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Abstract

Let X : [0, T ] × Ω −→ R be a bounded càdlàg process with positive jumps defined on the canonical
space of continuous paths Ω . We consider the problem of optimal stopping the process X under a nonlinear
expectation operator E defined as the supremum of expectations over a weakly compact but nondominated
family of probability measures. We introduce the corresponding nonlinear Snell envelope. Our main
objective is to extend the Snell envelope characterization to the present context. Namely, we prove that
the nonlinear Snell envelope is an E -supermartingale, and an E -martingale up to its first hitting time of the
obstacle X . This result is obtained under an additional uniform continuity property of X . We also extend
the result in the context of a random horizon optimal stopping problem.

This result is crucial for the newly developed theory of viscosity solutions of path-dependent PDEs as
introduced in Ekren et al. (2014), in the semilinear case, and extended to the fully nonlinear case in the
accompanying papers (Ekren et al. [6,7]).
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

On the canonical space of continuous paths Ω , we consider a bounded càdlàg process
X : [0, T ] × Ω −→ R, with positive jumps, and satisfying some uniform continuity condition.
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Let H0 be the first exit time of the canonical process from some convex domain, and H := H0 ∧ t0
for some t0 > 0. This paper focuses on the problem

sup
τ∈T

E [Xτ∧H], where E [·] := sup
P∈P

EP
[·],

T is the collection of all stopping times, relative to the natural filtration of the canonical process,
and P is a weakly compact non-dominated family of probability measures.

Our main result is the following. Similar to the standard theory of optimal stopping, we
introduce the corresponding nonlinear Snell envelope Y , and we show that the classical Snell
envelope characterization holds true in the present context. More precisely, we prove that the
Snell envelope Y is an E -supermartingale, and an E -martingale up to its first hitting time τ ∗ of
the obstacle. Consequently, τ ∗ is an optimal stopping time for our problem of optimal stopping
under nonlinear expectation.

This result is proved by adapting the classical arguments available in the context of the
standard optimal stopping problem under linear expectation. However, such an extension turns
out to be highly technical. The first step is to derive the dynamic programming principle in the
present context, implying the E -supermartingale property of the Snell envelope Y . To establish
the E -martingale property on [0, τ ∗

], we need to use some limiting argument for a sequence Yτn ,
where τn’s are stopping times increasing to τ ∗. However, we face one major difficulty related
to the fact that in a nonlinear expectation framework the dominated convergence theorem fails
in general. It was observed in Denis, Hu and Peng [3] that the monotone convergence theorem
holds in this framework if the decreasing sequence of random variables are quasi-continuous.
Therefore, one main contribution of this paper is to construct convenient quasi-continuous
approximations of the sequence Yτn . This allows us to apply the arguments in [3] on Yτn , which is
decreasing under expectation (but not pointwise!) due to the supermartingale property. The weak
compactness of the class P is crucial for the limiting arguments.

We note that in an one dimensional Markov model with uniformly non-degenerate diffusion,
Krylov [10] studied a similar optimal stopping problem in the language of stochastic control
(instead of nonlinear expectation). However, his approach relies heavily on the smoothness of
the (deterministic) value function, which we do not have here. Indeed, one of the main technical
difficulties in our situation is to obtain the locally uniform regularity of the value process.

Our interest in this problem is motivated from the recent notion of viscosity solutions of path-
dependent partial differential equations, as developed in [5] and the accompanying papers [6,7].
Our definition is in the spirit of Crandall, Ishii and Lions [2], see also Fleming and Soner [9], but
avoids the difficulties related to the fact that our canonical space fails to be locally compact. The
key point is that the pointwise maximality condition, in the standard theory of viscosity solution,
is replaced by a problem of optimal stopping under nonlinear expectation.

Our previous paper [5] was restricted to the context of semilinear path-dependent partial
differential equations. In this special case, our definition of viscosity solutions can be restricted
to the context where P consists of equivalent measures on the canonical space (and hence P
has dominating measures). Consequently, the Snell envelope characterization of the optimal
stopping problem under nonlinear expectation is available in the existing literature on reflected
backward stochastic differential equations, see e.g. El Karoui et al. [8], Bayraktar, Karatzas and
Yao [1]. However, the extension of our definition to the fully nonlinear case requires to consider
a nondominated family of measures.

The paper is organized as follows. Section 2 introduces the probabilistic framework. Section 3
formulates the problem of optimal stopping under nonlinear expectation, and contains the
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statement of our main results. The proof of the Snell envelope characterization in the deter-
ministic maturity case is reported in Section 4. The more involved case of a random maturity is
addressed in Section 5. Finally, in the Appendix we present some additional results.

2. Nondominated family of measures on the canonical space

2.1. The canonical spaces

Let Ω :=

ω ∈ C([0, T ],Rd) : ω0 = 0


, the set of continuous paths starting from the origin,

B the canonical process, F = {Ft }0≤t≤T the natural filtration generated by B,P0 the Wiener
measure, T the set of F-stopping times, and Λ := [0, T ] × Ω . Moreover, for any sub-σ -field
G ⊂ FT , let L0(G) denote the set of G-measurable random variables, and H0(F) the set of
F-progressively measurable processes. Here and in the sequel, for notational simplicity, we use
0 to denote vectors or matrices with appropriate dimensions whose components are all equal to
0. We define a seminorm on Ω and a pseudometric on Λ as follows: for any (t, ω), (t ′, ω′) ∈ Λ,

∥ω∥t := sup
0≤s≤t

|ωs |, d∞


(t, ω), (t ′, ω′)


:= |t − t ′| +

ω·∧t − ω′

·∧t ′


T . (2.1)

Then (Ω , ∥ · ∥T ) is a Banach space and (Λ,d∞) is a complete pseudometric space. In fact, the
subspace {(t, ω·∧t ) : (t, ω) ∈ Λ} is a complete metric space under d∞.

We next introduce the shifted spaces. Let 0 ≤ s ≤ t ≤ T .

– Let Ω t
:=

ω ∈ C([t, T ],Rd) : ωt = 0


be the shifted canonical space; Bt the shifted canon-

ical process on Ω t ; Ft the shifted filtration generated by Bt ,Pt
0 the Wiener measure on Ω t , T t

the set of Ft -stopping times, and Λt
:= [t, T ] × Ω t . Moreover, for any G ⊂ F t

T ,L
0(G) and

H0(Ft ) are the corresponding sets of measurable random variables and processes, respectively.
– For ω ∈ Ω s and ω′

∈ Ω t , define the concatenation path ω⊗t ω
′
∈ Ω s by:

(ω⊗t ω
′)(r) := ωr 1[s,t)(r)+ (ωt + ω′

r )1[t,T ](r), for all r ∈ [s, T ].

– Let 0 ≤ s < t ≤ T and ω ∈ Ω s . For any ξ ∈ L0(F s
T ) and X ∈ H0(Fs) on Ω s , define the

shifted ξ t,ω
∈ L0(F t

T ) and X t,ω
∈ H0(Ft ) on Ω t by:

ξ t,ω(ω′) := ξ(ω⊗t ω
′), X t,ω(ω′) := X (ω⊗t ω

′), for all ω′
∈ Ω t .

2.2. Capacity and nonlinear expectation

A probability measure P on Ω is called a semimartingale measure if the canonical process
B is a semimartingale under P. For every constant L > 0, we denote by P L the collection of
all continuous semimartingale measures P on Ω whose drift and diffusion characteristics are
bounded by L and

√
2L , respectively. To be precise, let Ω̃ := Ω3 be an enlarged canonical

space, B̃ := (B, A,M) be the canonical processes, and ω̃ = (ω, a,m) ∈ Ω̃ be the paths. For any
P ∈ P L , there exists an extension Q on Ω̃ such that:

B = A + M, A is absolutely continuous, M is a martingale,

|αP
| ≤ L ,

1
2

tr ((βP)2) ≤ L , where αP
t :=

d At

dt
,

βP
t :=


d⟨M⟩t

dt
,

Q-a.s. (2.2)

Similarly, for any t ∈ [0, T ), we may define P L
t on Ω t .
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Remark 2.1. Let Sd
+ denote the set of d × d nonnegative definite matrices.

(i) In Q-a.s. sense, clearly βP
∈ L0(FB) and then αP

∈ L0(FB,M ).
(ii) We may also have the following equivalent characterization of P L . Consider the canonical

space Ω ′
:= Ω2 with canonical processes (B, B ′). For any P ∈ P L , there exist a probability

measure Q′ and αP
∈ L0(FB,B′

,Rd), βP
∈ L0(FB,Sd

+) such that

|αP
| ≤ L ,

1
2

tr ((βP)2) ≤ L , Q′
|F B

T
= P, Q′

|F B′

T
= Wiener measure;

d Bt = αP
t (B, B ′)dt + βP

t (B)d B ′
t , Q′-a.s.

(2.3)

(iii) For any deterministic measurable functions α : [0, T ] → Rd and β : [0, T ] → Sd
+ satisfy-

ing |α| ≤ L , 1
2 tr (β2) ≤ L , there exists unique P ∈ P L such that αP

= α, βP
= β,P-a.s.,

where αP, βP can be understood in the sense of either (2.2) or (2.3). �

Throughout this paper, we shall consider a family {Pt , t ∈ [0, T ]} of semimartingale measures
on Ω t satisfying:

(P1) there exists some L0 such that, for all t,Pt is a weakly compact subset of P L0
t .

(P2) For any 0 ≤ t ≤ T, τ ∈ T t , and P ∈ Pt , the regular conditional probability distribution
Pτ,ω ∈ Pτ(ω) for P-a.e. ω ∈ Ω t .

(P3) For any 0 ≤ s ≤ t ≤ T,P ∈ Ps, {Ei , i ≥ 1} ⊂ F s
t disjoint, and Pi

∈ Pt , the following P̂ is
also in Ps :

P̂ := P ⊗t


∞

i=1

Pi 1Ei + P1∩
∞

i=1 Ec
i


. (2.4)

Here (2.4) means, for any event E ∈ F s
T and denoting E t,ω

:= {ω′
∈ Ω t

: ω⊗t ω
′
∈ E}:

P̂[E] := EP


∞
i=1

Pi
[E t,B

]1Ei (B)


+ P


E ∩ (∩∞

i=1 Ec
i )

.

We refer to the seminal work of Stroock and Varadhan [16] for the introduction of regular
conditional probability distribution (r.c.p.d. for short). See also Appendix A.1, in particular (A.2)
below for the precise meaning of Pτ,ω.

Remark 2.2. (i) The weak compactness of (P1) is crucial for the existence of the optimal
stopping time. As explained in Introduction, the major technical difficulty we face is the
failure of the dominated convergence theorem in our nonlinear expectation framework. To
overcome this, we shall use the regularity of the processes and the weak compactness of the
classes Pt . See e.g. Step 2 in Section 4.4.

(ii) The regular conditional probability distribution is a convenient tool for proving the dynamic
programming principle, see e.g. Soner, Touzi, and Zhang [14]. In particular, (P2) is used to
prove one inequality in the dynamic programming principle, see e.g. Step 1 in the proof of
Lemma 4.1.

(iii) The concatenation Property (P3) is used to prove the opposite inequality in the dynamic pro-
gramming principle, see e.g. Step 2 in the proof of Lemma 4.1. We remark that this condition
can be weakened by using the more abstract framework in Nutz and van Handel [11]. �
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We first observe that

Lemma 2.3. For all L > 0, the family {P L
t , t ∈ [0, T ]} satisfies conditions (P1)–(P3).

The proof is quite straightforward, by using the definition of r.c.p.d. We nevertheless provide a
proof in the Appendix.

The following are some other typical examples of such a family {Pt , t ∈ [0, T ]}. Their
Properties (P1)–(P3) can be checked similarly.

Example 2.4. Let L , L1, L2 > 0 be some constants.
Wiener measure P 0

t := {Pt
0} = {P : αP

= 0, βP
= Id}.

Finite variation P FV
t (L) := {P : |αP

| ≤ L , βP
= 0}.

Drifted Wiener measure P 0,ac
t (L) := {P : |αP

| ≤ L , βP
= Id}.

Relaxed bounds Pt (L1, L2) := {P : |αP
| ≤ L1, 0 ≤ βP

≤ L2 Id}.
Relaxed bounds, Uniformly elliptic P UE

t (L1, L2, L) := {P : |αP
| ≤ L1, L Id ≤ βP

≤ L2 Id}.
Equivalent martingale measures P e

t (L1, L2, L) := {P ∈ Pt (L1, L2) : ∃ |γ P
| ≤ L , αP

= βPγ P
}.

We denote by L1(F t
T ,Pt ) the set of all ξ ∈ L0(F t

T ) with supP∈Pt
EP

[|ξ |] < ∞. The set Pt
induces the following capacity and nonlinear expectation:

Ct [A] := sup
P∈Pt

P[A] for A ∈ F t
T , and Et [ξ ] := sup

P∈Pt

EP
[ξ ]

for ξ ∈ L1(F t
T ,Pt ). (2.5)

When t = 0, we shall omit t and abbreviate them as P, C, E . Clearly E is a G-expectation, in the
sense of Peng [12]. We remark that, when ξ satisfies certain regularity condition, then Et [ξ

t,ω
]

can be viewed as the conditional G-expectation of ξ , and as a process it is the solution of a
Second Order BSDE, as introduced by Soner, Touzi and Zhang [13].

We remark that the last three families of measures in Example 2.4 are non-dominated, which
are most interesting to us. In particular, in these cases the dominated convergence theorem fails
under the corresponding nonlinear expectation as we see in the following simple example.

Example 2.5. Consider the relaxed bounds Pt (L1, L2) in Example 2.4 with d = 1. Let

ξn := 1
{0<⟨B⟩T ≤

1
n }
,

where ⟨B⟩ is the pathwise quadratic variation. Then ξn ↓ 0 for all ω as n → ∞, but E0[ξn] = 1
for all n ≥

1
2L2

. �

Given a family of probability measures P on Ω , abusing the terminology of Denis and
Martini [4], we say that a property holds P -q.s. (quasi-surely) if it holds P-a.s. for all P ∈ P .
Moreover, a random variable ξ : Ω → R is

• P -quasi-continuous if for any ε > 0, there exists a closed set Ωε ⊂ Ω such that C(Ω c
ε ) < ε

and ξ is continuous in Ωε,
• P -uniformly integrable if E [|ξ |]1{|ξ |≥n} −→ 0, as n → ∞.

