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Abstract

In this paper we propose a dynamic model of Limit Order Book (LOB). The main feature

of our model is that the shape of the LOB is determined endogenously by an expected utility

function via a competitive equilibrium argument. Assuming zero resilience, the resulting

equilibrium density of the LOB is random, nonlinear, and time inhomogeneous. Consequently,

the liquidity cost can be defined dynamically in a natural way.

We next study an optimal execution problem in our model. We verify that the value func-

tion satisfies the Dynamic Programming Principle, and is a viscosity solution to the correspond-

ing Hamilton-Jacobi-Bellman equation which is in the form of an integro-partial-differential

quasi-variational inequality. We also prove the existence and analyze the structure of the

optimal strategy via a verification theorem argument, assuming that the PDE has a classical

solution.
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1 Introduction

The effect of the liquidity of a security asset, both short term and long term, has been noticed

by practitioners and researchers alike for quite some time. Tremendous efforts have been made

in modeling the liquidity costs as well as its impact on the security prices (see, e.g., [4, 2, 8, 15],

to mention a few). In a frictionless market model (Black-Scholes’ framework for example), one

assumes that the securities can be bought or sold at a quote price regardless of the trade size

and the actual availability of the securities. But this is far from being realistic. In practice, the

parity between the supply and demand often causes the actual trade price to deviate from the

fundamental price, leading to the bid-ask spread. As a consequence, some extra cost has to be

paid in actual trading, especially when the volume of the trade is relatively large compared to the

existing liquidity on the market.

Unlike the quote driven market models, in which a market maker sets the price upon which all

the trades are made, an “order-driven” market model is one that reflects more of the reality. In

such a model, both buyers and sellers are allowed to be “patient” in the sense that they submit the

“orders” containing the amount of the shares and the prices at which they are willing to buy or sell.

These orders are called limit orders. Unlike the “market orders”, which are executed immediately

at the “market price” whenever there is sufficient liquidity, the limit orders are executed only

when an opposite order with the matching price comes in. Obviously, limit orders are usually not

executed immediately, a limit order book (LOB) is thus formed. Intuitively, a reasonable model

of an LOB must contain the following basic elements:

(i) The best ask/bid price (the frontier of the sell/buy LOB);

(ii) The shape of the LOB (the volumes of the orders at each price).

There have been many papers in the literature trying to model and analyze the movement

of the LOB (cf., e.g., [11, 13, 14, 16] and the references cited therein), as well as the optimal

execution/liquidation problems in which a large trader needs to acquire/liquidate a certain amount

of stocks in a given time horizon, with the minimal cost (see, e.g., [3, 12, 15]). Apart from the

usual factors such as the fundamental price (or mid-price) and the liquidity (often refer to the

total amount of shares available for trading), an important characteristic of an LOB is its “shape”,

that is, the “density” function of the LOB. This is particularly the case when the liquidity cost

is among the main concerns. However, in most of the existing works the shape of the LOB is

assumed to be exogenously given, either in the simple “block-shaped” (cf. e.g., [4, 15]), or in a

general given shape that is supposed to be determined by empirical studies (cf. e.g., [3, 2, 17] and

the references cited therein). However, such an assumption obviously lacks the ability to adapt

to the changes of market movement, especially when the underlying price is volatile within the
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concerned time horizon. A more ideal model would be such that the shape of the LOB could be

determined endogenously, through some more basic market factors such as the bid-ask spread,

the fundamental prices (the “mid price”, for example), and the market liquidity. This paper is

an attempt in this direction.

To simplify the argument in this paper we shall consider only the “sell” side of the LOB,

namely we assume that all the buyers are “impatient” in the sense that they only submit the

market orders so there is no “buy” side LOB. Our first objective is to develop a dynamic model for

the LOB whose shape is determined via the movement of the fundamental price, the instantaneous

trading size, as well as the liquidity. The guiding principle of our model comes from the idea of

equilibrium distribution, initiated by Rosu [16]. Roughly speaking, we assume that there exists a

competitive equilibrium among all the prices in the LOB. The existence of such an equilibrium

can be heuristically justified as a balance between the expected sell price and the cost of waiting

(for the order to be executed). The equilibrium could be affected by the fundamental price, the

execution of orders, and the arrival of the new orders, etc., and when an existing equilibrium is

broken, every seller in LOB will reposition until an equilibrium is reached. It should be noted

that this equilibrium is “ competitive” in the sense that one trader’s deviation will be stopped by

others’ immediate undercutting. In other words, when the market is under monopoly, we should

allow the distribution to behave differently. In this paper we assume that the time of reaching new

equilibrium is negligible, that is, the impact has zero duration, or “zero resilience”, for simplicity.

We should note, however, that the issue of resilience is interesting in its own right (see, e.g., [4]

and also [1, 2]), but this is not the main purpose of this paper.

Mathematically, we shall assume that the equilibrium density process takes the form µ∗
t =

µ∗(t,Xt, Qt, y), y ≥ p0, where p0 is the lowest (selling) price, X is the fundamental value of the

asset, and Q is the total volume of the LOB. We also assume that the equilibrium is “quantified’

by a common expected utility on each price, which depends on the fundamental price and the

total liquidity, and is denoted by U(X,Q). Our main premise is that, after each trade with size

α ∈ [0, Q], the following two identities must hold:
∫ p(α)

p0

µ∗(X,Q, y)dy = α,
1

α

∫ p(α)

p0

yµ∗(X,Q, y)dy = U(X,Q− α). (1.1)

Here the first equality is self-evident: p(α) = p(α,X,Q) ≥ p0 is the price in LOB at which the

accumulated volume of sell limit orders between p0 and p(α) is exactly equal to α; whereas the

second equality means that the average price sold should be equal to U(X,Q− α), the expected

utility for the remaining LOB (a more detailed argument will be given in §3). Using the equations

in (1.1) we will be able to solve explicitly the process µ∗ in terms of U , and from which we will

define the liquidity cost, and argue that, modulo a term that is of order α2, where α is the trading
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size, it is linear (although time inhomogeneous) in α. More importantly, once we obtain the

density function of the LOB, we can then evaluate the liquidity cost. We show that, under mild

technical conditions, the average price (including liquidity cost) exactly coincides with the supply

curve in sense of Cetin-Jarrow-Protter [8].

Our second goal of this paper is to consider an optimal execution problem. That is, finding

an optimal strategy of purchasing a large block of shares within a prescribed time duration [0, T ]

with a minimum cost. Such a problem has been studied by many authors (cf. e.g., [2, 4, 6, 17],

and the references cited therein), but with the endogenously given shape of LOB, our problem

seems to be new. We shall consider only two types of actions: the (buying) action of the large

investor self, and an aggregated action of all the other investors, which is modeled as a compound

Poisson process, representing all incoming limit sell orders, canceled orders, and the market buy

orders. In other words, without the buying action of the investor, whose accumulated purchase

will be described by an increasing process, the movement of the total available shares in the LOB

is a continuous time pure jump process. We then show that the Bellman Principle of dynamic

programming holds in this case, and the value function is a viscosity solution of the resulting

HJB quasi-variational inequality (QVI). Finally, in the case that the QVI has a classical solution,

we shall analyze the optimal strategy by proving a verification theorem. It is noted that the

continuous (or inaction) region in our model may not be simply connected, and as a consequence

the optimal strategy may contain multiple (even infinitely many) jumps.

The rest of the paper is organized as follows. In §2 we give the necessary technical background

and describe the basic elements of the model. In §3 we introduce the notion of equilibrium dis-

tribution, and analyze some important quantities that can be derived endogenously from such

distribution. These in particular include bid-ask spread and the liquidity cost that play the fun-

damental role in our optimal execution problem. In §4 we introduce the optimal execution problem

and study its various equivalent expressions. In §5 and §6 we prove the dynamic programming

principle, derive the HJB equation, and prove that the value function is a viscosity solution to the

corresponding HJB equation. Finally, §7 is devoted to the construction of an optimal strategy, in

the case that the HJB equation has a classical solution.

2 Preliminaries

Throughout this paper we assume that all the randomness comes from a complete probability

space (Ω,F ,P) on which are defined a standard Brownian motion W = {Wt : t ≥ 0}, and a

standard Poisson process N = {Nt :≥ 0} with intensity λ. In what follows the Brownian motion

W represents the market noise that drives the fundamental value (or mid-price) of the underlying

4



stock, and the Poisson process N represents the frequency of the incoming limit orders. Therefore

it is reasonable to assume that W and N are independent. We shall denote FW = {FW
t : t ≥ 0}

and FN = {FN
t : t ≥ 0} to be the natural filtration generated by W and N , respectively.

Throughout the paper, we denote τ0 := 0 and let 0 < τ1 < τ2 < · · · be the jump times of N .

We consider a finite time horizon [0, T ]. For simplicity, we assume that there is only one

stock traded in an order driven market, and the interest rate is 0. We first give the mathematical

description of the basic elements involved in our model.

1. Fundamental Price. We assume that the underlying stock has a fundamental value (or

mid-price) which is known to the public. But the market price deviates away from it, due to the

possible illiquidity, which leads to the bid-ask spread. Since the fundamental value only affects

our model as a source of randomness, we simply assume that it is a diffusion, and satisfies the

following stochastic differential equation (SDE):

Xt = x+

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs, t ≥ 0, (2.1)

where b and σ satisfy the following standing assumptions:

(H1) (i) b(·, ·) and σ(·, ·) are deterministic functions, continuous in t, and uniformly Lipschitz

continuous in x, with a common uniform Lipschitz constant L > 0.

(ii) x > 0, σ(t, 0) = 0, and b(t, 0) ≥ 0.

Remark 2.1 It is clear that the assumption (H1) guarantees the well-posedness of the the SDE

(2.1), and solution satisfies Xt > 0 for all t ≥ 0, P-a.s. The continuity of b and σ in t is mainly for

the viscosity property of the value function in §6 below. For notational simplicity, in this paper

we assume W is 1-dimensional, but all the results can be extended to higher dimensional case.

Moreover, we may even allow b and σ to be random, and all the results in §4 and §5 will still

hold true, after obvious modification. However, in this case the HJB equation in Section 6 will

become a backward stochastic PDE and the associated path dependent PDE. We refer to [10] for

the related theory.

2. The Limit Order Book (LOB). We assume that there are patient and impatient investors

in the market, and they put different bid and/or ask prices to either liquidate or purchase the

given stock based on their preferences (see §3 for more discussion on this). Since in this paper

we consider the optimal execution problem for purchasing the stock, only the sell side LOB will

be relevant. We thus assume in what follows that all the buyers are impatient and only make

“market orders” (i.e., buying whatever is available on the market), and consequently there is no
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“buy side” LOB. Moreover, we isolate one particular investor, referred as the investor, who will

carry out the optimal execution problem later.

