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Abstract

This paper introduces path derivatives, in the spirit of Dupire’s functional Itô calculus, for controlled
rough paths in rough path theory with possibly non-geometric rough paths. We next study rough PDEs
with coefficients depending on the rough path itself, which corresponds to stochastic PDEs with random
coefficients. Such coefficients are less regular in the time variable, which is not covered in the existing
literature. The results are useful for studying viscosity solutions of stochastic PDEs.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Firstly initiated by Lyons [33], rough path theory has been studied extensively and its appli-
cations have been found in many areas, including the recent application on KPZ equations by
Hairer [24]. We refer to Lyons [34], Friz and Hairer [9], Friz and Victoir [21], and the references
therein for the general theory and its applications.
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On the other hand, the functional Itô calculus, initiated by Dupire [13] and further developed
by Cont and Fournie [9], has received very strong attention in recent years. In particular, it has
proven to be a very convenient language for the theory of path dependent PDEs, see Peng and
Wang [37], Ekren, Keller, Touzi and Zhang [14], and Ekren, Touzi and Zhang [15,16]. We also
refer to Buckdahn, Ma and Zhang [6], Cosso and Russo [10], Leao, Ohashi and Simas [27], and
Oberhauser [36] for some recent related works on functional Itô calculus.

The first goal of this paper is to develop the pathwise Itô calculus, in the spirit of Dupire’s
functional Itô calculus, in the rough path framework with possibly non-geometric rough paths.
Based on the quadratic compensator of rough paths, which plays the role of quadratic variation in
semimartingale theory, we introduce path derivatives for controlled rough paths of Gubinelli [22].
Our first order spatial path derivative is the same as Gubinelli’s derivative, and the time derivative
is closely related to a second order Taylor expansion of the controlled rough paths. This allows us
to study the structure of a fairly general class of controlled rough paths, and more importantly, to
treat rough path integration and rough ODEs/PDEs in the same manner as standard Itô calculus.
In particular,

• the pathwise Taylor expansion and the pathwise Itô formula become equivalent;
• as observed by Buckdahn, Ma and Zhang [6] in a Brownian motion setting, the pathwise

Itô–Ventzell formula is equivalent to the chain rule of our path derivatives, which is crucial
for studying rough PDEs and stochastic PDEs;
• We may study rough ODEs/PDEs whose “drift term” is driven by the quadratic compensator,

instead of dt . See (1.1) and (1.3). This is natural in semimartingale theory when the driving
martingale is not a Brownian motion.

We shall remark though, while we believe such presentation of path derivatives in the rough path
framework is new, many related ideas have already been discussed in the literature. Besides [18]
and the reference therein, we also refer to the recent work Perkowski and Prömel [38] for some
related studies.

We next study the following rough differential equations in the form:

dθt = g(t, θt )dωt + f (t, θt )d⟨ω⟩t , (1.1)

where ω is a Hölder-α continuous rough path and ⟨ω⟩ is its quadratic compensator. We remark
that, as mentioned in previous paragraph, we use Young’s integration f (t, θt )d⟨ω⟩t rather than
Lebesgue integration f (t, θt )dt in the “drift” term above, and they become the same when ω is
induced by a sample path of Brownian motion with Itô integration. Our study of above RDE is
mainly motivated from the following stochastic differential equations with random coefficients:

d X t = g(t, ω, X t )d Bt + f (t, ω, X t )dt, (1.2)

where B is a Brownian motion in the canonical probability space (Ω ,F ,P), d B is Itô integration,
and g, f are adapted, namely depend on the history of the path: {ωs}0≤s≤t . In the literature,
typically the coefficients g and f in (1.1) do not depend on t , or at least is Hölder-(1 − α)
continuous in t , see Lejay and Victoir [28]. However, since a Brownian motion sample path ω is
only Hölder-( 1

2 − ε) continuous, by setting α = 1
2 − ε, for (1.2) it is not reasonable to assume the

mapping t → g(·, ω, x) is Hölder-(1− α) continuous as required by [28]. Consequently, we are
not able to apply the existing results in the rough path literature to study SDE (1.2) with random
coefficients. We shall provide various estimates for rough path integrations, which follow more
or less standard arguments, and then establish the well-posedness of RDE (1.1) under minimum
regularity conditions on the coefficients. To be precise, we require only that g(·, x), f (·, x), and
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∂ωg(·, x) are Hölder-β continuous for some β ∈ (1 − 2α, α], where ∂ωg is the spatial path
derivative corresponding to Gubnelli’s derivative. This can be easily satisfied for the coefficients
of (1.2) when 1

3 < α < 1
2 . We note that the recent works Gubinelli, Tindel and Torrecilla [23]

and Lyons and Yang [35] have also studied rough integration for more general integrands.
As a direct consequence of the above well-posedness result of RDE (1.1), we obtain the

pathwise solution of SDE (1.2) with random coefficients. Moreover, by restricting the canonical
space Ω slightly and by using the pathwise stochastic integration, we construct the second order
process ω via ω itself. Then the pathwise solution exists for all ω ∈ Ω , without the exceptional
P-null set, and the solution X (ω) is continuous in ω under the rough path topology.

We would also like to mention that, for linear RDEs, we introduce a decoupling strategy and
provide a semi-explicit solution, by using the local solution of certain Riccati-type RDEs. The
result seems new even for standard linear SDEs in the multidimensional setting.

Finally, we extend the theory to the following rough PDEs with less regular coefficients:

du(t, x) =

σ(t, x)∂x u + g(t, x, u)


dωt + f (t, x, u, ∂x u, ∂2

xx u)d⟨ω⟩t , (1.3)

again motivated from pathwise analysis for stochastic PDEs with random coefficients:

du(t, ω, x) =

σ(t, ω, x)∂x u + g(t, ω, x, u)


d Bt + f (t, ω, x, u, ∂x u, ∂2

xx u)dt. (1.4)

As standard in the literature, see e.g. Kunita [26] for Stochastic PDEs and [18] for Rough PDEs,
the main tool is the (pathwise) characteristics. We construct the pathwise characteristics via
RDEs against a backward rough path. We remark that the backward rough path we construct
is also a rough path. Our result here will be crucial for the study of viscosity solutions of SPDEs
in Buckdahn, Keller, Ma and Zhang [2].

The rest of the paper is organized as follows. In Section 2 we introduce the basics of our
pathwise Itô calculus, in particular the path derivatives of controlled rough paths. In Section 3
we study functions of controlled rough paths and their path derivatives. We shall provide re-
lated estimates and prove the chain rule of path derivatives, which is equivalent to the pathwise
Itô–Ventzell formula. In Section 4 we study the well-posedness results of rough differential equa-
tions. In particular, for linear RDEs we introduce a decoupling strategy which enables us to con-
struct semi-explicit global solution. In Section 5 we apply the RDE results to SDEs with random
coefficients. Finally in Section 6 we extend the results to rough PDEs and stochastic PDEs.

Below we collect some notations used throughout the paper:

• T > 0 is a fixed time; and T := [0, T ], T2
:= {(s, t) : 0 ≤ s < t ≤ T }.

• d is the fixed dimension for rough paths, and Sd the space of d × d symmetric matrices.
• E (and Ẽ) is a generic Euclidean space, and |E | is the dimension of E , namely E = R|E |.
• By default En is viewed as a column vector. However, for a function g : y ∈ E → Ẽ , we

take the convention that the first order derivative ∂y g ∈ Ẽ1×|E | is viewed as a row vector,
and the second order derivative ∂2

yy g := ∂y[(∂y g)∗] ∈ Ẽ |E |×|E | is symmetric. Moreover, for

g : (x, y) ∈ E1 × E2 → Ẽ, ∂xy g := ∂x [(∂y g)∗] ∈ Ẽ |E2|×|E1| and ∂yx g := ∂y[(∂x g)∗] ∈
Ẽ |E1|×E2 .
• ϕs,t := ϕt − ϕs for any function ϕ : T→ E and any (s, t) ∈ T2.
• For A ∈ Em×n, A∗ ∈ En×m is its transpose.
• For x ∈ Ed and y ∈ Rd , x · y ∈ E is their inner product.
• For A ∈ Em×n and Ã ∈ Rm×n, A : Ã := Trace(AÃ∗) ∈ E .
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• For A = [ai, j : 1 ≤ i ≤ m, 1 ≤ j ≤ |E |] ∈ Ẽm×|E | and x = [xi, j , 1 ≤ i ≤ n, 1 ≤ j ≤
|E |] ∈ En

= Rn×|E |, Ax ∈ Ẽm×n is their tensor contraction, whose (i, j)-th component is|E |
k=1 ai,k x j,k .

• For A = [ai, j : 1 ≤ i ≤ |E1|, 1 ≤ j ≤ E2] ∈ Ẽ |E1|×|E2| and x = [xi, j , 1 ≤ i ≤
m, 1 ≤ j ≤ |E1|] ∈ Em

1 = Rm×|E1|, y = [yi, j , 1 ≤ i ≤ n, 1 ≤ j ≤ |E2|] ∈ En
2 =

Rn×|E2|, A [x, y] ∈ Ẽm×n is their (double) tensor contraction, whose (i, j)-th component is|E1|
k=1

|E2|
l=1 ak,l xi,k y j,l .

2. Rough path integration and path derivatives

In this section we present the basics of rough path theory as well as our pathwise Itô calculus.

2.1. Rough path and its quadratic compensator

Denote, for a constant α > 0,

Ωα(E) :=

ω ∈ C(T, E) : ∥ω∥α <∞


, where ∥ω∥α := sup

(s,t)∈T2

|ωs,t |

|t − s|α
;

Ωα(E) :=

ω ∈ C(T2, E) : ∥ω∥α <∞


, where ∥ω∥α := sup

(s,t)∈T2

|ωs,t |

|t − s|α
.

(2.1)

It is clear that

∥ω∥∞ := sup
0≤t≤T

|ωt | ≤ |ω0| + T α∥ω∥α, ∀ω ∈ Ωα(E). (2.2)

From now on, we shall fix two parameters:

α := (α, β) where α ∈


1
3
,

1
2


, β ∈ (1− 2α, α]. (2.3)

Our space of rough paths is:

Ω0
α :=


ω = (ω, ω) ∈ Ωα(Rd)× Ω2α(R

d×d) :

ωs,t − ωs,r − ωr,t = ωs,rω
∗
r,t ∀0 ≤ s < r < t ≤ T


(2.4)

equipped with:

∥ω∥α := ∥ω∥α + ∥ω∥2α. (2.5)

The requirement in second line of (2.4) is called Chen’s relation. We remark that in general
∥λω∥α ≠ |λ|∥ω∥α for a constant λ.

We next introduce the quadratic compensator of ω:

⟨ω⟩t := ω0,t (ω0,t )
∗
− ω0,t − ω

∗

0,t ∈ Sd . (2.6)

By (2.4), one can easily check that

⟨ω⟩s,t = ωs,t (ωs,t )
∗
− ωs,t − ω

∗

s,t and thus ⟨ω⟩ ∈ Ω2α(Sd). (2.7)
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Remark 2.1. (i) Clearly ⟨ω⟩ = 0 if and only if ω is a geometric rough path. This process is
intrinsic for non-geometric rough paths, and makes our study much more convenient.

(ii) The process ⟨ω⟩ is called the bracket process, denoted as [ω], of the so-called reduced rough
path in [18]. As we will see later,
• this process plays essentially the same role as the quadratic variation process in semi-

martingale theory;
• ω2

t − ⟨ω⟩t is always a rough path integration, which can be viewed as the counterpart of
martingale. So in spirit ⟨ω⟩t plays the similar role for ω2

t as the compensator for a random
measure.

For these reasons, in this paper we call ⟨ω⟩ the quadratic compensator of ω. However, we shall
note that a typical rough path may not have finite quadratic variation. �

The following result is straightforward and its proof is omitted.

Lemma 2.2. For any ω, ω̃ ∈ Ω0
α , we have

∥⟨ω⟩∥2α ≤ ∥ω∥α[2+ ∥ω∥α]; ∥⟨ω⟩ − ⟨ω̃⟩∥2α ≤ [∥ω∥α + ∥ω̃∥α + 2]∥ω − ω̃∥α. (2.8)

2.2. Rough path integration

To study rough path integration against ω, we first introduce the controlled rough paths of
Gubinelli [22], which can be viewed as C1-regularity of the paths against the rough path.

