controlled multidi-
mensional backward SDEs:

V0 := sup
u∈U[0,T ]

ϕ
(
Yu

0
)
,

(1.5)

where Yu
t = ξ +

∫ T

t
f
(
s, Y u

s ,Zu
s , us

)
ds −

∫ T

t
Zu

s dBs, t ∈ [0, T ].
We note that in (1.5) we have made two simplifications in order to focus more on
the main issue of time inconsistency: the controlled dynamics is only a backward
SDE and the dimension is finite. All the results in this paper can be extended to the
controlled forward-backward SDE case, but with heavier presentations. We prefer
not to seek such generality in this paper. The infinite dimensional case, however,
is more challenging, and we shall leave it to future study.

We start with a “duality approach” by first noticing that

(1.6) V0 = sup
y∈D0

ϕ(y) where D0 := {
Yu

0 : u ∈ U[0,T ]
}
.

We shall argue that, in the Markovian case, the “reachable set” D0 can be written
as

(1.7) D0 = N (0,0) := {
y : W(0,0, y) = 0

}
,

where D0 is the closure of D0, W(t, x, y) is the unique viscosity solution to certain
standard HJB equation, and N (0,0) is the the so-called “nodal set” of W . Assum-
ing ϕ is continuous, we can first solve the HJB equation for W , then compute its
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nodal set N (0,0), and finally solve a simple finite dimensional optimization prob-
lem:

(1.8) V0 = sup
y∈N (0,0)

ϕ(y).

We note that the idea of nodal set was used in Ma–Yong [26] for solving a forward-
backward SDE (without control u), and we call this a “duality approach.” We shall
further argue that the duality holds in non-Markovian case as well, by utilizing
the viscosity theory of path dependent PDEs developed by Ekren–Keller–Touzi–
Zhang [12] and Ekren–Touzi–Zhang [13, 14].

While the duality approach is quite generally applicable under mild conditions,
it solves only the static problem V0. In particular, it does not provide a time consis-
tent dynamic value Ṽt . Our next step is to extend the set D0 and the duality (1.7)
to a dynamic version:

(1.9) Dt := {
Yu

t : u ∈ U[t,T ]
}
, Dt = N (t,Bt ) := {

y : W(t,Bt , y) = 0
}
.

We shall argue that the family {Dt }0≤t≤T satisfies a geometric DPP, in the spirit of
Soner–Touzi [31], and closely related to the set valued analysis (see, e.g., Aubin–
Frankowska [1] and Feinstein–Rudloff [18]). However, we note that the following
natural dynamic value:

(1.10) Vt := esssup
u∈U[t,T ]

ϕ
(
Yu

t

) = esssup
y∈Dt

ϕ(y) = esssup
y∈N (t,Bt )

ϕ(y)

is typically time inconsistent. Here, esssupy∈Dt
ϕ(y) means esssupy∈Rd [ϕ(y) ×

1Dt (y)], and the same definition also applies to other similar notation. The goal
of our second approach is to find a dynamic utility function �(t, y) (possibly ran-
dom) satisfying �(0, ·) = ϕ and that

(1.11) Ṽt := esssup
u∈U[t,T ]

�
(
t, Y u

t

) = esssup
y∈Dt

�(t, y) = esssup
y∈N (t,Bt )

�(t, y)

is time consistent. We shall name this the “dynamic utility approach” for simplic-
ity. An important observation coming out from the study of this approach is that
the time inconsistency of (1.10) is essentially equivalent to the lack of comparison
principle for the multidimensional BSDE, a well-known fact in BSDE theory. Thus
our task becomes to find some dynamic utility function �(t, ·), which satisfies a
certain comparison principle. In this paper, we succeed in finding a desired � in a
linear case, and we shall leave the general nonlinear case, which seems to be quite
challenging, to future research.

Our last approach borrows the idea from the mean field game literature (see,
e.g., Cardaliaguet–Delarue–Lasry–Lions [5]), which we now describe. First, note
that the value V0 in (1.6) is clearly a function of the terminal condition ξ . Thus,
for any t ∈ [0, T ] and random variable η ∈ L

2(Ft ), we define

(1.12) �(t, η) := sup
u∈U[0,t]

ϕ
(
Y u

0 (t, η)
)
,
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where Y u(t, η) is the solution to BSDE (1.5) on [0, t], satisfying Y u
t (t, η) = η.

Clearly, �(0, y) = ϕ(y) and V0 = �(T , ξ), thus both functions � in (1.11) and �

in (1.12) are temporally “dynamic” in nature, with the same initial value ϕ. The
main difference, however, is that in (1.11) the control is over [t, T ], whereas in
(1.12) the control is over [0, t]. One should also note that, unlike in mean field the-
ory where the functions often depend only on the laws of the random variables, the
function � in (1.12) depends indeed on the random variable η, or more precisely
on the joint law of (η,B).

A very pleasant surprise of the (forward) value function � is that it satisfies
the following form of DPP almost automatically, and can thus be viewed as time
consistent:

�(t2, η) := sup
u∈U[t1,t2]

�
(
t1,Y

u
t1

(t2, η)
)
, η ∈ L

2(Ft2),

(1.13)
for any 0 ≤ t1 < t2 ≤ T .

We shall emphasize that, unlike the usual DPP in stochastic control literature,
(1.13) is forward (in time), that is, t1 < t2(!). This is due to the fact that we are
optimizing a backward controlled problem. To the best of our knowledge, such
type of forward DPP is new.

Having obtained the DPP (1.13), we believe that certain HJB types of differ-
ential equations (for �) should naturally come into the picture, which we shall
name as the master equation, due to the nature of the function � . We expect two
features for this master equation: first, it should be a first-order partial differential
equation in a certain sense, due to the forward nature of the DPP; second, it should
involve certain path derivatives of η in the sense of Dupire [10], due to the pro-
gressive measurability of � and the requirement η being Ft -measurable. We shall
argue that when the function � defined by (1.12) is smooth (to be specified in the
paper), it will be the unique (classical) solution to our master equation. The main
difficulty of this approach, however, is when � does not have the desired smooth-
ness. It then becomes a very interesting, albeit challenging, problem to propose
appropriate notion of weaker solution to the master equation. We shall leave this
to future research.

The rest of the paper is organized as follows. In Section 2, we present several
examples of time-inconsistent problems. In Section 3, we introduce our model and
explain the role of comparison principle in time-consistency issue. In Sections 4–6,
we propose the three approaches, respectively.

2. Preliminaries and examples. Throughout this paper, we shall use the
following canonical setup. Let T > 0 be a fixed time horizon, � := {ω ∈
C([0, T ],Rd) : ω0 = 0} the canonical space, F := B(�), the Borel σ -filed of �

and P0 the Wiener measure. Further, we let Bt(ω) := ωt , ω ∈ � be the canon-
ical process and F := F

B the natural filtration generated by B , augmented by
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P0. Then B is an F-Brownian motion under P0. We also denote E := E
P0 and

Et [·] := E
P0[·|Ft ] for simplicity, when the context is clear, and 
 := [0, T ] × �.

For a generic Euclidean space X, we denote its inner product by (x, y) = x ·y =
x�y, its norm by |x| := (x, x)1/2 and its Borel σ -field by B(X). If X = R

d1×d2 ,
we denote A : B := tr(A�B), for A,B ∈ X. Also, let G ⊆ F be any sub-σ -field
and [s, t] ⊆ [0, T ], we denote:

• L
2(G;X) to be all X-valued, G-measurable random variable ξ such that ‖ξ‖2

2 :=
E[|ξ |2] < ∞. The inner product in L

2(G;X) is denoted by (ξ, η)2 := E[(ξ, η)],
ξ , η ∈ L

2(G;X).
• L

2
F
([s, t];X) to be all X-valued, F-adapted process η on [s, t], such that

‖η‖2,s,t := E

[∫ t

s
|ηt |2 dt

]1/2
< ∞.

In particular, if X =R, we shall omit X in the above notation for simplicity.
In what follows, we present several examples of time-inconsistent optimization

problems. In each of these examples, we shall see the BSDE formulation of the
original problem and the possibility of finding the dynamic utility. For simplicity,
in this section we assume d = 1.

2.1. A mean-variance optimization problem. Consider a simple controlled
stochastic dynamics

Xu
s = x0 +

∫ s

0
ur dr +

∫ s

0
ur dBr,

(2.1)
s ∈ [0, T ], u ∈ U[0,T ] := L2

F

([0, T ]).
Let c > 0 be a constant, and consider the optimization problem

(2.2) V0 := sup
u∈U[0,T ]

{
E
[
Xu

T

]− 1

2c
Var

(
Xu

T

)}
.

Following the arguments in [20], one shows that the above optimization problem
has an optimal feedback control: u∗(s, x) = x0 − x + ceT , 0 ≤ s ≤ T . In other
words, the optimal control is: u∗

s = u∗(s,X∗) = x0 − X∗
s + ceT , s ∈ [0, T ], where

X∗ is the corresponding optimal dynamics satisfying

X∗
s = x0 +

∫ s

0

[
x0 − X∗

r + ceT ]dr +
∫ s

0

[
x0 − X∗

r + ceT ]dBr, s ∈ [0, T ].

Now let 0 < t < T be given, and we follow the control u∗ on [0, t] so that X∗
t is

well defined. Consider the optimization problem on [t, T ], starting from X∗
t :

(2.3) Xt,u
s = X∗

t +
∫ s

t
ur dr +

∫ s

t
ur dBr, s ∈ [t, T ];
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and define, similar to (2.2), the value of the optimization problem at time t :

(2.4) Vt := esssup
u∈U[t,T ]

{
Et

[
X

t,u
T

]− 1

2c
Vart

(
X

t,u
T

)}
,

where Vart is the conditional variance under Et . Again, as before we should have
optimal control on [t, T ]: ut,∗(s, x) = X∗

t − x + ceT −t , s ∈ [t, T ]. It is clear that
ut,∗(s, x) 
= u∗(s, x). Consequently, ut,∗

s := ut,∗(s,Xt,∗
s ) 
= u∗

s , where

Xt,∗
s = X∗

t +
∫ s

t

[
X∗

t − Xt,∗
r + ceT −t ]dr

+
∫ s

t

[
X∗

t − Xt,∗
r + ceT −t ]dBr, s ∈ [t, T ].

Thus, the problem (2.3)–(2.4) is time inconsistent.
However, we should note that we can change the cost functional in (2.4) slightly

so that it becomes time consistent. In fact, let ct > 0 be a random process and
consider

(2.5) Ṽt := esssup
u∈U[t,T ]

{
Et

[
X

t,u
T

]− 1

2ct

Vart
(
X

t,u
T

)}
.

A similar argument would lead us to the optimal feedback control: ũt,∗(s, x) =
X∗

t − x + cte
T −t . If we set

(2.6) ct := cet − et−T [X∗
t − x0

]
, t ∈ [0, T ],

then ũt,∗(s, x) = x0 − x + ceT = u∗(s, x). Namely, the problem (2.3), (2.5) is time
consistent.

REMARK 2.1. (i) Since c0 = c, we have Ṽ0 = V0. To wit, {Ṽt }0≤t≤T is a time-
consistent dynamic system with initial value V0, as desired.

(ii) We note that in the portfolio selection problems, the constant c in (2.2)
usually stands for the risk aversion parameter of the investor. In practice, it is rea-
sonable that this risk aversion parameter may evolve as time changes. A time-
inconsistent problem where the constant c depends on state process X was studied
in [3]. Our example shows that if ct is chosen correctly, then the problem could
become time consistent.

(iii) A discrete case in the same spirit of this example was studied in [8].

It is worth noting that the parameter ct in (2.6) is constructed via the optimal
control u∗ (and so will be the examples in Sections 2.2, 2.3), which is undesirable
given our goal of tackling the time inconsistency without using optimal strategy.
Such a slight drawback notwithstanding, an important observation from this exam-
ple is that the problems (2.1)–(2.2) can be converted to an optimal control problem
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for a 2-dimensional backward SDE:

V0 := sup
u∈U

ϕ
(
Y

1,u
0 , Y

2,u
0

)
where ϕ(y1, y2) := y1 + 1

2c
|y1|2 − 1

2c
y2,

Y
1,u
t = Xu

T −
∫ T

t
Z1,u

s dBs,(2.7)

Y
2,u
t = ∣∣Xu

T

∣∣2 −
∫ T

t
Z2,u

s dBs, t ∈ [0, T ].
As we pointed out in the Introduction and will articulate more in the next sec-
tion, one of the main reasons for the time inconsistency is the lack of comparison
principle for the underlying dynamics, which is particularly the case for (2.7).

