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In this article, we establish a complete representation theorem for G-martingales.
Unlike the existing results in the literature, we provide the existence and uniqueness of
the second-order term, which corresponds to the second-order derivative in Markovian
case. The main ingredient of the article is a new norm for that second-order term, which
is based on an operator introduced by Song.
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nonlinear expectations
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1. Introduction

The notion of G-expectation is a type of nonlinear expectation proposed by Peng

[18,19]. In the Markovian case, it corresponds to a fully nonlinear partial differential

equation (PDE). We also refer to Cheridito et al. [1] and Soner et al. [23,24] for the

closely related theory of second-order backward stochastic differential equations

(SDEs). The theory has received very strong attention in the literature in recent years,

we refer to the survey paper [20] and the references therein as well as some more recent

developments: [4,5,10,12,13,15,16,26], to mention a few. Their typical applications

include, among others, stochastic optimization with diffusion control and economic/

financial models with volatility uncertainty (see, e.g. [3,6,14]) and numerical methods

for high-dimensional fully nonlinear PDEs (see e.g. [7,27,8]).

G-expectation is a typical nonlinear expectation. It can be regarded as a nonlinear

generalization of Wiener probability space ðV;F ;P0Þ, where V ¼ Cð½0;1Þ;RdÞ, F ¼
BðVÞ and P0 is a Wiener probability measure defined on ðV;F Þ. Recall that the Wiener

measure is defined such that the canonical process BtðvÞ :¼ vt, t $ 0, is a continuous

process with stationary and independent increments, namely ðBtÞt$0 is a Brownian motion.

G-expectation EG is a sublinear expectation on the same canonical space V, such that the

same canonical process B is a G-Brownian motion, i.e. it is a continuous process with

stationary and independent increments. One important feature of this notion is its time

consistency. To be precise, let j be a random variable and Yt :¼ EGt ½j� denote the

conditional G-expectation, then one has EGs ½j� ¼ EGs ½EGt ðjÞ� for any s , t. For this reason,

we call the conditional G-expectation a G-martingale, or a martingale under

G-expectation. It is well known that a martingale under Wiener measure can be written

as a stochastic integral against the Brownian motion. Then a very natural and fundamental
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question in this nonlinear G-framework is:

What is the structure of aG-martingale Y? ð1:1Þ
Peng [18] has observed that, for Z [ H2

G and h [ M1
G (see (2.12) and (2.17)), the

following process Y is always a G-martingale:

dYt ¼ Zt dBt 2 GðhtÞ dt þ 1

2
ht dkBlt: ð1:2Þ

Here,G is the deterministic function Peng [18] used to defineG-expectations and kBl is the
quadratic variation of the G-Brownian motion B. We remark that, in a Markovian

framework, we have Yt ¼ uðt;BtÞ, where u is a smooth function satisfying the following

fully nonlinear PDE:

›tuþ Gð›xxuÞ ¼ 0: ð1:3Þ
Then Zt ¼ ›xuðt;BtÞ and ht ¼ ›xxuðt;BtÞ. In particular, if j ¼ gðBT Þ, then by PDE

arguments we see immediately that Yt :¼ EGt ½j� has a representation (1.2). Peng proved

further that this ðZ;hÞ-representation holds if j is in a dense subspace Lip of Lp
G (see (2.5)).

But observing that Lip is not a complete space, a very interesting question was then raised

to give a complete ðZ;hÞ-representation theorem for EGt ½j�.
The first partial answer was provided by Xu and Zhang [28]: if Y is a symmetric

G-martingale, that is both Y and 2Y are G-martingales, then

dYt ¼ Zt dBt for some process Z: ð1:4Þ
However, symmetric G-martingales capture only the linear part in this nonlinear

framework, and it is important to understand the structure of non-symmetric G-

martingales.

By introducing a new norm k·kL2G (see (2.22)), Soner et al. [22] proved a more general

representation theorem: for j [ L2G,

dYt ¼ Zt dBt 2 dKt; ð1:5Þ
where K is an increasing process such that 2K is a G-martingale. It has been proved

independently in [22] and Song [25] that L
p
G . >q.p Lq

G, where k·kLq

G
is the norm

introduced in [18] (see (2.5)). Moreover, [25] extended representation (1.5) to the case

p . 1.

Now the question is: when does the process K in (1.5) have the structure

dKt ¼ GðhtÞ dt2 1

2
ht dkBlt? ð1:6Þ

Several efforts have been made in this direction. Hu and Peng [11] and Pham and Zhang

[21] made some progresses on the existence of h. However, there is no characterization of
the process h, and in particular, they do not provide an appropriate norm for h. On the

other hand, Song [26] proved the uniqueness of h in the spaceM1
G. A clever operator was

introduced in this work, which successfully isolates the term ð1=2Þht dkBlt from dKt, and

thus, essentially captures the uncertainty of the underlying distributions. This idea turns

out to be the building block of this article.

S. Peng et al.610

D
ow

nl
oa

de
d 

by
 [

U
SC

 U
ni

ve
rs

ity
 o

f 
So

ut
he

rn
 C

al
if

or
ni

a]
 a

t 1
2:

20
 1

8 
A

ug
us

t 2
01

4 



Our main contribution of this article is to introduce a norm for the process h, based on
the work [26]. We shall prove the existence and uniqueness of the component h, which
provides an essentially complete answer to Peng’s question (1.1). Moreover, we shall

provide a priori norm estimates. In particular, given j1 and j2 in appropriate space, let

ðY i; Z i;h iÞ, i ¼ 1; 2, be the corresponding terms, we shall estimate the norms of Z 1 2 Z 2

and h1 2 h2 in terms of that of Y 1 2 Y 2, where the latter one is more tractable due to the

representation formula Yt ¼ EGt ½j�. Unlike [26], we prove the estimates via PDE

arguments.

The rest of the paper is organized as follows. In Section 2, we introduce G-martingales

and the involved spaces. In Section 3, we propose the new norm for h and provide the

crucial estimates. In Section 4, we establish the complete representation theorem for

G-martingales.

2. Preliminaries

In this section, we introduce G-expectations and G-martingales. We shall focus on a

simple setting in which we will establish the martingale representation theorem. However,

these notions can be extended to much more general framework, as in many works in the

literature.

We start with some notations in multiple dimensional setting. Fix a dimension d. Let

Rd andSd denote the sets of d-dimensional column vectors and d £ d-symmetric matrices,

respectively. For s 1;s 2 [ Sd, s 1 # s 2 (respectively, s 1 , s 2) means that s 2 2 s 1 is

non-negative (respectively, positive) definite, and we denote by ½s 1;s 2� the set of s [
Sd satisfying s 1 # s # s 2. Throughout the article, we use 0 to denote the d-dimensional

zero vector or zero matrix, and Id the d £ d identity matrix. For x; ~x [ Rd, g; ~g [ Sd,

define

x·~x :¼ xT~x; jxj :¼ ffiffiffiffiffiffi
x·x

p
; and g : ~g :¼ trðg ~gÞ; jgj :¼ ffiffiffiffiffiffiffiffiffiffi

g : g
p

; ð2:1Þ
where xT denotes the transpose of x. One can easily check that

jg : ~gj # jgk ~gj; and 2 g # ~g # g implies that j ~gj # jgj: ð2:2Þ

2.1 Conditional G-expectations

We fix a finite time interval ½0; T� and two constant matrices 0 , s , �s in Sd. Define

GðgÞ :¼ 1

2
sup

s[½s ; �s �
ðs 2 : gÞ; for all g [ Sd: ð2:3Þ

Let V :¼ v [ Cð½0; T�;RdÞ : v0 ¼ 0 be the canonical space, B the canonical process and

F :¼ FB the filtration generated by B. For j ¼ wðBT Þ, where w : Rd ! R is a bounded and

Lipschitz continuous function, following Peng [18] we define the conditional G-expectation

EGt ½j� :¼ uðt;BtÞ, where u is the (unique) classical solution of the following PDE on ½0; T�:
›tuþ Gð›xxuÞ ¼ 0; uðT ; xÞ ¼ wðxÞ: ð2:4Þ

Let Lip denote the set of random variables j ¼ wðBt1 ; . . . ;BtnÞ for some 0 # t1 , · · · ,
tn # T and some Lipschitz continuous function w. In the same spirit, one may define EGt ½j�
backwardly over each interval ½ti; tiþ1�. In particular, when t ¼ 0 we define EG½j� :¼ EG0 ½j�.