We shall assume that the movement of the LOB depends solely on the investment activities,

namely the investor herself, and all other investors (buyers and sellers). For simplicity, we assume

that the activities of other investors are aggregated as a large investor whose investment activities

is described by a compound Poisson process Yt =
∑Nt

i=1 Λi, t ≥ 0, where {Λi}∞i=1 is a sequence

of i.i.d. random variables with distribution ν. We shall assume E{|Λi|} < ∞. We should note

that the large investor is allowed to make both (buy and sell) limit orders and market orders, and

can also cancel orders. Thus Λi’s will take values in R (i.e., ∆Yt < 0 is possible). It is useful to

introduce the following filtration: F = FW ⊗ FY = {FW
t ∨ FY

t : t ≥ 0}, which will be the basic

information source allowed in our execution problem. We notice that FN ⊂ FY ⊂ F.

3. The Inventory Process. We assume that the investor is trying to purchase a certain number,

say K, shares of the given stock within a given time horizon [0, T ], and denote the accumulated

number of shares up to time t ∈ [0, T ] by πt. Then clearly π = {πt : t ≥ 0} is an increasing

process, and we assume that it is F-predictable. Note that, with this assumption, all the jumps

times of π is predictable, and consequently ∆πτi∆Yτi = 0, since all jump times of N (and of Y )

are totally inaccessible. In fact, for practical reason we could, and will, assume that N and Y

have càdlàg paths but π is càglàd, and then naturally we have

∆πt∆Yt := (πt+ − πt)(Yt − Yt−) = 0, ∀t ∈ [0, T ], P-a.s.

Note that with such a definition the investor can observe the jump of Y and immediately jump

afterwards. Clearly, each particular realization of π could be considered as an execution strategy.

We thus define

A := {π : π is F-predictable, non-decreasing, has càglàd paths, and πT ≤ K}. (2.2)

We can now describe the dynamics of the total number of shares of the stock in the (sell)

LOB, denoted by Q = {Qt : t ∈ [0, T ]}. We shall consider in this paper the simplest case in which

the dynamics of Q can be affected by only two factors: the order made by the investor herself,

π, and the orders made by the other large investor (or the aggregated action by all other market

participants), Y . Then, it is readily seen that, for a given strategy π ∈ A and initial inventory q,

the movement of Qπ := Qπ,q is determined by: Qπ
0 := q, and

Qπ
t := Qπ

τi
− (πt − πτi) for t ∈ (τi, τi+1); Qπ

τi+1
:= (Qπ

τi+1− +∆Yτi+1
)+. (2.3)
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Remark 2.2 (i) Qπ is càglàd in each (τi, τi+1). However, at τi+1, Q
π can have left and/or right

jumps. So Qπ has both left and right limits, but in general it is neither left continuous nor right

continuous on [0, T ].

(ii) When π is continuous, which will be the case in most of the paper, Qπ is càdlàg.

We note from (2.3) that Qπ
τi+1

≥ 0. This is a natural constraint since the volume of the LOB

can never be negative. However, not all π ∈ A will guarantee that the corresponding Qπ
t ≥ 0 for

all t ∈ [0, T ]. We thus consider the following admissible strategies: given q ≥ 0,

Aad(q) := {π ∈ A : Qπ,q
t ≥ 0 for all t ∈ [0, T ], P-a.s., where Qπ,q is defined by (2.3)}. (2.4)

Throughout the paper, we shall denote

R+ := (0,∞), R̄+ := [0,∞), O := R+ × [0,K)× R+, Ō := R+ × [0,K]× R̄+. (2.5)

We remark that we do not take the closure for the first R+ in Ō.

3 Equilibrium Distribution

In this section we introduce the notion of “equilibrium density” of the LOB, one of the most

important ingredients in our model. Our idea follows from that of Rosu’s [16], which we now

describe. We assume that every seller comes into the market with the same amount of information

(this is different from the asymmetric information assumptions, cf. [5]). Each seller sets his/her

ask price based on the personal preference, which is the combination of the expected return of

the order and the possible lost value (or cost) due to, say, the waiting time for the order to be

executed. In an equilibrium we assume that every seller will have the same “expected return” (or

“expected utility”) of the order, which we denote by U(X,Q), where X is the fundamental value

of the stock and Q is the total number shares available.

The existence of such equilibrium could be argued as follows. Suppose two sellers do not

believe that they have the same expected return, then one of them (usually the one with lower

expected return) is going to cancel his/her limit order and resubmit it to the market with a

different ask price in exchange for a higher expected return. Then every seller in the market

will do the same until an equilibrium is reached. We should point out that such an equilibrium

approach only works when there is sufficient competition in the market. In fact, when the market

is under monopoly, we should not expect the distribution to behave like this.

Given the expected return U(X,Q), we now introduce the concept of “equilibrium density”.

Recall that the density function of an LOB is a non-negative function µ(y) ≥ 0, ∀y ≥ 0, such that
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µ(y) = 0, for y < p0, where p0 ≥ X is the lowest (best) ask price, and that
∫ ∞

p0

µ(y)dy = Q. (3.1)

We note that if µ(y) ≡ µ, p0 ≤ y ≤ p0 + Q/µ, is a constant, then the LOB is said to have

a “block shape” (see, e.g., [4] and [15]). Another way to study the problem is to assume the

“shape” of the LOB is given exogenously (see, e.g., [2, 17]). Our main idea is to show that the

shape function is determined by the following simple facts. Assume that a (large) market buy

order comes in and α-shares of the stock were purchased, where α ∈ (0, Q]. We assume that the

lowest portion of α shares in the LOB is consumed. Thus, if we denote p(0) = p(0,X,Q), to be

the lowest ask price, then we can find p(α) > p(0) such that

∫ p(α)

p(0)
µ(y)dy = α. (3.2)

On the other hand, we assume that, in equilibrium, the average price of the sold block should

have the same expected return of the remaining orders in the LOB, which has a total of Q − α

shares after the purchase. In other words, we assume that: for any α that 0 ≤ α ≤ Q,

1

α

∫ p(α)

p(0)
yµ(y)dy = U(X,Q− α). (3.3)

Now taking derivative with respect to α in (3.2) and (3.3) we obtain:










µ(p(α))p′(α) = 1;

µ(p(α))p′(α)p(α) = U(X,Q− α)− α
∂U

∂x2
(X,Q− α).

(3.4)

Solving two equations in (3.4) we have:

p(α) = U(X,Q− α)− α
∂U

∂Q
(X,Q− α); (3.5)

µ(p(α)) =
1

p′(α)
=

(

α
∂2U

∂Q2
(X,Q− α)− 2

∂U

∂Q
(X,Q − α)

)−1

. (3.6)

We note that, by setting α = 0 in (3.5),

p(0,X,Q) = U(X,Q). (3.7)

That is, the “frontier” of the LOB is exactly the representative of the equilibrium, as expected.

On the other hand, since the function α 7→ p(α) is obviously non-decreasing, we can assume

further that it is invertible and denote h(y) = p−1(y), then (3.6) becomes

µ(y) =
1

p′(h(y))
=

(

h(y)
∂2U

∂Q2
(X,Q− h(y)) − 2

∂U

∂Q
(X,Q− h(y))

)−1

. (3.8)
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Namely, the equilibrium density µ := µX,Q can be explicitly derived, as long as U(X,Q) is given.

We should remark here that the modeling of the expected return function U(X,Q) is itself an

interesting and challenging problem. For example, in [16] such an expected return function was

obtained explicitly by solving a recursive difference equation. Also, in a slightly different setting,

the relationship between the bid-ask spread and the liquidity was considered by Avellaneda-

Stoikov [5], in which an argument of indifference pricing was applied to construct the return

function U . In what follow we shall assume the existence of such a function U , and furthermore,

based on the discussion above, we make the following assumptions.

(H2) The expected utility function U : R+ × R̄+ 7→ R+ enjoys the following properties:

(i) U is non-decreasing in x, and ∂QU = ∂U
∂Q

< 0, ∂2
QU = ∂2U

∂Q2 > 0.

(ii) U is uniformly Lipschitz continuous in (x, q), with Lipschitz constant L > 0.

Remark 3.1 (i) By (3.6), the properties of U in q guarantees that p′(α) > 0, for all 0 ≤ α ≤ Q,

which leads further to the existence of its inverse so that the formula (3.8) makes sense. Moreover,

by (3.7) we see that the function p(0) = p(0,X,Q) is uniform Lipschitz for (X,Q) ∈ R+ × R̄+.

This fact will be frequently used in our discussion.

(ii) (H2) obviously does not render the function U a true “utility function” in either variable.

In fact, the assumption (H2)-(i), which guarantees the positivity of the density function µ (see

(3.6)), implies that it is decreasing and convex in Q, hence a “cost function” on Q in a usual

sense. Of course, it would be reasonable to assume that U is concave in X, hence a utility on the

price, but we do not need such an assumption in the rest of our discussion.

(iii) In practice, it is natural to assume further that U(x, q) ≥ x, or limq→∞ U(x, q) = x. The

latter implies that the liquidity premium vanishes as the supply goes to infinity. But technically

we do not need them in this paper.

We conclude this section by observing that, given the density function µ = µX,Q, the cost for

buying α shares of stock can be easily calculated as

C(X,Q,α) :=

∫ p(α)

p(0)
yµX,Q(y)dy = αU(X,Q− α), (3.9)

where the last equality is due to (3.3). From this we obtain that

liquidity cost = C(X,Q,α) − αX = [p(0) −X]α+

∫ p(α)

p(0)
[y − p(0)]µX,Q(y)dy. (3.10)
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Clearly, we can see that the liquidity cost consists of a linear part (with respect to the trade size

α), due to the bid-ask spread; and a higher order part that is determined by the “shape” of the

LOB. More precisely, assume for example p′(α) < ∞, then we can easily derive from (3.10) that

C(X,Q,α) = p(0)α +O(α2). (3.11)

In particular, if we consider a purchase strategy π = {πt}, then (3.11) amounts to saying that

C(Xt, Q
π
t ,∆πt) = p(0)∆πt + O((∆πt)

2). Consequently, for a continuous strategy πc = {πc
t , t ∈

[0, T ]}, the following calculation of the total cost will be useful in the rest of the paper:

∫ t

0
C(Xs, Q

πc

s , dπc
s) =

∫ t

0
p(0,Xs, Q

πc

s )dπc
s =

∫ t

0
U(Xs, Q

πc

s )dπc
s. (3.12)

Remark 3.2 The following obversion is worth noting. Assume that the function U is sufficiently

regular, then by (3.3) we see that, for each α ∈ [0, Q], the process of “average price” of the stock

counting liquidity cost, defined by

S(t, ω, α)
△
=

1

α
C(Xt(ω), Qt(ω), α) = U(Xt(ω), Qt(ω)− α), (t, ω) ∈ [0,∞) × Ω,

is a semi-martingale. Furthermore, the assumption (H2) implies that it is convex and increasing

with respect to the trade size α. In other words, the process S is exactly the supply curve in the

sense of Cetin-Jarrow-Protter [8](!).