2.2. A one-dimensional example. Besides the comparison principle as men-
tioned in the end of the previous subsection, another reason for time inconsis-
tency is that the ϕ in (2.7) is not monotone. In what follows, we present a one-
dimensional example where the comparison principle holds true.

Let U := L2
F
([0, T ]; [−1,1]). Consider a simple one-dimensional BSDE

(2.8) Yu
s = BT +

∫ T

s
ur dr −

∫ T

s
Zu

r dBr, s ∈ [0, T ], u ∈ U ,

and let ϕ(y) := −|c + y|, y ∈ R, for some constant c ∈ R. We define the optimal
value by

(2.9) V0 := sup
u∈U

ϕ
(
Yu

0
) = sup

u∈U
ϕ
(
E
[
Yu

0
]) = − inf

u∈U

∣∣∣∣c +
∫ T

0
E[us]ds

∣∣∣∣.
Then one can easily check that u∗ ∈ U is an optimal control if and only if

u∗
s ≡ −1 if c ≥ T ;

u∗
s ≡ 1 if c ≤ −T ; and∫ T

0
E[us]ds = −c if |c| < T.

Now assume c = T . Let 0 < t < T and consider the optimization problem over
[t, T ]:
(2.10) Vt := esssup

u∈U
ϕ
(
Yu

t

) = − essinf
u∈U

∣∣∣∣T + Bt +
∫ T

t
Et [us]ds

∣∣∣∣.
Since c = T , if the problem were time consistent we would then expect that the
optimal control is u∗

s = −1, from the previous argument. However, we note that on
the set {Bt ≤ t − 2T }, one has

0 ≥ T + Bt + (T − t) ≥ T + Bt +
∫ T

t
Et [us]ds for all u ∈ U ,
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thus the optimal control for Vt should be ut,∗
s = 1 on the set {Bt ≤ t − 2T }, instead

of u∗
s = −1, a contradiction. Namely, the problem (2.9) is time inconsistent.

Similar to the example in the previous subsection, if we allow the constant c in
(2.9) to be time varying and even random, then the problem could become time
consistent. Indeed, if we choose ct := T − t − Bt , and consider

(2.11) Ṽt := esssup
u∈U

�
(
t, Y u

t

)
where �(t, y) := −|ct + y|.

Then it is readily seen that

Ṽt = − essinf
u∈U

∣∣∣∣(T − t − Bt) + Bt +
∫ T

t
Et [us]ds

∣∣∣∣
= − essinf

u∈U

∣∣∣∣T − t +
∫ T

t
Et [us]ds

∣∣∣∣,
and thus the optimal control is still u∗ = −1.

2.3. A principal-agent problem. In this example, we consider a special case
of the Holmstrom–Milgrom model in the Pringcipal-agent Problem (cf. [9]). In
this problem, the principal is to find the optimal contract assuming the agent(s)
will always perform optimally given any contract. The main feature of principal’s
contract is that it is pre-committed, that is, it cannot be changed (at least not fre-
quently) during a contractually designed duration.

To be more precise, let γA > 0, γP > 0, R < 0 be constants, and consider two
exponential utility functions:

UA(x) := − exp{−γAx}, UP (x) := − exp{−γP x}.
We denote the principal’s control set by UP ⊂ L

2(FT ), and the agent’s control set
by UA ⊂ L

2
F
([0, T ]), satisfying certain technical conditions which for simplicity

we will not specify. Given any contract CT ∈ UP at t = 0, we consider the agent’s
problem:

(2.12) V A
0 (CT ) := sup

u∈UA

E
P

u
[
UA

(
CT − 1

2

∫ T

0
|us |2 ds

)]
,

where P
u is a new probability measure defined by dPu

dP0
:= exp{∫ T

0 us dBs −
1
2

∫ T
0 |us |2 ds}. We note that here the agent’s control problem (2.12) is in a “weak

formulation,” and V A
0 (CT ) ≤ 0 is well defined. We shall consider those contracts

that satisfy the following “participation constraint”:

(2.13) V A
0 (CT ) ≥ R,

where R < 0 is the “market value” of an agent that a principal has to consider at
t = 0.
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It can be shown (cf. [9], Chapter 6) that the agent’s problem can be solved in
terms of the following quadratic BSDE:

YA
s = CT − γA − 1

2

∫ T

s

∣∣ZA
r

∣∣2 dr −
∫ T

s
ZA

r dBr, s ∈ [0, T ].
In fact, by a simple comparison argument for BSDEs one shows that the agent’s
optimal action is u∗ = u∗(CT ) = ZA ∈ UA, with optimal value V A

0 = UA(YA
0 ).

Given the optimal u∗ = u∗(CT ), we now consider the principal’s problem:

(2.14) V P
0 := sup

CT ∈UP

E
P

u∗ [
UP (BT − CT )

]
,

subject to the participation constraint (2.13). The solution to the problem (2.14)–
(2.13) can be found explicitly (cf. [9], Chapter 6). Indeed, the optimal contract
is

C∗
T := − 1

γA

ln(−R) + u∗BT + γA − 1

2

∣∣u∗∣∣2T ,

where u∗ := 1+γP

1+γA+γP
is the corresponding agent’s optimal action.

We now consider the dynamic version of the agent’s problem (2.12): for t ∈
[0, T ],
(2.15) V A

t (CT ) := esssup
u∈UA

E
Pu

t

[
UA

(
CT − 1

2

∫ T

t
|us |2 ds

)]
,

and the principal’s problem, given agent’s optimal control u(t,CT ):

(2.16) V P
t := esssup

CT ∈UP

E
P

u(t,CT )

t

[
Up(BT − CT )

]
subject to V A

t (CT ) ≥ R.

Solving the principal’s problem (2.16) as before, we see that the optimal contract
is

C
t,∗
T := − 1

γA

ln(−R) + u∗(BT − Bt) + γA − 1

2

∣∣u∗∣∣2(T − t).

Clearly, C
t,∗
T is different from C∗

T , thus the problem is time inconsistent.
Again, the time inconsistency can be removed if we allow the market value of

the agents, the constant R, to be time varying (as it should be). Indeed, if we set

(2.17) Rt := R exp
(
−γA

[
u∗Bt + γA − 1

2

∣∣u∗∣∣2t]),

and modify the participation constraint of the principal’s problem in (2.14) to
V A

t (CT ) ≥ Rt . Then the optimal solution to the principal’s problem (2.16) will
become

C̃
t,∗
T = − 1

γA

ln(−Rt) + u∗(BT − Bt) + γA − 1

2

∣∣u∗∣∣2(T − t)

= − 1

γA

ln(−R) + u∗BT + γA − 1

2

∣∣u∗∣∣2T = C∗
T ,
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that is, the problem becomes time consistent.
We note that the problem (2.14) can also be written as an optimal control prob-

lem for a forward-backward SDE. To see this, we first note that by some straight-
forward arguments, one can show that for the optimal contract C∗

T , the identity
V0(C

∗
T ) = R must hold. Therefore, we may impose a stronger participation con-

straint in (2.14): V0(CT ) = R, and rewrite YA as a forward diffusion:

YA
s = U−1

A (R) + γA − 1

2

∫ s

0

∣∣ZA
r

∣∣2 dr +
∫ s

0
ZA

r dBr, s ∈ [0, T ],
which can be thought of as the optimal solution to the agent’s problem (2.14) with
dynamics

(2.18) YA,u
s := U−1

A (R) + γA − 1

2

∫ s

0
|ur |2 dr +

∫ s

0
ur dBr, s ∈ [0, T ],

with the relation CT = Y
A,u
T . Then, instead of viewing CT as the principal’s con-

trol, we may view u := ZA as the principal’s control, and unify the principal-agent
problem to the following optimization problem for FBSDEs:

(2.19) V0 := sup
u∈UA

Y
P,u
0 ,

where (YA,u, YP,u) is the solution to the (forward) SDE (2.18) and the following
BSDE:

(2.20) YP,u
s = UP

(
BT − Y

A,u
T

)+
∫ T

s
urZ

P,u
r dr −

∫ T

s
ZP,u

r dBr, s ∈ [0, T ],
respectively.

REMARK 2.2. The BSDEs appeared in this problem are all one-dimensional,
thus the comparison principle should hold and the problem is expected to be time
consistent. The time inconsistency is caused by the fixed constraint R = V0(CT ).
We removed the time inconsistency by setting Rt = V A

t (C∗
T ) for all t ∈ [0, T ],

where C∗
T = Y

A,u∗
T is the optimal contract, which is exactly the random participa-

tion constraint (2.17). In more general models, however, the BSDEs could very
well be multidimensional; see, for example, [9], and the comparison principle
would indeed fail.

2.4. The probability distortion problem. In this subsection, we show that the
probability distortion problem considered in [33] can also be recast as an optimiza-
tion problem with controlled BSDEs. With a slight variation, the problem in [33]
can be understood as follows:

(2.21) V0 := sup
τ

∫ ∞
0

w
(
P0

(
U(Bτ ) ≥ x

))
dx,
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where τ is running over all stopping times, U ≥ 0 is a utility function and the
probability distortion function w : [0,1] → [0,1] is a continuous and strictly in-
creasing function such that w(0) = 0 and w(1) = 1. If w(x) = x for all x ∈ [0,1],
then V0 = supτ E[U(Bτ )], which is a standard optimal stopping problem and is
time consistent. However, for general distortion function w, the problem is typ-
ically time inconsistent as was showed in [33], where the optimal stopping time
was constructed by using some quantile functions and the Skorohod embedding
theorem.

To write (2.21) in the form of (1.5), we let τ be the control and x ∈ [0,∞) be
the parameter. For each x and τ , introduce a BSDE:

(2.22) Y
x,τ
t = 1{U(Bτ )≥x} −

∫ T

t
Zx,τ

s dBs.

That is, we view Y τ := (Y x,τ )x∈[0,∞) as the solution to a (uncountably) infinite
dimensional BSDE. Then we have

(2.23) V0 = sup
τ

ϕ
(
Y τ

0
)

where ϕ(f ) :=
∫ ∞

0
w
(
f (x)

)
dx.

2.5. A deterministic example. It is a common suspicion that the random un-
certainty involved in the underlying problem may play some fundamental role in
the time inconsistency. To conclude this section, we provide a simple determin-
istic example where the comparison principle fails in order to show that the time
inconsistency is more of a structural issue than an information issue.

Let T > 1, and U[s,t] be the set of deterministic functions u : [s, t] → [0,1].
Consider the deterministic optimization problem:

Vt := sup
u∈U[t,T ]

Y
1,u
t ,

(2.24)

where Y
1,u
t :=

∫ T

t

[
us − Y 2,u

s

]
ds,Y

2,u
t :=

∫ T

t
us ds, t ∈ [0, T ].

By straightforward calculation, we obtain that

Y
1,u
t =

∫ T

t

[
us −

∫ T

s
ur dr

]
ds =

∫ T

t
[1 + t − s]us ds,(2.25)

and then clearly the optimal control is: ut,∗
s := 1[t,(1+t)∧T ](s), t ≤ s ≤ T . In par-

ticular, for 0 < t < T − 1, we see that

(2.26) u0,∗
s = 0 
= 1 = ut,∗

s , s ∈ (1,1 + t).

That is, the problem (2.24) is time inconsistent.
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3. Characterization of time consistency in our model. Having argued in
previous section that many time-inconsistent problems can be recasted as opti-
mization problems with controlled BSDEs/FBSDEs, in the rest of the paper we
shall focus exclusively on such class of optimization problems and introduce our
main schemes. Again, our purpose here is to revitalize the “dynamical program-
ming principle” (DPP) in a time-inconsistent situation, without assuming the ex-
istence of an optimal control. As we pointed out in Introduction, in order to focus
more on the main ideas, we shall consider only the case where the controlled dy-
namics are finite dimensional BSDEs, with the forward component being simply
the driving Brownian motion itself. The extension to controlled forward SDEs re-
quires some heavier notation but no substantial difficulty. The generalization to
infinite dimension is more challenging in general, and we shall leave it to future
study.

We begin with a precise description of the framework. Let U be a Polish set,
and U := L

0
F
([0, T ];U). Consider the following d ′-dimensional BSDE:

(3.1) Yu
t = ξ +

∫ T

t
f
(
s, Y u

s ,Zu
s , us

)
ds −

∫ T

t
Zu

s dBs, t ∈ [0, T ].

Now, for a given cost function ϕ : Rd ′ → R, we define the following optimization
problem:

(3.2) V0(ξ) := sup
u∈U

ϕ
(
Yu

0
)
, for any ξ ∈ L

2(FT ;Rd ′)
.