Stochastics: An International Journal of Probability and Stochastic Processes 611
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For any p $ 1, define

kjjjpLp

G

:¼ EG½jjjp�; j [ Lip: ð2:5Þ

Clearly, this defines a norm in Lip. Let Lp
G denote the closure of Lip under the norm k·kLp

G
,

taking the quotient as in the standard literature (i.e. we do not distinguish random variables

j1 and j2 if kj1 2 j2kLp

G
¼ 0). As a mapping on the spaceLip, the conditionalG-expectation

is continuous w.r.t. the norm k·kL1
G
. So, one can easily extend it to all j [ L1

G.

We next provide a representation of conditional G-expectations by using the quasi-

sure stochastic analysis, initiated by Denis and Martini [3] for superhedging problem

under volatility uncertainty. Let A denote the space of F-progressively measurable

processes taking values in ½s ;s �. Denoting by P0 the Wiener measure, we define

P :¼ Ps :¼ P0 + ðX s Þ21 : s [ A� �
where Xs

t :¼
ðt
0

s s dBs; P0-a:s: ð2:6Þ

Then B is a P-martingale for each P [ P. Following [3], we say

a property holds P-quasi surely; abbreviated as P-q:s:;
if it holds P-a:s: for all P [ P: ð2:7Þ

We note that kjkL1
G
¼ 0 if and only if j ¼ 0, P-q.s. Throughout this article, random

variables are considered the same if they are equal P-q.s. Then elements in L1
G can be

viewed as standard random variables, but in P-q.s. sense. In particular, for any j [ L1
G,

conditional G-expectation EGt ½j� is defined P-q.s.
It was proved in Denis et al. [2] that:

EG½j� ¼ sup
P[P

EP½j�; j [ L1
G: ð2:8Þ

This result was extended by Soner et al. [22] to conditional G-expectations: for any

j [ L1
G, t [ ½0; T� and P [ P,

EGt ½j� ¼ ess sup
P0[Pðt;PÞ

P EP
0

t ½j�; P-a:s:; where Pðt;PÞ :¼ P0 [ P : P0 ¼ P on F t

� �
:

ð2:9Þ
We remark that Peng [17] had similar ideas in the contexts of strong formulation.

We finally note that EGt is obviously a sublinear expectation (again, all the equalities

and inequalities are viewed in P-q.s. sense): for any j; j1; j2 [ L1
G,

EGt ½j� ¼ j; if j is F t-measurable; EGt ½lj� ¼ lj; for all l $ 0;

EGt ½j1� # EGt ½j2�; if j1 # j2; EGt ½j1 þ j2� # EGt ½j1� þ EGt ½j2�:
ð2:10Þ

2.2 Stochastic integrals

First, notice that there exists a unique (P-q.s.)Sd-valued process kBl such that BtB
T
t 2 kBlt

is a symmetric G-martingale. In fact, under each P [ P, kBl is the same as the quadratic

S. Peng et al.612
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variation of the P-martingale B, and consequently,

s 2 #
d

dt
kBlt # �s 2; P-q:s: ð2:11Þ

Naturally we call kBl the quadratic variation of B. Next, we call that an F-progressively

measurable process Z with appropriate dimension is an elementary process if it takes the

form Z ¼Pn21
i¼0 Zti1½ti;tiþ1Þ for some 0 ¼ t0 , · · · , tn # T and each component of Zti is in

Lip. Let H0
G denote the space of Rd-valued elementary processes. For any p $ 1, define

kZjjpHp

G

:¼ EG
ðT
0

ðZtZ
T
t Þ : dkBltÞ

� �p=2
" #

; Z [ H0
G; ð2:12Þ

and let Hp
G denote the closure of H0

G under the norm k·kHp

G
.

Now for each Z [ H0
G, we define its stochastic integral:

ðt
0

Zs·dBs :¼
Xn21

i¼0

Zti ·½Btiþ1^t 2 Bti^t�; ð2:13Þ

One can easily prove the Burkholder–Davis–Gundy Inequality (see, e.g. Song [25]

Proposition 4.3): for any p . 0, there exist constants 0 , cp , Cp , 1 such that

cpkZjjpHp

G

# EG sup
0#t#T

j
ðt
0

Zs·dBsjp
� �

# CpkZjjpHp

G

: ð2:14Þ

Then one can extend the stochastic integral to all Z [ Hp
G.

2.3 G-martingales

One important feature of conditional G-expectations is the time consistency, which can

also be viewed as dynamic programming principle:

EGs EGt ðjÞ
� 	 ¼ EGs ½j�; for all j [ L1

G and 0 # s , t # T : ð2:15Þ
We recall that

a process Y is called a G-martingale if EGs ½Yt� ¼ Ys for all 0 # s , t # T: ð2:16Þ
Therefore, Y is a G-martingale if and only if Yt ¼ EGt ½j� for j ¼ YT .

Let X, Y be two G-martingales. In general, neither 2X nor X þ Y is a G-martingale

since the conditional G-expectation is only sublinear. If 2X is also a G-martingale, then

we call X a symmetric G-martingale, and in this case, one can easily check that X þ Y is

still a G-martingale.

It is clear that
Ð t
0
Zs·dBs is a symmetric G-martingale for all Z [ H1

G. In particular, the

canonical process B is a symmetric G-martingale and is called a G-Brownian motion.

However, G-martingales have a much richer structure. LetM0
G be the space of Sd-valued

elementary processes. Define

khjjpMp

G

:¼ EG
ðT
0

jhtj dt
� �p� �

; h [ M0
G; ð2:17Þ

Stochastics: An International Journal of Probability and Stochastic Processes 613
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and letMp
G denote the closure ofM0

G under the norm k·kMp

G
. An interesting fact observed

by Peng [18] is that the following decreasing process is also a G-martingale:

2 Kt :¼ 1

2

ðt
0

hs : dkBls 2
ðt
0

GðhsÞ ds; h [ M1
G: ð2:18Þ

Consequently, the following process Y is always a G-martingale:

Yt ¼ Y0 þ
ðt
0

Zs·dBs 2

ðt
0

GðhsÞ ds2 1

2

ðt
0

hs : dkBls

� �
; Z [ H1

G; h [ M1
G: ð2:19Þ

On the other hand, for any j [ Lip, by Peng [19] there exist Z [ H1
G and h [ M1

G

such that Yt :¼ EGt ½j� satisfies (2.19). In particular, when j ¼ wðBT Þ, for the classical

solution u of PDE (2.4), we have:

Yt ¼ uðt;BtÞ; Zt ¼ ›xuðt;BtÞ; ht ¼ ›xxuðt;BtÞ: ð2:20Þ

Our goal of this article is to answer the following natural question proposed by Peng

[19].