Definition 2.3. For each ω ∈ Ωα(Rd), the space C 1
ω,α(E) of controlled rough paths consists of

E-valued paths θ ∈ Ωβ(E) such that there exists ∂ωθ ∈ Ωβ(E1×d) satisfying:

Rω,θ ∈ Ωα+β(E) where Rω,θs,t := θs,t − ∂ωθsωs,t ∀(s, t) ∈ T2.

We note that for notational simplicity we take the convention that ∂ωθ is a row vector.

Remark 2.4. (i) The path derivative ∂ωθ depends on ω, but not on ω.
(ii) In general ∂ωθ is not unique. However, when ω is truly rough, namely ω ∈ Ωa as defined in

(2.9), ∂ωθ is unique. See [18, Proposition 6.4]. For the ease of presentation, in this paper we
shall assume ω ∈ Ωa. However, most of our results still hold true when ω ∈ Ω0

α , provided
that we specify a version of ∂ωθ .

(iii) ∂ωθ is called the Gubinelli derivative in the rough path literature. As we will see in Section 5,
whenω is a sample path of Brownian motion, it coincides with the path derivative introduced
in [6]. So in this paper we also call it path derivative. �

For the ease of presentation, from now on we restrict to ω ∈ Ωa so that ∂ωθ is unique:

Ωa :=

ω ∈ Ω0

α : there exists a dense subset A ⊂ [0, T ) such that

lim
t↓s

|v · ωs,t |

(t − s)α+β
= ∞ for all s ∈ A and v ∈ Rd

\ {0}

. (2.9)

For ω ∈ Ωa, we equip the space C 1
ω,α(E) with the semi-norms:

∥θ∥ω,α := ∥∂ωθ∥β + ∥R
ω,θ
∥α+β , dω,ω̃α (θ, θ̃) := ∥∂ωθ − ∂ω̃ θ̃∥β + ∥R

ω,θ
− Rω̃,θ̃∥α+β ,

|||θ |||ω,α := ∥θ∥ω,α + |∂ωθ0|, dω,ω̃α (θ, θ̃) := dω,ω̃α (θ, θ̃)+ |∂ωθ0 − ∂ω̃ θ̃0|.
(2.10)
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In particular, we note that

dωα (θ, θ̃) := dω,ωα (θ, θ̃) = ∥θ − θ̃∥ω,α, dωα (θ, θ̃) := dω,ωα (θ, θ̃) = |||θ − θ̃ |||ω,α. (2.11)

By (2.2) one can easily check that

Ωα+β (E) ⊂ C 1
ω,α(E), with ∂ωθ = 0 and ∥θ∥ω,α = ∥θ∥α+β , ∀θ ∈ Ωα+β ;

C 1
ω,α(E) ⊂ Ωα(E), with ∥θ∥α ≤ |∂ωθ0|∥ω∥α + T β [1+ ∥ω∥α]∥θ∥ω,α ∀θ ∈ C 1

ω,α(E).
(2.12)

We are now ready to define the rough path integration. For each ω ∈ Ωa, θ ∈ C 1
ω,α(E

d), and
each partition π : 0 = t0 < · · · < tn = T , denote

Θπ
t :=

n−1
i=0


θti∧t · ωti∧t,ti+1∧t + ∂ωθti∧t : ωti∧t,ti+1∧t


. (2.13)

Here, for θ = [θ1, . . . , θd ]
∗, we take the convention that ∂ωθ ∈ Ed×d with i th row ∂ωθi .

Following Gubinelli [22], we may define the rough integral as the unique limit of Θπ :

Lemma 2.5. For each ω ∈ Ωa, θ ∈ C 1
ω,α(E

d), the rough integral t

0
θs · dωs := Θt := lim

|π |→0
Θπ

t ∈ E (2.14)

exists, and is independent of the choice of π . Moreover, Θ ∈ C 1
ω,α(E) with ∂ωΘ = θ∗ andΘs,t − θs · ωs,t − ∂ωθs : ωs,t

 ≤ Cα∥ω∥α∥θ∥ω,α|t − s|2α+β;

∥Θ∥ω,α ≤ T α−β∥ω∥α|∂ωθ0| + CαT α[1+ ∥ω∥α]∥θ∥ω,α,
(2.15)

where the constant Cα depends only on α and the dimensions |E | and d.

Proof. This result follows the same arguments in [18, Theorem 4.10], except that the second line
of (2.15) appears slightly differently. To see that, by the first estimate we have

∥Rω,θ∥α+β ≤ ∥∂ωθ∥∞∥ω∥αT α−β + CT α∥ω∥α∥θ∥ω,α.

Plug (2.2) with ω replaced by ∂ω and α replaced by β into above and then use the inequality of
(2.12). We obtain the second estimate of (2.15) immediately. �

Moreover, we have the following stability result in terms of the rough integral, which
improves [18, Theorem 4.16] slightly.

Lemma 2.6. Let (ω, θ,Θ) be as in Lemma 2.5 and consider (ω̃, θ̃ , Θ̃) similarly. Denote

M := ∥θ∥ω,α + ∥θ̃∥ω̃,α + ∥ω∥α + ∥ω̃∥α, and 1ϕ := ϕ̃ − ϕ, for ϕ = ω, θ,Θ .

Then, there exists a constant Cα,M , depending on α,M, and |E |, d, such that

dω,ω̃α (Θ, Θ̃) ≤ T α−β

|∂ωθ̃0|∥1ω∥α + ∥ω∥α|1∂ωθ0|


+ Cα,M T α


∥1ω∥α + dω,ω̃α (θ, θ̃)


.
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Proof. First, similar to the first estimate in (2.15), or following the same arguments as in
[18, Theorem 4.16], we have[Rω̃,Θ̃s,t − ∂ωθ̃s : ω̃s,t ] − [R

ω,Θ
s,t − ∂ωθs : ωs,t ]

 ≤ CT α

∥1ω∥α + dω,ω̃α (θ, θ̃)


(t − s)α+β .

Note that, by (2.2),

|∂ωθ̃s : ω̃s,t − ∂ωθs : ωs,t | ≤


∥1∂ωθ∥∞∥ω∥2α + ∥∂ωθ̃∥∞∥1ω∥2α


(t − s)2α

≤


[|1∂ωθ0|∥ω∥2α + |∂ωθ̃0|∥1ω∥2α]

+CT β [∥1∂ωθ∥β + ∥1ω∥2α]

(t − s)2α.

Then we obtain the desired estimate for ∥Rω̃,Θ̃ − Rω,Θ∥α+β immediately. Moreover,

|1∂ωΘs,t | = |1θs,t | =

[∂ωθ̃sω̃s,t + Rω̃,θ̃s,t ] − [∂ωθsωs,t + Rω,θs,t ]


≤


∥1∂ωθ∥∞∥ω∥α + ∥∂ωθ̃∥∞∥1ω∥α + T β∥Rω̃,θ̃ − Rω,θ∥α+β


(t − s)α.

By (2.2) again we obtain the desired estimate for ∥1∂ωΘ∥β , completing the proof. �

We conclude this subsection with the Young’s integration against ⟨ω⟩. Since ⟨ω⟩ ∈ Ω2α(Sd),
by (2.3) the Young’s integral θt : d⟨ω⟩t is well defined for all θ ∈ Ωβ(Ed×d). We collect below
some results concerning this integration. Since the proofs are standard and are much easier than
Lemmas 2.5 and 2.6, we omit them.

Lemma 2.7. (i) Let ω ∈ Ωa, θ ∈ Ωβ(Ed×d),Θt :=
 t

0 θs : d⟨ω⟩s . Then Θ ∈ Ωα+β(E) and

|Θs,t − θs : ⟨ω⟩s,t | ≤ C∥θ∥β∥⟨ω⟩∥2α(t − s)2α+β ,

∥Θ∥α+β ≤

T α−β |θ0| + CT α∥θ∥β


∥⟨ω⟩∥2α.

(2.16)

(ii) Let (ω̃, θ̃ , Θ̃) satisfy the same properties. Then, denoting 1ϕ := ϕ − ϕ̃ for ϕ = ω, θ,Θ ,

∥1Θ∥α+β ≤ T α−β∥⟨ω⟩∥2α|1θ0|

+CT α

∥⟨ω⟩∥2α∥1θ∥β + ∥θ̃∥β∥⟨ω⟩ − ⟨ω̃⟩∥2α


. (2.17)

2.3. Path derivatives

We next introduce further path derivatives of θ . Our following definition is motivated from the
path derivatives introduced in Ekren, Touzi and Zhang [15] and Buckdahn, Ma and Zhang [6],
which in turn were motivated by the functional Itô calculus of Dupire [13].

Definition 2.8. For each ω ∈ Ωa, the space C 2
ω,α(E) consists of E-valued controlled rough

paths θ ∈ C 1
ω,α(E) such that ∂ωθ ∈ C 1

ω,α(E
1×d) and there exists symmetric Dω

t θ ∈ Ωβ(Ed×d)

satisfying the following pathwise Itô formula:

dθt = ∂ωθt dωt +


Dω

t θt +
1
2
∂2
ωωθt


: d⟨ω⟩t ,

where ∂2
ωωθt := ∂ω[(∂ωθt )

∗
] ∈ Ed×d . (2.18)
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Remark 2.9. (i) In general Dω
t θ may not be unique. Similar to (2.9), one can easily check that

Dω
t θ is unique if ω is restricted to the following Ωa:Ωa :=


ω ∈ Ωa : there exists a dense subset A ⊂ [0, T ) such that

lim
t↓s

|v : ⟨ω⟩s,t |

(t − s)2α+β
= ∞ for all s ∈ A and v ∈ Sd

\ {0}

. (2.19)

(ii) However, ⟨ω⟩ is more regular than ω, and thus (2.19) is much more difficult to satisfy than
(2.9). For example, if ω is a sample path of Brownian motion with Itô integration, then
⟨ω⟩t = t Id as we will see in Section 5. In the case d ≥ 2, by considering v ∈ Sd

\ {0} with
Trace(v) = 0, we see that Ωa = ∅. In the case d = 1 however, we have Ωa = Ωa because
v ≠ 0 and 2α + β > 1.

(iii) In many cases in this paper, θ already takes the form dθt = at ·dωt+bt : d⟨ω⟩t , then clearly
∂ωθ = a∗ and we shall always set, thanks to the symmetry of ⟨ω⟩,

Dω
t θ :=

1
2


b −

1
2
∂ωa


+


b −

1
2
∂ωa

∗
. (2.20)

(iv) In the case that ⟨ω⟩t = t , we will actually define ∂ω
t θ := Trace(Dω

t θ). Then we see that ∂ω
t θ

is unique (see Theorem 1, [20]). �

Remark 2.10. (i) In general ∂ωi and ∂ω j do not commute, and Dω
t and ∂ω are also not commu-

tative. In particular, ∂2
ωωθ is not symmetric. However, since ⟨ω⟩ is symmetric, we see that

(2.18) is equivalent to

dθt = ∂ωθt dωt +


Dω

t θt +
1
4
[∂2
ωωθt + (∂

2
ωωθt )

∗
]


: d⟨ω⟩t . (2.21)

(ii) One can easily check that the pathwise Itô formulae (2.18) and (2.21) are equivalent to the
following pathwise Taylor expansion:

θs,t = ∂ωθsωs,t +
1
2
∂2
ωωθs : [ωs,tω

∗
s,t + ωs,t − ω

∗

s,t ]

+ Dω
t θs : ⟨ω⟩s,t + O((t − s)2α+β). (2.22)

In the case that ∂2
ωωθ is symmetric, which is always the case when d = 1, (2.22) becomes

θs,t = ∂ωθsωs,t +
1
2
∂2
ωωθs : [ωs,tω

∗
s,t ] + Dω

t θs : ⟨ω⟩s,t + O((t − s)2α+β). (2.23)

We refer to [6] for related works in Brownian motion setting. �

2.4. Backward rough integration

In this subsection we introduce the backward rough path, which is also a rough path and will
play an important role in constructing the pathwise characteristics in Section 6. Let ω ∈ Ωa and
θ ∈ C 1

ω,α(E
d). For any t0 ∈ [0, T ] and 0 ≤ s ≤ t ≤ t0, define

←
ω

t0
t := ωt0 − ωt0−t ,

←
ω

t0
s,t := ωt0−t,t0−sω

∗
t0−t,t0−s − ωt0−t,t0−s ,

←
ω

t0
:= (
←
ω

t0
,
←
ω

t0
);

←

θ
t0
t := θt0−t , (

←

∂ωθ)
t0
t := −∂ωθt0−t .