Throughout this paper, we shall make use of the following standing assump-
tions.

ASSUMPTION 3.1. (i) The generator f : [0, T ]×�×R
d ′ ×R

d ′×d ×U →R
d ′

is F-progressively measurable in all variables, uniformly Lipschitz continuous in
(y, z), and

E

[(∫ T

0
sup
u∈U

∣∣f (t,0,0, u)
∣∣dt

)2]
< ∞.

(ii) The function ϕ : Rd ′ →R is continuous.

Given ξ ∈ L
2(FT ;Rd ′

), it is by now well understood that, under Assump-
tion 3.1, BSDE (3.1) is well-posed for any u ∈ U , and {Yu

0 , u ∈ U } is a bounded
set in R

d ′
. Thus, V0(ξ) in (3.2) is well defined. We shall refer to problem (3.2) as

the static problem.
We now consider the problem (3.2) in a dynamic setting. For 0 ≤ t ≤ T , we

define

(3.3) Vt(ξ) := esssup
u∈U

ϕ
(
Yu

t

)
.
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As we observed in the previous section, when ϕ is nonmonotone or when d ′ ≥ 2,
the problem (3.3) is typically time inconsistent in the sense that the optimal con-
trol of static problem (3.2) is no longer optimal for the dynamic problem (3.3) over
the time duration [t, T ]. We should note, however, that such a characterization, al-
though self-explanatory and easy to understand, has a fundamental drawback, that
is, it relies on the existence of optimal control, which in general is a tall order. In
fact, it is by no means clear why problems (3.2) and (3.3) will possess any optimal
control, which in theory would make it impossible to check the time consistency
of the problem.

To get around this deficiency, we propose a more generic characterization of
time inconsistency, based on the DPP for the value function. To facilitate our
discussion, let us introduce another notation. For any 0 < t ≤ T , η ∈ L

2(Ft ),
and u ∈ U , let (Y u(t, η),Z u(t, η)) denote the solution to the following BSDE
on [0, t]:
(3.4) Y u

s = η +
∫ t

s
f
(
r,Y u

r ,Z u
r , ur

)
dr −

∫ t

s
Z u

r dBr, 0 ≤ s ≤ t.

Clearly, using the notation Y u(·, ·) and uniqueness of the solution to BSDE (3.4)
we can write: Yu

s = Y u
s (t, Y u

t ), 0 ≤ s ≤ t ≤ T ; and, in particular, Yu
0 = Y u

0 (t, Y u
t ),

t ∈ [0, T ].
We illustrate the idea through two examples where ϕ is monotone and the BSDE

satisfies the comparison principle.

EXAMPLE 3.2. Assume that Assumption 3.1 is in force, and assume further
that d ′ = 1 and ϕ is increasing. Then it is clear that the static problem (3.2)
is equivalent to V0(ξ) := ϕ(supu∈U Yu

0 ). On the other hand, by the comparison
principle of BSDEs and the monotonicity of ϕ, we see immediately that the dy-
namic problem (3.3) can also be written as Vt(ξ) = ϕ(Y t ), 0 ≤ t ≤ T , where
f (s,ω, y, z) := supu∈U f (s,ω, y, z, u), and

Y s = ξ +
∫ T

s
f (r, Y r ,Zr) dr −

∫ T

s
Zr dBr, s ∈ [0, T ].

We claim that this problem is time consistent in the sense that the following
DPP holds:

(3.5) Vt1(ξ) = esssup
u∈U

ϕ
(
Yu

t1
(t2, Y t2)

)
, P0-a.s., 0 ≤ t1 < t2 ≤ T .

Indeed, for simplicity we set t1 := 0 and t2 := t . For any u ∈ U , we write Yu
0 =

Yu
0 (t, Y u

t ). By the comparison principle of BSDE, we see that Yu
t ≤ Y t , which

implies Yu
0 = Y u

0 (t, Y u
t ) ≤ Y u

0 (t, Y t ), and consequently ϕ(Yu
0 ) ≤ ϕ(Y u

0 (t, Y t )),
thanks to the monotonicity of ϕ. Since u is arbitrary, we conclude that

V0(ξ) ≤ sup
u∈U

ϕ
(
Y u

0 (t, Y t )
)
.(3.6)
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To see the opposite inequality of (3.6), for any ε > 0, we apply the standard mea-
surable selection theorem to get a measurable function Iε : [0, T ] × � × R ×
R

1×d → U such that

f
(
s,ω, y, z, Iε(s,ω, y, z)

)≥ f (s,ω, y, z) − ε, ∀(s,ω, y, z).(3.7)

Set uε
s := Iε(s, Y s,Zs), t ≤ s ≤ T . By standard BSDE arguments, we see that

Y t ≤ Yuε

t + Cε.(3.8)

Now for any u ∈ U , by standard BSDE arguments again, it follows from (3.8) that

Y u
0 (t, Y t ) ≤ Y u

0
(
t, Y uε

t

)+ Cε = Y
u
⊗

t uε

0 + Cε ≤ V0(ξ) + Cε,

where u
⊗

t u
ε := u1[0,t) + uε1[t,T ]. By the arbitrariness of u and ε, we prove the

opposite inequality in (3.6), whence the DPP (3.5).

We should note that the DPP (3.5) does not require the existence of optimal
control, but it indeed characterizes the time consistency. Moreover, when U is
compact and f is continuous in u, there exists a measurable function I : [0, T ] ×
� ×R×R

1×d → U such that

f
(
s,ω, y, z, I (s,ω, y, z)

)= f (s,ω, y, z), ∀(s,ω, y, z).

In this case, one can easily check that u∗
s := I (s, Y s,Zs) is optimal both for V0(ξ)

and for any Vt(ξ). So the problem is time consistent in terms of optimal control as
well.

REMARK 3.3. As we see in the argument leading to (3.6), the DPP (3.5)
clearly relies on both the comparison principle of the BSDE and the monotonic-
ity of ϕ. In fact, as we saw in Section 2.2, the comparison principle alone is not
sufficient for the time consistency.

The next example reinforces the importance of comparison principle for time
consistency.

EXAMPLE 3.4. Let d ′ ≥ 2. Consider the following multidimensional BSDE:
for i = 1, . . . , d ′,

Y
i

t = ξi +
∫ T

t
f i

(
s, Y s,Z

i

s

)
ds −

∫ T

t
Z

i

s dBs,

where f i(t, y, zi) := supu∈U fi(t, y, zi, u). Assume that:

(i) for i = 1, . . . , d ′, fi does not depend on zj and is increasing in yj , for all
j 
= i; and

(ii) ϕ is increasing in each component.
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Then it is well known that the comparison principle remains true for such BSDEs.
Following the similar arguments as in Example 3.2, we can show that Vt(ξ) =
ϕ(Y t ), 0 ≤ t ≤ T , and

Vt1(ξ) = esssup
u∈U

ϕ
(
Y u

t1
(t2, Y t2)

)
, P0-a.s., 0 ≤ t1 < t2 ≤ T .

Consequently, the problem is time consistent.

From Example 3.4, we see the crucial roles that the comparison principle and
the monotonicity of some key coefficients play in the time consistency. In general,
the comparison principle fails for d ′ > 2 except for some special cases. We refer
to [21] for some detailed analysis on this issue. We note that the problem will
remain time consistent if fi and ϕ are monotone on the corresponding variables
in a compatible manner (e.g., fi is decreasing in yj and ϕ is decreasing in all its
variables). The result would be very different if such compatibility is violated. In
fact, as we saw in Section 2.5, when fi is decreasing in yj but ϕ is increasing, the
problem becomes time inconsistent.

To study the general time-inconsistent problem, we propose the following defi-
nition.

DEFINITION 3.5. An F-progressively measurable function � : [0, T ] × � ×
R

d ′ →R is called a “time-consistent dynamic utility function” for problems (3.1)–
(3.2) if:

(i) �(0, y) = ϕ(y),
(ii) there exists a mapping Y : [0, T ] × � �→ R

d ′
satisfying Y t ∈ L

2(Ft ;Rd ′
),

for t ∈ [0, T ] and YT = ξ , P-a.s., such that the following DPP holds:

�(t1, Y t1) = esssup
u∈U

�
(
t1,Y

u
t1

(t2, Y t2)
)
, 0 ≤ t1 < t2 ≤ T .(3.9)

In particular, in this case we say that the following dynamic processes is time
consistent:

Ṽt (ξ) := �(t,Y t ) = esssup
u∈U

�
(
t, Y u

t

)
.(3.10)

REMARK 3.6. The time-consistent dynamic utility function � is motivated
in part by the notion of the forward utility proposed in [17, 28, 29], because both
evolve forwardly in time. It should be noted, however, that there is a fundamental
difference here: for each t ∈ [0, T ], the forward utility U(t, ·) in [17, 28, 29] acts
on t and optimizes over the time duration [0, t], whereas our dynamic utility �(t, ·)
acts on terminal time T and optimizes over the time duration [t, T ].

We would like to emphasize the following three main features of Definition 3.5:
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(1) Ṽ0(ξ) = V0(ξ), thanks to condition (i). This means the dynamic problem
coincides with the static problem.

(2) The function � is defined “forwardly,” with an initial value, and the map-
ping Y is defined backwardly, with a terminal value. We should particularly note
that at this point we do not require the t-measurability of the mapping Y ; and

(3) The time consistency is characterized by the DPP, which does not require
the existence of optimal control.

It is easy to see that the function �(t, ·) ≡ ϕ in Examples 3.2 and 3.4 is a
time-consistent dynamic utility. Furthermore, if the optimal control u∗ exists, we
may simply set Y := Yu∗

, and in this case one can easily find a desired �, as
we see in the examples in the previous section. However, in general, we need
to find the Y whose dynamics (if it exists) may help us to either determine the
optimal control u∗, if any, or find conditions for the existence of optimal con-
trol. We should also note that the dynamic utility function � is not unique. In
fact, if � is a time-consistent dynamic utility, then for any process θ with θ0 = 0,
�̃(t, y) := �(t, y) + θt is also a time-consistent dynamic utility. Since our main
difficulty is the existence of such �, in Definition 3.5 we impose minimum re-
quirements on �.

In the rest of this paper, we shall propose three possible approaches to attack
the general time-inconsistent optimization problems [in the sense that �(t, ·) ≡ ϕ

is not a time-consistent dynamic utility function]. Each approach has its pros and
cons. We note that in this paper we focus mainly on the ideas, rather than the
actual solvability of the resulting problems, which could be highly technical, and
may call for some new developments in the respective areas.

4. The duality approach.

4.1. Heuristic analysis in Markovian case. In this section, we present a duality
approach that is simple but quite effective if one focuses only on finding the value
of the static problem (3.2). To illustrate the idea better, we begin by considering
the Markovian case, that is, we assume that in BSDE (3.1) ξ = g(BT ) and f =
f (t,Bt , y, z, u). We shall start with heuristic arguments, and give the proof for the
general non-Markovian (or say path-dependent) case.

To begin with, for each (t, x) ∈ [0, T ] ×R
d , consider the set

D(t, x) := {
y ∈ R

d ′ : ∃Z ∈ L
2
F

([0, T ]),
(4.1)

u ∈ U[t,T ], s.t. X
t,x,y,Z,u
T = g

(
B

t,x
T

)
,P0-a.s.

}
,

where Bt,x
s := x + Bs − Bt , s ≥ t , and Xt,x,y,Z,u is the solution to the forward

SDE

Xs = y −
∫ s

t
f
(
r,Bt,x

r ,Xr,Zr, ur

)
dr +

∫ s

t
Zr dBr, t ≤ s ≤ T .(4.2)
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Clearly, X can be thought of as a forward version of the solution to the BSDE
(3.1) on [t, T ], and the set D(t, x) is simply the reachable set {Yu

t , u ∈ U } given
Bt = x. In particular, D(0,0) = {Yu

0 : u ∈ U }, and our original optimization (3.2)
can be rewritten as

V0(ξ) = sup
y∈D(0,0)

ϕ(y).(4.3)

It is worth noting that supy∈D(0,0) ϕ(y) in (4.3) is a finite dimensional optimization
problem. So the value V0(ξ) could be determined rather easily, provided one can
characterize the set D(0,0), which we now describe.

To this end, we borrow the idea of the method of optimal control for solving a
forward-backward SDE (cf. [26]). Consider the following dual control problem:

W(t, x, y) := inf
Z,u

E
{∣∣Xt,x,y,Z,u

T − g
(
B

t,x
T

)∣∣2}.(4.4)

Clearly, (4.4) is a standard stochastic control problem, and it is well known that
W should be the (unique) viscosity solution to the following (degenerate) HJB
equation:

(4.5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tW + 1

2
∂2
xxW

+ inf
z,u

{
1

2
∂2
yyW : (zz�)+ ∂2

xyW : z − ∂yW · f (t, x, y, z, u)

}
= 0;

W(T,x, y) = ∣∣y − g(x)
∣∣2.

