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DIFFERENTIAL EQUATIONS
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In this paper we investigate a class of backward stochastic differential
equations (BSDE) whose terminal values are allowed to depend on the history
of a forward diffusion. We first establish a probabilistic representation for the
spatial gradient of the viscosity solution to a quasilinear parabolic PDE in
the spirit of the Feynman–Kac formula, without using the derivatives of the
coefficients of the corresponding BSDE. Such a representation then leads
to a closed-form representation of the martingale integrand of a BSDE,
under only a standard Lipschitz condition on the coefficients. As a direct
consequence we prove that the paths of the martingale integrand of such
BSDEs are at least càdlàg, which not only extends the existing path regularity
results for solutions to BSDEs, but contains the cases where existing methods
are not applicable. The BSDEs in this paper can be considered as the
nonlinear wealth processes appearing in finance models; our results could
lead to efficient Monte Carlo methods for computing both price and optimal
hedging strategy for options with nonsmooth, path-dependent payoffs in the
situation where the wealth is possiblely nonlinear.

1. Introduction. Let (�,F ,P ; F) be a complete, filtered probability space,
where F � {Ft}t≥0 is assumed to be the filtration generated by a standard,
d-dimensional Brownian motion W = {Wt; t ≥ 0}. Consider the following
backward stochastic differential equation (BSDE):

Yt = ξ +
∫ T

t
f (r, Yr,Zr) dr −

d∑
i=1

∫ T

t
Zir dW

i
r , t ∈ [0, T ],(1.1)

where f :� × [0, T ] × R × R
d �→ R is some appropriate measurable function,

called the generator of the BSDE. An adapted solution to the BSDE (1.1) is a
pair of F-adapted, R × R

d -valued processes (Y, (Z1, . . . ,Zd)) that satisfies (1.1)
almost surely. In this paper we call the process Z = (Z1, . . . ,Zd) the martingale
integrand of the BSDE (1.1), for the obvious reason. Furthermore, we should
note that here the process Z is defined as a row vector for notational simplicity.
For instance, the stochastic integral in (1.1) can now be conveniently written as∫ T
t Zs dWs .
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The BSDEs of this kind, initiated by Bismut [2] and later developed by Pardoux
and Peng [17], have been studied extensively in the past decade. We refer the
readers to the books of El Karoui and Mazliak [4], Ma and Yong [15] and Yong and
Zhou [22] and the survey paper of El Karoui, Peng and Quenez [5] for the detailed
accounts of both theory and application (especially in mathematical finance and
stochastic control) for such equations.

A well-investigated class of BSDEs is of the following form:

Yt = g(XT )+
∫ T

t
f (r,Xr,Yr,Zr) dr −

∫ T

t
Zr dWr, t ∈ [0, T ],(1.2)

where g and f are deterministic functions, and X satisfies an SDE:

Xt = x +
∫ t

0
b(r,Xr) dr +

∫ t

0
σ(r,Xr) dWr, t ∈ [0, T ],(1.3)

where b and σ are some measurable functions. In this case, Pardoux and Peng
proved in one of their seminal works [18], among other things, that the adapted
solution Y gives a probabilistic representation of the (viscosity) solution of
a quasilinear parabolic PDE (suppressing variables, and with slight abuse of
notation):

0 = ut + 1
2 tr {σσT uxx} + bux + f (t, x, u,uxσ ),

u(T , x)= g(x), x ∈ R
n.

(1.4)

More precisely, assume that the functions f and g are Lipschitz continuous in their
spatial variables, and define

u(t, x)� Y
t,x
t =E

{
g(X

t,x
T )+

∫ T

t
f (r,Xt,xr , Y t,xr ,Zt,xr ) dr

}
,(1.5)

where (Xt,x, Y t,x,Zt,x) denotes the adapted solution to the SDE’s (1.3) and (1.2),
restricted to [t, T ] with Xt,xt = x, a.s. Then, as a deterministic function thanks
to the Blumenthal 0–1 law, u(·, ·) is a viscosity solution of the PDE (1.4).
Furthermore, under more stringent regularity conditions on the coefficients (e.g.,
f and g are both C3 in their spatial variables), it is shown in [18] that the processZ
has continuous paths, a very appealing property for many applications. We remark
that, by viewing (1.2) and (1.3) as a special (decoupled) case of the so-called
forward–backward SDE’s (FBSDE), one can also apply the results of Ma, Protter
and Yong [14] to get an explicit expression of the solution (Y,Z):

Yt = u(t,Xt ), Zt = ∂xu(t,Xt )σ (t,Xt ), t ∈ [0, T ],(1.6)

where u is the classical solution to the quasilinear PDE (1.4), verifying the
conclusions of [18]. However, the results of [14] again require rather heavy
smoothness conditions of the coefficients. It is noted that the BSDEs with
nonsmooth coefficients have also been studied in recent years (see, e.g., [8, 13, 19],
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and [9–11]), but the main focus has been the existence of the adapted solutions.
To the best of our knowledge, to date there has been no discussion in the literature
concerning the path regularity of the process Z when f and g are only Lipschitz
continuous, even in the special cases (1.3) and (1.2).

Our goal in this paper is twofold. First we show that if the coefficients f and g
are continuously differentiable, then the viscosity solution u to the PDE (1.4)
will have a continuous spatial gradient ∂xu and, more important, the following
probablistic representation holds:

∂xu(t, x)=E

{
g(X

t,x
T )Nt

T +
∫ T

t
f (r,Xt,xr , Y t,xr ,Zt,xr )Nt

r dr

}
,(1.7)

where Nt· is some process defined on [t, T ], depending only on the forward
diffusion and solution to its variational equation. This representation can be
thought of as a new type of nonlinear Feynman–Kac formula for the derivative of
the solution, which does not seem to exist in the literature. The main significance
of the formula, however, lies in that it does not depend on the derivatives of the
coefficients of the BSDE(!), a pleasant surprise in many ways. Because of this
special feature, and with the help of the identity (1.6), we can then derive a similar
representation for the martingale integrand Z, under only a Lipschitz condition
on f and g. This latter representation then enables us to prove the path regularity
of the process Z, the second goal of this paper, even in the case where the terminal
value of Y is of the form g(Xt0 , . . . ,Xtn), where 0 ≤ t0 < · · · < tn ≤ T is any
partition of [0, T ], a result that does not seem to be amendable by any existing
method.

We would like to mention here that the main device of our proof is an integration
by parts formula for anticipating stochastic integrals. Such an idea was recently
employed in numerical finance for computing various “Greeks” of the market
(cf. [6]). This paper is, in a sense, an attempt to extend their results to the
market models in which the “wealth" process of an investor could be nonlinear
(e.g., models involving higher interest rates for borrowing, taxes for capital gains,
large investors or combinations of these features). Our results are expected to be
potentially useful for developing an efficient Monte Carlo method along the lines
of so-called�-hedging approach (see, e.g., [1]). We should also note that, although
the results of this paper apply only to some special (discrete type) path-dependent
options, it is possible to extend them to more general exotic options such as
lookback options and Asian options, and even to those with discontinuous payoffs
such as digital options. We shall address these issues in our future publications.