Forwhat j do there exist unique Z [ H1
G and h [ M1

G satisfying ð2:19Þ? ð2:21Þ

The problem was partially solved by Soner et al. [22], in which the following norm was

introduced:

kjjjp
L
p

G

:¼ EG sup
0#t#T

EGt ½jjj�

 �p� �

; j [ Lip: ð2:22Þ

Let L
p
G denote the closure of Lip under the norm k·kLp

G
. Then for any j [ L2G, there exist

unique Z [ H2
G and an increasing process K with K0 ¼ 0 such that

Yt :¼ EGt ½j� ¼ Y0 þ
ðt
0

Zs·dBs 2 Kt and kZkH2
G
þ kKTkL2

G
# CkjkL2G : ð2:23Þ

It was proved independently by [22] and Song [25] that kjkLp
G
# Cp;qkjkLq

G
for any

1 # p , q. Moreover, the above representation was extended by [25] to the case p . 1.

2.4 Summary of notations

For readers’ convenience, we collect here some notations used in the article (some of them

will be defined later):

. The inner product ·, the trace operator : and the norms jxj, jgj are defined by (2.1).

. The function G, Ga and G1 are defined by (2.3), (3.1) and (3.5), respectively.

. The class of probability measures P, the G-expectation EG and the conditional

G-expectation EGt are defined by (2.6), (2.8) and (2.9), respectively.

. The norms kjkLp

G
and kjkLp

G
for j are defined by (2.5) and (2.22), respectively.

. The norms kZkHp

G
for Z and khkMp

G
for h are defined by (2.12) and (2.17),

respectively.

S. Peng et al.614
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. The norm kYkDp

G
for càdlàg processes Y, see also (2.22), is defined by:

kYjjp
D

p

G

:¼ EG sup
0#t#T

jYtjp
� �

: ð2:24Þ

. The operator Ea
t1;t2

is defined by (3.2).

. The constants c0;C0 are defined by (3.4).

. The function dn is defined by (3.7).

. The norms khkMG
and khkM*

G
for h are defined by (3.11) and (3.18), respectively.

. The space M1
G0

and class P0 are defined by (3.19) and (3.16), respectively.

. The metric dG;pðj1; j2Þ for j is defined by (4.3) and L*pG is the corresponding closure

space.

. For 0 # s # t # T , the shifted canonical process Bs
t is defined by:

Bs
t :¼ Bt 2 Bs: ð2:25Þ

3. A new norm for h

Our main contribution of the article is to introduce a norm for h. For that purpose, we shall
introduce two nonlinear operators, one via PDE arguments and the other via probabilistic

arguments. The latter one is strongly motivated by the work Song [26], and the connection

between the two operators is established in Lemma 3.4.

3.1 The nonlinear operator via PDE arguments

We first introduce a new nonlinear operator Ea on Lipschitz continuous functions, with a

parameter a [ Sd. Define

GaðgÞ ¼ 1

2
½Gðgþ 2aÞ þ Gðg2 2aÞ�; g [ Sd: ð3:1Þ

Given 0 # t1 , t2 # T and a Lipschitz continuous function w, define Ea
t1;t2

ðwÞ :¼ uaðt1; ·Þ,
where ua is the unique viscosity solution of the following PDE on ½t1; t2�:

›tu
a þ Gað›xxuaÞ ¼ 0; uaðt2; xÞ ¼ wðxÞ: ð3:2Þ

Clearly, Ga is strictly increasing and convex in g, then PDE (3.2) is parabolic and is well

posed. We collect below some obvious properties ofGa and Ea, whose proofs are omitted.

Lemma 1. For any a [ Sd,

(i) Ea satisfies the semi-group property:

Ea
t1;t2

Ea
t2;t3

ðwÞ
� 

¼ Ea
t1;t3

ðwÞ; for any 0 # t1 , t2 , t3 # T: ð3:3Þ

(ii) G2a ¼ Ga $ G ¼ G 0.

(iii) If w ¼ c is a constant, then Ea
t1;t2

ðcÞ ¼ cþ Gað0Þðt2 2 t1Þ.

Stochastics: An International Journal of Probability and Stochastic Processes 615
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The next property will be crucial for our estimates. Let

c0 :¼ the smallest eigenvalue of
1

2
½ �s 2 2 s 2�; and C0 :¼ 1

2
j �s 2 2 s 2j: ð3:4Þ

Then clearly C0 $ c0 . 0 and s 2 þ c0Id # �s 2 2 c0Id . Denote, for 1 # c0,

G1ðgÞ :¼ 1

2
sup

s[½s 1; �s 1�
ðs 2 : gÞ; where s 2

1 :¼ s 2 þ 1Id; �s 2
1 :¼ �s 2 2 1Id: ð3:5Þ

Lemma 3.2.

(i) For any 0 , 1 # c0 and a; g [ Sd, it holds that

G1ðgÞ þ 1jaj # GaðgÞ # GðgÞ þ C0jaj: ð3:6Þ
(ii) Assume w # w # �w are Lipschitz continuous functions and 0 # t1 , t2 # T .

Then

EG1 wðxþ Bt1
t2
Þ

h i
þ 1jajðt2 2 t1Þ# Ea

t1;t2
ðwÞðxÞ# EG �wðxþ Bt1

t2
Þ

h i
þC0jajðt2 2 t1Þ:

Proof.

(i) We first prove the left inequality. Let a1; . . . ;ad denote the eigenvalues of a and

â the diagonal matrix with components a1; . . . ;ad. Then

jaj ¼ ða2
1 þ · · ·þ a2

dÞ1=2, and there exists an orthogonal matrix Q such that

QTaQ ¼ â. Let ĉ1 denote a diagonal matrix whose diagonal components take

values 1 or 21. Now for any s 1 [ ½s 1; �s 1�, by (3.5) we have

s 2
1 þ Qĉ1Q

T [ ½s 2; �s 2� and s 2
1 2 Qĉ1Q

T [ ½s 2; �s 2�:
Then

2GaðgÞ ¼ Gðgþ 2aÞ þ Gðg2 2aÞ
$

1

2
ðs 2

1 þ Qĉ1Q
T Þ : ðgþ 2aÞ þ ðs 2

1 2 Qĉ1Q
T Þ : ðg2 2aÞ� 	

¼ s 2
1 : gþ 2ðQĉ1QT Þ : a ¼ s 2

1 : gþ 2ĉ1 : ðQTaQÞ ¼ s 2
1 : gþ 2ĉ1 : â:

By the arbitrariness of s 1 and ĉ1, we get

GaðgÞ $ G1ðgÞ þ 1
Xd
i¼1

jaij $ G1ðgÞ þ 1jaj:

We now prove the right inequality of (3.6). For any s 1;s 2 [ ½s ; �s �, we
have

s 2
1 : ðgþ 2aÞ þ s 2

2 : ðg2 2aÞ ¼ ðs 2
1 þ s 2

2Þ : gþ 2ðs 2
1 2 s 2

2Þ : a:
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Note that

s 2 #
1

2
ðs 2

1 þ s 2
2Þ # �s 2; 2½ �s 2 2 s 2� # s 2

1 2 s 2
2 # �s 2 2 s 2:

Then, by (2.2),

s 2
1 : ðgþ 2aÞ þ s 2

2 : ðg2 2aÞ # 4GðgÞ þ 4C0jaj:
Since s 1;s 2 are arbitrary, we prove the right inequality of (3.6), and hence (3.6).

