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ON WELL-POSEDNESS OF FORWARD–BACKWARD
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In this paper, we study the well-posedness of the Forward–Backward
Stochastic Differential Equations (FBSDE) in a general non-Markovian
framework. The main purpose is to find a unified scheme which combines all
existing methodology in the literature, and to address some fundamental long-
standing problems for non-Markovian FBSDEs. An important device is a de-
coupling random field that is regular (uniformly Lipschitz in its spatial vari-
able). We show that the regulariy of such decoupling field is closely related
to the bounded solution to an associated characteristic BSDE, a backward
stochastic Riccati-type equation with superlinear growth in both components
Y and Z. We establish various sufficient conditions for the well-posedness
of an ODE that dominates the characteristic BSDE, which leads to the exis-
tence of the desired regular decoupling random field, whence the solvability
of the original FBSDE. A synthetic analysis of the solvability is given, as
a “User’s Guide,” for a large class of FBSDEs that are not covered by the
existing methods. Some of them have important implications in applications.

1. Introduction. The theory of Backward Stochastic Differential Equations
(BSDEs) and Forward–Backward Stochastic Differential Equations (FBSDEs)
have been studied extensively for the past two decades, and its applications have
been found in many branches of applied mathematics, especially the stochastic
control theory and mathematical finance. It has been noted, however, that while
in many situations the solvability of the original (applied) problems is essentially
equivalent to the solvability of certain type of FBSDEs, these FBSDEs are often
beyond the scope of any existing frameworks, especially when they are outside
the Markovian paradigm, where the PDE tool becomes powerless. In fact, the bal-
ance between the regularity of the coefficients and the time duration, as well as
the nondegeneracy (of the forward diffusion), has been a longstanding problem
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in the FBSDE literature, especially in a general non-Markovian framework. It has
become increasingly clear that the theory now calls for new insights and ideas
that can lead to a better understanding of the problem and hopefully to a unified
solution scheme for the general FBSDEs.

A strongly coupled FBSDE takes the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Xt = x +
∫ t

0
b(s,Xs,Ys,Zs) ds

+
∫ t

0
σ(s,Xs,Ys,Zs) dBs;

Yt = g(XT ) +
∫ T

t
f (s,Xs,Ys,Zs) ds −

∫ T

t
Zs dBs,

t ∈ [0, T ],(1.1)

where b, f and σ are (progressively) measurable functions defined on appropriate
spaces, B is a standard Brownian motion and g is a (possibly random) function
that is defined on R

n × � such that g(x, ·) is FT -measurable for each fixed x.
There have been three main methods to solve FBSDE (1.1). First, the Method of

Contraction Mapping. This method, first used by Antonelli [1] and later detailed
by Pardoux and Tang [17], works well when the duration T is relatively small.
Second, the Four Step Scheme. This was the first solution method that removed
restriction on the time duration for Markovian FBSDEs, initiated by Ma, Protter
and Yong [12]. The trade-off is the requirement on the regularity of the coefficients
so that a “decoupling” quasi-linear PDE has a classical solution. Third, the Method
of Continuation. This was a method that can treat non-Markovian FBSDEs with
arbitrary duration, initiated by Hu and Peng [7] and Peng and Wu [18], and later
developed by Yong [24] and recently in [26]. The main assumption for this method
is the so-called “monotonicity conditions” on the coefficients, which is restrictive
in a different way. This method has been used widely in applications (see, e.g.,
[21, 23, 27]) because of its pure probabilistic nature. We refer to the book of Ma
and Yong [16] for the detailed accounts for all three methods. It is worth noting
that these three methods do not cover each other.

To make our motivation clearer, let us take a quick look at some main difficulties
in the FBSDE theory. For example, consider the following simple FBSDE:

Xt = x +
∫ t

0
σZs dWs, Yt = XT −

∫ T

t
Zs dWs.(1.2)

Clearly, the FBSDE has infinitely many solutions when σ = 1, and is well-posed
when σ = 0. But more or less surprisingly, for σ �= 0,1, none of the three standard
methods works for this FBSDE when T is arbitrarily large. The FBSDE with such
a feature has been encountered in many stochastic control problems when diffusion
contains control, which is often the case in the optimal investment problems in
finance. Understanding its solvability is therefore extremely desirable, especially
when seeking the closed-loop optimal control via Pontrygin’s maximum principle.
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Another simple example, appeared in an earlier works of the fourth author [4]
where the idea of method of optimal control (cf., e.g., [16]) was adopted to study a
Monte Carlo method for FBSDEs, is of the following form:

Xt = x +
∫ t

0
[asXs + bsZs]ds +

∫ t

0
σs dBs;

(1.3)

Yt = hXT +
∫ T

t
[csXs + dsZs]ds −

∫ T

t
Zs dBs,

where a, b, c, d and σ are stochastic processes, and h is an FT -random variable.
Again, this FBSDE is not covered by any existing method. However, as we will
see in Section 7 that the solvability of (1.2) and (1.3), including an crucial estimate
in [4] regarding the solution to (1.3), will be the easy consequences of our general
results. In fact, the work [4] was the motivation for [28], which in turn motivated
this paper.

The main goal of this paper is to develop a strategy to construct a decoupling
random field which will be the key to the solvability of general non-Markovian
FBSDEs. Our starting point is the work of Delarue [5], in a Markovian framework
with σ = σ(t, x, y) being uniformly nondegenerate. In that case, an FBSDE over
arbitrary time duration was solved under only Lipschitz conditions on the coeffi-
cients, by combining nicely the Method of Contraction Mapping, the Four Step
Scheme, and some delicate PDE arguments. The idea was later extended by Zhang
[28] to the non-Markovian cases [again in the case σ = σ(t, x, y)], by using mainly
probabilistic arguments, and with the help of some compatibility conditions. The
main point is still, as in the Four Step Scheme, around finding a function u such
that

Yt = u(t,Xt), t ∈ [0, T ].(1.4)

Clearly, if the FBSDE (1.1) is non-Markovian, then u should be a random field.
The key issue here, as we shall argue, is the existence of such a decoupling ran-
dom field that is uniformly Lipschitz in its spatial variable. We will show that the
existence of such a random field is closely related to the solvability of an asso-
ciated BSDE (called the characteristic BSDE in this paper), and will ultimately
lead to the well-posedness of the original FBSDEs. We shall provide a set of suf-
ficient conditions for the existence of such decoupling field, and show that most
of the existing frameworks in the literature could be analyzed by using our crite-
ria. Furthermore, we note that in the case when the FBSDE is linear with constant
coefficients, some of our conditions are actually necessary. In other words, these
conditions cannot be improved.

A brief description of our plan is as follows. Assume that the decoupling
field u exists and the FBSDE is well-posed. Denote (Xx,Y x,Zx) to be the so-
lution to FBSDE (1.1) with initial value x. Then we argue that the derivative
of (Xx,Y x,Zx) with respect to x, denoted by (∇X,∇Y,∇Z), would satisfy a
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linear “variational FBSDE” [see (3.5) below]. Since Yx
t = u(t,Xx

t ) by (1.4), we

must have ∇Yt = ux(t,Xt)∇Xt , and thus ux(t,Xt) = ∇Yt (∇Xt)
−1 �= Ŷt . In other

words, proving u is uniformly Lipschitz continuous amounts to finding solutions
to the linear FBSDE (3.5) such that Ŷ is uniformly bounded. Furthermore, one can
check that Ŷ actually satisfies a BSDE [see (3.8) below] which will be called the
characteristic BSDE in this paper. We note that this BSDE has superlinear growth
in both components of the solutions, thus it is itself a novel subject in BSDE theory,
and thus is interesting in its own right.

Seeking the bounded solution to the characteristic BSDE over an arbitrary time
duration is by no means trivial, due to its superlinear growth behavior. We shall ac-
complish this by studying two dominating ODEs [see (3.13) below], which bound
Ŷ from above and below, respectively. Although the ODEs also have the com-
bined complexity from its nonlinearity, superlinear growth, and the singularity, it
is much more tractable. We shall give a set of sufficient conditions to guarantee the
existence of the solutions to the ODEs, which in turn guarantees the solvability of
the original FBSDE (1.1). Our results extend those of [28] in many ways, and we
believe they are by far the most general criteria for the solvability of FBSDEs. As
a byproduct, we also prove a comparison theorem for the decoupling random field
over all time, thus confirming a common belief (see, e.g., [16, 20, 22]).

There are several technical aspects in this paper that are worth emphasizing.
First, unlike the linear FBSDEs studied in [25], where conditions were made so
that the associated characteristic BSDE is linear in Ŷ , or the so-called backward
stochastic Riccati equation, often seen in the linear-quadratic stochastic control lit-
erature (see, e.g., [11] and [19]) in which the growth condition is quadratic in Ŷ

but linear in Z, in the present case the generator has at least quadratic growth on
both components. To our best knowledge, such a case has not been investigated
in the literature. Second, our method requires the minimum assumptions on the
coefficients, and covers both Markovian and non-Markovian cases, without hav-
ing to go through the quasilinear PDEs and backward SPDEs (see, e.g., [5, 6, 12,
14, 15]). In an accompanying paper [13], however, we show that the FBSDE has
a uniformly Lipschitz continuous decoupling field (and thus is well-posed) if and
only if the corresponding quasi-linear BSPDE has a uniformly Lipschitz continu-
ous Sobolev type weak solution. We hope that this connection can enhance further
understanding on both FBSDEs and BSPDEs. Third, the method in this paper is
particularly effective for the cases where the forward diffusion coefficient σ de-
pends on Z, which has been avoided in many existing works, as it brings in some
extra complications for the solvability analysis (see, e.g., [5, 16]). Finally, in this
paper we content ourselves for one-dimensional FBSDEs. In fact, the character-
istic BSDE becomes much more subtle in high-dimensional cases, as it involves
the combination of high-dimensional BSDEs with quadratic growth (in Z) and
high-dimensional backward stochastic Riccati equations, each of which is very
challenging. We hope to be able to address this issue in our future publications.
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The rest of the paper is organized as follows. In Section 2, we introduce the
decoupling field and show how it leads to the well-posedness of FBSDEs. In Sec-
tion 3, we heuristically discuss our strategy for obtaining the uniformly Lipschitz
continuity of the decoupling field. In Section 4, we study the relation between the
solvability of the linear variational FBSDE and its characteristic BSDE, and in
Section 5 we investigate the global solutions of the dominant ODEs. In Section 6,
we investigate the well-posedness of FBSDEs over small time duration, and in
Section 7 we conclude our well-posedness result for general FBSDEs over arbi-
trary time interval. In Section 8, we prove several further properties of FBSDEs.
Finally, in the Appendix, we complete some technical proofs.

2. The decoupling field. Throughout this paper, we denote (�,F,P;F) to be
a filtered probability space on which is defined a Brownian motion B = (Bt )t≥0.

We assume that F
�= F

B �= {FB
t }t≥0, the natural filtration generated by B , aug-

mented by the P-null sets of F . For any sub-σ -filed G ⊆ F , and 0 ≤ p ≤ ∞, we
denote Lp(G) to be the spaces of all G-measurable, Lp-integrable random vari-
ables. In what follows, we assume that all processes involved are one-dimensional.

Let T > 0 be a fixed time horizon. We consider the general FBSDEs (1.1),
where the coefficients b,σ,f, g are measurable functions, and are allowed to be
random in general. For technical clarity, we shall make use of the following stand-
ing assumptions throughout the paper.

ASSUMPTION 2.1. (i) The coefficients b,σ,f : [0, T ] × � × R
3 
→ R are

F-progressively measurable, for fixed (x, y, z) ∈R
3; and the function g :R×� 
→

R is FT -measurable, for fixed x ∈ R. Moreover, the following integrability condi-
tion holds:

I 2
0

�= E

{(∫ T

0

[|b| + |f |](t,0,0,0) dt

)2

+
∫ T

0
|σ |2(t,0,0,0) dt + ∣∣g(0)

∣∣2}
(2.1)

< ∞.

(ii) The coefficients b,σ,f, g are uniformly Lipschitz continuous in the spatial
variable (x, y, z) ∈R

3, uniformly in ω ∈ �, and with a common Lipschitz constant
K0 > 0.

To simplify notation, throughout the paper we denote �
�= (X,Y,Z). Our pur-

pose is to find F-progressively measurable, square-integrable processes �, such
that (1.1) holds for all t ∈ [0, T ], P-a.s. However, to facilitate the discussion, in
what follows we often consider the FBSDE on a subinterval [t1, t2]:⎧⎪⎪⎨

⎪⎪⎩
Xt = η +

∫ t

t1

b(s,�s) ds +
∫ t

t1

σ(s,�s) dBs;

Yt = ϕ(Xt2) +
∫ t2

t
f (s,�s) ds −

∫ t2

t
Zs dBs,

t ∈ [t1, t2],(2.2)
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where η ∈ L2(Ft1) and ϕ(x, ·) ∈ L2(Ft2), for each fixed x. We denote the solution
to FBSDE (2.2), if exists, by �t1,t2,η,ϕ . In particular, we denote �t,x := �t,T ,x,g .

A well understood technique for solving an FBSDE, initiated in [12], is to find
a “decoupling function” u so that the solution � to the FBSDE satisfies the re-
lation (1.2). In Markovian cases, especially when σ = σ(t, x, y), it was shown
that u is related to the solution to a quasilinear PDE, either in classical sense or
in viscosity sense (cf., e.g., [5, 12] or [17]). When the coefficients are allowed to
be random, special cases were also studied and the function u was found either
as the solution to certain backward stochastic PDEs (see, [14, 15]), or as a ran-
dom field constructed by extending the localization technique of [5] under certain
compatibility conditions of the coefficients (see, [28]). In the sequel, we call such
random function u the decoupling random field or simply decoupling field of the
FBSDE (1.1). More precisely, we have the following definition.

DEFINITION 2.2. An F-progressively measurable random field u : [0, T ] ×
R×� 
→R with u(T , x) = g(x) is said to be a “decoupling field” of FBSDE (1.1)
if there exists a constant δ > 0 such that, for any 0 = t1 < t2 ≤ T with t2 − t1 ≤ δ

and any η ∈ L2(Ft1), the FBSDE (2.2) with initial value η and terminal condition
u(t2, ·) has a unique solution that satisfies (1.4) for t ∈ [t1, t2], P-a.s.

A decoupling field u is called regular if it is uniformly Lipschitz continuous
in x.

By a slight abuse of notation, we shall denote the solution in Definition 2.2
by �t1,t2,η,u. One should note that the existence of the (regular) decoupling field
implies the well-posedness of the FBSDE over a small interval, which is usually
guaranteed by the Method of Contraction Mapping given the Assumption 2.1. The
following result shows the significance of the existence of the decoupling field for
the well-posedness for FBSDEs over an arbitrary duration.