The rest of the paper is organized as follows. In Section 2 we give all the
necessary preparations. In Section 3 we establish the relation between the SDEs
(1.3), (1.2) and the quasilinear PDE (1.4), under only the C1 assumption of
the coefficients. In Section 4 we remove the C1 assumption and give the main
representation theorem. In Section 5 we study the path regularity of the process Z.
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2. Preliminaries. Throughout this paper we assume that (�,F ,P ) is a
complete probability space on which is defined a d-dimensional Brownian motion
W = (Wt)t≥0. Let F � {Ft}t≥0 denote the natural filtration generated by W ,
augmented by the P -null sets of F ; and let F = F∞. We let E denote a generic
Euclidean space (or E1,E2, . . . , if different spaces are used simultaneously);
regardless of their dimensions we let 〈·, ·〉 and | · | denote the inner product
and norm in all E’s, respectively. Furthermore, we use the notation ∂t = ∂

∂t
,

∂x = ( ∂
∂x1
, . . . , ∂

∂xd
) and ∂2 = ∂xx = (∂2

xixj
)di,j=1, for (t, x) ∈ [0, T ] × R

d . Note

that if ψ = (ψ1, . . . ,ψd) : Rd �→ R
d , then ∂xψ � (∂xj ψ

i)di,j=1 is a matrix. The
meaning of ∂xy , ∂yy etc. should be clear from the context.

The following spaces will be used frequently in the sequel (let X denote a
generic Banach space):

1. For t ∈ [0, T ], L0([t, T ];X) is the space of all measurable functions
ϕ : [t, T ] �→ X.

2. For 0 ≤ t ≤ T , C([t, T ];X) is the space of all continuous functions

ϕ : [t, T ] �→ X; further, for any p > 0 we write |ϕ|∗,pt,T �= supt≤s≤T ‖ϕ(s)‖pX for
all X, when the context is clear.

3. For integers k and ', Ck,'([0, T ] × E;E1)) is the space of all E1-valued
functions ϕ(t, e), (t, e) ∈ [0, T ] × E, such that they are k-times continuously
differentiable in t and '-times continuously differentiable in e.

4. Ck,'b ([0, T ] × E;E1) is the space of those ϕ ∈ Ck,'([0, T ] × E;E1) such that
all the partial derivatives are uniformly bounded.

5. W 1,∞(E;E1) is the space of all measurable functions ψ : E �→ E1, such that for
some constantK > 0 it holds that ‖ψ(x)−ψ(y)‖E1 ≤K‖x− y‖E, ∀x, y ∈ E.

6. For any sub-σ -field G ⊆ FT and 0 ≤ p <∞, Lp(G;E) denotes all E-valued,
G-measurable random variable ξ such that E|ξ |p < ∞; moreover, ξ ∈
L∞(G;E) means it is G-measurable and bounded.

7. For 0 ≤ p < ∞, Lp(F, [0, T ];X) is the space of all X-valued, F-adapted
processes ξ satisfying E

∫ T
0 ‖ξt‖pX dt <∞; also, ξ ∈L∞(F, [0, T ];R

d) means
it is a process uniformly bounded in (t,ω).

8. C(F, [0, T ] × E;E1)) is the space of all E1-valued, continuous random fields
ϕ :�× [0, T ] × E �→ E1, such that, for fixed e ∈ E, ϕ(·, ·, e) is an F-adapted
process.

To simplify notation we often write C([0, T ] × E;E1)=C0,0([0, T ] × E;E1);
and if E1 = R, then we often suppress E1 for simplicity [e.g., Ck,'([0, T ] ×
E;R) = Ck,'([0, T ] × E), C(F, [0, T ] × E;R) = C(F, [0, T ] × E), . . . , etc.].
Finally, unless otherwise specified (such as process Z mentioned in Section 1),
all vectors in the paper will be regarded as column vectors.

Throughout this paper we shall make use of the following standing assump-
tions:
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(A1) n= d . The functions σ ∈C0,1
b ([0, T ]× R

d;R
d×d) and b ∈C0,1

b ([0, T ]×
R
d;R

d) and all the partial derivatives of b and σ (with respect to x) are uniformly
bounded by a common constant K > 0. Further, there exists constant c > 0, such
that

ξT σ (t, x)σ T (t, x)ξ ≥ c|ξ |2 ∀x, ξ ∈ R
d; t ∈ [0, T ].(2.1)

(A2) The functions f ∈ C([0, T ] × R
d × R × R

d) ∩ L0([0, T ];W 1,∞(Rd ×
R × R

d)) and g ∈ W 1,∞(Rd). Furthermore, we denote the Lipschitz constants
of f and g by a common one K > 0 as in (A1); and we assume that

sup
0≤t≤T

{|b(t,0)| + |σ(t,0)| + |f (t,0,0,0)|}+ |g(0)| ≤K.(2.2)

The following results are either standard or slight variations of the well-known
results in the SDE and the backward SDE literature; we give only the statements
for ready reference.

LEMMA 2.1. Suppose that b̃ ∈ C(F, [0, T ] × R
d;R

d)∩L0(F, [0, T ];
W 1,∞(Rd;R

d)), σ̃ ∈C(F, [0, T ]×R
d;R

d×d)∩L0(F, [0, T ];W 1,∞(Rd;R
d×d)),

with a common Lipschitz constant K > 0. Suppose also that b̃(t,0) = 0 and
σ̃ (t,0) = 0, P-a.s. For any h0 ∈ L2(F, [0, T ];R

d) and h1 ∈ L2(F, [0, T ];R
d×d),

let X be the solution of the following SDE:

Xt = x +
∫ t

0
[b̃(s,Xs)+ h0

s ]ds +
∫ t

0
[σ̃ (s,Xs)+ h1

s ]dWs.(2.3)

Then, for any p ≥ 2, there exists a constant C > 0 depending only on p, T andK ,
such that

E|X|∗,pt,T ≤ C

{
|x|p +E

∫ T

0
[|h0

t |p + |h1
t |p]dt

}
.(2.4)

LEMMA 2.2. Assume that f̃ ∈ C(F, [0, T ] × R × R
d) ∩ L0(F, [0, T ];

W 1,∞(R × R
d)) with a uniform Lipschitz constant K > 0, and that f̃ (ω, s,

0,0) = 0, P -a.e. ω ∈ �. For any ξ ∈ L2(FT ;R) and h ∈ L2(F, [0, T ];R), let
(Y,Z) be the adapted solution to the BSDE

Yt = ξ +
∫ T

t
[f̃ (s, Ys,Zs)+ hs]ds −

∫ T

t
Zs dWs.(2.5)

Then there exists a constantC > 0 depending only on T and the Lipschitz constant
of f̃ , such that

E

∫ T

0
|Zt |2 dt ≤ CE

{
|ξ |2 +

∫ T

0
|ht |2 dt

}
.(2.6)

Moreover, for all p ≥ 2, there exists a constant Cp > 0, such that

E|Y |∗,pt,T ≤ CpE

{
|ξ |p +

∫ T

0
|ht |p dt

}
.(2.7)
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REMARK 2.3. We should note that in Lemmas 2.1 and 2.2 we assume only
that the processes h0 ∈ L2(F, [0, T ];R

d) and h1 ∈ L2(F, [0, T ];R
d×d) guarantee

the solvability of the FSDE (2.3) and the BSDE (2.5). However, the estimates (2.4)
and (2.7) obviously hold if p ≥ 2 is such that the right-hand side is ∞. The proof
of Lemma 2.1 can be found in, for example, [7], while the estimates (2.6) and (2.7)
are a slight modification of Theorem 5.1 of El Karoui, Peng and Quenez [5].

We now review some basic facts of the anticipating stochastic calculus,
especially those related to the SDEs. We refer the readers to Nualart [16] for the
basic theory and to Pardoux and Peng [18] for the results related to BSDEs. To
begin with, let S be the space of all random variables of the form

ξ = F

(∫ T

0
ϕ1(t) dWt, . . . ,

∫ T

0
ϕn(t) dWt

)
,

where F ∈ C∞
b (R

n) and ϕ1, . . . , ϕn ∈ L2([0, T ];R
d). To simplify notation later,

we make the convention here that all ϕi ’s are row vectors.
We call a mapping D :S �→ L2([0, T ] ×�) the derivative operator if, for each

ξ ∈ S and t ∈ [0, T ],

Dtξ =
n∑
i=1

∂F

∂xi

(∫ T

0
ϕ1(t) dWt, . . . ,

∫ T

0
ϕn(t) dWt

)
ϕi(t).