Since P is weakly compact, by Denis, Hu and Peng [3, Lemma 4 and Theorems 22, 28], we have:

Proposition 2.6. (i) Let (Ωn)n≥1 be a sequence of open sets with Ωn ↑ Ω . Then C(Ω c
n ) ↓ 0.

(ii) Let (ξn)n≥1 be a sequence of P -quasi-continuous and P -uniformly integrable maps from Ω
to R. If ξn ↓ ξ,P -q.s. then E [ξn] ↓ E [ξ ].
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We finally recall the notion of martingales under nonlinear expectation.

Definition 2.7. Let X ∈ H0(F) such that Xτ ∈ L1(Fτ ,P) for all τ ∈ T . We say that X is a
E -supermartingale (resp. submartingale, martingale) if, for any (t, ω) ∈ Λ and any τ ∈ T t ,

Et [X t,ω
τ ] ≤ (resp. ≥,=) X t (ω) for P -q.s. ω ∈ Ω .

We remark that we require the E -supermartingale property holds for stopping times. Under linear
expectation EP, this is equivalent to the P-supermartingale property for deterministic times, due
to the Doob’s optional sampling theorem. However, under nonlinear expectation, they are in
general not equivalent.

3. Optimal stopping under nonlinear expectations

We now fix a process X ∈ H0(F).

Assumption 3.1. X is a bounded càdlàg process with positive jumps, and there exists a modulus
of continuity function ρ0 such that for any (t, ω), (t ′, ω′) ∈ Λ:

X (t, ω)− X (t ′, ω′) ≤ ρ0


d∞


(t, ω), (t ′, ω′)


whenever t ≤ t ′. (3.1)

Remark 3.2. There is some redundancy in the above assumption. Indeed, it is shown in the
Appendix that (3.1) implies that X has left-limits and X t− ≤ X t for all t ∈ (0, T ]. Moreover,
the fact that X has only positive jumps is important to ensure that the random times τ ∗ in (3.2),
τ̂ ∗ in (3.5), and τn in (4.7) and (5.15) are F-stopping times. �

We define the nonlinear Snell envelope and the corresponding obstacle first hitting time:

Yt (ω) := sup
τ∈T t

Et [X t,ω
τ ], and τ ∗

:= inf{t ≥ 0 : Yt = X t }. (3.2)

Our first result is the following nonlinear Snell envelope characterization of the deterministic
maturity optimal stopping problem Y0.

Theorem 3.3 (Deterministic Maturity). Under Assumption 3.1, the process Y is an E -
supermartingale on [0, T ], Yτ∗ = Xτ∗ , and Y·∧τ∗ is an E -martingale. Consequently, τ ∗ is an
optimal stopping time for the problem Y0.

To prove the partial comparison principle for viscosity solutions of path-dependent partial dif-
ferential equations in our accompanying paper [7], we need to consider optimal stopping prob-
lems with random maturity time H ∈ T of the form

H := inf{t ≥ 0 : Bt ∈ Oc
} ∧ t0, (3.3)

for some t0 ∈ (0, T ] and some open convex set O ⊂ Rd containing the origin. We shall extend
the previous result to the following stopped process:

X H
s := Xs1{s<H} + XH−1{s≥H} for s ∈ [0, T ]. (3.4)

The corresponding Snell envelope and obstacle first hitting time are denoted:

Y H
t (ω) := sup

τ∈T t
Et

X H
t,ω
τ


, and τ ∗

:= inf{t ≥ 0 : Y H
t = X H

t }. (3.5)
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Our second main result requires the following additional assumption.

Assumption 3.4. (i) For some L > 0,P FV
t (L) ⊂ Pt for all t ∈ [0, T ], where P FV

t (L) is
defined in Example 2.4.

(ii) For any 0 ≤ t < t + δ ≤ T,Pt ⊂ Pt+δ in the following sense: for any P ∈ Pt we have
P̃ ∈ Pt+δ , where P̃ is the probability measure on Ω t+δ such that the P̃-distribution of Bt+δ

is equal to the P-distribution of {Bt
s , t ≤ s ≤ T − δ}.

Remark 3.5. The above assumption is a technical condition used to prove the dynamic
programming principle in Section 5.1 below.

(i) All sets in Example 2.4 satisfy Assumption 3.4(ii), and the relaxed bounds Pt (L1, L2) sat-
isfies Assumption 3.4(i). We remark that, for the viscosity theory of path-dependent partial
differential equations in our accompanying papers [6,7], we shall use Pt (L ,

√
2L) which

satisfies both (i) and (ii) of Assumption 3.4.
(ii) By a little more involved arguments, we may prove the results in Section 5.1 by replacing

Assumption 3.4 (i) with: for P UE
t defined in Example 2.4,

for some constants L , L1, L2, P UE
t (L1, L2, L) ⊂ Pt for all t ∈ [0, T ], (3.6)

(iii) If Pt is uniformly nondegenerate, namely

there exists c > 0 such that βP
≥ cId for all t and P ∈ Pt , (3.7)

then we shall use (3.6) instead of Assumption 3.4 (i). In this case, under the additional con-
dition that X is uniformly continuous in (t, ω), Ŷ H is left continuous at H and the arguments
for our main result Theorem 3.6 below can be simplified significantly, see Lemma A.1 and
Remark 5.10 below. �

Theorem 3.6 (Random Maturity). Under Assumptions 3.1 and 3.4, the process Y H is an E -
supermartingale on [0, H],Y Hτ∗ = X Hτ∗ , and Y H

·∧τ∗ is an E -martingale. In particular, τ ∗ is an
optimal stopping time for the problem Y H

0 .

Remark 3.7. The main idea for proving Theorem 3.6 is to show that E [Y H
τn

] converges to E [Y Hτ∗ ],
where τn is defined by (5.15) below and increases toτ ∗. However, we face a major difficulty that
the dominated convergence theorem fails in our nonlinear expectation framework. Notice that Y
is an E -supermartingale and thus Yτn are decreasing under expectation (but not pointwise!). We
shall extend the arguments of [3] for the monotone convergence theorem, Proposition 2.6, to our
case. For this purpose, we need to construct certain continuous approximations of the stopping
times τn , and the requirement that the random maturity H is of the form (3.3) is crucial. We
remark that, in his Markov model, Krylov [10] also considers this type of hitting times. We also
remark that, in a special case, Song [15] proved that H is quasi-continuous. �

4. Deterministic maturity optimal stopping

We now prove Theorem 3.3. Throughout this section, Assumption 3.1 is always in force, and
we consider the nonlinear Snell envelope Y together with the first obstacle hitting time τ ∗, as
defined in (3.2). Assume |X | ≤ C0, and without loss of generality that ρ0 ≤ 2C0. It is obvious
that

|Y | ≤ C0, Y ≥ X, and YT = XT . (4.1)
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Throughout this section, we shall use the following modulus of continuity function:

ρ̄0(δ) := ρ0(δ) ∨


ρ0(δ

1
3 )+ δ

1
3


, (4.2)

and we shall use a generic constant C which depends only on C0, T, d , and the L0 in Property
(P1), and it may vary from line to line.

4.1. Dynamic programming principle

Similar to the standard Snell envelope characterization under linear expectation, our first step
is to establish the dynamic programming principle. We start by the case of deterministic times.

Lemma 4.1. For each t, the random variable Yt is uniformly continuous in ω, with the modulus
of continuity function ρ0, and satisfies

Yt1(ω) = sup
τ∈T t1

Et1


X t1,ω
τ 1{τ<t2} + Y t1,ω

t2 1{τ ≥t2}


for all 0 ≤ t1 ≤ t2 ≤ T, ω ∈ Ω . (4.3)

Proof. (i) First, for any t , any ω,ω′
∈ Ω , and any τ ∈ T t , by (3.1) we have

|X t,ω
τ − X t,ω′

τ | =
X (τ (Bt ), ω⊗t Bt )− X (τ (Bt ), ω′

⊗t Bt )


≤ ρ0


d∞


(τ (Bt ), ω⊗t Bt ), (τ (Bt ), ω′

⊗t Bt )


= ρ0

∥ω − ω′

∥t

.

Since τ is arbitrary, this proves uniform continuity of Yt in ω.
(ii) When t2 = T , since YT = XT (4.3) coincides with the definition of Y . Without loss of

generality we assume (t1, ω) = (0, 0) and t := t2 < T . Recall that we omit the subscript 0.

Step 1. We first prove “≤”. For any τ ∈ T and P ∈ P :

EP [Xτ ] = EP


Xτ1{τ<t} + EP
t [Xτ ]1{τ≥t}


.

By the definition of the regular conditional probability distribution, we have EP
t [Xτ ](ω) =

EPt,ω
[X t,ω

τ t,ω ] ≤ Yt (ω) for P-a.e. ω ∈ {τ ≥ t}, where the inequality follows from Property (P2) of
the family {Pt } that Pt,ω

∈ Pt . Then:

EP [Xτ ] ≤ EP Xτ1{τ<t} + Yt 1{τ≥t}

.

By taking the sup over τ and P, it follows that:

Y0 = sup
τ∈T

E [Xτ ] ≤ sup
τ∈T

E

Xτ1{τ<t} + Yt 1{τ≥t}


.

Step 2. We next prove “≥”. Fix arbitrary τ ∈ T and P ∈ P , we shall prove

EPXτ1{τ<t} + Yt 1{τ≥t}


≤ Y0. (4.4)

Let ε > 0, and {Ei }i≥1 be an Ft -measurable partition of the event {τ ≥ t} ∈ Ft such that
∥ω − ω̃∥t ≤ ε for all ω, ω̃ ∈ Ei . For each i , fix an ωi

∈ Ei , and by the definition of Y we have

Yt (ω
i ) ≤ EPi 

X t,ωi

τ i


+ ε for some (τ i ,Pi ) ∈ T t

× Pt .

By (3.1) and the uniform continuity of Y , proved in (i), we have

|Yt (ω)− Yt (ω
i )| ≤ ρ0(ε), |X t,ω

τ i − X t,ωi

τ i | ≤ ρ0(ε), for all ω ∈ Ei .
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Thus, for ω ∈ Ei ,

Yt (ω) ≤ Yt (ω
i )+ ρ0(ε) ≤ EPi 

X t,ωi

τ i


+ ε + ρ0(ε) ≤ EPi 

X t,ω
τ i


+ ε + 2ρ0(ε). (4.5)

Thanks to Property (P3) of the family {Pt }, we may define the following pair (τ̃ , P̃) ∈ T × P :

τ̃ := 1{τ<t}τ + 1{τ≥t}


i≥1

1Ei τ
i (Bt ); P̃ := P ⊗t


i≥1

1Ei P
i
+ 1{τ<t}P


.

It is obvious that {τ < t} = {τ̃ < t}. Then, by (4.5),

EPXτ1{τ<t} + Yt 1{τ≥t}


= EP


Xτ1{τ<t} +


i≥1

Yt 1Ei



≤ EP


Xτ1{τ<t} +


i≥1

EPi
[X t,·

τ i ]1Ei


+ ε + 2ρ0(ε)

= EP̃


X τ̃1{τ̃<t} +


i≥1

X τ̃1Ei


+ ε + 2ρ0(ε)

= EP̃X τ̃ + ε + 2ρ0(ε) ≤ Y0 + ε + 2ρ0(ε),

which provides (4.4) by sending ε → 0. �

We now derive the regularity of Y in t .

Lemma 4.2. For each ω ∈ Ω and 0 ≤ t1 < t2 ≤ T ,

|Yt1(ω)− Yt2(ω)| ≤ C ρ̄0


d∞


(t1, ω), (t2, ω)


.

Proof. Denote δ := d∞


(t1, ω), (t2, ω)


. If δ ≥

1
8 , then clearly |Yt1(ω) − Yt2(ω)| ≤ 2C0 ≤

C ρ̄0(δ). So we continue the proof assuming δ ≤
1
8 . First, by setting τ = t2 in Lemma 4.1,

δY := Yt2(ω)− Yt1(ω) ≤ Yt2(ω)− Et1


Y t1,ω

t2


≤ Et1


Yt2(ω)− Yt2(ω⊗t1 Bt1)


≤ Et1


ρ0

d∞


(t2, ω), (t2, ω⊗t1 Bt1)


≤ Et1


ρ0

δ + ∥Bt1∥t1+δ


.

On the other hand, by the inequality X ≤ Y , Lemma 4.1, and (3.1), we have

−δY ≤ sup
τ∈T t1

Et1


X t1,ω

t2 + ρ0

d∞((τ, ω⊗t1 Bt1), (t2, ω⊗t1 Bt1))


1{τ<t2}

+ Y t1,ω
t2 1{τ≥t2}


− Yt2(ω)

≤ Et1


Y t1,ω

t2 − Yt2(ω)+ ρ0

d∞((t1, ω), (t2, ω⊗t1 Bt1))
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≤ Et1


ρ0

d∞((t2, ω), (t2, ω⊗t1 Bt1))


+ ρ0


d∞((t1, ω), (t2, ω⊗t1 Bt1))


≤ 2Et1


ρ0

δ + ∥Bt1∥t1+δ


.

Hence

|δY | ≤ 2Et1


ρ0

δ + ∥Bt1∥t1+δ


≤ Et1


ρ0


δ +

3
4
δ

1
3


+ 2C01

{∥Bt1∥t1+δ≥
3
4 δ

1
3 }


.

Since δ +
3
4δ

1
3 ≤ δ

1
3 for δ ≤

1
8 , this provides:

|δY | ≤ ρ0(δ
1
3 )+ Cδ−

2
3 Et1


∥Bt1∥2

t1+δ


≤ ρ0(δ

1
3 )+ Cδ−

2
3 δ ≤ C ρ̄0(δ). � (4.6)

We are now ready to prove the dynamic programming principle for stopping times.