THEOREM 2.3. Assume that Assumption 2.1 holds, and that there exists a
decoupling field u for FBSDE (1.1). Then FBSDE (1.1) has a unique solution �

and (1.4) holds over an arbitrary duration [0, T ].
PROOF. Let T > 0 be given. Consider a partition: 0 = t0 < · · · < tn = T of

[0, T ] such that ti+1 − ti ≤ δ, i = 0, . . . , n − 1, where δ is the constant in Defini-
tion 2.2.

Define Xt0

�= x, Yt0

�= u(0, x), and for i = 0, . . . , n − 1, define recursively

�t
�= �

ti,ti+1,Xti
,u

t , t ∈ (ti, ti+1].
Then � would solve FBSDE (1.1) if they could be “patched” together. But note
that

Xti+ = X
ti,ti+1,Xti

,u

ti+ = X
ti,ti+1,Xti

,u

ti
= Xti ;

Yti+ = Y
ti ,ti+1,Xti

,u

ti+ = Y
ti ,ti+1,Xti

,u

ti
= u(ti,Xti ) = Y

ti−1,ti ,Xti−1 ,u

ti
= Yti .
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That is, (X,Y ) is continuous on [0, T ]. Moreover, u(T , x) = g(x), then by (2.2)
one can check straightforwardly that � satisfies FBSDE (1.1) on [0, T ], proving
the existence. Furthermore, from our construction it is clear that (1.4) holds.

We now prove the uniqueness. Let �̃ be an arbitrary solution to FBSDE (1.1).
Note that �̃ satisfies FBSDE (2.2) on [tn−1, tn] with initial condition X̃tn−1 . Then
by the definition of the decoupling field, we have Ỹtn−1 = u(tn−1, X̃tn−1). This im-
plies that �̃ satisfies FBSDE (2.2) on [tn−2, tn−1] with initial condition X̃tn−2 . Then
we have Ỹtn−2 = u(tn−2, X̃tn−2). Repeating the arguments backwardly in time, we
obtain that Ỹti = u(ti, X̃ti ), i = n, . . . ,0. Now consider FBSDE (2.2) on [t0, t1].
Since X̃t0 = x = Xt0 , by the uniqueness of solutions we know that �̃ = � on
[t0, t1]. In particular, X̃t1 = Xt1 , and thus the corresponding FBSDEs (2.2) on
[t1, t2] have the same initial condition. Repeating the arguments, this time for-
wardly for i = 1, . . . , n, we see that �̃ = � on [0, T ], and thus the solution is
unique. �

We conclude this section by making the following observations.

REMARK 2.4. (i) Definition 2.2 and Theorem 2.3 can be extended to higher-
dimensional cases (with the constant δ possibly depending on the dimensions as
well), and the proof stays exactly the same.

(ii) By the uniqueness in Theorem 2.3, it is obvious that the decoupling field, if
exists, is also unique. In fact, it is clear that u(t, x) = Y

t,x
t .

REMARK 2.5. A typical condition for well-posedness of FBSDEs over small
time interval is the uniform Lipschitz continuity of the terminal condition. There-
fore, the main goal of this paper is to provide sufficient conditions which guarantee
the existence of the regular decoupling field u. Such a feature was also observed
from a different angle in [13], in which we characterize the regular decoupling
field u as a Sobolev type weak solution to certain backward stochastic PDE that
is Lipschitz in x. We note that the idea of “decoupling device” was also used for
linear FBSDEs in [25]. But in that work the uniform Lipschitz continuity was not
studied.

3. Some Heuristic analysis. From Theorem 2.3 and Remark 2.5, it is easy to
see that the issue of the well-posedness of FBSDE (1.1) can be decomposed into
two parts. First, the well-posedness on small time interval, and second, finding a
decoupling field u that is uniformly Lipschitz continuous in its spatial variable.
The first issue was more or less “classical” (see, e.g., [1]), but we will fine-tune it
in Section 6 to suit our purpose. The second issue, however, is much more subtle,
and is the main focus of this paper. In this section, we first give a heuristic analysis,
from which several fundamental problems will be formulated, and their proofs will
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be carried out in Sections 4 and 5 below. A synthetic analysis will then be given in
Section 7.

We first introduce some notation: for θj := (xj , yj , zj ), j = 1,2, and for ϕ =
b,σ,f , denote

h̃(x1, x2)
�= [

g(x1) − g(x2)
]
/[x1 − x2];

ϕ̃1(t, θ1, θ2)
�= [

ϕ(t, x1, y1, z1) − ϕ(t, x2, y1, z1)
]
/[x1 − x2];

(3.1)
ϕ̃2(t, θ1, θ2)

�= [
ϕ(t, x2, y1, z1) − ϕ(t, x2, y2, z1)

]
/[y1 − y2];

ϕ̃3(t, θ1, θ2)
�= [

ϕ(t, x2, y2, z1) − ϕ(t, x2, y2, z2)
]
/[z1 − z2].

Here and in the sequel, for any Lipschitz continuous function ϕ(x), when x1 = x2
we will always take the convention that

ϕ(x) − ϕ(x)

x − x
:= lim

x̃→x

ϕ(x̃) − ϕ(x)

x̃ − x
.(3.2)

Our main idea to decouple the FBSDE (1.1) is as follows. Assume that there
exists a decoupling field u = u(t, x) that is uniformly Lipschitz continuous in x

and (1.4) holds. Assume also that (1.1) is well-posed on [0, T ], with X0 = x for
any x. Given xi , i = 1,2, let �i denote the unique solution to (1.1) with initial
condition xi , and. By slightly

∇�
�= �1 − �2

x1 − x2
, ∇u(t)

�= u(t,X1
t ) − u(t,X2

t )

X1
t − X2

t

.(3.3)

Since Y i
t = u(t,Xi

t ), i = 1,2, one must have

∇Yt = ∇u(t)∇Xt,(3.4)

and one can check immediately that ∇� satisfies the following “variational
FBSDE:”⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇Xt = 1 +
∫ t

0
(b1∇Xs + b2∇Ys + b3∇Zs)ds

+
∫ t

0
(σ1∇Xs + σ2∇Ys + σ3∇Zs)dBs;

∇Yt = h∇XT +
∫ T

t
(f1∇Xs + f2∇Ys + f3∇Zs)ds

−
∫ T

t
∇Zs dBs,

t ∈ [0, T ],(3.5)

where h
�= h̃(X1

T ,X2
T ) and ϕi(t)

�= ϕ̃i(t,�
1
t ,�

2
t ), i = 1,2,3, ϕ = b, σ , f , respec-

tively. We note here that bi, σi, fi , i = 1,2,3, are F-adapted processes and h is
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a FT -measurable random variable, and they are all bounded, thanks to Assump-
tion 2.1.

Furthermore, in light of (3.4) we see that a decoupling field u being regular (i.e.,

uniformly Lipschitz continuous in x) is essentially equivalent to Ŷt
�= ∇Y(∇X)−1

being uniformly bounded. Thus, let us assume ∇X �= 0 and denote

Ŷt
�= ∇Yt/∇Xt and

(3.6)
Ẑt

�= [∇Zt − Ŷt (σ1∇Xt + σ2∇Yt + σ3∇Zt)
]
/∇Xt,

or equivalently,

∇Yt = Ŷt∇Xt, ∇Zt = Ẑt + Ŷt (σ1 + σ2Ŷt )

1 − σ3Ŷt

∇Xt.(3.7)

A simple application of Itô’s formula to Ŷt , assuming σ3Ŷ �= 1, yields that

Ŷt = h +
∫ T

t

[
Fs(Ŷs) + Gs(Ŷs)Ẑs + 
s(Ŷs)|Ẑs |2]

ds −
∫ T

t
Ẑs dBs,(3.8)

where

Fs(y)
�= f1 + f2y + y(b1 + b2y) + (f3 + b3y)y(σ1 + σ2y)

1 − σ3y
;

Gs(y)
�= σ1 + σ2y + f3 + b3y + σ3y(σ1 + σ2y)

1 − σ3y
(3.9)

= (σ1 + f3) + (σ2 + b3)y

1 − σ3y
;


s(y)
�= σ3

1 − σ3y
.

Equation (3.8) is clearly a legitimate BSDE, even without assuming ∇X �= 0.
We shall call this BSDE the “Characteristic BSDE” of the linear variational FB-
SDE (3.5) [or of the original FBSDE (1.1)], and their connection will be studied
rigorously in the next section. We note that the identities in (3.7) and the desired
Lipschitz property of the decoupling field u tell us that we should look for condi-
tions under which the BSDE (3.8) has a solution (Ŷ , Ẑ) such that

both Ŷ and (1 − σ3Ŷ )−1 are bounded.(3.10)

REMARK 3.1. It is worth noting that the BSDE (3.8) is nonstandard in several
aspects. Most notable is that its generator has at least quadratic growth in both
Y and Z, thus it can be thought of as a Backward Stochastic Riccati Equations
(BSRE) with quadratic growth in Z, which to our best knowledge, has not been
studied in literature.
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Besides the commonly cited reference of BSDEs with quadratic growth in Z

(e.g., [2, 10]), the following special cases of (3.8) are worth mentioning. In [19],
the BSRE with linear growth in Z was studied in the context of stochastic LQ
(linear-quadratic) problem, in which the FBSDE is a natural consequence of the
stochastic maximum principle. The characteristic BSDE (3.8) was also observed
in [25], where the linear FBSDEs were considered. But some special assumptions
were made so that the BSDE has linear growth in Y . Finally, in [28] certain com-
patibility conditions were also added so that (3.8) becomes a standard BSDE, and
thus its well-posedness was not an issue. Our results will contain those of [19, 25]
and [28] as special cases.

We conclude this section by outlining the strategy for obtaining the a priori
uniform estimate of Ŷ , which is crucial for finding the solution of (3.8) satisfy-
ing (3.10). To begin with, for any bounded random variable ξ , define its determin-
istic upper and lower bounds by

ξ
�= esssup ξ

�= inf{a ∈ R : ξ ≤ a, a.s.},
(3.11)

ξ
�= essinf ξ

�= sup{a ∈ R : ξ ≥ a, a.s.}.
For any θj

�= (xj , yj , zj ), j = 1,2, we define F(θ1, θ2; t, y) by replacing the co-
efficients ϕi in (3.9) with ϕ̃i(t, θ1, θ2) defined in (3.1), i = 1,2,3, ϕ = b,σ,f . We
then define

h
�= esssup

(
sup

x1 �=x2

h̃(x1, x2)
)
,

h
�= essinf

(
inf

x1 �=x2
h̃(x1, x2)

)
,

(3.12)
F(t, y)

�= esssup
(

sup
x1 �=x2,y1 �=y2,z1 �=z2

F(θ1, θ2; t, y)
)
,

F (t, y)
�= essinf

(
inf

x1 �=x2,y1 �=y2,z1 �=z2
F(θ1, θ2; t, y)

)
.

Here, we should remark that F(t, y) is a deterministic function, and we should
note its notational difference from the possibly random processes, for example,
Ft(y), Gt(y), etc., appeared previously. We have the following a priori estimate
of Ŷ .

LEMMA 3.2. Let Assumption 2.1 hold. Assume that the BSDE (3.8) has a
solution (Ŷ , Ẑ), and the following ordinary differential equations (ODEs) admit
solutions y,y:

yt = h +
∫ T

t
F (s,ys) ds, y

t
= h +

∫ T

t
F (s,y

s
) ds.(3.13)
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Assume further that Ŷ , y and y all satisfy (3.10). Then y
t
≤ Ŷt ≤ yt , for all t ∈

[0, T ], P-a.s.

PROOF. Denote G̃t (z)
�= Gt(Ŷt )z + 
t(Ŷt )z

2. Note that (Ŷ , Ẑ) satisfies the
following BSDE:

Yt = h +
∫ T

t

[
Fs(Ys) + G̃s(Zs)

]
ds −

∫ T

t
Zs dBs

and (y,0) satisfy the following BSDE:

Yt = h +
∫ T

t

[
F(s,Ys) + G̃s(Zs)

]
ds −

∫ T

t
Zs dBs.

Let C > 0 be the common upbound of |Ŷ |, |1 − σ3Ŷ |−1, |y|, |1 − σ3y|−1, |y|,
and |1 − σ3y|−1. Note that F is uniformly Lipschitz continuous in y in the set
{y : |y| ≤ C, |1 − σ3y|−1 ≤ C}. It then follows from the comparison theorem for
quadratic BSDEs (see, e.g., [10]) that Ŷ ≤ y. Similarly, we have Ŷ ≥ y. �

Combining the discussions in Sections 2 and 3, especially Lemma 3.2, it is now
clear that finding the uniform Lipschitz decoupling random field u will eventually
come down to finding conditions so that the ODEs in (3.13) admit nonexplosive
solutions over the arbitrarily prescribed duration [0, T ]. In the rest of the paper,
we shall call the ODEs in (3.13) the “dominating ODEs” of BSDE (3.8), whose
well-posedness will be the main subject of Section 5.

4. The characteristic BSDE. In this section, we study the connection be-
tween well-posedness of the linear variational FBSDE (3.5) and the corresponding
characteristic BSDE (3.8). Such a relation is not only interesting in its own right,
but also important for us to construct the desired regular decoupling field in Sec-
tions 6 and 7 below. We should note that the variational FBSDE (3.5) coincides
with the original FBSDE if (1.1) is actually linear.

For notational simplicity, we denote (X ,Y,Z) := (∇X,∇Y,∇Z) and then the
variational FBSDE (3.5) becomes the following linear FBSDE with random coef-
ficients: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Xt = 1 +
∫ t

0
(b1Xs + b2Ys + b3Zs) ds

+
∫ t

0
(σ1Xs + σ2Ys + σ3Zs) dBs;

Yt = hXT +
∫ T

t
(f1Xs + f2Ys + f3Zs) ds −

∫ T

t
Zs dBs.

(4.1)

In this case, (3.6) and (3.7) become

Ŷ
�= Y/X , Ẑ

�= [
Z − Ŷ (σ1X + σ2Y + σ3Z)

]
/X ,(4.2)

Y = ŶX , Z = [
Ẑ + Ŷ (σ1 + σ2Ŷ )

]
X /[1 − σ3Ŷ ].(4.3)
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The original Assumption 2.1 can be translated into the following assumption.

ASSUMPTION 4.1. Assume bi, σi, fi , i = 1,2,3, are F-adapted processes,
h is a FT -measurable random variable, and they are all bounded.

