
The Annals of Applied Probability
2015, Vol. 25, No. 5, 2503–2534
DOI: 10.1214/14-AAP1054
© Institute of Mathematical Statistics, 2015

OPTIMAL STOPPING UNDER ADVERSE NONLINEAR
EXPECTATION AND RELATED GAMES

BY MARCEL NUTZ1 AND JIANFENG ZHANG2

Columbia University and University of Southern California

We study the existence of optimal actions in a zero-sum game
infτ supP EP [Xτ ] between a stopper and a controller choosing a probability
measure. This includes the optimal stopping problem infτ E(Xτ ) for a class
of sublinear expectations E(·) such as the G-expectation. We show that the
game has a value. Moreover, exploiting the theory of sublinear expectations,
we define a nonlinear Snell envelope Y and prove that the first hitting time
inf{t :Yt = Xt } is an optimal stopping time. The existence of a saddle point is
shown under a compactness condition. Finally, the results are applied to the
subhedging of American options under volatility uncertainty.

1. Introduction. On the space of continuous paths, we study a zero-sum
stochastic game

inf
τ∈T sup

P∈P
EP [Xτ ](1.1)

between a stopper and a controller; here, X = (Xt) is the process to be stopped,
T is the set of stopping times with values in a given interval [0, T ], and P is a given
set of probability measures. Specifically, we are interested in the situation where
P may be nondominated, that is, there is no reference measure with respect to
which all P ∈ P are absolutely continuous. This is the case, for instance, when P
is the set of laws resulting from a controlled stochastic differential equation whose
diffusion coefficient is affected by the control (cf. Example 3.9), whereas the dom-
inated case would correspond to the case where only the drift is controlled. Or, in
the language of partial differential equations, we are interested in the fully nonlin-
ear case rather than the semilinear case. Technically, the nondominated situation
entails that general minimax results cannot be applied to (1.1), that the cost func-
tional supP∈P EP [·] does not satisfy the dominated convergence theorem, and of
course the absence of various tools from stochastic analysis. Our main results for
the controller-and-stopper game include the existence of an optimal action τ ∗ for
the stopper under general conditions and the existence of a saddle point (τ ∗,P ∗)
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under a compactness condition. Both of these results were previously known only
in the case of drift control; cf. the review of literature at the end of this section.

If we introduce the sublinear expectation E(·) = supP∈P EP [·], the stopper’s
part of the game can also be interpreted as the nonlinear optimal stopping problem

inf
τ∈T E(Xτ ).(1.2)

This alternate point of view is of independent interest, but it will also prove to be
useful in establishing the existence of optimal actions for the game. Indeed, we
shall start our analysis with (1.2) and exploit the theory of nonlinear expectations,
which suggests to mimic the classical theory of optimal stopping under linear ex-
pectation (e.g., [10]). Namely, we define the Snell envelope

Yt = inf
τ∈Tt

Et (Xτ ),

where Tt is the set of stopping times with values in [t, T ] and Et (·) is the con-
ditional sublinear expectation as obtained by following the construction of [26].
Under suitable assumptions, we show that the first hitting time

τ ∗ = inf{t :Yt = Xt }
is a stopping time which is optimal; that is, E(Xτ∗) = infτ∈T E(Xτ ). Armed with
this result, we return to the game-theoretic point of view and prove the existence
of the value,

inf
τ∈T sup

P∈P
EP [Xτ ] = sup

P∈P
inf
τ∈T EP [Xτ ].

Moreover, under a weak compactness assumption on P , we construct P ∗ ∈ P such
that (τ ∗,P ∗) is a saddle point for (1.1). These three main results are summarized
in Theorem 3.4. Finally, we give an application to the financial problem of pricing
a path-dependent American option under volatility uncertainty and show in Theo-
rem 5.1 that (1.2) yields the buyer’s price (or subhedging price) in an appropriate
financial market model.

It is worth remarking that our results are obtained by working “globally” and
not, as is often the case in the study of continuous-time games, by a local-to-global
passage based on a Bellman–Isaacs operator; in fact, all ingredients of our setup
can be non-Markovian (i.e., path-dependent). The “weak” formulation of the game,
where the canonical process plays the role of the state process, is important in this
respect.

Like in the classical stopping theory, a dynamic programming principle plays a
key role in our analysis. We first prove this principle for the upper value function
Y rather than the lower one (sup–inf), which would be the standard choice in the
literature on robust optimal stopping (but of course the result for the lower value
follows once the existence of the value is established). The reason is that, due to
the absence of a reference measure, the structure of the set T of stopping times is
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inconvenient for measurable selections, whereas on the set P we can exploit the
natural Polish structure. Once again due to the absence of a reference measure, we
are unable to infer the optimality of τ ∗ directly from the dynamic programming
principle. However, we observe that in the discrete-time case, the classical recur-
sive analysis can be carried over rather easily by exploiting the tower property of
the nonlinear expectation. This recursive structure extends to the case where the
processes are running in continuous time but the stopping times are restricted to
take values in a given discrete set, like for a Bermudan option. To obtain the opti-
mality of τ ∗, we then approximate the continuous-time problem with such discrete
ones; the key idea is to compare the first hitting times for the discrete problems
with the times τ ε = inf{t :Xt − Yt ≤ ε} and exploit the E-martingale property of
the discrete-time Snell envelope. A similar approximation is also used to prove
the existence of the value, as it allows to circumvent the mentioned difficulty in
working with the lower value function: we first identify the upper and lower value
functions in the discrete problems and then pass to the limit. Finally, for the ex-
istence of P ∗, an important difficulty is that we have little information about the
regularity of Xτ∗ . Our construction uses a compactness argument and a result of [9]
on the approximation of hitting times by random times that are continuous in ω to
find a measure P � which is optimal up to the time τ ∗. In a second step, we manip-
ulate P � in such a way that for the stopper, immediate stopping after τ ∗ is optimal,
which yields the optimal measure P ∗ for the full time interval. All this is quite
different from the existing arguments for the dominated case.

While the remainder of this Introduction concerns the related literature, the rest
of the paper is organized as follows: Section 2 details the setup and the construc-
tion of the sublinear expectation. In Section 3, we state our main result, discuss
its assumptions and give a concrete example related to controlled stochastic func-
tional/differential equations. Section 4 contains the proof of the main result, while
the application to option pricing is studied in Section 5.

Literature. In terms of the mathematics involved, the study of the problem
supτ∈T supP∈P EP [Xτ ] in [9] is the closest to the present one. Although this is
a control problem with discretionary stopping rather than a game, their regularity
results are similar to ours. On the other hand, the proofs of the optimality of τ ∗
are completely different: in [9], it was relatively simple to obtain the martingale
property up to τ ε , directly in continuous time, and the main difficulty was the
passage from τ ε to τ ∗, which is trivial in our case. (The existence of an optimal
P ∗ ∈ P was not studied in [9].) Somewhat surprisingly, the conditions obtained in
the present paper are weaker than the ones in [9]; in particular, for the optimality
of τ ∗, we do not assume that P is compact.

After the publication of the preprint of the present work, [4] showed the exis-
tence of the optimal stopping time and value in a case where X is not bounded
(under various other assumptions). The authors go through the dynamic program-
ming for the lower value rather than the upper one, by using approximations based
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on the regularity of X. The existence of a saddle point is not addressed directly
and we mention that our result does not apply, because the technical assumptions
of [4] preclude closedness of P in most cases of interest.

For the case where P is dominated, the problem of optimal stopping under
nonlinear expectation (and related risk measures) is fairly well studied; see, in par-
ticular, [3, 5, 6, 11, 13, 17, 18, 30]. The mathematical analysis for that case is
quite different. On the other hand, there is a literature on controller-and-stopper
games. In the discrete-time case, [20] obtained a general result on the existence of
the value. For the continuous-time problem, the literature is divided into two parts:
in the non-Markovian case, only the pure drift control has been studied, cf. [18]
and the references therein; this again corresponds to the dominated situation. For
the nondominated situation, results exist only in the Markovian case, where the
presence of singular measures plays a lesser role; cf. [2, 15, 16, 18]. In particular,
[2] obtained the existence of the value for a diffusion setting via the comparison
principle for the associated partial differential equation. On the other hand, [16]
studied a linear diffusion valued in the unit interval with absorbing boundaries and
found, based on scale-function arguments, rather explicit formulas for the value
and a saddle point. Apart from such rather specific models, our results on the exis-
tence of optimal actions are new even in the Markovian case.

Regarding the literature on nonlinear expectations, we refer to [27, 29] and the
references therein; for the related second-order backward stochastic differential
equations (2BSDE) to [8, 32, 33], and in particular to [21, 22] for the reflected
2BSDE related to our problem; whereas for the uncertain volatility model in fi-
nance, we refer to [1, 19, 31].

2. Preliminaries. In this section, we introduce the setup and in particular the
sublinear expectation. We follow [26] as we need the conditional expectation to be
defined at every path and for all Borel functions.

2.1. Notation. We fix d ∈ N and let � = {ω ∈ C(R+;Rd) :ω0 = 0} be the
space of continuous paths equipped with the topology of locally uniform conver-
gence and the Borel σ -field F = B(�). We denote by B = (Bt )t≥0 the canonical
process Bt(ω) = ωt and by F = (Ft )t≥0 the (raw) filtration generated by B . Fi-
nally, P(�) denotes the space of probability measures on � with the topology of
weak convergence. Throughout this paper, “stopping time” will refer to a finite
F-stopping time. Given a stopping time τ and ω,ω′ ∈ �, we set

(
ω ⊗τ ω′)

u := ωu1[0,τ (ω))(u) + (
ωτ(ω) + ω′

u−τ(ω)

)
1[τ(ω),∞)(u), u ≥ 0.

For any probability measure P ∈ P(�), there is a regular conditional probability
distribution {P ω

τ }ω∈� given Fτ satisfying

P ω
τ

{
ω′ ∈ � :ω′ = ω on

[
0, τ (ω)

]} = 1 for all ω ∈ �;
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cf. [34], page 34. We then define P τ,ω ∈ P(�) by

P τ,ω(A) := P ω
τ (ω ⊗τ A), A ∈ F where ω ⊗τ A := {

ω ⊗τ ω′ :ω′ ∈ A
}
.