Theorem 4.3. For any (t, ω) ∈ Λ and τ ∈ T t , we have

Yt (ω) = sup
τ̃∈T t

Et


X t,ω
τ̃

1{τ̃<τ } + Y t,ω
τ 1{τ̃≥τ }


.

Consequently, Y is an E -supermartingale on [0, T ].

Proof. First, follow the arguments in Lemma 4.1(ii) Step 1 and note that Property (P2) of the
family {Pt } holds for stopping times, one can prove straightforwardly that

Yt (ω) ≤ sup
τ̃∈T t

Et


X t,ω
τ̃

1{τ̃<τ } + Y t,ω
τ 1{τ̃≥τ }


.

On the other hand, let τk ↓ τ such that τk takes only finitely many values. By Lemma 4.1 one
can easily show that Theorem 4.3 holds for τk . Then for any P ∈ Pt and τ̃ ∈ T t , by denoting
τ̃m := [τ̃ +

1
m ] ∧ T we have

EP


X t,ω
τ̃m

1{τ̃m<τk } + Y t,ω
τk

1{τ̃m≥τk }


≤ Yt (ω).

Sending k → ∞, by Lemma 4.2 and the dominated convergence theorem (under P):

EP


X t,ω
τ̃m

1{τ̃m≤τ } + Y t,ω
τ 1{τ̃m>τ }


≤ Yt (ω).

Since the process X is right continuous in t , we obtain by sending m → ∞:

Yt (ω) ≥ EP


X t,ω
τ̃

1{τ̃<τ } + Y t,ω
τ 1{τ̃≥τ }


,

which provides the required result by the arbitrariness of P and τ̃ . �

4.2. Preparation for the E -martingale property

If Y0 = X0, then τ ∗
= 0 and obviously all the statements of Theorem 3.3 hold true. Therefore,

we focus on the non-trivial case Y0 > X0.
We continue following the proof of the Snell envelope characterization in the standard linear

expectation context. Let

τn := inf


t ≥ 0 : Yt − X t ≤
1
n


∧ T, for n > (Y0 − X0)

−1. (4.7)
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Lemma 4.4. The process Y is an E -martingale on [0, τn].

Proof. By the dynamic programming principle of Theorem 4.3,

Y0 = sup
τ∈T

E


Xτ1{τ<τn} + Yτn 1{τ≥τn}


.

For any ε > 0, there exist τε ∈ T and Pε ∈ P such that

Y0 ≤ EPε


Xτε1{τε<τn} + Yτn 1{τε≥τn}


+ ε ≤ EPε


Yτε∧τn −

1
n

1{τε<τn}


+ ε, (4.8)

where we used the fact that Yt − X t >
1
n for t < τn , by the definition of τn . On the other

hand, it follows from the E -supermartingale property of Y in Theorem 4.3 that EPε

Yτε∧τn


≤

E [Yτε∧τn ] ≤ Y0, which implies by (4.8) that Pε[τε < τn] ≤ nε. We then get from (4.8) that:

Y0 ≤ EPε

(Xτε − Yτn )1{τε<τn} + Yτn


+ ε ≤ CPε[τε < τn] + EPε [Yτn ] + ε

≤ E [Yτn ] + (Cn + 1)ε.

Since ε is arbitrary, we obtain Y0 ≤ E [Yτn ]. Similarly one can prove Y is an E -submartingale on
[0, τn]. By the E -supermartingale property of Y established in Theorem 4.3, this implies that Y
is an E -martingale on [0, τn]. �

By Lemma 4.2 we have

Y0 − E [Yτ∗ ] = E [Yτn ] − E [Yτ∗ ] ≤ C E

ρ̄0


d∞


(τn, ω), (τ

∗, ω)


. (4.9)

Clearly, τn ↗ τ ∗, and ρ̄0


d∞


(τn, ω), (τ

∗, ω)


↘ 0. However, in general the stopping times

τn, τ
∗ are not P -quasi-continuous, so we cannot apply Proposition 2.6(ii) to conclude Y0 ≤

E [Yτ∗ ]. To overcome this difficulty, we need to approximate τn by continuous random variables.

4.3. Continuous approximation

The following lemma is crucial for us.

Lemma 4.5. Let θ ≤ θ ≤ θ be random variables on Ω , with values in a compact interval I ⊂ R,
such that for some Ω0 ⊂ Ω and δ > 0:

θ(ω) ≤ θ(ω′) ≤ θ(ω) for all ω ∈ Ω0 and ∥ω − ω′
∥ ≤ δ.

Then for any ε > 0, there exists a uniformly continuous function θ̂ : Ω → I and an open subset
Ωε ⊂ Ω such that

C

Ω c
ε


≤ ε and θ − ε ≤ θ̂ ≤ θ + ε in Ωε ∩ Ω0.

Proof. If I is a single point set, then θ is a constant and the result is obviously true. Thus
at below we assume the length |I | > 0. Let {ω j } j≥1 be a dense sequence in Ω . Denote
O j := {ω ∈ Ω : ∥ω − ω j∥ <

δ
2 } and Ωn := ∪

n
j=1 O j . It is clear that Ωn is open and Ωn ↑ Ω as

n → ∞. Let fn : [0,∞) → [0, 1] be defined as follows: fn(x) = 1for x ∈ [0, δ2 ], fn(x) =
1

n2|I |



3288 I. Ekren et al. / Stochastic Processes and their Applications 124 (2014) 3277–3311

for x ≥ δ, and fn is linear in [
δ
2 , δ]. Define

θn(ω) := φn(ω)

n
j=1

θ(ω j )ϕn, j (ω) where ϕn, j (ω) := fn(∥ω − ω j∥)

and φn :=


n

j=1

ϕn, j

−1

.

Then clearly θn is uniformly continuous and takes values in I . For each ω ∈ Ωn ∩ Ω0, the set
Jn(ω) := {1 ≤ j ≤ n : ∥ω − ω j∥ ≤ δ} ≠ ∅ and φn(ω) ≤ 1. Then, by our assumption,

θn(ω)− θ(ω) = φn(ω)

 
j∈Jn(ω)

[θ(ω j )− θ(ω)]ϕn, j (ω)+


j ∉Jn(ω)

[θ(ω j )− θ(ω)]ϕn, j (ω)



≤ φn(ω)


j ∉Jn(ω)

|I |ϕn, j (ω) ≤ φn(ω)


j ∉Jn(ω)

1

n2 ≤
1
n
.

Similarly one can show that θ −
1
n ≤ θn in Ωn ∩Ω0. Finally, since Ωn ↑ Ω as n → ∞, it follows

from Proposition 2.6(i) that limn→∞ C[Ω c
n ] = 0. �

4.4. Proof of Theorem 3.3

We proceed in two steps.

Step 1. For each n, let δn > 0 be such that 3C ρ̄0(δn) ≤
1

n(n+1) for the constant C in Lemma 4.2.
Now for any ω and ω′ such that ∥ω − ω′

∥T ≤ δn , by (3.1), the uniform continuity of Y in
Lemma 4.1, and the fact that ρ0 ≤ ρ̄0, we have

(Y − X)τn+1(ω)(ω
′) ≤ (Y − X)τn+1(ω)(ω)+ 3C ρ̄0(δn) ≤

1
n + 1

+
1

n(n + 1)
=

1
n
.

Then τn(ω
′) ≤ τn+1(ω). Since 3C ρ̄0(δn) ≤

1
n(n+1) ≤

1
n(n−1) , similarly we have τn−1(ω) ≤

τn(ω
′). We may then apply Lemma 4.5 with θ = τn−1, θ = τn, θ = τn+1, and Ω0 = Ω . Thus,

there exist an open set Ωn ⊂ Ω and a continuous random variable τ̃n valued in [0, T ] such that

C

Ω c

n


≤ 2−n and τn−1 − 2−n

≤ τ̃n ≤ τn+1 + 2−n in Ωn .

Step 2. By Lemma 4.4, for each n large, there exists Pn ∈ P such that

Y0 = E [Yτn ] ≤ EPn [Yτn ] + 2−n .

By Property (P1), P is weakly compact. Then, there exists a subsequence {n j } and P∗
∈ P such

that Pn j converges weakly to P∗. Now for any n large and any n j ≥ n, note that τn j ≥ τn . Since
Y is an E -supermartingale and thus a Pn j -supermartingale, we have

Y0 − 2−n j ≤ EPn j

Yτn j


≤ EPn j


Yτn


≤ EPn j


Yτ̃n


+ EPn j


|Yτ̃n − Yτn |


. (4.10)

By the boundedness of Y in (4.1) and the uniform continuity of Y in Lemma 4.2, we have

|Yτ̃n − Yτn | ≤ C ρ̄0


d∞


(τ̃n, ω), (τn, ω)


≤ C ρ̄0


d∞


(τ̃n, ω), (τn, ω)


1Ωn−1∩Ωn+1 + C1Ω c

n−1∪Ω c
n+1
.
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Notice that τ̃n−1 − 21−n
≤ τn ≤ τ̃n+1 + 2−1−n on Ωn−1 ∩ Ωn+1. Then

|Yτ̃n − Yτn | ≤ C ρ̄0


d∞


(τ̃n, ω), (τ̃n−1 − 21−n, ω)


1Ωn−1∩Ωn+1

+ C ρ̄0


d∞


(τ̃n, ω), (τ̃n+1 + 2−1−n, ω)


1Ωn−1∩Ωn+1 + C1Ω c

n−1∪Ω c
n+1

≤ C ρ̄0


d∞


(τ̃n, ω), (τ̃n−1 − 21−n, ω)


+ C ρ̄0


d∞


(τ̃n, ω), (τ̃n+1 + 2−1−n, ω)


+ C1Ω c

n−1∪Ω c
n+1
.

Then (4.10) together with the estimate C[Ω c
n ] ≤ 2−n lead to

Y0 − 2−n j ≤ EPn j

Yτ̃n


+ CEPn j


ρ̄0


d∞


(τ̃n, ω), (τ̃n−1 − 21−n, ω)


+ CEPn j


ρ̄0


d∞


(τ̃n, ω), (τ̃n+1 + 2−1−n, ω)


+ C2−n .

Notice that Y and τ̃n−1, τ̃n, τ̃n+1 are continuous. Send j → ∞, we obtain

Y0 ≤ EP∗
Yτ̃n


+ CEP∗


ρ̄0


d∞


(τ̃n, ω), (τ̃n−1 − 21−n, ω)


+ CEP∗


ρ̄0


d∞


(τ̃n, ω), (τ̃n+1 − 2−1−n, ω)


+ C2−n . (4.11)

Since


n P∗

|τ̃n − τn| ≥ 2−n


≤


n C

|τ̃n − τn| ≥ 2−n


≤


n 2−n < ∞ and τn ↑ τ ∗, by the
Borel–Cantelli lemma under P∗ we see that τ̃n → τ ∗,P∗-a.s. Send n → ∞ in (4.11) and apply
the dominated convergence theorem under P∗, we obtain

Y0 ≤ EP∗
Yτ∗


≤ E [Yτ∗ ].

Similarly Yt (ω) ≤ Et [Y
t,ω
τ∗ ] for t < τ ∗(ω). By the E -supermartingale property of Y established

in Theorem 4.3, this implies that Y is an E -martingale on [0, τ ∗
]. �

5. Random maturity optimal stopping

In this section, we prove Theorem 3.6. The main idea follows that of Theorem 3.3. However,
since XH is not continuous in ω, the estimates become much more involved.

Throughout this section, let X, H, O, t0, X := X H,Y := Y H, and τ ∗ be as in Theorem 3.6.
Assumptions 3.1 and 3.4 will always be in force. We shall emphasize when the additional
Assumption 3.4 is needed, and we fix the constant L as in Assumption 3.4 (i). Assume |X | ≤ C0,
and without loss of generality that ρ0 ≤ 2C0 and L ≤ 1. It is clear that

|Y | ≤ C0, X ≤ Y , and YH = XH = XH−. (5.1)

By (3.1) and the fact that X has positive jumps, one can check straightforwardly that,

X(t, ω)− X(t ′, ω′) ≤ ρ0

d∞((t, ω), (t

′, ω′))


for t ≤ t ′, t ≤ H(ω), t ′ ≤ H(ω′) (5.2)

except the case t = t ′ = H(ω′) < H(ω) ≤ t0.

In particular,

X(t, ω)− X(t ′, ω) ≤ ρ0

d∞((t, ω), (t

′, ω))


whenever t ≤ t ′ ≤ H(ω). (5.3)
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Moreover, we define

ρ1(δ) := ρ0(δ) ∨


ρ0

(L−1δ)

1
3

+ δ

1
3


, ρ2(δ) := [ρ1(δ)+ δ] ∨ [ρ1(δ

1
3 )+ δ

1
3 ], (5.4)

and in this section, the generic constant C may depend on L as well.

5.1. Dynamic programming principle

We start with the regularity in ω.

Lemma 5.1. For any t < H(ω) ∧ H(ω′) we have:

|Yt (ω)− Yt (ω
′)| ≤ Cρ1


∥ω − ω′

∥t

.

To motivate our proof, we first follow the arguments in Lemma 4.1(i) and see why it does not
work here. Indeed, note that

Yt (ω)− Yt (ω
′) ≤ sup

τ∈T t
sup
P∈Pt

EP
X t,ω

τ∧Ht,ω − X t,ω′

τ∧Ht,ω′


.

Since we do not have Ht,ω
≤ Ht,ω′

, we cannot apply (5.2) to obtain the required estimate.