The following spaces are important in our discussion. For p ≥ 1, denote

L
p �=

{
� :‖�‖p

Lp

�= E

{
sup

0≤t≤T

[|Xt |p + |Yt |p] +
(∫ T

0
|Zt |2 dt

)p/2}
< ∞

}
;

(4.4)
L̂p

�= ⋃
q>p

L
q.

We begin our discussion with the following observation. For any F-adapted
process u such that

∫ T
0 |ut |2 dt < ∞, P-a.s., we define

Mu
t

�= exp
{∫ t

0
us dBs − 1

2

∫ t

0
|us |2 ds

}
.(4.5)

Consider the following simplified form of (3.8):

Ŷt = h +
∫ T

t

[
αs + βsŶs + γsẐs + λs |Ẑs |2]

ds −
∫ T

t
Ẑs dBs,

(4.6)
t ∈ [0, T ],

where α,β, γ,λ are F-adapted processes and h is an FT -measurable random vari-
able, all bounded. Then it is well known (see, e.g., [2]) that the BSDE (4.6) admits
a unique solution (Ŷ , Ẑ) such that, for some constant C depending on the bounds
of α,β, γ,λ,h and T ,

|Ŷt | ≤ C and Et

{∫ T

t
|Ẑs |2 ds

}
≤ C.

Furthermore, applying some BMO analysis (cf. [9], Lemma 4 and Theorem 1),
one shows that there exists a constant ε > 0, depending also on the bounds of the
coefficients and T , such that

E

{
exp

(
ε

∫ T

0
|Ẑt |2 dt

)
+ ∣∣MλẐ

T

∣∣1+ε
}

< ∞.(4.7)

Consequently, MλẐ is a true martingale.
Bearing this observation in mind, we now give the main result of this section.

THEOREM 4.2. Assume Assumption 4.1 holds.
(i) If the BSDE (3.8) has a solution (Ŷ , Ẑ) such that (3.10) holds, then the

FBSDE (4.1) has a solution (X ,Y,Z) ∈ L̂1 such that X �= 0 and (4.3) holds.
(ii) Conversely, if the FBSDE (4.1) has a solution (X ,Y,Z) ∈ L̂1 such that

|Yt | ≤ C|Xt |, |Xt | ≤ C|Xt − σ3Yt |,(4.8)
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then X �= 0, and the processes (Ŷ , Ẑ) defined by (4.2) satisfies BSDE (3.8)
and (3.10).

PROOF. (i) In light of (4.3), we consider the following SDE:

dXt = Xt

[
b1 + b2Ŷt + b3

Ẑt + Ŷt (σ1 + σ2Ŷt )

1 − σ3Ŷt

]
dt

+Xt

[
σ1 + σ2Ŷt + σ3

Ẑt + Ŷt (σ1 + σ2Ŷt )

1 − σ3Ŷt

]
dBt(4.9)

= Xt

{
Ht(Ŷt , Ẑt ) dt + [

It (Ŷt ) + 
t(Ŷt )Ẑt

]
dBt

}
,

where

Ht(y, z)
�=

[
b1 + b2y + b3

z + y(σ1 + σ2y)

1 − σ3y

]
; It (y)

�= σ1 + σ2y

1 − σ3y
.

It is then easy to check that

Xt = exp
{∫ t

0

[
Is(Ŷs) + 
s(Ŷs)Ẑs

]
dBs

+
∫ t

0

[
Hs(Ŷs, Ẑs) − 1

2

[
Is(Ŷs) + 
s(Ŷs)Ẑs

]2
]
ds

}
(4.10)

= M

(Ŷ )Ẑ
t M

I (Ŷ )
t exp

{∫ t

0

[
Hs(Ŷs, Ẑs) − Is(Ŷs)
s(Ŷs)Ẑs

]
ds

}
.

Clearly, X > 0. Furthermore, since (3.10) implies that in (4.9) 
(Ŷ ), I (Ŷ ) are
bounded and H(Ŷ , Ẑ) has a linear growth in Ẑ, and (4.7) implies

E

{
sup

0≤t≤T

∣∣MI(Ŷ )
t

∣∣p + exp
(
p

∫ T

0

[
1 + |Ẑt |]dt

)}
< ∞

(4.11)
for any p > 1,

we deduce from (4.10) that, for ε in (4.7) [noting that (2(1+ε)
2+ε

, 2(1+ε)
ε

) are conju-
gates],

E

{
sup

0≤t≤T

|Xt |1+ε/2
}

≤
(
E

{
sup

0≤t≤T

∣∣M
(Ŷ )Ẑ
t

∣∣1+ε
})(2+ε)/(2(1+ε))

(4.12)

×
(
E

{
sup

0≤t≤T

∣∣MI(Ŷ )
t

∣∣(2+ε)(1+ε)/ε
eC(2+ε)(1+ε)/ε

∫ T
0 [1+|Ẑt |]dt

})ε/(2(1+ε))

< ∞.
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Now if we define (Y,Z) by (4.3), then (X ,Y,Z) satisfy (4.1) and, by (4.7) again,

E

{
sup

0≤t≤T

|Yt |1+ε/2 +
(∫ T

0
|Zt |2 dt

)1+ε/4}
< ∞.(4.13)

That is, (X ,Y,Z) ∈ L
1+ε/4 ⊂ L̂1, proving (i).

(ii) We now assume that FBSDE (4.1) has a solution (X ,Y,Z) ∈ L̂1 such

that (4.8) holds. Denote τn
�= inf{t :Xt = 1

n
}∧T , τ

�= inf{t :Xt = 0}∧T , and define

Ŷ , Ẑ by (4.2). Clearly, the assumption (4.8) implies that Ŷ satisfies (3.10) in [0, τ ),
and applying Itô’s formula we see that (Ŷ , Ẑ) satisfies

dŶt = −[
Ft(Ŷt ) + Gt(Ŷt )Ẑt + 
t(Ŷt )|Ẑt |2]

dt + Ẑt dBt , t ∈ [0, τ ).

Note that the boundedness of Ŷ implies that the above SDE is actually of the form
of (4.6), and at least on [0, τn) the stochastic integral

∫ ·
0 Ẑs dBs is a true martingale.

Thus, we can apply the same argument there to obtain the bound (4.7) on [0, τn):

E

{
exp

(
ε

∫ τn

0
|Ẑt |2 dt

)
+ ∣∣M
(Ŷ )Ẑ

τn

∣∣1+ε
}

≤ C < ∞.

Note that the constants ε and C above depend on the coefficients, which depend
only on the bound of Ŷ and is independent of n, thanks to (4.8). Thus, letting
n → ∞ we have

E

{
exp

(
ε

∫ τ

0
|Ẑt |2 dt

)
+ ∣∣M
(Ŷ )Ẑ

τ

∣∣1+ε
}

≤ C < ∞.

On the other hand, since X satisfies (4.10) on [0, τ ), we see that the estimate above
implies that Xτ > 0, a.s. Thus, τ = T a.s. In other words, (Ŷ , Ẑ) satisfies (3.8) over
[0, T ], and (3.10) holds. The proof is now complete. �

REMARK 4.3. We should point out that Theorems 4.2 only indicates an a
priori relationship between the characteristic BSDE and the “derivative” of the
decoupling field, whenever exists, via the variational FBSDE (4.1). The bounded-
ness requirement (3.10), or equivalently, the “regularity” of the decoupling field,
is crucial for the solution scheme to be effective (recall the inductive procedure in
Theorem 2.3). The actual construction of the decoupling field, however, depends
on the well-posedness of the dominating ODEs to be analyzed in details in next
section, which is motivated by but independent of the results in this section. In
fact, only a localized version (in small time duration) of Theorem 4.2(ii) will be
used in the proof of Theorem 6.1(iii) below.

We conclude this section by presenting a result regarding the uniqueness of
the solutions to FBSDE (4.1) and its characteristic BSDE (3.8), which might be
of independent interest. We should note that this result will not be used in our
future discussion, but its arguments will be useful whenever a linearized FBSDE
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is encountered (e.g., the proof of Theorem 8.6 below). To this end, we make use
of an additional condition on (Ŷ , Ẑ) that strengthen the estimate (4.7):

E

{
sup

0≤t≤T

∣∣M
(Ŷ )Ẑ
t

∣∣2+ε
}

< ∞ for some ε > 0.(4.14)

THEOREM 4.4. Let Assumption 4.1 hold. Then the BSDE (3.8) has a solution
(Ŷ , Ẑ) satisfying (3.10) and (4.14) if and only if the FBSDE (4.1) has a solution
(X ,Y,Z) ∈ L̂2 satisfying (4.8).

Moreover, in such a case the uniqueness holds for solutions to BSDE (3.8) sat-
isfying (3.10) and (4.14) with ε = 0 and for solutions to FBSDE (4.1) in L

2 satis-
fying (4.8).

PROOF. We proceed in three steps. To make the presentation more precise, we
denote:

• A0
�= {all solutions (X ,Y,Z) ∈ L

2 to FBSDE (4.1) satisfying (4.8)};
• A �= A0 ∩ L̂

2;

• B0
�= {all solutions (Ŷ , Ẑ) to BSDE (3.8) satisfying (3.10) and (4.14) with ε =

0}; and

• B �= {all solutions (Ŷ , Ẑ) in B0 satisfying (4.14)}.
Step 1. We first prove the equivalence of the existence of desired solutions

in A and B. First, assume there exists (Ŷ , Ẑ) ∈ B. Then by Theorem 4.2, the
FBSDE (4.1) has a solution (X ,Y,Z) ∈ L̂1. Furthermore, using condition (4.14)
we can actually improve the estimates (4.12) and (4.13) to L

2+ε/2, and thus
(X ,Y,Z) ∈ A.

Conversely, there exists (X ,Y,Z) ∈ A ⊆ L̂1, then by Theorem 4.2(ii), the
(Ŷ , Ẑ) defined by (4.2) satisfy (3.8) and (3.10), and X satisfy (4.10). Thus,

M

(Ŷ )Ẑ
t = Xt

[
M

I(Ŷ )
t

]−1 exp
{
−

∫ t

0

[
Hs(Ŷs, Ẑs) − Is(Ŷs)
s(Ŷs)Ẑs

]
ds

}
.

If E{sup0≤t≤T |Xt |p} < ∞ for some p > 2, by estimates similar to (4.12) we ob-
tain (4.14).

Step 2. We next turn to the uniqueness. We claim that:

For any (X ,Y,Z) ∈ A0 and (Ŷ , Ẑ) ∈ B0, if either (X ,Y,Z) ∈ A
or (Ŷ , Ẑ) ∈ B, then relation (4.2) and equivalently (4.3) must hold.

(4.15)

Now fix an (X 0,Y0,Z0) ∈ A and (Ŷ 0, Ẑ0) ∈ B which satisfy (4.2) and (4.3). For
any (Ŷ , Ẑ) ∈ B0, apply (4.15) on (X 0,Y0,Z0) and (Ŷ , Ẑ), we see that they satisfy
(4.2), and thus (Ŷ , Ẑ) = (Ŷ 0, Ẑ0). On the other hand, for any (X ,Y,Z) ∈ A0,
apply (4.15) on (X ,Y,Z) and (Ŷ 0, Ẑ0). By (4.3), we see that X must satisfy
(4.10) with (Ŷ 0, Ẑ0) in the right-hand side, and thus X = X 0. Moreover, it follows
from (4.3) that (Y,Z) = (Y0,Z0).
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Step 3. We now prove claim (4.15). Given (X ,Y,Z) ∈ A0 and (Ŷ , Ẑ) ∈ B0,
denote

δYt
�= Yt − ŶtXt ,

(4.16)
δZt

�= Zt − [
Xt Ẑt + Ŷt (σ1Xt + σ2Yt + σ3Zt )

]
.

Applying Itô’s formula to δYt , we have

d(δYt ) = −[
f1Xt + f2Yt + f3Zt −Xt

[
Ft(Ŷt ) + Gt(Ŷt )Ẑt + 
t(Ŷt )|Ẑt |2]

+ Ŷt (b1Xt + b2Yt + b3Zt ) + Ẑt (σ1Xt + σ2Yt + σ3Zt )
]
dt

+ δZt dBt

(4.17)
= −[

Xt

[
f1 − Ft(Ŷt ) − Gt(Ŷt )Ẑt − 
t(Ŷt )|Ẑt |2 + b1Ŷt + σ1Ẑt

]
+Yt [f2 + b2Ŷt + σ2Ẑt ] +Zt [f3 + b3Ŷt + σ3Ẑt ]]dt

+ δZt dBt .

By (4.16), one can easily check that

Y = δY + ŶX ,

Z = δZ +X Ẑ + Ŷ (σ1X + σ2Y)

1 − σ3Ŷ

= δZ + σ2Ŷ δY +X [Ẑ + (σ1 + σ2Ŷ )Ŷ ]
1 − σ3Ŷ

.

Plugging these into (4.17), we obtain

d(δYt ) = −[αtXt + βtδYt + γtδZt ]dt + δZt dBt ,

where

γt
�= f3 + b3Ŷt + σ3Ẑt

1 − σ3Ŷt

= f3 + b3Ŷt

1 − σ3Ŷt

+ 
t(Ŷt )Ẑt ;
(4.18)

βt
�= f2 + b2Ŷt + σ2Ẑt + σ2Ŷt [f3 + b3Ŷt + σ3Ẑt ]

1 − σ3Ŷt

and

αt
�= f1 − Ft(Ŷt ) − Gt(Ŷt )Ẑt − 
t(Ŷt )|Ẑt |2 + b1Ŷt + σ1Ẑt

+ [f2 + b2Ŷt + σ2Ẑt ]Ŷt + [f3 + b3Ŷt + σ3Ẑt ] Ẑt + (σ1 + σ2Ŷt )Ŷt

1 − σ3Ŷt

= 0,
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thanks to (3.9). Denote

�t
�= M

γ
t exp

(∫ t

0
βs ds

)

= M

(Ŷ )Ẑ
t M

(f3+b3Ŷ )/(1−σ3Ŷ )
t(4.19)

× exp
(∫ t

0

[
βs − f3 + b3Ŷs

1 − σ3Ŷs


s(Ŷs)Ẑs

]
ds

)
.

Then by applying Itô’s formula, one obtains immediately

d(�tδYt ) = �t [γtδYt + δZt ]dBt .(4.20)

We claim that

E

{(∫ T

0
|�t |2[γtδYt + δZt ]2 dt

)1/2}
(4.21)

≤ E

{
sup

0≤t≤T

|�t |
(∫ T

0
[γtδYt + δZt ]2 dt

)1/2}
< ∞,

so that
∫ ·

0 �s[γtδYt + δZs]dBs is a true martingale. Since δYT = 0 and �0 = 1,
it follows from (4.20) that δY = 0, and hence δZ = 0. Then (4.16) leads to (4.2)
immediately.