Given a function f on � and ω ∈ �, we also define the function f τ,ω by

f τ,ω(
ω′) := f

(
ω ⊗τ ω′), ω′ ∈ �.

We then have EP τ,ω [f τ,ω] = EP [f |Fτ ](ω) for P -a.e. ω ∈ �.

2.2. Sublinear expectation. Let {P(s,ω)}(s,ω)∈R+×� be a family of subsets of
P(�), adapted in the sense that

P(s,ω) =P
(
s,ω′) if ω|[0,s] = ω′|[0,s],

and define P(τ,ω) := P(τ (ω),ω) for any stopping time τ . Note that the set
P(0,ω) is independent of ω as all paths start at the origin. Thus, we can define
P := P(0,ω). We assume throughout that P(s,ω) 	= ∅ for all (s,ω) ∈ R+ × �.

The following assumption, which is in force throughout the paper, will enable
us to construct the conditional sublinear expectation related to {P(s,ω)}; it essen-
tially states that our problem admits dynamic programming. We recall that a subset
of a Polish space is called analytic if it is the image of a Borel subset of another
Polish space under a Borel mapping (we refer to [7], Chapter 7, for background).

ASSUMPTION 2.1. Let s ∈ R+, let τ be a stopping time such that τ ≥ s, let
ω̄ ∈ � and P ∈ P(s, ω̄). Set θ := τ s,ω̄ − s.

(i) The graph {(P ′,ω) :ω ∈ �,P ′ ∈ P(τ,ω)} ⊆ P(�) × � is analytic.
(ii) We have P θ,ω ∈P(τ, ω̄ ⊗s ω) for P -a.e. ω ∈ �.

(iii) If ν :� →P(�) is an Fθ -measurable kernel and ν(ω) ∈P(τ, ω̄ ⊗s ω) for
P -a.e. ω ∈ �, then the measure defined by

P̄ (A) =
∫ ∫

(1A)θ,ω(
ω′)ν(

dω′;ω)
P(dω), A ∈ F

is an element of P(s, ω̄).

Let us recall that a function f :� → R is called upper semianalytic if {f > c}
is analytic for each c ∈R; in particular, every Borel function is upper semianalytic
(cf. [7], Chapter 7). Moreover, we recall that the universal completion of a σ -field
A is given by A∗ := ⋂

P AP , where AP denotes the completion with respect to P

and the intersection is taken over all probability measures on A. Let us agree that
EP [f ] := −∞ if EP [f +] = EP [f −] = +∞, then we can introduce the sublinear
expectation corresponding to {P(s,ω)} as follows (cf. [26], Theorem 2.3).
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PROPOSITION 2.2. Let σ ≤ τ be stopping times and let f :� → R be an
upper semianalytic function. Then the function

Eτ (f )(ω) := sup
P∈P(τ,ω)

EP [
f τ,ω]

, ω ∈ �(2.1)

is F∗
τ -measurable and upper semianalytic. Moreover,

Eσ (f )(ω) = Eσ

(
Eτ (f )

)
(ω) for all ω ∈ �.(2.2)

We write E(·) for E0(·). We shall use very frequently (and often implicitly) the
following extension of Galmarino’s test (cf. [26], Lemma 2.5).

LEMMA 2.3. Let f :� → R be F∗-measurable and let τ be a stopping time.
Then f is F∗

τ -measurable if and only if f (ω) = f (ω·∧τ(ω)) for all ω ∈ �.

The following is an example for the use of Lemma 2.3: if f and g are bounded
and upper semianalytic, and g is F∗

t measurable, then

Et (f + g) = Et (f ) + g

by (2.1), since the test shows that gt,ω = g. Similarly, if we also have that g ≥ 0,
then Et (fg) = Et (f )g. We emphasize that all these identities hold at every single
ω ∈ �, without an exceptional set.

The most basic example we have in mind for E(·) is the G-expectation of
[27, 28]; or more precisely, its extension to the upper semianalytic functions. In
this case, P(s,ω) is actually independent of (s,ω); more general cases are dis-
cussed in Section 3.1.

EXAMPLE 2.4 (G-expectation). Let U 	= ∅ be a convex, compact set of non-
negative definite symmetric d × d matrices and define PG to be the set of all
probabilities on � under which the canonical process B is a martingale whose
quadratic variation 〈B〉 is absolutely continuous dt × P -a.e. and

d〈B〉t
dt

∈ U dt × P -a.e.

Moreover, set P(s,ω) := PG for all (s,ω) ∈ R+ × �. Then Assumption 2.1 is
satisfied (cf. [26], Theorem 4.3) and E(·) is called the G-expectation associated
with U (where 2G is the support function of U ). We remark that P(s,ω) is weakly
compact in this setup.

More generally, Assumption 2.1 is established in [26] when U is a set-valued
process (i.e., a Borel set depending on t and ω). In this case, P(s,ω) need not be
compact and depends on (s,ω).
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3. Main results. Let T ∈ (0,∞) be the time horizon. For any t ∈ [0, T ], we
denote by Tt the set of all [t, T ]-valued stopping times. For technical reasons, we
shall also consider the smaller set T t ⊆ Tt of stopping times which do not depend
on the path up to time t ; that is,

T t = {
τ ∈ Tt : τ t,ω = τ t,ω′

for all ω,ω′ ∈ �
}
.(3.1)

In particular, T := T0 = T 0 is the set of all [0, T ]-valued stopping times. We define
the pseudometric d on [0, T ] × � by

d
[
(t,ω),

(
s,ω′)] := |t − s| + ∥∥ω·∧t − ω′·∧s

∥∥
T

for (t,ω), (s,ω′) ∈ [0, T ] × �, where ‖ω‖u := supr≤u |ωr | for u ≥ 0 and | · | is the
Euclidean norm.

Let us now introduce the process X to be stopped. Of course, the most classi-
cal example is Xt = f (Bt) for some function f :Rd → R. We consider a fairly
general, possibly path-dependent functional X = X(B); note that the canonical
process B plays the role of the state process. We shall work under the following
regularity assumption.

ASSUMPTION 3.1. The process X = (Xt)0≤t≤T is progressively measurable,
uniformly bounded, has càdlàg trajectories with nonpositive jumps, and there ex-
ists a modulus of continuity ρX such that

Xt(ω) − Xs

(
ω′) ≤ ρX

(
d
[
(t,ω),

(
s,ω′)]) for all s ≤ t(3.2)

and ω,ω′ ∈ �.

The subsequent assumptions are stated in a form that is convenient for the
proofs; in that sense, they are in the most general form. Sufficient conditions and
examples will be discussed in Section 3.1.

ASSUMPTION 3.2. There is a modulus of continuity ρE with the following
property. Let t ∈ [0, T ], τ ∈ T t and ω̄ ∈ �, then for all ω ∈ � there exists τω ∈ T t

such that ∣∣Et (Xτ )(ω̄) − Et (Xτω)(ω)
∣∣ ≤ ρE

(‖ω̄ − ω‖t

)
and such that (ω,ω′) �→ τω(ω′) is Ft ⊗F -measurable.

We note that as X is bounded, the moduli ρX and ρE can also be taken to be
bounded. In the subsequent assumption, we use the notation Bθ for the process
B·+θ − Bθ , where θ is a stopping time.

ASSUMPTION 3.3. Let ρ′ be a bounded modulus of continuity. Then there
exists a modulus of continuity ρ such that

EP [
ρ′(δ + ∥∥Bθ

∥∥
δ

)] ≤ ρ(δ), δ ∈ [0, T ]
for all θ ∈ T , P ∈ P(t,ω) and (t,ω) ∈ [0, T ] × �.
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Let us now introduce the main object under consideration, the value function
(“nonlinear Snell envelope”) given by

Yt (ω) := inf
τ∈Tt

Et (Xτ )(ω), (t,ω) ∈ [0, T ] × �.(3.3)

We shall see that Y is Borel-measurable under the above assumptions, and that Tt

can be replaced by T t without changing the value of Yt . The following is our main
result.

THEOREM 3.4. Let Assumptions 3.1, 3.2 and 3.3 hold.

(i) There exists an optimal stopping time; namely,

τ ∗ := inf
{
t ∈ [0, T ] :Yt = Xt

}
satisfies τ ∗ ∈ T and E(Xτ∗) = infτ∈T E(Xτ ).

(ii) The game has a value; that is,

inf
τ∈T sup

P∈P
EP [Xτ ] = sup

P∈P
inf
τ∈T EP [Xτ ].

(iii) Suppose that P(t,ω) is weakly compact for all (t,ω) ∈ [0, T ] × �. Then
the game has a saddle point: there exists P ∗ ∈P such that

inf
τ∈T EP∗[Xτ ] = EP ∗[Xτ∗] = sup

P∈P
EP [Xτ∗].

Of course, weak compactness in (iii) refers to the topology induced by the con-
tinuous bounded functions, and a similar identity as in (ii) holds for the value
functions at positive times (cf. Lemma 4.12). The proof of the theorem is stated in
Section 4. We mention the following variant of Theorem 3.4(i) where the stopping
times are restricted to take values in a discrete set T; in this case, Assumption 3.3
is unnecessary. The proof is again deferred to the subsequent section.

REMARK 3.5. Let Assumptions 3.1 and 3.2 hold. Let T = {t0, t1, . . . , tn},
where n ∈ N and t0 < t1 < · · · < tn = T , and consider the obvious correspond-
ing notions like Tt (T) = {τ ∈ Tt : τ(·) ∈ T} and Yt = infτ∈Tt (T) Et (Xτ ). Then Y

satisfies the backward recursion

Ytn = Xtn and Yti = Xti ∧ Eti (Yti+1), i = 0, . . . , n − 1

and τ ∗ := inf{t ∈ T :Yt = Xt } satisfies E(Xτ∗) = infτ∈T (T) E(Xτ ).