4 Optimal Execution Problem

We are now ready to introduce the main objective of the paper: the optimal execution problem.

Consider the scenario when an investor would like to purchase K shares of the stock within a

prescribed time duration [0, T ]. Given initial inventory q ≥ 0 and a purchase strategy π ∈ Aad(q),

we consider the following cost functional:

J(π) = E

{

∑

0≤s<T

C(Xs, Q
π
s ,∆πs) +

∫ T

0
U(Xs, Q

π
s )dπ

c
s + g(XT ,K − πT )

}

, (4.1)

where πc denotes the continuous part of π, and g : R+ × [0,K] → R+ is the terminal penalty

function. Clearly, the first term is the cost for the jump part of π, and the second term is the

cost of the continuous part of π. The value function is thus

V0 := V0(q) := inf
π∈Aad(q)

J(π). (4.2)

We shall assume that the terminal penalty function g satisfies the following assumption:
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(H3) (i) g is uniformly Lipschitz continuous in (x, y), with Lipschitz constant L > 0.

(ii) For fixed x, g is increasing and convex in y. Moreover, g(x, 0) = 0 and g(x, y) ≥ U(x, 0)y.

Remark 4.1 In the case πT < K, one is forced to purchase the remaining amount of shares

y := K − πT at time T , regardless the liquidity. The terminal (penalty) g(x, y) ≥ U(x, 0)y for

y ≥ 0 amounts to saying that this price would be more expensive than the highest market price

U(x, 0), the price with zero liquidity. Furthermore, by (H3)-(ii) we see that g(x, y) − g(x, y′) ≥
U(x, 0)(y − y′) for 0 < y′ < y. Therefor if the final inventory is Q, and the investor needs to

purchase a total of y shares, but decides to buy 0 < y′ ≤ y∧Q from LOB right before T and buys

the remaining y − y′ using the penalty price, then his total cost would be: recall (3.9),

C(x,Q, y′) + g(x, y − y′) = U(x,Q− y′)y′ + g(x, y − y′) ≤ U(x, 0)y′ + g(x, y − y′) ≤ g(x, y).

This again shows that it is disadvantageous to purchase everything at the terminal time.

We now introduce two alternative expressions for V0 to facilitate the future discussion. First,

we define the set of continuous strategies by

A
c
ad(q) := {π ∈ Aad(q) : t 7→ πt is continuous, P-a.s.}. (4.3)

Clearly, if π ∈ A c
ad(q), then Qπ is càdlàg and C(Xt, Q

π
t ,∆πt) = 0. We thus define















J0(π) := E

{

∫ T

0
U(Xs, Q

π
s )dπs + g(XT ,K − πT )

}

; π ∈ Aad(q);

V 0
0 := inf

π∈A c
ad

(q)
J0(π).

(4.4)

Next, recall that p(0,X,Q) = U(X,Q) is decreasing in Q. Thus, for 0 < α ≤ Q, it holds that

C(X,Q,α) = αU(X,Q − α) =

∫ α

0
U(X,Q− α)du ≥

∫ α

0
U(X,Q− u)du =: D(X,Q,α). (4.5)

We now replace C(· · · ) by D(· · · ) in (4.1) and define



















J1(π) := E

{

∑

0≤s<T

D(Xs, Q
π
s ,∆πs) +

∫ T

0
U(Xs, Q

π
s )dπ

c
s + g(XT ,K − πT )

}

, π ∈ Aad(q);

V 1
0 := inf

π∈Aad(q)
J1(π).

(4.6)

We note that since A c
ad(q) ⊆ Aad(q), it follows from (4.5) that V 1

0 ≤ V0 ≤ V 0
0 . Our main

observation is that the cost D(X,Q,α) can actually be approximated by continuous strategies,

thus these inequalities should all be equalities. We substantiate this in the following theorem.
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Theorem 4.2 Assume (H1)- (H3). Then, it holds that V 0
0 = V0 = V 1

0 .

Proof. Since V 1
0 ≤ V0 ≤ V 0

0 holds by definitions, we need only show that V 0
0 ≤ V 1

0 . To this

end, we fix arbitrary π ∈ Aad(q) and ε > 0. We claim that

V 0
0 ≤ J1(π) + ε. (4.7)

Indeed, for each m ∈ N, define τm0 := 0 and τmi+1 := inf{t > τmi : ∆πt ≥ 1
m
} ∧ T , i = 0, 1, · · · .

Since π has right limits and the filtration F is right continuous, we see that τmi are F-stopping

times, τmi < τmi+1 and ∆πτmi ≥ 1
m

whenever τmi < T . Define

πm
s := πc

s +
m2

∑

i=1

∆πτmi 1{τmi ≤s}, s ∈ [0, T ]. (4.8)

Clearly, (πm)c = πc and πm ≤ π. This implies that Qπm ≥ Qπ and thus πm ∈ Aad(q). Moreover,

since
∑m2

i=1∆πτmi ≥ m on {τm
m2 < T}, we see that limµ→∞ P(τm

m2 < T ) = 0. Consequently,

limm→∞ πm
T = πT , for all ω. Now by the monotonicity of U and (4.5), we have

∫ T

0
U(Xs, Q

πm

s )d(πm)cs ≤
∫ T

0
U(Xs, Q

π
s )dπ

c
s;

∑

0≤s≤T

D(Xs, Q
πm

s ,∆πm
s ) ≤

∑

0≤s≤T

D(Xs, Q
π
s ,∆πm

s ) =

m2
∑

i=1

D(Xτmi
, Qπ

τmi
,∆πτmi )

≤
∑

0≤s≤T

D(Xs, Q
π
s ,∆πs).

Furthermore, since obviously one has limm→∞ g(XT ,K−πm
T ) = g(XT ,K−πT ), we conclude that

limm→∞ J1(πm) ≤ J1(π), and thus there exists M such that

J1(πM ) ≤ J1(π) +
ε

2
. (4.9)

Next, recall again that ∆πs∆Ns = 0 and thus τi 6= τMj , P-a.s. for all i, j. Let δ > 0 be a small

number. For each i = 1, · · · ,M2, let ji be the smallest j such that τj > τMi . We remark that ji is

random and τji is still an F-stopping time. Define πM,δ recursively as follows. First, πM,δ
s := πc

s

for 0 ≤ s ≤ τM1 . For i = 1, · · · ,M2, denote τM,δ
i := [τMi + δ] ∧ τMi+1 ∧ τji , and define

πM,δ
s := πM,δ

τmi
+ [πc

s − πc
τMi

] +
s ∧ τM,δ

i − τMi
δ

∆πτM
i
, s ∈ (τMi , τMi+1], (4.10)

where we abuse the notation that τM
m2+1 := T . It is clear that πM,δ is continuous and πM,δ ≤ πM .

This implies that πM,δ ∈ A c
ad(q). Note that, by changing variable u := τMi + α

δ
(s− τMi ), we have

D(X,Q,α) =

∫ α

0
U(X,Q− u)du =

α

δ

∫ τMi +δ

τMi

U(X,Q− α

δ
(s− τMi ))ds.

12



On the other hand, it is not hard to check that, for s ∈ [τMi , τM,δ
i ], it holds that

QπM,δ

s = QπM,δ

τMi
− [πc

s − πc
τMi

]− s− τMi
δ

∆πτMi
≥ Qπ

τMi
− [πc

s − πc
τMi

]− s− τMi
δ

∆πτMi
,

and that limδ→0 P(τ
M,δ
i = τMi + δ) = 1, thus we have limδ→0 π

M,δ
T = πT , P-a.s.

Now, by the monotonicity of U again and applying the dominated convergence theorm,

J0(πM,δ)− J1(πM )

= E

{

∫ T

0
[U(Xs, Q

πM,δ

s )− U(Xs, Q
π
s )]dπ

c
s + [g(XT ,K − πM,δ

T )− g(XT ,K − πT )]

+

M2

∑

i=1

[

∫ τ
M,δ
i

τMi

∆πτMi
δ

U(Xs, Q
πM,δ

s )ds −D(XτMi
, Qπ

τMi
,∆πτMi

)]
}

≤ E

{

[g(XT ,K − πM,δ
T )− g(XT ,K − πT )] +

M2

∑

i=1

∫ τMi +δ

τMi

∆πτMi
δ

×

[

p
(

0,Xs, Q
π
τMi

− (πc
s − πc

τMi
)−

∆πτMi
δ

(s− τMi )
)

− p
(

0,XτMi
, Qπ

τMi
−

∆πτMi
δ

(s − τMi )
)

]

ds
}

≤ LE
{

|πM,δ
T − πT |+

πT
δ

M2

∑

i=1

∫ τMi +δ

τM
i

[

|Xs −XτMi
|+ |πc

s − πc
τMi

|
]

ds
}

→ 0, as δ → 0.

Setting δ > 0 small enough such that J0(πM,δ) ≤ J1(πM ) + ε
2 . By (4.9) and recalling that

πM,δ ∈ A c
ad(q), we prove (4.7), whence the theorem.

We conclude this section with a dynamic version of the value function V . Let (t, x, k, q) ∈
[0, T ]× Ō (recall (2.5)), and let Xt,x be the solution to (2.1) on [t, T ] with Xt = x, a.s. Denote

A (t, k) := {π : π is F-predictable, càglàd, non-decreasing, πt = k, and πT ≤ K}.

Denote τ t0 := t, and τ ti , i ≥ 1, being the jump times of N on (t, T ]. For any π ∈ A (t, k), let







Qπ
s := Qπ

τ ti
− (πs − πτ ti ) for s ∈ (τ ti , τ

t
i+1);

Qπ
t := q; Qπ

τ ti+1

:= (Qπ
τ ti+1

−
+∆Yτ ti+1

)+, i ≥ 1,
(4.11)

and define

Aad(t, k, q) := {π ∈ A (t, k) : Qπ,q
s ≥ 0, s ∈ [t, T ],P-a.s.},

A c
ad(t, k, q) := {π ∈ Aad(t, x, q) : π is continuous, P-a.s.}.

(4.12)

By Theorem 4.2, we now define the dynamic value function V via two equivalent expressions:

V (t, x, k, q) := inf
π∈A c

ad
(t,k,q)

J0(t, x, k, q;π) = inf
π∈Aad(t,k,q)

J1(t, x, k, q;π), (4.13)

13



where

J0(t, x, k, q;π) := E

{

∫ T

t

U(Xt,x
s , Qπ

s )dπs + g(Xt,x
T ,K − πT )

}

; (4.14)

J1(t, x, k, q;π) := E

{

∑

t≤s<T

D(Xt,x
s , Qπ

s ,∆πs) +

∫ T

t

U(Xt,x
s , Qπ

s )dπ
c
s + g(Xt,x

T ,K − πT )
}

.