By definition (4.1), it is clear that W(t, x, y) = 0 whenever y ∈ D(t, x). More
generally, we expect and will show that, for any (t, x), the following duality rela-
tionship between the set D(t, x) and the “nodal set” of the function W holds:

N (t, x) := {
y ∈R

d ′ : W(t, x, y) = 0
} = D(t, x),(4.6)

where D(t, x) denotes the closure of D(t, x). Then (4.3) amounts to saying that

V0(ξ) = sup
y∈D(0,0)

ϕ(y) = sup
y∈N (0,0)

ϕ(y).(4.7)

In other words, we have characterized the set D(0,0) in terms of N (0,0), the
nodal set of W , which is a much benign task to deal with (e.g., numerically).
Moreover, note that the nodal set N (0,0) ⊂ R

d ′
is closed, then the above op-

timization problem has a maximum argument y∗ ∈ N (0,0). Consequently, the
static optimization problem (3.2) has an optimal control if and only if there exists
y∗ ∈ D(0,0).

REMARK 4.1. (i) An important ingredient in the duality approach is the
“reachable set” D(·, ·). Unlike the standard optimal control literature where reach-
able sets are temporally forward, it is easy to see from (4.1) that the family
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{D(t, ·)}0≤t≤T is a backward, set-valued dynamic system with terminal condition
D(T , x) = {g(x)}, and as we shall see later in this section, it satisfies a geometric
DPP in the spirit of [31].

(ii) The duality approach could be combined with the time consistency in
the sense of Definition 3.5 as follows. Assuming we could find a desired time-
consistent dynamic utility �, which we hope will take the form �(t,Bt , y) in the
Markovian case, then by the duality (4.6) we have the following time-consistent
value function:

Ṽt (ξ) = esssup
y∈N (t,Bt )

�(t,Bt , y).(4.8)

Moreover, since the nodal set N (t,Bt ) ⊂ R
d ′

is closed and assuming the continu-
ity of � in y, the above optimization problem has maximum argument Y t , which
would serve for the purpose of Definition 3.5.

(iii) We note that the problem (4.8) will be “time consistent” in the following
two senses. First, the dynamic sets N (·, ·) is time consistent in the sense of a geo-
metric DPP, which we shall establish in Theorem 4.5 below, whereas the function
� is time consistent in the sense of Definition 3.5. Second, in the case when opti-
mal control u∗ for the static problem (3.2) exists, and if � is constructed by using
u∗ as we did for various examples in Section 2, then u∗ will remain optimal for the
dynamic problem (4.8), and thus time consistent in the usual sense.

(iv) We should point out again that (4.8) is a simple finite dimensional optimiza-
tion problem, provided that the nodal sets N and function � can be computed.
In particular, when � is continuous in y, the essential supremum there is simply a
supremum. However, while the set N , as the nodal set of W , can be computed (at
least numerically) by solving the HJB equation for W , the task of finding a desired
� is generally challenging. We shall elaborate this point more in the next section.

4.2. The duality approach for the general path dependent case. We now
carry out the duality approach rigorously in the general path dependent (or
non-Markovian) case. To begin with, we recall the canonical set-up introduced
in the beginning of Section 2. Moreover, for any t ∈ [0, T ], denote by �t :=
{ω ∈ C([t, T ],Rd) : ωt = 0} the shifted canonical space on [t, T ], and define
Bt,Ft ,Pt

0,

t , U t , etc. on �t in the obvious sense. Furthermore, for any ω ∈ �

and ω̃ ∈ �t , we introduce the concatenation: ω
⊗

t ω̃ := ω1[0,t] + (ωt + ω̃)1[t,T ].
Moreover, for ξ ∈ L

0(�) and (t,ω) ∈ 
, denote ξ t,ω(ω̃) := ξ(ω
⊗

t ω̃), for all
ω̃ ∈ �t .

Similar to (4.1), for any (t,ω) ∈ 
 we define

D(t,ω) := {
y ∈ R

d ′ : ∃(Z,u) ∈ L
2(
F

t ,Rd ′×d)× U t ,
(4.9)

s.t. X
t,ω,y,Z,u
T = ξ t,ω,Pt

0-a.s.
}
,
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where Xt,ω,y,Z,u is the solution to the following (forward) SDE:

Xs = y −
∫ s

t
f t,ω(r,Bt· ,Xr,Zr, ur

)
dr

(4.10)
+
∫ s

t
Zr dBt

r , t ≤ s ≤ T ,Pt
0-a.s.

Here, the function f t,ω(r, ω̃, y, z, u), (r, ω̃) ∈ 
t is defined the same as ξ t,ω ex-
plained before. Again, it is easy to see that D(0,0) = {Yu

0 : u ∈ U } remains true.
Thus, we still have

V0(ξ) = sup
y∈D(0,0)

ϕ(y).(4.11)

We now introduce a dual control problem in the path-dependent setting:

W(t,ω, y) := inf
(Z,u)∈L2(Ft ,Rd′×d )×U t

E
P

t
0
[∣∣Xt,ω,y,Z,u

T − ξ t,ω
∣∣2].(4.12)

Our main duality result is as follows.

THEOREM 4.2. Let Assumption 3.1 hold, and assume further that, for any
(t,ω) ∈ 
,

E
P

t
0

[(∫ T

t
sup
u∈U

∣∣f t,ω(s,Bt· ,0,0, u
)∣∣ds

)2
+ ∣∣ξ t,ω

∣∣2] < ∞.(4.13)

Then, for any (t,ω) ∈ 
, we have

N (t,ω) := {
y ∈R

d ′ : W(t,ω, y) = 0
} = D(t,ω).(4.14)

Consequently, V0(ξ) = supy∈N (0,0) ϕ(y).

PROOF. Noting (4.11) and the continuity of ϕ, we shall prove only (4.14).
We first prove the regularity of W in y: for any (t,ω) ∈ 
, and y1, y2 ∈ R,∣∣W(t,ω, y1) − W(t,ω, y2)

∣∣ ≤ C(t,ω)
[
1 + |y1| + |y2|]|y1 − y2|,(4.15)

where C(t,ω) > 0 is independent of y. Indeed, by (4.12) and (4.13), it is readily
seen that

W(t,ω, y) ≤ C(t,ω)
[
1 + |y|2].

Now for any 0 < ε < 1, we choose (Zε,uε) ∈ L
2(Ft ,Rd ′×d) × U t such that

E
P

t
0
[∣∣Xt,ω,y2,Z

ε,uε

T − ξ t,ω
∣∣2] ≤ W(t,ω, y2) + ε ≤ C(t,ω)

[
1 + |y2|2].

By the standard BSDE arguments, it is then clear that, under Assumptions 3.1, we
have

E
P

t
0
[∣∣Xt,ω,y1,Z

ε,uε

T − X
t,ω,y2,Z

ε,uε

T

∣∣2] ≤ C|y1 − y2|2.
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Then, denoting Xi := Xt,ω,yi ,Z
ε,uε

, i = 1,2, we have

W(t,ω, y1) − W(t,ω, y2) ≤ E
P

t
0
[∣∣X1

T − ξ t,ω
∣∣2]−E

P
t
0
[∣∣X2

T − ξ t,ω
∣∣2]+ ε

≤ E
P

t
0
[∣∣X1

T − X2
T

∣∣2 + 2
∣∣X1

T − X2
T

∣∣∣∣X2
T − ξ t,ω

∣∣]+ ε

≤ C|y1 − y2|2 + C(t,ω)
[
1 + |y2|]|y1 − y2| + ε

≤ C(t,ω)
[
1 + |y1| + |y2|]|y1 − y2| + ε.

Since ε is arbitrary, we obtain the desired estimate (4.15) for W(t,ω, y1) −
W(t,ω, y2). Switching the roles of y1 and y2, we can also obtain the estimate
for W(t,ω, y2) − W(t,ω, y1), whence (4.15).

Next, we fix (t,ω) ∈ 
 and let y ∈ D(t,ω). By definition, there exists (Z,u) ∈
L

2(Ft ,Rd ′×d) × U t such that X
t,ω,y,Z,u
T = ξ t,ω, Pt

0-a.s. Then we must have

W(t,ω, y) ≤ E
P

t
0
[∣∣Xt,ω,y,Z,u

T − ξ t,ω
∣∣2] = 0.

That is, y ∈ N (t,ω), and consequently D(t,ω) ⊂ N (t,ω). Moreover, the y-
continuity of W in (4.15) then implies that N (t,ω) is a closed set, which leads to
that D(t,ω) ⊂ N (t,ω).

Conversely, if y ∈ N (t,ω), then by definition for any ε > 0, there exists
(Zε,uε) ∈ L

2(Ft ,Rd ′×d) × U t such that

E
P

t
0
[∣∣ξ t,ω

ε − ξ t,ω
∣∣2] ≤ ε where ξ t,ω

ε := X
t,ω,y,Zε,uε

T .(4.16)

Now by the standard BSDE estimates we have, for the given (t,ω) ∈ 
,∣∣Yuε

t (ω) − y
∣∣2 = ∣∣Y uε

t

(
T , ξ t,ω)− Y uε

t

(
T , ξ t,ω

ε

)∣∣2 ≤ CE
P

t
0
[∣∣ξ t,ω

ε − ξ t,ω
∣∣2] ≤ Cε.

Since Yuε

t (ω) ∈ D(t,ω) and ε is arbitrary, we see that y ∈ D(t,ω). �

4.3. Characterization of W by PPDEs. It is well understood that, in the
Markovian case, the dual value function W is the viscosity solution to HJB equa-
tion (4.5). In this subsection, we extend this characterization of W to path depen-
dent case via the newly established viscosity theory developed in [12–14]. The path
derivatives introduced here will also be important in Section 6. Since the results
here are irrelevant to the rest of the paper, we shall focus only on the main ideas
without getting into all the technical details. The interested readers are referred to
[13, 14] for more on pathwise analysis involved in the arguments.

We first consider the following pseudo-metric on � and 
 introduced in [10]
and [7]:

‖ω‖t := sup
0≤s≤t

|ωs |,
(4.17)

d∞
(
(t,ω),

(
t ′,ω′)) := ∣∣t − t ′

∣∣ 1
2 + ∥∥ωt∧· − ω′

t ′∧·
∥∥
T .
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Let C0(
) be the set of processes v : 
 → R that are continuous under d∞. We
note that any v ∈ C0(
) is F-progressively measurable. When v is taking values
in, say, Rk , we denote it by C0(
;Rk). Let Sd denote the set of d × d-symmetric
matrices. We say a probability measure P on � is a semimartingale measure if B

is a semimartingale under P. We now introduce the path derivatives for processes,
which is due to [13] and inspired by [10].

DEFINITION 4.3. Let v ∈ C0(
). We say v ∈ C1,2(
) if there exist ∂tv ∈
C0(
;R), ∂ωv ∈ C0(
;Rd), ∂2

ωωv ∈ C0(
;Sd) such that the following functional
Itô formula holds: for any semimartingale measure P,

dv(t,ω) = ∂tv dt + ∂ωv · dBt + 1

2
∂2
ωωv : d〈B〉t , P-a.s.(4.18)

We remark that the path derivatives ∂tv, ∂ωv, ∂2
ωωv, if they exist, are unique.

Notice that the function W in (4.12) is defined on 
 × R
d ′

. By increasing the
space dimension and viewing y as the current value of the additional paths, one
may easily extend all the above notions for functions on 
 × R

d ′
(see [13] for

details).
We shall make use of the following extra assumption:

ASSUMPTION 4.4. (i) The mapping (t,ω) �→ f (t,ω, y, z, u) is uniformly
continuous under d∞, uniformly in (y, z, u), and f (t,ω,0,0, u) is bounded;

(ii) The mapping ω �→ ξ(ω) is uniformly continuous under ‖ · ‖T and is
bounded.

Under Assumption 4.4, by standard BSDE arguments one can easily show that
the function W defined by (4.12) is uniformly continuous and bounded. It then
follows from [13] that W is a viscosity solution of the following path dependent
HJB equation:

(4.19)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 = ∂tW + 1

2
tr
(
∂2
ωωW

)
+ inf

(z,u)

[
1

2
∂2
yyW : (zz�)+ ∂2

ωyW · z − ∂yW · f (t,ω, y, z, u)

]
;

W(T,ω,y) = ∣∣y − ξ(ω)
∣∣2.