3.1. Sufficient conditions for the main assumptions. In the remainder of this
section, we discuss the conditions of the theorem. Assumption 3.1 is clearly sat-
isfied when Xt = f (Bt) for a bounded, uniformly continuous function f . The
following shows that Assumption 3.2 is trivially satisfied, for example, for the
G-expectation of Example 2.4 (a nontrivial situation is discussed in Example 3.9).
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REMARK 3.6. Assume that P(t,ω) does not depend on ω, for all t ∈ [0, T ].
Then Assumption 3.1 implies Assumption 3.2.

PROOF. Let τ ∈ T t , then τ t,ω = τ t,ω′ =: θ for all ω,ω′ ∈ �. Moreover, taking
s = t in (3.2) shows that

∣∣Xs(ω) − Xs

(
ω′)∣∣ ≤ ρX

(∥∥ω − ω′∥∥
s

)
.

We deduce that for all ω̃ ∈ �,
∣∣(Xτ )

t,ω(ω̃) − (Xτ )
t,ω′

(ω̃)
∣∣ = ∣∣Xθ(ω̃)(ω ⊗t ω̃) − Xθ(ω̃)

(
ω′ ⊗t ω̃

)∣∣
≤ ρX

(∥∥ω ⊗t ω̃ − ω′ ⊗t ω̃
∥∥
θ(ω̃)

)
(3.4)

= ρX

(∥∥ω − ω′∥∥
t

)
.

If P(t, ·) = P(t), it follows that
∣∣Et (Xτ )(ω) − Et (Xτ )

(
ω′)∣∣ ≤ sup

P∈P(t)

EP [∣∣(Xτ )
t,ω − (Xτ )

t,ω′ ∣∣]

≤ ρX

(∥∥ω − ω′∥∥
t

);
that is, Assumption 3.2 holds with ρE = ρX and τω = τ . �

The following is a fairly general sufficient condition for Assumption 3.3; it cov-
ers most cases of interest.

REMARK 3.7. Suppose that for some α, c > 0, the moment condition

EP [∥∥Bθ
∥∥
δ

] ≤ cδα, δ ∈ [0, T ]
is satisfied for all θ ∈ T , P ∈ P(t,ω) and (t,ω) ∈ [0, T ]×�. Then Assumption 3.3
holds. In particular, this is the case if every P ∈ P(t,ω) is the law of an Itô process

s =
∫ s

0
μr dr +

∫ s

0
σr dWr

(where W is a Brownian motion) and |μ| + |σ | ≤ C for a universal constant C.

PROOF. Let r ∈ R be such that ρ′ ≤ r . For any a > 0, we have

EP [
ρ′(δ + ∥∥Bθ

∥∥
δ

)] ≤ ρ ′(δ + a) + rP
{∥∥Bθ

∥∥
δ ≥ a

}
.

Using that P {‖Bθ‖δ ≥ a} ≤ a−1EP [‖Bθ‖δ] ≤ a−1cδα and choosing a = δα/2, we
obtain that

EP [
ρ′(δ + ∥∥Bθ

∥∥
δ

)] ≤ ρ ′(δ + δα/2) + crδα/2 =: ρ(δ),

which was the first claim.
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Suppose that B = A + M under P , where |dA| + d|〈M〉| ≤ C dt ; we focus on
the scalar case for simplicity. Using the Burkholder–Davis–Gundy inequalities for
Mθ = M·+θ − Mθ , we have

EP [∥∥Bθ
∥∥
δ

] ≤ EP [∥∥Aθ
∥∥
δ

] + EP [∥∥Mθ
∥∥
δ

]

≤ Cδ + c1E
P [∥∥〈

Mθ 〉1/2∥∥
δ

]
≤ (

CT 1/2 + c1C
1/2)

δ1/2, δ ∈ [0, T ],
where c1 > 0 is a universal constant. �

Let us now discuss two classes of models. The first one is the main example for
control in the “weak formulation,” that is, the set of controls is stated directly in
terms of laws.

EXAMPLE 3.8. Let U be a nonempty, bounded Borel set of Rd × S+,
where S+ is the set of d × d nonnegative definite symmetric matrices. More-
over, let P be the set of all laws of continuous semimartingales whose characteris-
tics are absolutely continuous (with respect to the Lebesgue measure) and whose
differential characteristics take values in U . That is, P consists of laws of Itô pro-
cesses

∫
bt dt + ∫

σt dWt , each situated on its own probability space with a Brow-
nian motion W , where the pair (b, σσ�) almost surely takes values in the set U .
For instance, if d = 1 and U = I1 × I2 is a product of intervals, this models the
case where the controller can choose the drift from I1 and the (squared) diffusion
from I2.

The above setup (and its extension to jump processes) is studied in [24], where
it is shown in particular that Assumption 2.1 holds. Moreover, we see from Re-
mark 3.6 that Assumption 3.2 is satisfied, while Remark 3.7 shows that Assump-
tion 3.3 holds as well. Finally, if U is compact and convex, standard results
(see [35]) imply that the set P is weakly compact.

In the second class of models, whose formulation is borrowed from [25], the el-
ements of P correspond to the possible laws of the solution to a controlled stochas-
tic functional/differential equation (SDE). This is the main case of interest for the
controller-and-stopper games in the “strong formulation” of control and as we shall
see, the sets P(t,ω) indeed depend on (t,ω). Note that in the setting of the strong
formulation the set P is typically not closed and in particular not compact, so that
we cannot expect the existence of a saddle point in general. For simplicity, we only
discuss the case of a driftless SDE.

EXAMPLE 3.9. Let U be a nonempty Borel set of Rd and let U be the set of
all U -valued, progressively measurable, càdlàg processes ν. We denote by S++ the
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set of positive definite symmetric matrices and by D the Skorohod space of càdlàg
paths in Rd starting at the origin, and consider a function

σ :R+ ×D× U → S++

such that (t,ω) �→ σ(t,(ω), νt (ω)) is progressively measurable (càdlàg) when-
ever  and ν are progressively measurable (càdlàg). We assume that σ is uniformly
Lipschitz in its second variable with respect to the supremum norm, and (for sim-
plicity) uniformly bounded. Moreover, we assume that σ is a one-to-one function
in its third variable, admitting a measurable inverse on its range. More precisely,
there exists a function σ inv :R+ ×D× S++ → U such that

σ inv(
t,ω,σ (t,ω,u)

) = u

for all (t,ω,u) ∈ R+ ×D×U , and σ inv satisfies the same measurability and càdlàg
properties as σ . Given ν ∈ U , we consider the stochastic functional/differential
equation

t =
∫ t

0
σ(r,, νr) dBr, t ≥ 0

under the Wiener measure P0 (i.e., B is a d-dimensional Brownian motion). This
equation has a P0-a.s. unique strong solution whose law is denoted by P(ν).
We then define P = {P(ν) :ν ∈ U}. More generally, P(s,ω) is defined as the
set of laws P(s,ω, ν) corresponding to the SDE with conditioned coefficient
(r,ω′, u) �→ σ(r + s,ω ⊗s ω′, u) and initial condition 0 = ωs ; more precisely,
P(s,ω, ν) is the law on � of the solution translated to start at the origin (see
also [25]).

In this model, Assumption 2.1 can be verified by the arguments used in [25]
and [23]; the details are lengthy but routine. Assumption 3.3 is satisfied by Re-
mark 3.7 since σ is bounded (note that this condition can be improved by using
SDE estimates). We impose Assumption 3.1 on X and turn to Assumption 3.2,
which is the main interest in this example. The main problem in this regard is that
we cannot impose continuity conditions on the stopping times.

LEMMA 3.10. Assumption 3.2 is satisfied in the present setting.

While we defer the actual proof to the Appendix, we sketch here the rough idea
for the case where there is no control in the SDE (i.e., U is a singleton) and thus
each set P(s,ω) consists of a single measure P(s,ω). Let t ∈ [0, T ], τ ∈ T t and
ω̄ ∈ �; we shall construct τω ∈ T t such that

∣∣Et (Xτ )(ω̄) − Et (Xτω)(ω)
∣∣ ≤ ρE

(‖ω̄ − ω‖t

)
for all ω ∈ � [and such that (ω,ω′) �→ τω(ω′) is Ft ⊗F -measurable].
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Fix ω, ω̄ ∈ � and denote by t,ω and t,ω̄ the corresponding solutions of the
SDE (translated to start at the origin), that is, we have

dt,ω
u = σ

(
u + t,ω ⊗t t,ω)

dBu and dt,ω̄
u = σ

(
u + t, ω̄ ⊗t t,ω̄)

dBu

P0-a.s.

Our aim is to construct τω ∈ T t with the property that

τω

(
0 ⊗t t,ω) = τ

(
0 ⊗t t,ω̄)

P0-a.s.,(3.5)

where 0 is the constant path (or any other path, for that matter). Indeed, if this
identity holds, then

Et (Xτω)(ω) = EP(t,ω)[(Xτω)t,ω
]

= EP(t,ω)[Xτω(0⊗t ·)(ω ⊗t ·)]
= EP0

[
Xτω(0⊗t t,ω)

(
ω ⊗t t,ω)]

= EP0
[
Xτ(0⊗t t,ω̄)

(
ω ⊗t t,ω)]

and thus ∣∣Et (Xτ )(ω̄) − Et (Xτω)(ω)
∣∣

= ∣∣EP0
[
Xτ(0⊗t t,ω̄)

(
ω̄ ⊗t t,ω̄)] − EP0

[
Xτ(0⊗t t,ω̄)

(
ω ⊗t t,ω)]∣∣

≤ EP0
[∣∣Xτ(0⊗t t,ω̄)

(
ω̄ ⊗t t,ω̄) − Xτ(0⊗t t,ω̄)

(
ω ⊗t t,ω)∣∣](3.6)

≤ EP0
[
ρX

(∥∥ω̄ ⊗t t,ω̄ − ω ⊗t t,ω
∥∥
T

)]
≤ ρX

(
C‖ω̄ − ω‖t

)
,

where the last inequality follows by a standard SDE estimate as in [25],
Lemma 2.6, with C > 0 depending only on the Lipschitz constant of σ and the
time horizon T . This is the desired estimate with ρE(·) = ρX(C·).