(2.24)

By restricting the processes on [0, t0] in obvious sense, we have



C. Keller, J. Zhang / Stochastic Processes and their Applications 126 (2016) 735–766 743

Lemma 2.11. Let ω ∈ Ωa and θ ∈ C 1
ω,α(E

d). Then
←
ω

t0
∈ Ω0

α,
←

θ
t0
∈ C 1

←
ω

t0
,α
(Ed) with

∂←
ω

t0

←

θ
t0
= (

←

∂ωθ)
t0 and

 t0−s

t0−t

←

θ
t0
r · d

←
ω

t0
r =

 t

s
θr · dωr , 0 ≤ s < t ≤ t0. (2.25)

Proof. In this proof we omit the superscript t0 and denote t ′ := t0 − t, s′ := t0 − s, r ′ :=
t0 − r, δ := t − s. First, one can easily check that

←
ω s,t = ωt ′,s′ ,

←
ω s,t −

←
ω s,r −

←
ωr,t = ωr ′,s′ω

∗

t ′,s′ =
←
ω s,r

←
ωr,t .

This implies that
←
ω∈ Ω0

α . Next,
←

θ s,t = −θt ′,s′ = −∂ωθt ′ωt ′,s′ − Rω,θt ′,s′ =
←

∂ωθ s
←
ω s,t + ∂ωθt ′,s′ωt ′,s′ − Rω,θt ′,s′ .

Then clearly
←

∂ωθ is a Gubinelli derivative of
←

θ with respect to
←
ω . Finally, the second equality of

(2.25) is exactly the same as [18, Proposition 5.10]. �

Remark 2.12. (i) Note that the lim in (2.9) is taken from the right. Due to the time change, it is

not clear that the backward rough path
←
ω

t0
will still be truly rough.

(ii) However, thanks to the additional regularity requirement of the path derivative, ∂←
ω

t0

←

θ
t0

is
still unique. Indeed, let η be an arbitrary path satisfying the desired properties of the path

derivative ∂←
ω

t0

←

θ
t0

. Then, for 0 ≤ s < t ≤ t0,

θs,t =
←

θ
t0
t0−t,t0−s = ηt0−t

←
ω t0−t,t0−s + O(|t − s|α+β)

= ηt0−tωs,t + O(|t − s|α+β) = ηt0−sωs,t + O(|t − s|α+β).

By the uniqueness of ∂ωθ , we see that ηt0−s = ∂ωθs , and thus ηs = ∂ωθt0−s is unique. �

3. Functions of controlled rough paths

In this section we study functions ϕ : T× Ẽ → E and its related path derivatives. Similar to
(2.18), we shall take the notational convention that

∂yyϕ := ∂y[(∂yϕ)
∗
], ∂yωϕ := ∂y[(∂ωϕ)

∗
], ∂ωyϕ := ∂ω[(∂yϕ)

∗
]. (3.1)

Definition 3.1. (i) For k ≥ 0, let C k
loc(Ẽ, E) be the set of mappings g : T× Ẽ → E such that

g is kth differentiable in y. Moreover, let C k(Ẽ, E) ⊂ C k
loc(Ẽ, E) be such that

∥g∥k :=
k

i=0

sup
y∈Ẽ

∥∂(i)y g(·, y)∥∞ <∞. (3.2)

(ii) For k ≥ 0, let C k
β,loc(Ẽ, E) ⊂ C k

loc(Ẽ, E) be such that, for i = 0, . . . , k, ∂(i)y g is Hölder-β

continuous in t , and the mapping y → ∂
(i)
y g(·, y) is continuous under ∥ · ∥β . Moreover, let

C k
β(Ẽ, E) ⊂ C k

β,loc(Ẽ, E) be such that

∥g∥k,β :=
k

i=0

sup
y∈Ẽ

∥∂(i)y g(·, y)∥β <∞. (3.3)
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(iii) Let C 1,2
ω,α,loc(Ẽ, E) ⊂ C 2

loc(Ẽ, E) be such that g(·, y) ∈ C 1
ω,α(E), ∂y g(·, y) ∈ C 1

ω,α(E
1×|Ẽ |),

for each y ∈ Ẽ , the mappings y → g(·, y) and y → ∂y g(·, y) are continuous under ||| · |||ω,α ,
and ∂ωg ∈ C 1

β,loc(Ẽ, E1×d). Moreover, let C 1,2
ω,α(Ẽ, E) ⊂ C 1,2

ω,α,loc(Ẽ, E) be such that

∥g∥2,ω,α := ∥g∥2 + ∥∂ωg∥1 + sup
y∈Ẽ

[∥g(·, y)∥ω,α + ∥∂y g(·, y)∥ω,α] <∞. (3.4)

(iv) Let C 2,3
ω,α,loc(Ẽ, E) ⊂ C 1,2

ω,α,loc(Ẽ, E) be such that ∂ωg ∈ C 1,2
ω,α,loc(Ẽ, E1×d), ∂y g ∈ C 1,2

ω,α,loc

(Ẽ, E1×|Ẽ |), g(·, y) ∈ C 2
ω,α(E) for every y ∈ Ẽ and there exists Dω

t g ∈ C 1
β,loc(Ẽ, Ed×d).

Moreover, let C 2,3
ω,α(Ẽ, E) ⊂ C 2,3

ω,α,loc(Ẽ, E) be such that

∥g∥3,ω,α := ∥g∥2,ω,α + ∥∂ωg∥2,ω,α + ∥∂y g∥2,ω,α <∞. (3.5)

(v) Let C 3,3
ω,α,loc(Ẽ, E) ⊂ C 2,3

ω,α,loc(Ẽ, E) be such that ∂ωg ∈ C 2,3
ω,α,loc(Ẽ, E1×d).

(vi) For ω, ω̃ ∈ Ωa, and g ∈ C 1,2
ω,α(Ẽ, E), g̃ ∈ C 1,2

ω̃,α
(Ẽ, E) define

dω,ω̃2,α (g, g̃) := ∥g − g̃∥2 + ∥∂ωg − ∂ω̃ g̃∥1

+ sup
y∈Ẽ


dω,ω̃α (g(·, y), g̃(·, y))+ dω,ω̃α (∂y g(·, y), ∂y g̃(·, y))


. (3.6)

Remark 3.2. (i) For g ∈ C 2,3
ω,α(Ẽ, E), by (2.18) we have

dg(t, y) = h(t, y) · dωt + f (t, y) : d⟨ω⟩t , where

h := (∂ωg)∗ ∈ C 1,2
ω,α,loc(Ẽ, Ed), f := Dω

t g +
1
2
∂ωh ∈ C 1

β,loc(Ẽ, Ed×d).
(3.7)

(ii) In (3.4), we need only ∥∂ωg∥1 instead of ∥∂ωg∥1,β , and in (3.5), we do not need ∥Dω
t g∥1,β .

The latter is particularly convenient because Dω
t g may not be unique.

(iii) It is clear that dω2,α(g, g̃) := dω,ω2,α (g, g̃) = ∥g − g̃∥2,ω,α . �

3.1. Commutativity of ∂y and path derivatives

Lemma 3.3. (i) Let g ∈ C 2,3
ω,α(Ẽ, E). Then ∂ωy g = [∂yωg]∗ ∈ E |Ẽ |×d , namely

∂ω∂yi g = ∂yi ∂ωg, i = 1, . . . , |Ẽ |. (3.8)

(ii) Let g ∈ C 3,3
ω,α(Ẽ, E). Then, for appropriate Dω

t and for each i = 1, . . . , |Ẽ |,

∂2
ωω∂yi g = ∂yi ∂

2
ωωg and Dω

t ∂yi g = ∂yi Dω
t g. (3.9)

Proof. Without loss of generality, we assume |Ẽ | = 1, namely Ẽ = R. Recall (3.7).
(i) Fix y ∈ R and denote, for 0 ≠ 1y ∈ R,

∇ϕt (y) :=
ϕ(t, y +1y)− ϕ(t, y)

1y
, ϕ = g, h, f.

It is straightforward to check that

∇gt (y) =
 t

0
∇hs(y) · dωs +

 t

0
∇ fs(y) : d⟨ω⟩s
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∇ht (y) =
 1

0
∂yh(t, y + λ1y)dλ, ∇ ft (y) =

 1

0
∂y f (t, y + λ1y)dλ,

and thus, as |1y| → 0,

|||∇h(y)− ∂yh(y)|||ω,α ≤
 1

0
|||∂yh(y + λ1y)− ∂yh(y)|||ω,αdλ→ 0,

∥∇ f (y)− ∂y f (y)∥β ≤
 1

0
∥∂y f (y + λ1y)− ∂y f (y)∥βdλ→ 0.

Then it follows from Lemmas 2.6 and 2.7(ii) that

∂y g(t, y) =
 t

0
∂yh(s, y) · dωs +

 t

0
∂y f (s, y) : d⟨ω⟩s . (3.10)

This implies (3.8) immediately.
(ii) Since h ∈ C 2,3

ω,α(Ẽ, E1×d), by (i) we have ∂y∂ωh = ∂ω∂yh and thus ∂y∂
2
ωωg = ∂2

ωω∂y g.
Now applying the convention (2.20) for Dω

t on (3.10) and by (3.7), we have

2Dω
t (∂y g) =


∂y f −

1
2
∂ωyh


+


∂y f −

1
2
∂ωyh

∗
= ∂y


f −

1
2
∂ωh


+


f −

1
2
∂ωh

∗
=


∂y f −

1
2
∂yωh


+


∂y f −

1
2
∂yωh

∗
= 2∂y Dω

t g.

This completes the proof. �

3.2. Chain rule of path derivatives

Theorem 3.4. (i) Let ω ∈ Ωa, θ ∈ C 1
ω,α(Ẽ), g ∈ C 1,2

ω,α,loc(Ẽ, E), and ηt := g(t, θt ). Then

η ∈ C 1
ω,α(E) with ∂ωηt = (∂ωg)(t, θt )+ ∂y g(t, θt )∂ωθt . (3.11)

(ii) Assume further that θ ∈ C 2
ω,α(Ẽ) and g ∈ C 2,3

ω,α,loc(Ẽ, E). Then, for appropriate Dω
t ,

η ∈ C 2
ω,α(E) with Dω

t ηt = (D
ω
t g)(t, θt )+ ∂y g(t, θt )D

ω
t θt . (3.12)

Remark 3.5. Similar to [6, Proposition 2.7], the chain rule of pathwise derivatives is equivalent
to the Itô–Ventzell formula, which extends the Itô formula in [18, Proposition 5.6]. Indeed, note
that θ ∈ C 2

ω,α(Ẽ) takes the form:

dθt = at · dωt + bt : d⟨ω⟩t where a := (∂ωθ)
∗, b := Dω

t θ +
1
2
∂ωa. (3.13)

Recall (3.7) again. It follows from Lemma 3.3(i) that ∂ω∂y g = (∂yh)∗. Then, noticing that

h ∈ C 1,2
ω,α,loc(Ẽ, Ed), ∂y g ∈ C 1,2

ω,α,loc(Ẽ, E1×|Ẽ |), by applying (3.11) several times and by (3.12),
we have

∂ωηt = h∗(t, θt )+ ∂y g(t, θt )a
∗
t ,
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∂2
ωωηt = ∂ω[h(t, θt )+ ∂y g(t, θt )at ]

=


∂ωh + ∂yha∗ + (∂yha∗)∗ + ∂2

yy g [a, a] + ∂y g∂ωa

(t, θt );

Dω
t ηt =

1
2


f −

1
2
∂ωh


+


f −

1
2
∂ωh

∗
+ ∂y g


b −

1
2
∂ωa


+


b −

1
2
∂ωa

∗
(t, θt ).

This, together with (2.18) and the symmetry of ⟨ω⟩, implies:

d[g(t, θt )] =

h(t, θt )+ ∂y g(t, θt )at


· dωt

+


f + ∂y gbt +

1
2
∂2

yy g [at , at ] + ∂yha∗t

(t, θt ) : d⟨ω⟩t , (3.14)

which we call the pathwise Itô–Ventzell formula. �

Proof of Theorem 3.4. (i) For (s, t) ∈ T2, we have

ηs,t = g(t, θt )− g(s, θs) = g(t, θt )− g(s, θt )+ g(s, θt )− g(s, θs)

= [∂ωg](s, θt )ωs,t + Rω,g(·,θt )
s,t +

 1

0
∂y g(s, θs + λθs,t )dλθs,t

=


(∂ωg)(s, θs)+ ∂y g(s, θs)∂ωθs


ωs,t + Rω,ηs,t , (3.15)

where

Rω,ηs,t :=


[∂ωg](s, θt )− [∂ωg](s, θs)


ωs,t + Rω,g(·,θt )

s,t

+

 1

0
[∂y g(s, θs + λθs,t )− ∂y g(s, θs)]dλ∂ωθsωs,t

+

 1

0
∂y g(s, θs + λθs,t )dλRω,θs,t .