In particular, if W ∈ C1,2(
 × R
d ′

), then W is a classical solution to the above
PPDE.

We shall remark though, the above PPDE is degenerate, and thus the uniqueness
result of [14] does not apply here. We refer to the more recent works [15, 16], in
which it was shown that W is indeed the unique viscosity solution. We also refer
to [30, 35] for numerical methods for PPDEs.
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4.4. Geometric DPP. We conclude this section by providing a rigorous form
of the “geometric DPP” for the set valued process D(t,ω) defined by (4.9), that
has been instrumental in the discussions of this section. Intuitively, in light of [31],
we expect the following identity:

D(t1,ω) =
{
y ∈R

d ′ : ∃(Z,u) ∈ L
2(
F

t1,Rd ′×d)× U t1 such that

(4.20)

X
t1,ω,y,Z,u
t2

∈ D

(
t2,ω

⊗
t

Bt1

)
,P

t1
0 -a.s.

}
, 0 ≤ t1 < t2 ≤ T .

Denoting the right-hand side of (4.20) by D ′(t1,ω), one can easily prove that
D(t1,ω) ⊂ D ′(t1,ω). However, the opposite inclusion is far from obvious. In what
follows, we prove a weaker version of geometric DPP. We first recall (4.14) and
define, for any ε > 0,

Nε(t,ω) := {
y ∈ R

d ′ : W(t,ω, y) ≤ ε
}
.(4.21)

It is clear that N (t,ω) = ⋂
ε>0 Nε(t,ω).

THEOREM 4.5. Under Assumptions 3.1 and 4.4, the following geometric DPP
holds true:

N (t1,ω) = ⋂
ε>0

{
y ∈ R

d ′ : ∃(Zε,uε) ∈ L
2(
F

t1,Rd ′×d)× U t1 such that

X
t1,ω,y,Zε,uε

t2
(ω̃) ∈ Nε

(
t2,ω

⊗
t

ω̃

)
,(4.22)

P
t1
0 -a.e. ω̃ ∈ �t1

}
, 0 ≤ t1 < t2 ≤ T .

PROOF. For simplicity, we assume t1 = 0 and t2 = t , and let N ′(t1,ω) denote
the right-hand side of (4.22). Noting that ω0 = 0, we shall prove that

N (0,0) = N ′(0,0)

:= ⋂
ε>0

{
y ∈ R

d ′ : ∃(Zε,uε) ∈ L
2(
F,Rd ′×d)× U such that(4.23)

X
0,0,y,Zε,uε

t (ω) ∈ Nε(t,ω),P0-a.e. ω ∈ �
}
.

Following the arguments in [13], one shows that W is uniformly continuous in
(t,ω, y) with modulus of continuity function ρW(·), and satisfies the following
DPP: recalling E := E

P0 ,

W(0,0, y) = inf
(Z,u)∈L2(F,Rd′×d )×U

E
[
W

(
t,B·,X0,0,y,Z,u

t

)]
.(4.24)
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Now let y ∈ N ′(0,0). For any ε > 0, let (Zε,uε) be as in the right-hand side
of (4.23). Then

W
(
t,B,X

0,0,y,Zε,uε

t

) ≤ ε, P0-a.s., and thus E
[
W

(
t,B,X

0,0,y,Zε,uε

t

)] ≤ ε.

This, together with (4.24), implies that W(0,0, y) = 0. Then y ∈ N (0,0), and
hence N ′(0,0) ⊂ N (0,0).

To see the opposite inclusion, let y ∈ N (0,0), and for any ε > 0, choose
yε ∈ D(0,0), such that |yε − y| ≤ ε. By (4.9), let (Zε,uε) ∈ L

2(F,Rd ′×d) ×
U be such that X

0,ε
T := X

0,0,yε,Z
ε,uε

T = ξ , P0-a.s. It is straightforward to see
that, for P0-a.e. ω ∈ � and t ∈ [0, T ], (Zε,t,ω, uε,t,ω) ∈ L

2(Ft ,Rd ′×d) × U t ,

and (X0,ε
s )t,ω = X

t,ω,X
0,ε
t ,Zε,t,ω,uε,t,ω

s , t ≤ s ≤ T , Pt
0-a.s. Consequently, we have

X
t,ω,X

0,ε
t ,Zε,t,ω,uε,t,ω

T = (X
0,ε
T )t,ω = ξ t,ω, and thus X

0,ε
t ∈ D(t,ω). Now denote

X0,y,ε := X0,0,y,Xε,uε
, and let �X := X0,ε − X0,y,ε . Then

�Xs = yε − y +
∫ t

0
αr�Xr dr, 0 ≤ s ≤ t,

where α is a bounded F-adapted process, thanks to the Lipschitz continuity of f

in y. Then clearly |�Xt | ≤ C|yε − y| ≤ Cε, and thus∣∣W (
t,ω,X

0,y,ε
t (ω)

)∣∣ = ∣∣W (
t,ω,X

0,y,ε
t (ω)

)− W
(
t,ω,X

0,ε
t (ω)

)∣∣
≤ ρW

(∣∣�Xt(ω)
∣∣) ≤ ρW(Cε).

This implies that X
0,0,y,Zε,uε

t (ω) ∈ Nρ(Cε)(t,ω). Since ε > 0 is arbitrary, we ob-
tain y ∈ N ′(0,0), and thus N (0,0) ⊂ N ′(0,0). �

5. The dynamic utility approach. As we have pointed out in the Introduc-
tion, as well as in Definition 3.5, one of the essential points in our scheme is to
determine the “time-consistent dynamic utility” �. We devote this section to the
discussion of its existence.

5.1. The deterministic case. We begin with the case where both f and ξ are
deterministic, and the admissible controls are also deterministic measurable func-
tions u ∈ L

0([0, T ];U). We shall still assume Assumption 3.1 holds, and try to
construct � explicitly.

Since ξ is deterministic, for u ∈ L
0([0, T ];U), the solution to the BSDE (3.1),

(Y u,Zu), must satisfy Zu ≡ 0. Further, if we consider the (deterministic) opti-
mization problem:

�(t, y) := sup
u

ϕ
(
Y

t,y,u
0

)
,

(5.1)

where Y t,y,u
s = y +

∫ t

s
f
(
r, Y t,y,u

r ,0, ur

)
dr,0 ≤ s ≤ t
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then � will be time consistent in the sense that it satisfies the DPP:

�(t2, y) := sup
u

�
(
t1, Y

t2,y,u
t1

)
, for 0 ≤ t1 < t2 ≤ T .(5.2)

We shall argue that � is a time-consistent dynamic utility in the sense of Def-
inition 3.5, by identifying the required mapping Y . Indeed, note that �(T , ξ) =
V0(ξ) = supu ϕ(Y u

0 ), there exists uε such that limε→0 ϕ(Yuε

0 ) = �(T , ξ). Denote
f t := supu∈U |f (t,0,0, u)|. By Assumption 3.1, we see that

∫ T
0 f t dt < ∞. One

may easily check that

sup
ε

sup
0≤t≤T

∣∣Yuε

t

∣∣ ≤ C, sup
ε

∣∣Yuε

t − Yuε

s

∣∣ ≤ C

∫ t

s
[f r + 1]dr, 0 ≤ s < t ≤ T .

Now, applying the Arzela–Ascoli theorem we have, possibly along a subsequence
(still denoted by uε), limε→0 sup0≤t≤T |Yuε

t −Y t | = 0, and Y is an absolutely con-
tinuous function.

It is clear that �(0, y) = ϕ(y) and YT = ξ . Further, for any two functions u1, u2,
denote u1 ⊗

t u
2 := u11[0,t) + u21[t,T ]. By stability of ODEs, one can easily check

that

�(t,Y t ) = sup
u

ϕ
(
Y

t,Y t ,u
0

) = lim
ε→0

sup
u

ϕ
(
Y

u
⊗

t uε

0

)
.

Now on one hand, we have ϕ(Y
u
⊗

t uε

0 ) ≤ V0(ξ) for any u and ε. But on the other
hand,

lim
ε→0

sup
u

ϕ
(
Y

u
⊗

t uε

0

) ≥ lim
ε→0

ϕ
(
Y

uε ⊗
t uε

0

) = lim
ε→0

ϕ
(
Yuε

0
) = V0(ξ).

Namely, �(t,Y t ) = V0(ξ). For 0 ≤ t1 < t2 ≤ T , we can follow the similar argu-
ments to get

sup
u

�
(
t1,Y

u
t1

(t2, Y t2)
) = lim

ε→0
sup
u

�
(
t1,Y

u
t1

(
t2, Y

uε

t2

)) = lim
ε→0

sup
u

�
(
t1, Y

u
⊗

t2
uε

t1

)

= lim
ε→0

sup
u

sup
u′

ϕ
(
Y

u′ ⊗
t1

u
⊗

t2
uε

0

) = V0(ξ) = �(t1, Y t1).

This verifies (3.9). To wit, � is indeed a time-consistent dynamic utility.

REMARK 5.1. If we denote �̃(t, y) := �(T − t, y) and f̃ (t, y, z, u) := f (T −
t, y, z, u), then

�̃(t, y) = sup
u

ϕ
(
X

t,y,u
T

)
,

where Xt,y,u
s = y −

∫ s

t
f̃
(
r,Xt,y,u

r ,0, ur

)
dr, t ≤ s ≤ T .

This is a very standard (deterministic) control problem on [0, T ] with utility func-
tion ϕ. However, such a “time-change” technique would fail in the stochastic case
(e.g., when ξ is random), due to the adaptedness requirement. The master equation
approach in Section 6 will address this issue.
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5.2. Dynamic utility via comparison principle. As we saw in Section 3, espe-
cially Examples 3.2 and 3.4, the comparison principle plays a crucial role for time
consistency. In this subsection, we explore the impact of the comparison principle
to the existence of the time-consistent dynamic utility �. To this end, we propose
the following stronger form of the comparison principle.

DEFINITION 5.2. We say a mapping � : 
 ×R
d ′ → R satisfies the compari-

son principle if for any t1 < t2 and any η, η̃ ∈ L
2(Ft2), �(t2, η) ≤ �(t2, η̃), P0-a.s.

implies that

esssup
u∈U

�
(
t1,Y

u
t1

(t2, η)
) ≤ esssup

u∈U
�
(
t1,Y

u
t1

(t2, η̃)
)
, P0-a.s.(5.3)

The main result of this subsection is the following theorem.

THEOREM 5.3. Let Assumptions 3.1 and 4.4 hold and assume there exists a
random field � satisfying the following properties:

(i) the mapping y �→ �(t,ω, y) is continuous, for fixed (t,ω) ∈ [0, T ] × �;
(ii) �(0, ·, y) = ϕ(y), P0-a.s.;

(iii) � satisfies the comparison principle in the sense of Definition 5.2.

Then � is a time-consistent dynamic utility in the sense of Definition 3.5.

PROOF. We shall follow the similar ideas used for the duality approach in
previous sections, but here we will focus more on the measurability issue. To
this end, we adjust the notation slightly. For any t ∈ [0, T ], η ∈ L

2(Ft ,R
d ′

),
Z ∈ L

2(F,Rd ′×d), and u ∈ U , we denote Xt,η,Z,u to be the solution to the fol-
lowing random differential equation:

Xt,η,Z,u
s = η −

∫ s

t
f
(
r,Xt,η,Z,u

r ,Zr, ur

)
dr

(5.4)
+
∫ s

t
Zr dBr, t ≤ s ≤ T ,P0-a.s.

Clearly, (5.4) is essentially an ODE, which can be solved ω-wisely. Now define

W̃ (t, y) := essinf
(Z,u)∈L2(F,Rd′×d )×U

Et

[∣∣Xt,y,Z,u
T − ξ

∣∣2], (t, y) ∈ [0, T ] ×R
d ′

.

Similar to (4.15) and by the uniform boundedness in Assumption 4.4, one can
choose a version of W̃ such that∣∣W̃ (t, y1) − W̃ (t, y2)

∣∣ ≤ C
[
1 + |y1| + |y2|]|y1 − y2|, P0-a.s.(5.5)

Then by standard arguments one can easily show that

(5.6) W̃ (t, η) = essinf
(Z,u)∈L2(F,Rd′×d )×U

Et

[∣∣Xt,η,Z,u
T − ξ

∣∣2], ∀η ∈ L
2(Ft ,R

d ′)
.
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Next, following the arguments in Theorem 4.2, one can prove the following duality
results:

(D-i) If u ∈ U , and (Y u,Zu) is the solution to BSDE (3.1), then W̃ (t, Y u
t ) = 0,

P0-a.s.;
(D-ii) If η ∈ L

0(Ft ,R
d ′

) is such that W̃ (t, η) = 0, P0-a.s., then η ∈ L
2(Ft ,R

d ′
).