It remains to prove (4.21). Note that

|γt | ≤ C
[
1 + |Ẑt |], |δYt | ≤ C

[|Xt | + |Yt |],
|δZt | ≤ C

[|Xt | + |Yt | + |Zt | + |Xt ||Ẑt |].
Then ∫ T

0
[γtδYt + δZt ]2 dt

≤ C

[
1 + sup

0≤t≤T

[|Xt |2 + |Yt |2]
(4.22)

+
∫ T

0

[|Zt |2 + |Ẑt |2]
dt + sup

0≤t≤T

|Xt |2
∫ T

0
|Ẑt |2 dt

]
.

Since (Ŷ , Ẑ) satisfies (3.10), by (4.7) we have

E

{(∫ T

0
|Ẑt |2 dt

)p}
< ∞ for any p ≥ 1.(4.23)

We now verify (4.21) in the two cases:
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Case 1. (Ŷ , Ẑ) ∈ B, namely (4.14) holds with some ε > 0. Following the argu-
ments for (4.12), we have

E

{
sup

t∈[0,T ]
|�t |2+ε/2

}
< ∞.(4.24)

Then for any (X ,Y,Z) ∈ A0, plugging (4.23) and (4.24) into (4.22) we have
(4.21) immediately.

Case 2. (X ,Y,Z) ∈ A, namely (X ,Y,Z) ∈ L
2+ε for some ε > 0. Note that

1

2 + ε
+ 3 + 2ε

6 + 3ε
+ ε

6 + 3ε
= 1 and

6 + 3ε

3 + 2ε
< 2.

Since (4.14) holds with ε = 0, following the arguments for (4.12) we have
E{supt∈[0,T ] |�t |(6+3ε)/(3+2ε)} < ∞. This implies that

E

{
sup

0≤t≤T

|�t | sup
0≤t≤T

|Xt |
∫ T

0
|Ẑt |2 dt

}

≤
(
E

{
sup

0≤t≤T

|�t |(6+3ε)/(3+2ε)
})(3+2ε)/(6+3ε)

×
(
E

{
sup

0≤t≤T

|Xt |2+ε
})1/(2+ε)

(
E

{(∫ T

0
|Ẑt |2 dt

)(6+3ε)/ε})ε/(6+3ε)

< ∞.

Then one can easily prove (4.21) again. �

5. Well-posedness of the dominating equations. We note that Theorems 4.2
and 4.4 only established the relations of the well-posedness between the character-
istic BSDEs and the original FBSDE, it does not provide the well-posedness result
for either one of them. In this section, we take a closer look at the dominating
ODEs (3.13). Since the existence of bounded solutions y and y to the dominat-
ing ODEs will be essential in constructing the desired regular decoupling field,
which will eventually lead to well-posedness of the FBSDE (1.1), the results in
this section will be the blueprint of a user’s guide in the end.

We begin with a special form of comparison theorem among the solutions to
ODEs. Consider the following “backward ODEs” on [0, T ]:

y0
t = h0 +

∫ T

t
F 0(

s,y0
s

)
ds(5.1)

and

y1
t = h1 − C1 +

∫ T

t

[
F 1(

s,y1
s

) + c1
s

]
ds,

(5.2)

y2
t = h2 + C2 +

∫ T

t

[
F 2(

s,y2
s

) − c2
s

]
ds,
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where F 0,F 1,F 2 : [0, T ]×R−→R are (deterministic) measurable functions. The
following simple lemma will be useful in our discussion. Its proof is rather elemen-
tary and we defer it to the Appendix.

LEMMA 5.1. Assume that:

(i) h1 ≤ h0 ≤ h2, and F 1 ≤ F 0 ≤ F 2.
(ii) Both ODEs in (5.2) admit bounded solutions y1 and y2 on [0, T ].

(iii) For each t ∈ [0, T ], the functions y 
→ F i(t, y), i = 0,1,2, are uniformly
Lipschitz continuous for y ∈ [y1

t ,y2
t ], with a common Lipschitz constant L.

(iv) Ci ≥ ∫ T
t e− ∫ T

s αr drci
s ds, for all t ∈ [0, T ] and all α satisfying |α| ≤ L.

Then (5.1) has a unique solution y0 satisfying y1 ≤ y0 ≤ y2.

REMARK 5.2. A typical sufficient condition for the above (iv) is: Ci ≥∫ T
0 eL(T −t)(ci

t )
+ dt . In particular, this is satisfied if Ci = 0 and ci ≤ 0.

5.1. Linear FBSDE with constant coefficients. We first investigate the linear
FBSDE (4.1) where all the coefficients are constants. We shall show that in such a
case some “sharp” (sufficient and necessary) conditions regarding well-posedness
can be obtained. These results, to our best knowledge, are novel in the literature;
and at the same time, they more or less set the “limits” for the solvability of general
FBSDE (1.1).

We carry out our analysis in two cases.

Case 1: σ3 = 0. In this case, h = h = h, F(t, y) = F(t, y) = F(y), and two
ODEs in (3.13) become the same:

yt = h +
∫ T

t
F (ys) ds,(5.3)

where

F(y) = f1 + [f2 + b1 + σ1f3]y + [b2 + f3σ2 + b3σ1]y2 + σ2b3y
3.(5.4)

We have the following theorem.

THEOREM 5.3. Assume that in the linear FBSDE (4.1) all coefficients are
constants, and σ3 = 0. Then the corresponding dominating ODE (5.3) with F de-
fined by (5.4) has a bounded solution for arbitrary T if and only if one of the
following three cases hold true:

(i) F(h) ≥ 0 and F has a zero point in [h,∞).
(ii) F(h) ≤ 0 and F has a zero point in (−∞, h].

(iii) σ2b3 = 0 and b2 + f3σ2 + b3σ1 = 0.
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PROOF. We first prove the sufficiency part. In case (i), there exists λ ≥ h such
that F(λ) = 0. Note that F is locally Lipschitz continuous in y and

h = h +
∫ T

t

[
F(h) − F(h)

]
ds, λ = λ +

∫ T

t
F (λ)ds.

Then it follows from Lemma 5.1 and in particular Remark 5.2 that yt ∈ [h,λ],
t ∈ [0, T ]. Similarly, in case (ii), one has yt ∈ [λ,h], for some λ ≤ h such that
F(λ) = 0. Finally, in case (iii) the ODE (5.3) becomes linear:

yt = h +
∫ T

t

[
f1 + (f2 + b1 + σ1f3)ys

]
ds.(5.5)

Thus, it is obviously bounded.
The proof of necessity is elementary but lengthy, we postpone it to the Ap-

pendix. �

When the terminal time T is fixed, we have the following slightly weaker suffi-
cient conditions:

THEOREM 5.4. For any given T > 0, the ODE (5.3) with F given in (5.4) has
a bounded solution on [0, T ] if one of the following three cases hold true:

(i) σ2b3 < 0 or F(h) = 0.
(ii) F(h) > 0, and there exists a constant ε = ε(T ) > 0 small enough, such

that

σ2b3 ≤ ε and b2 + f3σ2 + b3σ1 ≤ ε.

(iii) F(h) < 0, and there exists a constant ε = ε(T ) > 0 small enough such that

σ2b3 ≤ ε and b2 + f3σ2 + b3σ1 ≥ −ε.

PROOF. (i) In this case clearly, the result follows from either (i) or (ii) of
Theorem 5.3.

(ii) In this case we have, for some small constant ε > 0 which will be specified
later and for some constants C1,C0 independent of ε,

F(y) ≤ εy3 + εy2 + C1y + C ≤ 2εy3 + C1y + C0 for all y ≥ 0.(5.6)

We first solve

ỹt = h+ +
∫ T

t
[C1ỹs + C0 + 1]ds

and obtain

ỹt = eC1(T −t)h+ + C0 + 1

C1

[
eC1(T −t) − 1

]
(5.7)

≤ C2 := eC1T h+ + C0 + 1

C1

[
eC1T − 1

]
.
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Set ε
�= 1

2C3
2

so that 2εỹ3
t ≤ 1. Note that

ỹt = h+ +
∫ T

t

[
2εỹ3

s + C1ỹs + C0 + (
1 − 2εỹ3

s

)]
ds.

By (5.6), applying Lemma 5.1 and in particular Remark 5.2 we see that ODE (5.3)
has a solution y ∈ [h, ỹ] ⊂ [h,C2].

(iii) can be proved similarly. �

Case 2: σ3 �= 0. In this case, we still have h = h = h, F(t, y) = F(t, y) =
F(y), where the deterministic function F in (5.4) can be rewritten as

F(y) = α0

1/σ3 − y
+ α1 + α2y +

[
b2 − b3σ2

σ3

]
y2,(5.8)

for some constants α0, α1, α2. In this case, the two ODEs in (3.13) also become
the same one (5.3) and, in light of (3.10), we want to find its solution satisfying
that

both y and (1 − σ3y)−1 are bounded.(5.9)

REMARK 5.5. We note that (5.9) amounts to saying that σ3h �= 1 since
yT = h. In fact, if σ3h = 1, there are counter examples in both existence and
uniqueness of the linear FBSDE (4.1) (cf., e.g., [16]).

We now have the following theorem.

THEOREM 5.6. Assume the FBSDE is the linear one (4.1) and all the coeffi-
cients are constants. Assume also that σ3 �= 0 and hσ3 �= 1. Then the ODE (5.3)
has a solution satisfying (5.9) for arbitrary T if and only if one of the following
four cases holds:

(i) h < 1
σ3

, F(h) ≤ 0, and either F has a zero point in (−∞, h] or

b2 − b3σ2
σ3

= 0.

(ii) h > 1
σ3

, F(h) ≥ 0, and either F has a zero point in [h,∞) or b2 − b3σ2
σ3

= 0.

(iii) h < 1
σ3

, F(h) ≥ 0, and F has a zero point in [h, 1
σ3

).

(iv) h > 1
σ3

, F(h) ≤ 0, and F has a zero point in ( 1
σ3

, h].

PROOF. We prove the sufficiency here and again postpone the necessary part
to the Appendix.

(i) If F(λ) = 0, for some λ ∈ (−∞, h], then as in Theorem 5.3 we see that
ODE (5.3) has a solution y ∈ [λ,h]. Thus (5.9) holds. We now assume instead that
b2 − b3σ2

σ3
= 0. Then from (5.8), we see that F(y) = α0(

1
σ3

− y)−1 + α1 + α2y.
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Consider

ỹt = h +
∫ T

t

[
−|α0|

(
1

σ3
− h

)−1

+ α1 + α2ỹs

]
ds.

Since F(h) ≤ 0, clearly the above SDE has a bounded solution ỹ ≤ h. Applying
Lemma 5.1, one can easily see that (5.3) has a solution y ∈ [ỹ, h]. Thus, (5.9)
holds.

(iii) Let λ ∈ [h, 1
σ3

) be such that F(λ) = 0. Note that y1
t

�= h and y2
t

�= λ are
(constant) solutions of the following ODEs, respectively:

y1
t = h +

∫ T

t

[
F

(
y1
s

) − F(h)
]
ds, y2

t = λ +
∫ T

t
F

(
y2
s

)
ds.

Comparing these two equations with (5.3) and applying Lemma 5.1, we have h ≤
yt ≤ λ, for any t ∈ [0, T ]. This implies (5.9) immediately.

(ii) and (iv) can be proved similarly as (i) and (iii), respectively. �

When T is fixed, we may also have some slightly weaker sufficient conditions.
However, these conditions are more involved, so we omit them here and will dis-
cuss directly for the general case in next subsection; see Theorems 5.9 and 5.10
below.

5.2. The nonlinear case. Again we consider the case that σ3 = 0 first.

Case 1: σ = σ(t, x, y). We recall that in this case F takes the form (5.4), where
bi , σi , fi , i = 1,2,3, are bounded, adapted processes defined by (3.1), and thus F

is also random and may depend on t . Now recall the definition of the functions
F and F in (3.12). Again, by a slight abuse of notation we replace �j , j = 1,2
in (3.1) by θj , j = 1,2, and still denote them by bi , σi , fi , i = 1,2,3. In what
follows, all assumptions involving coefficients in (5.4) will be in the sense that
they hold uniformly for all θj , j = 1,2. In analogy to Theorem 5.4, we have the
following result.

THEOREM 5.7. Assume Assumption 2.1 holds and σ = σ(t, x, y). Then, for
any T > 0, the ODEs (3.13) have bounded solutions y and y on [0, T ] if one of the
following three cases holds true:

(i) There exists a constant ε > 0 such that

σ2b3 ≤ −ε|b2 + f3σ2 + b3σ1|.(5.10)

(ii) There exists a constant λ ≤ h, and a constant ε > 0 small enough such that

F(t, λ) ≥ 0, σ2b3 ≤ ε and b2 + f3σ2 + b3σ1 ≤ ε.(5.11)

(iii) There exists a constant λ ≥ h, and a constant ε > 0 small enough such that

F(t, λ) ≤ 0, σ2b3 ≤ ε and b2 + f3σ2 + b3σ1 ≥ −ε.(5.12)
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PROOF. (i) In this case, we have

F(t, y) ≤ C[y + 1] for all y ≥ 1

ε
and

F(t, y) ≥ C[y − 1] for all y ≤ −1

ε
.

Following the arguments in Theorem 5.4(ii), one can easily prove the result.
(ii) In this case, similar to (5.6) we have

F(t, λ) ≥ F(t, λ) ≥ 0 and F(t, y) ≤ F(t, y) ≤ 2εy3 + C1y + C0

for all y ≥ 0.

Let C2 be defined by (5.7) and set ε := 1
2C3

2
. Following the arguments in Theo-

rem 5.4(ii), we see that the ODEs in (3.13) have bounded solutions λ ≤ y ≤ y ≤ C2.
(iii) can be proved similarly. �

Case 2: σ = σ(t, x, y, z). This case has been avoided in many of the existing
literature, especially when one uses the decoupling strategy. A well-known suffi-
cient condition for the existence is, roughly speaking, that |σ3h| < 1. As we will
see below, the condition we need is essentially σ3h �= 1. In particular, we shall
discuss three different cases:

(2-a) |σ3h| < 1;
(2-b) |σ3h| > 1 and both σ3 and h do not change sign;
(2-c) σ3h < 1 and either σ3 or h does not change sign.