Then clearly

∥Rω,η∥α+β ≤ ∥g∥2,ω,α

∥θ∥β∥ω∥α + 1+ ∥θ∥β∥∂ωθ∥∞∥ω∥α + ∥θ∥ω,α


<∞. (3.16)

Moreover, under our conditions it is clear that (∂ωg)(t, θt ) + ∂y g(t, θt )∂ωθt is Hölder-β-
continuous. This proves (3.11).

(ii) Recall (3.7) and (3.13). By reversing the arguments in Remark 3.5, it suffices to prove
(3.14). Denote δ := t − s. Recall the first line of (3.15) and note that

θs,t = as · ωs,t + ∂ωas : ωs,t + bs : ⟨ω⟩s,t + O(δ2α+β);

g(t, y)− g(s, y) = h(s, y) · ωs,t + ∂ωh(s, y) : ωs,t + f (s, y) : ⟨ω⟩s,t + O(δ2α+β).

Then, by the standard Taylor expansion and applying Lemma 3.3(i) on g, we have

g(t, θt )− g(t, θs) = ∂y g(t, θs)θs,t +
1
2
∂2

yy g(t, θs) [θs,t , θs,t ] + O(δ3α)

=


∂y g(s, θs)+ ∂yh(s, θs) · ωs,t


θs,t

+
1
2
∂2

yy g(s, θs) [θs,t , θs,t ] + O(δ2α+β);
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g(t, θs)− g(s, θs) = h(s, θs) · ωs,t + [∂ωh](s, θs) : ωs,t + f (s, θs) : ⟨ω⟩s,t + O(δ2α+β).

On the other hand, t

s
[h(r, θr )+ ∂y g(r, θr )ar ] · dωr

= [h(s, θs)+ ∂y g(s, θs)as] · ωs,t + ∂ω[h(s, θs)+ ∂y g(s, θs)as] : ωs,t + O(δ2α+β); t

s
[ f (r, θr )+ ∂y g(r, θr )br ] : d⟨ω⟩r = [ f (s, θs)+ ∂y g(s, θs)bs] : ⟨ω⟩s,t + O(δ2α+β).

By Lemma 3.3(i) we have ∂ωy g = [∂yωg]∗ = ∂yh∗. Then it follows from (3.11) that

∂ω[h(s, θs)+ ∂y g(s, θs)as]

=


∂ωh + ∂yha∗s + ∂yh∗as + ∂

2
yy g [a∗s , a∗s ] + ∂y g∂ωas


(s, θs). (3.17)

Noting that ωs,t = O(δα), ωs,t = O(δ2α), and ⟨ω⟩s,t = O(δ2α), then we have

ηs,t −

 t

s
[h(r, θr )+ ∂y g(r, θr )ar ] · dωr −

 t

s
[ f (r, θr )+ ∂y g(r, θr )br ] : d⟨ω⟩r

=


[∂yh(s, θs) · ωs,t ][as · ωs,t ] +

1
2
∂2

yy g(t, θs) [(as · ωs,t )
∗, (as · ωs,t )

∗
]

−


∂yh(s, θs)a

∗
s + [∂yh(s, θs)a

∗
s ]
∗
+ ∂2

yy g(s, θs) [a
∗
s , a∗s ]


: ωs,t + O(δ2α+β)

=

1
2
∂2

yy g(t, θs) [∂ωθs, ∂ωθs] + ∂yh(s, θs)∂ωθs


: ⟨ω⟩s,t + O(δ2α+β).

This proves (3.14), and hence (3.12). �

3.3. Some estimates

In this subsection we provide some estimates for η = g(t, θt ), which will be crucial for
studying rough differential equations in next section. These results correspond to [18, Lemma
7.3 and Theorem 7.5], where g does not depend on t .

Lemma 3.6. (i) Let ω ∈ Ωa, θ ∈ C 1
ω,α(E), g ∈ C 1,2

ω,α(Ẽ, E), ηt := g(t, θt ), and denote

M1 := ∥ω∥α + |||θ |||ω,α.

Then for any T0 > 0 and any T ≤ T0, there exists a constant Cα,M1,T0 , depending only on
α,M1, T0, and |E |, |Ẽ |, such that

∥η∥ω,α ≤ Cα,M1,T0∥g∥2,ω,α. (3.18)

(ii) Assume further that g ∈ C 2,3
ω,α(Ẽ, E), and (ω̃, θ̃ , g̃, η̃) satisfies the same conditions. Denote

1ϕ := ϕ̃ − ϕ for appropriate ϕ, and

M2 := |||θ |||ω,α + |||θ̃ |||ω̃,α + ∥ω∥α + ∥ω̃∥α + ∥g∥3,ω,α + ∥g̃∥3,ω̃,α.

Then, for any T ≤ T0 as in (i), there exists a constant Cα,M2,T0 such that

dω,ω̃α (η, η̃) ≤ Cα,M2,T0


dω,ω̃2,α (g, g̃)+ dω,ω̃α (θ, θ̃)+ |1θ0| + ∥1ω∥α


. (3.19)
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Proof. (i) First, by (2.2) and (2.12) we have ∥∂ωθ∥∞+∥θ∥β ≤ C . By the first line of (3.15) it is
clear that

∥η∥β ≤ C

∥g∥0,β + ∥g∥1


. (3.20)

Next, recall (3.11) and note that

|∂ωηs,t | ≤ |∂ωg(t, θt )− ∂ωg(s, θs)| + |∂y g(t, θt )− ∂y g(s, θs)| |∂ωθt |

+ |∂y g(s, θs)| |∂ωθs,t |.

Applying (3.20) on ∂ωg and ∂y g we obtain ∥∂ωη∥β ≤ C∥g∥2,ω,α . Moreover, by (3.16) we have
∥Rω,η∥α+β ≤ C∥g∥2,ω,α . Putting together we prove (3.18).

(ii) First, note that

1ηs,t = g̃(t, θ̃t )− g(t, θt )− g̃(s, θ̃s)+ g(s, θs)

= [1g(t, θ̃t )−1g(s, θ̃s)] +

 1

0
∂y g(s, θs + λ1θs)dλ1θs,t

+

 1

0
[∂y g(t, θt + λ1θt )− ∂y g(s, θs + λ1θs)]dλ1θt .

Apply (3.20) on 1g and ∂y g, we obtain

∥1η∥β ≤ C

∥1g∥0,β + ∥1g∥1 + ∥1θ∥β + |1θ0|


.

Note that θs,t = ∂ωθsωs,t + Rω,θs,t , and similarly for θ̃ . Then, by (2.2),

∥1θ∥β ≤ ∥∂ω̃θ̃ − ∂ωθ∥∞∥ω̃∥β + ∥∂ωθ∥∞∥1ω∥β + ∥R
ω̃,θ̃
− Rω,θ∥β

≤ C

dω,ω̃α (θ, θ̃)+ ∥1ω∥α


. (3.21)

Thus

∥1η∥β ≤ C

∥1g∥0,β + ∥1g∥1 + |1θ0| + dω,ω̃α (θ, θ̃)+ ∥1ω∥α


. (3.22)

We shall emphasize that the above C depends on ∥g∥2,ω,α + ∥g̃∥2,ω̃,α , not ∥g∥3,ω,α + ∥g̃∥3,ω̃,α .
Next, note that

∂ω̃η̃t − ∂ωηt = [∂ω̃ g̃(t, θ̃t )− ∂ωg(t, θt )] + [∂y g̃(t, θ̃t )− ∂y g(t, θt )]∂ω̃θ̃t

+ ∂y g(t, θt )[∂ω̃θ̃t − ∂ωθt ].

[∂ω̃η̃ − ∂ωη]s,t = [∂ω̃ g̃(·, θ̃·)− ∂ωg(·, θ·)]s,t + [∂y g̃(·, θ̃·)− ∂y g(·, θ·)]s,t∂ωθ̃t

+ [∂y1g(s, θ̃s)+ ∂y g(s, θ̃s)− ∂y g(s, θs)]∂ωθ̃s,t
+ [∂y g(·, θ·)]s,t1∂ωθt + ∂y g(s, θs)1∂ωθs,t .

Apply (3.22) on ∂ωg and ∂y g, and (3.20) on ∂y g, we obtain from (3.21) that

∥1∂ωη∥α ≤ C

dω,ω̃2,α (g, g̃)+ |1θ0| + dω,ω̃α (θ, θ̃)+ ∥1ω∥α


. (3.23)
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Finally, recall (3.16) and note that

Rω̃,g̃(·,ỹ)s,t − Rω,g(·,y)s,t = Rω̃,g̃(·,ỹ)s,t − Rω,g(·,ỹ)s,t +


[g(·, ỹ)]s,t − ∂ωg(s, ỹ)ωs,t


−


[g(·, y)]s,t − ∂ωg(s, y)ωs,t


= Rω̃,g̃(·,ỹ)s,t − Rω,g(·,ỹ)s,t +

 1

0
R
ω,∂y g(·,y+λ1y)
s,t dλ1y,

one can obtain the desired estimate for ∥Rω̃,η̃ − Rω,η∥α+β straightforwardly. This, together with
(3.23), completes the proof. �

Moreover, we have the following simpler results whose proof is omitted.

Lemma 3.7. (i) Let θ ∈ Ωβ(E), f ∈ C 1
β(Ẽ, E), and ηt := f (t, θt ). Then η ∈ Ωβ(E) and

∥η∥β ≤ ∥ f ∥0,β + ∥ f ∥1∥θ∥β ≤ ∥ f ∥1,β [1+ ∥θ∥β ]. (3.24)

(ii) Let θ, θ̃ ∈ Ωβ(E), f, f̃ ∈ C 2
β(Ẽ, E), and ηt := f (t, θt ), η̃ := f̃ (t, θ̃t ). Then

∥η̃ − η∥β ≤ [1+ ∥θ∥β + ∥θ̃∥β ]

∥ f̃ − f ∥1,β + ∥ f ∥2[|θ̃0 − θ0| + ∥θ̃ − θ∥β ]


. (3.25)

4. Rough differential equations

In this section we study rough path differential equations with coefficients less regular in
the time variable t , motivated from our study of stochastic differential equations with random
coefficients in next section. Let ω ∈ Ωa, g ∈ C 2,3

ω,α(E, Ed), f ∈ C 2
β(E, Ed×d), and y0 ∈ E .

Consider the following RDE:

θt = y0 +

 t

0
g(s, θs) · dωs +

 t

0
f (s, θs) : d⟨ω⟩s, t ∈ T. (4.1)

Our goal is to find solution θ ∈ C 1
ω,α(E). By Theorem 3.4 and Lemma 3.7, in this case

g(·, θ) ∈ C 1
ω,α(E

d), f (·, θ) ∈ Ωβ(Ed×d), and thus the right side of (4.1) is well defined.

Remark 4.1. When θ ∈ C 1
ω,α(E) is a solution, clearly ∂ωθt = g(t, θt ), then by Theorem 3.4(i) it

is clear that θ ∈ C 2
ω,α(E). So a solution to RDE (4.1) is automatically in C 2

ω,α(E). We shall use
this fact without mentioning it. �

In standard rough path theory the vector field g of RDE (4.1) is independent of t . In Lejay
and Victoir [28], g may depend on t , but is required to be Hölder-(1 − α) continuous, which
is violated for g ∈ C 2,3

ω,α(E, Ed) (since α < 1
2 ). This relaxation of regularity in t is crucial for

studying SDEs and SPDEs with random coefficients, see Remark 5.7. We also refer to Gubinelli,
Tindel and Torrecilla [23] for some discussion along this direction.

Theorem 4.2. Let ω ∈ Ωa, g ∈ C 2,3
ω,α(E, Ed), f ∈ C 2

β(E, Ed×d), and y0 ∈ E. Then RDE

(4.1) has a unique solution θ ∈ C 2
ω,α(E). Moreover, there exists a constant Cα , depending only

on α, d, |E |, T, ∥ f ∥2,β , ∥g∥3,ω,α , and ∥ω∥α , such that

∥θ∥α + ∥θ∥ω,α ≤ Cα. (4.2)
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Furthermore, the constant Cα is bounded for d, |E |, T, ∥ f ∥2,β , ∥g∥3,ω,α , and ∥ω∥α bounded
from above and for α and β bounded from below.