Next, we introduce a norm on S:

‖ξ‖2
1,2 =E|ξ |2 +E

∫ T

0
|Drξ |2 dr ∀ ξ ∈ S,

and we let D
1,2 denote the completion of S in L2(�) under ‖·‖1,2. It can be shown

(see, e.g., [16]) that D is a densely defined, closed linear operator from D
1,2 to

L2(�× [0, T ]) with domain D
1,2.

To apply the anticipating stochastic calculus to SDEs (1.2) and (1.3), we
consider these equations on the subinterval [t, T ] ⊆ [0, T ]: for s ∈ [t, T ],

Xt,xs = x +
∫ s

t
b(r,Xt,xr ) dr +

∫ s

t
σ (r,Xt,xr ) dWr,

Y t,xs = g(X
t,x
T )+

∫ T

s
f (r,Xt,xr , Y t,xr ,Zt,xr ) dr −

∫ T

s
Zt,xr dWr.

(2.8)

Here the superscript t,x indicates the dependence of the solution on the initial date
(t, x), and it will be omitted when the context is clear. The following variational
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equation of (2.8) will play an important role in this paper: for i = 1, . . . , d ,

∇iXs = ei +
∫ s

t
∂xb(Xr)∇iXr dr +

d∑
j=1

∫ s

t
[∂xσ j (Xr)]∇iXr dWj

r ,

∇iYs = ∂xg(XT )∇iXT
+
∫ T

s

[
∂xf

(
r,/(r)

)∇iXr + ∂yf
(
r,/(r)

)∇iYr
+ 〈
∂zf

(
r,/(r)

)
,∇iZr 〉]dr −

∫ T

s
∇iZr dWr,

(2.9)

where ei = (0, . . . ,
i

1, . . . ,0)T is the ith coordinate vector of R
d ; σ j (·) is the j th

column of the matrix σ(·); /(r) denotes (Xr,Yr,Zr). Further, we denote

∇X = (∇1X, . . . ,∇dX), ∇Y = (∇1Y, . . . ,∇dY ), ∇Z =
∇1Z

...

∇dZ


T

.

Then (∇X,∇Y,∇Z) ∈ L2(F;C([0, T ];R
d×d) × C([0, T ];R

d) × L2([0, T ];
R
d×d)).
Note that the d × d-matrix-valued process ∇X satisfies a linear SDE and

∇Xt = I , thus [∇Xs ]−1 exists for all s ∈ [t, T ], P -a.s. The following lemma
concerns the anticipating (Malliavin) derivatives of the solution (X,Y,Z) to (2.8).
Since the proof is standard and can be found in, for example, Nualart [16] and
Pardoux and Peng [18], we omit it.

LEMMA 2.4. Assume that (A1) holds, and suppose that f ∈ C0,1
b ([0, T ] ×

R
2d+1) and that g ∈C1

b(R
d). Then (X,Y,Z) ∈ L2([0, T ];D

1,2(R2d+1)), and there
exists a version of (DsXr,DsYr ,DsZr) that satisfies

DsXr = ∇Xr(∇Xs)−1σ(s,Xs)1{s≤r},

DsYr = ∇Yr(∇Xs)−1σ(s,Xs)1{s≤r}, t ≤ s, r ≤ T,

DsZr = ∇Zr(∇Xs)−1σ(s,Xs)1{s≤r},

(2.10)

where

DsXr �

DsX
1
r

...

DsX
d
r

 and DsZr �

DsZ
1
r

...

DsZ
d
r

 .
To conclude this section let us introduce the notion of anticipating stochastic

integral (also known as Skorohod integral or Hitsuda–Skorohod integral), which
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will be one of the key devices in this paper. Recall the derivative operator D is a
closed, densely defined operator from L2(�) to L2(�× [0, T ]); we can define its
adjoint operator δ : Dom(δ)⊂L2(�× [0, T ];R

d) �→L2(�;R) by

E{Fδ(u)} =E

∫ T

0
DtFut dt ∀F ∈ D

1,2, ∀u ∈ Dom(δ),(2.11)

where Dom(δ)� {u ∈L2(�×[0, T ]) : |E ∫ T
0 DtFut dt| ≤C‖F‖1,2, ∀F ∈ D

1,2}.
The operator δ is then called the anticipating stochastic integral of the process u.
The definition can be extended in an obvious way to the case when u is vector-
valued; and by a slight abuse of notation, we still denote it as

δ(u)=
∫ T

0
〈ut, dWt〉, u ∈ Dom(δ).(2.12)

One should keep in mind that, if in the sequel the integrand of a stochastic in-
tegral is not F-adaped, then it should always be understood as an anticipating sto-
chastic integral. On the other hand, it can be shown that, if u ∈ L2(F, [0, T ];R

d),
then u ∈ Dom(δ), and the anticipating stochastic integral (2.12) coincides with the
usual Itô integral. Furthermore, we have the following important properties of such
integrals (cf. [16]).

LEMMA 2.5. Suppose that F ∈ D
1,2. Then the following hold:

(i) (integration by parts formula) for any u ∈ Dom(δ) such that Fu ∈
L2([0, T ] ×�;R

d), one has Fu ∈ Dom(δ), and it holds that∫ T

0
〈Fut, dWt〉 = δ(Fu)= F

∫ T

0
〈ut, dWt〉 −

∫ T

0
DtFut dt;

(ii) (Clark–Haussmann–Ocone formula)

F =E(F )+
∫ T

0
E{DtF |Ft}dWt.

3. Relations to PDEs revisited. In this section we prove the relation (1.6)
between the FBSDE (2.8) and the quasilinear parabolic PDE (1.4), under the
condition that the coefficients f and g are only continuously differentiable. We
should note that such a relation is well understood when the coefficients are regular
enough [e.g., f and g are both C3 in (x, y, z); see, e.g., [18] or [14]). On the other
hand, in the case when f and g are only Lipschitz continuous, it is known that
u(t, x)� Y

t,x
t is a viscosity solution of (1.4) (see, e.g., [18] or [15]). However, in

that case the second relation in (1.6) becomes questionable. The following result
is therefore interesting in its own right, and to the best of our knowledge it is new.

THEOREM 3.1. Assume (A1) and suppose that f ∈ C
0,1
b ([0, T ] × R

d

× R × R
d) and g ∈ C1

b(R
d). Let (Xt,x, Y t,x,Zt,x) be the adapted solution to the

FBSDE (2.8), and define u(t, x)= Y
t,x
t . Then the following hold:
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(i) ∂xu exists for all (t, x) ∈ [0, T ]×R
d ; and for each (t, x) and i = 1, . . . , d ,

the following representation holds:

∂xiu(t, x)= E

{
∂xg(X

t,x
T )∇iXT

+
∫ T

t

[
∂xf

(
r,/t,x(r)

)∇iXr
+ ∂yf

(
r,/t,x(r)

)∇iYr + 〈
∂zf

(
r,/t,x(r)

)
,∇iZr 〉]dr},

(3.1)

where /t,x(r) � (Xt,xr , Y t,xr ,Zt,xr ), and (∇X,∇Y,∇Z) is the solution to the
variational equation (2.9);

(ii) ∂xu is continuous on [0, T ] × R
d ;

(iii) Zt,xs = ∂xu(s,X
t,x
s )σ (s,Xt,xs ), ∀ s ∈ [t, T ], P -a.s.