(ii) One can easily check that

EG1 wðxþ Bt1
t2
Þ

h i
þ 1jajðt2 2 t1Þ ¼ vaðt1; xÞ;

EG �wðxþ Bt1
t2
Þ

h i
þ C0jajðt2 2 t1Þ ¼ �vaðt1; xÞ;

where va; �va are the unique viscosity solution of the following PDEs on ½t1; t2�:

›tv
a þ G1ð›xxvaÞ þ 1jaj ¼ 0; vaðt2; xÞ ¼ wðxÞ;

›t �v
a þ Gð›xx �vaÞ þ C0jaj ¼ 0; �vaðt2; xÞ ¼ �wðxÞ:

Then the statement follows directly from (3.6) and the comparison principle of

PDEs. A

3.2 The nonlinear operator via probabilistic arguments

For any n $ 1, denote tni :¼ ði=nÞT , i ¼ 0; . . . ; n, and define

dnðtÞ ¼
Xn21

i¼0

ð21Þi1½tn
i
;tn
iþ1

Þ; t [ ½0; T�: ð3:7Þ

This function was introduced in [26] which plays a key role for constructing a new norm

for process h. According to [26], we have

Lemma 3.3. For any h [ M1
G, it holds that limn!1 EG

Ð T
0
GðhtÞdnðtÞ dt

h i
¼ 0.

The next lemma establishes the connection between dn and ðGa; EaÞ.
Lemma 3.4. Let 0 # s , t # T and a [ Sd.

(i) For any g [ Sd, we have

lim
n!1 EGs

ðt
s

adnðrÞ þ 1

2
g

� �
: dkBlr

� �
¼ GaðgÞðt2 sÞ: ð3:8Þ

(ii) For any x [ Rd and any Lipschitz continuous function w, we have

lim
n!1 EGs

ðt
s

dnðrÞa : dkBlr þ w xþ Bs
t


 �� �
¼ Ea

s;tðwÞðxÞ: ð3:9Þ

Stochastics: An International Journal of Probability and Stochastic Processes 617

D
ow

nl
oa

de
d 

by
 [

U
SC

 U
ni

ve
rs

ity
 o

f 
So

ut
he

rn
 C

al
if

or
ni

a]
 a

t 1
2:

20
 1

8 
A

ug
us

t 2
01

4 



Proof.

(i) Fix n such that ð2T=nÞ , t2 s. Note that

EGtn
2i

ðtn
2iþ2

tn
2i

adnðrÞþ 1

2
g

� �
: dkBlr

" #

¼ EGtn
2i

1

2
gþa

� �
: kBltn

2iþ1
2 kBltn

2i

h i
þ 1

2
g2a

� �
: kBltn

2iþ2
2 kBltn

2iþ1

h i� �

¼ EGtn
2i

1

2
gþa

� �
: kBltn

2iþ1
2 kBltn

2i

h i
þEGtn

2iþ1

1

2
g2a

� �
: kBltn

2iþ2
2 kBltn

2iþ1

h i� �� �

¼ EGtn
2i

1

2
gþa

� �
: kBltn

2iþ1
2 kBltn

2i

h i
þGðg2 2aÞT

n

� �

¼ EGtn
2i

1

2
gþa

� �
: kBltn

2iþ1
2 kBltn

2i

h i� �
þGðg2 2aÞT

n

¼Gðgþ 2aÞT
n
þGðg2 2aÞT

n
¼GaðgÞ tn2iþ22 tn2i


 �
:

Similarly, for any i , j,

EGtn
2i

ðtn
2j

tn
2i

adnðrÞ þ 1

2
g

� �
: dkBlr

" #
¼ GaðgÞ tn2j 2 tn2i

� 
:

Now assume tn2i # s , tn2iþ1 # tn2j # t , tn2jþ2. Then

EGs

ðt
s

adnðrÞ þ 1

2
g

� �
: dkBlr

� �
2 GaðgÞðt2 sÞ

����
����

# EGs

ðt
s

adnðrÞ þ 1

2
g

� �
: dkBlr

� �
2 EGs

ðtn
2j

tn
2iþ2

adnðrÞ þ 1

2
g

� �
: dkBlr

" #�����
�����

þ GaðgÞ tn2j 2 tn2iþ2

� 
2 GaðgÞðt2 sÞ

��� ���
# EGs

ðtn
2iþ2

s

þ
ðt
tn
2j

" #
adnðrÞ þ 1

2
g

� �
: dkBlr

�����
�����

" #
þ 2T

n
jGaðgÞj

#
2T

n
j �s 2j jaj þ 1

2
jgj

� �
þ 2T

n
jGaðgÞj! 0; as n!1;

where the last inequality holds thanks to (2.2). This proves the result.

(ii) Without loss of generality, assume t ¼ T . Define

�uðt; xÞ :¼ lim
n!1 �unðt; xÞ :¼ lim

n!1 EGt

ðT
t

dnðrÞa : dkBlr þ w xþ Bt
T


 �� �
;

uðt; xÞ :¼ lim
n!1 unðt; xÞ :¼ lim

n!1
EGt

ðT
t

dnðrÞa : dkBlr þ w xþ Bt
T


 �� �
:

By the structure of G-framework it is clear that u and �u are deterministic.

Obviously u # �u. We claim that �u and u are viscosity subsolution and
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supersolution, respectively, of PDE (3.2) with t1 ¼ 0; t2 ¼ T . Note that (3.2)

satisfies the comparison principle for viscosity solutions. Then �u # u, and thus,

�uðt; xÞ ¼ uðt; xÞ ¼ Ea
t;T ðwÞðxÞ. This proves the result.

We now prove that �u is a viscosity subsolution, and the viscosity

supersolution property of u can be proved similarly. As usual, we start from

the partial dynamic programming principle: for 0 # t , t þ h # T ,

�uðt; xÞ # lim
n!1 EG

ðtþh

t

dnðrÞa : dkBlr þ �uðt þ h; xþ Bt
tþhÞ

� �
; ð3:10Þ

Indeed, by the time homogeneity of the problem, we have?

�unðt; xÞ ¼ EG
ðtþh

t

dnðrÞa : dkBlr þ EGtþh

ðT
tþh

dnðrÞa : dkBlr þ w xþ Bt
T


 �� �� �

¼ EG
ðtþh

t

dnðrÞa : dkBlr þ �un t þ h; xþ Bt
tþh


 �� �
:

Then

�uðt; xÞ2 lim
n!1 EG

ðtþh

t

dnðrÞa : dkBlr þ �u t þ h; xþ Bt
tþh


 �� �

¼ lim
n!1 �unðt; xÞ2 lim

n!1 EG
ðtþh

t

dnðrÞa : dkBlr þ �u t þ h; xþ Bt
tþh


 �� �

# lim
n!1 EG ð�un 2 �uÞ t þ h; xþ Bt

tþh


 �� 	
:

Following standard arguments, it is obvious that �u is uniformly Lipschitz

continuous in x. Moreover, limn!1 ð�un 2 �uÞðt þ h; xÞ ¼ 0 for any x [ R. Then

(3.10) follows directly from the simple Lemma 3.5.