REMARK 5.8. We remark that, if all the coefficients are constants, the above
three cases (actually the latter two) cover all possible cases of σ3h �= 1. However,
for general nonlinear FBSDEs with random coefficients, we need them to hold
uniformly in certain sense.

To be more precise, let T > 0 be given. We begin by fixing three constants
c1, c2, c3 satisfying

c1 > 0, 0 < c2 < c3, c1c3 < 1.(5.13)

The following result gives the answer to case (2-a).

THEOREM 5.9. Assume that Assumption 2.1 and (5.13) are in force. Assume
also that there exists a constant ε = ε(T ) > 0 small enough such that

|σ3| ≤ c1, |h| ≤ c2 and F(t, c3) ≤ ε, F (t,−c3) ≥ −ε.(5.14)

Then the ODEs in (3.13) have solutions y and y satisfying

−c3 ≤ y ≤ y ≤ c3 and hence both y and y satisfy (5.9).
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PROOF. Note that 1 −σ3y ≥ 1 − c1c3 > 0 for y ∈ [−c3, c3], then F and F are
uniformly Lipschitz continuous in y for y ∈ [−c3, c3], and we denote by L their

uniform Lipschitz constant. Clearly, ỹ1
t

�= −c3 and ỹ2
t

�= c3 satisfy the following
ODEs:

ỹ1
t = −c2 − (c3 − c2) +

∫ T

t

[
F

(
s, ỹ1

s

) − F(s,−c3)
]
ds,

ỹ2
t = c2 + (c3 − c2) +

∫ T

t

[
F

(
s, ỹ2

s

) − F(s, c3)
]
ds.

Now set ε > 0 small enough such that c3 − c2 >
∫ T

0 eL(T −t)ε dt . Then it follows
from Lemma 5.1 and in particular Remark 5.2 we obtain the result. �

We next consider case (2-b).

THEOREM 5.10. Let Assumption 2.1 and (5.13) hold. Assume that there exists
a constant ε > 0 small enough such that one of the following four cases holds true:

σ3 ≥ c−1
1 , h ≥ c−1

2 and
(5.15)

F
(
t, c−1

3

) ≥ −ε, b2 − b3σ2

σ3
≤ ε;

σ3 ≤ −c−1
1 , h ≥ c−1

2 and
(5.16)

F
(
t, c−1

3

) ≥ −ε, b2 − b3σ2

σ3
≤ ε;

σ3 ≥ c−1
1 , h ≤ −c−1

2 and
(5.17)

F
(
t,−c−1

3

) ≤ ε, b2 − b3σ2

σ3
≥ −ε;

σ3 ≤ −c−1
1 , h ≤ −c−1

2 and
(5.18)

F
(
t,−c−1

3

) ≤ ε, b2 − b3σ2

σ3
≥ −ε.

Then the ODEs in (3.13) have bounded solutions y and y such that they satisfy the
corresponding property of h in the above conditions with c2 being replaced by c3.
In particular, both y and y satisfy (5.9).

PROOF. We prove only the case (5.15). The other cases can be proved simi-
larly.

In this case, we have

F(t, y) ≤ C

c−1
3 − c1

+ C1y + εy2 = C0 + C1y + εy2 for all y ≥ c−1
3 .
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Let ỹ denote the bounded solution to the following ODE:

ỹt = h +
∫ T

t
[C1ỹs + C0 + 1]ds and C2 := ỹ0 = sup

0≤t≤T

ỹt .

Let L denote the uniform Lipschitz constant of F and F for y ∈ [c−1
3 ,C2]. Note

that F(t, c−1
3 ) ≥ −ε. Now follow the arguments in Theorem 5.9 for the lower

bound and those in Theorem 5.4(ii) for the upper bound, one can easily show
that, for ε sufficiently small, the ODEs in (3.13) have solutions y and y such that

c−1
3 ≤ y ≤ y ≤ C2. �

We finally present the result for case (2-c).

THEOREM 5.11. Let Assumption 2.1 and (5.13) hold. Assume there exists
a constant ε > 0 small enough such that one of the following four cases holds
true:

σ3 ≤ c1, 0 ≤ h ≤ c2 and
(5.19)

F(t, c3) ≤ ε, f1 ≥ 0;
0 ≤ σ3 ≤ c1, h ≤ c2 and

(5.20)

F(t, c3) ≤ ε, b2 − b3σ2

σ3
≥ −ε;

σ3 ≥ −c1, 0 ≥ h ≥ −c2 and
(5.21)

F(t,−c3) ≥ −ε, f1 ≤ 0;
0 ≥ σ3 ≥ −c1, h ≥ −c2 and

(5.22)

F(t,−c3) ≥ −ε, b2 − b3σ2

σ3
≤ ε.

Then the ODEs in (3.13) have bounded solutions y and y such that they satisfy the
corresponding property of h in the above conditions with c2 being replaced by c3.
In particular, both y and y satisfy (5.9).

PROOF. If (5.19) holds, then F(t,0) ≥ 0 and F(t, c3) ≤ ε. Following the ar-
guments in Theorem 5.3 for the lower bound and those in Theorem 5.7 for the
upper bound, one can easily show that, for ε sufficiently small, the ODEs in (3.13)
have solutions y and y such that 0 ≤ y ≤ y ≤ c3.

If (5.20) holds, follow the arguments in Theorem 5.4(ii) for the lower bound
and those in Theorem 5.7 for the upper bound, one can easily show that, for ε

sufficiently small, the ODEs in (3.13) have solutions y and y such that −C2 ≤ y ≤
y ≤ c3 for some C2 > 0.

The other two cases can be proved similarly. �
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6. Small duration case revisited. In this and the next section, we shall argue
that the well-posedness of the dominating ODEs will lead to the desired regular de-
coupling field. Our starting point will be the “local existence” result for FBSDE,
or more precisely, the well-posedness of FBSDE (1.1) over small time interval.
We note that this seemingly well-understood problem still contains many interest-
ing issues that have not been completely observed, especially in the case when σ

depends on z (i.e., σ3 �= 0), which we now describe.
Let us first fix some constants c1, c2 > 0 such that

c1c2 < 1.(6.1)

Set c̃2
�= c2+c−1

1
2 , so that c2 < c̃2 < c−1

1 . Furthermore, recall bi , σi , fi , i = 1,2,3
in (3.1). In what follows, all assumptions involving coefficients in (5.4) will be in
the sense that they hold uniformly for all θj , j = 1,2.

Recall again that it is essential to have σ3h �= 1. We shall establish the results for
the cases (2-a)–(2-c) listed in Section 5.2. Our first result corresponds to case (2-a)
and Theorem 5.9. We remark that the case σ = σ(t, x, y) satisfies case (2-a) with
arbitrary small c1 > 0.

THEOREM 6.1. Suppose that Assumption 2.1 and (6.1) are in force, and as-
sume that |σ3| ≤ c1 and |h| ≤ c2. Then there exists a constant δ > 0, which depends
only on c1, c2, and the Lipschitz constants in Assumption 2.1, such that whenever
T ≤ δ, it holds that:

(i) the FBSDE (1.1) has a unique solution � ∈ L
2;

(ii) the ODEs in (3.13) have solutions y,y such that

−c̃2 ≤ y
t
≤ yt ≤ c̃2 ∀t ∈ [0, T ];(6.2)

(iii) there exists a random field u such that, for all t ∈ [0, T ], Yt = u(t,Xt) and

y
t
≤ u(t, x1) − u(t, x2)

x1 − x2
≤ yt for any x1 �= x2.(6.3)

PROOF. (i) follows directly from [16] Theorem I.5.1. To see (ii), we notice
that F and F are uniformly Lipschitz continuous in y for y ∈ [−c̃2, c̃2] and denote
by L the uniform Lipschitz constant. We assume that (i) holds for some δ > 0.
Modifying δ if necessary we may assume that[∫ δ

0
eLt dt

][
sup

|y|≤c̃2

sup
t∈[0,T ]

[∣∣F(t, y)
∣∣ + ∣∣F(t, y)

∣∣]] ≤ c̃2 − c2.

Now for any T < δ, note that ỹ1 �= −c̃2 and ỹ2 �= c̃2 satisfy the following ODEs:

ỹ1
t = −c2 − [c̃2 − c2] +

∫ T

t

[
F

(
s, ỹ1

s

) − F(s,−c̃2)
]
ds,

ỹ2
t = c2 + [c̃2 − c2] +

∫ T

t

[
F

(
s, ỹ2

s

) − F(s, c̃2)
]
ds.
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Following the arguments in Theorem 5.9, we prove (ii).
It remains to prove (iii). Let δ > 0 be small enough so that both (i) and (ii) hold.

For any (t, x), denote the (unique) solution to FBSDE (1.1) starting from (t, x) by

�t,x , and define a random field u(t, x)
�= Y

t,x
t . The uniqueness of the solution to

FBSDE then leads to that Y t,x
s = u(s,Xt,x

s ), for all s ∈ [t, T ], P-a.s. In particular,
denoting �t = �

0,x
t , we have Yt = u(t,Xt), t ∈ [0, T ].

Now let x1 �= x2 be given, and recall (3.3) and (4.1). Following standard argu-
ments, see, for example, [16] Theorem I.5.1, for a smaller δ if necessary, one can
easily see that |∇Yt | ≤ c̃2|∇Xt |. This also implies that

|∇Xt | ≤ 1

1 − c1c̃2
|∇Xt − σ3∇Yt |.

Applying Theorem 4.2 we see that ∇X �= 0 and Ŷ
�= ∇Y/∇X satisfies the BSDE

(3.8) and (3.10). Then (6.3) follows from Lemma 3.2. �

Our next result corresponds to case (2-b) and Theorem 5.10.

THEOREM 6.2. Suppose that Assumption 2.1 and (6.1) are in force, and as-
sume that σ3 and h satisfy one of the conditions in (5.15)–(5.18). Then there exists
a constant δ > 0, depending only on c1, c2, and the Lipschitz constants in Assump-
tion 2.1, such that when T ≤ δ, all the results in Theorem 6.1 hold true, except that
(6.2) should be replaced by the following:

y ≥ y ≥ c̃−1
2 in cases (5.15) and (5.16) and

y ≤ y ≤ −c̃−1
2 in cases (5.17) and (5.18).

PROOF. We shall argue that the assertions (i)–(iii) in Theorem 6.1 all remain
true under the current assumptions. Without loss of generality, we prove the result
only for the case (5.15). The other cases can be proved similarly.

We first assume (i) holds. Note that c−1
2 ≤ h ≤ L, where L is the uniform

Lipschitz constant in Assumption 2.1. By similar arguments as those in Theo-
rem 6.1(ii), for δ small enough one can easily show that the ODEs in (3.13) have
solutions y,y such that

c̃−1
2 ≤ y

t
≤ yt ≤ 2L for all t ∈ [0, T ].(6.4)

This proves (ii). (iii) follows from (i) and similar arguments as those in Theo-
rem 6.1(iii).

So it remains to prove (i). Our main idea is to reverse the roles of forward
and backward components and then apply Theorem 6.1. To this end, we consider a

simple transformation: X̃
�= Y and Ỹ

�= X. In other words, we define the coordinate
change: [

x̃

ỹ

] �=
[

0 1
1 0

][
x

y

]
and, correspondingly, z̃

�= σ(t, x, y, z).
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Note that, under (5.15), both functions z 
→ σ(t, x, y, z) and x 
→ g(x) are invert-
ible, that is, there exist functions σ̂ and ĝ such that

σ̂
(
t, x, y, σ (t, x, y, z)

) = z, ĝ
(
g(x)

) = x.(6.5)

Define

σ̃ (t, θ̃ )
�= σ̂ (t, ỹ, x̃, z̃), g̃(x̃)

�= ĝ(x̃);
b̃(t, θ̃ )

�= −f
(
t, ỹ, x̃, σ̃ (t, θ̃ )

)
, f̃ (t, θ̃ )

�= −b
(
t, ỹ, x̃, σ̃ (t, θ̃ )

)
and consider a new FBSDE:⎧⎪⎪⎨

⎪⎪⎩
X̃t = x̃ +

∫ t

0
b̃(s, �̃s) ds +

∫ t

0
σ̃ (s, �̃s) dBs;

Ỹt = g̃(X̃T ) +
∫ T

t
f̃ (s, �̃s) ds −

∫ T

t
Z̃s dBs,

t ∈ [0, T ].(6.6)

We now show that FBSDE (6.6) satisfies the conditions in Theorem 6.1. First,
by definition of inverse functions and by (5.15), we have

σ̂1 + σ̂3σ1 = 0, σ̂2 + σ̂3σ2 = 0, σ̂3σ3 = 1 and ĥh = 1,

where σ̂i , ĥ and more notation below are defined in the spirit of (3.1) for the
functions σ̂ , ĝ. Note that σ̃3 = σ̂3 = (σ3)

−1 and h̃ = ĥ = h−1. This implies that,
by (5.15),

L−1 ≤ σ̃3 ≤ c1, L−1 ≤ h̃ ≤ c2.(6.7)

Next, since

b̃1 = −f2 − f3σ̃1 = −f2 − f3σ̂2 = −f2 − f3σ2(σ3)
−1,

we see that |b̃1| ≤ C. Similarly, |ϕ̃j | ≤ C for ϕ = b,σ,f and j = 1,2,3. Moreover,
note that ∣∣g̃(0)

∣∣ = ∣∣g̃(0) − g̃
(
g(0)

)∣∣ ≤ L
∣∣g(0)

∣∣;∣∣σ̃ (t,0,0,0)
∣∣ = ∣∣σ̂ (t,0,0,0)

∣∣ = ∣∣σ̂ (t,0,0,0) − σ̂
(
t,0,0, σ (t,0,0,0)

)∣∣
≤ C

∣∣σ(t,0,0,0)
∣∣;∣∣b̃(t,0,0,0)

∣∣ ≤ ∣∣f (t,0,0,0)
∣∣ + C

∣∣σ(t,0,0,0)
∣∣,∣∣f̃ (t,0,0,0)

∣∣ ≤ ∣∣b(t,0,0,0)
∣∣ + C

∣∣σ(t,0,0,0)
∣∣.