Remark 4.3 (i) We note that the cost functional J0(t, x, k, q;π) in (4.14) uses only continuous

strategies. It will facilitate the argument when we prove that the value function V is a viscosity

solution to the HJB equation in §5 and §6.
(ii) The cost functional J1(t, x, k, q;π) will be useful when we investigate the existence of

optimal strategy in §7. Recall from Theorem 4.2 the inequality V 0
0 ≤ V0 ≤ V 1

0 . Thus an optimal

strategy, if exists, should also optimize J1. However, it is worth noting that cost function D(· · · )
does not have a practical meaning, as opposed to the cost function C(· · · ), and in practice it

cannot be implemented directly. Nevertheless, combining the approximations (4.8) and (4.10) in

the proof of Theorem 4.2, we will be able to find an implementable good approximation of optimal

strategy, as we shall see in §7.

5 Dynamic Programming Principle

In this section we verify some properties of the value function V and establish the Dynamic

Programming Principle (DPP). As we pointed out in Remark 4.3-(i), we shall consider the cost

functional J0. We begin by the regularity of V with respect to the “spatial variables” x, k, and

q, respectively.

Proposition 5.1 Assume (H1)-(H3). Then for each t ∈ [0, T ], the value function V (t, x, k, q)

is non-decreasing x, non-increasing in k and q, respectively, and uniformly Lipschitz continuous

with respect to (x, k, q) ∈ Ō.

Proof. We first check the properties in x. Assume x1 < x2. Then by the comparison theorem

of SDE, we have Xt,x1
s ≤ Xt,x2

s , for all t ≤ s ≤ T , P-a.s. Since both U and g are non-decreasing

and uniformly Lipschitz continuous in x, for any π ∈ A c
ad(t, k, q) we see that

0 ≤ J0(t, x2, k, q;π) − J0(t, x1, k, q;π) (5.1)

= E

{

∫ T

t

[U(Xt,x2

s , Qπ
s )− U(Xt,x1

s , Qπ
s )]dπ

c
s + g(Xt,x2

T ,K − πT )− g(Xt,x1

T ,K − πT )

}

≤ CE

{

max
s∈[t,T ]

|Xt,x2

s −Xt,x1

s |
}

≤ C(x2 − x1).
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Switching the role of x1 and x2 we can easily deduce the Lipschitz property in x:

|V (t, x2, k, q)− V (t, x1, k, q)| ≤ C|x2 − x1|, ∀x1, x2 ∈ R. (5.2)

We next check the properties in k. Let 0 ≤ k1 < k2 ≤ K. For any π ∈ A c
ad(t, k1, q), consider the

strategy π′
s := [k2 +(πs− k1)]∧K, s ∈ [t, T ]. Clearly, π′ ∈ A c

ad(t, k2, q), and it satisfies: π′
T ≥ πT ,

dπ′
s ≤ dπs s ∈ [t, T ]. Consequently we have Qπ′,q ≥ Qπ,q, J0(t, x, k2, q;π

′) ≤ J0(t, x, k1, q;π),

and thus V (t, x, k2, q) ≤ V (t, x, k1, q). On the other hand, for any strategy π ∈ A c
ad(t, k2, q), let

π′ := π − (k2 − k1) ∈ A c
ad(t, k1, q). Then Qπ′,q = Qπ,q, and thus:

J0(t, x, k1, q;π
′)− J0(t, x, k2, q;π) = E

{

g(Xt,x
T ,K − π′

T )− g(Xt,x
T ,K − πT )

}

≤ C(k2 − k1). (5.3)

Similar to (5.2 this implies the uniform Lipschitz continuity of V in k.

It remains to prove the Lipschitz property in q. As before we first assume 0 ≤ q1 < q2. It is

clear that A c
ad(t, k, q1) ⊂ A c

ad(t, k, q2), and for any π ∈ A c
ad(t, k, q1), we have Qπ,q1

s ≤ Qπ,q2
s . Then

J0(t, x, k, q1;π) ≥ J0(t, x, k, q2;π) for all π ∈ A
c
ad(t, k, q1), (5.4)

which leads to V (t, x, k, q1) ≥ V (t, x, k, q2). On the other hand, note that π0 ≡ k ∈ A c
ad(t, k, q1).

For any π ∈ A c
ad(t, k, q2), denote ∆Q := Qπ,q2 −Qk,q1 and τ := inf{s ≥ t : ∆Qs ≤ 0} ∧ T . Recall

(4.11), by induction on i one deduce easily that ∆Q is non-increasing on [t, τ ]. Then

πτ − πt =
∞
∑

i=0

[πτ∧τ t
i+1

− πτ t
i
]1{τ t

i
<τ} =

∞
∑

i=0

[∆Qτ t
i
−∆Qτ∧τ t

i+1
−]1{τ t

i
<τ}

≤ ∆Qt −∆Qτ− ≤ ∆Qt = q2 − q1. (5.5)

Now define π′
s := π0

s1[t,τ ](s) + [πs − πτ ]1(τ,T ]. Since π is continuous and π0 ≡ k, by (4.11) we see

that ∆Qτ = 0, as τ < T . Then Qπ′,q1
s = Qk,q1

s ≤ Qπ,q2
s , s ∈ [t, τ ], and Qπ′,q1

s = Qπ,q2
s , s ∈ (τ, T ].

Namely π′ ∈ A c
ad(t, k, q1). Moreover, (5.5) implies that 0 ≤ πT − π′

T = πτ − πt ≤ q2 − q1. Then

J0(t, x, k, q1;π
′)− J0(t, x, k, q2;π)

= E

{

−
∫ τ

t

U(Xt,x
s , Qπ,q2

s )dπs + g(Xt,x
T ,K − π′

T )− g(Xt,x
T ,K − πT )

}

≤ CE
{

πT − π′
T

}

≤ C(q2 − q1).

Since π ∈ A c
ad(t, k, q2) is arbitrary, we obtain V (t, x, k, q1)− V (t, x, k, q2) ≤ C(q2 − q1). Reversing

the role of q1 and q2 we obtain the Lipschitz property of V in q, proving the proposition.

We can now follow the standard arguments in the literature to establish the following simpler

from of dynamic programming principle, when the time increments are deterministic.
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Proposition 5.2 Assume (H1) - (H3). Then, for any 0 ≤ t1 < t2 ≤ T and (x, k, q) ∈ Ō,

V (t1, x, k, q) = inf
π∈A c

ad
(t1,k,q)

E

{
∫ t2

t1

U(Xt1,x
s , Qπ,q

s )dπs + V (t2,X
t1,x
t2

, πt2 , Q
π,q
t2

)

}

. (5.6)

Proof. Let Ṽ (t1, x, k, q) denote the right side of (5.6). We first show that V (t1, x, k, q) ≥
Ṽ (t1, x, k, q). Indeed, for any π ∈ A c

ad(t1, k, q), let π̃ denote the restriction of π on [t2, T ]. Then

X
t2,X

t1,x

t2
s = Xt1,x

s , Q
π̃,Q

π,q
t2

s = Qπ,q
s , for s ∈ [t2, T ]. In other words, π̃ ∈ A c

ad(t2, πt2 , Q
π,q
t2

). This

implies that

J0(t1, x, k, q;π) = E

{

∫ T

t1

U(Xt1,x
s , Qπ,q

s )dπs + g(Xt1,x
T ,K − πT )

}

= E

{

∫ t2

t1

U(Xt1,x
s , Qπ,q

s )dπs + E

[

∫ T

t2

U(Xt2,X
t1,x

t2 , Q
π̃,Q

π,q
t2

s )dπs + g(X
t2 ,X

t1,x

t2

T ,K − π̃T )
∣

∣

∣
Ft2

]}

= E

{

∫ t2

t1

U(Xt1,x
s , Qπ,q

s )dπs + J0(t2,X
t1,x
t2

, πt2 , Q
π,q
t2

; π̃)
}

≥ E

{

∫ t2

t1

U(Xt1,x
s , Qπ,q

s )dπs + V (t2,X
t1,x
t2

, πt2 , Q
π,q
t2

)
}

.

We remark that in the above the last equality can be proved rigorously by using the notion of

regular conditional probability distribution. Since the argument would be rather lengthy but

more or less standard, we omit the details. Now take infimum over π ∈ A c
ad(t1, k, q) on both sides

of above, we obtain V (t1, x, k, q) ≥ Ṽ (t1, x, k, q).

To prove the opposite inequality, we first fix ε > 0, and consider a countable partition {Oi}∞i=1

of Ō and (xi, ki, qi) ∈ Oi, i = 1, 2 · · · , such that, for any (x, k, q) ∈ Oi, it holds that |x − xi| ≤ ε,

ki − ε ≤ k ≤ ki, and qi ≤ q ≤ qi + ε. Now for each i, choose πi ∈ A c
ad(t2, ki, qi) such that

J0(t2, xi, ki, qi;π
i) ≤ V (t2, xi, ki, qi) + ε.

For any (x, k, q) ∈ Oi, note that πi − ki + k ∈ A c
ad(t2, k, qi) ⊂ A c

ad(t2, k, q). Then, by (5.1), (5.3),

(5.4), and applying Proposition 5.1, for a generic constant C we have

J0(t2, x, k, q;π
i − ki + k) ≤ J0(t2, xi, ki, q;π

i) + Cε ≤ J0(t2, xi, ki, qi;π
i) + Cε

≤ V (t2, xi, ki, qi) + Cε ≤ V (t2, x, k, q) + Cε. (5.7)

Now for any π ∈ A c
ad(t1, k, q), define a new strategy π̃:

π̃s := πs1[t1,t2](s) +
[

∑

i

[πi
s − ki + πt2 ]1Di

(Xt1,x
t2

, πt2 , Q
π,q
t2

)
]

1(t2,T ](s).

It is clear that π̃t1 = k, π̃ is continuous and non-decreasing on [t, T ], and π̃T ≤ πi
T ≤ K on each

Oi. Moreover, Qπ̃,q
s = Qπ,q

s ≥ 0 for s ∈ [t1, t2], and for s ∈ [t2, T ], on Oi we have

Qπ̃,q
s = Q

πi,Q
π,q
t2

s ≥ Qπi,qi
s ≥ 0.
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Thus π̃ ∈ A c
ad(t1, k, q), and therefore, it follows from (5.7) that

V (t1, x, k, q) ≤ J0(t1, x, k, q; π̃)

= E

{

∫ t2

t1

U(Xt1,x
s , Qπ,q

s )dπs + E

[

∫ T

t2

U(Xt1,x
s , Qπ̃,q

s )dπ̃s + g(Xt1,x
T ,K − π̃T )

∣

∣

∣
Ft2

]}

= E

{

∫ t2

t1

U(Xt1,x
s , Qπ,q

s )dπs + J0(t2,X
t1,x
t2

, πt2 , Q
π,q
t2

; π̃)
}

= E

{

∫ t2

t1

U(Xt1,x
s , Qπ,q

s )dπs +
∑

i

J0(t2,X
t1,x
t2

, πt2 , Q
π,q
t2

;πi − ki + πt2)1Di
(Xt1,x

t2
, πt2 , Q

π,q
t2

)
}

≤ E

{

∫ t2

t1

U(Xt1,x
s , Qπ,q

s )dπs + V (t2,X
t1,x
t2

, πt2 , Q
π,q
t2

)
}

+ Cε,

Now, since ε > 0 is arbitrary and π ∈ A c
ad(t1, k, q), we conclude that V (t1, x, k, q) ≤ Ṽ (t1, x, k, q),

proving the proposition.