To construct τω satisfying (3.5), we basically require a transformation ζω :� →
� mapping the paths of t,ω to the corresponding paths of t,ω̄. (The dependence
of ζω on the fixed path ω̄ is suppressed in our notation.) Roughly speaking, this is
accomplished by the solution of

ζ =
∫ ·

0
σ(u + t, ω̄ ⊗t ζ )σ (u + t,ω ⊗t B)−1 dBu.

Indeed, let us suppose for the moment that a solution ζω can be defined in some
meaningful way and that all paths of ζω are continuous. Then, formally, we have
ζω(t,ω) = t,ω̄ and

τω

(
ω′) := τ

(
0 ⊗t ζ ω(

ω′·+t − ω′
t

))
(3.7)

defines a stopping time with the desired property (3.5). In the Appendix, we show
how to make this sketch rigorous and include the case of a controlled equation.



OPTIMAL STOPPING UNDER ADVERSE NONLINEAR EXPECTATION 2515

4. Proof of Theorem 3.4. Assumptions 3.1, 3.2 and 3.3 are in force through-
out this section, in which we state the proof of Theorem 3.4 through a sequence of
lemmas.

4.1. Optimality of τ ∗. We begin with the optimality of τ ∗. All results have
their obvious analogues for the discrete case discussed in Remark 3.5; we shall
state this separately only where necessary. We first show that Tt may be replaced
by the set T t from (3.1) in the definition (3.3) of Yt .

LEMMA 4.1. Let t ∈ [0, T ]. Then

Yt = inf
τ∈T t

Et (Xτ ).(4.1)

PROOF. The inequality “≤” follows from the fact that T t ⊆ Tt . To see the
reverse inequality, fix ω ∈ � and let ε > 0. By the definition (3.3) of Yt , there
exists τ ∈ Tt (depending on ω) such that

Yt (ω) ≥ Et (Xτ )(ω) − ε.

Define θ = τ t,ω(Bt ), where Bt = B·+t − Bt . Clearly, θ ≥ t , and we see from Gal-
marino’s test that θ is a stopping time. Moreover, as a function of Bt , θ is in-
dependent of the path up to time t ; that is, θ ∈ T t . Noting that τ t,ω = θ t,ω, the
definition (2.1) of Et (·) shows that Et (Xτ )(ω) = Et (Xθ )(ω), and hence

Yt (ω) ≥ Et (Xθ )(ω) − ε.

The result follows as ε > 0 was arbitrary. �

LEMMA 4.2. We have
∣∣Yt (ω) − Yt

(
ω′)∣∣ ≤ ρE

(∥∥ω − ω′∥∥
t

)
(4.2)

for all t ∈ [0, T ] and ω,ω′ ∈ �. In particular, Yt is Ft -measurable.

PROOF. In view of (4.1), this follows from Assumption 3.2. �

The following dynamic programming principle is at the heart of this section.

LEMMA 4.3. Let 0 ≤ s ≤ t ≤ T . Then

Ys = inf
τ∈T s

Es(Xτ 1{τ<t} + Yt1{τ≥t});

moreover, T s can be replaced by Ts .
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PROOF. We first show the inequality “≥.” Let τ ∈ Ts . As τ ∨ t ∈ Tt , we have
Et (Xτ∨t ) ≥ Yt by the definition (3.3) of Y . Using the tower property (2.2), it fol-
lows that

Es(Xτ ) = Es

(
Xτ 1{τ<t} + Et (Xτ∨t )1{τ≥t}

) ≥ Es(Xτ 1{τ<t} + Yt1{τ≥t});
where we have used Lemma 2.3 and that all the involved random variables are
upper semianalytic. In view of (4.1), taking the infimum over τ ∈ Ts (resp., T s )
yields the claimed inequality.

We now turn to the inequality “≤.” Fix τ ∈ Ts and set �0 := {τ < t}. Moreover,
let ε > 0 and let (�i)i≥1 be an Ft -measurable partition of the set {τ ≥ t} ∈Ft such
that the ‖ · ‖t -diameter of �i is smaller than ε for all i ≥ 1. Fix ωi ∈ �i . By (4.1),
there exist τ i ∈ T t such that

Yt

(
ωi) ≥ Et (Xτi )

(
ωi) − ε, i ≥ 1.

In view of Assumption 3.2 and (4.2), there exist stopping times τ i
ω ∈ T t such that

Yt (ω) ≥ Et (Xτi
ω
)(ω) − ρ(ε), ω ∈ �i, i ≥ 1,(4.3)

where ρ(ε) = ε + 2ρE(ε). Define τ̂ i (ω) := τ i
ω(ω) and

τ̄ := τ1{τ<t} + ∑
i≥1

τ̂ i1�i .

In view of the measurability condition in Assumption 3.2, we then have τ̄ ∈ Ts

and τ̄ t,ω = (τ̂ i)t,ω = (τ i
ω)t,ω for ω ∈ �i . Using also (4.3), the tower property, and

{τ < t} = {τ̄ < t}, we deduce that

Es(Xτ 1{τ<t} + Yt1{τ≥t}) ≥ Es

(
Xτ 1{τ<t} + ∑

i≥1

Et (Xτ̂ i )1�i

)
− ρ(ε)

= Es

(
Xτ 1{τ<t} + ∑

i≥1

Et (Xτ̄ )1�i

)
− ρ(ε)

= Es

(
Xτ 1{τ<t} + Et (Xτ̄ )1{τ≥t}

) − ρ(ε)

= Es(Xτ 1{τ<t} + Xτ̄ 1{τ≥t}) − ρ(ε)

= Es(Xτ̄ ) − ρ(ε)

≥ Ys − ρ(ε).

As τ ∈ Ts ⊇ T s was arbitrary, the result follows by letting ε tend to zero. �

Based on the dynamic programming principle of Lemma 4.3 and Assump-
tion 3.3, we can now establish the path regularity of Y . The following is quite
similar to [9], Lemma 4.2.
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LEMMA 4.4. There exists a modulus of continuity ρY such that∣∣Ys(ω) − Yt (ω)
∣∣ ≤ ρY

(
d
[
(s,ω), (t,ω)

])
for all s, t ∈ [0, T ] and ω ∈ �.

PROOF. We may assume that s ≤ t . Using Lemma 4.3, we have

Ys(ω) − Yt (ω) ≤ Es(Yt )(ω) − Yt (ω) ≤ Es

(∣∣Yt − Yt (ω)
∣∣)(ω), ω ∈ �.

[The right-hand side is the conditional expectation of the random variable ω′ �→
|Yt (ω

′) − Yt (ω)|, evaluated at the point ω.] On the other hand, Lemma 4.3 and the
subadditivity of Es(·) yield that

Yt (ω) − Ys(ω) = Yt (ω) − inf
τ∈T s

Es(Xτ 1{τ<t} + Yt1{τ≥t})(ω)

≤ sup
τ∈T s

Es

(
Yt (ω) − Xτ 1{τ<t} − Yt1{τ≥t}

)
(ω)

= sup
τ∈T s

Es

(
Yt (ω) − Yt + (Yt − Xτ)1{τ<t}

)
(ω)

≤ Es

(∣∣Yt − Yt (ω)
∣∣)(ω) + sup

τ∈T s
Es

(
(Yt − Xτ)1{τ<t}

)
(ω).

Combining these two estimates, we obtain that∣∣Ys(ω) − Yt (ω)
∣∣ ≤ Es

(∣∣Yt − Yt (ω)
∣∣)(ω) + sup

τ∈T s
Es

(
(Yt − Xτ)1{τ<t}

)
(ω).(4.4)

Set δ := d[(s,ω), (t,ω)]. Then δ ≥ t − s and we may use Lemma 4.2 to estimate
the first term in (4.4) as

Es

(∣∣Yt − Yt (ω)
∣∣)(ω) = sup

P∈P(s,ω)

EP [∣∣Y s,ω
t − Yt (ω)

∣∣]

≤ sup
P∈P(s,ω)

EP [
ρE

(∥∥(ω ⊗s B) − ω
∥∥
t

)]

≤ sup
P∈P(s,ω)

EP [
ρE

(
δ + ‖B‖t−s

)]

≤ sup
P∈P(s,ω)

EP [
ρE

(
δ + ‖B‖δ

)]
.

To estimate the second term in (4.4), let τ ∈ T s . As Y ≤ X by the definition of Y ,
we deduce from (3.2) that

Es

(
(Yt − Xτ)1{τ<t}

)
(ω) ≤ Es

(
(Xt − Xτ)1{τ<t}

)
(ω)

= sup
P∈P(s,ω)

EP [(
X

s,ω
t − (Xτ )

s,ω)
1{τ s,ω<t}

]

≤ sup
P∈P(s,ω)

EP [
ρX

(
d
[
(t,ω ⊗s B), (s,ω ⊗s B)

])]
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= sup
P∈P(s,ω)

EP [
ρX

(|t − s| + ‖B‖t−s

)]

≤ sup
P∈P(s,ω)

EP [
ρX

(
δ + ‖B‖δ

)]
.

Setting ρ′ = ρX ∨ ρE , we conclude that∣∣Ys(ω) − Yt (ω)
∣∣ ≤ 2 sup

P∈P(s,ω)

EP [
ρ′(δ + ‖B‖δ

)] ≤ 2ρ(δ),

where ρ is given by Assumption 3.3. It remains to set ρY = 2ρ. �

REMARK 4.5. We see from Lemmas 4.2 and 4.4 that Y is an adapted pro-
cess with continuous paths. In view of Assumption 3.1, it follows that X − Y is a
càdlàg adapted process with nonpositive jumps. This implies that for every ε ≥ 0,
the hitting time τ ε = inf{t ∈ [0, T ] :Xt − Yt ≤ ε} coincides with the contact time
inf{t ∈ [0, T ] : (Xt ∧ Xt−) − Yt ≤ ε} and, therefore, is a stopping time (of the raw
filtration F). Moreover, it implies the pointwise convergence τ ε → τ 0 ≡ τ ∗ for
ε → 0, which we will also find useful below.

Lemmas 4.2 and 4.4 also yield the following joint continuity property.