Proof. We proceed in three steps.
Step 1. Denote M := [∥∂ωg∥0 + ∥g∥21]∥ω∥α + ∥ f ∥0∥ω∥α[2+ ∥ω∥α] and

Aα :=


θ ∈ C 1

ω,α(E) : θ0 = y0, ∂ωθ0 = g∗(0, y0), ∥θ∥ω,α ≤ M + 1

, (4.3)

equipped with the norm ∥ · ∥ω,α . Note that Aα contains θt := y0 + g(0, y0) · ω0,t and thus is not
empty. Define a mapping Φ on Aα:

Φ(θ) := Θ

where Θt := y0 +Θ1
t +Θ2

t := y0 +

 t

0
g(s, θs) · dωs +

 t

0
f (s, θs) : d⟨ω⟩s .

We show that, there exists 0 < δ ≤ 1, which depends on α, d, |E |, T, ∥ f ∥2,β , ∥g∥3,ω,α , and
∥ω∥α , but not on y0, such that whenever T ≤ δ,Φ is a contraction mapping on Aα . One can
easily check that Aα is complete under dω,ωα , then Φ has a unique fixed point θ ∈ Aα which is
clearly the unique solution of RDE (4.1).

To prove that Φ is a contraction mapping, let C denote a generic constant which depends
only on the above parameters, but not on y0. We first show that Φ(θ) ∈ Aα for all θ ∈ Aα .
Indeed, clearly Θ0 = y0 and ∂ωθ0 = g∗(0, y0). For any θ ∈ Aα , denote ηt := g(t, θt ). Applying
Lemma 3.6 and then Lemma 2.5, we have,

∥η∥ω,α ≤ C, |∂ωη0| ≤ ∥∂ωg∥0 + ∥∂ωg∥21, and thus

∥Θ1
∥ω,α ≤ ∥ω∥α|∂ωη0| + Cδα[1+ ∥ω∥α]∥η∥ω,α ≤ [∥∂ωg∥0 + ∥g∥

2
1]∥ω∥α + Cδα.

Similarly, it follows from Lemmas 2.7 and 3.7(i) that

∥Θ2
∥ω,α = ∥Θ2

∥α+β ≤ ∥ f ∥0∥ω∥α[2+ ∥ω∥α] + Cδα,

and thus ∥Θ∥ω,α ≤ ∥Θ1
∥ω,α + ∥Θ2

∥ω,α ≤ M + Cδα.

Set δ small enough we have ∥Θ∥ω,α ≤ M + 1. That is, Θ ∈ Aα .
Next, let θ̃ ∈ Aα and denote Θ̃, Θ̃1, Θ̃2, η̃ in obvious sense. Let1ϕ := ϕ̃−ϕ for appropriate

ϕ. Recall (3.21) we see that

∥1θ∥∞ ≤ Cδβ∥1θ∥β ≤ Cδβ∥1θ∥ω,α. (4.4)

Then, applying Lemmas 2.6, 3.6(ii), 2.7(ii), and 3.7(ii), we have

∥1Θ1
∥ω,α ≤ Cδα∥1η∥ω,α ≤ Cδα∥1θ∥ω,α, ∥1Θ2

∥α+β ≤ Cδα∥1θ∥β ,

and thus ∥1Θ∥ω,α ≤ Cδα∥1θ∥ω,α.

Set δ be small enough such that Cδα ≤ 1
2 , then Φ is a contraction mapping.

Step 2. We now prove the result for general T . Let δ be the constant in Step 1. Let
0 = t0 < · · · < tn = T such that ti+1 − ti ≤ δ, i = 0, . . . , n − 1. We may solve the
RDE over each interval [ti , ti+1] with initial condition (θti , g(ti , θti )), which is obtained from the
previous step by considering the RDE on [ti−1, ti ], and thus we obtain the unique solution over
the whole interval [0, T ].

Step 3. We now estimate ∥θ∥ω,α . First, when T ≤ δ for the constant δ = δα in Step 1, we have
θ ∈ Aα and thus ∥θ∥ω,α ≤ M + 1. In particular, this implies that

|∂ωθs,t | ≤ (M + 1)(t − s)β , |Rω,θs,t | ≤ (M + 1)(t − s)α+β , whenever t − s ≤ δ.
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Now for arbitrary s, t , let k := [ t−s
δ
] + 1 be the smallest integer greater than t−s

δ
, and

ti := s + i
k (t − s), i = 0, . . . , k. Then

|∂ωθs,t | ≤

k−1
i=0

|∂ωθti ,ti+1 | ≤ (M + 1)k
 t − s

k

β
= (M + 1)k1−β(t − s)β ≤ (M + 1)(δ−1T + 1)1−β(t − s)β .

Thus we have ∥∂ωθ∥β ≤ (M + 1)(δ−1T + 1)1−β . Similarly we may prove that ∥Rω,θ∥α+β ≤
(M + 1)(δ−1T + 1)1−α−β .

Finally, note that ∥∂ωθ∥∞ ≤ C , it is clear that ∥θ∥α ≤ ∥∂ωθ∥∞∥ω∥α + ∥Rω,θ∥α ≤ C . �

We next study the stability of RDEs.

Theorem 4.3. Let (y0,ω, f, g) and (ỹ0, ω̃, f̃ , g̃) be as in Theorem 4.2, and θ, θ̃ be the
corresponding solution of the RDE. Then there exists a constant Cα , depending only on
α, d, |E |, T, ∥ f ∥2,β , ∥ f̃ ∥2,β , ∥g∥3,ω,α, ∥g̃∥3,ω̃,α , and ∥ω∥α, ∥ω̃∥α , such that, denoting 1ϕ :=
ϕ − ϕ̃ for appropriate ϕ,

dω,ω̃α (θ, θ̃) ≤ Cα[1Iα + |1y0|] where 1Iα := dω,ω̃2,α (g, g̃)+ ∥1 f ∥1,β + ∥1ω∥α. (4.5)

Proof. First assume T ≤ δ for some constant δ > 0 small enough. Use the notations in Step 1
of Theorem 4.2. Applying Lemma 3.6(i) and (4.2) we see that |∂ω̃η̃0| + ∥η̃∥ω,β ≤ C . Then, it
follows from Lemmas 2.6 and 3.6(ii) that

dω,ω̃α (Θ1, Θ̃1) ≤ C

δαdω,ω̃α (η, η̃)+ dα(ω, ω̃)+ |η

′

0 − η̃
′

0|


≤ C


δαdω,ω̃α (θ, θ̃)+1Iα + |1y0|


.

Similarly, by Lemmas 2.7 and 3.7, we have

∥1Θ2
∥α+β ≤ C


δα∥1θ∥β +1Iα + |1y0|


.

Putting together we get

dω,ω̃α (θ, θ̃) = dω,ω̃α (Θ, Θ̃) ≤ C

δαdω,ω̃α (θ, θ̃)+1Iα + |1y0|


.

Set δ be small enough such that Cδα ≤ 1
2 , we obtain dω,ω̃α (θ, θ̃) ≤ C[1Iα + |1y0|].

Now for general T , let k := [ T
δ
] + 1 be the smallest integer greater than T

δ
and ti := i

k T, i =
0, . . . , k. Denote

1Ji := sup
ti≤s<t≤ti+1


|1∂ωθs,t |

(t − s)β
+
|Rω̃,θ̃s,t − Rω,θs,t |

(t − s)α+β


, i = 0, . . . , k − 1.

By the above arguments we have1Ji ≤ C[1Iα+|1θti |]. Then, applying (3.21) on [ti , ti+1] and
noting that ∂ωθti = g(ti , θti ) and ∂ωθ̃ti = g̃(ti , θ̃ti ) are bounded, we have

|1θti+1 | ≤ |1θti | + |1θti ,ti+1 | ≤ |1θti | +1Ji + C[|1∂ωθti | + ∥1ω∥α]

≤ C[1Iα + |1θti |].
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By induction we get

max
0≤i≤k

|1θti | ≤ C[1Iα + |1y0|], and thus max
0≤i≤k

1Ji ≤ C[1Iα + |1y0|].

Now following the arguments in Theorem 4.2 Step 3 we can prove the desired estimate. �

Remark 4.4. (i) The uniqueness of RDE solutions does not depend on boundedness of g, ∂ωg,
and f . Indeed, let θ and θ̃ be two solutions. Notice that any element of C 1

ω,α(E) is bounded,
and thus we may denote M0 := ∥θ∥∞ + ∥θ̃∥∞ < ∞. One can see that all the arguments
in Theorem 4.2 remain valid if we replace the supy∈E in (3.2) with supy∈E,|y|≤M0

, while the
latter is always bounded for g, ∂ωg, and f .

(ii) If we do not assume boundedness of g, ∂ωg, and f , in general we can only obtain the local
existence, namely the solution exists when T is small. However, if we can construct a solution
for large T , as we will see for linear RDEs, then by (ii) above this solution is the unique
solution. �

4.1. Linear RDE

Now consider RDE (4.1) with

g(t, y) = at y + bt , f (t, y) = λt y + lt , where

y ∈ E, a ∈ C 2
ω,α(E

d×|E |), b ∈ C 1
ω,α(E

d ), λ ∈ Ωβ (E
d×d×|E |), l ∈ Ωβ (E

d×d ).
(4.6)

We remark that the above f and g are not bounded and thus we cannot apply Theorem 4.2
directly. In Friz and Victoir [21], some a priori estimate is provided for linear RDEs and then the
global existence follows from the arguments of Theorem 4.2, by replacing the supy∈E in (3.2)
with the supremum over the a priori bound of the solution, as illustrated in Remark 4.4(ii). Below,
we shall construct a solution semi-explicitly. When |E | = 1, we have an explicit representation
in the spirit of Feyman–Kac formula in stochastic analysis literature, see (4.7). However, the
formula fails in the multidimensional case due to the noncommutativity of matrices. Our main
idea is to introduce a decoupling strategy, by using the local solution of certain Riccati type of
RDEs, so as to reduce the dimension of E . To our best knowledge, such a construction is new
even for multidimensional linear SDEs.

Theorem 4.5. The linear RDE (4.1) with (4.6) has a unique solution.

Proof. If b ∈ C 2
ω,α(E

d), under (4.6) it is straightforward to check that g ∈ C 2,3
ω,α,loc(E, Ed) and

f ∈ C 2
β,loc(E, Ed×d), and thus the uniqueness follows from Theorem 4.2 and Remark 4.4(ii).

However, in the linear case, by going through the arguments of Theorem 4.2 we can easily see
that it is enough to assume the weaker condition b ∈ C 1

ω,α(E
d). We shall construct the solution

and thus obtain the existence via induction on |E |.
Step 1. We first assume |E | = 1, namely E = R. Applying Theorem 3.4 and Remark 3.5 we

may verify directly that the following provides a representation of the solution:

θt = Γ−1
t


θ0 +

 t

0
Γsbs · dωs +

 t

0
Γs


ls − asb∗s


: d⟨ω⟩s


, (4.7)

where Γt := exp

−

 t

0
as · dωs +

 t

0

1
2

asa∗s − λs


: d⟨ω⟩s


.
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Step 2. In order to show the induction idea clearly, we present the case |E | = 2 in detail. With
the notations in obvious sense, the linear RDE becomes

dθ1
t = [a

11
t θ

1
t + a12

t θ
2
t + b1

t ] · dωt + [λ
11
t θ

1
t + λ

12
t θ

2
t + l1

t ] : d⟨ω⟩t ;

dθ2
t = [a

21
t θ

1
t + a22

t θ
2
t + b2

t ] · dωt + [λ
21
t θ

1
t + λ

22
t θ

2
t + l2

t ] : d⟨ω⟩t .
(4.8)

Clearly, if the system is decoupled, for example if a12
= 0 and λ12

= 0, one can easily solve
the system by first solving for θ1 and then solving for θ2. In the general case, we introduce a
decoupling strategy as follows. Consider an auxiliary RDE:

dΓ t = at · dωt + λt : d⟨ω⟩t (4.9)

where a, λ will be specified later. Denote θ t := θ2
t + Γ tθ

1
t . Then, applying the Itô–Ventzell

formula (3.14) we have

dθ t =


[a22

t θ
2
t + a21

t θ
1
t + b2

t ] + Γ t [a
12
t θ

2
t + a11

t θ
1
t + b1

t ] + atθ
1
t


· dωt

+


[λ22

t θ
2
t + λ

21
t θ

1
t + l2

t ] + Γ t [λ
12
t θ

2
t + λ

11
t θ

1
t + l1

t ] + λtθ
1
t

+ at [a
11
t θ

1
t + a12

t θ
2
t + b1

t ]
∗


: d⟨ω⟩t . (4.10)

We want to choose a, λ so that the right side above involves only θ . That is,

a21
+ Γ t a

11
+ a = Γ [a22

+ Γa12
],

λ21
+ Γλ11

+ λ+ a(a11)∗ = Γ t [λ
22
+ Γλ12

+ a(a12)∗].