PROOF. To simplify presentation, we shall prove only the case when d = 1,
as the higher dimensional case can be treated in the same way without substantial
difficulty. Also in what follows we use the simpler notation gx and (fx, fy, fz) for
the partial derivatives of g and f .

We first prove (i). Let (t, x) ∈ [0, T ] × R
d be fixed. For any h �= 0, define

∇Xh = Xt,x+hs −Xt,xs

h
, ∇Yh = Y t,x+hs − Y t,xs

h
, ∇Zh = Zt,x+hs −Zt,xs

h
.

It is standard (see, e.g., [7]) to show that

E|∇Xh − ∇X|∗,2t,T → 0 as h→ 0.(3.2)

To check the limits of ∇Yh and ∇Zh we note that, for each s ∈ [0, T ],
∇Yhs = g̃ hx (T )∇XhT +

∫ T

s

[
f̃ hx (r)∇Xhr + f̃ hy (r)∇Yhr + f̃ hz (r)∇Zhr

]
dr

−
∫ T

s
∇Zhr dWr,

(3.3)

where, with /t,x = (Xt,x, Y t,x,Zt,x),

g̃ hx (T )=
∫ 1

0
gx(X

t,x
T + θ(X

t,x+h
T −X

t,x
T )) dθ, g̃ 0

x (T )= gx(X
t,x
T ),

f̃ hx (r)=
∫ 1

0
fx(r,/

t,x
r + θ(/t,x+hr −/t,xr )) dθ, f̃ 0

x (r)= fx(r,/
t,x
r ),

f̃ hy (r)=
∫ 1

0
fy(r,/

t,x
r + θ(/t,x+hr −/t,xr )) dθ, f̃ 0

y (r)= fy(r,/
t,x
r ),

f̃ hz (r)=
∫ 1

0
fz(r,/

t,x
r + θ(/t,x+hr −/t,xr )) dθ, f̃ 0

z (r)= fz(r,/
t,x
r ).
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Applying Lemma 2.2 to (3.3) we see that for all p ≥ 2 one has

E

{
|∇Yh|∗,pt,T +

∫ T

t
|∇Zhs |2 ds

}
≤ C,

where C > 0 is some constant independent of h. Therefore

lim
h→0

E

{
|Y t,x+h − Y t,x |∗,pt,T +

∫ T

t
|Zt,x+hs −Zt,xs |2 ds

}
= 0 ∀p ≥ 2.(3.4)

Consequently, for all p ≥ 2,

E|g̃ hx (T )− g̃0
x(T )|p → 0,

E

∫ T

0
|ϕ̃h(r)− ϕ̃0(r)|p dr → 0 as h→ 0,

(3.5)

for ϕ = fx, fy, fz, respectively. We now show that

E

{
|∇Yh − ∇Y |∗,2t,T +

∫ T

t
|∇Zhs − ∇Zs |2 ds

}
→ 0 as h→ 0,(3.6)

where (∇Y,∇Z) is the solution to the (backward) variational equation in (2.9).
To do this we define �Xhs � ∇Xhs − ∇Xs , �Yhs � ∇Yhs − ∇Ys and �Zhs =
∇Zhs − ∇Zs . Combining (3.3) and (2.9) we have

�Yhs = g̃ h(T )�XhT + (
g̃ hx (T )− g̃ 0

x (T )
)∇XT

+
∫ T

s

[
f̃ hx (r)�X

h
r + f̃ hy (r)�Y

h
r + f̃ hz (r)�Z

h
r + εh(r)

]
dr

−
∫ T

s
�Zhr dWr,

(3.7)

for s ∈ [t, T ], where

εh(r)� [f̃ hx (r)− f̃ 0
x (r)]∇Xr + [f̃ hy (r)− f̃ 0

y (r)]∇Yr
+ [f̃ hz (r)− f̃ 0

z (r)]∇Zr .
(3.8)

Next, applying Lemma 2.2 to (3.7) we have

E

{
|�Yh|∗,2t,T +

∫ T

t
|�Zhs |2 ds

}

≤ CE

{
|�XhT |2 + |g̃ hx (T )− g̃ 0

x (T )|2|∇XT |2 +
∫ T

t

(|�Xhr |2 + |εh(r)|2)dr};
thus (3.6) follows from (3.2), (3.5), definition (3.8) and the dominated convergence
theorem. In particular, since f and g are deterministic, the processes Y t,x , Y t,x+h,
∇Yh and �Yh are all adapted to the filtration {F t

s }s≥t , where F t
s = σ {Wu −

Wt; t ≤ u ≤ s}, with the usual P -augmentation. Thus by the Blumenthal 0–1
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law (see, e.g., [12]), the quantities u(t, x) = Y
t,x
t , u(t, x + h) = Y

t,x+h
t , ∇iY ht =

1
h
[u(t, x + h) − u(t, x)] and �Yht are all deterministic. Therefore, we conclude

from the above that ∂xu exists, and ∂xu(t, x)= ∇Yt , for all (t, x). Finally, taking
the expectation on both sides of (2.9) at s = t we obtain the representation (3.1).

We now prove (ii). Let (ti , xi) ∈ [0, T ] × R
d , i = 1,2. We first assume that

t1 < t2. To simplify notation we write, for i = 1,2 and r ∈ [0, T ],

/i = (Xi, Y i,Zi)= (Xti ,xi , Y ti ,xi ,Zti ,xi ),

∇/i = (∇Xi,∇Y i,∇Zi),
f ix (r)= ∂xf

(
r,/i(r)

)
, f iy (r)= ∂yf

(
r,/i(r)

)
,

f iz (r)= ∂zf
(
r,/i(r)

)
,

gix = ∂xg(X
i
T ), bix(r)= ∂xb

(
r,Xi(r)

)
,

σ ix(r)= ∂xσ
(
r,Xi(r)

)
.

(3.9)

Further, we write �̃Xr = ∇X1
r − ∇X2

r , �̃Yr = ∇Y 1
r − ∇Y 2

r , �̃Zr = ∇Z1
r − ∇Z2

r ,
and for any function ϕ we let �̃12[ϕ] = ϕ1 −ϕ2. Also, to simplify notation in what
follows we let C > 0 denote a generic constant depending only on K [in (A1),
(A2)] and T , and we allow it to vary from line to line. Recalling (3.1) we have

|∂xu(t1, x1)− ∂xu(t2, x2)|
≤E

{|g1
x∇X1

T − g2
x∇X2

T |}
+E

{∫ t2

t1

[|f 1
x (r)| |∇X1

r | + |f 1
y (r)| |∇Y 1

r | + |f 1
z (r)| |∇Z1

r |
]
dr

}

+E

{∫ T

t2

[|�̃12[fx∇X·](r)| + |�̃12[fy∇Y·](r)| + |�̃12[fz∇Z·](r)|]dr}
(3.10)

≤ CE

{
|�̃XT | + |(∇X2

T )| |�̃12[gx ]| +
∫ t2

t1

[|∇X1
r | + |∇Y 1

r | + |∇Z1
r |
]
dr

+
∫ T

t2

[|�̃Xr | + |�̃Yr | + |�̃Zr |]dr

+
∫ T

t2

[|�̃12[fx ](r)∇X2
r | + |�̃12[fy](r)∇Y 2

r |

+ |�̃12[fz](r)∇Z2
r |
]
dr

}
.