COROLLARY 4.6. There exists a modulus of continuity ρY such that∣∣Ys(ω) − Yt

(
ω′)∣∣ ≤ ρY

(
d
[
(s,ω), (t,ω)

]) + ρE
(∥∥ω − ω′∥∥

T

)
for all s, t ∈ [0, T ] and ω,ω′ ∈ �. In particular, if θ :� → [0, T ] is any ‖ · ‖T -
continuous function, then Yθ is again continuous.

The following submartingale property is a consequence of the dynamic pro-
gramming principle of Lemma 4.3 and “optional sampling.”

LEMMA 4.7. Let s ∈ [0, T ] and τ ∈ Ts . Then

Ys ≤ Es(Yτ ).(4.5)

PROOF. By Lemma 4.3, we have Ys ≤ Es(Yt ) for any deterministic time
t ∈ Ts .

Step 1. We show that (4.5) holds when τ ∈ Ts has finitely many values t1 <

t2 < · · · < tn.
We proceed by induction. If n = 1, we are in the deterministic case. Suppose that

the result holds for n − 1 values; in particular, for the stopping time τ ∨ t2 ∈ Tt1 .
Then, using the tower property,

Es(Yτ ) = Es(Yt11{τ=t1} + Yτ∨t21{τ>t1})
= Es

(
Yt11{τ=t1} + Et1(Yτ∨t2)1{τ>t1}

)
≥ Es(Yt11{τ=t1} + Yt11{τ>t1})
≥ Ys.



OPTIMAL STOPPING UNDER ADVERSE NONLINEAR EXPECTATION 2519

Step 2. Let τ ∈ Ts be arbitrary. Let τn = inf{t ∈ Dn : t ≥ τ }, where Dn =
{k2−nT :k = 0, . . . ,2n} for n ≥ 1. Then each τn is a stopping time with finitely
many values, and hence

Ys ≤ Es(Yτn), n ≥ 1(4.6)

by step 1. In view of |τn − τ | ≤ 2−nT , Lemma 4.4 yields that

|Yτn − Yτ | ≤ ρY

(
d
[
(τ,B), (τn,B)

]) ≤ ρY

(
2−nT + ∥∥Bτ

∥∥
2−nT

)
.

In particular, (|Yτn − Yτ |)s,ω ≤ ρY

(
2−nT + ∥∥(ω ⊗s B)τ

s,ω∥∥
2−nT

)
= ρY

(
2−nT + ∥∥Bτs,ω−s

∥∥
2−nT

)
and thus∣∣Es(Yτn)(ω) − Es(Yτ )(ω)

∣∣ ≤ Es

(|Yτn − Yτ |)(ω)

= sup
P∈P(s,ω)

EP [(|Yτn − Yτ |)s,ω]
(4.7)

≤ sup
P∈P(s,ω)

EP [
ρY

(
2−nT + ∥∥Bτs,ω−s

∥∥
2−nT

)]
.

Note that τ s,ω − s is a stopping time as τ ∈ Ts . Thus, the right-hand side tends to
zero as n → ∞, by Assumption 3.3. In view of (4.6), this completes the proof. �

Next, we discuss the specifics of the discrete situation as introduced in Re-
mark 3.5; recall that we use the same notation Y for the corresponding value func-
tion.

LEMMA 4.8. Let T = {t0, t1, . . . , tn}, where n ∈ N and t0 < · · · < tn = T .
Then Y is given by Ytn = Xtn and

Yti = Xti ∧ Eti (Yti+1), i = 0, . . . , n − 1.(4.8)

Let τ ∗ = inf{t ∈ T :Yt = Xt }, then Y·∧τ∗ is an E-martingale on T; that is,

Yti∧τ∗ = Eti (Yti+1∧τ∗), i = 0, . . . , n − 1,(4.9)

and in particular Y0 = E(Xτ∗).

PROOF. Note that XT = YT by the definition of Y . Let i < n. From (the obvi-
ous discrete version of) Lemma 4.3,

Yti = inf
τ∈T ti (T)

Eti (Xτ 1{τ<ti+1} + Yti+11{τ≥ti+1}).

For any τ ∈ T ti (T), we have either τ ≡ ti or τ ≥ ti+1 identically; hence, the right-
hand side equals Xti ∧ Eti (Yti+1), which yields (4.8).
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We turn to the martingale property. Let i < n. On {ti ≥ τ ∗}, we have Yti+1∧τ∗ =
Yti∧τ∗ and hence Yti∧τ∗ = Eti (Yti+1∧τ∗); whereas on {ti < τ ∗}, we have Yti < Xti

and so (4.8) yields that

Yti∧τ∗ = Yti = Eti (Yti+1) = Eti (Yti+1∧τ∗).

This completes the proof of (4.9), which by the tower property, also shows that
Y0 = E(YT ∧τ∗) = E(Yτ∗) = E(Xτ∗). �

We can now prove the optimality of τ ∗ by approximating the continuous prob-
lem with suitable discrete ones.

LEMMA 4.9. Let τ ∗ = inf{t ∈ [0, T ] :Yt = Xt }. Then Y0 = E(Xτ∗).

PROOF. For n ≥ 1, let Tn = Dn = {k2−nT :k = 0, . . . ,2n}. Given t ∈ [0, T ],
we denote by T t

n := T t (Tn) the corresponding set of stopping times and by

Yn
t := inf

τ∈T t
n

Et (Xτ )

the corresponding value function. In view of T t
n ⊆ T t , we have

Yn ≥ Y on [0, T ] × �.

Step 1. There exists a modulus of continuity ρ such that
∣∣Yn − Y

∣∣ ≤ ρ
(
2−n)

on Tn × �.(4.10)

Indeed, let n ≥ 1, t ∈ Tn and τ ∈ T t . Then ϑ := inf{t ∈ Tn : t ≥ τ } is in T t
n and

0 ≤ ϑ − τ ≤ 2−nT . Therefore, Assumption 3.1 yields that

(Xϑ − Xτ)
t,ω ≤ ρX

(
d
[(

ϑt,ω,ω ⊗t B
)
,
(
τ t,ω,ω ⊗t B

)])
≤ ρX

(
2−nT + ∥∥Bτt,ω−t

∥∥
ϑt,ω−τ t,ω

)
≤ ρX

(
2−nT + ∥∥Bθ

∥∥
2−nT

)
,

where θ := τ t,ω − t ∈ T , and hence

Et (Xϑ)(ω) − Et (Xτ )(ω) ≤ Et (Xϑ − Xτ)(ω)

≤ sup
P∈P(t,ω)

EP [
ρX

(
2−nT + ∥∥Bθ

∥∥
2−nT

)]

≤ ρ
(
2−n)

for some modulus of continuity ρ, by Assumption 3.3. As a result,

0 ≤ Yn
t − Yt = inf

ϑ∈T t
n

Et (Xϑ) − inf
τ∈T t

Et (Xτ ) ≤ ρ
(
2−n)

.
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Step 2. Fix ε > 0 and define τ ε = inf{t ∈ [0, T ] :Xt − Yt ≤ ε}. There exists a
modulus of continuity ρ′ such that for all n satisfying ρ(2−n) < ε,

Y0 ≥ E(Yτε ) + 2ρ
(
2−n) + ρ′(2−n)

.

Indeed, let τ ∗
n = inf{t ∈ Tn :Yn

t = Xt }. As ρ(2−n) < ε, (4.10) entails that

X − Yn > 0 on
[[

0, τ ε[[ ∩ (Tn × �);
that is, we have τ ε ≤ τ ∗

n . Define the stopping time

τ ε,n = inf
{
t ∈ Tn : t ≥ τ ε}.

Recalling that τ ∗
n takes values in Tn, we see that τ ε ≤ τ ∗

n even implies that

τ ε,n ≤ τ ∗
n .

By Lemma 4.8, the process Yn·∧τ∗
n

is an E-martingale on Tn; in particular, using an
optional sampling argument as in step 1 of the proof of Lemma 4.7,

Yn
0 = E

(
Yn

τε,n∧τ∗
n

) = E
(
Yn

τε,n

)
.

In view of (4.10), this implies that

Y0 ≥ E(Yτε,n) − 2ρ
(
2−n)

.(4.11)

On the other hand, an estimate similar to (4.7) and Assumption 3.3 entail that∣∣E(Yτε,n) − E(Yτε )
∣∣ ≤ sup

P∈P
EP [

ρY

(
2−nT + ∥∥Bτε∥∥

2−nT

)] ≤ ρ ′(2−n)

for some modulus of continuity ρ′. Together with (4.11), this yields the claim.

Step 3. Letting n → ∞, step 2 implies that

Y0 ≥ E(Yτε ).

By Remark 4.5, we have τ ε → τ ∗ for ε → 0, and as Y has continuous paths
(Lemma 4.4), it follows that Yτε → Yτ∗ pointwise. Thus, (an obvious version of)
Fatou’s lemma yields that Y0 ≥ E(Yτ∗). Recalling the definition of τ ∗, we conclude
that

Y0 ≥ E(Yτ∗) = E(Xτ∗) ≥ inf
τ∈T E(Xτ ) = Y0.

This completes the proof. �

REMARK 4.10. The process Y·∧τ∗ is a P -supermartingale for any P ∈P .

PROOF. Let 0 ≤ s ≤ t ≤ T , where s ∈ Tn for some n, and let τ ∈ T be such
that τ ≤ τ ε . Going through step 2 of the preceding proof with the appropriate
modifications then shows that Ys∧τ ≥ Es(Yτ ). Fix P ∈ P and note that Assump-
tion 2.1(ii) implies Es(Yτ ) ≥ EP [Yτ |Fs] P -a.s. Choosing τ = t ∧ τ ε , we obtain
that Ys∧τ ε ≥ EP [Yt∧τ ε |Fs] P -a.s. Now let ε → 0, then Fatou’s lemma yields that
Ys∧τ∗ ≥ EP [Yt∧τ∗ |Fs]. This shows that Y·∧τ∗ is a P -supermartingale on

⋃
nTn,

and as Y is continuous, this implies the claim. �



2522 M. NUTZ AND J. ZHANG

4.2. Existence of the value. The aim of this subsection is to show that the
upper value function Y coincides with the lower one, denoted by Z below. As
mentioned in the Introduction, there is an obstruction to directly proving the dy-
namic programming principle for Z in continuous time; namely, we are unable to
perform measurable selections on the set of stopping times in the absence of a ref-
erence measure. This is related to the measurability problems that are well known
in the literature; see, for example, [12]. In the following lemma, we consider the
discrete setting and prove simultaneously the dynamic programming for the lower
value and that it coincides with the upper value.