Proof. Let τ ∈ T t and P ∈ Pt . Denote δ :=
1
L ∥ω−ω′

∥t , tδ := [t +δ]∧ t0 and B̃tδ
s := Bt

s+δ− Bt
tδ

for s ≥ t . Set τ ′(Bt ) := [τ(B̃tδ ) + δ] ∧ t0, then τ ′
∈ T t . Moreover, by Assumption 3.4 and

Property (P3), we may choose P′
∈ Pt defined as follows: αP′

:=
1
δ
(ωt −ω′

t ), β
P′

:= 0 on [t, tδ],
and the P′-distribution of B̃tδ is equal to the P-distribution of Bt . We claim that

I := EP
[X t,ω

τ∧Ht,ω ] − EP′

[X t,ω′

τ ′∧Ht,ω′ ] ≤ Cρ1(Lδ). (5.5)

Then EP
[X t,ω

τ∧Ht,ω ] −Yt (ω
′) ≤ EP

[X t,ω
τ∧Ht,ω ] − EP′

[X t,ω′

τ ′∧Ht,ω′ ] ≤ Cρ1(Lδ), and it follows from the

arbitrariness of P ∈ Pt and τ ∈ T t that Yt (ω)− Yt (ω
′) ≤ Cρ1(Lδ). By exchanging the roles of

ω and ω′, we obtain the required estimate.
It remains to prove (5.5). Denote

ω̃′
s := ω′

s1[0,t)(s)+ [ω′
t + αP′

(s − t)]1[t,T ](s).

Since t < H(ω) ∧ H(ω′), we have ωt , ω
′
t ∈ O . By the convexity of O , this implies that

ω̃′
s ∈ O for s ∈ [t, tδ], and thus Ht,ω′

(Bt ) = (Ht,ω(B̃tδ )+ δ) ∧ t0,P′-a.s. Therefore,

EP′

[X t,ω′

τ ′∧Ht,ω′ ] = EP′
Xτ ′(Bt ) ∧ Ht,ω′

(Bt ), ω′
⊗t Bt


= EP′

X[τ(B̃tδ )+ δ] ∧ [Ht,ω(B̃tδ )+ δ] ∧ t0, ω̃
′
⊗tδ B̃tδ

·−δ


= EP

X[τ(Bt )+ δ] ∧ [Ht,ω(Bt )+ δ] ∧ t0, ω̃
′
⊗tδ Bt

·−δ


, (5.6)

while

EP
[X t,ω

τ∧Ht,ω ] = EP
Xτ(Bt ) ∧ Ht,ω(Bt ), ω⊗t Bt


.

Notice that, whenever τ(Bt ) ∧ Ht,ω(Bt ) = [τ(Bt ) + δ] ∧ [Ht,ω(Bt ) + δ] ∧ t0, we have
τ(Bt ) ∧ Ht,ω(Bt ) = t0. This excludes the exceptional case in (5.2). Then it follows from (5.6)
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and (5.2) that

I ≤ EP

ρ0


δ + ∥(ω⊗t Bt )·∧τ(Bt )∧Ht,ω(Bt ) − (ω̃′

⊗tδ Bt
·−δ)·∧[τ(Bt )+δ]∧[Ht,ω(Bt )+δ]∧t0∥t0


.

Note that, denoting θ := τ(Bt ) ∧ Ht,ω(Bt ),

∥(ω⊗t Bt )·∧τ(Bt )∧Ht,ω(Bt ) − (ω̃′
⊗tδ Bt

·−δ)·∧[τ(Bt )+δ]∧[Ht,ω(Bt )+δ]∧t0∥t0

≤ ∥ω⊗t Bt
− ω̃′

⊗tδ Bt
·−δ∥t0 + sup

0≤r≤δ

|(ω⊗t Bt )θ+r − (ω⊗t Bt )θ |

≤


∥ω − ω′

∥t


∨


sup

t≤s≤tδ
|ωt + Bt

s − ω̃′
s |


∨


sup

tδ≤s≤t0
|ωt + Bt

s − ω̃′
tδ − Bt

s−δ|


+ sup

0≤r≤δ

|(ω⊗t Bt )θ+r − (ω⊗t Bt )θ |

≤ 2Lδ + ∥Bt
∥tδ + sup

tδ≤s≤t0
|Bt

s − Bt
s−δ| + sup

0≤r≤δ

|Bt
θ+r − Bt

θ |.

Since L ≤ 1, we have

I ≤ EP

ρ0


3δ + ∥Bt

∥tδ + sup
tδ≤s≤t0

|Bt
s − Bt

s−δ| + sup
0≤r≤δ

|Bt
θ+r − Bt

θ |


.

If δ ≥
1
8 , then I ≤ 2C0 ≤ Cρ1(Lδ). We then continue assuming δ ≤

1
8 , and thus 3δ+

1
4δ

1
3 ≤ δ

1
3 .

Therefore,

I ≤ ρ0(δ
1
3 )+ CP


∥Bt

∥tδ + sup
tδ≤s≤t0

|Bt
s − Bt

s−δ| + sup
0≤r≤δ

|Bt
θ+r − Bt

θ | ≥
1
4
δ

1
3


≤ ρ0(δ

1
3 )+ Cδ−

8
3 EP


∥Bt

∥
8
tδ + sup

tδ≤s≤t0
|Bt

s − Bt
s−δ|

8
+ sup

0≤r≤δ

|Bt
θ+r − Bt

θ |
8


≤ ρ0(δ
1
3 )+ Cδ

4
3 + Cδ−

8
3 EP


sup

tδ≤s≤t0
|Bt

s − Bt
s−δ|

8

.

Set tδ = s0 < · · · < sn = t0 such that δ ≤ si+1 − si ≤ 2δ, i = 0, . . . , n − 1. Then

EP


sup
tδ≤s≤t0

|Bt
s − Bt

s−δ|
8


= EP


max
0≤i≤n−1

sup
si ≤s≤si+1

|Bt
s − Bt

s−δ|
8


≤

n−1
i=0

EP


sup
si ≤s≤si+1

[|Bt
s − Bt

si −δ
| + |Bt

s−δ − Bt
si −δ

|]
8


≤ C
n−1
i=0

(si+1 − si + δ)4 ≤ Cδ−1δ4
= Cδ3.

Thus I ≤ ρ0(δ
1
3 ) + Cδ

4
3 + Cδ−

8
3 δ3

≤ ρ0(δ
1
3 ) + Cδ

1
3 ≤ Cρ1(Lδ), proving (5.5) and hence the

lemma. �

We next show that the dynamic programming principle holds along deterministic times.

Lemma 5.2. Let t1 < H(ω) and t2 ∈ [t1, t0]. We have:

Yt1(ω) = sup
τ∈T t1

Et1

X t1,ω
τ∧Ht1,ω1{τ∧Ht1,ω<t2} + Y t1,ω

t2 1{τ∧Ht1,ω≥t2}


.
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Proof. When t2 = t0, the lemma coincides with the definition of Y . Without loss of generality
we assume (t1, ω) = (0, 0) and t := t2 < t0. First, follow the arguments in Lemma 4.1(ii) Step 1,
one can easily prove

Y0 ≤ sup
τ∈T

E
Xτ∧H1{τ∧H<t} + Yt 1{τ∧H≥t}


. (5.7)

To show that equality holds in the above inequality, fix arbitrary P ∈ P and τ ∈ T satisfying
τ ≤ H (otherwise reset τ as τ ∧ H), we shall prove

EP
Xτ1{τ<t} + Yt 1{τ≥t}


≤ Y0.

Since YH = XH, this amounts to show that:

EP
Xτ1{τ<t}∪{H≤t} + Yt 1{τ≥t,H>t}


≤ Y0. (5.8)

We adapt the arguments in Lemma 4.1(ii) Step 2 to the present situation. Fix 0 < δ ≤ t0 − t . Let
{Ei }i≥1 be an Ft measurable partition of the event {τ ≥ t, H > t} ∈ Ft such that ∥ω− ω̃∥ ≤ Lδ
for all ω, ω̃ ∈ Ei . Fix an ωi

∈ Ei for each i . By the definition of Y we have

Yt (ω
i ) ≤ EPi

X t,ωi

τ i ∧Ht,ωi


+ δ for some (τ i ,Pi ) ∈ T t

× Pt . (5.9)

As in Lemma 5.1, we set tδ := t + δ < t0, B̃tδ
s := Bt

s+δ − Bt
tδ for s ≥ t , and τ̃ i (Bt ) := [τ i (B̃tδ )+

δ]∧ t0. Then τ̃ i
∈ T t . Moreover by Assumption 3.4 and Property (P3), for each ω ∈ Ei , we may

define Pi,ω
∈ Pt as follows: αPi,ω

:=
1
δ
(ωi

t − ωt ), β
Pi,ω

:= 0 on [t, tδ], and the Pi,ω-distribution
of B̃tδ is equal to the Pi -distribution of Bt . By (5.5), we have

EPi
[X t,ωi

τ i ∧Ht,ωi ] − EPi,ω
[X t,ω

τ̃ i ∧Ht,ω ] ≤ Cρ1(Lδ). (5.10)

Then by Lemma 5.1 and (5.9), (5.10) we have

Yt (ω) ≤ Yt (ω
i )+ Cρ1(Lδ) ≤ EPi,ω

[X t,ω
τ̃ i ∧Ht,ω ] + δ + Cρ1(Lδ), for all ω ∈ Ei . (5.11)

We next define:

τ̃ := 1{τ<t}∪{H≤t}τ +


i≥1

1Ei τ̃
i (Bt ), and then {τ < t} ∪ {H ≤ t} = {τ̃ < t} ∪ {H ≤ t}.

Since τ ≤ H, we see that {τ < t} ∪ {H ≤ t} = {τ < t} ∪ {τ = H = t}, and thus it is clear that
τ̃ ∈ T . Moreover, we claim that there exists P̃ ∈ P such that

P̃ = P on Ft and the regular conditional probability distribution (5.12)

(P̃)t,ω = Pi,ω for P-a.e. ω ∈ Ei , i ≥ 1,

(P̃)t,ω = Pt,ω for P-a.e. ω ∈ {τ < t} ∪ {H ≤ t}.

Then, by (5.11) we have

Yt (ω) ≤ E(P̃)
t,ωX t,ω

(τ̃∧H)t,ω


+ δ + Cρ1(Lδ), P-a.e. ω ∈ {τ ≥ t, H > t}, (5.13)
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and therefore:

EP
Xτ1{τ<t}∪{H≤t} + Yt 1{τ≥t,H>t}


≤ EP̃

X τ̃∧H1{τ<t}∪{H≤t} + X τ̃∧H1{τ≥t,H>t}


+ δ + Cρ1(Lδ)

= EP̃
X τ̃∧H


+ δ + Cρ1(Lδ) ≤ Y0 + δ + Cρ1(Lδ),

which implies (5.8) by sending δ → 0. Then the reverse inequality of (5.7) follows from the
arbitrariness of P and τ .

It remains to prove (5.12). For any ε > 0 and each i ≥ 1, there exists a partition {E i
j , j ≥ 1}

of Ei such that ∥ω − ω′
∥t ≤ ε for any ω,ω′

∈ E i
j . Fix an ωi j

∈ E i
j for each (i, j). By Property

(P3) we may define P̃ε ∈ P by:

P̃ε := P ⊗t


i≥1


j≥1

Pi,ωi j
1E i

j
+ P1{τ<t}∪{H≤t}


.

By Property (P1), P is weakly compact. Then P̃ε has a weak limit P̃ ∈ P as ε → 0. We now
show that P̃ satisfies all the requirements in (5.12). Indeed, for any partition 0 = s0 < · · · <

sm = t < sm+1 < · · · < sM = tδ < sM+1 < · · · < sN = T and any bounded and uniformly
continuous function ϕ : RN×d

→ R, let ξ := ϕ

Bs1 − Bs0 , . . . , BsN − BsN−1


. Then, denoting

∆sk := sk+1 − sk,∆ωk := ωsk − ωsk−1 , we see that

EPi,ω
[ξ t,ω

] = ηi
t (ω), EPi,ωi j

[ξ t,ω
] = η

i, j
t (ω),

where:

ηi
t (ω) := EPi


ϕ

(∆ωk)1≤k≤m,

ωi
t − ωt

δ
(∆sk)m+1≤k≤M , (Bsk−δ − Bsk−1−δ)M+1≤k≤N


;

η
i, j
t (ω)

:= EPi

ϕ

(∆ωk)1≤k≤m,

ωi
t − ω

i j
t

δ
(∆sk)m+1≤k≤M , (Bsk−δ − Bsk−1−δ)M+1≤k≤N


.

Let ρ denote the modulus of continuity function of ϕ. ThenEPi,ωi j

[ξ t,ω
] − EPi,ω

[ξ t,ω
]

 ≤ ρ(ε) for all ω ∈ E i
j ,

and thusEP̃ε
[ξ ] − EP


ξ1{τ<t}∪{H≤t} +


i≥1

ηi
t 1Ei


=

EP


i, j≥1

EPi,ωi j

[ξ t,·
]1E i

j


− EP


i, j≥1

ηi
t 1E i

j


≤ EP


i, j≥1

EPi,ωi j

[ξ t,·
] − EPi,·

[ξ t,·
]
1E i

j



≤ EP


i, j≥1

ρ(ε)1E i
j


≤ ρ(ε).
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By sending ε → 0, we obtain EP̃
[ξ ] = EPξ1{τ<t}∪{H≤t} +


i≥1 η

i
t 1Ei


, which proves (5.12)

by the arbitrariness of ξ . �

We now prove the regularity in the t-variable. Recall the ρ2 defined in (5.4).

Lemma 5.3. Let 0 ≤ t1 < H(ω1), 0 ≤ t2 < H(ω2), and t1 ≤ t2. Then we have:

|Yt1(ω
1)− Yt2(ω

2)| ≤ C

1 +

1

d(ω1
t1 , Oc)


ρ2


d∞


(t1, ω

1), (t2, ω
2)

.

Proof. Without loss of generality we assume t1 < t2. Also, in view of the uniform continuity in
ω of Lemma 5.1, it suffices to prove the lemma in the case ω1

= ω2
= ω.

Denote δ := d∞


(t1, ω), (t2, ω)


and ε := d(ωt1 , Oc). For δ ≥

1
8 , we have |Yt1(ω)−

Yt2(ω)| ≤

2C0 ≤ Cε−1ρ2(δ). So we assume in the rest of this proof that δ < 1
8 .