Thus (2.1) holds for FBSDE (6.6).
We can now apply Theorem 6.1 to conclude that for some δ > 0, the FBSDE

(6.6) admits a unique solution �̃ ∈ L
2 for all T ≤ δ, and Ỹt = ũ(t, X̃t ) for some

decoupling random field ũ. Moreover, by (6.7) and modifying the arguments in
Theorem 6.1 slightly, we see that ũ satisfies

1

2L
≤ ũ(t, x̃1) − ũ(t, x̃2)

x̃1 − x̃2
≤ c̃2.
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Then ũ(t, x̃) has an inverse function u(t, x) in terms of x. Now for any x, let

x̃
�= u(0, x) and let �̃ be the unique solution to FBSDE (6.6) with initial value

X̃0 = x̃. Then it is straightforward to check that

Xt
�= Ỹt , Yt

�= X̃t , Zt
�= σ̃ (t, X̃t , Ỹt , Z̃t )

satisfy FBSDE (1.1) with initial value X0 = x.
Finally, note that |Z̃| ≤ |σ̃ (t,0,0,0)| + C[|X̃| + |Ỹ | + |Z̃|], it is clear that

(X,Y,Z) ∈ L
2. The proof is now complete. �

Our final result corresponds to case (2-c) and Theorem 5.11.

THEOREM 6.3. Suppose that Assumption 2.1 and (6.1) are in force, and as-
sume that σ3 and h satisfy one of the conditions in (5.19)–(5.22). Then there exists
a constant δ > 0, depending only on c1, c2, and the Lipschitz constants in Assump-
tion 2.1, such that when T ≤ δ, all the results in Theorem 6.1 hold true, except that
(6.2) should be replaced by the following:

0 ≤ y ≤ y ≤ c̃2, in case of (5.19);
y ≤ y ≤ c̃2, in case of (5.20);
0 ≥ y ≥ y ≥ −c̃2, in case of (5.21);
y ≥ y ≥ −c̃2, in case of (5.22).

PROOF. Again we consider only the case (5.19), and the other cases can be
argued similarly. Following similar arguments as in Theorem 6.2, we shall only
prove (i).

Slightly different from the proof of Theorem 6.2 we consider a slightly more

complicated transformation: (x̃, ỹ, z̃)
�= �[ε](x, y, z), where[

x̃

ỹ

] �=
[

2ε 1
ε 1

][
x

y

]
, z̃

�= εσ(t, x, y, z) + z.(6.8)

Note that

−L ≤ σ3 ≤ c1, 0 ≤ h ≤ c2.(6.9)

By choosing ε > 0 small enough, we see that the mappings

z 
→ z̃ = εσ(t, x, y, z) + z and x 
→ 2εx + g(x)

are both strictly increasing and thus both are invertible. Denote the corresponding
inverse functions by σ̂ and ĝ, respectively. Namely,

σ̂
(
t, x, y, εσ (t, x, y, z) + z

) = z, ĝ
(
2εx + g(x)

) = x.(6.10)



WELL-POSEDNESS OF FBSDES 2197

Furthermore, from (6.8) we can solve (x, y) = (
x̃−ỹ

ε
,2ỹ − x̃), the inverse transfor-

mation of �[ε] is thus

(x, y, z) = �[ε](x̃, ỹ, z̃)
�=

(
x̃ − ỹ

ε
,2ỹ − x̃, σ̂

(
t,

x̃ − ỹ

ε
,2ỹ − x̃, z̃

))
.

We now consider the FBSDE (6.6) with the following new coefficients:

b̃(t, x̃, ỹ, z̃) = 2εb
(
t,�[ε](x̃, ỹ, z̃)

) − f
(
t,�[ε](x̃, ỹ, z̃)

)
,

f̃ (t, x̃, ỹ, z̃) = −εb
(
t,�[ε](x̃, ỹ, z̃)

) + f
(
t,�[ε](x̃, ỹ, z̃)

)
,(6.11)

σ̃ (t, x̃, ỹ, z̃) = 2εσ
(
t,�[ε](x̃, ỹ, z̃)

) + σ̂

(
t,

x̃ − ỹ

ε
,2ỹ − x̃, z̃

)
,

g̃(x̃) = εĝ(x̃) + g
(
ĝ(x̃)

)
.

Our idea is again to apply Theorem 6.1. Note that σ̂3[εσ3 +1] = 1 and ĥ[2ε+h] =
1, we have

σ̃3 = 2εσ3σ̂3 + σ̂3 = 2εσ3 + 1

εσ3 + 1
, h̃ = εĥ + hĥ = ε + h

2ε + h
.

By (6.9) and for ε > 0 small enough, we have

0 <
1 − 2Lε

1 − εL
≤ σ̃3 ≤ 1 + 2c1ε

1 + c1ε

�= c1;
(6.12)

0 <
1

2
≤ h̃ ≤ ε + c2

2ε + c2

�= c2.

Since c1c2 < 1, we obtain

c1c2 = 1 + 2c1ε

1 + c1ε
· ε + c2

2ε + c2
< 1.(6.13)

Moreover, note that σ̂1 + εσ̂3σ1 = 0 and σ̂2 + εσ̂3σ2 = 0, we see that σ̂1 = −εσ1
1+εσ3

,

σ̂2 = −εσ2
1+εσ3

are bounded and, therefore,

b̃1 = 2ε
[
b1ε

−1 − b2 + b3
[
σ̂1ε

−1 − σ̂2
]] − [

f1ε
−1 − f2 + f3

[
σ̂1ε

−1 − σ̂2
]]

is bounded. Similarly, one can check that all other coefficients are all uniformly
Lipschitz continuous and (2.1) also holds for FBSDE (1.1). Then we can apply
Theorem 6.1, with c1, c2 being replaced by c1, c2 here, to conclude that (6.6) with
coefficients given by (6.11) admits a unique solution �̃ ∈ L

2, for T ≤ δ and δ

small enough. Furthermore, by (6.12) and following similar arguments as in The-
orem 6.1, it holds that Ỹt = ũ(t, X̃t ) for some decoupling random field ũ, which

satisfies, for x̃1 �= x̃2, and c3
�= c−1

1 +c2
2 ,

1

4
≤ ũ(t, x̃1) − ũ(t, x̃2)

x̃1 − x̃2
≤ c3.
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This then implies that x̃ 
→ ũ(t, x̃) has an inverse, denoted by u(t, x).

Now for any x, let x̃
�= 2εx + u(0, x) and �̃ be the unique solution to FBSDE

(6.6) starting from X̃0 = x̃. Then one can easily check that � := �[ε](�̃) satisfies
all the requirement. �

7. Synthetic analysis. In this section, we summarize all the results proved in
the previous sections and give a synthetic analysis for the solvability of FBSDE
(1.1) over an arbitrary duration [0, T ], which in a sense could serve as a User’s
Guide for solving general FBSDEs. We should note that all the cases listed below
cannot be covered by the existing methods, therefore, they are all new.

7.1. Linear case. We first consider the linear FBSDE (4.1). Bearing Re-
marks 5.5 and 5.8 in mind, then combining Theorems 6.1, 6.2 and 6.3, we have the
following “local” well-posedness result. We note that since σ is allowed to depend
on z, and the condition is both necessary and sufficient, this result is already new.

THEOREM 7.1. Assume that the linear FBSDE (4.1) has constant coefficients.
Then there exists a constant δ > 0, such that it is well-posed on [0, T ], whenever
T ≤ δ, if and only if

σ3h �= 1.(7.1)

REMARK 7.2. If the duration T is arbitrarily given, then even in the case when
FBSDE is linear with constant coefficients the necessary and sufficient conditions
become slightly more complicated. The reader should use Theorem 5.4 or 5.6 as a
benchmark.

If the coefficients of FBSDE (4.1) are random, then the analysis becomes more
involved. In fact, the degree of difficulty is no less than that of general Lipschitz
coefficient case. We therefore do not discuss them separately.

7.2. The case σ = σ(t, x, y). We remark that the work [28] is a special case
of the following result.

THEOREM 7.3. Assume all the conditions in Theorem 5.7 hold, and let y,y
be the bounded solutions of ODEs (3.13). Then:

(i) FBSDE (1.1) possesses a decoupling field u satisfying (6.3).
(ii) FBSDE (1.1) admits a unique solution � ∈ L

2, such that

‖�‖2
L2 ≤ C

[|x|2 + I 2
0
]
.(7.2)

Here, the constant C > 0 depends only on T , the Lipschitz constant in Assump-
tion 2.1, and the bound of y,y.
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PROOF. (i) First, applying Theorem 5.7, there exists a constant c2 > 0 such
that

−c2 ≤ y
t
≤ yt ≤ c2 for all 0 ≤ t ≤ T .(7.3)

Notice that in this case σ3 = 0, thus we may set arbitrarily small c1 > 0 in Theo-
rem 6.1.

Let δ > 0 be the constant determined by (c1, c2) in Theorem 6.1, and 0 = t0 <

· · · < tn = T be a partition of [0, T ] such that ti − ti−1 ≤ δ, i = 1, . . . , n. We first
consider FBSDE (1.1) on [tn−1, tn]. Since y

T
≤ h ≤ yT , we see that the Lips-

chitz constant of the terminal condition g is less than c2, then by Theorem 6.1
there exists a random field u(t, x) for t ∈ [tn−1, tn] such that (6.3) holds for all
t ∈ [tn−1, tn]. In particular, the estimate (6.3) at tn−1 and (7.3) imply that c2 is
also a Lipschitz constant of u(tn−1, ·). Next, consider FBSDE (1.1) on [tn−2, tn−1]
with terminal condition u(tn−1, ·). Applying Theorem 6.1 again, we find u on
[tn−2, tn−1] such that (6.3) holds for t ∈ [tn−2, tn−1]. Repeating this procedure
backwardly finitely many times, we extend the random field u to the whole in-
terval [0, T ]. Clearly, it is a decoupling field satisfying (6.3).

(ii) We first note that the above n is fixed. Since u is uniformly Lipschitz con-
tinuous in x, applying Theorem 6.1 on each interval [ti , ti+1] with initial value
Xti = 0, we see that there exists a constant C such that

E
{∣∣u(ti,0)

∣∣2} = E
{∣∣Y ti ,0

ti

∣∣2} ≤ CE
{∣∣u(ti+1,0)

∣∣2} + CI 2
0 .

Note that u(tn,0) = g(0), we see that, for a larger C, max0≤i≤nE{|u(ti,0)|2} ≤
CI 2

0 .
Next, by Theorem 2.3 FBSDE (1.1) admits a unique global solution �. Apply-

ing Theorem 6.1 on each interval [ti , ti+1] again, we obtain

E

{
sup

ti≤t≤ti+1

[|Xt |2 + |Yt |2] +
∫ ti+1

ti

Z2
t dt

}
(7.4)

≤ CE
{|Xti |2 + ∣∣u(ti+1,0)

∣∣2} + CI 2
0 .

This implies that

E
{|Xti+1 |2

} ≤ CE
{|Xti |2 + ∣∣u(ti+1,0)

∣∣2} + CI 2
0 ≤ CE

{|Xti |2
} + CI 2

0 ,

thus maxi E{|Xti |2} ≤ C[|x|2 + I 2
0 ]. Plugging into (7.4) and summing over i, we

obtain (7.2). �

In Table 1 below we list a few classes of FBSDEs whose coefficients (b, σ, f )

satisfy condition (5.10), and thus are well-posed for arbitrary T under standard
Lipschitz conditions. We note that all coefficients are allowed to be random, and
YT = g(XT ).
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TABLE 1
Cases satisfying (5.10)

Assumption b σ f

b(t, x, z) σ (t) f (t, x, y, z)

b(t, x) σ (t, x, y) f (t, x, y)

σ2b3 ≤ 0, βt ≥ c b(t, x, z) σ (t, βt x + y) f (t, x, y)

σ2b3 ≤ 0, βt ≥ c b(t, x, z) σ (t, y) f0(t, x, y) + βtb(t, x, z)

7.3. The general case σ = σ(t, x, y, z). We now turn to the general case.
We assume that the standing Assumption 2.1, (5.13), and one of the assumptions
(5.14), (5.15)–(5.18) and (5.19)–(5.22) hold. For the convenience of the reader, we
tabulate these conditions so that the nature of these assumptions are more explicit.

Let ε > 0 be given as that in Theorems 5.9, 5.10, 5.11 and α3
�= b2 − b3σ2

σ3
.

Case I. |σ3| ≤ c1, |h| ≤ c2; and F(t, c3) ≤ ε, F(t,−c3) ≥ −ε.
Case II. |σ3| ≥ c−1

1 , |h| ≥ c−1
2 , and both of them keep the same sign (see Ta-

ble 2).
Case III. σ3h ≤ c1c2, and one of them keeps the same sign (see Table 3).
Our main result is the following.

THEOREM 7.4. Suppose that Assumption 2.1 and (5.13) are in force, and for
c1, c2, c3 in (5.13), either one of the conditions listed in cases I–III holds. Then:

(i) FBSDE (1.1) possesses a decoupling field u such that u(t,x1)−u(t,x2)
x1−x2

satis-
fies the corresponding property of h with c2 being replaced by c3.

(ii) FBSDE (1.1) admits a unique solution � ∈ L
2, and there exists a con-

stant C > 0, depending only on T , the Lipschitz constant in Assumption 2.1, and
c1, c2, c3, such that (7.2) holds.

PROOF. The proof is similar to that of Theorem 7.3 and is thus omitted. How-
ever, we emphasize that when one applies Theorems 6.1, 6.2 or 6.3, the constant δ

should be determined by c1, c3, not by c1, c2. �

The following special case deserves special attention.

TABLE 2
σ3 �= 0, Case II

h ≥ c−1
2 h ≤ −c−1

2

σ3 ≥ c−1
1 F(t, c−1

3 ) ≥ −ε, α3 ≤ ε F (t, c−1
3 ) ≤ ε, α3 ≥ −ε

σ3 ≤ −c−1
1 F(t, c−1

3 ) ≥ −ε, α3 ≤ ε F (t, c−1
3 ) ≤ ε, α3 ≥ −ε
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TABLE 3
σ3 �= 0, Case III

h ≥ 0 h ≤ 0 σ3 ≥ 0 σ3 ≤ 0

σ3 ≤ c1, F(t, c3) ≤ ε, F(t, c3) ≤ ε,
h ≤ c2 f1 ≥ 0 α3 ≥ −ε

σ3 ≥ −c1, F(t,−c3) ≥ −ε, F(t,−c3) ≥ −ε,
h ≥ −c2 f1 ≤ 0 α3 ≤ ε

COROLLARY 7.5. Assume that Assumption 2.1 hold. If the coefficients in the
variational FBSDE (3.5), defined by (3.1), satisfy either

σ3 ≥ 0, h ≤ 0, f1 ≤ 0, b2 − b3σ2

σ3
≥ 0(7.5)

or

σ3 ≤ 0, h ≥ 0, f1 ≥ 0, b2 − b3σ2

σ3
≤ 0;(7.6)

then the FBSDE (1.1) is well-posed over arbitrary duration [0, T ].