LEMMA 4.11. Let T = {t0, t1, . . . , tn}, where n ∈ N and t0 < · · · < tn = T ,
define the lower value function

Zti (ω) := sup
P∈P(ti ,ω)

inf
τ∈T ti (T)

EP [
(Xτ )

ti ,ω
]
, i = 0, . . . , n,

and recall the upper value function Y introduced in Remark 3.5. For any j =
0, . . . , n, we have

Ztj = Ytj(4.12)

and

Zti (ω) = sup
P∈P(ti ,ω)

inf
τ∈T ti (T)

EP [
(Xτ 1{τ<tj } + Ztj 1{τ≥tj })ti ,ω

]
(4.13)

for all i = 0, . . . , j and ω ∈ �.

PROOF. We proceed by backward induction over j . As Ztn = Xtn = Ytn , the
claim is clear for j = n; we show the passage from j + 1 to j . That is, we assume
that for some fixed j < n, we have

Ztj+1 = Ytj+1(4.14)

(which, in particular, entails that Ztj+1 is Ftj+1 -measurable) and

Zti (ω) = sup
P∈P(ti ,ω)

inf
τ∈T ti (T)

EP [
(Xτ 1{τ<tj+1} + Ztj+11{τ≥tj+1})ti ,ω

]
,

(4.15)
i = 0, . . . , j + 1

for all ω ∈ �. We first note that if τ ∈ T tj (T), then either τ ≡ tj or τ > tj identi-
cally; therefore, (4.15) yields that

Ztj (ω) = sup
P∈P(tj ,ω)

inf
τ∈T tj (T)

EP [
(Xτ 1{τ<tj+1} + Ztj+11{τ≥tj+1})tj ,ω]

= Xtj (ω) ∧ sup
P∈P(tj ,ω)

EP [
Z

tj ,ω
tj+1

]

= Xtj (ω) ∧ Etj (Ztj+1)(ω).
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By the induction assumption (4.14) and the recursion (4.8) for Y , this shows that

Ztj = Xtj ∧ Etj (Ztj+1) = Xtj ∧ Etj (Ytj+1) = Ytj ,

which is (4.12). In particular, Ztj is Ftj -measurable.
Let us now fix i ∈ {0, . . . , j} and prove the remaining claim (4.13). To this

end, we first rewrite the latter equation: substituting the just obtained expression
Ztj = Xtj ∧ Etj (Ztj+1) for Ztj in the right-hand side of (4.13), and using (4.15) to
substitute Zti on the left-hand side of (4.13), we see that our claim is equivalent to
the identity

sup
P∈P(ti ,ω)

inf
τ∈T ti (T)

EP [
(Xτ 1{τ<tj+1} + Ztj+11{τ≥tj+1})ti ,ω

]
(4.16)

= sup
P∈P(ti ,ω)

inf
τ∈T ti (T)

EP [(
Xτ 1{τ<tj } + {

Xtj ∧ Etj (Ztj+1)
}
1{τ≥tj }

)ti ,ω]
.

We first show the inequality “≥” in this equation. To this end, let ω ∈ �,
τ ∈ T ti (T) and P ∈ P(ti,ω). In view of (4.14), Lemma 4.2 yields that Ztj+1

is continuous and in particular upper semianalytic. Given ε > 0, it then follows
from Assumption 2.1 and an application of the Jankov–von Neumann selection
theorem similar to step 2 of the proof of [26], Theorem 2.3, that there exists an
Ftj−ti -measurable kernel ν :� →P(�) such that

ν(·) ∈ P(tj ,ω ⊗ti ·) and Eν(·)[Ztj ,ω⊗ti
·

tj+1

] ≥ Etj (Ztj+1)
ti ,ω(·) − ε(4.17)

hold P -a.s. Let P̄ be the measure defined by

P̄ (A) =
∫ ∫

(1A)tj−ti ,ω
′(
ω′′)ν(

dω′′;ω′)P (
dω′), A ∈F;

then P̄ ∈ P(ti,ω) by Assumption 2.1(iii); moreover, P̄ tj−ti ,· = ν(·) P -a.s. and
P̄ = P on Ftj−ti . In view of (4.17), we have

EP̄ [
Z

ti,ω
tj+1

|Ftj−ti

]
(·) = EP̄

tj −ti ,·[
Z

tj ,ω⊗ti
·

tj+1

]

= Eν(·)[Ztj ,ω⊗ti
·

tj+1

]
≥ Etj (Ztj+1)

ti ,ω(·) − ε P -a.s.

Using this inequality and the tower property of EP [·], we deduce that

EP [(
Xτ 1{τ<tj } + {

Xtj ∧ Etj (Ztj+1)
}
1{τ≥tj }

)ti ,ω]

≤ EP [(
Xτ 1{τ<tj } + Xtj 1{τ=tj } + Etj (Ztj+1)1{τ≥tj+1}

)ti ,ω]

= EP [(
Xτ 1{τ<tj+1} + Etj (Ztj+1)1{τ≥tj+1}

)ti ,ω]

≤ EP̄ [
(Xτ 1{τ<tj+1} + Ztj+11{τ≥tj+1})ti ,ω

] + ε.
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As ε > 0, τ ∈ T ti (T) and P ∈ P(ti,ω) were arbitrary, this implies the inequality
“≥” in (4.16).

It remains to show the inequality “≤” in (4.16). To this end, let ω ∈ �, τ ∈
T ti (T), P ∈ P(ti,ω) and define

τ̄ := τ1{τ<tj } + (tj 1� + tj+11�c)1{τ≥tj }, � := {
Xtj ≤ Etj (Ztj+1)

}
.

Noting that Ztj = Xtj ∧ Etj (Ztj+1) yields � = {Xtj = Ztj } ∈ Ftj , we see that τ̄ ∈
Tti (T). After observing that (2.1) and Assumption 2.1(ii) imply

Etj (Ztj+1)
ti ,ω ≥ EP [

Z
ti,ω
tj+1

|Ftj−ti

]
P -a.s.,

we can then use the tower property of EP [·] to obtain that

EP [
(Xτ̄ 1{τ̄<tj+1} + Ztj+11{τ̄≥tj+1})ti ,ω

]

= EP [(
Xτ 1{τ<tj } + {Xtj 1� + Ztj+11�c}1{τ≥tj }

)ti ,ω]

≤ EP [(
Xτ 1{τ<tj } + {

Xtj 1� + Etj (Ztj+1)1�c

}
1{τ≥tj }

)ti ,ω]

= EP [(
Xτ 1{τ<tj } + {

Xtj ∧ Etj (Ztj+1)
}
1{τ≥tj }

)ti ,ω]
.

As τ ∈ T ti (T) and P ∈ P(ti,ω) were arbitrary, this implies the desired inequality
“≤” in (4.16). Here, we have used the fact that, similarly as in Lemma 4.1, the
left-hand side of (4.16) does not change if we replace T ti (T) by Tti (T). �

We can now show the existence of the value for the continuous-time game by
an approximation argument.

LEMMA 4.12. For all (t,ω) ∈ [0, T ] × �, we have

Zt(ω) := sup
P∈P(t,ω)

inf
τ∈T t

EP [
(Xτ )

t,ω] = inf
τ∈T t

sup
P∈P(t,ω)

EP [
(Xτ )

t,ω] ≡ Yt (ω).

PROOF. Let t ∈ [0, T ]. The inequality Zt ≤ Yt is immediate from the ordering
of infima and suprema in the definitions; we prove the reverse inequality. Given
n ∈ N, we consider Tn = {t} ∪ {k2−nT :k = 0, . . . ,2n} and denote by Yn and Zn

the corresponding upper and lower value functions as in Lemmas 4.8 and 4.11,
respectively. As in step 1 of the proof of Lemma 4.9, there exists a modulus of
continuity ρ such that ∣∣Yn − Y

∣∣ ≤ ρ
(
2−n)

on Tn × �.

Moreover, a similar argument as in the mentioned step shows that∣∣Zn − Z
∣∣ ≤ ρ

(
2−n)

on Tn × �.

Since Yn
t = Zn

t by Lemma 4.11, we deduce that |Yt −Zt | ≤ 2ρ(2−n), and now the
claim follows by letting n tend to infinity. �
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4.3. Existence of P ∗. An important tool in this subsection is an approximation
of hitting times by continuous random times, essentially taken from [9].

LEMMA 4.13. Let P be weakly compact and τn = inf{t :Xt − Yt ≤ 2−n}
for n ≥ 1. There exist continuous, FT -measurable functions θn :� → [0, T ] and
FT -measurable sets �n ⊆ � such that

sup
P∈P

P
(
�c

n

) ≤ 2−n and τn−1 − 2−n ≤ θn ≤ τn+1 + 2−n on �n.

Moreover, θn → τ ∗ P -a.s. for all P ∈ P .

PROOF. In view of Lemmas 4.2 and 4.4 and Assumption 3.1, the first claim
can be argued like step 1 in the proof of [9], Theorem 3.3. Since τn → τ ∗ by
Remark 4.5 and |τn − θn| ≤ 2−n on �n, the second claim follows via the Borel–
Cantelli lemma. �

We first establish a measure P � whose restriction to Fτ∗ will be used in the
construction of the saddle point.

LEMMA 4.14. Let P be weakly compact. Then there exists P � ∈ P such that
EP �[Xτ∗] = Y0.