First, by Assumption 3.4, we may consider the measure P ∈ Pt1 such that αP
t := 0, βP

t :=

0, t ∈ [t1, t2]. Then, by setting τ := t0 in Lemma 5.2, we see that Yt1(ω) ≥ Et1 [
Y t1,ω

t2 ] ≥

EP
[Y t1,ω

t2 ] = Yt2(ω·∧t1). Note that H(ω·∧t1) = t0 > t2. Thus, by Lemma 5.1,

Yt2(ω)− Yt1(ω) ≤ Cρ1


d∞


(t2, ω·∧t1), (t2, ω)


≤ Cρ1(δ) ≤ Cρ2(δ). (5.14)

Next, for arbitrary τ ∈ T t1 , noting that X ≤ Y we have

I (τ ) := Et1

X t1,ω
τ∧Ht1,ω1{τ∧Ht1,ω<t2} + Y t1,ω

t2 1{τ∧Ht1,ω≥t2}


− Yt2(ω)

= Et1

X t1,ω
τ 1{τ<Ht1,ω∧t2} + X t1,ω

Ht1,ω1{Ht1,ω<t2,Ht1,ω≤τ } + Y t1,ω
t2 1{τ∧Ht1,ω≥t2}


− Yt2(ω)

≤ Et1

X t1,ω
τ − X t1,ω

Ht1,ω∧t2


1{τ<Ht1,ω∧t2} + Y t1,ω

Ht1,ω∧t2


− Yt2(ω)

≤ Et1

X t1,ω
τ − X t1,ω

Ht1,ω∧t2


1{τ<Ht1,ω∧t2}


+ Et1


|Y t1,ω

t2 − Yt2(ω)|1{Ht1,ω>t2}


+ C Ct1


Ht1,ω ≤ t2


.

By (5.3) and Lemma 5.1 we have

I (τ ) ≤ Et1


ρ0


d∞((t1, ω), (t2, ω⊗t1 Bt1))


+ C Et1


ρ1

∥ω − ω⊗t1 Bt1∥t2


+ C Ct1


∥Bt1∥t2 ≥ ε


≤ Et1


ρ0

δ + ∥Bt1∥t2


+ C Et1


ρ1

δ + ∥Bt1∥t2


+ Cε−1 Et1


∥Bt1∥t2


≤ C[1 + ε−1

]Et1


ρ1

δ + ∥Bt1∥t2


.

Since δ ≤
1
8 , following the proof of (4.6) we have

I (τ ) ≤ C[1 + ε−1
]


ρ1(δ

1
3 )+ δ

1
3


≤ C[1 + ε−1

]ρ2(δ).

By the arbitrariness of τ and the dynamic programming principle of Theorem 5.4, we obtainYt1(ω)− Yt2(ω) ≤ Cε−1ρ2(δ), and the proof is complete by (5.14). �

Applying Lemmas 5.1–5.3, and following the same arguments as those of Theorem 4.3, we
establish the dynamic programming principle in the present context.
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Theorem 5.4. Let t < H(ω) and τ ∈ T t . Then

Yt (ω) = sup
τ̃∈T t

Et

X t,ω
τ̃∧Ht,ω1{τ̃∧Ht,ω<τ } + Y t,ω

τ 1{τ̃∧Ht,ω≥τ }


.

Consequently, Y is a E -supermartingale on [0, H].

By Lemma 5.3, Y is continuous for t ∈ [0, H). Moreover, since Ŷ is an E -supermartingale, we
see that ŶH− exists. However, Example A.2 below shows that in general Y may be discontinuous
at H. This issue is crucial for our purpose, and we will discuss more in Section 5.4 below.

5.2. Continuous approximation of the hitting times

Similar to the proof of Theorem 3.3, we need to apply some limiting arguments. We therefore
assume without loss of generality that Y0 > X0 and introduce the stopping times: for any m ≥ 1
and n > (Y0 − X0)

−1,

Hm := inf


t ≥ 0 : d(ωt , Oc) ≤
1
m


∧


t0 −

1
m


,

τn := inf


t ≥ 0 : Yt − X t ≤
1
n


.

(5.15)

Here we abuse the notation slightly by using the same notation τn as in (4.7). Our main task in
this subsection is to build an approximation of Hm and τn by continuous random variables. This
will be obtained by a repeated use of Lemma 4.5.

We start by a continuous approximation of the sequence (Hm)m≥1 defined in (5.15).

Lemma 5.5. For all m ≥ 2:

(i) Hm−1(ω) ≤ Hm(ω
′) ≤ Hm+1(ω), whenever ∥ω − ω′

∥t0 ≤
1

m(m+1) ,

(ii) there exists an open subset Ωm
0 ⊂ Ω , and a uniformly continuous Ĥm such that

C

(Ωm

0 )
c < 2−m and Hm−1 − 2−m

≤ Ĥm ≤ Hm+1 + 2−m on Ωm
0 ,

(iii) there exist δm > 0 such that |Ĥm(ω)− Ĥm(ω
′)| ≤ 2−m whenever ∥ω − ω′

∥t0 ≤ δm , and:

C

(Ω̂m

0 )
c

≤ 2−m where Ω̂m
0 := {ω ∈ Ωm

0 : d(ω, [Ωm
0 ]

c) > δm}.

Proof. Notice that (ii) is a direct consequence of (i) obtained by applying Lemma 4.5 with
ε = 2−m . To prove (i), we observe that for ∥ω − ω′

∥t0 ≤
1

m(m+1) and t < Hm(ω
′), we have

d(ωt , Oc) ≥ d(ω′
t , Oc)−

1
m(m + 1)

>
1
m

−
1

m(m + 1)
=

1
m + 1

.

This shows that Hm(ω
′) ≤ Hm+1(ω) whenever ∥ω − ω′

∥t0 ≤
1

m(m+1) . Similarly, Hm−1(ω) ≤

Hm(ω
′) whenever ∥ω − ω′

∥t0 ≤
1

m(m−1) , and the inequality (i) follows.

It remains to prove (iii). The first claim follows from the uniform continuity of Ĥm . For each
δ > 0, define hδ : [0,∞) → [0, 1] as follows:

hδ(x) := 1 for x ≤ δ, hδ(x) = 0 for x ≥ 2δ, and hδ is linear on [δ, 2δ]. (5.16)
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Then the map ω −→ ψδ(ω) := hδ(d(ω, [Ωm
0 ]

c)) is continuous, and ψδ ↓ 1[Ωm
0 ]c as δ ↓ 0.

Applying Proposition 2.6(ii) we have

lim
δ→0

E [ψδ] = E

1(Ωm

0 )
c


= C

(Ωm

0 )
c < 2−m .

By definition of Ω̂m
0 , notice that 1

(Ω̂m
0 )

c ≤ ψδm . Then C

(Ω̂m

0 )
c


≤ E [ψδm ], and (iii) holds true

for sufficiently small δm . �

We next derive a continuous approximation of the sequences

τm
n := τn ∧ Ĥm, (5.17)

where τn and Ĥm are defined in (5.15) and Lemma 5.5(ii), respectively.

Lemma 5.6. For all m ≥ 2, n > (Y0 − X0)
−1, there exists an open subset Ωm

n ⊂ Ω and a
uniformly continuous map τ̂m

n such that

τm
n−1 − 21−m

− 2−n
≤ τ̂m

n ≤ τm
n+1 + 21−m

+ 2−n

on Ω̂m
0 ∩ Ωm

n , and C

(Ωm

n )
c

≤ 2−n .

Proof. Fix m, and recall the modulus of continuity ρ1 introduced in (5.4). For each n, let 0 <
δm

n < δm such that (ρ0 + Cρ1)(δ
m
n ) ≤

1
n(n+1) , where C is the constant in Lemma 5.1. We shall

prove

(τn−1 ∧ Ĥm)(ω)− 21−m
≤ (τn ∧ Ĥm)(ω

′) ≤ (τn+1 ∧ Ĥm)(ω)+ 21−m

whenever ω ∈ Ω̂m
0 , ∥ω − ω′

∥t0 ≤ δm
n . (5.18)

Then the required statement follows from Lemma 4.5 with ε = 2−n .
We shall prove only the right inequality of (5.18). The left one can be proved similarly. Let

ω,ω′ be as in (5.18). First, by Lemma 5.5(iii) we have

ω′
∈ Ωm

0 and Ĥm(ω
′) ≤ Ĥm(ω)+ 2−m . (5.19)

We now prove the right inequality of (5.18) in three cases.

Case 1. if τn+1(ω) ≥ Ĥm(ω
′)− 2−m , then Ĥm(ω

′) ≤ (τn+1 ∧ Ĥm)(ω)+ 2−m and thus the result
is true.

Case 2. If τn+1(ω) = H(ω), then by Lemma 5.5(ii) we have Ĥm(ω) ≤ Hm+1(ω) + 2−m
≤

τn+1(ω)+2−m , and thus Ĥm(ω
′) ≤ Ĥm(ω)+2−m

≤ τn+1(ω)+21−m . This, together with (5.19),
proves the desired inequality.

Case 3. We now assume τn+1(ω) < Ĥm(ω
′)− 2−m and τn+1(ω) < H(ω). By Lemma 5.5(ii) we

have τn+1(ω) < Hm+1(ω
′), and thus τn+1(ω) < H(ω′). Then it follows from Lemma 5.1 that

(Y − X)τn+1(ω)(ω
′) ≤ (Y − X)τn+1(ω)(ω)+ (ρ0 + Cρ1)(δ

m
n ) ≤

1
n + 1

+
1

n(n + 1)
=

1
n
.

That is, τn(ω
′) ≤ τn+1(ω). This, together with (5.19), proves the desired inequality. �

For our final approximation result, we introduce the notations:

τ̄n := τn ∧ Hn, θ∗

n := τ̂ n−1
n−1 − 23−n, θ

∗

n := τ̂ n+1
n+1 + 21−n, (5.20)
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and

Ω∗
n := Ω̂n−1

0 ∩ Ωn−1
n−1 ∩ Ω̂n+1

0 ∩ Ωn+1
n+1 . (5.21)

Lemma 5.7. For all n ≥ (Y0 − X0)
−1

∨ 2, θ∗
n, θ

∗

n are uniformly continuous, and θ∗
n ≤ τ̄n ≤ θ

∗

n
on Ω∗

n .

Proof. This is a direct combination of Lemmas 5.5 and 5.6.

5.3. Proof of Theorem 3.6

We first prove the E -martingale property under an additional condition.

Lemma 5.8. Let τ ∈ T such that τ ≤ τ ∗ and E [Yτ−] = E [Yτ ] (in particular if τ < H). Then Y
is an E -martingale on [0, τ ].

Proof. If Y0 = X0, thenτ ∗
= 0 and obviously the statement is true. We then assume Y0 > X0,

and prove the lemma in several steps.
Step 1. Let n be sufficiently large so that 1

n <
Y0 − X0. Follow the same arguments as that of

Lemma 4.4, one can easily prove:Y is an E -martingale on [0, τn]. (5.22)

Step 2. Recall the sequence of stopping times (τ̄n)n≥1 introduced in (5.20). By Step 1 we haveY0 = E [Yτ̄n ]. Then for any ε > 0, there exists Pn ∈ P such that Y0 − ε < EPn [Yτ̄n ]. Since P
is weakly compact, there exists subsequence {n j } and P∗

∈ P such that Pn j converges weakly
to P∗. Now for any n and n j ≥ n, since Y is a supermartingale under each Pn j and (τ̄n)n≥1 is
increasing, we have

Y0 − ε < EPn j
Yτ̄n j


≤ EPn j

Yτ̄n


. (5.23)

Our next objective is to send j ↗ ∞, for fixed n, and use the weak convergence of Pn j towards
P∗. To do this, we need to approximate Yτ̄n with continuous random variables. Denote

ψn(ω) := hn


inf

0≤t≤θ
∗

n(ω)

d(ωt , Oc)


with hn(x) := 1 ∧ [(n + 3)(n + 4)x − (n + 3)]+. (5.24)

Then ψn is continuous in ω, and

{ψn > 0} ⊂


inf

0≤t≤θ
∗

n(ω)

d(ωt , Oc) >
1

n + 4


⊂ {θ

∗

n < Hn+4}. (5.25)

In particular, this implies that Yθ∗
n
ψn and Y

θ
∗

n
ψn are continuous in ω. We now decompose the

right hand-side term of (5.23) into:Y0 − ε ≤ EPn j

Yθ∗
n
+ (Yτ̄n − Yθ∗

n
)1Ω∗

n


ψn + (1 − ψn)


+ (Yτ̄n − Yθ∗

n
)1(Ω∗

n )
c

.

Note that θ∗
n ≤ τ̄n ≤ θ

∗

n on Ω∗
n . ThenY0 − ε ≤ EPn j

Yθ∗
n
+ sup
θ∗

n≤t≤θ
∗

n

(Yt − Yθ∗
n
)

ψn


+ C C[ψn < 1] + C C


(Ω∗

n )
c.
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Send j → ∞, we obtain

Y0 − ε ≤ EP∗

ψnYθ∗

n


+ EP∗


ψn sup

θ∗
n≤t≤θ

∗

n

(Yt − Yθ∗
n
)


+ C C[ψn < 1] + C C[(Ω∗
n )

c
]. (5.26)

Step 3. In this step we show that

lim
n→∞

EP∗

ψn sup

θ∗
n≤t≤θ

∗

n

(Yt − Yθ∗
n
)


= lim
n→∞

C[ψn < 1] = lim
n→∞

C[(Ω∗
n )

c
] = 0. (5.27)

(i) First, by the definition of Ω∗
n in (5.21) together with Lemmas 5.5(iii) and 5.6, it follows that

C

(Ω∗

n )
c


≤ C2−n
−→ 0 as n → ∞.

(ii) Next, notice that

{ψn < 1} =


inf

0≤t≤θ
∗

n(ω)

d(ωt , Oc) <
1

n + 3


⊂ {θ

∗

n > Hn+3}.

Moreover, by (5.20) and Lemma 5.7,

θ
∗

n = τ̂ n+1
n+1 + 21−n

= θ∗

n+2 + 22−n
≤ τ̄n+2 + 22−n

≤ Hn+2 + 22−n, on Ω∗

n+2.

Then

{ψn < 1} ⊂ (Ω∗

n+2)
c
∪ {Hn+3 < Hn+2 + 22−n

}

⊂ (Ω∗

n+2)
c
∪


sup

Hn+2≤t≤Hn+2+22−n
|Bt − BHn+2 | ≥

1
(n + 2)(n + 3)


.