We next derive the viscosity subsolution property from (3.10). Let ðt; xÞ [ ½0; TÞ £ Rd

and w [ C 1;2ð½t; TÞ £ RdÞ such that 0 ¼ ½�u2 w�ðt; xÞ ¼ maxðs;yÞ[½t;T�£Rd ½�u2 w�ðs; yÞ.
Denote Xs :¼ xþ Bt

s. For any 0 , h # T 2 t, by (3.10) and then applying Itô’s formula

we have

wðt;xÞ ¼ �uðt;xÞ# lim
n!1EG

ðtþh

t

dnðrÞa : dkBlr þ �uðtþ h;XtþhÞ
� �

# lim
n!1EG

ðtþh

t

dnðrÞa : dkBlr þwðtþ h;XtþhÞ
� �

¼ lim
n!1EG

ðtþh

t

dnðrÞa : dkBlr þwðt;xÞ þ
ðtþh

t

›twðr;XrÞdrþ 1

2
›xxwðr;XrÞ : dkBlr

� �� �

# lim
n!1EG

ðtþh

t

adnðrÞ þ 1

2
›xxwðt;xÞ

� �
: dkBlr

� �
þwðt;xÞ þ ›twðt;xÞh

þ EG
ðtþh

t

½›twðr;XrÞ2›twðt;xÞ�drþ 1

2

ðtþh

t

›xxwðr;XrÞ2›xxwðt;xÞ� : dkBlr
� 	� �

#Gað›xxwðt;xÞÞhþwðt;xÞ þ ›twðt;xÞh

þ EG sup
t#r#tþh

½j›twðr;XrÞ2›twðt;xÞj þ js 2j
2

j›xxwðr;XrÞ2›xxwðt;xÞj
� �

h;
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thanks to (3.8). By standard arguments �u is uniformly Lipschitz continuous in x, and note

that viscosity property is a local property. Then, without loss of generality we may assume

that ›tw and ›xx are bounded and uniformly continuous in ðt; xÞ with a modulus of

continuity function r. Thus,

0 # ›twðt; xÞ þ Gað›xxwðt; xÞÞ þ CEG r C hþ sup
t#r#tþh

jBt
rj

� �� �� �
:

Let h! 0 we can easily get

›twðt; xÞ þ Gað›xxwðt; xÞÞ $ 0:

Clearly �uðT ; xÞ ¼ w. Therefore, �u is a viscosity subsolution of PDE (3.2). A

Lemma 3.5. Assume wn : R
d ! R are uniformly Lipschitz continuous functions,

uniformly in n, and limn!1 wnðxÞ # 0 for all x. Then limn!1 EG½wnðBtÞ� # 0 for any t.

Proof. Let L denote the uniform Lipschitz constant of wn. For any 1 . 0 and R . 0, there

exist finitely many xi, i ¼ 1; . . . ;M and a partition<M
i¼1Oi ¼ ORð0Þ :¼ fx [ Rd : jxj # R}

such that jx2 xij # 1 for all x [ Oi. Denote O0 :¼ RdnORð0Þ and x0 :¼ 0. Then

wnðBtÞ ¼
XM
i¼0

wnðBtÞ1Oi
ðBtÞ ¼

XM
i¼0

wnðxiÞ1Oi
ðBtÞ þ

XM
i¼0

½wnðBtÞ2 wnðxiÞ�1Oi
ðBtÞ

#
XM
i¼0

wþ
n ðxiÞ1Oi

ðBtÞ þ LjBtj1O0
ðBtÞ þ L1

XM
i¼1

1Oi
ðBtÞ

#
XM
i¼0

wþ
n ðxiÞ1Oi

ðBtÞ þ L

R
jBtj2 þ L1:

Thus, noting that our condition implies limn!1 wþ
n ðxÞ ¼ 0,

lim
n!1 EG wnðBtÞ

� 	
# lim

n!1 EG
XM
i¼0

wþ
n ðxiÞ1Oi

ðBtÞ þ L

R
jBtj2 þ L1

" #

#
XM
i¼0

lim
n!1wþ

n ðxiÞEG½1Oi
ðBtÞ� þ L

R
EG½jBtj2� þ L1 ¼ L

R
EG½jBtj2� þ L1:

Let R!1 and 1! 0, we prove the result. A

3.3 An intermediate norm for h [ M1
G

We now use dnðtÞ to introduce the following norm for a process h.

Theorem 3.6. For any h [ M1
G, the following limit exists:

khkMG
:¼ lim

n!1 EG
ðT
0

dnðtÞht : dkBlt

� �
: ð3:11Þ
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Proof. We first assume h [ M0
G. By otherwise considering a finer partition of ½0; T�,

without loss of generality we assume, for 0 ¼ t0 , · · · , tm ¼ T ,

h ¼
Xm21

i¼0

hti1½ti;tiþ1Þ; where hti ¼ wiðBt1 ; . . . ;BtiÞ ð3:12Þ

and wi is uniformly Lipschitz continuous. Denote

cn
i ðBt1 ; . . . ;BtiÞ :¼ EGti

ðT
ti

dnðtÞht : dkBlt

� �
:

We prove by backward induction that

lim
n

cn
i ¼ ci; ð3:13Þ

where, cm :¼ 0 and, for i ¼ m2 1; . . . ; 0,

ciðx1; . . . ; xiÞ :¼ Ewiðx1; ... ;xiÞ
ti;tiþ1

ðciþ1ðx1; . . . ; xi; ·ÞÞðxiÞ: ð3:14Þ

Indeed, when i ¼ m, (3.13) holds obviously. Assume (3.13) holds for iþ 1. Then by (3.9)

we have

lim
n!1cn

i ðBt1 ; . . . ;BtiÞ2 ciðBt1 ; . . . ;Bti Þ

¼ lim
n!1 EGti

ðtiþ1

ti

dnðtÞhti : dkBlt þ cn
iþ1ðBt1 ; . . . ;Btiþ1

Þ
� �

2 lim
n!1 EGti

ðtiþ1

ti

dnðtÞhti : dkBlt þ ciþ1ðBt1 ; . . . ;Btiþ1
Þ

� �����
# lim

n!1 EGti cn
iþ1ðBt1 ; . . . ;Btiþ1

Þ2 ciþ1ðBt1 ; . . . ;Btiþ1
Þ� 	
:

By induction assumption, limn!1 cn
iþ1 ¼ ciþ1. Moreover, one can easily check that cn

iþ1 is

uniformly continuous in xiþ1, uniformly in n. Then by Lemma 3.5, we obtain

lim
n!1cn

i ðBt1 ; . . . ;BtiÞ2 ciðBt1 ; . . . ;BtiÞ # 0:

Similarly, we can show that

ciðBt1 ; . . . ;Bti Þ2 lim
n!1

cn
i ðBt1 ; . . . ;BtiÞ # 0:

Thus, (3.13) holds for i. This completes the induction and hence proves that the limit in

(3.11) for h [ M0
G.

We now consider general h [ M1
G. Let hm [ M0

G such that

limm!1khm 2 hkM1
G
¼ 0. For each m, by previous arguments we see that
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limn!1 EG
Ð T
0
dnðtÞhm

t : dkBlt
h i

exists. By (2.2), one can easily check that

EG
ðT
0

dnðtÞhm
t : dkBlt

� �
2 EG

ðT
0

dnðtÞht : dkBlt

� �����
����

# EG
ðT
0

dnðtÞ½hm
t 2 ht� : dkBlt

����
����

� �
# EG

ðT
0

hm
t 2 htk �s 2

�� �� dt� �

¼ j �s 2kjhm 2 hkM1
G
! 0; as m!1:

This clearly leads to the existence of limn!1 EG
Ð T
0
dnðtÞht : dkBlt

h i
. A

We now collect some basic properties of k·kMG
. The left inequality of (3.15) is crucial

for our purpose. We remark that the norm k·kM1
G1
was introduced by Hu and Peng [11] and

a similar estimate was obtained by Song [26] by using different arguments. Recall the c0
defined by (3.4).

Theorem 3.7. k·kMG
defines a norm on M1

G, and for any 0 , 1 # c0, it holds that,

1khkM1
G1

# khkMG
# C0khkM1

G
: ð3:15Þ

To prove the theorem, we introduce some additional notations. Recall (3.5) and set

A1 :¼ s [ A : s 2
1 # s 2 # �s 2

1

� �
; P1 :¼ Ps : s [ A1f g;

P0 :¼ lim
1!0

P1 ¼ <
0,1#c0

P1:
ð3:16Þ

That is, each element of P0 has a diffusion coefficient s staying away uniformly from the

boundaries s and �s . We remark that the following inclusions are strict:

P0 , fPs : s [ A;s , s , �s } , P; but P0

, P is dense under theweak topology: ð3:17Þ

Proof.