REPRESENTATIONS OF BSDEs 1401

To estimate the right-hand side of (3.10) we note that the process (�̃X, �̃Y, �̃Z)
satisfies the following FBSDE (for s ∈ [t2, T ]):

�̃Xs = (∇X1
t2

− 1)+
∫ s

t2

[
b1
x(r)�̃Xr + �̃12[bx](r)∇X2

r

]
dr

+
∫ s

t2

[
σ 1
x (r)�̃Xr + �̃12[σx](r)∇X2

r

]
dWr,

�̃Ys = g1
x�̃XT + �̃12[gx ]∇X2

T(3.11)

+
∫ T

s

[
f 1
x (r)�̃Xr + f 1

y (r)�̃Yr + f 1
z (r)�̃Zr + ε(r)

]
−
∫ T

s
�̃Zr dWr,

where ε(r)= �̃12[fx](r)∇X2
r + �̃12[fy](r)∇Y 2

r + �̃12[fz](r)∇Z2
r , r ∈ [s, T ].

Now let Gt1,t2(·) denote a generic F-adapted, continuous process that is uni-
formly bounded and satisfies limt1↑t2 Gt1,t2(r)= 0, ∀ r ∈ [t2, T ], P -a.s. Again, we
allow it to vary from line to line (e.g., all �̃12[ϕ](·), where ϕ = bx, σx, fx, fy, fz

can be denoted as such). Applying Lemma 2.1 and recalling the convention on the
constant C and the assumptions on b and σ we get

E|�̃X|∗,2t,T ≤ CE

{
|∇X1

t2
− 1|2 +

∫ T

t2

[|�̃12[bx ](s)|2 + |�̃12[σx](s)|2]|∇X2
s |2 ds

}
(3.12)

≤ CE

{
|∇X1

t2
− 1|2 +

∫ T

t2

Gt1,t2(s)|∇X2
s |2 ds

}
.

Combining (3.12) with Lemma 2.2 we have

E

{
|�̃Y |∗,2t,T +

∫ T

t2

|�̃Zs |2 ds
}

≤ CE

{
|�̃XT |2 + |�̃12[gx ]|2|∇X2

T |2

+
∫ T

t2

[|�̃Xr |2 + (|�̃12[fx ](r)|2 + |�̃12[fy](r)|2(3.13)

+ |�̃12[fz](r)|2)|∇/2
r |2

]
dr

}

≤ CE

{
|�̃12[gx ]|2|∇X2

T |2 + |∇X1
t2

− 1|2 +
∫ T

t2

Gt1,t2(r)|∇/2
r |2 dr

}
.
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Plugging (3.12) and (3.13) into (3.10) we obtain that

|∂xu(t1, x1)− ∂xu(t2, x2)|2

≤ CE

{
|∇X1

t2
− 1|2 + |�̃12[gx ]|2|∇X2

T |2

+ (t2 − t1)

∫ t2

t1

|∇/1
r |2 dr +

∫ T

t2

Gt1,t2(r)|∇/2
r |2 dr

}
.

(3.14)

Now for fixed (t2, x2), by the dominated convergence theorem we easily derive
that

lim
t1↑t2
x1→x2

|∂xu(t1, x1)− ∂xu(t2, x2)|2 = 0.

Similarly we can show that, for fixed (t1, x1),

lim
t2↓t1
x2→x1

|∂xu(t1, x1)− ∂xu(t2, x2)|2 = 0.

This proves (ii).
It remains to prove (iii). For a continuous function ϕ, let {ϕε}ε>0 denote

the family of C∞
0 functions that converge to ϕ uniformly. Since b,σ,f, g are

all uniformly Lipschitz continuous, we may assume that the first order partial
derivatives of bε, σ ε, f ε, gε are all uniformly bounded, uniformly in ε > 0. To
simplify notation in what follows we drop the superscript t,x from the solution
/t,x . Consider the family of FBSDEs parametrized by ε > 0:

Xs = x +
∫ s

t
bε(r,Xr) dr +

∫ t

s
σ ε(r,Xr) dWr,

Ys = gε(XT )+
∫ T

s
f ε(r,Xr,Yr ,Zr) dr −

∫ T

s
Zr dWr.

(3.15)

Let us denote the solution by (Xt,x(ε), Y t,x(ε),Zt,x(ε)) and define uε(t, x) =
Y
t,x
t (ε). Applying Theorem 3.2 of [18] we see that uε is the classical solution

of a PDE (suppressing all variables):

uεt + 1
2 tr {σ ε(σ ε)T ∂2

xxu
ε} + 〈∂xuε, bε〉 + f ε(t, x, uε, ∂xu

εσ ε)= 0,

uε(T , x)= gε(x).
(3.16)

Now for any {xε} ⊂ R
n such that xε → x as ε → 0, define (Xε,Y ε,Zε) �

(Xt,x
ε
(ε), Y t,x

ε
(ε),Zt,x

ε
(ε)). Then it is known [14] that

Y εs = uε(s,Xεs ), Zεs = ∂xu
ε(s,Xεs )σ

ε(s,Xεs ) ∀ s ∈ [t, T ], P -a.s.(3.17)

Now by Lemmas 2.1 and 2.2 we know that for all p ≥ 2 it holds that

E

{
|Xε −X|∗,pt,T + |Y ε − Y |∗,pt,T +

∫ T

t
|Zεs −Zs |2 ds

}
→ 0,(3.18)
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as ε→ 0. Moreover, recall that

∇Xεs = 1 +
∫ s

t
∂xb

ε(r,Xεr )∇Xεr dr +
∫ s

t
σ εx (r,X

ε
r )∇Xεr dWr;

∇Y εs = gεx(X
ε
T )∇XεT +

∫ T

s

[
f εx
(
r,/ε(r)

)∇Xεr + f εy
(
r,/ε(r)

)∇Y εr
+ fz

(
r,/ε(r)

)∇Zεr ]dr −
∫ T

s
∇Zεr dWr,

(3.19)

Applying Lemmas 2.1 and 2.2 again we obtain that, for any p ≥ 2,

E

{
|∇Xε − ∇X|∗,pt,T + |∇Y ε − ∇Y |∗,pt,T +

∫ T

t
|Zεs −Zs |2 ds

}
→ 0,(3.20)

as ε→ 0. Thus, using the dominated convergence theorem one derives that

lim
ε→0

∂xu
ε(t, xε)= E

{
gεx(X

ε
T )∇XεT +

∫ T

t
[f εx∇Xεr + f εy∇Y εr + f εz ∇Zεr ]dr

}

= E

{
gx(XT )∇XT +

∫ T

t
[fx∇Xr + fy∇Yr + fz∇Zr ]dr

}
= ∂xu(t, x) ∀ (t, x).

Consequently, possibly along a subsequence, we have

Zs = lim
ε→0

Zεs = lim
ε→0

∂xu
ε(s,Xεs )σ

ε(s,Xεs )

= ∂xu(s,Xs)σ (s,Xs), ds × dP -a.e.

Since ∂xu(·, ·) andX are both continuous, we see that the equalities above actually
holds for all s ∈ [t, T ], P -a.s., proving (iii), whence the theorem. �

A direct consequence of Theorem 3.1 is the following corollary. Recall again
the convention on the generic constant C > 0.

COROLLARY 3.2. Assume that the same conditions of Theorem 3.1 hold, and
denote the solution of FBSDE (2.8) by (X,Y,Z). Then there exists a constant
C > 0 depending only on K and T , such that

|∂xu(t, x)| ≤C ∀ (t, x) ∈ [0, T ] × R
d .(3.21)

Consequently, one has

|Zs | ≤C(1 + |Xs |) ∀ s ∈ [t, T ], P -a.s.(3.22)

Furthermore, for ∀p > 0, there exists a constant Cp > 0, depending on K , T
and p such that

E
{|X|∗,pt,T + |Y |∗,pt,T + |Zs |∗,pt,T

}≤Cp(1 + |x|p).(3.23)
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PROOF. We first assume that p ≥ 2. By Lemmas 2.1 and 2.2, we can find a
constant C > 0 so that

E

{
|∇X|∗,2t,T + |∇Y |∗,2t,T +

∫ T

t
|∇Zr |2 dr

}
≤C.(3.24)

Then from the representation (3.1) we deduce immediately that |∂xu(t, x)| ≤ C,
for all (t, x) ∈ [0, T ] × R; and Theorem 3.1(iii) implies that

|Zs | ≤ C(1 + |Xs |) ∀ s ∈ [t, T ], P -a.s.,

proving (3.22). Now, applying Lemmas 2.1 and 2.2 for p ≥ 2 and using (3.22) we
derive (3.23).