Furthermore, for any ε > 0, there exists uε ∈ U , such that∣∣Yuε

t − η
∣∣ ≤ Cε, and lim

ε→0
�
(
t, Y uε

t

) = �(t, η), P0-a.s.(5.7)

We now construct the family of maximizers {Y t }. For each fixed t ∈ [0, T ], de-
note ˜Nt := {(ω, y) ∈ � ×R

d ′ : W̃ (t,ω, y) = 0} and ˜Nt (ω) := {y ∈ R
d ′ : (ω, y) ∈

˜Nt }. Then ˜Nt is Ft ×B(Rd ′
)-measurable, and for P0-a.e. ω ∈ �, ˜Nt (ω) is closed

and bounded, whence compact. Define �t(ω) := sup
y∈ ˜Nt (ω)

�(t,ω, y), and de-
note

Mt := {
(ω, y) ∈ ˜Nt : �t(ω) = �(t,ω, y)

}
, Mt (ω) := Mt ∩ ˜Nt (ω).

Then it is easy to see that �t is Ft -measurable and Mt is Ft ×B(Rd ′
)-measurable.

Moreover, the continuity of � in y implies that Mt (ω) is nonempty and compact,
for P0-a.e. ω ∈ �. Now let Y t (ω) be the (unique) maximum point of Mt (ω) under
the following order on R

d ′
:

y < y′ ⇐⇒ for some i = 1, . . . , d ′, yj = y′
j , j = 1, . . . , i − 1, and yi < y′

i .

Then clearly Y t is Ft -measurable, and Y t (ω) ∈ Mt (ω).
We now verify that Y satisfies all the requirements in Definition 3.5. First, it is

clear that ˜NT (ω) = {ξ(ω)}, and thus YT (ω) = ξ(ω). We next show that

Y t ∈ L
2(Ft ,R

d ′)
and �(t,Y t ) = esssup

u∈U
�
(
t, Y u

t

)
.(5.8)

Indeed, for any u ∈ U , by the duality result (D-i) above we have W̃ (t, Y u
t ) = 0.

That is, Yu
t (ω) ∈ ˜Nt (ω), and thus �(t,ω,Y u

t (ω)) ≤ �t(ω) = �(t,ω,Y t (ω),
for P0-a.e. ω ∈ �. Conversely, since Y t (ω) ∈ Mt (ω) ⊂ ˜Nt (ω), we see that
W̃ (t,ω,Y t (ω)) = 0 for P0-a.e. ω. Then by the duality result (D-ii) and (5.7) we
prove (5.8) immediately.

It remains to verify the DPP (3.9). Note that for any u0 ∈ U , (5.8) implies that
�(t2, Y

u0

t2
) ≤ �(t2, Y t2), P0-a.s. Then it follows from the comparison principle

(5.3) that

esssup
u∈U

�
(
t1,Y

u
t1

(
t2, Y

u0

t2

)) ≤ esssup
u∈U

�
(
t1,Y

u
t1

(t2, Y t2)
)
, P0-a.s.

Note that by definition Y u
t1

(t2, Y
u0

t2
) = Y

u
⊗

t2
u0

t1
, then clearly

�(t1, Y t1) = esssup
u∈U

�
(
t1, Y

u
t1

) ≤ esssup
u∈U

�
(
t1,Y

u
t1

(t2, Y t2)
)
, P0-a.s.
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On the other hand, again by (5.8), there exist {uε}ε>0 ⊆ U such that |Yuε

t2
−Y t2 | ≤

Cε, P0-a.s. Then for any u ∈ U , by the stability of BSDE and the continuity of �

in y,

�
(
t1,Y

u
t1

(t2, Y t2)
) = lim

ε→0
�
(
t1,Y

u
t1

(
t2, Y

uε

t2

)) = lim
ε→0

�
(
t1, Y

u
⊗

t2
uε

t1

) ≤ �(t1, Y t1).

Since u ∈ U is arbitrary, we obtain (3.9), completing the proof. �

5.3. The linear case. While Theorem 5.3 gives a guiding principle for finding
the time-consistent dynamic utility function, it would be extremely desirable to see
if a function satisfying the comparison principle (5.3) does exist. In this subsection,
we shall construct an explicit example, in the case when both the BSDE (3.1) and
function ϕ are linear. Our construction follows the dimension reduction technique
in [24].

THEOREM 5.4. Let Assumption 3.1 hold and assume that the coefficients f

and ϕ are of the following linear form:

(5.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi(t,ω, y, z, u) =
d ′∑

j=1

[
α

i,j
t (ω)yj + β

i,j
t (ω) · zj

]+ ci(t,ω,u),

i = 1, . . . , d ′,

ϕ(y) =
d ′∑

i=1

aiyi,

Then there exists a random field � satisfying the comparison principle (5.3), which
takes the following linear form:

�(t,ω, y) :=
d ′∑

i=1

Ai
t (ω)yi with Ai

0 = ai,(5.10)

PROOF. We first note that if d ′ = 1, then the BSDE (3.1) is 1-dimensional,
thus the comparison principle holds. Further since ϕ is linear, whence monotone,
thus the problem is time consistent and the theorem becomes trivial. We shall thus
concentrate on multidimensional cases. Note also that for d ′ ≥ 2, following an
inductional arguments as illustrated in [24], Section 4.1, we need only prove the
case d ′ = 2. We shall split the proof (assuming d ′ = 2) in three steps.

Step 1. We begin by a heuristic argument which will lead us to the desired
properties of the processes A1 and A2. For convenience, we shall assume that A1

and A2 take the form of the Itô process:

Ai
t = ai +

∫ t

0
bi
s ds +

∫ t

0
σ i

s dBs, i = 1,2.(5.11)
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For any u ∈ U and the corresponding solution (Y u,Zu), we define

Ŷ u
t := �

(
t, ·, Y u

t

) :=
2∑

i=1

Ai
tY

i,u
t ,

(5.12)

Ẑu
t :=

2∑
i=1

[
Ai

tZ
i,u
t + σ i

t Y
i,u
t

]
, t ∈ [0, T ].

We hope to find a pair of processes (A1,A2) so that (Ŷ u, Ẑu) satisfy a one-
dimensional BSDE, so as to reduce the problem to the case d ′ = 1.

To this end, we first assume A2
t ≡ a2 
= 0, 0 ≤ t ≤ T , Then an easy application

of Itô’s formula and some direct computations lead us to

dŶ u
t = [

A1
t dY

1,u
t + Y

1,u
t dA1

t + σ 1
t Z

1,u
t dt + a2 dY

2,u
t

]

= −
[
A1

t

2∑
j=1

[
α

1,j
t Y

j,u
t + β

1,j
t Z

j,u
t

]+ A1
t c1(t, ut )

(5.13)

+ a2

2∑
j=1

[
α

2,j
t Y

j,u
t + β

2,j
t Z

j,u
t

]+ a2c2(t, ut ) − [
b1
t Y

1,u
t + σ 1

t Z
1,u
t

]]
dt

+ [
A1

t Z
1,u
t + σ 1

t Y
1,u
t + a2Z

2,u
t

]
dBt .

Note that in this case b2 = σ 2 = 0, we see from (5.12) that A1
t Z

1,u
t + σ 1

t Y
1,u
t +

a2Z
2,u
t = Ẑu

t , and thus

Y
2,u
t = a−1

2

[
Ŷ u

t − A1
t Y

1,u
t

]
, Z

2,u
t = a−1

2

[
Ẑu

t − σ 1
t Y

1,u
t − A1

t Z
1,u
t

]
.

Plugging these into (5.13) and reorganizing terms yieldsa

−dŶ u
t + Ẑu

t dBt

= [[
A1

t α
1,1
t + a2α

2,1
t − b1

t

]
Y

1,u
t + [

A1
t β

1,1
t + a2β

2,1
t − σ 1

t

]
Z

1,u
t

+ A1
t c1(t, ut ) + a2c2(t, ut ) + [

A1
t α

1,2
t + a2α

2,2
t

]
a−1

2

[
Ŷ u

t − A1
t Y

1,u
t

]
(5.14)

+ [
A1

t β
1,2
t + a2β

2,2
t

]
a−1

2

[
Ẑu

t − σ 1
t Y

1,u
t − A1

t Z
1,u
t

]]
dt

= [
a−1

2

[
A1

t α
1,2
t + a2α

2,2
t

]
Ŷ u

t + a−1
2

[
A1

t β
1,2
t + a2β

2,2
t

]
Ẑu

t

+ A1
t c1(t, ut ) + a2c2(t, ut ) + �tY

1,u
t + �tZ

1,u
t

]
dt,

where

�t := [
A1

t α
1,1
t + a2α

2,1
t − b1

t

]− a−1
2 A1

t

[
A1

t α
1,2
t + a2α

2,2
t

]
− a−1

2 σ 1
t

[
A1

t β
1,2
t + a2β

2,2
t

];
�t := [

A1
t β

1,1
t + a2β

2,1
t − σ 1

t

]− a−1
2 A1

t

[
A1

t β
1,2
t + a2β

2,2
t

]
.
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Now setting �t ≡ �t ≡ 0, we see that (5.14) becomes a linear BSDE for
(Ŷ u, Ẑu). But this can be done by simply solving

σ 1
t := [

A1
t β

1,1
t + a2β

2,1
t

]− a−1
2 A1

t

[
A1

t β
1,2
t + a2β

2,2
t

];
b1
t := [

A1
t α

1,1
t + a2α

2,1
t

]− a−1
2 A1

t

[
A1

t α
1,2
t + a2α

2,2
t

]− a−1
2 σ 1

t

[
A1

t β
1,2
t + a2β

2,2
t

]
.

Note that the processes b1 and σ 1 can be easily written as functions of the process
a−1

2 A1 by setting b1
t = a2b̂1(t,ω, a−1

2 A1
t ) and σ 1

t = a2σ̂1(t,ω, a−1
2 A1

t ), where

σ̂1(t, x) := −β
1,2
t |x|2 + [

β
1,1
t − β

2,2
t

]
x + β

2,1
t ;

b̂1(t, x) := ∣∣β1,2
t

∣∣2x3 − [
α1,2 + β1,2[β1,1 − β2,2]− β1,2β22]x2

(5.15)
+ [

α
1,1
t − α

2,2
t − β2,2[β1,1

t − β
2,2
t

]− β
1,2
t β

2,1
t

]
x

+ [
α2,1 − β

2,1
t β

2,2
t

]
.

Plugging this into (5.11), we obtain an SDE for A1
t :

(5.16) A1
t /a2 = a1/a2 +

∫ t

0
b̂1
(
s, a−1

2 A1
s

)
ds +

∫ t

0
σ̂1
(
s, a−1

2 A1
s

)
dBs, t ≥ 0.

We should note that since the coefficients σ̂ has quadratic growth in A1
t and b̂

has triple growth in A1
t , the SDE (5.16) is a Ricatti equation in general sense

and has only local solutions. However, if (5.16) is solvable, which we shall argue
rigorously in the next step, then we will see that the �(t, ·) defined by (5.10)
satisfies the comparison principle (5.3).

Step 2. We now substantiate the idea in Step 1 rigorously. If a1 = a2 = 0, then
clearly V0(ξ) = 0 and there is nothing to prove. From now on, we assume without
loss of generality that |a1| ≤ |a2| and a2 
= 0. Denote τ0 := 0. Recall (5.16) and
consider the following SDE:

Â1
t = a1/a2 +

∫ t

0
b̂1
(
s, [−2] ∨ Â1

s ∧ 2
)
ds

(5.17)

+
∫ t

0
σ̂1
(
s, [−2] ∨ Â1

s ∧ 2
)
dBs, t ∈ [0, T ].

Clearly, Â1 has global solution. Define τ1 := inf{t ≥ 0 : |Â1
t | ≥ 2} ∧ T . Then

(5.18) Â1
t = a1/a2 +

∫ t

0
b̂1
(
s, Â1

s

)
ds +

∫ t

0
σ̂1
(
s, Â1

s

)
dBs, τ0 ≤ t ≤ τ1.