(i) We first prove the estimates (3.15). Note that k·kM1
G1

# k·kM1
G
. By using standard

approximation arguments, it suffices to prove the statements for h [ M0
G. We

now assume that h takes the form (3.12) and we shall use the notations in the

proof of Theorem 3.6. In particular, by (3.13) we have khkMG
¼ c0: Define c1

i
and �c

1
i by:

c1
i
ðBt1 ; . . . ;Bti Þ :¼ 1EG1

ti

ðT
ti

jhtj dt
� �

; �c
1
i ðBt1 ; . . . ;BtiÞ :¼ C0E

G
ti

ðT
ti

jhtj dt
� �

:
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Then c1
m
¼ �c

1
m ¼ 0, and

c1
i
ðx1; . . . ;xiÞ ¼ EG1 c1

iþ1
x1; . . . ; xi;xi þBti

tiþ1

� h i
þ 1jwiðx1; . . . ;xiÞjðtiþ1 2 tiÞ;

�c
1
i ðx1; . . . ;xiÞ ¼ EG1 �c

1
iþ1 x1; . . . ; xi;xi þBti

tiþ1

� h i
þC0jwiðx1; . . . ;xiÞjðtiþ1 2 tiÞ:

Applying Lemma 3.2 (ii) and recalling (3.14), by induction one proves (3.15)

immediately.

(ii) We now prove that k·kMG
defines a norm. Let h [ M1

G. First, by (3.15) we have

khkMG
$ 0 and equality holds when h ¼ 0, P-q.s. On the other hand, assume

khkMG
¼ 0, then by the left inequality of (3.15) again we see that h ¼ 0, P0-q.s.

Now for any P [ P, by (3.17) there exists Pn [ P0 such that Pn converges to P

weakly. Since h [ M1
G, then jhj is P-q.s. continuous and it follows from [2]

Lemma 27 that

EP
ðT
0

jhtj dt
� �

¼ lim
n!1 EPn

ðT
0

jhtj dt
� �

¼ 0:

That is, h ¼ 0, P-a.s. for all P [ P. Therefore, khkMG
¼ 0 if and only if h ¼ 0,

P-q.s.
Next, for any l [ R, noting that G2a ¼ Ga by Lemma 3.1 (ii), then (3.14) leads to

klhkMG
¼ kjljhkMG

¼ lim
n!1 EG

ðT
0

dnðtÞjljht : dkBlt

� �

¼ lim
n!1 jljEG

ðT
0

dnðtÞht : dkBlt

� �
¼ jlkjhkMG

:

Finally, for any h; ~h [ M0
G, by the sublinearity of EG, we have

EG
ðT
0

dnðtÞ½ht þ ~ht� : dkBlt
� �

# EG
ðT
0

dnðtÞht : dkBlt

� �
þ EG

ðT
0

dnðtÞ ~ht : dkBlt

� �
:

Let n!1 we obtain the triangle inequality: khþ ~hkMG
# khkMG

þ k ~hkMG
. That is,

k·kMG
defines a norm on M1

G. A

3.4 The new norm for h

One drawback of the above norm k·kMG
is that we have to use different norms in the left

and right sides of (3.15). Consequently, we are not able to prove the completeness ofM1
G

under k·kMG
. To be precise, given a Cauchy sequence hn [ M1

G under k·kMG
, we are not

able to obtain a process h such that limn!1 khn 2 hkMG
¼ 0. For this reason, we shall

modify k·kMG
slightly by using heavily the estimate (3.15). Set 1k :¼ ð1=ð1þ kÞÞc0, k $ 1

and define

khkM*
G
:¼
X1
k¼1

22kkhkMG1k
; h [ M1

G: ð3:18Þ

Stochastics: An International Journal of Probability and Stochastic Processes 623

D
ow

nl
oa

de
d 

by
 [

U
SC

 U
ni

ve
rs

ity
 o

f 
So

ut
he

rn
 C

al
if

or
ni

a]
 a

t 1
2:

20
 1

8 
A

ug
us

t 2
01

4 



Then clearly k·kM*
G
defines a norm onM1

G, and we denote byM
*
G the closure ofM1

G under

k·kM*
G
. To understand the space M*

G, we note that M1
G1

is decreasing as 1! 0. Set

M1
G0

:¼ lim
1!0

M1
G1

¼ >
0,1#c0

M1
G1
: ð3:19Þ

Remark 3.8.

(i) As mentioned earlier, elements in M1
G (respectively M1

G1
) are considered

identical if they are equal P-q.s. (respectivelyP1-q.s.). Similarly, elements inM*
G

are considered identical if they are equal P0-q.s.

(ii) Obviously M1
G1

# M1
G0

as 1 # 0. Thus, the space M1
G0

is independent of c0.

(iii) By (3.15), it is obvious that

M1
G , M*

G , M1
G0
: ð3:20Þ

Moreover, the above inclusions are strict. Indeed, consider the case d ¼ 1 for simplicity.

One may easily see that ht :¼ 1fkBlt¼s 2} is in M*
GnM1

G, and

ht :¼
X1
n¼1

2nwn

kBlt 2 s 2t

ð �s 2 2 s 2Þt
� �

is in M1
G0
nM*

G, where wn is the linear interpolation such that wnðgÞ ¼ 0 when g #
ð1=ðnþ 1ÞÞ or g $ ð1=nÞ and wnðgÞ ¼ 1 when g ¼ 1=2½ð1=nÞ þ ð1=ðnþ 1ÞÞ�.

We now have.

Theorem 3.9. The space M*
G is complete under the norm k·kM*

G
.

Proof. First, it is clear that k·kM*
G
is a semi-norm on M*

G. Now assume h [ M*
G such that

khkM*
G
¼ 0. By (3.15), khkM1

G1
¼ 0 for all 1 # c0. Then h ¼ 0, P1-q.s. for all 0 , 1 # c0

and thus h ¼ 0, P0-q.s. That is, k·kM*
G
is a norm on M*

G (again, in the P0-q.s. sense).

It remains to prove the completeness of the space. Let hn [ M*
G be a Cauchy sequence

under k·kM*
G
. For any 0 , 1 # c0, there exists k large enough such that 1k , 1. By the left

inequality of (3.15) we see that

khn 2 hmkM1
G1

# C1;1kkhn 2 hmkMG1k
# 2kC1;1kkhn 2 hmkM*

G
! 0; as n;m!1:

Since ðM1
G1
; k·kM1

G1
Þ is complete, there exists unique (in P1-q.s. sense) h

ð1Þ [ M1
G1

such

that limn!1khn 2 h ð1ÞkM1
G1
¼ 0. By the uniqueness, clearly h ð1Þ ¼ h ð ~1Þ, P1-q.s. for any

0 , ~1 , 1 # c0. Thus, there exists h [ M1
G0

such that h ð1Þ ¼ h, P1-q.s. for all

0 , 1 # c0.