The case for 0<p < 2 follows easily from the Hölder inequality. �

To conclude this section, we would like to point out that in Theorem 3.1 the
functions f and g are assumed to be continuously differentiable in all spatial
variables with uniformly bounded partial derivatives, which is much stronger than
standing assumption (A2). The following theorem reduces the requirement on f
and g to only uniformly Lipschitz continuous, which will be important in our
future discussion.

THEOREM 3.3. Assume (A1) and (A2), and let (X,Y,Z) be the solution to
the FBSDE (2.8). Then, for ∀p > 0, there exists a constant Cp > 0 such that

E

{
|X|∗,pt,T + |Y |∗,pt,T + ess sup

t≤s≤T
|Zs |p

}
≤ Cp(1 + |x|p).(3.25)

PROOF. In light of the proof of Corollary 3.2, we need only consider p ≥ 2.
By Lemmas 2.1 and 2.2 we see that for any p > 0 there exists Cp > 0 such that

E
{|X|∗,pt,T + |Y |∗,pt,T

}≤ Cp(1 + |x|p).(3.26)

Next, we repeat the argument in the proof of Theorem 3.1(iii) to get two sequences
of smooth functions {f ε}ε>0 and {gε}ε>0 such that

lim
ε→0

{
sup

(t,x,y,z)

|f ε(t, x, y, z)− f (t, x, y, z)| + sup
x

|gε(x)− g(x)|
}

= 0;

and that the first order partial derivatives of f ε’s and gε’s in (x, y, z) are uniformly
bounded, uniformly in t and ε. Letting (Xε,Y ε,Zε) denote the solution of the
corresponding FBSDEs and applying Corollary 3.2, we can find for any p ≥ 2 a
constant Cp > 0, independent of ε, such that

E|Zεn |∗,pt,T ≤ Cp(1 + |x|p).(3.27)
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Furthermore, by (3.18) we know that E{∫ Tt |Zεs − Zs |2} → 0, as ε → 0. Thus,
possibly along a sequence, say {εn}n≥1, we have limn→∞Zεn = Z, ds × dP -a.s.
Applying Fatou’s lemma and using (3.27) we then have

E

{
ess sup
t≤s≤T

|Zs |p
}

≤Cp(1 + |x|p),

which leads to (3.26), as desired. �

4. The representation theorem. In this section we shall prove the first main
theorem of the paper. This theorem can be regarded as an extension of the nonlinear
Feynman–Kac formula of Pardoux and Peng [18], as it gives a probabilistic
representation of the gradient (rather than the solution itself) of the viscosity
solution, whenever it exists, to a quasilinear parabolic PDE. We should point out
here that the main feature of our representation, however, lies in that it does not
depend on the partial derivatives of the functions f and g as we saw in (3.1).
Such a representation then paves the way for us to study the path regularity of
the process Z in the BSDE with nonsmooth coefficients. Again, we shall drop
the superscript t,x from the solution (X,Y,Z) of FBSDE (2.8) for notational
simplicity.

To begin with, let us introduce a stochastic integral that will play a key role in
the representation: for t < r1 < r2 < T ,

Mr1
r2

=
∫ r2

r1

[σ−1(τ,Xτ )∇Xτ ]T dWτ ,(4.1)

where ∇X = (∇1X, . . . ,∇dX) is the solution of the variational equation (2.9).
Clearly, for fixed r1, the process Mr1 is a martingale. By the Burkholder–Davis–
Gundy inequality, for any p ≥ 1 one has

E|Mr1
r2

|2p ≤ CpE

[∫ r2

r1

|σ−1(τ,Xτ )∇Xτ |2 dτ
]p

≤ Cp(r2 − r1)
pE

{|∇Xτ |∗,2pr1,r2

}≤ Cp(r2 − r1)
p,

where Cp > 0 is a generic constant depending only on constants K and c in (A1)
and (A2), the time duration T and p ≥ 1. Thus the following estimate is not
surprising:

E|Mr1
r2

|2p ≤Cp(r2 − r1)
p.(4.2)

To study further the (two parameter) processM , we denote, for any 0 ≤ t < s ≤
T , the σ -field F t

s � σ {Wu −Wt : t ≤ u≤ s}, with the usual P -augmentation; and
Ft = {F t

s }s≥t . The following result is important in our future discussion.

LEMMA 4.1. Let t ∈ [0, T ) be fixed. Then for any H ∈ Lp0(Ft , [0, T ];R),
with p0 > 2, one has:
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(i) E| ∫ Ts [1/(r − s)]HrMs
r dr|<∞;

(ii) for P -a.e. ω ∈ �, the mapping s �→ ∫ T
s [1/(r − s)]Hr(ω)Ms

r (ω)dr is
Hölder-([p0 − 2]/[p0(p0 + 2)]) continuous on [t, T ];

(iii) for P -a.e. ω ∈�, the mapping s �→ E{∫ Ts [1/(r − s)]HrMs
r dr|F t

s }(ω) is
continuous on [t, T ].

PROOF. First, for any t < τ ≤ T we denote

Aτs =

∫ τ

s

1

r − s
HrM

s
r dr, for t ≤ s < τ,

0, if s = τ.
(4.3)

To simplify notation, when τ = T we denote ATs =As .
Further, let q0 > 0 be such that 1

p0
+ 1
q0

= 1, and define β = p0
2+p0

and α = 1−β .

It is readily seen that β < 1
q0

and α < 1
2 . Consider the random variable

M∗ = sup
t≤t1<t2≤T

|Mt1
t2

|
(t2 − t1)α

.(4.4)

then by (4.2) and Theorem 2.1 of Revuz and Yor [21], Chapter 1, we see that
E[M∗]2 <∞.

To prove (i) we note that for any t ≤ s < τ ≤ T by Hölder’s inequality one has

|Aτs | =
∣∣∣∣ ∫ τ

s

Hr

(r − s)β
· Ms

r

(r − s)a
dr

∣∣∣∣≤ ∫ τ

s

∣∣∣∣ Hr

(r − s)β

∣∣∣∣drM∗

(4.5)

≤
{∫ τ

s

dr

(r − s)βq0

}1/q0

‖H‖p0M
∗ =C(τ − s)(1/q0)−β‖H‖p0M

∗,

where ‖ · ‖p0 denotes the norm of Lp0([0, T ]). Again letting C > 0 be a generic
constant depending only on p0 and T , and noting that p0 > 2 we have

E|Aτs | ≤ C{E‖H‖2
p0

}1/2{E(M∗)2}1/2

≤ C‖H‖Lp0 ([0,T ]×�)‖M∗‖L2(�) <∞.
(4.6)

Setting τ = T in the above we proved (i).
To prove (ii) we let τ = T and observe that, for t ≤ s1 < s2 < T ,

As1 −As2 =
∫ s2

s1

1

r − s1
HrM

s1
r dr +

∫ T

s2

1

r − s1
HrM

s1
s2
dr

+
∫ T

s2

(
1

r − s1
− 1

r − s2

)
HrM

s2
r dr � @1 + @2 + @3,

(4.7)

where @i’s are defined in an obvious way. Comparing to (4.3) it is easily seen that
@1 =A

s2
s1 . Thus (4.5) shows that

|@1| ≤ C(s2 − s1)
(1/q0)−β‖H‖p0M

∗.(4.8)



REPRESENTATIONS OF BSDEs 1407

Further, by definition (4.4) we see that

|@2| =
∣∣∣∣ ∫ T

s2

Hr

r − s1
· M

s1
s2

(s1 − s2)
α
dr

∣∣∣∣|s1 − s2|α

≤ (s2 − s1)
α
∫ T

s2

|Hr |
r − s1

drM∗ ≤ (s2 − s1)
α

{∫ T

s2

dr

(r − s1)
q0

}1/q0

‖H‖p0M
∗

≤ C(s2 − s1)
(1/q0)−β‖H‖p0M

∗.