PROOF. We assume (7.5) holds. Let c1 be the Lipschitz constant of σ with
respect to z, and let 0 < c2 < c3 < δ for some δ small enough. One can easily
check that (5.20) holds. �

7.4. Comparison to the existing methods. We now compare our conditions to
those of the three well-known existing methods.

1. Method of Contraction Mapping. It has been understood that the fundamen-
tal assumptions for this method are |σ3g1| < 1 and that T is small enough (see, e.g.,
[16], Theorem I.5.1). In fact, [16], Example I.5.2, shows that the FBSDE could be
unsolvable if σ3g1 = 1. Therefore, Theorem 7.1 in this paper indeed presents the
sharpest result in the linear case.

For the general case, we note that in Antonelli [1] σ3 = 0. To compare with the
work of Pardoux and Tang [17], we recall (3.9). Then it is easy to see that in [17]
it is essentially assumed, besides σ3 and h satisfying condition (5.14), that one of
the following conditions holds:

(i) either b2, b3, σ2, σ3 or f1, h are small (“weak coupling”);
(ii) either b1 or f2 is very negative (“strong monotone”).
But for fixed T , (i) implies that the coefficients of y2 and y3 is small enough,

and thus the ODEs (3.13) has desired solutions on [0, T ], and (ii) implies that the
coefficient of y is very negative, which ensures that the solution to ODEs (3.13)
does not blow up before T .
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2. Method of Continuation. The “monotonicity condition” in Hu and Peng [7],
Peng and Wu [18], Yong [24] states

�b�y + �σ�z − �f �x ≥ β
[|�x|2 + |�y|2 + |�z|2]

,
(7.7)

�g�x ≤ −β|�x|2,
for some constant β > 0. By some simple analysis, one sees immediately that (7.7)
implies

b2 ≥ β, σ3 ≥ β, f1 ≤ −β ≤ 0, h ≤ −β ≤ 0.

Moreover, by setting �x = 0, we see that

b2|�y|2 + σ3|�z|2 + (b3 + σ2)�y�z ≥ 0 for any �y,�z.

Then it must hold that (b3 + σ2)
2 − 4b2σ3 ≤ 0, and thus b2σ3 ≥ 1

4(b3 + σ2)
2 ≥

b3σ2. These lead exactly to (7.5), and thus the FBSDE is well-posed. Clearly, the
monotonicity condition can be easily further weakened in our framework.

3. Four Step Scheme. We should note that our solvability conditions (5.14),
(5.15)–(5.18), (5.19)–(5.22) do not cover the results in [12] and [5]. This is be-
cause the generality of the FBSDE that we are pursuing in this paper, especially
the non-Markovian structure (i.e., random coefficients) and the possible degener-
acy of σ , essentially inhibits us from taking advantage of the special features of
nondegenerate PDEs. We nevertheless observe that in both [12] and [5], the so-
lution of the PDE, which serves as a deterministic decoupling function, is indeed
uniformly Lipschitz continuous, and thus falls into the framework of Theorem 2.3.
In fact, our definition of regular decoupling fields is strongly motivated by these
works.

7.5. Regarding examples (1.2) and (1.3). We now return to the two examples
(1.2) and (1.3) mentioned in the Introduction. Note that in (1.2) we actually have
F(h) = 0 and b2 − b3σ2

σ3
= 0. Then, for σ �= 0,1, either (i) or (ii) of Theorem 5.6

will hold, and thus the FBSDE is well-posed. Since the equation is trivial for σ = 0,
we can thus conclude that the FBSDE (1.2) is well-posed if and only if σ �= 1.

We now turn attention to example (1.3). To understand the problem, we briefly
describe its origin (see [4] for more details). Consider the following FBSDE:

dXt = σ(t,Xt , Yt ) dBt , dYt = f (t,Xt , Yt ) dt − Zt dBt ;
(7.8)

X0 = x, YT = g(XT ),

where the coefficients are all deterministic. The purpose is to find a Monte Carlo
method for the numerical solution, without using PDEs. Following the idea of
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“method of optimal control” (cf. [16]), one can consider (7.8) as a controlled dif-
fusion starting from (x, y), and try to find the “control” (y,Z) ∈ R × L2

F
([0, T ])

so that

0 = inf
y,Z

V (x, y;Z)
�= inf

y,Z

1

2
E

[∣∣Yx,y,Z
T − g

(
X

x,y,Z
T

)∣∣2]
.

Since the existence of the optimal control is known (as the FBSDE is solvable),
the main task here is to numerically compute the optimal control and trajectory.
We proceed iteratively: given some initial control (y0,Z

0) and we find the ap-
proximating sequence (yn,Z

n) that converges to the true solution (Y0,Z) of the
FBSDE (7.8). The so-called “steepest descent method” proposed in [4] suggests
that at each step one should set (yn,Z

n) := (yn−1,Z
n−1) − λ(Y

n

0,Z
n
) for some

small constant λ > 0, where (Y
n
,Z

n
, Ỹ n, Z̃n) solves a certain BSDE which can

be rewritten as

Y
n

t = Y 0 +
∫ t

0

[
fyY

n

s + σyZ̃
n
s

]
ds +

∫ t

0
Z

n

s dBs;
(7.9)

Ỹ n
t = gxY

n

T +
∫ T

t

[
fxY

n

s + σxZ̃
n
s

]
ds −

∫ T

t
Z̃n

s dBs.

If we view Z
n

as a given random coefficient, Y
n

the forward component, and
(Ỹ n, Z̃n) the backward one, then equations (7.9) is an FBSDE same as (1.3). This
FBSDE cannot be covered by any existing method, but it satisfies condition (5.10),
and thus falls into our framework. Furthermore applying Corollary 8.4 below we
can derive an important estimate in [4]. We refer the interested reader to [4] for
details.

8. Properties of the solution. In this section, we establish some further prop-
erties of the solution to the FBSDE (1.1). These will include a stability result, an
L

p-estimate for p > 2, and a comparison theorem for FBSDE.
We first prove the stability result.

THEOREM 8.1 (Stability). Assume both (b, σ, f, g) and (b̃, σ̃ , f̃ , g̃) satisfy
the same conditions (i.e., they belong to the same case) in Theorem 7.4 (or The-
orem 7.3). Let u, ũ be the corresponding random fields and, for any (t, x), �t,x

and �̃t,x the solutions to the corresponding FBSDEs. For ϕ = b,σ,f, g, denote

�ϕ
�= ϕ̃ − ϕ. Then∥∥�̃0,x̃ − �0,x

∥∥2
L2

≤ CE

{
|x̃ − x|2 + ∣∣�g

(
X

0,x
T

)∣∣2(8.1)

+
(∫ T

0

[|�b| + |�f |](t,�0,x
t

)
dt

)2

+
∫ T

0
|�σ |2(

t,�
0,x
t

)
dt

}
,



2204 MA, WU, ZHANG AND ZHANG

∣∣ũ(t, x) − u(t, x)
∣∣2

≤ CEt

{∣∣�g
(
X

t,x
T

)∣∣2 +
(∫ T

t

[|�b| + |�f |](s,�t,x
s

)
ds

)2

(8.2)

+
∫ T

t
|�σ |2(

s,�t,x
s

)
ds

}
a.s.

PROOF. Note that ũ(t, x) − u(t, x) = Ỹ
t,x
t − Y

t,x
t , and Consider the FBSDEs

on [t, T ] and replace E with Et , (8.2) follows directly from (8.1).

To show (8.1), denote ��
�= �̃0,x̃ − �0,x and �x

�= x̃ − x. Then

�Xt = �x +
∫ t

0

[
b̃1�Xs + b̃2�Ys + b̃3�Zs + �b

(
s,�0,x

s

)]
ds

+
∫ t

0

[
σ̃1�Xs + σ̃2�Ys + σ̃3�Zs + �σ

(
s,�0,x

s

)]
dBs;

�Yt = h̃�XT + �g
(
X

0,x
T

)
+

∫ T

t

[
f̃1�Xs + f̃2�Ys + f̃3�Zs + �f

(
s,�0,x

s

)]
ds −

∫ T

t
�Zs dBs.

Here, the notation b̃1, etc., are defined similar to (3.1). One can easily check that
the above linear FBSDE (with solution ��) satisfies the corresponding conditions
in Theorem 7.4 (or Theorem 7.3). Then applying the theorem we obtain the esti-
mate immediately. �

We next establish the Lp-estimates for some p > 2. First, following Karatzas
and Shreve [8] (cases 2 and 4, page 164), one can easily prove the following
lemma.

LEMMA 8.2. For any p ≥ 2 and Z ∈ L2,p , that is, E[(∫ T
0 |Zt |2 dt)p/2] < ∞,

we have

∣∣ψ1(p)
∣∣−p

E

[∣∣∣∣
∫ t

0
Zs dBs

∣∣∣∣p
]

≤ E

[(∫ t

0
|Zs |2 ds

)p/2]
(8.3)

≤ ∣∣ψ2(p)
∣∣pE

[∣∣∣∣
∫ t

0
Zs dBs

∣∣∣∣p
]
,

where

ψ1(p)
�= 2−1/pp1/2

(
2p/2 − 2

p − 2

)1/2−1/p

,

(8.4)

ψ2(p)
�=

(
p − 1

2

)1/p

p1/2
[
2p/2 + 2p/2 − 2/(p − 2)

]1/2−1/p

.
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Moreover, for i = 1,2, ψi is continuous, strictly increasing on [2,∞) and
ψi(2) = 1, ψi(∞) = ∞.

We now give the Lp-estimate of the solutions.

THEOREM 8.3 (Lp-estimates). Let (b, σ, f, g) satisfy the conditions in Theo-
rem 7.4. Assume

2 ≤ p < ψ−1
(

1

c1c3

)
,(8.5)

where ψ
�= ψ1ψ2 and ψ−1 denote the inverse function of ψ ; and

Ip
p

�= E

{(∫ T

0

[|b| + |f |](t,0,0,0) dt

)p

(8.6)

+
(∫ T

0
|σ |2(t,0,0,0) dt

)p/2

+ ∣∣g(0)
∣∣p}

< ∞.

Then the unique solution � of FBSDE (1.1) is in Lp and satisfies

‖�‖Lp ≤ Cp

[|x| + Ip

]
.(8.7)

Consequently, the corresponding characteristic BSDE (3.8) has a unique solution
(Ŷ , Ẑ) satisfying (3.10) and (4.14).

PROOF. By Theorem 7.4 and following its arguments, we may assume p > 2
and shall only prove the theorem under (5.14) and for T ≤ δ, where δ is a constant
which depends on c1, c3, the Lipschitz constants, and p and will be specified later.
Moreover, by using the standard stopping arguments, we can assume without loss
of generality that

‖�‖p
w,p

�= E

[∫ T

0

[|Xt |p + |Yt |p]
dt +

(∫ T

0
|Zt |2 dt

)p/2]
< ∞.(8.8)

For any 0 < ε ≤ 1 and a, b > 0, note that (a + b)p ≤ Cp,εa
p + (1 + ε)bp , for

some generic constant Cp,ε ≥ 1 which may depend on p and ε. Then, for any
0 ≤ t ≤ T ≤ δ, we have [denoting ϕs = ϕ(s,�s), ϕ = b,σ , for simplicity]

E
[|Xt |p] ≤ Cp,εE

[
|x|p +

(∫ t

0
|bs |ds

)p]
+ (1 + ε)E

[∣∣∣∣
∫ t

0
σs dBs

∣∣∣∣p
]

≤ Cp,εE

[
|x|p +

(∫ t

0
|bs |ds

)p]

+ (1 + ε)ψ1(p)pE

[(∫ t

0
|σs |2 ds

)p/2]
,
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where the second inequality thanks to Lemma 8.2. Note that[∫ t

0
|bs |ds

]p

≤ Cp

{∫ T

0

[∣∣b(s,0)
∣∣ + |Xs | + |Ys | + |Zs |]ds

}p

≤ Cp

{[∫ T

0

∣∣b(s,0)
∣∣ds

]p

+ T p−1
∫ T

0

[|Xs |p + |Ys |p]
ds + T p/2

[∫ T

0
|Zs |2 ds

]p/2}
,

[∫ t

0
|σs |2 ds

]p/2

≤
(∫ T

0

[
Cε

[∣∣σ(s,0)
∣∣2 + |Xs |2 + |Ys |2] + (1 + ε)c2

1|Zs |2]
ds

)p/2

≤ Cp,ε

{∫ T

0
Cε

[∣∣σ(s,0)
∣∣2 + |Xs |2 + |Ys |2]

ds

}p/2

+ (1 + ε)

[∫ T

0
(1 + ε)c2

1|Zs |2 ds

]p/2

≤ Cp,ε

{∫ T

0

[∣∣σ(s,0)
∣∣2 + |Xs |2 + |Ys |2]

ds

}p/2

+ (1 + ε)p/2+1c
p
1

[∫ T

0
|Zs |2 ds

]p/2

≤ Cp,ε

{[∫ T

0

∣∣σ(s,0)
∣∣2 ds

]p/2

+ T p/2−1
∫ T

0

[|Xs |p + |Ys |p]
ds

}

+ (1 + ε)p/2+1c
p
1

[∫ T

0
|Zs |2 ds

]p/2

.

In the above, ϕ(s,0)
�= ϕ(s,0,0,0), for ϕ = b,σ , respectively. Then

E
[|Xt |p] ≤ Cp,ε

[|x|p + Ip
p + δp/2‖�‖p

w,p

]
+ (1 + ε)ψ1(p)p

[
Cp,ε

[
Ip
p + δp/2−1‖�‖p

w,p

]
+ (1 + ε)p/2+1c

p
1 ‖�‖p

w,p

]
(8.9)

≤ Cp,ε

[|x|p + Ip
p + δp/2−1‖�‖p

w,p

]
+ (1 + ε)p/2+2ψ1(p)pc

p
1 ‖�‖p

w,p.
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Next, by Theorem 7.4 we have

|Yt |2 ≤ CEt

[
|Xt |2 + ∣∣g(0)

∣∣2 +
(∫ T

t

[|b| + |f |](s,0) ds

)2

+
∫ T

t

∣∣σ(s,0)
∣∣2 dt

]
.

This implies that

E
[|Yt |p] ≤ CpE

[|Xt |p] + CpIp
p .(8.10)

In particular,

|Y0|p ≤ Cp

[|x|p + Ip
p

]
.(8.11)

Moreover, following standard arguments

E

[∣∣∣∣
∫ T

0
Zt dBt

∣∣∣∣p
]

= E

[∣∣∣∣g(XT ) − g(0) + g(0) − Y0 +
∫ T

0
f (t,�t) dt

∣∣∣∣p
]

≤ (1 + ε)E
[∣∣g(XT ) − g(0)

∣∣p]
+ Cp,εE

[∣∣g(0)
∣∣p + |Y0|p +

∣∣∣∣
∫ T

0
f (t,�t) dt

∣∣∣∣p
]

≤ (1 + ε)c
p
3 E

[|XT |p] + Cp,ε

[|x|p + Ip
p + δp/2‖�‖p

w,p

]
.