We now set A1
t := a2Â

1
t and A2

t := a2, for τ0 ≤ t ≤ τ1. Then, noting that |Â1
τ1

| = 2

[or |(Â1
τ1

)−1| = 1
2 ] when τ1 < T and reversing the roles of A1 and A2 as in Step 1

we can then obtain coefficients b̂2, σ̂2 completely symmetric as those in (5.15),
and an SDE on [τ1, T ]:

Â2
t = (

Â1
τ1

)−1 +
∫ t

τ1

b̂2
(
s, [−2] ∨ Â2

s ∧ 2
)
ds +

∫ t

0
σ̂2
(
s, [−2] ∨ Â2

s ∧ 2
)
dBs.
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Similarly, Â2 has global solution, and that

(5.19) Â2
t = (

Â1
τ1

)−1 +
∫ t

τ1

b̂2
(
s, Â2

s

)
ds +

∫ t

0
σ̂2
(
s, Â2

s

)
dBs, τ1 ≤ t ≤ τ2,

where τ2 := inf{t ≥ τ1 : |Â2
t /A

1
τ1

| ≥ 2} ∧ T . We then define A1
t := A1

τ1
, and A2

t :=
A1

τ1
Â2

t , for τ1 ≤ t ≤ τ2. Note that since A1
τ1

Â2
τ1

= A1
τ1

(Â1
τ1

)−1 = a2 = A2
τ1

, both A1

and A2 are continuous at τ1.
Now repeating the arguments, we may define, for n ≥ 1, processes {Ân} and

stopping times 0 = τ0 ≤ τ1 ≤ τn · · · , such that

Â2n
t = (

Â2n−1
τ2n−1

)−1 +
∫ t

τ2n−1

b̂2
(
s, Â2n

s

)
ds +

∫ t

τ2n−1

σ̂2
(
s, Â2n

s

)
dBs,

τ2n−1 ≤ t ≤ τ2n;
Â2n+1

t = (
Â2n

τ2n

)−1 +
∫ t

τ2n

b̂1
(
s, Â2n+1

s

)
ds +

∫ t

τ2n

σ̂1
(
s, Â2n+1

s

)
dBs,

τ2n ≤ t ≤ τ2n+1.

Furthermore, for all n ≥ 1, it holds that |Ân
t | < 2, τn−1 ≤ t < τn, and |Ân

τn
| = 2 on

{τn < T }. The rest of the argument will be based on the following fact, which will
be validated in the next step:

P0

(⋃
n≥1

{τn = T }
)

= 1.(5.20)

Assuming (5.20), we can now define continuous processes A1,A2 on [0, T ]:
A1

t := A1
τ2n−1

, A2
t := A1

τ2n−1
Â2n

t , τ2n−1 < t ≤ τ2n;
(5.21)

A1
t := A2

τ2n
Â2n+1

t , A2
t := A2

τ2n
, τ2n < t ≤ τ2n+1.

Now define � by (5.10) and (Ŷ u, Ẑu) by (5.12). We can rewrite (5.13) as

dŶ u
t = −

[
α̂t Ŷ

u
t + β̂t Ẑ

u
t +

2∑
i=1

Ai
tci(t, ut )

]
dt + Ẑu

t dBt , 0 ≤ t ≤ T ,

where

α̂t =
{
α

1,2
t Â2n+1

t + α
2,2
t on [τ2n, τ2n+1],

α
2,1
t Â2n

t + α
1,1
t on [τ2n−1, τ2n];

(5.22)

β̂t =
{
β

1,2
t Â2n+1

t + β
2,2
t on [τ2n, τ2n+1],

β
2,1
t Â2n

t + β
1,1
t on [τ2n−1, τ2n].
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Note that |Â2n+1
t | ≤ 2 on τ2n ≤ t ≤ τ2n+1 and |Â2n

t | ≤ 2 on τ2n−1 ≤ t ≤ τ2n; both
α̂, β̂ are bounded. Now denoting Ŷ u

t (ξ) to emphasize the dependence on the termi-
nal condition ξ , it follows from the definition (5.12) and the comparison of BSDEs
that

�(T , ξ) ≤ �(T , ξ̃ )

=⇒ Ŷ u
t (ξ) ≤ Ŷ u

t (ξ̃ ), ∀u ∈ U

=⇒ esssup
u∈U

�
(
t,Y u

t (T , ξ)
) ≤ esssup

u∈U
�
(
t,Y u

t (T , ξ̃ )
)
, P0-a.s.

The same argument can be used to treat any subinterval [t1, t2], proving (5.3).
Step 3. It remains to prove (5.20). Fix some δ > 0. Note that |a1/a2| ≤ 1.

By (5.17) and standard estimates for SDEs, we can easily check that
E[sup0≤t≤T |Â1

t |2] ≤ C. Thus,

P0(τ1 < T ∧ δ)

≤ P0

(
sup

0≤t≤δ

∣∣Â1
t

∣∣ ≥ 2
)

≤ P0

(
sup

0≤t≤δ

∣∣Â1
t − Â1

0
∣∣ ≥ 1

)
≤ E

[
sup

0≤t≤δ

∣∣Â1
t − Â1

0
∣∣2]

≤ CE

[∫ δ

0

∣∣b̂1
(
s, [−2] ∨ Â1

s ∧ 2
)∣∣2 ds +

∫ δ

0

∣∣σ̂1
(
s, [−2] ∨ Â1

s ∧ 2
)∣∣2 ds

]

≤ Cδ.

Now setting δ := 1
2C

, so that

P0(τ1 < T, τ1 ≤ δ) ≤ 1

2
.(5.23)

Similarly, noting that |Â2
τ1

| = 1
2 and |Â2

τ2
| = 2 on {τ2 < T }, we have

P0
(
τ2 < T ∧ (τ1 + δ)|Fτ1

) ≤ 1

2
.(5.24)

Repeating the arguments, for any n one shows that

P0
(
τn+1 < T ∧ (τn + δ)|Fτn

) ≤ 1

2
.(5.25)

We shall prove (5.20) by arguing that P0{(⋃n≥1{τn = T })c} = P0{⋂n≥1{τn <

T }} = 0. But since τn’s are increasing, this amounts to saying that limn→∞P0{τn <

T } = 0. Now for the given δ, we can assume that mδ < T ≤ (m + 1)δ, for
some m ∈ N. We claim the following much stronger result, which obviously im-
plies (5.20): for any n ≥ 1,

P0(τn < T ) ≤ (2n)m

2n
, whenever mδ < T ≤ (m + 1)δ.(5.26)
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We shall prove (5.26) by induction on m. First, if m = 0, namely 0 < T ≤ δ, then

P0(τn < T ) = P0(τn < T , τ1 ≤ δ) = P0(τ1 < T, τ1 ≤ δ)P0(τn < T |Fτ1, τ1 < T )

≤ 1

2
P0(τn < T |Fτ1, τ1 < T ),

thanks to (5.23). By (5.25), for k < n we have

P0(τn < T |Fτk−1, τk−1 < T ) ≤ 1

2
P0(τn < T |Fτk

, τk < T ).

Then by induction we see that

P0(τn < T ) ≤ 1

2n−1P0(τn < T |Fτn−1, τn−1 < T ) ≤ 1

2n
,

proving (5.26) for m = 0.
Assume (5.26) holds for m − 1 and we shall prove it for m. By (5.23), we have

P0(τn < T ) = P0(τn < T , τ1 ≤ δ) + P0(τn < T , τ1 > δ)

≤ P0(τ1 < T, τ1 ≤ δ)P0(τn < T |Fτ1, τ1 < T )

+ P0(τn < T , τn − τ1 < T − δ)

≤ 1

2
P0(τn < T |Fτ1, τ1 < T ) + P0(τn < T , τn − τ1 < T − δ).

Note that (m − 1)δ < T − δ ≤ mδ, then the inductional hypothesis implies that

P0(τn < T , τn − τ1 < T − δ) ≤ (2n − 2)m−1

2n−1 ,

and thus

P0(τn < T ) ≤ 1

2
P0(τn < T |Fτ1, τ1 < T ) + (2n − 2)m−1

2n−1 .

By (5.25), for k < n we have

P0(τn < T |Fτk−1, τk−1 < T ) ≤ 1

2
P0(τn < T |Fτk

, τk < T ) + (2n − 2k)m−1

2n−k
.

Then by induction we have

P0(τn < T ) ≤ 1

2n
+

n−1∑
k=1

(2k)m−1

2n−1 = 1 + 2
∑n−1

k=1(2k)m−1

2n
.

It is straightforward to check that 1 + 2
∑n−1

k=1(2k)m−1 ≤ (2n)m, proving (5.20),
whence the theorem. �
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6. The master equation approach. In this section, we deviate from the dy-
namic utility � and attack the value function V0(ξ) from a different direction.
We begin by noticing that, unlike the forward stochastic control problem where
the value function depends on the “initial data,” in our problem the value V0(ξ)

should be considered as a function of the terminal data (T , ξ). Our main idea is
to let (T , ξ) become “variables,” and study the behavior of the value function. For
notational simplicity, in this section we denote L

2(Ft ) := L
2(Ft ,R

d ′
).

To be more precise, let us consider the following set:

A := {
(t, η) : t ∈ [0, T ], η ∈ L

2(Ft )
} ⊂ [0, T ] ×L

2(FT ).(6.1)

We should note that the pair (t, η) ∈ A is “progressively measurable” in nature,
that is, for each t , η has to be Ft -adapted.

We now introduce a dynamic “value” function for our original problem. Let
� : A →R be a real-valued function on A defined by

�(t, η) = sup
u∈U

ϕ
(
Y u

0 (t, η)
)
, (t, η) ∈ A .(6.2)

Clearly, it holds that

�(0, y) = ϕ(y) and V0(ξ) = �(T , ξ).(6.3)

Furthermore, we have the following easy consequences for the value func-
tion � . Among other things, we show that a “forward” dynamic program-
ming principle actually holds without any extra conditions, even in such a time-
inconsistent setting.

LEMMA 6.1. Assume that Assumption 3.1 is in force. Then:

(i) For each t , �(t, ·) : L2(Ft ) →R is Lipschitz continuous:

(6.4)
∣∣�(t, η1) − �(t, η2)

∣∣ ≤ C‖η1 − η2‖L2(Ft )
for any η1, η2 ∈ L

2(Ft ).

(ii) � satisfies the following “forward dynamic programming principle”:

(6.5) �(t2, η) = sup
u∈U

�
(
t1,Y

u
t1

(t2, η)
)
, ∀0 ≤ t1 < t2 ≤ T ,η ∈ L

2(Ft2).

PROOF. (i) For any η1, η2 ∈ L
2(Ft ) and any u ∈ U , by standard BSDE argu-

ments we have ∣∣Y u
0 (t, η1) − Y u

0 (t, η2)
∣∣2 ≤ CE

[|η1 − η2|2].
This immediately leads to (6.4) since u ∈ U is arbitrary.

(ii) Let u ∈ U be given. By the uniqueness of the BSDE, we should have

ϕ
(
Y u

0 (t2, η)
)= ϕ

(
Y u

0
(
t1,Y

u
t1

(t2, η)
)) ≤ �

(
t1,Y

u
t1

(t2, η)
)
.
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Taking supremum over u, we prove “≤” part of (6.5). To see the opposite inequal-
ity, we fix an arbitrary u ∈ U . For any ε > 0, by the definition of � , there exists
uε ∈ U such that

�
(
t1,Y

u
t1

(t2, η)
) ≤ ϕ

(
Y uε

0
(
t1,Y

u
t1

(t2, η)
))+ ε = ϕ

(
Y

uε ⊗
t1

u

0 (t2, η)
)+ ε

≤ �(t2, η) + ε.

Taking supremum over u ∈ U on the left-hand side and sending ε to zero in the
right-hand side, we obtain the “≥” part of (6.5) and complete the proof. �

REMARK 6.2. (i) Unlike the standard DPP in stochastic control literature,
(6.5) is a forward DPP in the sense that the supremum in the right-hand side acts
on the smaller time t1. This is due to the nature that our controlled dynamics is
backward. This feature will also be crucial for deriving the master equation below:

(ii) In the deterministic case, the � here coincides with the dynamic utility �

constructed in Section 5.1.

With the essentially “free” dynamic programming principle (6.5), it is natural
to envision an HJB-type equation for the value function � . We note that there
are two fundamental differences between the current situation and the traditional
ones: (i) since the DPP is “forward,” the HJB equation should also be a temporally
forward PDE; and (ii) since the spatial variable in the value function is now a
random variable in an L

2 space, which is infinite dimensional, the PDE is quite
different from the traditional HJB equation (even those infinite dimensional ones),
due to its adaptedness requirement on the variable η. We therefore call it a master
equation, which seems to fit the situation better than a “HJB equation.”