(4.9)

Finally

|@3| =
∣∣∣∣ ∫ T

s2

s2 − s1

(r − s2)(r − s1)
HrM

s2
r dr

∣∣∣∣
≤ (s2 − s1)

{∫ T

s2

|Hr |
(r − s2)β(r − s1)

dr

}
M∗(4.10)

≤ (s2 − s1)

{∫ T

s2

dr

(r − s2)βq0(r − s1)q0

}1/q0

‖H‖p0M
∗.

Since ∫ T

s2

1

(r − s2)βq0(r − s1)q0
dr

=
∫ T−s2

0

1

rβq0(r + s2 − s1)q0
dr

=
∫ (T−s2)/(s2−s1)

0

(s2 − s1)

(s2 − s1)βq0rβq0(s2 − s1)q0(r + 1)q0
dr

≤ (s2 − s1)
1−(β+1)q0

∫ ∞
0

1

rβq0(r + 1)q0
dr

=C(s2 − s1)
1−(β+1)q0,

plugging this into (4.10) we have

|@3| ≤C(s2 − s1)(s2 − s1)
(1/q0)−(β+1)‖H‖p0M

∗

=C(s2 − s1)
(1/q0)−β‖H‖p0M

∗.
(4.11)

Combining (4.8)–(4.11) we obtain that

|As1 −As2| ≤ C(s2 − s1)
(1/q0)−β‖H‖p0M

∗.(4.12)

We should note that by (4.5) with τ = T we see that (4.12) holds true even when
s2 = T . This, together with the fact 1

q0
− β = p0−2

p0(p0+2) , proves (ii).
It remains to prove (iii). To this end, we note that the right-hand side of

inequality (4.5) (with τ = T ) is clearly in L1; thus it is easy to check that
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the process A is uniformly integrable. Therefore, applying Theorem VI-47 and
Remarks VI-50(f) of Dellacherie and Meyer [3], we see that the Ft -optional
projection ofA, denoted by oAs =E{As|F t

s }, s ∈ [t, T ], has càdlàg paths. To show
that the paths are actually continuous, we note that the filtration Ft is Brownian,
whence quasi-left-continuous. Thus every Ft -stopping time τ > t is accessible.
That is, there exists a sequence of Ft -stopping times {τk}k≥0 such that τk < τ , ∀ k,
P -a.s., and that τk ↑ τ , as k→ ∞. Note that

oAτk − oAτ =E{Aτk |Fτk } −E{Aτ |Fτ }
=E{Aτk −Aτ |Fτk } + (

E{Aτ |Fτk } −E{Aτ |Fτ }).(4.13)

Letting k→ ∞ we see that E{Aτk −Aτ |Fτk } → 0, thanks to the quasi-left-conti-
nuity of Ft ; and E{Aτ |Fτk } −E{Aτ |Fτ } → 0, thanks to (4.12). Thus oAτ− = oAτ ,
P -a.s. Since oA is càdlàg and τ is arbitrary, we conclude that oA is in fact
continuous on [t, T ], almost surely. This proves (iii), whence the lemma. �

Next, recall that the variational equation (2.9) is a linear (d × d-matrix-valued)
SDE with ∇Xt = I ; thus ∇Xs is invertible for all s ∈ [t, T ], thanks to the Doléan–
Dade stochastic exponential formula (see, e.g., [20]). Define

Ns
r = 1

r − s
(Ms

r )
T [∇Xs]−1, 0 ≤ t ≤ s < r ≤ T .(4.14)

(Note that Ns
r , is a row vector.) We now prove the main representation theorem.

THEOREM 4.2. Assume that assumptions (A1) and (A2) hold, and let
(X,Y,Z) be the adapted solution to FBSDE (2.8). Then the following hold:

(i) the following identity holds P -almost surely:

Zs = E

{
g(XT )N

s
T +

∫ T

s
f (r,Xr,Yr,Zr)N

s
r dr

∣∣∣F t
s

}
σ(s,Xs)

(4.15)
∀ s ∈ [t, T );

(ii) there exists a version of Z such that for P -a.e. ω ∈ �, the mapping
s �→ Zs(ω) is continuous;

(iii) if in addition the functions f and g satisfy the assumptions of Theorem 3.1,
then for all (t, x) ∈ [0, T )× R

d it holds that

∂xu(t, x)=E

{
g(XT )N

t
T +

∫ T

t
f (r,Xr,Yr,Zr)N

t
r dr

}
.(4.16)

PROOF. Again we shall consider only the case d = 1. Let us first assume
that g ∈ C1

b(R) and f ∈ C0,1
b ([0, T ] × R

3). Applying the nonlinear Feynman–Kac
formula of Pardoux and Peng [18] we have, for t ≤ s ≤ T , that

u(s,Xs)= Ys =E

{
g(XT )+

∫ T

s
f (r,Xr,Yr ,Zr) dr

∣∣∣F t
s

}
.(4.17)
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First formally differentiating (4.17) and then following a line-by-line analogue of
Lemma 3.1 one can show that, for t ≤ s ≤ T ,

∂xu(s,Xs)∇Xs
=E

{
gx(XT )∇XT +

∫ T

s

[
fx
(
r,/(r)

)∇Xr
+ fy

(
r,/(r)

)∇Yr + fz
(
r,/(r)

)∇Zr ]dr∣∣∣F t
s

}
,

(4.18)

where gx , (fx, fy, fz) denote the partial derivatives of g and f , as in the proof of
Theorem 3.1. [Note that if s = t , then (4.18) reduces to (3.1).]

Our proof depends on the following observation. By Lemma 2.4, we know that
if b, σ , f and g are all C1 in (x, y, z), then the adapted solution (X,Y,Z) of the
FBSDEs (2.8) all belong to D

1,2. Thus, using the chain rule (cf., e.g., [16]) and the
relation (2.10) in Lemma 2.4 we see that, for t < τ < r ,

Dτf
(
r,/(r)

)= fx
(
r,/(r)

)
DτXr + fy

(
r,/(r)

)
DτYr + fz

(
r,/(r)

)
DτZr

= [
fx
(
r,/(r)

)∇Xr + fy
(
r,/(r)

)∇Yr + fz
(
r,/(r)

)∇Zr ]
× (∇Xτ )−1σ(τ,Xτ ),

or, equivalently,

fx
(
r,/(r)

)∇Xr + fy
(
r,/(r)

)∇Yr + fz
(
r,/(r)

)∇Zr
=Dτf

(
r,/(r)

)
σ−1(τ,Xτ )∇Xτ .

Note that the left-hand side above is independent of τ ; integrating both sides from
τ = s ≥ t to τ = r > s and then dividing by r − s, we obtain that

fx
(
r,/(r)

)∇Xr + fy
(
r,/(r)

)∇Yr + fz
(
r,/(r)

)∇Zr
= 1

r − s

∫ r

s
Dτf

(
r,/(r)

)
σ−1(τ,Xτ )∇Xτ dτ.