As a corollary of Proposition 5.2, we shall prove the temporal regularity of V . We note that

this will be a crucial step towards the general form of dynamical programming principle.

Corollary 5.3 Assume (H1)-(H3). Then, for any 0 ≤ t1 < t2 ≤ T and (x, k, q) ∈ Ō, we have

|V (t1, x, k, q)− V (t2, x, q)| ≤ C(1 + |x|)
√
t2 − t1. (5.8)

Proof. First note that the constant process k ∈ A c
ad(t1, k, q). Then, by Propositions 5.2 and 5.1,

V (t1, x, k, q)− V (t2, x, k, q) ≤ E{V (t2,X
t1,x
t2

, k,Qk,q
t2

)} − V (t2, x, k, q)

≤ CE{|Xt1,x
t2

− x|+ |Qk,q
t2

− q|}.

Next, recall from §2 that the dynamics of Q (see (2.3)) is driven by the compound Poisson process

Y , whose jump size Λi’s and the jump times τi’s are independent. Then one can easily check:

E{|Xt1,x
t2

− x|} = E

{∣

∣

∣

∫ t2

t1

b(s,Xt1,x
s )ds+

∫ t2

t1

σ(s,Xt1,x
s )dWs

∣

∣

∣

}

≤ C(1 + |x|)
√
t2 − t1;

E{|Qk,q
t2

− q|} ≤ E

{

∞
∑

i=1

|Λi|1{t1<τi≤t2}

}

=

∞
∑

i=1

E{|Λi|}E{1{t1<τi≤t2}} (5.9)

= E{|Λ1|}E
{

∞
∑

i=1

1{t1<τi≤t2}

}

= E{|Λ1|}E
{

Nt2 −Nt1

}

= λE{|Λ1|}[t2 − t1].

Consequently, we obtain

V (t1, x, k, q) − V (t2, x, k, q) ≤ C(1 + |x|)
√
t2 − t1. (5.10)
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On the other hand, since U ≥ 0 and V is decreasing in q,

V (t2, x, k, q) − V (t1, x, q) ≤ V (t2, x, k, q) − inf
π∈A c

ad
(t1,k,q)

E

{

V (t2,X
t1,x
t2

, πt2 , Q
π,q
t2

)
}

= sup
π∈A c

ad
(t1,k,q)

E

{

V (t2, x, k, q) − V (t2,X
t1,x
t2

, πt2 , Q
π,q
t2

)
}

≤ C sup
π∈A c

ad
(t1,k,q)

E

{

|Xt1,x
t2

− x|+ [Qπ,q
t2

− q]+
}

= CE
{

|Xt1,x
t2

− x|+ [Qk,q
t2

− q]+
}

≤ C(1 + |x|)
√
t2 − t1,

where the last inequality is due to (5.9). This, together with (5.10), leads to (5.8).

To conclude this section we give a general version of the dynamic programming principle.

Denote Tt to be all the F-stopping times taking values in (t, T ].

Theorem 5.4 Assume (H1)-(H3). Then, for any (t, x, k, q) ∈ [0, T ) × Ō and any τ ∈ Tt,

V (t, x, k, q) = inf
π∈A c

ad
(t,k,q)

E

{
∫ τ

t

U(Xt,x
s , Qπ,q

s )dπs + V (τ,Xt,x
τ , πτ , Q

π,q
τ )

}

. (5.11)

Proof. For each π ∈ A c
ad(t, k, q) and τ ∈ Tt, denote I(π, τ) be the expectation on the right side

of (5.11). Following the arguments in Proposition 5.2 one can easily show that V (t, x, k, q) ≥
infπ∈A c

ad
(t,k,q) I(π, τ). So it suffices to prove the reversed inequality:

V (t, x, k, q) ≤ inf
π∈A c

ad
(t,k,q)

I(π, τ). (5.12)

We first assume that τ ∈ Tt takes only finitely many values t < t1 < · · · < tm ≤ T . We prove

(5.12) by induction on m. When m = 1, (5.12) follows from Proposition 5.2. Now assume that

(5.12) holds for m− 1, and that τ takes m values. For any π ∈ A c
ad(t, k, q), we have

I(π, τ) = E

{

∫ t1

t

U(Xt,x
s , Qπ,q

s )dπs + V (t1,X
t,x
t1

, πt1 , Q
π,q
t1

)1{τ=t1}

+
[

∫ τ

t1

U(Xt,x
s , Qπ,q

s )dπs + V (τ,Xt,x
τ , πτ , Q

π,q
τ )

]

1{τ>t1}

}

.

Note that {τ > t1} ∈ Ft1 and τ takes only m− 1 values on {τ > t1}. By inductional hypothesis

we have

I(π, τ) = E

{

∫ t1

t

U(Xt,x
s , Qπ,q

s )dπs + V (t1,X
t,x
t1

, πt1 , Q
π,q
t1

)1{τ=t1}

+E
[

∫ τ

t1

U(Xt,x
s , Qπ,q

s )dπs + V (τ,Xt,x
τ , πτ , Q

π,q
τ )

∣

∣

∣
Ft1

]

1{τ>t1}

}

≥ E

{

∫ t1

t

U(Xt,x
s , Qπ,q

s )dπs + V (t1,X
t,x
t1

, πt1 , Q
π,q
t1

)1{τ=t1} + V (t1,X
t,x
t1

, πt1 , Q
π,q
t1

)1{τ>t1}

}

= E

{

∫ t1

t

U(Xt,x
s , Qπ,q

s )dπs + V (t1,X
t,x
t1

, πt1 , Q
π,q
t1

)
}

≥ V (t, x, k, q),
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where the last inequality is due to Proposition 5.2. Since π ∈ A c
ad(t, k, q) is arbitrary, we proved

(5.12) for m, completing the induction.

To prove (5.12) for arbitrary τ ∈ Tt, we first find τn ∈ Tt, n = 1, 2, · · · , such that τn − τ ≤ 1
n

and τn ↓ τ , as n → ∞. By previous arguments we see that (5.12) holds for each τn. That is,

V (t, x, k, q) ≤ I(π, τn) for each π ∈ A c
ad(t, k, q). Moreover, by definition of I(π, τ) we have

I(π, τn)− I(π, τ)=E

{
∫ τn

τ

U(Xt,x
s , Qπ,q

s )dπs + V (τn,X
t,x
τn , πτn , Q

π,q
τn )− V (τ,Xt,x

τ , πτ , Q
π,q
τ )

}

.

Applying Corollary 5.3 and noting that π is continuous we see that the right hand side above

converges to 0 as n → ∞. Consequently we obtain that V (t, x, k, q) ≤ I(π, τ) for each π ∈
A c

ad(t, k, q). This implies (5.12), and hence concludes the proof.

Remark 5.5 Combining Theorems 5.4 and 4.2, we have the following alternative version of

dynamic programming principle corresponding to the cost functional J1 defined in (4.13):

V (t, x, k, q) = inf
π∈Aad(t,k,q)

E

{

∫ τ

t

U(Xs, Q
π
s )dπ

c
s +

∑

t≤s<τ

D(Xs, Q
π
s ,∆πs)+V (τ,Xτ , πτ , Q

π,q
τ )

}

. (5.13)

6 The HJB equation

In this section we shall prove that the value function, while not necessarily smooth, is a viscosity

solution of the Hamilton-Jacobi-Bellman equation of the optimal execution problem.

We begin by introducing some notations. For simplicity we often use the equivalent notations

for partial derivatives: ∂tϕ = ∂ϕ
∂t
. The notations ∂xϕ, ∂kϕ, ∂qϕ, and ∂xxϕ are thus obvious. In this

and next section, we denote by C1,2
b ([0, T ]×Ō) the set of continuous functions ϕ on [0, T ]×Ō such

that the partial derivatives ∂tϕ, ∂xϕ, ∂kϕ, ∂qϕ, and ∂xxϕ exist and are continuous and bounded.

For each t ∈ [0, T ), we introduce a new filtration:

F̂t := {F̂ t
s}s≥0 := {FW

s ∨ FY
s∧t}s≥0. (6.1)

Moreover, in light of the cost functional J1 in (4.13) and the DPP (5.13), we define, for each

(t, x, k, q) ∈ [0, T )× Ō, π ∈ Aad(t, x, k, q), ϕ ∈ C([0, T ]× Ō), and F-stopping time τ ,

I(ϕ, π, τ) :=E

{

∫ τ

t

U(Xs, Q
π
s )dπ

c
s +

∑

t≤s<τ

D(Xs, Q
π
s ,∆πs) + ϕ(τ,Xτ , πτ , Q

π
τ )
}

− ϕ(t, x, k, q). (6.2)

Next, we let τ t1 be the first jump time of N after t and ν is the common distribution of the jump

size random variables Λi’s. We remark here that, by definition (6.1) it is clear that (τ t1,∆Yτ t
1
) is

independent of F̂t, and hence τ t1 is not an Ft-stopping time(!). Furthermore, we have the following

result that is important for our discussion.
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Lemma 6.1 For any fixed (t, k, q) and any π ∈ Aad(t, k, q), there exists an F̂t-adapted process π̃

such that π̃s∧τ t
1
= πs∧τ t

1
, for all s ≥ t, P-a.s.

Proof. We first note that since π is left continuous, we need only find a F̂t-adapted process π̃

such that, for any fixed s ≥ t P{π̃s1{τ t
1
>s} = πs1{τ t

1
>s}} = 1. This amounts to saying that given

s ≥ t, and X ∈ L0(Fs), there exists X̃ ∈ L0(F̂ t
s) such that X1{τ t

1
>s} = X̃1{τ t

1
>s}, lP-a.s. But

this last statement is more or less standard (see, e.g., [7]), we nevertheless give a brief proof for

completeness. We fix s > t and denote

Hs := {X ∈ L0(Fs) | ∃X̃ ∈ L0(F̂ t
s), such that X1{τ t

1
>s} = X̃1{τ t

1
>s}, lP-a.s.}.

Clearly, Hs ⊆ L0(Fs). We claim that Hs ⊇ L0(Fs). Indeed, note that Fs = F̂ t
s ∨σ{Yr, t ≤ r ≤ s}.