Now by the second inequality in (8.3) and (8.9), we have

E

[(∫ T

0
|Zt |2 dt

)p/2]

≤ (1 + ε)c
p
3

∣∣ψ2(p)
∣∣pE[|XT |p] + Cp,ε

[|x|p + Ip
p + δp/2‖�‖p

w,p

]
(8.12)

≤ (1 + ε)p/2+3[
ψ(p)c1c3

]p‖�‖p
w,p

+ Cp,ε

[|x|p + Ip
p + δp/2−1‖�‖p

w,p

]
.

Set ε = 1 in (8.9), and plug (8.9), (8.10), (8.12) into (8.8), we get

‖�‖p
w,p ≤ E

[(∫ T

0
|Zt |2 dt

)p/2]
+ δ sup

0≤t≤T

E
[|Xt |p + |Yt |p]

≤ [
(1 + ε)p/2+3[

ψ(p)c1c3
]p + Cp,εδ

p/2−1(8.13)

+ Cpδ
]‖�‖p

w,p + Cp,ε

[|x|p + Ip
p

]
.

Denote

cp
�= [

ψ(p)c1c3
]p

< 1.
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We may first choose ε such that (1 + ε)p/2+3[ψ(p)c1c3]p = 2cp+1
3 , and then

choose δ such that Cp,εδ
p/2−1 + Cpδ = 1−cp

6 . Then (8.13) implies that

‖�‖p
w,p ≤ cp + 1

2
‖�‖p

w,p + Cp

[|x|p + Ip
p

]
.

Since cp+1
2 < 1, we obtain ‖�‖p

w,p ≤ Cp[|x|p + I
p
p ]. Now following standard ar-

guments we can prove (8.7) straightforwardly.
Finally, the claim on (Ŷ , Ẑ) follows from Theorem 4.4 immediately. �

We note that if σ = σ(t, x, y), then we could simply take c1 = 0. Note that
ψ−1(∞) = ∞, by combining the arguments in Theorems 7.3 and 8.3 [not-
ing (8.5)], we obtain the following result immediately.

COROLLARY 8.4. Let (b, σ, f, g) satisfy the conditions in Theorem 7.3. For
any p ≥ 2, if Ip < ∞, then the unique solution � of FBSDE (1.1) is in Lp and
satisfies (8.7). Consequently, the corresponding characteristic BSDE (3.8) has a
unique solution (Ŷ , Ẑ) satisfying (3.10) and (4.14).

For FBSDE (4.1), we have Ip = 0 for all p ≥ 2, which leads to the following
result.

COROLLARY 8.5. Assume the linear FBSDE (4.1) satisfy the conditions in
Theorem 7.4 (or Theorem 7.3). Then any 2 ≤ p < ψ−1( 1

c1c3
), the unique solu-

tion � of FBSDE (4.1) is in Lp . Consequently, the corresponding characteristic
BSDE (3.8) has a unique solution (Ŷ , Ẑ) satisfying (3.10) and (4.14).

Finally, as an application of Corollary 8.5, we prove the comparison theorem.

THEOREM 8.6 (Comparison). Assume both (b, σ, f, g) and (b, σ, f̃ , g̃) sat-
isfy the same conditions (i.e., they belong to the same case) in Theorem 7.4 (or
Theorem 7.3), and let u, ũ be the corresponding random fields. If f ≤ f̃ , g ≤ g̃,
then u ≤ ũ.

PROOF. Without loss of generality, we shall prove the result only at t = 0.
Let �,�̃ ∈ L2 be the corresponding solutions to the FBSDE (1.1) associated to

(b, σ, f, g) and (b, σ, f̃ , g̃), respectively. Denote ��t
�= �t − �̃t , and define ϕi

similar to (3.1) for ϕ = b, σ , f , respectively. Then �� would be the unique solu-
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tion to the following linear FBSDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Xt =
∫ t

0
(b1�Xs + b2�Ys + b3�Zs)ds

+
∫ t

0
(σ1�Xs + σ2�Ys + σ3�Zs)dBs;

�Yt = h�XT + �g(X̃T )

+
∫ T

t

(
f1�Xs + f2�Ys + f3�Zs + �f (t, �̃t )

)
ds

−
∫ T

t
�Zs dBs.

(8.14)

Let (Ŷ , Ẑ) denote the unique solution to BSDE (3.8) which, by Corollary 8.5,
satisfies (3.10) and (4.14). Denote

δY
�= �Y − Ŷ�X,

δZ
�= �Z − Ẑ�X − Ŷ [σ1�X + σ2�Y + σ3�Z],

and define β,γ and � by (4.18) and (4.19). Applying Itô’s formula, we have

δY0 = �0δY0 = �T �g(X̃T ) +
∫ T

0
�t�f (t, �̃t ) dt −

∫ T

0
�t [γtδYt + δZt ]dBt .

Now by (4.14) and following similar arguments as in Theorem 4.4 one can easily
show that

∫ t
0 �s[γsδYs + δZs]dBs is a true martingale. Then by our assumptions

we see that

u(0, x) − ũ(0, x) = �Y0 = δY0 = E

{
�T �g(X̃T ) +

∫ T

0
�t�f (t, �̃t ) dt

}
≤ 0.

This proves the theorem. �

REMARK 8.7. We notice that we cannot get �Yt ≥ 0 even �t ≥ 0, 0 ≤ t ≤ T ,
in the above proof. This coincides with the results in Wu and Xu [22] (Theo-
rem 3.2 and Counterexample 3.1). However, for the corresponding random de-
coupling field, the comparison theorem holds over all time which coincides with
Theorem 4.1 in Cvitanic and Ma [3] by virtue of PDE method under Markovian
frame work.

APPENDIX

In this Appendix, we complete the technical proofs for some results in Section 5.

PROOF OF LEMMA 5.1. We first show the existence. Define a truncation func-
tion

F̃ (t, y)
�= F

(
t,y1

t ∨ y ∧ y2
t

)
,
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then by assumption (iii) F̃ is uniformly Lipschitz continuous in y with a Lipschitz
constant L, and thus the following ODE has a unique solution ỹ:

ỹt = h +
∫ T

t
F̃ (s, ỹs) ds, t ∈ [0, T ].(A.1)

We claim that

y1 ≤ ỹ ≤ y2.(A.2)

This would lead to that F̃ (t, ỹt ) = F(t, ỹt ). Thus, ỹ is a solution to ODE (5.1)
and (A.2) holds.

In fact, denote �y2 �= y2 − ỹ, �h2 �= h2 − h, �F 2 �= F 2 − F . Note that
F(t,y2

t ) = F̃ (t,y2
t ), we have

�y2
t = �h2 + C2 +

∫ T

t

[
F 2(

s,y2
s

) − F̃ (s, ỹs) − c2
s

]
ds

= �h2 + C2 +
∫ T

t

[
�F 2(

s,y2
s

) + αs�y2
s − c2

s

]
ds,

where αs
�= F̃ (s,y2

s )−F̃ (s,ỹs )

�y2
s

1{�y2
s �=0} satisfies |α| ≤ L. Now define γt

�=
exp(

∫ t
0 αs ds) > 0. Then

γt�y2
t = γT

[
�h2 + C2] +

∫ T

t
γs

[
�F 2(

s,y2
s

) − c2
s

]
ds

= γT �h2 +
∫ T

t
γs�F 2(

s,y2
s

)
ds + γT

[
C2 −

∫ T

t
γ −1
T γsc

2
s ds

]
≥ 0.

This implies that ỹ ≤ y2. Similarly, we have ỹ ≥ y1.
It remains to prove the uniqueness. Let y be an arbitrary solution to ODE (5.1)

satisfying (A.2). Then F̃ (t,yt ) = F(t,yt ), and thus y satisfies ODE (A.1). By the
uniqueness of ODE (A.1) we have y = ỹ, and thus uniqueness follows. �

PROOF OF THEOREM 5.3. (Necessity). For simplicity, let us rewrite (5.4) as

F(y) = f1 + a1y + a2y
2 + a3y

3,(A.3)

where a3 = σ2b3, a2 = b2 + f3σ2 + b3σ1, a1 = f2 + b1 + σ1f3.
We shall show that if none of (i)–(iii) holds, then the solution of ODE (5.3) will

blow-up in finite time, which would complete the proof. To this end, we assume
without loss of generality that F(h) ≥ 0. [The case when F(h) ≤ 0 can be argued
in the same way but using the conditions (ii) and (iii).] Since (i) does not hold, F

has no zero point in [h,∞), and hence F(h) > 0. Now since (iii) does not hold,
|a3|+|a2| �= 0. Note that if a3 < 0 or a3 = 0 but a2 < 0, then limy→∞ F(y) = −∞
which, together with F(h) > 0, will imply that F has a zero point in [h,∞), a con-
tradiction. Thus, we need only check the case where either “a3 > 0” or “a3 = 0,
a2 > 0.” We investigate the two cases separately.



WELL-POSEDNESS OF FBSDES 2211

Case 1. Assume a3 > 0. We claim that there exist ε > 0 and y1 < h such that

F(y) ≥ ε(y − y1)
3 for all y ≥ h.(A.4)

Indeed, in this case F(y) is a polynomial of degree 3, it must have at least one
real zero point. By our assumption, F has no zero point after h, then all real zero
points must be in (−∞, h). If there are three real zero points (possibly equal), we
list them as −∞ < y1 ≤ y2 ≤ y3 < h. Then for any y ≥ h, one has

F(y) = a3

3∏
i=1

(y − yi) ≥ a3(y − y1)
3.(A.5)

On the other hand, if F has only one real zero point, denoted as y1, then we may
write

F(y) = a3(y − y1)
[
(y − y2)

2 + c
]

for some c > 0.

Note that the function F̃ (y)
�= a3[(y − y2)

2 + c](y − y1)
−2 is continuous for y ∈

[h,∞), F̃ (y) > 0 and limy→∞ F̃ (y) = a3 > 0. Then

ε
�= inf

y≥h

a3[(y − y2)
2 + c]

(y − y1)2 > 0.

Thus, noting that y − y1 > 0 for y ≥ h,

F(y) = a3(y − y1)
[
(y − y2)

2 + c
] ≥ ε(y − y1)

3 for all y ≥ h.

This, together with (A.5), proves (A.4).
Now consider the following ODE:

ỹt = h +
∫ T

t
ε(ỹt − y1)

3 dt.(A.6)

Solving this ODE, we have ỹt − y1 = 1√
2ε(t−T )+(h−y1)

−2
. Thus, if T > 1

2ε(h−y1)
2 ,

then the solution ỹt blows up at t = T − 1
2ε(h−y1)

2 ∈ (0, T ). On the other hand, by

comparison theorem we can easily show that yt ≥ ỹt . Thus, the solution of (5.3)
will blow-up at finite time as well.

Case 2. Assume a3 = 0 and a2 > 0. Following similar arguments, in this case
we have F(y) ≥ ε(y −y1)

2, for all y ≥ h, and similarly y will blow up if T is large
enough. �

PROOF OF THEOREM 5.6. (Necessity):

(i) Assume h < σ−1
3 , F(h) ≤ 0, and α3

�= b2 − b3σ2σ
−1
3 �= 0. We show that

either F has a zero in (−∞, h] or y blows up when T is large enough.
Indeed, if α3 > 0, then limy→−∞ F(y) = ∞. Note that F is continuous for

y ∈ (−∞, h]. These, together with F(h) ≤ 0, imply that F has a zero point in
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(−∞, h]. We now assume α3 < 0. Denote F̃ (y)
�= − F(y)

(h+1−y)2 . In (−∞, h], if F

has no zero point, then F̃ is continuous, has no zero point, and limy→−∞ F̃ (y) =
−α3 > 0. Denote ε

�= infy≤h F̃ (y) > 0. Then we have

F(y) ≤ −ε(h + 1 − y)2 for all y ≤ h.

Following the arguments for the proof of the necessary part of Theorem 5.3, we
prove that y blows up when T is large.

(ii) Assume h > σ−1
3 , F(h) ≥ 0, and α3 �= 0. Similarly, we can show that either

F has a zero point in [h,∞) or y blows up when T is large enough.
(iii) Assume h < σ−1

3 and F(h) ≥ 0. We show that either F has a zero point in
[h,σ−1

3 ) or y violates (5.9) when T is large enough.
Indeed, recall the α0 in (5.8). If α0 < 0, then lim

y↑σ−1
3

F(y) = −∞. This implies

that F has a zero point in [h,σ−1
3 ).

If α0 > 0 and F has no zero point in [h,σ−1
3 ). Denote F̃ (y)

�= F(y)[σ−1
3 − y].

Then in [h,σ−1
3 ), F̃ is continuous, F̃ > 0, and lim

y↑σ−1
3

F̃ (y) = α0 > 0. Denote

ε
�= inf

y∈[h,σ−1
3 )

F̃ (y) > 0 and thus F(y) ≥ ε
(
σ−1

3 − y
)−1 for y ∈ [

h,σ−1
3

)
.

Let ỹ solve the following ODE:

ỹt = h +
∫ T

t
ε
(
σ−1

3 − ỹs

)−1
ds,

we obtain explicitly (σ−1
3 − ỹt )

2 = (σ−1
3 −h)2 −2ε(T − t). Let T ≥ 1

2ε
(σ−1

3 −h)2.

Then for t = T − 1
2ε

(σ−1
3 − h)2 ∈ [0, T ], we have ỹt = σ−1

3 . By comparison, we

see that (1 − σ3y)−1 would blow up.
Finally, if α0 = 0 and F has no zero point in [h,σ−1

3 ). Then F is continuous

and positive on [h,σ−1
3 ]. Denote ε

�= inf
y∈[h,σ−1

3 ] F(y) > 0, and define ỹt
�= h +∫ T

t ε ds = h+ε(T − t), t ∈ [0, T ]. Thus, if T ≥ ε−1[σ−1
3 −h], then ỹt = σ−1

3 at t =
T − ε−1[σ−1

3 −h]. By comparison again, we see that (1 − σ3y)−1 would blow up.
(iv) Assume h > σ−1

3 and F(h) ≤ 0. We can similarly show that either F has
a zero point in (σ−1

3 , h] or y violates (5.9) when T is large enough. �
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