We now show that

lim
n!1 khn 2 hkM*

G
¼ 0: ð3:21Þ

Indeed, for any d . 0, there exists Nd such that

khn 2 hmkM*
G
# d; for all n;m $ Nd:
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Note that, by the right inequality of (3.15),

khm 2 hkMG1
# C0khm 2 h ð1ÞkM1

G1
! 0; as m!1:

Then for any n $ Nd and K $ 1,

XK
k¼1

22kkhn 2 hkMG1k
¼ lim

m!1
XK
k¼0

22kkhn 2 hmkMG1k
# lim

m!1
khn 2 hmkM*

G
# d:

Send K !1we obtain khn 2 hkM*
G
# d for all n $ Nd. This proves (3.21), and hence the

theorem. A

4. The G-martingale representation theorem

We first note that, assuming ðY i; Z i;h iÞ, i ¼ 1; 2, satisfy (2.19), then

d Y1
t 2 Y2

t


 � ¼ Z1
t 2 Z2

t


 �
·dBt 2 G h1

t


 �
2 G h2

t


 �� 	
dt þ 1

2
h1
t 2 h2

t

� 	
: dkBlt: ð4:1Þ

By Lemma 3.3, we have

kh1 2 h2kMG1
¼ 2 lim

n!1 EG1

ðT
0

dnðtÞ dðY1
t 2 Y2

t Þ
� �

; for all 0 , 1 # c0: ð4:2Þ

In light of (3.18), for any p . 1 we define:

dG;pðj1; j2Þ :¼ kY 1 2 Y 2kDp

G
þ
X1
k¼1

22k lim
n!1 EG1k

ðT
0

dnðtÞ d Y1
t 2 Y2

t


 �� �
; ð4:3Þ

where ji [ Lip and Yi
t :¼ EGt ½ji�, i ¼ 1; 2.

Then clearly dG;p is a metric on Lip, and we let L*
p
G , Lp

G denote the closure of Lip

under dG;p. We remark that

kj1 2 j2kLp

G
# kY 1 2 Y 2kDp

G
# kj1 2 j2kLp

G
:

Remark 4.1. We allow the metric dG;pðj1; j2Þ to depend on Y i, but not on ðZ i;h iÞ explicitly.
The component Y has a representation, namely as the conditional G-expectation of j, but in
general we do not have a desirable representation for Z or h. Thus, it is relatively easier to

verify conditions imposed on Y than those on Z or h. See also [21] for a similar idea.

Given ðZ;hÞ and y, let Y y;Z;h denote the G-martingale defined by (2.19) with initial

value Y0 ¼ y. We first have

Lemma 4.2. For any p . 1, y [ R and ðZ;hÞ [ Hp
G £Mp

G, we have Y
y;Z;h
T [ L*

p
G .

Moreover, for any such ðyi; Z i;h iÞ, i ¼ 1; 2, it holds that

dG;pðYy1;Z
1;h 1

T ; Yy2;Z
2;h 2

T Þ # Cp jy1 2 y2j þ kZ 1 2 Z 2kHp

G
þ jh1 2 h2kMp

G

h i
: ð4:4Þ
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Proof. We first prove the a priori estimate (4.4). Denote Y i :¼ Y yi;Z
i;h i

, i ¼ 1; 2; DY :¼
Y 1 2 Y 2 and similarly for other notations. By (4.1), it is obvious that

kDYkDp

G
# Cp jDyj þ kDZkHp

G
þ kDhkMp

G

h i
: ð4:5Þ

Moreover, by (4.2) and the right inequality of (3.15), we have

lim
n!1 EG1k

ðT
0

dnðtÞ dðDYtÞ
� �

¼ 1

2
kDhkMG1k

# CkDhkM1
G1k

# CkDhkM1
G
# CkDhkMp

G
:

Then,

X1
k¼1

22k lim
n!1 EG1k

ðT
0

dnðtÞ dðDYtÞ
� �

# C
X1
k¼1

22kkDhkMp

G
¼ CkDhkMp

G
:

This, together with (4.5), implies (4.4).

We now show that YT :¼ Y
y;Z;h
T [ L*

p
G in two steps.

Step 1. Assume h ¼ 0. By (4.4) and the definition ofHp
G, we may assume without loss

of generality that Z ¼Pn21
i¼0 Zti1½ti;tiþ1Þ [ H0

G. Then

YT ¼ Y0 þ
Xn21

i¼0

ZtiB
ti
tiþ1

[ Lip , L*
p
G :

Step 2. For the general case, by (4.4) and the definition ofMp
G, we may assume without

loss of generality that h ¼Pn21
i¼0 hti1½ti;tiþ1Þ [ M0

G. Then

YT ¼ Y0 þ
ðT
0

Zt·dBt 2
Xn21

i¼0

GðhtiÞ½tiþ1 2 ti�2 1

2
hti : kBltiþ1

2 kBlti
� 	� �

:

For each i, applying Itô’s formula we have

d Bti
t ðBti

t ÞT

 � ¼ 2Bti

t dðBti
t ÞT þ dkBti lt ¼ 2Bti

t dB
T
t þ dkBlt; t [ ½ti; tiþ1�:

Then

hti : kBltiþ1
2 kBlti

� 	 ¼ hti : Bti
tiþ1

Bti
tiþ1

� T� �
2 2

ðtiþ1

ti

htiB
ti
t


 �
·dBt:

Thus, denoting ~Zt :¼ Zt 2
Pn21

i¼0 htiB
ti
t 1½ti;tiþ1ÞðtÞ,

YT ¼ Y0 þ
ðT
0

~Zt·dBt 2
Xn21

i¼0

Gðhti Þ½tiþ1 2 ti�2 1

2
hti : ½Bti

tiþ1
ðBti

tiþ1
ÞT �

� �
: ð4:6Þ

One can easily check that ~Z [ Hp
G. Then by Step 1,

Ð T
0
~Zt·dBt [ L*

p
G . Moreover, it is

obvious that

Xn21

i¼0

Gðhti Þ½tiþ1 2 ti�2 1

2
hti : Bti

tiþ1
ðBti

tiþ1
ÞT

h i� �
[ Lip:

Then it follows from (4.6) that YT [ L*
p

G . A
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Our main result of the paper is the following representation theorem, which is in the

opposite direction of Lemma 4.2.

Theorem 4.3. Let p . 1.

(i) For any j [ L*
p

G and denotingYt :¼ EGt ½j�, there exist uniqueZ [ Hp
G andh [ M*

G

such that (2.19) holds P0-q.s. Moreover, there exists a constant Cp . 0 such that

kYkDp

G
þ kZkHp

G
þ khkM*

G
# CpdG;pðj; 0Þ: ð4:7Þ

(ii) For any j1; j2 [ L*
p

G , let ðY i; Z i;h iÞ denote the corresponding terms. Then

kY 1 2 Y 2kDp

G
þ kh1 2 h2kM*

G
# CpdG;pðj1; j2Þ;

kZ 1 2 Z 2kHp

G
# CpðdG;pðj1; j2ÞÞ1=2:

ð4:8Þ

Remark 4.4. We can only prove the representation (2.19) in P0-q.s. sense. This is mainly

because we are not able to prove the equivalence of k·kMG
and k·kM1

G
in Theorem 3.7. See

also Remark 3.8 (iii). If the above h happens to fall in the space M1
G (which is a strict

subset of M*
G), then both sides of (2.19) will lie in L1

G, and thus, the representation (2.19)

will hold P-q.s. However, we are not able to provide natural sufficient conditions (in terms

of j and/or Y) for this. It is still an open problem to establish the representation (2.19) in

P-q.s. sense and we shall leave it for future research.

Proof. We proceed in two steps.

Step 1. We first prove a priori estimates (4.7) and (4.8) by assuming ðY ;Z;hÞ and
ðY i; Z i;h iÞ, i ¼ 1; 2, are in Dp

G £Hp
G £M*

G and satisfy (2.19) P0-q.s. Indeed, by (4.2) and

(4.3) it is clear that

kYkDp

G
þ khkM*

G
# CpdG;pðj; 0Þ; kY 1 2 Y 2kDp

G
þ kh1 2 h2kM*

G
# CdG;pðj1; j2Þ:

Moreover, combining the arguments in [22] and [9], or following the arguments in [25],

one can easily prove

kZkHp

G
# CpkYkDp

G
; kZ 1 2 Z 2kHp

G
# Cp kY 1 2 Y 2kDp

G

� 1=2
:

Then (4.7) and (4.8) hold.