By a simple Monotone Class argument, for any X ∈ L0(Fs), we need only assume either X ∈
L0(F̂ t

s) or X = Yr for some r ∈ [t, s]. But in the former case we can choose X̃ = X, and in the

latter case we choose X̃ = Yt. Since in both cases X̃ ∈ L0(F̂ t
s), we conclude that X ∈ Hs. This

proves the claim, whence the lemma.

Now for any ϕ ∈ C1,2
b ([0, T ] × Ō we introduce the following integro-differential operators:

L [ϕ](t, x, k, q) := (∂tϕ+ b∂xϕ+
1

2
σ2∂xxϕ)(t, x, k, q)

+λ

∫

R

[

ϕ(t, x, k, (q + u)+)− ϕ(t, x, k, q)
]

ν(du); (6.3)

M [ϕ](t, x, k, q) := U(x, q) + (∂kϕ− ∂qϕ)(t, x, k, q).

The following lemma is crucial.

Lemma 6.2 Assume ϕ ∈ C1,2
b ([0, T ]× Ō and τ is an Ft-stopping time. Then it holds that

I(ϕ, π, τ ∧ τ t1) = E

{

∫ τ∧τ t
1

t

L [ϕ](s,Xs, πs, Q
π
s )ds +

∫ τ∧τ t
1

t

M [ϕ](s,Xs, πs, Q
π
s )dπ

c
s

+
∑

t≤s<τ∧τ t
1

∫ ∆πs

0
M [ϕ](s,Xs, πs + u,Qπ

s − u)du
}

. (6.4)

where L and M are defined by (6.3).

Proof. For any Ft-stopping time τ we denote τ̂ := τ ∧ τ t1. Let π ∈ Aad(t, k, q), and let π̃ be

the Ft-adapted version of π defined in Lemma 6.1, and define Q̃π
s := q− π̃s + k, s ≥ t. Then, it is

readily seen that Qπ
τ t
1

= (Q̃π
τ t
1

+∆Yτ t
1
)+, and thus

ϕ(τ̂ , Xτ̂ , πτ̂ , Q
π
τ̂ )− ϕ(t, x, k, q) = ϕ(τ̂ , Xτ̂ , πτ̂ , Q̃

π
τ̂ )− ϕ(t, x, k, q) (6.5)

+
[

ϕ(τ t1,Xτ t
1
, π̃τ t

1
, (Q̃π

τ t
1

+∆Yτ t
1
)+)− ϕ(τ t1,Xτ t

1
, π̃τ t

1
, Q̃π

τ t
1

)
]

1{τ t
1
≤τ}.
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Since (X, π̃, Q̃π), τ t1, ∆Yτ t
1
are independent, we have

E
{[

ϕ(τ t1,Xτ t
1
, π̃τ t

1
, (Q̃π

τ t
1

+∆Yτ t
1
)+)− ϕ(τ t1,Xτ t

1
, π̃τ t

1
, Q̃π

τ t
1

)
]

1{τ t
1
≤τ}

}

= E

{

∫ τ

t

λe−λ(s−t)ds

∫

R

[

ϕ(s,Xs, π̃s, (Q̃
π
s + u)+)− ϕ(s,Xs, π̃s, Q̃

π
s )
]

ν(du)
}

(6.6)

= E

{

λ

∫ τ

t

1{τ t
1
≥s}

∫

R

[

ϕ(s,Xs, π̃s, (Q̃
π
s + u)+)− ϕ(s,Xs, π̃s, Q̃

π
s )
]

ν(du)ds
}

= E

{

λ

∫ τ̂

t

∫

R

[

ϕ(s,Xs, πs, (Q
π
s + u)+)− ϕ(s,Xs, πs, Q

π
s )
]

ν(du)ds
}

.

Here we used the fact that Q̃π
s = Qπ

s , t ≤ s < τ̂ . Furthermore, applying Itô’s formula we have

E

{

ϕ(τ̂ , Xτ̂ , πτ̂ , Q̃
π
τ̂ )− ϕ(t, x, k, q)

}

= E

{

∫ τ̂

t

[

∂tϕ+ b∂xϕ+
1

2
σ2∂xxϕ

]

(s,Xs, πs, Q
π
s )ds +

∫ τ̂

t

[

∂kϕ− ∂qϕ
]

(s,Xs, πs, Q
π
s )dπ

c
s

+
∑

t≤s<τ̂

∫ ∆πs

0

[

∂kϕ− ∂qϕ
]

(s,Xs, πs + u,Qπ
s − u)du

}

. (6.7)

Plugging (6.6), (6.7) into (6.5), and then plugging (6.5), (4.5) into (6.2), we obtain (6.4).

It is worth noting that if we use the continuous strategy π ∈ A c
ad(t, x, k, q), then (6.2) and

(6.4) become

I(ϕ, π, τ) := E

{

∫ τ

t

U(Xs, Q
π
s )dπs + ϕ(τ,Xτ , πτ , Q

π
τ )
}

− ϕ(t, x, k, q) (6.8)

= E

{

∫ τ

t

L [ϕ](s,Xs, πs, Q
π
s )ds +

∫ τ

t

M [ϕ](s,Xs, πs, Q̃
π
s )dπs

}

, (6.9)

respectively. Clearly, (6.8) is valid even when ϕ is not smooth. In fact, by Theorem 5.4 we have

0 = inf
π∈A c

ad
(t,x,k,q)

I(V, π, τ). (6.10)

Furthermore, if V ∈ C1,2
b ([0, T ] × Ō), then we may plug (6.9) into (6.10) and deduce the

following Quasi-Variational-Inequality (QVI):

min
(

L [V ], M [V ]
)

(t, x, k, q) = 0, (t, x, k, q) ∈ [0, T )×O, (6.11)

with the terminal-boundary conditions:

V (T, x, k, q) = g(x,K − k); V (t, x,K, q) = 0; L [V ](t, x, k, 0) = 0. (6.12)

As we will see in next section, in this case V is indeed the unique classical solution of the QVI

(6.11) and (6.12).
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In general, however, V may not be smooth. We thus need to make use of the notion of the

viscosity solution. To this end, let us denote, for (t, x, k, q) ∈ [0, T )× R+ × [0,K)× R̄+,

A (t, x, k, q) :=
{

ϕ ∈ C1,2
b ([0, T ]× Ō) : [V − ϕ](t, x, k, q) = 0

}

;

A (t, x, k, q) :=
{

ϕ ∈ A(t, x, k, q) : V − ϕ attains a global maximum at (t, x, k, q)
}

; (6.13)

A (t, x, k, q) :=
{

ϕ ∈ A(t, x, k, q) : V − ϕ attains a global minimum at (t, x, k, q)
}

.

Definition 6.3 A continuous function V : [0, T ]×Ō 7→ R+ is called a viscosity subsolution (resp.

supersolution) to the QVI (6.11)-(6.12) if

(i) V (T, x, k, q) ≥ (resp. ≤)g(x,K − k) and V (t, x,K, q) ≥ 0(resp. ≤ 0);

(ii) for any (t, x, k, q) ∈ [0, T )×O and ϕ ∈ A(t, x, k, q) (resp. A(t, x, k, q)) one has:

min(L [ϕ],M [ϕ])(t, x, k, q) ≥ 0, (resp. ≤ 0);

(iii) for any (t, x, k) ∈ [0, T )× R+ × [0,K) and ϕ ∈ A(t, x, k, 0) (resp. A(t, x, k, 0)) one has:

L [ϕ](t, x, k, 0) ≥ 0, (resp. ≤ 0).

Moreover, V is called a viscosity solution if it is both a viscosity subsolution and supersolution.

Our main result of this section is the following theorem.

Theorem 6.4 Assume (H1)-(H3). Then the value function V of the optimal execution problem

is a viscosity solution of the QVI (6.11)-(6.12).

Proof. The terminal condition V (T, x, k, q) = g(x,K − k) is obvious. Moreover, note that if

πt = K, then πs ≡ K for all s ∈ [t, T ), as there is no need to purchase any more. Thus dπs = 0

for s ∈ [t, T ], and clearly g(XT ,K − πT ) = g(XT , 0) = 0. That is, V (t, x,K, q) = 0. So Definition

6.3 (i) holds (with equalities), and thus it suffices to check Definition 6.3 (ii) and (iii).

We first prove the viscosity subsolution properties. It suffices to show that, for any (t, x, k, q) ∈
[0, T )× R+ × [0,K) × R̄+ and ϕ ∈ A(t, x, k, q).

L [ϕ](t, x, k, q) ≥ 0, for q ≥ 0; M [ϕ](t, x, k, q) ≥ 0, for q > 0. (6.14)

In what follows we denote, for δ > 0 small, τδ := (t + δ) ∧ τ t1, and let C > 0 be a generic

constant that is allowed to vary from line to line.

We begin by proving the first inequality in (6.14). Let π := k be the constant process. Then

Qπ
s = q for t ≤ s < τδ. By (6.10), (6.13), and (6.9), we have

0 ≤ I(V, k, τδ) ≤ I(ϕ, k, τδ) = E

{

∫ τδ

t

L [ϕ](s,Xs, k, q)ds
}

= E

{

∫ t+δ

t

L [ϕ](s,Xs, k, q)ds
}

− E

{

∫ t+δ

τ t
1

L [ϕ](s,Xs, k, q)ds1{τ t
1
<t+δ}

}

. (6.15)
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Note that L [ϕ] is bounded and

P(τ t1 < t+ δ) ≤ Cδ, (6.16)

dividing both sides of (6.15) by δ and then sending δ → 0, we prove the first inequality in (6.14).

To check the second inequality in (6.14) for q > 0, let η > 0 and set πs := k + (s−t)∧δ
δ

ηq.

Clearly π ∈ A c
ad(t, k, q), π̃ = π, dπs =

ηq
δ
ds, and Q̃π

s = [1− s−t
δ
η]q, s ≤ τδ. By (6.10), (6.13), and

(6.9) again, we have

0 ≤ E

{ηq

δ

∫ τδ

t

M [ϕ](s,Xs, πs, [1 −
s− t

δ
η]q)ds +

∫ τδ

t

L [ϕ](s,Xs, πs, Q̃
π
s )ds

}

≤ E

{ηq

δ

∫ t+δ

t

M [ϕ](s,Xs, πs, [1−
s− t

δ
η]q)ds

}

+ CP(τ t1 < t+ δ) + Cδ

≤ E

{ηq

δ

∫ t+δ

t

[

sup
0≤θ≤1

M [ϕ](s,Xs, πs, [1 − θη]q)
]

ds
}

+ Cδ,

Here in the last inequality above we used (6.16) again. Now, sending δ → 0 in the above we can

easily deduce that sup0≤θ≤1 M [ϕ](t, x, k, [1 − θη]q) ≥ 0. The arbitrariness of η > 0 then further

leads to the second inequality of (6.14), proving the viscosity subsolution property.