This implies

a = a12(Γ )2 + [a22
− a11

]Γ − a21
; (4.11)

λ = λ12(Γ )2 + [λ22
− λ11

]Γ − λ21
+ a[a12Γ − a11

]
∗

= c3(Γ )3 + c2(Γ )2 + c1Γ + c0, where

c3
:= a12(a12)∗, c2

:= λ12
− a12(a11)∗ + (a22

− a11)(a12)∗

c1
:= λ22

− λ11
− (a22

− a11)(a11)∗ − a21(a12)∗, c0
:= a21(a11)∗ − λ21.

Plugging this into (4.9) we obtain the following Riccati type of RDE:

dΓ t =


a12

t (Γ )
2
t + [a

22
t − a11

t ]Γ t − a21
t


· dωt +


c3

t (Γ )
3
t + c2

t (Γ )
2
t

+ c1
t Γ t + c0

t


: d⟨ω⟩t , (4.12)

and the RDE (4.10) becomes:

dθ t =


[a22
+ Γa12

]θ t + [b
2
t + Γ t b

1
t ]


· dωt

+


[λ22
+ Γλ12

+ a(a12)∗]θ t + [l
2
t + Γ t l

1
t + at (b

1
t )
∗
]


: d⟨ω⟩t . (4.13)

Moreover, plug θ2
= θ − Γ θ1 into the second equation of (4.8), we have

dθ1
t =


[a11

t − a12
t Γ t ]θ

1
t + [a

12
t θ t + b1

t ]


· dωt

+


[λ11

t − λ
12
t Γ t ]θ

1
t + [λ

12
t θ t + l1

t ]


: d⟨ω⟩t . (4.14)
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Now the RDEs (4.12), (4.13), and (4.14) are decoupled. We shall emphasize though the
Riccati RDE (4.12) typically does not have a global solution on [0, T ]. However, following the
arguments in Theorem 4.2, there exists a constant δ > 0, which depends only on the coefficients
a, λ and the rough path ω, such that the Riccati RDE (4.12) with initial value 0 has a solution
whenever the time interval is smaller than δ. We now set 0 = t0 < · · · < tn = T such that
ti − ti−1 ≤ δ for i = 1, . . . , n, and we solve the system (4.8) as follows. First, we solve RDE
(4.12) on [t0, t1]with initial value Γ t0 = 0. Plug this into (4.13), where a is determined by (4.11),
we solve (4.13) on [t0, t1] with initial value θ0 = θ2

0 . Plug Γ and θ into (4.14), we may solve
(4.14) on [t0, t1] with initial value θ1

0 . Moreover, θ2
:= θ − Γ θ1 satisfies the second equation

of (4.8) on [t0, t1] with initial value θ2
0 . Next, we solve the Riccati RDE (4.12) on [t1, t2], again

with initial value Γ t1 = 0. Then we solve (4.13) on [t1, t2] with initial value θ t1 = θ
2
t1 . Plug Γ

and θ into (4.14), we may solve (4.14) on [t1, t2] with initial value θ1
t1 . Moreover, θ2

:= θ −Γ θ1

satisfies the second equation of (4.8) on [t1, t2] with initial value θ2
t1 . Repeat the arguments we

solve the system (4.8) over the whole interval [0, T ].
Step 3. We now assume the result is true for |E | = n− 1 and we shall prove the case |E | = n.

With obvious notations, we consider

dθ i
t =

 n
j=1

ai j
t θ

j
t + bi

t


· dωt +

 n
j=1

λ
i j
t θ

j
t + l i

t


: d⟨ω⟩t , i = 1, . . . , n. (4.15)

Denote θ := θn
+

n−1
i=1 Γ

i
θ i , where, for i = 1, . . . , n − 1,

dΓ
i
t =

n−1
j=1

[a jnΓ
i
t − a j i

t ]Γ
j
t + [a

nn
t Γ

i
t − ani

t ]


· dωt

+


[Γ

i
tλ

nn
t − λ

ni
t ] +

n−1
j=1

Γ
j
t [Γ

i
tλ

jn
t − λ

j i
t ]

+

n−1
j=1

n−1
k=1

[aknΓ
j
t − ak j

t ]Γ
k
t + [a

nn
t Γ

j
t − anj

t ]


×[Γ

i
t (a

jn
t )
∗
− (a j i

t )
∗
]


: d⟨ω⟩t . (4.16)

Then

dθ t =


[ann

t +

n−1
i=1

Γ
i
t a

in
t ]θ t + [b

n
t +

n−1
i=1

Γ
i
t b

i
t ]


· dωt

+


λnn

t +

n−1
i=1

[Γ
i
tλ

in
t + ai

t (a
in)∗]


θ t

+


ln
+

n−1
i=1

[Γ
i
t l

i
t + ai

t (b
i
t )
∗
]


: d⟨ω⟩t . (4.17)

where ai
t :=

n−1
j=1

[a jnΓ
i
t − a j i

t ]Γ
j
t + [a

nn
t Γ

i
t − ani

t ].
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Plug this into (4.15), we obtain

dθ i
t =

n−1
j=1

[ai j
t − ain

t Γ
j
t ]θ

j
t + [b

i
t + ain

t θ t ]


· dωt

+

n−1
j=1

[λ
i j
t − λ

in
t Γ

j
t ]θ

j
t + [l

i
t + λ

in
t θ t ]


: d⟨ω⟩t , i = 1, . . . , n − 1. (4.18)

Now similarly, there exists δ > 0, depending only on a, λ, and the rough path ω, such that the
system of Riccati type RDE (4.16) with initial condition 0 has a solution whenever the time
interval is smaller than δ. Now set 0 = t0 < · · · < tn = T such that ti − ti−1 ≤ δ. As

in Step 2, we may first solve (4.16) on [t0, t1] with initial condition Γ
i
0 = 0. We then solve

(4.17) on [t0, t1] with initial condition θ0 = θn
0 . Now notice that the linear system (4.18) has

only dimension n − 1, then by induction assumption, we may solve (4.18) on [t0, t1] with initial

condition θ i
0, i = 1, . . . , n − 1, which further provides θn

:= θ −
n−1

i=1 Γ
i
θ i . Now repeat the

arguments as in Step 2, we obtain the solution over the whole interval [0, T ]. �

Remark 4.6. (i) When E = R, the representation formula (4.7) actually holds under weaker
conditions: a, b ∈ C 1

ω,α(Rd). Moreover, uniqueness also holds under this weaker condition.
Indeed, for any arbitrary solution θ ∈ C 2

ω,α(E) and for the Γ defined in (4.7), by applying
the Itô–Ventzell formula (3.14) we see that

Γtθt = θ0 +

 t

0
Γsbs · dωs +

 t

0
Γs


ls − asb∗s


: d⟨ω⟩s .

Then θ has to be the one in (4.7).
(ii) In the multidimensional case, we note that the Riccati RDE (4.12) does not involve b. Then

we may also obtain the uniqueness, under our weaker condition b ∈ C 1
ω,α(E

d), from the
strategy in this proof. �

Applying Theorem 4.3 and following the arguments in the beginning of the proof for
Theorem 4.5 (or Remark 4.6(ii)) concerning the weaker condition on b, the following result
is immediate.

Corollary 4.7. Let ω, a, b, λ, l, θ be as in Theorem 4.5 and ω̃, ã, b̃, λ̃, l̃, θ̃ . Denote1ϕ := ϕ− ϕ̃
for appropriate ϕ. Then

dω,ω̃α (θ, θ̃) ≤ C

dω,ω̃α (a, ã)+ dω,ω̃α (b, b̃)+ ∥1λ∥β + ∥1l∥β + ∥1ω∥α

+ |1a0| + |∂ωa0 − ∂ω̃ã0| + |1b0| + |∂ωb0 − ∂ω̃b̃0|


.

5. Pathwise solutions of stochastic differential equations

5.1. The rough path setting for Brownian motion

Let Ω0 := {ω ∈ C([0, T ],Rd) : ω0 = 0} be the canonical space, B the canonical process,
F = FB the natural filtration, and P0 the Wiener measure. Following Föllmer [17] (or see
Bichteler [1] and Karandikar [25] for more general results on pathwise stochastic integration),
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we may construct pathwise Itô integration as follows:

Φt (ω) := lim
n→∞

2n
−1

i=0

ωtn
i
(ωtn

i ∧t,tn
i+1∧t )

∗ where tn
i :=

iT

2n , i = 0, . . . , 2n . (5.1)

Then Φ is F-adapted and Φt =
 t

0 BsdI to B∗s , 0 ≤ t ≤ T,P0-a.s. Here dI to stands for Itô
integration. Define

Φs,t (ω) := Φt (ω)− Φs(ω)− ωsω
∗
s,t , ΦStr

s,t (ω) := Φs,t (ω)+
1
2
(t − s)Id;

⟨ω⟩t := ωtω
∗
t − Φt (ω)− [Φt (ω)]

∗.

(5.2)

It is straightforward to check that

Φs,t (ω)− Φs,r (ω)− Φr,t (ω) = ωs,rω
∗
r,t = ΦStr

s,t (ω)− ΦStr
s,r (ω)− ΦStr

r,t (ω). (5.3)

Moreover, we have the following well known result:

Lemma 5.1. For any 1
3 < α < 1

2 , we have P0(Aα) = 1, where

Aα :=


sup
(s,t)∈T2

|Φs,t |

|t − s|2α
<∞


∩


⟨ω⟩t = t Id , 0 ≤ t ≤ T


∩


lim
t↓s

|v · ωs,t |

|t − s|2α
= ∞, ∀s ∈ Q ∩ [0, T ), v ∈ Rd

\ {0}

. (5.4)

Now set, for the Aα defined in (5.4),

Ω :=

ω ∈ Ω0 : (ω,Φ(ω)) ∈ Ωa and ω ∈ Aα, for all

1
3
< α <

1
2


;

dα(ω, ω̃) := dα

(ω,Φ(ω)), (ω̃,Φ(ω̃))


, for all ω, ω̃ ∈ Ω and

1
3
< α <

1
2
.

(5.5)

By (5.3) and Lemma 5.1, we see that P0(Ω) = 1. From now on, we shall always restrict the
sample space to Ω , and we still denote by B the canonical process and F := FB . Define

C(Ω , E) :=


Cα(Ω , E) : α satisfies (2.3)

, where (5.6)

Cα(Ω , E) :=

θ ∈ L0(F) : θ(ω) ∈ C 1

ω,α(E), ∀ω ∈ Ω , and EP0

∥θ(ω)∥2ω,α


<∞


.

We now define the pathwise stochastic integral by using the rough path integral: for θ ∈
C(Ω , Ed), t

0
θs · d Bs


(ω) :=

 t

0
θs(ω) · d(ω,Φ(ω))s, ∀ω ∈ Ω; t

0
θs ◦ d Bs


(ω) :=

 t

0
θs(ω) · d(ω,ΦStr(ω))s, ∀ω ∈ Ω .

(5.7)

The following result can be found in [18, Proposition 5.1 and Corollary 5.2].

Theorem 5.2. For any θ ∈ C(Ω , Ed), the above pathwise stochastic integrals
 t

0 θs · d Bs and t
0 θs ◦ d Bs coincide with the Itô integral and the Stratonovich integral, respectively.
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Remark 5.3. Let X be a semi-martingale with d X t = θt · d Bt + λt dt , where θ ∈ C(Ω , Ed)

and λ is continuous. Then X ∈ C(Ω , E) with ∂ωX t (ω) = θt (ω) for each ω ∈ Ω . In the spirit of
Dupire [13]’s functional Itô calculus, [6] defines the above θ as the path derivative of the process
X . So the Gubinelli’s derivative ∂ωX (ω) in Definition 2.3 is consistent with the path derivatives
introduced in [6]. �

Remark 5.4. Let ω ∈ Ω and θ ∈ C 2
(ω,Φ(ω)),α(E) for certain α satisfying (2.3). Define

∂ωt θ := Trace(Dω
t θ). (5.8)

Then ∂ωt θ is unique and is consistent with the time derivative in [6]. Moreover, the pathwise Ito
formula (2.18) and the pathwise Taylor expansion (2.22), (2.23) become:

dθt = ∂ωθt dωt +


∂ωt θt +

1
2

Trace(∂2
ωωθt )


dt;

θs,t = ∂ωθsωs,t +
1
2
∂2
ωωθs : [ωs,tω

∗
s,t + ωs,t − ω

∗

s,t ] + ∂
ω
t θs(t − s)+ O((t − s)2α+β); (5.9)

θs,t = ∂ωθsωs,t +
1
2
∂2
ωωθs : [ωs,tω

∗
s,t ] + ∂

ω
t θs(t − s)+ O((t − s)2α+β),

respectively. These are also consistent with [6]. �

5.2. Stochastic differential equations with regular solutions

We now consider the following SDE with random coefficients:

X t = x +
 t

0
σ(s, Xs, ω) · d Bs +

 t

0
b(s, Xs, ω)ds, ω ∈ Ω , (5.10)

where b, σ are F-progressively measurable. Clearly, the above SDE can be rewritten as the
following RDE:

X t (ω) = x +
 t

0
σ(s, Xs(ω), ω) · d(ω,Φ(ω))s

+

 t

0
b(s, Xs(ω), ω)

Id

d
: d⟨ω⟩s, ω ∈ Ω . (5.11)

The following result is a direct consequence of Theorems 4.2 and 4.3.