Then one can easily see that C[ψn < 1] → 0, as n → ∞.
(iii) Finally, it is clear that θ∗

n → τ ∗, θ
∗

n → τ ∗. Recall that Yτ∗− exists. By (5.25), we see that
ψn sup

θ∗
n≤t≤θ

∗

n
(Yt −Yθ∗

n
) → 0,P∗-a.s. as n → ∞. Then by applying the dominated conver-

gence theorem under P∗ we obtain the first convergence in (5.27).

Step 4. By the dominated convergence theorem under P∗ we obtain limn→∞ EP∗

[ψnYθ∗
n
] =

EP∗

[Yτ∗−]. This, together with (5.26) and (5.27), implies thatY0 ≤ EP∗

[Yτ∗−] + ε.

Note that Y is an P∗-supermartingale and τ ≤τ ∗, thenY0 ≤ EP∗

[Yτ−] + ε.

Since ε is arbitrary, we obtain Y0 ≤ E [Yτ−], and thus by the assumption E [Yτ−] = E [Yτ ] we
have Y0 ≤ E [Yτ ]. This, together with the fact that Y is a E -supermartingale, implies thatY0 = E [Yτ ]. (5.28)

Similarly, one can prove Yt (ω) = Et [Y t,ω
τ t,ω ] for t < τ(ω), and thus Y·∧τ is a E -martingale. �

In light of Lemma 5.8, the following result is obviously important for us.

Proposition 5.9. It holds that E [Yτ∗−] = E [Yτ∗ ].

We recall again that Yτ∗− = Yτ∗ wheneverτ ∗ < H. So the only possible discontinuity is at H.
The proof of Proposition 5.9 is reported in Section 5.4 below. Let us first show how it allows to
complete the
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Proof of Theorem 3.6. By Lemma 5.8 and Proposition 5.9, Y is an E -martingale on [0,τ ∗
].

Moreover, since Xτ∗ = Yτ∗ , then Y0 = E [Xτ∗ ] and thusτ ∗ is an optimal stopping time. �

Remark 5.10. Assume Assumption 3.4(ii) and the conditions of Lemma A.1 below hold, by
Remark 3.5(iii) and Lemma A.1 we see that Proposition 5.9 and hence Theorem 3.6 hold. That
is, in this case the Section 5.4 below is not needed. �

5.4. E -continuity of Y at the random maturity

This subsection is dedicated to the proof of Proposition 5.9. We first reformulate some path-
wise properties established in previous subsections. For that purpose, we introduce the following
additional notation: for any P ∈ P, τ ∈ T , and E ∈ Fτ

P(P, τ, E) :=


P′

∈ P : P′
= P ⊗τ


P′1E + P1Ec


, P(P, τ ) := P(P, τ,Ω). (5.29)

That is, P′
∈ P(P, τ, E) means P′

= P on Fτ and (P′)τ,ω = Pτ,ω for P-a.e. ω ∈ Ec.
The first result corresponds to Theorem 5.4.

Lemma 5.11. Let P ∈ P, τ1, τ2 ∈ T , and E ∈ Fτ1 . Assume τ1 ≤ τ2 ≤ H, and τ1 < H on E.
Then for any ε > 0, there exist Pε ∈ P(P, τ1, E) and τε ∈ T with values in [τ1, τ2], s.t.

EP
Yτ11E


≤ EPε

Xτε1{τε<τ2} + Yτ21{τε=τ2}


1E


+ ε.

Proof. Let τ n
1 be a sequence of stopping times such that τ n

1 ↓ τ and each τ n
1 takes only finitely

many values. Applying Lemma 5.3 together with the dominated convergence theorem under P,

we see that limn→∞ EP

|Yτ n

1 ∧τ2 − Yτ1 |


= 0. Fix n such that

EP

|Yτ n

1 ∧τ2 − Yτ1 |


≤
ε

2
. (5.30)

Assume τ n
1 takes values {ti , i = 1, . . . ,m}, and for each i , denote Ei := E ∩ {τ n

1 = ti < τ2} ∈

Fti . By (5.13), there exists τ̃i ∈ T and P̃i ∈ P(P, ti ) such that τ̃i ≥ ti on Ei and

Yti ≤ EP̃i
ti

X τ̃i ∧H


+
ε

2
, P-a.s. on Ei . (5.31)

Here EP̃i
ti [·] := EP̃i [·|Fti ] denotes the conditional expectation. Define

τ̃ := τ21Ec∪{τ2≤τ
n
1 } +

m
i=1

τ̃i 1Ei , P̃ := P1Ec∪{τ2≤τ
n
1 } +

m
i=1

P̃i 1Ei . (5.32)

Then one can check straightforwardly that

τ̃ ∈ T and τ̃ ≥ τ2 ∧ τ n
1 ; (5.33)

and P̃ ∈ P(P, τ2 ∧ τ n
1 , E) ⊂ P(P, τ1, E). Moreover, by (5.31) and (5.32),

EP̃Yτ2∧τ
n
1

1E


= EP̃
Yτ21{τ2≤τ

n
1 } +

m
i=1

Yti 1Ei


1E


≤ EP̃

Yτ21{τ2≤τ
n
1 } +

X τ̃∧H +
ε

2


1{τ n

1<τ2}


1E


.
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This, together with (5.30) and (5.33), leads to

EP̃
Yτ1 − X τ̃1{τ̃<τ2} − Yτ21{τ̃≥τ2}


1E


≤ ε + EP̃

Yτ21{τ2≤τ
n
1 } + X τ̃∧H1{τ n

1<τ2} − X τ̃1{τ̃<τ2} − Yτ21{τ̃≥τ2}


1E


= ε + EP̃

X τ̃∧H − Yτ2


1{τ n

1<τ2≤τ̃ }1E


= ε + EP̃


EP̃
τ2

[X τ̃∧H] − Yτ2


1{τ n

1<τ2≤τ̃ }1E


≤ ε,

where the last inequality follows from the definition of Y . Then, by setting τε := τ̃ ∧ τ2 we prove
the result. �

Next result corresponds to Lemma 5.8.

Lemma 5.12. Let P ∈ P, τ ∈ T , and E ∈ Fτ such that τ ≤τ ∗ on E. Then for all ε > 0:

EP1EYτ  ≤ EPε1EYτ∗−


+ ε for some Pε ∈ P(P, τ, E).

Proof. We proceed in three steps.

Step 1. We first assume τ = t < τ ∗ on E . We shall prove the result following the arguments in
Lemma 5.8. Recall the notations in Section 5.2 and the ψn defined in (5.24), and let ρn denote
the modulus of continuity functions of θ∗

n, θ
∗

n , and ψn .
Denote τ̄n := 0 for n ≤ (Y0 − X0)

−1. For any n and δ > 0, let {En,δ
i , i ≥ 1} ⊂ Ft be a

partition of E ∩ {τ̄n−1 ≤ t < τ̄n} such that ∥ω − ω′
∥t ≤ δ for any ω,ω′

∈ En,δ
i . For each

(n, i), fix ωn,i
:= ωn,δ,i

∈ En,δ
i . By Lemma 5.8, Y 1En,δ

i
is an E -martingale on [t, τ̄n]. ThenYt (ω

n,i ) = Et [Y t,ωn,i

τ̄
t,ωn,i
n

], and thus there exists Pn,δ
i ∈ Pt such that

Yt (ω
n,i ) ≤ EPn,δ

i

Y t,ωn,i

τ̄
t,ωn,i
n


+ ε. (5.34)

Note that ∪
n
m=1 ∪i≥1 Em,δ

i = E ∩ {t < τ̄n}. Set

Pn,δ
:= P ⊗t


n

m=1


i≥1

Pm,δ
i 1Em,δ

i
+ P1Ec∪{t≥τ̄n}


∈ P(P, t, E). (5.35)

Recall the hδ defined by (5.16). We claim that, for any N ≥ n,

EP
[Yt 1E ] − EPN ,δ

[Yt∨θ∗
n
ψn1E ]

≤ CnE

ρ2


δ + ρn(δ)+ 2ηn(δ)


+ Cρn(δ)+ ε + C2−n

+ C C(ψn < 1)

+ 2EPN ,δ


sup
θ∗

n≤s≤θ
∗

n

|Ys − Yθ∗
n
|ψn1E


+ C E


hδ

d

ω, (Ω∗

n )
c, (5.36)

where ηn(δ) := sup
t≤s1<s2≤t0,s2−s1≤ρn(δ)

|Bt
s1

− Bt
s2

|.
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Moreover, one can easily find Ft -measurable continuous random variables ϕk such that |ϕk | ≤ 1
and limk→∞ EP

[|1E − ϕk |] = 0. Then

EP
[Yt 1E ] − EPN ,δ

[Yt∨θ∗
n
ψnϕk]

≤ CnE

ρ2


δ + ρn(δ)+ 2ηn(δ)


+ Cρn(δ)+ ε + C2−n

+ C C(ψn < 1)

+ CEPN ,δ


sup
θ∗

n≤s≤θ
∗

n

|Ys − Yθ∗
n
|ψnϕk


+ C E


hδ

d

ω, (Ω∗

n )
c

+ CEP
[|1E − ϕk |].

Send δ → 0. First note that [δ + ρn(δ) + 2ηn(δ)] ↓ 0 and hδ ↓ 1{0}, then by Proposition 2.6(ii)
we have

lim
δ→0

E

ρ2


δ + ρn(δ)+ 2ηn(δ)


= 0;

lim
δ→0

E

hδ

d

ω, (Ω∗

n )
c

= C

d

ω, (Ω∗

n )
c

= 0


= C[(Ω∗
n )

c
] ≤ C2−n .

Moreover, for each N , by the weak compactness assumption (P1) we see that PN ,δ has a weak
limit PN

∈ P . It is straightforward to check that PN
∈ P(P, t, E). Note that the random variablesYt∨θ∗

n
ψnϕk and sup

θ∗
n≤s≤θ

∗

n
|Ys − Yθ∗

n
|ψnϕk are continuous. Then

EP
[Yt 1E ] − EPN

[Yt∨θ∗
n
ψnϕk]

≤ ε + C2−n
+ C C(ψn < 1)+ CEPN


sup

θ∗
n≤s≤θ

∗

n

|Ys − Yθ∗
n
|ψnϕk


+ CEP

[|1E − ϕk |].

Again by the weak compactness assumption (P1), PN has a weak limit P∗
∈ P(P, t, E) as

N → ∞. Now send N → ∞, by the continuity of the random variables we obtain

EP
[Yt 1E ] − EP∗

[Yt∨θ∗
n
ψnϕk]

≤ ε + C2−n
+ C C(ψn < 1)+ CEP∗


sup

θ∗
n≤s≤θ

∗

n

|Ys − Yθ∗
n
|ψnϕk


+ CEP

[|1E − ϕk |].

Send k → ∞ and recall that P∗
= P on Ft , we have

EP
[Yt 1E ] − EP∗

[Yt∨θ∗
n
ψn1E ]

≤ ε + C2−n
+ C C(ψn < 1)+ 2EP∗


sup

θ∗
n≤s≤θ

∗

n

|Ys − Yθ∗
n
|ψn1E


.

Finally send n → ∞, by (5.27) and applying the dominated convergence theorem under P and
P∗ we have

EP
[Yt 1E ] − EP∗

[Yτ∗−1E ] ≤ ε.

That is, Pε := P∗ satisfies the requirement in the case τ = t <τ ∗ on E .

Step 2. We now prove Claim (5.36). Indeed, for any m ≤ n and any ω ∈ Em,δ
i , by Lemma 5.1

we haveYt (ω)− EPm,δ
i

Y t,ω
τ̄

t,ω
n


= Yt (ω)− Yt (ω

m,i )+ Yt (ω
m,i )− EPm,δ

i

Y t,ωm,i

τ̄
t,ωm,i
n


+ EPm,δ

i

Y t,ωm,i

τ̄
t,ωm,i
n

− Y t,ω
τ̄

t,ω
n





3302 I. Ekren et al. / Stochastic Processes and their Applications 124 (2014) 3277–3311

≤ Cρ1(δ)+ ε + EPm,δ
i

Y t,ωm,i

τ̄
t,ωm,i
n

− Y t,ω
τ̄

t,ω
n

1
(Ω∗

n )
t,ωm,i

∩(Ω∗
n )

t,ωψ
t,ωm,i

n ψ t,ω
n


+ CPm,δ

i


[(Ω∗

n )
t,ωm,i

]
c
∪ [(Ω∗

n )
t,ω

]
c


+ CEPm,δ
i


1 − ψ t,ωm,i

n + 1 − ψ t,ω
n


. (5.37)

Note that

EPm,δ
i


1 − ψ t,ωm,i

n + 1 − ψ t,ω
n


≤ 2EPm,δ

i


1 − ψ t,ω

n


+ ρn(δ);

Pm,δ
i


[(Ω∗

n )
t,ωm,i

]
c
∪ [(Ω∗

n )
t,ω

]
c


≤ 2Pm,δ
i


[(Ω∗

n )
t,ω

]
c


+ Pm,δ
i


[(Ω∗

n )
t,ωm,i

]
c
∩ (Ω∗

n )
t,ω


≤ 2Pm,δ
i


[(Ω∗

n )
t,ω

]
c


+ Pm,δ
i


0 < d


ω⊗t Bt , (Ω∗

n )
c < δ


≤ 2Pm,δ

i


[(Ω∗

n )
t,ω

]
c


+ EPm,δ
i


hδ

d

ω⊗t Bt , (Ω∗

n )
c.

(5.38)

Moreover, on (Ω∗
n )

t,ωm,i
∩ (Ω∗

n )
t,ω

∩ {ψ
t,ωm,i

n > 0} ∩ {ψ
t,ω
n > 0}, by Lemma 5.7 and (5.25) we

have

(θ∗

n)
t,ωm,i

≤ τ̄ t,ωm,i

n ≤ (θ
∗

n)
t,ωm,i

< H
t,ωm,i

n+4 ; (θ∗

n)
t,ω

≤ τ̄ t,ω
n ≤ (θ

∗

n)
t,ω < H

t,ω
n+4.