We now turn to the viscosity supersolution property. We first check Definition 6.3 (iii). Let

(t, x, k) ∈ [0, T ) × R+ × [0,K) and ϕ ∈ A(t, x, k, 0). For any π ∈ A c
ad(t, k, 0), since there is no

liquidity (q = 0), there is no possibility of trading, and thus it must hold that: πs ≡ k and

Qπ,0
s = 0, s < τ t1. Then, by (6.10), (6.13) and (6.9) again, we have

0 = I(V, k, τδ) ≥ I(ϕ, k, τδ) = E

{

∫ τδ

t

L [ϕ](s,Xs, k, 0)ds
}

.

Dividing both sides above by δ and then sending δ → 0, similar to the case (6.15) we can prove

Definition 6.3 (iii).

It remains to verify Definition 6.3 (ii). Suppose in the contrary that

c := min
(

L [ϕ],M [ϕ]
)

(t, x, k, q) > 0 (6.17)

for some (t, x, k, q) ∈ [0, T ) ×O and ϕ ∈ A(t, x, k, q). Then, applying Theorem 5.4 on τ t1 we can

find π := πδ ∈ A c
ad(t, k, q) such that

V (t, x, k, q) ≥ E

{

∫ τ t
1

t

U(Xt,x
s , Qπ

s )dπs + V (τ t1,X
t,x

τ t
1

, πτ t
1
, Qπ,q

τ t
1

)
}

− δ2.

Now let π̃ be the Ft-adapted version of π, as was defined in Lemma 6.1, and Q̃π
s = q − π̃s + k,

s ≥ t. For any δ > 0, define the following stopping times:

τXδ := inf
{

s > t : |Xt,x
s − x| ≥ δ

1

4

}

∧ T, τπδ := inf
{

s > t : π̃s − k ≥ δ
}

∧ T,

τ ′δ := (t+ δ) ∧ τXδ ∧ τπδ , τ̂ ′δ := τ ′δ ∧ τ t1. (6.18)
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Then τ ′δ is an F̂t-stopping time. Similar to the first part of Proposition 5.2 we can show that

V (t, x, k, q) ≥ E

{

∫ τ̂ ′
δ

t

U(Xs, Q
π
s )dπs + V (τ̂ ′δ,Xτ̂ ′

δ
, πτ̂ ′

δ
, Qπ

τ̂ ′
δ
)
}

− δ2.

Now following the derivation of (6.15) we obtain

δ2 ≥ E

{

∫ τ̂ ′
δ

t

M [ϕ](s,Xs, πs, Q
π
s )dπs +

∫ τ̂ ′
δ

t

L [ϕ](s,Xs, πs, Q
π
s )ds

}

. (6.19)

Since ϕ is smooth, we deduce from (6.17) that, for δ is small enough,

M [ϕ](s,Xs, πs, Q
π
s ) ≥

c

2
, (L [ϕ] + G [ϕ]

)

(s,Xs, πs, Q
π
s ) ≥

c

2
, t ≤ s < τ̂ ′δ.

Thus it follows from (6.19) that δ2 ≥ c

2
E{πτ̂ ′

δ
−k+ τ̂ ′δ−t}. But note that πτ̂ ′

δ
−k = δ on {τ̂ ′δ = τπδ },

this leads further to

δ2 ≥ c

2
E
{

δ1{τ̂ ′
δ
=τπ

δ
} + ((t+ δ) ∧ τXδ ∧ τ t1 − t)1{τ̂ ′

δ
<τπ

δ
}

}

≥ c

2
δ − CE

{

(t+ δ − τXδ ∧ τ t1)
+
}

≥ c

2
δ − Cδ

[

P(τXδ < t+ δ) + P(τ t1 < t+ δ)
]

. (6.20)

Finally, recalling (6.16) and noting that

P(τXδ < t+ δ) = P

(

sup
t≤s≤t+δ

|Xt,x
s − x| ≥ δ

1

4

)

≤ 1

δ
E

{

sup
t≤s≤t+δ

|Xt,x
s − x|4

}

≤ C(1 + |x|4)δ.

We derive from (6.20) that δ2 ≥ c
2δ −C(1 + |x|4)δ2. But this is obviously impossible when δ > 0

is small enough, a contradiction to the assumption (6.17). This completes the proof.

Remark 6.5 (i) If the value function actually has the regularity V ∈ C1,2
b ([0, T ] × Ō), then

instead of being a viscosity solution, it will be a classical solution to the QVI (6.11). Moreover,

by Theorem 7.4 below, we see that the classical solution is unique.

(ii) We should note that one may try to analyze the uniqueness in the sense of viscosity

solutions by following the standard techniques (see the classical reference [9]). However, since our

main focus is the dynamic equilibrium model of the limit order book, we prefer not to pursue this

in this already lengthy paper and will leave it to interested reader.

7 Description of Optimal Strategy

In this section we give a characterization of the optimal strategy. Our argument will be based on

the assumption that the HJB equation has a “classical solution”, which will not be substantiated

24



in this paper, as it is itself a challenging problem. Our main purpose is to see the possible

structure of the optimal strategy and compare it to the usual optimal singular stochastic control

in the literature.

Our starting point is the following partial Verification Theorem.

Proposition 7.1 Assume (H1) - (H3), and that v ∈ C1,2
b ([0, T ]×Ō) is a classical solution to the

QVI (6.11)-(6.12). Then v ≤ V .

Proof. Without loss of generality, we assume t = 0, k = 0. By (4.13), it suffices to show that

v(0, x, 0, q) ≤ J1(0, x, 0, q;π), for any π ∈ Aad(0, 0, q). (7.1)

We remark that, for this proposition, we can actually utilize J0, namely considering only contin-

uous strategies. However, to analyze the optimal strategy later, we shall use J1 instead.

Recall that 0 < τ1 < τ2, · · · are the jump times of N . Denote τ̂i := τi ∧ T . By the terminal

condition (6.12), we have

eπ := J1(0, x, 0, q;π) − v(0, x, 0, q)

= E

{

∫ T

0
U(Xs, Q

π
s )dπ

c
s +

∑

0≤s<T

D(Xs, Q
π
s ,∆πs) + v(T,XT , πT , Q

π
T )− v(0,X0, π0, Q

π
0 )
}

=

∞
∑

i=0

E

{

∫ τ̂i+1

τ̂i

U(Xs, Q
π
s )dπ

c
s +

∑

τ̂i≤s<τ̂i+1

D(Xs, Q
π
s ,∆πs)

+v(τ̂i+1,Xτ̂i+1
, πτ̂i+1

, Qπ
τ̂i+1

)− v(τ̂i,Xτ̂i , πτ̂i , Q
π
τ̂i
)
}

.

By introducing the filtrations l̂F
i
:= (FW

s ∨ FY
s∧τ̂i

)0≤s≤T and setting τ := T in (6.4), we obtain

eπ =
∞
∑

i=0

E

{

∫ τ̂i+1

τ̂i

L [v](s,Xs, πs, Q
π
s )ds +

∫ τ̂i+1

τ̂i

M [v](s,Xs, πs, Q
π
s )dπ

c
s

+
∑

τ̂i≤s<τ̂i+1

∫ ∆πs

0
M [v](s,Xs, πs + u,Qπ

s − u)du
}

≥ 0, (7.2)

thanks to (6.11). This completes (7.1).

In the rest of the section we shall find an optimal strategy π∗ ∈ Aad(0, 0, q) such that (7.2),

hence (7.1), holds with equality, given the existence of the classical solution v of the QVI (6.11)-

(6.12). We shall remark though, although it is interesting in theory, the π∗ is in general not

implementable since the costD in the expression J1 of (4.13) is not the real jump cost. However, as

was pointed out in Remark 4.3, this π∗ will nevertheless provide us a very good and implementable

approximate optimal strategy.
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To help identifying the optimal strategy π∗, we first provide some sufficient conditions. With-

out loss of generality, we shall only focus on the interval [0, τ1], corresponding to the term in (7.2)

with i = 0. To be more precise, we want to find π ∈ Aad(0, 0, q) such that

eπ,0 := E

{

∫ τ̂1

0
L [v](s,Xs, πs, Q

π
s )ds+

∫ τ̂1

0
M [v](s,Xs, πs, Q

π
s )dπ

c
s

+
∑

0≤s<τ̂1

∫ ∆πs

0
M [v](s,Xs, πs + u,Qπ

s − u)du
}

= 0. (7.3)

To this end, for any (t, x, k, q) ∈ [0, T ]× R+ × [0,K]× R̄+, denote

O(t, x, q) :=
{

y ∈ [0,K ∧ q] : M [v](t, x, y, q − y) > 0
}

;

φ(t, k, q) := inf
{

y > k : y ∈ O(t,Xt, q)
}

∧K ∧ q.
(7.4)

It is clear that O(t, x, q) is an open set in [0,K ∧ q], and φ is FW - progressively measurable,

non-decreasing in k, such that φ(t, k, q) ≥ k, and φ(t, k, q) = k for k ∈ O(t,Xt, q). We have the

following result.

Proposition 7.2 Assume all the conditions of Proposition 7.1 hold. If π ∈ Aad(0, 0, q) satisfies:

∫ τ̂1

0
1O(t,Xt,q)(πt)dπ

c
t = 0 and πt+ = φ(t, πt, q), t ∈ [0, τ̂1), P-a.s. (7.5)

then (7.3) holds.

Proof. First, denote Oc(t, x, q) := [0,K∧q]−O(t, x, q). Then the first equality in (7.5) implies:

dπc
t =

[

1O(t,Xt,q)(πt) + 1Oc(t,Xt,q)(πt)
]

dπc
t = 1Oc(t,Xt,q)(πt)dπ

c
t , 0 ≤ t ≤ τ̂1.

Note that Qπ
t = q − πt, 0 ≤ t < τ̂1, then by the definition of O in (7.4) we have

∫ τ̂1

0
M [v](s,Xs, πs, Q

π
s )dπ

c
s =

∫ τ̂1

0
M [v](s,Xs, πs, Q

π
s )1Oc(t,Xs,q)(πs)dπ

c
s = 0. (7.6)

Next, when ∆πt > 0, by the second condition of (7.5) we have

πt+ = φ(t, πt, q) = inf
{

y > πt : M [v](t,Xt, y, q − y) > 0
}

∧K ∧ q.

This implies that M [v](t,Xt, y, q − y) = 0 for all πt ≤ y < πt+. Thus, by denoting y = πt + u,

∫ ∆πs

0
M [v](s,Xs, πs + u,Qπ

s − u)du =

∫ ∆πs

0
M [v](s,Xs, πs + u, q − πs − u)du = 0. (7.7)

Finally, we claim that

L [v](t,Xt, πt, q − πt) = 0 for t ∈ [0, τ̂1] such that ∆πt = 0. (7.8)

26



We note that if (7.8) is substantiated, then since π has at most countably many jumps, we have

E

{

∫ τ̂1

0
L [v](t,Xt, πt, Q

π
t )dt

}

= 0. (7.9)

Combining (7.6), (7.7), and (7.9), we prove (7.2).