PROOF. As Xτ∗ = Yτ∗ , we need to find P � ∈ P such that EP �[Yτ∗] ≥ Y0;
the reverse inequality is clear from Lemma 4.9. For n ≥ 1, let τn and θn be as in
Lemma 4.13. In view of Lemma 4.7 and the definition of E(·), there exist Pn ∈ P
such that

EPn[Yτn] ≥ E(Yτn) − 2−n ≥ Y0 − 2−n.(4.18)

By passing to a subsequence, we may assume that Pn → P � weakly, for some
P � ∈ P . Recall that Y is bounded. As θn → τ ∗ P �-a.s., it follows from Corol-
lary 4.6 that EP �[Yθn] → EP �[Yτ∗]. Moreover, the weak convergence Pm → P �

and Corollary 4.6 imply that limm EPm[Yθn] = EP �[Yθn] for any fixed n. As a re-
sult, we have

EP �[Yτ∗] = lim
n

lim
m

EPm[Yθn].(4.19)

On the other hand, for m ≥ n, we observe that τm ≥ τn and, therefore, EPm[Yτn] ≥
EPm[Yτm] by the supermartingale property mentioned in Remark 4.10. Using
also (4.18), we deduce that

lim inf
n

lim inf
m

EPm[Yτn] ≥ lim inf
m

EPm[Yτm] ≥ Y0.
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Combining this with (4.19), we obtain that

Y0 − EP �[Yτ∗] ≤ lim inf
n

lim inf
m

EPm[Yτn] − lim
n

lim
m

EPm[Yθn]
(4.20)

≤ lim sup
n

lim sup
m

EPm
[|Yτn − Yθn |

]
.

It remains to show that the right-hand side vanishes. To this end, we first note that
Lemma 4.13 yields

θn−1 − 21−n ≤ τn ≤ θn+1 + 2−n−1 on �n−1 ∩ �n+1.

Of course, we also have 0 ≤ τn ≤ T . Thus, setting

ψn = sup
{|Yt − Yθn | : t ∈ [

θn−1 − 21−n, θn+1 + 2−n−1] ∩ [0, T ]},
we have

EPm
[|Yτn − Yθn |

] ≤ EPm[ψn] + 4‖Y‖∞Pm

(
�c

n−1 ∪ �c
n+1

)
≤ EPm[ψn] + 24−n‖Y‖∞.

Moreover, ψn is uniformly bounded, and the continuity of θk and Corollary 4.6
yield that ψn is continuous. Therefore, EPm[ψn] → EP �[ψn] for each n, and we
conclude that

lim sup
n

lim sup
m

EPm
[|Yτn − Yθn |

] ≤ lim sup
n

lim sup
m

EPm[ψn]

≤ lim sup
n

EP �[ψn] = 0,

where the last step used dominated convergence under P � and the fact that ψn → 0
P �-a.s. due to θn → τ ∗ P �-a.s. In view of (4.20), this completes the proof. �

The measure P � already satisfies

inf
τ∈T ,τ≤τ∗ EP �[Xτ ] = EP �[Xτ∗].

(This follows using Remark 4.10; cf. the proof of Lemma 4.17 below.) In order
to obtain a saddle point, we need to find an extension of P �|F∗

τ
to F under which

“after τ ∗, immediate stopping is optimal.” As a preparation, we first note the fol-
lowing semicontinuity property.

LEMMA 4.15. The function P �→ infτ∈T t EP [(Xτ )
t,ω] is upper semicontinu-

ous on P(�), for all (t,ω) ∈ [0, T ] × �.

PROOF. We state the proof for t = 0; the general case is proved similarly. Let
Pn → P in P(�); we need to show that

lim sup
n→∞

inf
τ∈T EPn[Xτ ] ≤ inf

τ∈T EP [Xτ ].
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To this end, it suffices to show that given ε > 0 and τ ∈ T , there exists τ ′ ∈ T such
that

lim sup
n→∞

EPn[Xτ ′ ] ≤ EP [Xτ ] + ε.(4.21)

Moreover, by an approximation from the right, we may suppose that τ =∑N
i=1 ti1Ai

for some N ∈ N, ti ∈ [0, T ] and Ai ∈ Fti . Given δ > 0, we can find
for each 1 ≤ i ≤ N a P -continuity set Di ∈ Fti [i.e., P(∂Di) = 0] satisfying
P(Ai�Di) < δ. Note that D0 := (D1 ∪ · · · ∪ DN)c is then also a P -continuity
set. Define t0 := T and

τ ′ :=
N∑

i=0

ti1Di
;

then τ ′ ∈ T and P {τ 	= τ ′} < Nδ. As X is bounded, it follows that EP [|Xτ −
Xτ ′ |] < ε for δ > 0 chosen small enough, while

EPn[Xτ ′ ] → EP [Xτ ′ ]
since Xτ ′ = ∑N

i=0 Xti 1Di
, each Xti is bounded and continuous, and each Di is a

P -continuity set. This implies (4.21). �

We can now construct the kernel that will be used to extend P �.

LEMMA 4.16. Let P(t,ω) be weakly compact for all (t,ω) ∈ [0, T ] × �

and let θ ∈ T . There exists an F∗
θ -measurable kernel P̂θ :� → P(�) such that

P̂θ (ω) ∈P(θ,ω) and

inf
τ∈T θ(ω)

EP̂θ (ω)[(Xτ )
θ,ω] = sup

P∈P(θ,ω)

inf
τ∈T θ(ω)

EP [
(Xτ )

θ,ω]

for all ω ∈ �.

PROOF. For brevity, let us define

V (t,ω,P ) := inf
τ∈T t

EP [
(Xτ )

t,ω]
.

We first fix P ∈ P(�) and note that (t,ω) �→ V (t,ω,P ) is Borel. To see this, we
first observe that

V (t,ω,P ) = inf
τ∈T EP [

Xτ(·)∨t (ω ⊗ ·)]

by the argument of Lemma 4.1. Moreover, let T ′ ⊆ T be a countable set such that
for each τ ∈ T there exist τn ∈ T ′ satisfying τn ↓ τ P -a.s.; for instance, T ′ can
be chosen to consists of stopping times of the form

∑N
i=1 ti1Ai

, where each ti is
dyadic and Ai belongs to a countable collection generating Fti . Then we have

V (t,ω,P ) = inf
τ∈T t

EP [
(Xτ )

t,ω] = inf
τ∈T ′ E

P [
Xτ(·)∨t (ω ⊗ ·)]
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by dominated convergence and as (t,ω) �→ EP [Xτ(·)∨t (ω ⊗ ·)] is Borel for every
τ by Fubini’s theorem, it follows that (t,ω) �→ V (t,ω,P ) is Borel.

On the other hand, we know from Lemma 4.15 that P �→ V (t,ω,P ) is upper
semicontinuous. Together, it follows that V is Borel as a function on [0, T ] × � ×
P(�); in particular, (ω,P ) �→ Vθ(ω,P ) := V (θ(ω),ω,P ) is again Borel (recall
that T consists of F-stopping times).

For each (t,ω) ∈ [0, T ] × �, it follows by compactness and Lemma 4.15 that
there exists P̂ ∈P(t,ω) such that

V (t,ω, P̂ ) = sup
P∈P(t,ω)

V (t,ω,P );

in particular, P �→ Vθ(ω,P ) admits a maximizer for each ω ∈ �. As the graph of
P(θ, ·) is analytic, the Jankov–von Neumann theorem in the form of [7], Propo-
sition 7.50(b), page 184, shows that a maximizer can be chosen in a universally
measurable way, which yields the claim. �

Finally, we can prove the remaining result of Theorem 3.4.

LEMMA 4.17. Let P(t,ω) be weakly compact for all (t,ω) ∈ [0, T ] × �, let
P � be as in Lemma 4.14 and let P̂τ∗ be as in Lemma 4.16. Then the measure
defined by

P ∗(A) =
∫ ∫

(1A)τ
∗,ω(

ω′)P̂τ∗
(
dω′;ω)

P �(dω), A ∈ F

is an element of P and satisfies

inf
τ∈T EP ∗[Xτ ] = EP ∗[Xτ∗].

PROOF. We set P̂ := P̂τ∗ . After replacing P̂ with a Borel kernel ν such that
ν = P̂ P�-a.s., it follows from Assumption 2.1(iii) that P ∗ ∈ P . Let τ ∈ T ; then
the definition of P̂ and Lemma 4.12 yield

EP̂ (ω)[(Xτ∨τ∗)τ
∗,ω] ≥ inf

θ∈T τ∗(ω)
EP̂ (ω)[(Xθ)

τ∗,ω]

= sup
P∈P(τ∗,ω)

inf
θ∈T τ∗(ω)

EP [
(Xθ)

τ∗,ω]

= inf
θ∈T τ∗(ω)

sup
P∈P(τ∗,ω)

EP [
(Xθ)

τ∗,ω]

= Yτ∗(ω)

for all ω ∈ �. This means that EP ∗[Xτ∨τ∗ |Fτ∗] ≥ Yτ∗ P ∗-a.s., and thus

EP ∗[Xτ |Fτ∗] = EP ∗[Xτ∧τ∗ |Fτ∗]1{τ<τ∗} + EP ∗[Xτ∨τ∗ |Fτ∗]1{τ≥τ∗}
≥ Xτ∧τ∗1{τ<τ∗} + Yτ∗1{τ≥τ∗} P ∗-a.s.
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By Remark 4.10, Y·∧τ∗ is a P �-supermartingale, but as Y0 = EP �[Yτ∗] by
Lemma 4.14, Y·∧τ∗ is even a P �-martingale, and hence a P ∗-martingale. Using
also that X ≥ Y , we conclude that

EP ∗[Xτ |Fτ∧τ∗] ≥ Yτ∧τ∗1{τ<τ∗} + EP ∗[Yτ∗ |Fτ∧τ∗]1{τ≥τ∗} = Yτ∧τ∗ P ∗-a.s.

and thus

EP ∗[Xτ ] ≥ EP ∗[Yτ∧τ∗] = EP ∗[Yτ∗] = EP ∗[Xτ∗].
Since τ ∈ T was arbitrary, this proves the claim. �

5. Application to American options. In this section, we apply our main re-
sult to the pricing of American options under volatility uncertainty. To this end, we
interpret B as the stock price process and assume that P consists of local martin-
gale measures, each of which is seen as a possible scenario for the volatility. More
precisely, following [33], we assume that P is a subset of PS , the set of all local
martingale laws of the form

P α = P0 ◦
(∫ ·

0
α1/2

u dBu

)−1

,

where P0 is the Wiener measure and α ranges over all locally square integrable,
progressively measurable processes with values in S++. We remark that if P is not
already a subset of PS , then we may replace {P(s,ω)} by {P(s,ω) ∩PS} without
invalidating Assumption 2.1; cf. [23], Corollary 2.5.