Then Y t,ωm,i

τ̄
t,ωm,i
n

− Y t,ω
τ̄

t,ω
n

 ≤
Y t,ωm,i

(θ∗
n)

t,ωm,i − Y t,ω
(θ∗

n)
t,ω


+ sup

(θ∗
n)

t,ωm,i
≤s≤(θ

∗

n)
t,ωm,i

|Y t,ωm,i

s − Y t,ωm,i

(θ∗
n)

t,ωm,i | + sup
(θ∗

n)
t,ω≤s≤(θ

∗

n)
t,ω

|Y t,ω
s − Y t,ω

(θ∗
n)

t,ω |

=
Y t,ωm,i

(θ∗
n)

t,ωm,i − Y t,ω
(θ∗

n)
t,ω

+ 2 sup
(θ∗

n)
t,ω≤s≤(θ

∗

n)
t,ω

|Y t,ω
s − Y t,ω

(θ∗
n)

t,ω |

+ sup
(θ∗

n)
t,ωm,i

≤s≤(θ
∗

n)
t,ωm,i

|Y t,ωm,i

s − Y t,ωm,i

(θ∗
n)

t,ωm,i | − sup
(θ∗

n)
t,ω≤s≤(θ

∗

n)
t,ω

|Y t,ω
s − Y t,ω

(θ∗
n)

t,ω |.

Applying Lemma 5.3 we getY t,ωm,i

(θ∗
n)

t,ωm,i − Y t,ω
(θ∗

n)
t,ω

 ≤ Cnρ2


d∞


((θ∗

n)
t,ωm,i

, ωm,i
⊗t Bt ), ((θ∗

n)
t,ω, ω⊗t Bt )


≤ Cnρ2


δ + ρn(δ)+ 2 sup

(θ∗
n)

t,ω−ρn(δ)≤s≤(θ∗
n)

t,ω+ρn(δ)

|Bt
s − Bt

(θ∗
n)

t,ω |


≤ Cnρ2


δ + ρn(δ)+ 2ηn(δ)


,
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and, similarly,

sup
(θ∗

n)
t,ωm,i

≤s≤(θ
∗

n)
t,ωm,i

|Y t,ωm,i

s − Y t,ωm,i

(θ∗
n)

t,ωm,i | − sup
(θ∗

n)
t,ω≤s≤(θ

∗

n)
t,ω

|Y t,ω
s − Y t,ω

(θ∗
n)

t,ω |

≤ sup
(θ∗

n)
t,ωm,i

≤s≤(θ∗
n)

t,ωm,i
∨(θ∗

n)
t,ω

|Y t,ωm,i

s − Y t,ωm,i

(θ∗
n)

t,ωm,i |

+ sup
(θ∗

n)
t,ωm,i

∨(θ∗
n)

t,ω≤s≤(θ
∗

n)
t,ωm,i

∧(θ
∗

n)
t,ω

|Y t,ωm,i

s − Y t,ω
s | + |Y t,ωm,i

(θ∗
n)

t,ωm,i − Y t,ω
(θ∗

n)
t,ω |

+ sup
(θ

∗

n)
t,ωm,i

∧(θ
∗

n)
t,ω≤s≤(θ

∗

n)
t,ωm,i

|Y t,ωm,i

s − Y t,ωm,i

(θ
∗

n)
t,ωm,i | + |Y t,ωm,i

(θ
∗

n)
t,ωm,i − Y t,ω

(θ
∗

n)
t,ω |

≤ Cnρ2


δ + ρn(δ)+ 2ηn(δ)


+ Cρ1(δ) ≤ Cnρ2


δ + ρn(δ)+ 2ηn(δ)


.

Then Y t,ωm,i

τ̄
t,ωm,i
n

− Y t,ω
τ̄

t,ω
n

 ≤ Cnρ2


δ + ρn(δ)+ 2ηn(δ)


+ 2 sup

(θ∗
n)

t,ω≤s≤(θ
∗

n)
t,ω

|Y t,ω
s − Y t,ω

(θ∗
n)

t,ω |.

Plug this and (5.38) into (5.37), for ω ∈ Em,δ
i we obtain

Yt (ω)− EPm,δ
i

Y t,ω
τ̄

t,ω
n


≤ CnEPm,δ

i


ρ2


δ + ρn(δ)+ 2ηn(δ)


+ Cρn(δ)+ ε

+ 2EPm,δ
i


sup

(θ∗
n)

t,ω≤s≤(θ
∗

n)
t,ω

|Y t,ω
s − Y t,ω

(θ∗
n)

t,ω |ψ
t,ω
n


+ CPm,δ

i


[(Ω∗

n )
t,ω

]
c


+ CEPm,δ
i


1 − ψ t,ω

n


+ CEPm,δ

i


hδ

d

ω⊗t Bt , (Ω∗

n )
c.

Then by (5.35) we have, for any N ≥ n,

EP
[Yt 1E ] − EPN ,δ

[Yt∨τ̄n 1E ] = EPN ,δ

[Yt − Yτ̄n ]1E∩{t<τ̄n}


≤ CnEPN ,δ


ρ2


δ + ρn(δ)+ 2ηn(δ)


+ Cρn(δ)+ ε + CPN ,δ


[Ω∗

n ]
c


+ CEPN ,δ

1 − ψn


+ 2EPN ,δ


sup

θ∗
n≤s≤θ

∗

n

|Ys − Yθ∗
n
|ψn1E


+ CEPN ,δ


hδ

d

ω, (Ω∗

n )
c

≤ CnE

ρ2


δ + ρn(δ)+ 2ηn(δ)


+ Cρn(δ)+ ε + C2−n

+ C C(ψn < 1)

+ 2EPN ,δ


sup
θ∗

n≤s≤θ
∗

n

|Ys − Yθ∗
n
|ψn1E


+ C E


hδ

d

ω, (Ω∗

n )
c. (5.39)
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Similarly we have

EPN ,δ

[Yt∨τ̄n − Yt∨θ∗

n
ψn]1E


≤ C2−n

+ C C(ψn < 1)+ EPN ,δ

[Yt∨τ̄n − Yt∨θ∗

n
]1E∩Ω∗

n
ψn


≤ C2−n

+ C C(ψn < 1)+ 2EPN ,δ


sup
θ∗

n≤s≤θ
∗

n

|Ys − Yθ∗
n
|ψn1E


.

This, together with (5.39), implies (5.36).

Step 3. Finally we prove the lemma for general stopping time τ . We follow the arguments in
Lemma 5.11. Let τ n be a sequence of stopping times such that τ n

↓ τ and each τ n takes only
finitely many values. By applying the dominated convergence theorem under P, we may fix n
such that

EP

|Yτ n∧τ∗ − Yτ |1E


≤
ε

2
.

Assume τ n takes values {ti , i = 1, . . . ,m}, and for each i , denote Ei := E ∩ {τ n
= ti < τ ∗

} ∈

Fti . Then {Ei , 1 ≤ i ≤ m} form a partition of Ẽ := E ∩ {τ n < τ ∗
}. For each i , by Step 1 there

exists Pi
∈ P(P, ti , Ei ) such that

EP Yti 1Ei


≤ EPi Yτ∗−1Ei


+

ε

2m
.

Now define Pε :=
m

i=1 Pi 1Ei + P1Ẽc ∈ P(P, τ n, Ẽ) ⊂ P(P, τ, E). Recall that Ẽ ∈ Fτ n and
note that Yτ∗ ≤ Yτ∗−, thanks to the supermartingale property of Y . Then

EP
Yτ1E


− EPε

Yτ∗−1E


≤
ε

2
+ EP

Yτ n∧τ∗1E


− EPε

Yτ∗−1E


≤
ε

2
+ EP

Yτ n 1Ẽ


− EPε

Yτ∗−1Ẽ


=
ε

2
+

m
i=1


EP
Yti 1Ei


− EPε

Yτ∗−1Ei


≤
ε

2
+

m
i=1

ε

2m
= ε.

The proof is complete now. �

We need one more lemma.

Lemma 5.13. Let P ∈ P, τ ∈ T , and E ∈ Fτ such that τ ≤ H on E. For any ε > 0, there exists
Pε ∈ P(P, τ, E) such that

H ≤ τ +
1
L

d(ωτ , Oc)+ 3ε + sup
τ≤t≤τ+ε

|ωt − ωτ |, Pε-a.s. on E .

Proof. First, there exists τ̃ ∈ T such that τ ≤ τ̃ ≤ τ + ε and τ̃ takes only finitely many values
0 ≤ t1 < · · · < tn = t0. Denote Ei := E ∩ {τ̃ = ti < H} ∈ Fti . Then {Ei , 1 ≤ i ≤ n} is a
partition of E ∩ {τ̃ < H} and

H ≤ τ̃ ≤ τ + ε on E ∩ {τ̃ ≥ H}. (5.40)
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For any i , there exists a partition (E i
j ) j≥1 of Ei such that |ωti −ω

′
ti | ≤ Lε for any ω,ω′

∈ E i
j .

For each (i, j), fix an ωi j
∈ E i

j and a unit vector αi j pointing to the direction from ω
i j
ti to Oc.

Now for any ω ∈ E i
j , define Pi, j,ω

∈ Pti as follows:

β = 0, αt =
1
ε
[ω

i j
ti − ωti ]1[ti ,ti +ε)(t)+ Lαi j 1[ti +ε,T ](t).

We see that

Hti ,ω =


ti + ε +

1
L

d(ωi j
ti , Oc)


∧ t0, Pi, j,ω-a.s. on E i

j .

Similar to the proof of (5.12), there exists Pε ∈ P(P, τ̃ , E) ⊂ P(P, τ, E) such that the regular
conditional probability distribution Pti ,ω

ε = Pi, j,ω for P-a.e. ω ∈ E i
j . Then

H ≤ τ + 2ε +
1
L

[d(ωti , Oc)+ Lε] ≤ τ + 3ε +
1
L


d(ωτ , Oc)+ |ωτ − ωti |


≤ τ + 3ε +

1
L


d(ωτ , Oc)+ sup

τ≤t≤τ+ε
|ωt − ωτ |


, Pε-a.s. on E i

j .

This, together with (5.40), proves the lemma. �

We are now ready to complete the

Proof of Proposition 5.9. The inequality E [Yτ∗ ] ≤ E [Yτ∗−] is a direct consequence of the
E -supermartingale property of Y established in Theorem 5.4. As for the reverse inequality, sinceY is continuous on [0, H) and Hn ↑ H with Hn < H, it suffices to show that, for any P ∈ P and
any ε > 0

In := EP
[Yτ∗∧Hn ] − E [Yτ∗ ] ≤ 5ε for sufficiently large n. (5.41)

Let δ > 0, n > 1
Lδ . Set tn := t0 −

1
n , τ

0
:=τ ∗

∧ Hn , and P0
:= P. We proceed in two steps.

Step 1. Apply Lemma 5.11 with P0, τ 0,τ ∗, and Ω , there exist P1,1
∈ P(P0, τ 0,Ω) and a stop-

ping time τ̃ 1 taking values in [τ 0,τ ∗
], such that

EP0
[Yτ 0 ] ≤ EP1,1

X τ̃ 11{τ̃ 1<τ∗} + Yτ∗1{τ̃ 1=τ∗}


+ ε.

Denote E1 := {τ̃ 1 < tn} ∈ Fτ̃ 1 . By (5.3) and following the same argument as for the estimate in
(4.6), we have: P1,1-a.s. on Ec

1 ∩ {τ̃ 1 <τ ∗
},

X τ̃ 1 ≤ X τ̃ 1 − EP1,1

τ̃ 1 [Xτ∗ ] + EP1,1

τ̃ 1 [Yτ∗ ]

≤ EP1,1

τ̃ 1


ρ0


1
n

+ ∥B τ̃
1
∥
τ̃ 1+ 1

n


+ EP1,1

τ̃ 1 [Yτ∗ ] ≤ C ρ̄0(n
−1)+ EP1,1

τ̃ 1 [Yτ∗ ].

Then, denoting E2 := E1 ∩ {τ̃ 1 <τ ∗
} ∈ Fτ̃ 1 , we get:

EP0
Yτ 0


≤ EP1,1

X τ̃ 11E2 + X τ̃ 11Ec
1∩{τ̃ 1<τ∗} + Yτ∗1{τ̃ 1=τ∗}


+ ε

≤ EP1,1
X τ̃ 11E2 + Yτ∗1Ec

2


+ C ρ̄0(n

−1)P0
[Ec

1] + ε. (5.42)
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Next, set δ̃ := [δ2ρ̄0(3δ)] ∧
δ
3 . Apply Lemma 5.13 on P1,1, τ̃ 1, E2, and δ̃, there exists P1,2

∈

P(P1,1, τ̃ 1, E2) such that

H ≤ τ̃ 1
+

1
L

d(ωτ̃ 1 , Oc)+ δ + ∥ωτ̃
1

t ∥τ̃ 1+δ̃, P1,2-a.s. on E2.

Since τ̃ 1
≤τ ∗

≤ H, we have

τ ∗
− τ̃ 1

≤ 3δ, P1,2-a.s. on E2 ∩ {d(ωτ̃ 1 , Oc) ≤ Lδ} ∩ {∥ωτ̃
1
∥τ̃ 1+δ̃ ≤ δ}.

Then, by (5.3) and (4.6) again we have: P1,2-a.s. on E2 ∩ {d(ωτ̃ 1 , Oc) ≤ Lδ} ∈ Fτ̃ 1 ,

X τ̃ 1 ≤ EP1,2

τ̃ 1 [Xτ∗ ] + EP1,2

τ̃ 1


ρ0


d∞


(τ̃ 1, B), (τ ∗, B)


= EP1,2

τ̃ 1 [Xτ∗ ] + EP1,2

τ̃ 1


ρ0


d∞


(τ̃ 1, B), (τ ∗, B)


1
{∥B τ̃1

∥
τ̃1+δ̃

≤δ}
+ 1

{∥B τ̃1
∥
τ̃1+δ̃

>δ}


≤ EP1,2

τ̃ 1 [Xτ∗ ] + EP1,2

τ̃ 1


ρ0


3δ + ∥B τ̃

1
∥τ̃ 1+3δ


+ Cδ−2EP1,2

τ̃ 1 [∥B τ̃
1
∥

2
τ̃1+δ̃

]

≤ EP1,2

τ̃ 1 [Xτ∗ ] + C ρ̄0(3δ)+
C δ̃

δ2 ≤ EP1,2

τ̃ 1 [Xτ∗ ] + C ρ̄0(3δ).