We now try to validate the idea. To begin with, we shall introduce appropriate
notion of derivatives. First, for each t ∈ [0, T ], viewing L

2(Ft ) as a Hilbert space
and denote by 〈·, ·〉 its inner product, we can define the spatial derivative as the
standard Fréchet derivative: for any η, η̃ ∈ L

2(Ft ),

〈
Dη�(t, η), η̃

〉 := lim
ε→0

�(t, η + εη̃) − �(t, η)

ε
,(6.6)

whenever the limit exists. We remark that, when Dη�(t, η) exists, it can (and will)
be identified as a random variable in L

2(Ft ), thanks to the Riesz representation
theorem.

The temporal derivative, however, is much more involved. We first note that
the dynamic programming principle (6.5) is “forward,” and more importantly, the
value function is “progressive measurable,” it is conceivable that there might be
some difference between two directional derivatives. As it turns out, if we use the
following right-temporal derivative as one often does:

D+
t �(t, η) := lim

δ↓0

�(t + δ, η) − �(t, η)

δ
, (t, η) ∈ A ,(6.7)
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then the corresponding master equation will become obviously ill-posed. We shall
provide a detailed analysis on this point in Section 6.1 below. We will therefore
use the left derivative.

A simple-minded, albeit natural, definition of the left-temporal derivative can
be defined as follows:

lim
δ→0

�(t, η) − �(t − δ, η)

δ
.(6.8)

However, bearing in mind the “progressive measurability” of � (or the definition
of the set A ), we see that η ∈ L

2(Ft ) is typically not Ft−δ-measurable, so �(t −
δ, η) may not even be well defined. One natural choice to overcome this issue is to
modify (6.8) to the following:

lim
δ→0

�(t, η) − �(t − δ,Et−δ[η])
δ

.(6.9)

However, although this definition could actually be sufficient for our purpose in
this paper, it relies heavily on the underlying measure P0, which would cause many
unintended consequences when we encounter situations where various probability
measures are involved, as we often see in applications.

A universal, “measure-free,” and potentially more applicable definition is the
following “pathwise” derivative:

D−
t �(t, η) := lim

δ→0

�(t, η) − �(t − δ, ηt
t−δ)

δ
(6.10)

where ηt
s(ω) := η(ωs∧·), (s,ω) ∈ [0, t] × �,

provided the limit exists. We remark that, D−
t �(t, η) is a real number, if it exists.

Recall Section 4.3 for the notions in pathwise analysis. We define the following.

DEFINITION 6.3. (i) � ∈ C0(A ) if � is continuous in (t, η).
(ii) η ∈ C2(Ft ) if the induced process ηt ∈ C1,2([0, t] × �). In this case, we

denote

∂tη := ∂tη
t
t , ∂ωη := ∂ωηt

t , ∂2
ωωη := ∂2

ωωηt
t .(6.11)

Moreover, denote C2
b(Ft ) := {η ∈ C2(Ft ) : η, ∂tη

t , ∂ωηt , ∂2
ωωηt are bounded}.

(iii) � ∈ C1(A ) if � ∈ C0(A ), Dη� exists and is in C0(A ), and D−
t �(t, η)

exists for all (t, η) ∈ A0, where

A0 := {
(t, η) : 0 ≤ t ≤ T ,η ∈ C2

b(Ft )
} ⊂ A .(6.12)

We remark that, for � ∈ C0(A ), it is uniquely determined by its values in A0.
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REMARK 6.4. We should note that in general the temporal derivative of pro-

cess ηt [i.e., the limit limδ→0
η−ηt

t−δ

δ
] could fail to exist in a pathwise manner.

Indeed, such limit does not exist when η = Bt . It is thus important to emphasize
that �(t, ·) is a function on the random variable η (on path space), rather than in
pathwise sense �(t, η(ω)). As a consequence, the limit D−

t �(t, η) does exist for
many � and η. For example, if �(t, η) := E[η] and η = Bt , then we see immedi-
ately that �(t − δ, ηt

t−δ) = E[Bt−δ] = 0, and thus D−
t �(t,Bt ) = 0.

The main result of this section is the following theorem.

THEOREM 6.5. Let Assumption 3.1 hold and f (t,ω,0,0, u) be bounded. As-
sume the � defined by (6.2) is in C1(A ). Then � satisfies the following master
equation on A :

(6.13)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D−
t �(t, η) =

〈
Dη�(t, η), ∂tη + 1

2
tr
(
∂2
ωωη

)〉
+ sup

u∈L0(Ft ,U)

〈
Dη�(t, η), f (t, η, ∂ωη,u)

〉
(t, η) ∈ A0;

�(0, y) = ϕ(y) y ∈ R
d ′

.

PROOF. Fix 0 < δ < t . We first apply the functional Itô formula (4.18) to get

ηt
s = η −

∫ t

s

[
∂tη

t
r + 1

2
tr
(
∂2
ωωηt

r

)]
dr −

∫ t

s
∂ωηr · dBr, t − δ ≤ s ≤ t,P0-a.s.

For any u ∈ U , let (Y u,Z u) := (Y u(t, η),Z u(t, η)) be the solution to BSDE
(3.4). Denote

�Yu
s := Y u

s − ηt
s, �Zu

s := Z u
s − ∂ωηt

s, t − δ ≤ s ≤ t.

Then

�Yu
s =

∫ t

s

[
f
(
r,Y u

r ,Z u
r , ur

)−
[
∂tη

t
r + 1

2
tr
(
∂2
ωωηt

r

)]]
dr

(6.14)

+
∫ t

s
�Zu

r dBr, t − δ ≤ s ≤ t.

By standard BSDE estimates we see that

E

[
sup

t−δ≤s≤t

∣∣�Yu
s

∣∣2 +
∫ t

t−δ

∣∣�Zu
s

∣∣2 ds

]
≤ Cδ2.

We can now apply the forward dynamic programming principle (6.5) to get

�(t, η) − �
(
t − δ, ηt

t−δ

) = sup
u∈U

[
�
(
t − δ,Y u

t−δ

)− �
(
t − δ, ηt

t−δ

)]

= sup
u∈U

∫ 1

0

〈
Dη�

(
t − δ, ηt

t−δ + θ�Yu
t−δ

)
,�Yu

t−δ

〉
dθ.
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To identify the right-hand side above, we first deduce from (6.14) that

Iu
δ := �Yu

t−δ −
∫ t

t−δ
Et−δ

[
f
(
s, ηt

s, ∂ωηt
s, us

)−
[
∂tη

t
s + 1

2
tr
(
∂2
ωωηt

s

)]]
ds

=
∫ t

t−δ
Et−δ

[
f
(
s,Y u

s ,Z u
s , us

)− f
(
s, ηt

s, ∂ωηt
s, us

)]
ds.

Then it is not hard to check, using Assumption 3.1, that

E
[∣∣Iu

δ

∣∣2] ≤ CδE

[∫ t

t−δ

[∣∣�Yu
s

∣∣2 + ∣∣�Zu
s

∣∣2]ds

]
≤ Cδ3.

Consequently, as δ → 0, we have

�(t, η) − �
(
t − δ, ηt

t−δ

)
= sup

u∈U

〈∫ 1

0
Dη�

(
t − δ, ηt

t−δ + θ�Yu
t−δ

)
dθ,

∫ t

t−δ
Et−δ

[
f
(
s, ηt

s, ∂ωηt
s, us

)−
[
∂tη

t
s + 1

2
tr
(
∂2
ωωηt

s

)]]
ds + Iu

δ

〉

= sup
u∈U

〈
Dη�

(
t − δ, ηt

t−δ

)
,

∫ t

t−δ
Et−δ

[
f
(
s, ηt

s, ∂ωηt
s, us

)−
[
∂tη

t
s + 1

2
tr
(
∂2
ωωηt

s

)]]
ds

〉
+ o(δ)

= sup
u∈U

〈
Dη�

(
t − δ, ηt

t−δ

)
,

∫ t

t−δ

[
f
(
s, ηt

s, ∂ωηt
s, us

)−
[
∂tη

t
s + 1

2
tr
(
∂2
ωωηt

s

)]]
ds

〉
+ o(δ)

= sup
u∈U

〈
Dη�(t, η),

∫ t

t−δ

[
f (t, η, ∂ωη,us) −

[
∂tη + 1

2
tr
(
∂2
ωωη

)]]
ds

〉
+ o(δ)

= δ sup
u∈L0(Ft ,U)

〈
Dη�(t, η), f (t, η, ∂ωη,u) −

[
∂tη + 1

2
tr
(
∂2
ωωη

)]〉+ o(δ).

This implies (6.13) immediately. �

REMARK 6.6. (i) From (6.13), we see that the master equation is a first-order
(forward) equation (although it involves the second-order path-derivative of the
state variable η). While this is obviously the consequence of the forward DPP
(6.5) and our required initial condition on � , it is also due to the fact that, for a
forward problem, standing at t and looking “left,” the problem is essentially “de-
terministic,” hence the corresponding “HJB” equation should be first-order. The
left-temporal path derivative that we introduced in (6.10) is thus essential.
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(ii) The main difficulty of this approach is the proper solution of the master
equation (6.13). To the best of our knowledge, such an equation is completely new
in the literature. Its well-posedness, in strong, weak and viscosity sense, seem to
be all open at this point. We hope to be able to address some of them in our future
research.

6.1. An ill-posed master equation. We have emphasized at above the impor-
tance of using the left-temporal derivative, given the fact that � satisfies a forward
dynamic programming principle. In what follows, we shall reinforce this point by
explaining how a “traditional” right-temporal derivative (6.7) could actually lead
to an ill-posed master equation. We first note that, since by our definition of A ,
for each δ > 0, η ∈ L

2(Ft ) ⊂ L
2(Ft+δ), thus �(t + δ, η) is well defined for all

(t, η) ∈ A .
Now let us derive the equation for the � in (6.2) involving such a derivative.

Again, by DPP (6.5) we have

�(t + δ, η) − �(t, η) = sup
u∈U

[
�
(
t,Y u

t (t + δ, η)
)− �(t, η)

]
(6.15)

= sup
u∈U

∫ 1

0

〈
Dη�

(
t, η + θYu

t

)
,Yu

t

〉
dθ,

where Yu
s := Y u

s (t + δ, η) − η, t ≤ s ≤ t + δ. Note that, if we denote Zu
s :=

Z u
s (t + δ, η), then (Yu,Zu) satisfies the BSDE

Yu
s =

∫ t+δ

s
f
(
r, η +Yu

r ,Zu
r , ur

)
dr −

∫ t+δ

s
Zu

r dBr, t ≤ s ≤ t + δ.

Then the standard BSDE estimates would tell us that

E

[
sup

t≤s≤t+δ

∣∣Yu
s

∣∣2 +
∫ t+δ

t

∣∣Zu
s

∣∣2 ds

]
≤ Cδ2.

Again, let us denote

Iu
δ := Yu

t −Et

[∫ t+δ

t
f (s, η,0, us) ds

]
.

Then, assuming Assumption 3.1 we have

∣∣Iu
δ

∣∣ = ∣∣∣∣Et

[∫ t+δ

t

[
f
(
s, η +Yu

s ,Zu
s , us

)− f (s, η,0, us)
]
ds

]∣∣∣∣
≤ CEt

[∫ t+δ

t

[∣∣Yu
s

∣∣+ ∣∣Zu
s

∣∣]ds

]
,

and consequently

E
[∣∣Iu

δ

∣∣2] ≤ CδE

[∫ t+δ

t

[∣∣Yu
s

∣∣2 + ∣∣Zu
s

∣∣2]ds

]
≤ Cδ3.
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Now (6.15) will lead to

�(t + δ, η) − �(t, η) = sup
u∈U

〈
Dη�(t, η),Et

[∫ t+δ

t
f (s, η,0, us) ds

]〉
+ o(δ)

= δ sup
u∈L2(Ft ,U)

〈
Dη�(t, η), f (t, η,0, u)

〉+ o(δ).

In other words, we will arrive at the following first-order PDE:

(6.16)

⎧⎪⎨
⎪⎩

D+
t �(t, η) = sup

u∈L2(Ft ,U)

〈
Dη�(t, η), f (t, η,0, u)

〉
(t, η) ∈ A ;

�(0, y) = ϕ(y).

We remark that equation (6.16) is typically ill-posed. Indeed, (6.16) involves only
f (·, ·,0, ·), while the � defined in (6.2) obviously depends on f (·, ·, z, ·). So un-
less the function f is independent of the variable z, there is essentially no hope
that equation (6.16) will have a unique solution, as the value functions of two com-
pletely different optimization problems can satisfy the same master equation. We
therefore conclude that D−

t � , not D+
t � , is the right choice of temporal derivative

for the master equation.
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