Theorem 5.5. (i) Assume, for each ω ∈ Ω , there exists α(ω) satisfying (2.3) such that b(·, ω) ∈
C 2
β(ω)(E, E) and σ(·, ω) ∈ C 2,3

ω,α(ω)(E, Ed). Then the SDE has a unique solution X such that

X (ω) ∈ C 2
ω,α(ω)(E) for all ω ∈ Ω .

(ii) Assume further that b and σ are continuous in ω in the following sense:

lim
n→∞


∥b(·, ωn)− b(·, ω)∥1,β(ω) + dω,ω

n

2,α(ω)(σ (·, ω
n), σ (·, ω))


= 0, (5.12)

for any ω,ωn
∈ Ω such that lim

n→∞
dα(ω)(ω

n, ω) = 0.

Then X is also continuous in ω in the sense that:

lim
n→∞

dω,ω
n

α(ω) (X (ω), X (ωn)) = 0, and consequently,
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lim
n→∞
∥X (ω)− X (ωn)∥∞ = 0. (5.13)

Remark 5.6. The construction of pathwise solutions of SDEs via rough path is standard.
However, we remark that our canonical sample space Ω is universal, which particularly does
not depend on the integrands θ in (5.7) or the vector fields σ(t, ω, x) in (5.10). Consequently,
our solution is constructed indeed for every ω ∈ Ω , without the exceptional null set. �

Remark 5.7. (i) Assume σ is Hölder- 1
2 continuous in t and Lipschitz continuous in ω in the

following sense:

|σ(t, x, ω)− σ(t̃, x, ω̃)| ≤ C


t̃ − t + sup
0≤s≤T

|ωs∧t − ω̃s∧t̃ |


. (5.14)

Then σ(·, x, ω) is Hölder-α continuous in t for all α < 1
2 . We remark that the distance on the

right side of (5.14) is used in Zhang and Zhuo [39] and is equivalent to the metric introduced
by Dupire [13].

(ii) As mentioned in Introduction, since ω is only Hölder-α continuous for α < 1
2 , it is not

reasonable to assume σ(·, x, ω) is Hölder-(1 − α) continuous as required in Lejay and
Victoir [28]. �

Remark 5.8. Under the Stratonovich integration, the quadratic compensator of the Brownian
motion sample path defined in (2.6) vanishes: ⟨(ω,Φstr(ω))⟩t = 0. If we want to consider SDE
in the form:

d X t = σ(t, X t , ω) ◦ d Bt + b(t, ω, X t )dt, (5.15)

we cannot simply rewrite it into

d X t (ω) = σ(t, ω, X t (ω)) · d(ω,Φstr(ω))t + b(t, ω, X t (ω))
Id

d
: d⟨(ω,Φstr(ω))⟩t .

We can obtain pathwise solution of (5.15) in the following two ways:

(i) We may rewrite (5.15) in Itô form:

d X t = σ(t, ω, X t ) · d Bt +


b +

1
2

Trace

∂ωσ + ∂yσσ

∗

(t, ω, X t )dt, (5.16)

which corresponds further to the following RDE:

d X t (ω) = σ(t, ω, X t (ω)) · d(ω,Φ(ω))t

+

bId

d
+
∂ωσ + ∂yσσ

∗

2


(t, ω, X t (ω)) : d⟨ω⟩t . (5.17)

(ii) In Section 4, we may easily extend our results to more general RDEs:

dθt = g(t, θt ) · dωt + f (t, θt ) : d⟨ω⟩t + h(t, θt )dt. (5.18)

Then we may deal with (5.15) directly. �

6. Rough PDEs and stochastic PDEs

In this section, we extend the results in previous sections to rough PDEs (1.3) and stochastic
PDEs (1.4) with random coefficients. The well-posedness of such RPDEs and SPDEs, especially
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in the fully nonlinear case, is very challenging and has received very strong attention. We refer
to Lions and Souganidis [29–32], Buckdahn and Ma [3,4], Caruana and Friz [7], Caruana, Friz
and Oberhauser [8], Friz and Obhauser [19], Diehl and Friz [11], Oberhauser and Riedel [12],
and Gubinelli, Tindel and Torrecilla, [23] for well-posedness of some classes of RPDEs/SPDEs,
where various notions of solutions are proposed.

While this section is mainly motivated from the study of pathwise viscosity solutions of
SPDEs in Buckdahn, Ma and Zhang [5] and Buckdahn, Keller, Ma and Zhang [2], in this section
we shall focus on classical solutions only. In particular, we do not intend to establish strong well-
posedness for general f , instead we shall investigate diffusion coefficients σ and g and see when
the RPDE/SPDE can be transformed to a deterministic PDE. Again, unlike most results in the
standard literature of rough PDEs, we allow the coefficients to depend on (t, ω). The results will
require quite high regularity of the coefficients, in the sense of our path regularity. In order to
simplify the presentation, for some results we shall not specify the precise regularity conditions.

6.1. RDEs with spatial parameters

Let u0 : Ẽ → E, g : T× Ẽ × E → Ed , f : T× Ẽ × E → Ed×d , and consider the following
RDE with parameter x ∈ Ẽ :

ut (x) = u0(x)+
 t

0
g(s, x, us(x)) · dωs +

 t

0
f (s, x, us(x)) : d⟨ω⟩s . (6.1)

Assume u0, g and f are differentiable in x , and differentiate (6.1) formally in xi , i = 1, . . . , |Ẽ |,
we obtain: denoting vi

t (x) := ∂xi ut (x),

vi
t (x) = ∂xi u0(x)+

 t

0
[∂xi g(s, x, us(x))+ ∂y g(s, x, us(x))v

i
s(x)] · dωs

+

 t

0
[∂xi f (s, x, us(x))+ ∂y f (s, x, us(x))v

i
s(x)] : d⟨ω⟩s . (6.2)

Theorem 6.1. Assume

(i) u0, g, f are continuously differentiable in x;
(ii) for each x ∈ Ẽ, i = 1, . . . , |Ẽ |, j = 1, . . . , |E |,

g(x, ·) ∈ C 2,3
ω,α(E, Ed ), f (x, ·) ∈ C 2

β (E, Ed×d );

∂xi g(x, ·) ∈ C 1,2
ω,α(E, Ed ), ∂y j g(x, ·) ∈ C 2,3

ω,α(E, Ed ), ∂xi f (x, ·) ∈ C 0
β (E, Ed×d ).

(6.3)

(iii) for any x ∈ Ẽ , denoting 1ϕ := ϕ(x +1x, ·)− ϕ(x, ·) for appropriate ϕ,

lim
|1x |→0


∥1g∥2,ω,α + ∥1 f ∥1,β


= 0;

lim
|1x |→0


∥1[∂x g]∥2,ω,α + ∥1[∂y g]∥2,ω,α + ∥1[∂x f ]∥0,β + ∥1[∂y f ]∥0,β


= 0.

(6.4)

Moreover, ∂ωx g and ∂ωy g are continuous.

Then, for each x ∈ Ẽ , RDEs (6.1) and (6.2) have unique solution u(x, ·), vi (x, ·) ∈ C 2
ω,α(E),

respectively. Moreover, u is differentiable in x with ∂xi u = v
i .
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Proof. First, without loss of generality we may assume |Ẽ | = 1, namely Ẽ = R. For each x ∈ Ẽ ,
by the first line of (6.3) and applying Theorem 4.2, we see that RDE (4.1) has a unique solution
u(x) ∈ C 2

ω,α(E). By the second line of (6.3) and applying Theorem 3.4 and Lemma 3.7, we see
that, for j = 1, . . . , |E |,

∂x g(x, u(x)) ∈ C 1
ω,α(E

d), ∂y j g(x, u(x)) ∈ C 2
ω,α(E

d), ∂x f (x, u(x)),

∂y j f (x, u(x)) ∈ Ωβ(Ed×d).

Then by Theorem 4.5 the linear RDE (6.2) has a unique solution v(x) ∈ C 2
ω,α(E).

It remains to prove ∂x u = v. Given x ∈ R, 1x ∈ R \ {0} and λ ∈ [0, 1], denote

1ut := ut (x +1x)− ut (x), ∇ut :=
1ut

1x
,

ϕt (λ) := ϕ(t, x + λ1x, ut (x)+ λ1ut (x)), 1ϕt (λ) := ϕt (λ)− ϕt (0),

for appropriate ϕ.

By the first line of (6.4), it follows from Theorem 4.3 that:

lim
|1x |→0

∥1u∥ω,α = 0. (6.5)

Moreover, one can easily check that,

d∇ut =

 1

0
[∂x gt (λ)+ ∂y gt (λ)∇ut ]dλ · dωt +

 1

0
[∂x ft (λ)+ ∂y ft (λ)∇ut ]dλ : d⟨ω⟩t ;

dvt (x) = [∂x gt (0)+ ∂y gt (0)vt (x)] · dωt + [∂x ft (0)+ ∂y ft (0)vt (x)] : d⟨ω⟩t .

By the second line of (6.4) and (6.5), it follows from Lemmas 3.6(ii) and 3.7(ii) that

lim
|1x |→0


∥∂x gt (λ)− ∂x g(0)∥ω,α + ∥∂y gt (λ)− ∂y g(0)∥ω,α


= 0,

lim
|1x |→0


∥∂x ft (λ)− ∂x f (0)∥β + ∥∂y ft (λ)− ∂y f (0)∥β


= 0,

for any λ ∈ [0, 1]. Furthermore, by Theorem 3.4(i) we have

∂ω[∂x g0(λ)] = ∂ωx g0(λ)+ ∂yx g0(λ)g0(λ),

∂ω[∂y g0(λ)] = ∂ωy g0(λ)+ ∂yy g0(λ)g0(λ).

Recalling the continuity of ∂ωx g, ∂ωy g in (iii) we see that, for any λ ∈ [0, 1],

lim
|1x |→0


|∂ω[∂x g0(λ)] − ∂ω[∂x g0(0)]| + |∂ω[∂y g0(λ)] − ∂ω[∂y g0(0)]|


= 0.

Now by Corollary 4.7 we have lim|1x |→0 ∥∇u − v(x)∥ω,α = 0. That is, ∂x ut (x) = vt (x). �

6.2. Pathwise characteristics

As standard in the literature, see e.g. Kunita [26] for Stochastic PDEs and [18, Chapter 12]
for rough PDEs, the main tool for dealing with semilinear RPDEs/SPDEs is the characteristics,
which we shall introduce below by using RDEs against rough paths and backward rough paths.

Let σ : T× Ẽ → Ẽd and g : T× Ẽ × E → Ed×d . Fix t0 ∈ T and denote

←
σ

t0
(t, y) := σ(t0 − t, y),

←
g

t0
(t, x, y) := g(t0 − t, x, y). (6.6)
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Consider the following characteristic RDEs:

θ x
t = x −

 t

0
σ(s, θ x

s ) · dωs,
←

θ
t0,x

t = x +
 t

0

←
σ

t0
(s,
←

θ
t0,x

s ) · d
←
ω

t0
s ; (6.7)

η
x,y
t = y +

 t

0
g(s, θ x

s , η
x,y
s ) · dωs,

←
η

t0,x,y

t = y −
 t

0

←
g

t0
(s,
←

θ
t0,x

s ,
←
η

t0,x,y

s ) · d
←
ω

t0
s .

(6.8)

By Lemma 2.11 and Theorem 4.2, the following result is obvious.