Step 2.We next prove the existence of ðZ;hÞ. For any j [ L*
p
G , by definition there exist

jn [ Lip such that limn!1 rpGðjn; jÞ ¼ 0. Let ðY n; Z n;hnÞ correspond to jn. As n;m!1,

by (4.8) we have

kY n 2 Y mkDp

G
þ khn 2 hmkM*

G
þ kZ n 2 Z mkHp

G

# Cp dG;pðjn; jmÞ þ dG;pðjn; jmÞ

 �1=2h i

! 0:

Then there exist ðY; Z;hÞ [ D
p
G £Hp

G £M*
G such that

kY n 2 YkDp

G
þ khn 2 hkM*

G
þ kZ n 2 ZkHp

G
! 0; as n!1:
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Moreover, for any 0 , 1 # c0, choose k large enough so that 1k , 1. Then

khn 2 hkM1
G1

# C1;1kkhn 2 hkM1
G1k

# 2kC1;1kkhn 2 hkM*
G
! 0; as n!1:

Thus, ðt
0

Gðhn
s Þ ds!

ðt
0

GðhsÞ ds; P1-q:s:

Since ðY n; Z n;hnÞ satisfy (2.19) P1-q.s., then it is clear that ðY ; Z;hÞ also satisfy (2.19)

P1-q.s. By the arbitrariness of 1, we see that ðY; Z;hÞ also satisfy (2.19) P0-q.s.

Finally, the uniqueness of ðZ;hÞ [ Hp
G £M*

G follows from (4.8). A

We conclude this paper by providing a nontrivial example of j which has the

representation, but is not in Lip.

Example 4.5. Let d ¼ 1 and B*
t :¼ sup0#s#t Bs. Then B*

T [ L*
p
G nLip for any p . 1.

Proof. It is clear that B*
T � Lip. We prove B*

T [ L*
p

G in several steps.

Step 1. Assume j : V! R is uniformly Lipschitz continuous and convex in v. We

show that EG½j� ¼ E
�P½j�, where �P :¼ P �s .

Indeed, for any n, denote tni :¼ iT=n, i ¼ 0; . . . ; n, x0 :¼ 0, and define

gnðx1; . . . ; xnÞ : ¼ j
Xn
i¼1

1

tni 2 tni21

xi21 tni 2 t

 �þ xi t2 tni21


 �� 	
1ðtn

i21
;tn
i
�ðtÞ

 !
;

jn : ¼ gn Btn
1
; . . . ;Btnn

� 
:

Since j is convex, clearly gn is convex. Then EG½jn� ¼ E
�P½jn�. Since j is uniformly

Lipschitz continuous, then jjn 2 jj # Cmax1#i#n suptn
i21

#t#tn
i
jBt 2 Btn

i
j. This implies that

EG½jjn 2 jj�! 0 and E
�P½jjn 2 jj�! 0 as n!1, and therefore, EG½j� ¼ E

�P½j�.
Step 2. For simplicity, we assume that �s ¼ 1, and thus, �P ¼ P0. Note that j :¼ B*

T is

uniformly Lipschitz continuous and convex in v. Then by adapting Step 1 to conditional

G-expectations, we have

Yt :¼ EGt ½j� ¼ EP0

t ½B*
T � ¼ uðt;Bt;B*

t Þ;
where, for x # y,

uðt; x; yÞ :¼ EP0 y _ xþ sup
t#s#T

Bt
s

� �� �
¼ EP0 y _ ½xþ B*

T2t�
� 	

:

Note that, under P0, B
*
T2t has the same distribution as jBT2tj. Then?

uðt; x; yÞ ¼
ffiffiffiffi
2

p

r ð1
0

y _ ðxþ ffiffiffiffiffiffiffiffiffiffiffi
T 2 t

p
zÞe2ðz 2=2Þ dz

¼
ffiffiffiffi
2

p

r ððy2xÞ=ð ffiffiffiffiffiffiT2t
p Þ

0

y e2ðz 2=2Þ dzþ
ffiffiffiffi
2

p

r ð1
ðy2xÞ=ð ffiffiffiffiffiffiT2t

p Þ
ðxþ ffiffiffiffiffiffiffiffiffiffiffi

T 2 t
p

zÞ e2ðz 2=2Þ dz:
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For t [ ½0; TÞ and x , y, we have

›tuðt; x; yÞ ¼ 2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðT 2 tÞp e2ððy2xÞ2=2ðT2tÞÞ; ›yuðt; x; yÞ ¼
ffiffiffiffi
2

p

r ððy2xÞ=ð ffiffiffiffiffiffiT2t
p Þ

0

e2ðz 2=2Þ dz;

›xuðt; x; yÞ ¼
ffiffiffiffi
2

p

r ð1
ðy2xÞ=ð ffiffiffiffiffiffiT2t

p Þ
e2ðz 2=2Þ dz; ›xxuðt; x; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pðT 2 tÞ
r

e2ððy2xÞ2=2ðT2tÞÞ . 0:

ð4:9Þ
Then

›tuþ 1

2
Gð›xxuÞ ¼ ›tuþ 1

2
›xxu ¼ 0; and ›yuðt; y; yÞ ¼ 0:

Note that dB*
t has support on ft : B*

t ¼ Bt}. Then by Itô’s formula, we have?

dYt ¼ duðt;Bt;B*
t Þ

¼ ›tu t;Bt;B*
t


 �
dt þ ›xu t;Bt;B*

t


 �
dBt þ ›yu t;Bt;B*

t


 �
dB*

t þ
1

2
›xxu t;Bt;B*

t


 �
dkBlt

¼ ›xu t;Bt;B*
t


 �
dBt 2 G ›xxu t;Bt;B*

t


 �
 �
dt þ 1

2
›xxu t;Bt;B*

t


 �
dkBlt:

Thus, we obtain the representation with

Zt ¼ ›xu t;Bt;B*
t


 �
; ht ¼ ›xxu t;Bt;B*

t


 �
: ð4:10Þ

Step 3. By Lemma 4.2, it remains to show that ðZ;hÞ [ Hp
G £Mp

G. For any n, denote

Zn
t :¼ Zt1½0;T2ð1=nÞ�; hn

t :¼ ht1½0;T2ð1=nÞ�:

Note that, in the interval ½0; T 2 ð1=nÞ�, ›xu and ›xxu are bounded and uniformly Lipschitz

continuous in ðt; x; yÞ, then clearly ðZ n;hnÞ [ Hp
G £Mp

G. Moreover, by (4.9) we have

j›xuðt; x; yÞj # 1 and j›xxuðt; x; yÞj # ðC= ffiffiffiffiffiffiffiffiffiffiffi
T 2 t

p Þ. Then, as n!1,

EG
ðT
0

jZt 2 Zn
t j2 dkBlt

� �p=2
" #

¼ EG
ðT
T2ð1=nÞ

jZtj2 dkBlt
 !p=2
2
4

3
5

# EG kBlT 2 kBlT2ð1=nÞ

 �p=2h i

¼ Cp

np=2
! 0;

EG
ðT
0

jht 2 hn
t j dt

� �p� �
¼ EG

ðT
T2ð1=nÞ

jhtj dt
 !p" #

# CEG
ðT
T2ð1=nÞ

dtffiffiffiffiffiffiffiffiffiffiffi
T 2 t

p
 !p" #

¼ Cp

np=2
! 0;

This proves that ðZ;hÞ [ Hp
G £Mp

G and completes the proof. A

Remark 4.6. From the proof above, we see there exist ðZ;hÞ [ Hp
G £Mp

G such that (2.19)

holds for B*
T . By Remark 4.4 we conclude that the representation (2.19) holds P-q.s.
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