Note that n−1
≤ Lδ ≤ 3δ. Thus, denoting E3 := E2∩{d(ωτ̃ 1 , Oc) > Lδ} ∈ Fτ̃ 1 , (5.42) leads to:

EP0
Yτ 0


≤ EP1,2

X τ̃ 11E3 + Yτ∗1Ec
3


+ C ρ̄0(3δ)P1,2(Ec

3)+ ε. (5.43)

Moreover, apply Lemma 5.12 with P1,2, τ̃ 1, E3, and ε, there exists P1,3
∈ P(P1,2, τ̃ 1, E3)

such that

EP1,2
X τ̃ 11E3


≤ EP1,2

Yτ̃ 11E3


≤ EP1,3

Yτ∗−1E3


+ ε.

Define τ 1
:= inf{t ≥ τ̃ 1

: d(ωt , Oc) ≤
1
n } ∧ τ ∗. Note that τ 1 < H on E3 and Y is a P1,3-

supermartingale. Then

EP1,3
Yτ∗−1E3


≤ EP1,3

Yτ 11E3


.

Thus

EP1,2
X τ̃ 11E3


≤ EP1,3

Yτ 11E3


+ ε.

Plug this into (5.43), we obtain

EP0
Yτ 0


≤ EP1,3

Yτ 1 1E3 + Yτ∗1Ec
3


+ C ρ̄0(3δ)P1,3(Ec

3)+ 2ε.

We now denote P1
:= P1,3

∈ P(P0, τ 0,Ω), and

D1 := E3 ∩ {τ 1 <τ ∗
} = {τ̃ 1 < tn ∧ τ̃ ∗

} ∩ {d(ωτ̃ 1 , Oc) > Lδ} ∩ {τ 1 <τ ∗
} ∈ Fτ 1 . (5.44)

Then

EP0
Yτ 0


≤ EP1

Yτ 11D1 + Yτ∗1Dc
1


+ C ρ̄0(3δ)P1(Dc

1)+ 2ε. (5.45)
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Step 3: Iterating the arguments of Step 1, we may define (τ̃m, τm,Pm, Dm)m≥1 such that:

Pm+1
∈ P(Pm, τm, Dm), τm

≤ τ̃m+1
≤τ ∗

;

τm+1
:= inf


t ≥ τ̃m+1

: d(ωt , Oc) ≤
1
n


∧τ ∗

Dm+1 := Dm ∩ {τ̃m+1 < tn ∧τ ∗
} ∩ {d(ωτ̃m+1 , Oc) > Lδ} ∩ {τm+1 <τ ∗

};

and

EPm
Yτm 1Dm


≤ EPm+1

Yτm+11Dm+1 + Yτ∗1Dm∩Dc
m+1


+ C ρ̄0(3δ)Pm+1(Dm ∩ Dc

m+1)

+ 21−mε.

By induction, for any m ≥ 1 we have

EP0
Yτ 0


≤ EPm

Yτm 1Dm + Yτ∗1Dc
m


+ C ρ̄0(3δ)Pm(Dc

m)+ 4ε

≤ EPm
[Yτ∗ ] + 2C0Pm

[Dm] + C ρ̄0(3δ)+ 4ε. (5.46)

Note that

Pm
[Dm] ≤ Pm


∩

m
i=1


|Bτ̃ i − Bτ i−1 | ≥ Lδ −

1
n


∩


|Bτ i − Bτ̃ i | ≥ Lδ −

1
n


≤ Pm


m

i=1

[|Bτ̃ i − Bτ i−1 |
2
+ |Bτ i − Bτ̃ i |

2
] ≥ 2m


Lδ −

1
n

2


≤
1

2m


Lδ −
1
n

2 EPm


m

i=1

[|Bτ̃ i − Bτ i−1 |
2
+ |Bτ i − Bτ̃ i |

2
]


≤

C

2m


Lδ −
1
n

2 .

Then, (5.46) leads to

In ≤
C

2m


Lδ −
1
n

2 + C ρ̄0(3δ)+ 4ε,

which implies, by sending m → ∞ that

In ≤ C ρ̄0(3δ)+ 4ε.

Hence, by choosing δ small enough such that ρ̄0(3δ) ≤ ε, we see that (5.41) holds true for
n > 1

Lδ . �
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Appendix

A.1. Regular conditional probability distribution

We first recall the definition of r.c.p.d. from Stroock–Varadhan [16]. Let (Ω ,F ,P) be a
probability space, G ⊂ F is a sub-σ -field. An r.c.p.d. {PωG, ω ∈ Ω} is a family of probability
measures on F satisfying the following requirements:

• For all E ∈ F , the mapping ω → PωG(E) is G-measurable;

• For all ξ ∈ L∞(F), the conditional expectation EPωG [ξ ] = E[ξ |G](ω), for P-a.e. ω;
• For any ω ∈ Ω ,PωG(Ω

ω
G ) = 1, where Ωω

G := ∩{E ∈ G : ω ∈ E}.

We note that en r.c.p.d. exists whenever G is countably generated.
In the special case that Ω := {ω ∈ C([0, T ],Rd) : ω0 = 0} is our canonical space and

G = Fτ for some τ ∈ T , it holds that

Ωω
Fτ

:=

ω′

∈ Ω : τ(ω′) = τ(ω) and ω′
∧τ = ω∧τ


=

ω⊗τ(ω) ω

′
: ω′

∈ Ω τ(ω)

. (A.1)

Then, as in [14], we define for all ω ∈ Ω a probability measure Pτ,ω on F τ(ω)
T by:

Pτ,ω(E) := PωFτ


{ω⊗τ(ω) ω

′
: ω′

∈ E}


, ∀E ∈ F τ(ω)

T , (A.2)

and still call it an r.c.p.d. of P conditional on Fτ . One may easily check that ω −→ EPτ,ω
[ξ τ,ω]

is Fτ -measurable, for all ξ ∈ L∞(FT ), and EPτ,ωξ τ,ω = E[ξ |Fτ ](ω), for P-a.e. ω and for all
ξ ∈ L∞(F).

A.2. Proof of Lemma 2.3

Recall the notations in the beginning of Section 2.2. Let F := FB and F̃ := F̃B̃ be the natural
filtrations on Ω and Ω̃ , respectively. Moreover, we may identify F with the filtration F̃B on Ω̃
generated by B: F̃ B

t = {E × Ω2
: E ∈ F B

t }.

(i) First, it follows from standard arguments, see e.g. Zheng [17, Theorem 3], that P L
t is weakly

compact. Then Property (P1) holds.
(ii) We next check without loss of generality Property (P2) only at t = 0. Let τ ∈ T and P ∈ P L

with corresponding Q as in (2.2). Define τ̃ (ω̃) := τ(ω) for ω̃ := (ω, a,m) ∈ Ω̃ , then clearly
τ̃ is an F̃B-stopping time, hence also an F̃-stopping time. By Stroock–Varadhan [16], the
r.c.p.d. Qω̃

F̃ B
τ̃

exists. Note that ω̃ −→ Qω̃

F̃ B
τ̃

(E) is F̃ B
τ̃

-measurable for any E ∈ F̃T , it follows

that Qω̃

F̃ B
τ̃

depends only on ω and thus we may denote it as Qω

F̃ B
τ̃

.

Recall the shifted spaces Ω t , Ω̃ t ,Ft , and F̃t . We now define the following probability
measure on the shifted space Ω τ(ω):

Qτ,ω
[Ẽ] := Qω

F̃ B
τ̃


ω̃1

⊗τ(ω) ω̃
2

: ω̃1
∈ Ω̃ , ω̃2

∈ Ẽ

, ∀Ẽ ∈ F̃ τ(ω)

T ;

Pτ,ω[E] := Qτ,ω

E × (Ω τ(ω))2


, ∀E ∈ F τ(ω)

T .

(A.3)

It is straightforward to check that Pτ,ω is an r.c.p.d. of P conditional on F τ , and Qτ,ω is the
required extension on Ω̃ τ(ω) satisfying (2.2) for P-a.e. ω. This verifies (P2).
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(iii) It remains to check Property (P3). Assume Q and Qi are the corresponding extensions of P
and Pi . Define

Q̂ := Q ⊗t


∞

i=1

Qi 1Ei ×(Ω s )2 + Q1∩
∞

i=1(E
c
i ×(Ω s )2)


.

Following similar arguments as in (ii) one can show that Q̂ satisfies (2.2). It is clear that
P̂(E) = Q̂(E × (Ω s)2) for all E ∈ F s

T . Then P̂ ∈ P L
s and thus (P3) holds. �

A.3. Some additional results

In this subsection we provide some results which are interesting for our discussion, although
they are technically not used in the paper.

Proof of Remark 3.2. Fix ω ∈ Ω , and let {tn} and {sn} be two sequences such that tn ↑ t, sn ↑ t ,
and X tn (ω) −→ lims↑t Xs(ω), Xsn (ω) −→ lims↑t Xs(ω). Here and in the sequel, in lims↑t
we take the notational convention that s < t . Without loss of generality, we may assume
tn < sn < tn+1 for n = 1, 2, . . .. Then for the ρ0 defined in (3.1) we have

0 ≤ lim
s↑t

Xs(ω)− lim
s↑t

Xs(ω) = lim
n→∞

X tn (ω)− lim
n→∞

Xsn (ω)

≤ lim
n→∞

ρ0


d∞


(tn, ω), (sn, ω)


= 0.

This implies the existence of X t−(ω). Moreover,

X t−(ω)− X t (ω) = lim
s↑t

Xs(ω)− X t (ω) ≤ lim
s↑t
ρ


d∞


(s, ω), (t, ω)


= 0,

completing the proof. �

Lemma A.1. Let the nondegeneracy condition (3.7) hold and X be bounded and uniformly
continuous in (t, ω) under d∞. Then Ŷ H defined in (3.5) is left continuous at H.

Proof. We first claim that, for any ω ∈ Ω and ε > 0

lim
t↑H(ω)

Ct [Ht,ω
≥ t + ε] = 0. (A.4)

Indeed, let H correspond to O and t0 as in (3.3). If H(ω) = t0, since Ht,ω
≤ t0, (A.4) is obvious.

We now assume t1 := H(ω) < t0 and thus ωt1 ∈ Oc. Note that t < H(ω) implies ωt ∈ O . Denote
δ := d(ωt , Oc), then 0 < δ ≤ |ωt −ωt1 |. Let η be a unit vector pointing to the direction from ωt
to Oc. Since O is convex, we see that

for any x ∈ Rd , x · η ≥ δ implies x + ωt ∈ Oc. (A.5)

Since we will send t ↑ t1, we may assume δ ≤ ε. Then, for any P ∈ Pt with corresponding α, β,
and W , we have

P


Ht,ω
≥ t + ε


≤ P


Ht,ω

≥ t + δ


≤ P


sup
t≤s≤t+δ

(Bt
s · η) < δ


≤ P


sup

t≤s≤t+δ
Ms ≤ Cδ


where Ms :=

 s
t βr dWr ·η is a scalar P-martingale. Denote As :=

 s
t |βrη|

2dr and introduce the
time change: τr := inf{s ≥ t : As ≥ r − t} and Nr := Mτr . Then N is a P-Brownian motion.
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Since β ≥ cId , then c2(τr − t) ≤ r − t , and thus

P


Ht,ω
≥ t + ε


≤ P


sup

t≤s≤t+δ
Ms ≤ Cδ


≤ P


sup

t≤r≤t+c2δ

Nr ≤ Cδ


= C
√
δ,

where C is independent of P. Then Ct [Ht,ω
≥ t + ε] ≤ C

√
δ for δ ≤ ε. Now send t ↑ H(ω), we

have δ → 0 and thus (A.4) holds.
We now prove the lemma. Let ρ denote the modulus of continuity function of X . Note that

in this case X̂ H
= XH∧·. Fix ω ∈ Ω . For t < t1 := H(ω) and ε > 0, denoting E := {Ht,ω

≤

t + ε} ∩ {∥Bt
∥t+ε ≤ ε

1
3 }, we have

|Ŷ H
t (ω)− Ŷ H

H (ω)| ≤ sup
τ∈T t

Et


|X t,ω
τ∧Ht,ω − XH(ω)|


≤ C Ct [Ec

] + sup
τ∈T t

Et


ρ

d∞((τ ∧ Ht,ω, ω⊗t Bt ), (t1, ω))


1E


≤ C Ct [Ht,ω

≥ t + ε] + C Ct [∥Bt
∥t+ε ≥ ε

1
3 ]

+ Et


ρ


d∞((H
t,ω, ω⊗t Bt ), (t, ω)


+ d∞((t, ω), (t1, ω))


1E


≤ C Ct [Ht,ω

≥ t + ε] + Cε
1
3 + ρ


ε + ε

1
3 + d∞((t, ω), (t1, ω))


.

Then, by (A.4) we have

lim
t↑H(ω)

|Ŷ H
t (ω)− Ŷ H

H (ω)| ≤ Cε
1
3 + ρ


ε + ε

1
3


.

Since ε is arbitrary, we prove the result. �

However, in the degenerate case in general Ŷ H may be discontinuous at H.

Example A.2. Set X t (ω) := t and let H correspond to O and t0. Clearly X H
= X,Y H

H = H andY H
t (ω) ≤ t0. However, for any t < H(ω), set τ := t0 and P ∈ Pt such that αP

= 0, βP
= 0, we

see that Y H
t (ω) ≥ EP


X (H(ω⊗t Bt ), ω⊗t Bt )


= X (H(ω·∧t ), ω·∧t ) = H(ω·∧t ) = t0. That is,Y H

t (ω) = t0. Thus Y H is discontinuous at H whenever H(ω) < t0. �
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