Lemma 6.2. (i) Assume σ ∈ C 2,3
ω,α(Ẽ, Ẽd). Then, for each x ∈ Ẽ , the RDEs (6.7) have unique

solution θ x
∈ C 1

ω,α(Ẽ) and
←

θ
t0,x
∈ C 1

←
ω

t0
,α
([0, t0], Ẽ) satisfying

←

θ
t0,θ x

t0
t = θ x

t0−t , t ∈ [0, t0].

In particular, the mapping x → θ x
t0 is one to one with inverse function x →

←

θ
t0,x

t0 .

(ii) Assume further that, for each x ∈ Ẽ and for the above solution θ x , the mapping (t, y) →
g(t, θ x

t , y) is in C 2,3
ω,α(E, Ed×d). Then the RDEs (6.8) have unique solution ηx,y

∈ C 1
ω,α(E)

and
←
η

t0,x,y
∈ C 1

←
ω

t0
,α
(E) satisfying

←
η

t0,θ x
t0
,ηx

t0
t = η

x,y
t0−t , t ∈ [0, t0]. In particular, the mapping

(x, y) → (θ x
t0 , η

x,y
t0 ) is one to one with inverse functions (x, y) → (

←

θ
t0,x

t0 ,
←
η

t0,x,y

t0 ).

Now define

ϕ(t, x) :=
←

θ
t,x

t , ψ(t, x, y) :=
←
η

t,θ x
t ,y

t , ζ(t, x, y) := ηϕ(t,x),yt ,

g(t, x, y) := g(t, θ x
t , y). (6.9)

Lemma 6.3. Assume σ and g are smooth enough in the sense of Theorem 6.1. Then ϕ,ψ are
twice differentiable in (x, y), and for any fixed (x, y), ϕ(·, x), ψ(·, x, y) ∈ Cωα . Moreover, they
satisfy the following RDEs:

ϕ(t, x) = x +
 t

0
∂xϕσ(s, x) · dωs +

 t

0

1
2
∂2

xxϕ [σ, σ ] + ∂xϕ[∂xσσ
∗
]


(s, x) : d⟨ω⟩s;

ψ(t, x, y) = y −
 t

0
[∂yψg](s, x, y) · dωs

+

 t

0

1
2
∂2

yyψ [g,g] + ∂yψ[∂ygg∗](s, x, y) : d⟨ω⟩s .

Proof. By Theorem 6.1, θ x ,
←

θ
t,x
, ηx,y,

←
η

t,x,y
are sufficiently differentiable in (x, y). This

implies the desired differentiability of ϕ,ψ . We now check the RDEs.
First, given (s, t) ∈ T2 and denote δ := t − s. Note that

ϕ(t, x) =
←

θ
t,x

t =
←

θ
s,
←

θ
t,x

δ

s = ϕ(s,
←

θ
t,x

δ );
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and that, applying Lemma 2.11,

←

θ
t,x

δ − x =
 δ

0

←
σ

t
(r,
←

θ
t,x

r ) · d
←
ω

t

r

=
←
σ

t
(0, x) ·

←
ω

t

0,δ + [∂←ω
t
←
σ

t
+ ∂x

←
σ

t
(
←
σ

t
)∗](0, x) :

←
ω

t
0,δ + O(δ2α+β)

= σ(t, x) · ωs,t + [−∂ωσ + ∂xσσ
∗
](t, x) : [ωs,tω

∗
s,t − ωs,t ] + O(δ2α+β)

= σ(s, x) · ωs,t + ∂ωσ(s, x) : ωs,t

+ ∂xσσ
∗(s, x) : [ωs,tω

∗
s,t − ωs,t ] + O(δ2α+β).

Then, applying Taylor expansion,

ϕ(t, x)− ϕ(s, x) = ϕ(s,
←

θ
t,x

δ )− ϕ(s, x)

= ∂xϕ(s, x)[
←

θ
t,x

δ − x] +
1
2
∂2

xxϕ(s, x) [
←

θ
t,x

δ − x,
←

θ
t,x

δ − x] + O(δ3α)

= ∂xϕ(s, x)

σ(s, x) · ωs,t + ∂ωσ(s, x) : ωs,t

+ ∂xσσ
∗(s, x) : [ωs,tω

∗
s,t − ωs,t ]


+

1
2
∂2

xxϕ(s, x) [σ(s, x) · ωs,t ] + O(δ2α+β).

In particular, this implies

∂ωϕ = ∂xϕσ.

On the other hand, by applying Theorem 6.1 on (6.7) and view (θ x , ∂xθ
x ) as the solution to a

higher dimensional RDE, one can check similarly that

∂ω[∂xϕ] = ∂x [(∂xϕσ)
∗
].

Denote ϕ̃ as the right side of the RDE for ϕ. Then, taking values at (s, x),

[ϕ̃(·, x)]s,t = ∂xϕσ · ωs,t + ∂ω[∂xϕσ ] : ωs,t

+

1
2
∂2

xxϕ [σ, σ ] + ∂xϕ[∂xσσ
∗
]


: ⟨ω⟩s,t + O(δ2α+β)

= ∂xϕσ · ωs,t +


∂x [∂xϕσ ]σ

∗
+ ∂xϕ∂ωσ


: ωs,t

+

1
2
∂2

xxϕ [σ, σ ] + ∂xϕ[∂xσσ
∗
]


: [ωs,tω

∗
s,t − ωs,t − ω

∗

s,t ] + O(δ2α+β).

It is straightforward to check that [ϕ(·, x)]s,t = [ϕ̃(·, x)]s,t + O(δ2α+β), implying ϕ = ϕ̃.
Similarly, notice that

ψ(t, x, y) =
←
η

t,θ x
t ,y

t =
←
η

s,
←

θ
t,θx

t
δ ,

←
η

t,θx
t ,y

δ

s =
←
η

s,θ x
s ,
←
η

t,θx
t ,y

δ

s = ψ(s, x,
←
η

t,θ x
t ,y

δ ).

Following similar arguments one can verify the RDE for ψ . �
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6.3. Rough PDEs

Now consider RPDE:

ut (x) = u0(x)+
 t

0
[∂x us(x)σs(x)+ gs(x, us(x))] · dωs

+

 t

0
fs(x, us(x), ∂x us(x), ∂

2
xx us(x)) : d⟨ω⟩s . (6.10)

Define

v(t, x) := ψ(t, x, u(t, θ x
t )) and equivalently u(t, x) = ζ(t, x, v(t, ϕ(t, x))).

Theorem 6.4. Assume the coefficients and u are smooth enough. Then u is a solution of
RPDE (6.10) if and only if v satisfies:

dvt (x) = f (t, x, vt (x), ∂xvt (x), ∂
2
xxvt (x)) : d⟨ω⟩t , (6.11)

or equivalently, Dω
t vt (x) = f (t, x, vt (x), ∂xvt (x), ∂

2
xxvt (x)),

where

f (t, x, y, z, γ ) := ∂yψ(t, x,y) f (t, θ x
t ,y,z,γ )− 1

2
γ : [σ, σ ](t, θ x

t )

−
z∂xσ + ∂x g + ∂y gzσ ∗(t, θ x

t ,y); (6.12)

y = ζ(t, θ x
t , y);z = ∂xζ(t, θ

x
t , y)+ ∂yζ(t, θ

x
t , y)z∂xϕ(t, θ

x
t );γ = ∂2

xxξ(t, θ
x
t , y)+ [∂xyζ(t, θ

x
t , y)+ ∂yxσ(t, θ

x
t )] [z, ∂xϕ(t, θ

x
t )]

+ ∂2
yyζ(t, θ

x
t , y) [∂xϕ∂xϕ, ∂xϕ∂xϕ](t, θ

x
t )

+ ∂yζ(t, θ
x
t , y)


γ [∂xϕ, ∂xϕ](t, θ

x
t )+ z∂2

xxϕ(t, θ
x
t )


.

Proof. Applying the Itô–Ventzell formula (3.14) we have

du(t, θ x
t ) = g(t, θ x

t , u(t, θ x
t ))dωt +


f (·, u, ∂x u, ∂2

xx u)

−

1
2
∂2

x u : [σ, σ ] + ∂x u∂xσσ
∗
+ ∂x g(·, u)σ ∗ + ∂y g∂x uσ ∗


× (t, θ x

t ) : d⟨ω⟩t ;

dv(t, x) = d[ψ(t, x, u(t, θ x
t ))] = ∂yψ(t, x, u(t, θ x

t ))


f (·, u, ∂x u, ∂2
xx u)

−
1
2
∂2

x u : [σ, σ ] −

∂x u∂xσ + ∂x g + ∂y g∂x u


σ ∗


× (t, θ x

t , u(t, θ x
t )) : d⟨ω⟩t . (6.13)

Now note that

u(t, x) = ζ(t, x, v(t, ϕ(t, x)));

∂x u = ∂xζ + ∂yζ∂xv∂xϕ;
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∂2
xx u = ∂2

xxξ + [∂xyξ + ∂yxσ ] [∂xv, ∂xϕ] + ∂
2
yyζ [∂xϕ∂xϕ, ∂xϕ∂xϕ]

+ ∂yζ∂
2
xxv [∂xϕ, ∂xϕ] + ∂yζ∂xv∂

2
xxϕ.

Then

u(t, θ x
t ) = ζ(t, θ

x
t , v(t, x));

∂x u(t, θ x
t ) = ∂xζ(t, θ

x
t , v(t, x))+ ∂yζ(t, θ

x
t , v(t, x))∂xv(t, x)∂xϕ(t, θ

x
t );

∂2
xx u(t, θ x

t ) = ∂2
xxξ(t, θ

x
t , v(t, x))+ [∂xyζ(t, θ

x
t , v(t, x))+ ∂yxσ(t, θ

x
t )]

× [∂xv(t, x), ∂xϕ(t, θ
x
t )]

+ ∂2
yyζ(t, θ

x
t , v(t, x)) [∂xϕ∂xϕ, ∂xϕ∂xϕ](t, θ

x
t )

+ ∂yζ(t, θ
x
t , v(t, x))∂2

xxv(t, x) [∂xϕ, ∂xϕ](t, θ
x
t )

+ ∂yζ(t, θ
x
t , v(t, x))∂xv(t, x)∂2

xxϕ(t, θ
x
t ).

Plug this into (6.13), we obtain the result immediately. �

6.4. Pathwise solution of Stochastic PDEs

We now study Stochastic PDE:

ut (ω, x) = u0(x)+
 t

0
[σs(ω, x)∂x us(ω, x)+ gs(ω, x, us(ω, x))] · d Bs

+

 t

0
fs(ω, x, us(ω, x), ∂x us(ω, x), ∂2

xx us(ω, x))ds, P0-a.s. (6.14)

Clearly, this corresponds to RPDE:

ut (ω, x) = u0(x)+
 t

0
[σs(ω, x)∂x us(ω, x)+ gs(ω, x, us(ω, x))] · d(ω, F(ω))s

+

 t

0
Fs(ω, x, us(ω, x), ∂x us(ω, x), ∂2

xx us(ω, x)) : d⟨ω⟩s,

∀ω ∈ Ω , (6.15)

where F(t, ω, x, y, z, γ ) := f (t, ω, x, y, z, γ )
Id

d
. (6.16)

Define θω,xt , ψ(t, ω, x, y), F(t, ω, x, y, z, γ ) in obvious sense and

v(t, ω, x) := ψ(t, ω, x, u(t, ω, θω,xt )),f (t, ω, x, y, z, γ ) := Trace[F(t, ω, x, y, z, γ )]. (6.17)

Then we have, recalling ∂ωt v defined in Remark 5.4,

dv(t, ω, x) = ∂ωt v(t, ω, x)dt = ft (ω, x, vt (ω, x), ∂xvt (ω, x), ∂2
xxvt (ω, x))dt.

Clearly, this implies that ∂ωt vt (x) = ∂tv(t, ω, x), the standard time derivative for fixed (ω, x).
We now conclude the paper with the following result:

Theorem 6.5. Assume the coefficients and u are smooth enough. Then, for each ω ∈ Ω , u(ω, ·)
is a solution of (6.15) if and only if v(ω, ·) is a solution of the following PDE:

∂tvt (ω, x) = ft (ω, x, vt (ω, x), ∂xvt (ω, x), ∂2
xxvt (ω, x)). (6.18)
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[9] R. Cont, D. Fournie, Functional Itô calculus and stochastic integral representation of martingales, Ann. Probab. 41

(1) (2013) 109–133.
[10] A. Cosso, F. Russo, A regularization approach to functional Itô calculus and strong-viscosity solutions to path-
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