It remains to prove (7.8). Fix t ∈ [0, τ̂1] such that ∆πt = 0. If πt = q, then (7.8) is the third

condition of (6.12). If πt = K, then πs = K for all s ∈ [t, T ], and thus v(s,Xs, π̃s, Q̃
π
s ) = 0,

thanks to the second condition of (6.12). Compare (6.8) and (6.9), one can easily check (7.8).

Now assume πt < K ∧ q, then

πt = πt+ = φ(t, πt, q) = inf
{

y > πt : y ∈ O(t,Xt, q)
}

.

That is, πt ∈ Ō(t,Xt, q). But note that as the solution to the variational inequality (6.11), it is

easy to see that L [v](t,Xt, y, q − y) = 0 holds whenever M [v](t,Xt, y, q − y) > 0, namely, for

any y ∈ O(t,Xt, q). The continuity of v then renders that L[v](t,Xt, y, q − y) = 0 on Ō(t,Xt, q).

Consequently, (7.8) holds. This proves (7.9), whence the theorem.

We next show that such π indeed exists. Fix (x, q). In light of Proposition 7.2 we introduce:

A0 =
{

π ∈ Aad(0, 0, q) :

∫ τ̂1

0
1O(t,Xt,q)(πt)dπ

c
t = 0, πt+ ≤ φ(t, πt, q), t ∈ [0, τ̂1), P-a.s.

}

. (7.10)

Clearly, πt ≡ 0 ∈ A0, thus A0 6= ∅. We shall construct the optimal strategy from this set.

Proposition 7.3 Assume all the conditions of Proposition 7.1 hold. Then there exists π ∈ A0 ⊂
Aad(0, 0, q) satisfying (7.5), and consequently (7.3) holds.

Proof. We shall prove the existence by using Zorn’s lemma. To this end, we introduce a partial

order in A0:

π1 ≺ π2 if and only if π1
t ≤ π2

t for all t ∈ [0, T ], P-a.s. (7.11)

We claim that every totally ordered subset in A0 has an upper bound in A0. Indeed, let {πi}i∈I ⊆
A0 be a totally ordered subset, where the index set I could be uncountable. Denoting QT to be

the set of all rationals in [0, T ], we define

πr := esssup
i∈I

πi
r, ∀r ∈ QT . (7.12)

Since {πi} is totally ordered, by a standard argument we can find a sequence πn = πin , in ∈ I,

n = 1, 2, · · · , such that πn’s are non-decreasing in n; and

lim
n

πn
r = esssup

i∈I
πi
r = πr, ∀r ∈ QT . (7.13)
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We then define πt := limrրt,r∈QT
πr, for all t ∈ (0, T ]. We shall prove that π ∈ A0, and therefore

an upper bound of {πi}. Clearly π is F-adapted, non-decreasing, left continuous, and π0 = 0,

πT ≤ K. Moreover, since Qπn ≥ 0, clearly Qπ
r ≥ 0 for all r ∈ QT , which implies Qπ

t ≥ 0 for all

t ∈ [0, T ] and thus π ∈ Aad(0, 0, q).

We now check that π satisfies the two requirements of A0. Since there is no stochastic integral

involved, in what follows we shall fix ω ∈ Ω, modulo a P-null set, if necessary.

(i) We first show that
∫ τ̂1
0 1O(t,Xt,q)(πt)dπ

c
t = 0. Indeed, since π has at most countably many

jumps, it suffices to show that

∫ τ̂1

0
1O(t,Xt,q)(πt)1{∆πt=0}dπ

c
t = 0.

Now for any t ∈ [0, τ̂1) such that ∆πt = 0 and πt ∈ O(t,Xt, q), by (7.4) we have M [v](t,Xt, πt, q−
πt) > 0. By the continuity of M [v], there exists ε > 0 such that

(a) M [v](s,Xs, y, q − y) > 0, for all s ∈ [(t− ε) ∨ 0, (t+ ε) ∧ τ̂1]; and

(b) y ∈ [(πt − ε) ∨ 0, (πt + ε) ∧K ∧ q].

Since π is continuous at t, there exists rationals r1, r2 such that (t − ε) ∨ 0 ≤ r1 < t < r2 ≤
(t + ε) ∧ τ̂1 and πt − ε

3 ≤ πr1 ≤ πt ≤ πr2 ≤ πt +
ε
3 . Now by the monotone convergence of πn

r , in

the spirit of Dini’s lemma, there exists n0 such that, for all n ≥ n0, |πn
s − πs| ≤ ε for s ∈ [r1, r2].

This implies M [v](s,Xs, π
n
s , q−πn

s ) > 0, and thus πn
s ∈ O(s,Xs, q), for all s ∈ [r1, r2] and n ≥ n0.

Since πn ∈ A0, then
∫ r2
r1

d(πn)ct = 0 and πn
s+ ≤ φ(s,Xs, π

n
s ) = πn

s . That is, πn is a constant on

[r1, r2] for all n ≥ n0. Then π is also a constant on [r1, r2], and therefore,
∫ r2
r1

1O(t,Xt,q)(πt)dπ
c
t = 0.

Since t is arbitrary, we prove the desired property.

(ii) We next show that πt+ ≤ φ(t, πt, q) for t ∈ [0, τ̂1). For any y ∈ (πt,K ∧ q) such that

M [v](t,Xt, y, q − y) > 0. By the continuity of M [v], there exists 0 < ε < τ̂1 − t such that

M [v](s,Xs, y, q − y) > 0 for all s ∈ [t, t+ ε]. We claim that

πn
s ≤ y, s ∈ [t, t+ ε], for all n. (7.14)

Note that if (7.14) is true, then clearly πs ≤ y for s ∈ [t, t + ε], which implies that πt+ ≤ y. By

the arbitrariness of y, we obtain πt+ ≤ φ(t, πt, q).

To see (7.14), suppose in the contrary that t̃n := inf{s ≥ t : πn
s > y} < t + ε. Then

πn
t̃n

≤ y ≤ πn
t̃n+

. Since πn ∈ A0, we have πn
t̃n+

≤ φ(t̃n, π
n
t̃n
, q) ≤ y, and thus πn

t̃n+
= y. Note that

M [v](t̃n,Xt̃n
, y, q − y) > 0, then there exists εn > 0 such that M [v](s,Xs, π

n
s , q − πn

s ) > 0 for all

s ∈ (t̃n, t̃n + εn). This implies that πn
s ∈ O(s,Xs, q) and φ(s, πn

s , q) = πn
s . Now recall again that

πn ∈ A0, then we have d(πn)cs = 0 and ∆πn
s = 0 for all s ∈ (t̃n, t̃n + εn). Therefore, π

n
s = y for all

s ∈ (t̃n, t̃n + εn), contradicting with the definition of t̃n.
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Summarizing, we have shown that every totally ordered subset of A0 has an upper bound.

Therefore, applying Zorn’s Lemma, we conclude that A0 has a maximal element in A0, denoted

by π∗. We claim that π∗ does satisfy (7.5). Indeed, by its construction it suffices to prove

π∗
t+ = φ(t, π∗

t , q), ∀t ∈ [0, τ̂1), P-a.s. (7.15)

Suppose not, then c := φ(t, π∗
t , q)− π∗

t+ > 0. Define

τ := inf{s > t : π∗
s ≥ π∗

t+ + c} ∧ τ̂1,

π̂∗
s := π∗

s1[0,t](s) + [π∗
t+ + c]1(t,τ ](s) + [π∗

s ∨ (π∗
t+ + c)]1(τ,T ](s), s ∈ [0, T ].

It is straightforward to check that π̂∗ ∈ A0, π
∗ ≺ π̂∗, and π∗

s < π̂∗
s for s ∈ (t, τ ]. This contradicts

the fact that π∗ is a maximum element of A0. This proves (7.15), whence the proposition.

We are now ready to state the man result of this section.

Theorem 7.4 Assume all the conditions of Proposition 7.1 hold. Then v = V and there exists

an optimal strategy π∗ ∈ A (0, 0, q) such that v(0, x, 0, q) = J1(0, x, 0, q;π∗).

Proof. Combining Propositions 7.2 and 7.3, there exists π∗ ∈ A (0, 0, q) such that (7.3) holds.

Repeating the same arguments for each n, we may extend π∗ appropriately on [0, τ̂n] such that

n−1
∑

i=0

E

{

∫ τ̂i+1

τ̂i

L [v](s,Xs, π
i
s, Q

π,i
s )ds+

∫ τ̂i+1

τ̂i

M [v](s,Xs, πs, Q
π
s )dπ

c
s

+
∑

τ̂i≤s<τ̂i+1

∫ ∆πs

0
M [v](s,Xs, πs + u,Qπ

s − u)du
}

= 0,

which, following the proof of Proposition 7.1, implies that

E

{

∫ τ̂n

0
U(Xs, Q

π∗

s )d(π∗)cs +
∑

0≤s<τ̂n

D(Xs, Q
π∗

s ,∆π∗
s) + v(τ̂n,Xτ̂n , π

∗
τ̂n
, Qπ∗

τ̂n)
}

= v(0,X0, 0, q).

Sending n → ∞, and recalling the terminal condition in (6.12), we see that

v(0,X0, 0, q) = J1(0, x, 0, q;π∗) ≥ V (0, x, 0, q).

This, together with Proposition 7.1, completes the proof.

Remark 7.5 Based on Proposition 7.2 we can roughly describe the optimal strategy π∗ as follows.

At each time t ∈ [τ̂i, τ̂i+1] between the two jump times of N , there is an “inaction region”

O(t,Xt, Q
π∗

τ̂i
), which is an open set, and therefore can be decomposed into open intervals. If
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π∗
t − π∗

τ̂i
∈ O(t,Xt, Q

π∗

τ̂i
), then it stays “flat.” If it is at the boundary of O(t,Xt, Q

π∗

τ̂i
), hence the

boundary of one of the open intervals, then it either jumps to φ(t,Xt, Q
π∗

τ̂i
), i.e, the boundary of

nearest neighboring interval above it, if φ(t,Xt, Q
π∗

τ̂i
) > π∗

t , or move along with the boundary of

O(t,Xt, Q
π∗

τ̂i
), when φ(t,Xt, Q

π∗

τ̂i
) = π∗

t . In particular, when O(t,Xt, Q
π∗

τ̂i
) is simply connected,

then π∗ essentially behaves like an optimal singular stochastic control. However, it is not clear to

us that O(t,Xt, Q
π∗

τ̂i
) will be simply connected, and consequently the optimal strategy may jump

multiple (even infinitely many) times between [τ̂i, τ̂i+1].
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