Let G = (Gt )0≤t≤T be the filtration defined by Gt = F∗
t ∨ NP , where F∗

t is
the universal completion of Ft and NP is the collection of all sets which are
(FT ,P )-null for all P ∈ P . Let H be an Rd -valued, G-predictable process such
that

∫ T
0 H�

u d〈B〉uHu < ∞ P -a.s. for all P ∈ P . Then H is called an admissible
trading strategy if the P -integral

∫
H dB is a P -supermartingale, for all P ∈ P ,

and we denote by H the set of all admissible trading strategies.
If X is an American-style option where the buyer chooses the exercise time,

then the buyer’s price (or subhedging price) is given by

x∗(X) := sup
{
x ∈ R : there exist τ ∈ T and H ∈ H such that

Xτ +
∫ τ

0
Hu dBu ≥ x P -a.s. for all P ∈P

}
.

This is the supremum of all prices x such that, by using a suitable choice of hedging
strategy and exercise time, the buyer will incur no loss, no matter which scenario
P occurs. On the other hand, if X is a short position in an American option, so that
the seller chooses the exercise time, then the corresponding sellers’s price is given
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by

x∗(X) := inf
{
x ∈R : there exist τ ∈ T and H ∈ H such that

x +
∫ τ

0
Hu dBu ≥ Xτ P -a.s. for all P ∈P

}
.

Clearly, x∗(X) = −x∗(−X), so it suffices to study one of these cases. We state the
result for the seller’s price x∗ (because it matches the sign convention for nonlinear
expectations).

THEOREM 5.1. Let Assumptions 3.1, 3.2 and 3.3 hold. Then

x∗(X) = inf
τ∈T E(Xτ ) = E(Xτ∗) for τ ∗ = inf

{
t ∈ [0, T ] :Yt = Xt

}
,

and there exists H ∈ H such that x∗(X) + ∫ τ
0 Hu dBu ≥ Xτ∗ P -a.s. for all P ∈ P ;

in particular, the infimum defining x∗(X) is attained.

PROOF. We set x∗ = x∗(X) and y∗ = infτ∈T E(Xτ ). Let x > x∗, then the def-
inition of x∗ yields τ ∈ T and H ∈ H such that

x +
∫ τ

0
Hu dBu ≥ Xτ P -a.s. for all P ∈ P .

As H is admissible, this implies that x ≥ EP [Xτ ] for all P ∈ P , and thus x ≥
E(Xτ ). In particular, x ≥ infτ∈T E(Xτ ) = y∗. As x > x∗ was arbitrary, this shows
that x∗ ≥ y∗.

Conversely, we have y∗ = E(Xτ∗) by Theorem 3.4. Moreover, as Xτ∗ is Borel-
measurable and bounded, the (European) superhedging result stated in [23], The-
orem 2.3, yields H ∈ H such that

E(Xτ∗) +
∫ τ

0
Hu dBu ≥ Xτ∗ P -a.s. for all P ∈ P .

Thus, the definition of x∗ implies that x∗ ≤ E(Xτ∗) = y∗. �

REMARK 5.2. In view of Remark 3.5, we can show a similar result for Bermu-
dan options, that is, options where the exercise time can be chosen from a given
set T = {t0, . . . , tn}.

APPENDIX: PROOF OF LEMMA 3.10

In this section, we complete Example 3.9 by showing that Assumption 3.2 is
satisfied. We use the setting and notation introduced in that example.
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PROOF OF LEMMA 3.10. Let t ∈ [0, T ], τ ∈ T t and ω̄ ∈ �. Using a dis-
cretization of stochastic integrals as in [14] and the fact that the paths of B are
continuous, we can define F-progressively measurable processes An such that

A := lim sup
n→∞

An

coincides P -a.s. with the usual quadratic variation process of B under P , for any
semimartingale law P . Let us also define (with ∞ − ∞ := −∞, say)

au := lim sup
n→∞

n(Au+1/n − Au) and âu := au1{au∈S++} + 11{au /∈S++};(A.1)

then â is F+-progressively measurable and coincides dt × P -a.s. with the squared
volatility of B under P , for any P ∈ ⋃

ω P(t,ω). Given ω ∈ � and recalling that
σ admits the inverse σ inv in its third argument, we may then define the U -valued
process

ν̂ω
u := σ inv(

u + t,ω ⊗t ·, â1/2
u

)
.

Let t,ω,ν denote the solution of the SDE with parameters (t,ω) and control ν ∈ U .
For any ν ∈ U , we have by construction that

â
(
t,ω,ν) = σ 2(· + t,ω ⊗t t,ω,ν, ν

)
P0-a.s.

and thus

ν̂ω(
t,ω,ν) = ν P0-a.s.(A.2)

We emphasize that these identities indeed hold up to P0-evanescence (rather than
just dt ×P0-a.s.) because σ 2(·+ t,ω⊗t 

t,ω,ν) is right-continuous P0-a.s. and the
“derivative” in (A.1) is taken from the right. In particular, (A.2) implies that ν̂ω

has càdlàg paths P(t,ω, ν)-a.s. For later use, we also note that (ω,ω′) �→ ν̂ω
u (ω′)

is Ft ⊗F -measurable.
Given two paths ω, ω̄ ∈ �, let us now consider the equation

ζ =
∫ ·

0
σ

(
u + t, ω̄ ⊗t ζ, ν̂ω

u

)
σ

(
u + t,ω ⊗t B, ν̂ω

u

)−1
dBu.(A.3)

Under P(t,ω, ν), there exists an almost-surely unique strong solution ζ t,ω,ν and
it follows via (A.2) that ζ t,ω,ν(t,ω,ν) = t,ω̄,ν P0-a.s. However, we need to
define the solution universally, without reference to ν. To this end, we again
use a discretization as in [14] to define approximate solutions ζ n (which are
F+-progressively measurable and merely càdlàg, whence the need to have σ

defined on D) and set ζ ′ω := lim supn→∞ ζ n. Since the integrand in (A.3) is
P(t,ω, ν)-a.s. càdlàg, we have that ζ ′ω coincides with ζ t,ω,ν P (t,ω, ν)-a.s.;
cf. [14]. In particular, ζ ′ω is continuous P(t,ω, ν)-a.s., so that

ζω
u := lim sup

q∈Q,q↑u

ζ ′ω
q
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still coincides with ζ t,ω,ν P (t,ω, ν)-a.s., while in addition being F-progressively
measurable. Moreover, (ω,ω′) �→ ζω(ω′) is Ft ⊗ F -measurable by construction.
While we now have

ζω(
t,ω,ν) = t,ω̄,ν P0-a.s.

simultaneously for all ν ∈ U , as desired, we still have to elaborate on the definition
of τω. Indeed, we cannot ensure that all paths of ζω are continuous, so that the
right-hand side of (3.7) is not well defined. (We cannot simply set the irregular
paths to zero as in [14], for then the resulting process would not be F-adapted and
so τω would not be an F-stopping time as required.)

To simplify the notation, let ζ̃ be the process defined by

ζ̃ ω(
ω′) := 0 ⊗t ζ ω(

ω′·+t − ω′
t

)
, ω′ ∈ �.

Given r ∈ [0, T ], let ‖ · ‖1/3,r be the 1/3-Hölder norm for functions considered
on [0, r] ∩Q, and note that its computation involves only a countable supremum.
Thus,

Cω
r := {

ω′ ∈ � :
∥∥ζ̃ ω(

ω′)∥∥
1/3,r < ∞} ∈ Fr .

Moreover, ζ̃ ω|[0,r] is continuous on Cω
r , and a standard result for the path regularity

of martingales shows that Cω
r has full P(t,ω, ν)-measure for any ν ∈ U . Consider

Dω
r := {

ω′ ∈ Cω
r : τ

(
ζ̃·∧r

(
ω′)) ≤ r

} ∈ Fr .

By Galmarino’s test, we have that τ(ζ̃·∧r ) = τ(ζ̃·∧r ′) on Dω
r ∩ Dω

r ′ for any r, r ′ ∈
[0, T ]. Thus,

τω

(
ω′) :=

⎧⎪⎨
⎪⎩

τ
(
ζ̃·∧r

(
ω′)), if ω′ ∈ Dω

r , r ∈ [0, T ];
T , if ω′ ∈

(⋃
r

Dω
r

)c

is well defined. To see that the Borel-measurable function τω is an F-stopping time,
we observe that {τω = T } ∈ FT and, for u < T ,

{τω = u} = {
ω′ ∈ Cω

u : τ
(
ζ̃·∧u

(
ω′)) = u

} ∈ Fu,

due to the fact that ζ̃ is F-adapted. In fact, we have τω ∈ T t by the definition of ζ̃

and the condition that τ ≥ t . Moreover, (ω,ω′) �→ τω(ω′) is Ft ⊗ F -measurable
by construction. Since Cω

r has full P(t,ω, ν)-measure for any ν ∈ U , we also have

τω

(
0 ⊗t t,ω,ν) = τ

(
0 ⊗t t,ω̄,ν)

P0-a.s.

for all ν ∈ U , and we deduce as in (3.6) that∣∣Et (Xτ )(ω̄) − Et (Xτω)(ω)
∣∣

≤ sup
ν∈U

EP0
[∣∣Xτ(0⊗t t,ω̄,ν )

(
ω̄ ⊗t t,ω̄,ν) − Xτ(0⊗t t,ω̄,ν )

(
ω ⊗t t,ω,ν)∣∣]

≤ ρX

(
C‖ω̄ − ω‖t

)
as desired. �
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