(4.19)

Since σ−1 is bounded by (2.1), the process σ−1(·,X)∇X ∈ L2(Ft , [0, T ]) and
therefore it belongs to Dom(δ) (see Section 2). Further, it can be checked that

E

{∣∣f (r,/(r))∣∣2 ∫ T

t
|σ−1(τ,Xτ )∇Xτ |2 dτ

}
<∞ ∀ r ∈ [t, T ],(4.20)

thanks to Lemmas 2.1 and 2.2 and Corollary 3.2. Thus, by Lemma 2.5(i) we have
(integration by parts)∫ r

s
Dτf

(
r,/(r)

)
σ−1(τ,Xτ )∇Xτ dτ

= f
(
r,/(r)

) ∫ r

s
σ−1(τ,Xτ )∇Xτ dWτ

−
∫ r

s
f
(
r,/(r)

)
σ−1(τ,Xτ )∇Xτ dWτ,

(4.21)
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where the second integral on the right-hand side should be understood as an
anticipating stochastic integral. We claim that its conditional expectation E{·|F t

s }
is zero. Indeed, let α ∈ S be any smooth functional (see Section 2) such that it is
bounded and F t

s -measurable. Then Dτα = 0 for all τ > s. Thus, if we write

ηrτ = f
(
r,/(r)

)
σ−1(τ,Xτ )∇Xτ , τ ∈ [s, r],

then it can be checked that η ∈ D
1,2; by using the definition of the anticipating

integral one derives

E

{
α

∫ r

s
ηrτ dWτ

}
=E

∫ r

s
(Dτα)η

r
τ dτ = 0 ∀ r ∈ [s, T ], a.s.,

and the claim follows. Next, we plug (4.21) into the right-hand side of (4.19) and
then take the conditional expectation E{·|F t

s } on both sides to get

E
{
fx
(
r,/(r)

)∇Xr + fy
(
r,/(r)

)∇Yr + fz
(
r,/(r)

)∇Zr ∣∣F t
s

}
= 1

r − s
E

{∫ r

s
ηrτ dWτ

∣∣∣F t
s

}
= 1

r − s
E
{
f
(
r,/(r)

)
Ms
r

∣∣F t
s

}
,

(4.22)

for all s ∈ [t, T ], where M is defined by (4.1). Using similar arguments one shows
that

E{gx(XT )∇XT |F t
s } =E

{
1

T − s
g(XT )M

s
T

∣∣∣F t
s

}
.(4.23)

Finally, plugging (4.22) and (4.23) into (4.18), and applying Corollary 3.2 and
Lemma 4.1, we derive

∂xu(s,Xs)∇Xs
=E

{
1

T − s
g(XT )M

s
T +

∫ T

s

1

r − s
f (r,Xr,Yr,Zr)M

s
r dr

∣∣∣F t
s

}
.

(4.24)

Recalling the process N [see (4.14)] we can rewrite (4.24) as

∂xu(s,Xs)=E

{
g(XT )N

s
T +

∫ T

s
f (r,Xr,Yr ,Zr)N

s
r dr

∣∣∣F t
s

}
.(4.25)

In particular, setting s = t we obtain (4.16); this proves (iii).
We now consider the general case. First we fix s ∈ [t, T ]. For ϕ = f,g, let

ϕε ∈ C∞, ε > 0, be the mollifiers of ϕ, and let (Y ε,Zε) be the solution of the
BSDE in (2.8) with coefficients (f ε, gε). Then, for each ε > 0, (4.15) holds true.
That is,

Zεs =E

{
gε(XT )N

s
T +

∫ T

s
f ε(r,Xr,Y

ε
r ,Z

ε
r )N

s
r dr

∣∣∣F t
s

}
σ(s,Xs).(4.26)

Note that Lemma 2.2 implies that

E

{
|Y ε − Y |∗,4t,T +

∫ T

t
|Zεs −Zs |2 ds

}
→ 0 as ε→ 0.(4.27)
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Thus it is readily seen thatE
{
gε(XT ))N

s
T dr|F t

s } →E{g(XT )Ns
T dr|F t

s

}
, P -a.s.,

as ε→ 0. Furthermore, note that

E

∣∣∣∣E{∫ T

s
f ε(r,Xr,Y

ε
r ,Z

ε
r )N

s
r dr

∣∣∣F t
s

}
−E

{∫ T

s
f (r,Xr,Yr ,Zr)N

s
r dr

∣∣∣F t
s

}∣∣∣∣
≤E

∫ T

s

∣∣f ε(r,Xr,Y εr ,Zεr )− f (r,Xr,Yr,Zr)
∣∣ |Ns

r |dr

≤E

∫ T

s
|δε1f (r)| |Ns

r |dr +E

∫ T

s
|δε2f (r)| |Ns

r |dr

+E

∫ T

s
|δε3f (r)| |Ns

r |dr
=�ε1 +�ε2 +�ε3,

(4.28)

where �εi �E
∫ T
s |δεi f (r)||Ns

r |dr , i = 1,2,3, and

δε1f (r)� f ε(r,Xr,Y
ε
r ,Z

ε
r )− f (r,Xr,Y

ε
r ,Z

ε
r ),

δε2f (r)� f (r,Xr,Y
ε
r ,Z

ε
r )− f (r,Xr,Yr ,Z

ε
r ),

δε3f (r)� f (r,Xr,Yr ,Z
ε
r )− f (r,Xr,Yr ,Zr).

Since E|Y ε − Y |∗,4t,T → 0, similarly to Lemma 4.1, one shows that

�ε2 =E

∫ T

s
|δε2f (r)| |Ns

r |dr ≤KE

∫ T

s
|Y εr − Yr | |Ns

r |dr → 0.

Next, by Corollary 3.2 and the dominated convergence theorem we have

�ε3 =E

∫ T

s
|δε3f (r)| |Ns

r |dr → 0 as ε→ 0.

Finally, since f ε → f in C([0, T ] × R
3), we have

�ε1 = E

∫ T

s
|δεf (r)| |Ns

r |dr

≤ ‖f ε − f ‖C([0,T ]×R3)E

∫ T

s
|Ns
r |dr → 0 as ε→ 0

as well. Consequently, letting ε→ 0 in (4.26), we see that (4.15) holds P -a.s., for
each fixed s ∈ [0, T ].

We should note that to prove part (i) we still need to show that (4.15) actually
holds for all s ∈ [0, T ], P -a.s., but it is easy to see that this will follow from
part (ii); that is, the process Z has a continuous version. Thus we need only
prove (ii).

To do this we first note that Lemma 4.1 implies that the mapping

s �−→E

{∫ T

s
f (r,Xr,Yr,Zr)N

s
r dr

∣∣∣F t
s

}
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is a.s. continuous on [t, T ]. Next, since g(·) is uniformly Lipschitz, it is known
(see, e.g., [16, Proposition 1.2.3]) that there exists ξ ∈L2(�), such that

Drg(XT )= ξDrXT = ξ∇XT (∇Xr)−1σ(r,Xr) ∀ r ∈ [s, T ].
Applying the integration by parts formula (Lemma 2.5) again we have

E{g(XT )Ns
T |F t

s } = 1

T − s
E

{
g(XT )

∫ T

s
σ−1(r,Xr)∇Xr dWr

∣∣∣F t
s

}
(∇Xs)−1

= 1

T − s
E

{∫ T

s
[Drg(XT )]σ−1(r,Xr)∇Xr dr

∣∣∣F t
s

}
(∇Xs)−1

= E{ξ∇XT |F t
s }(∇Xs)−1.

Thus the mapping s �→ E{g(XT )Ns
T

∣∣∣F t
s } is also continuous on [t, T ], thanks to

the quasi-left-continuity of the Brownian filtration Ft again. Consequently, the
right-hand side of (4.15) is a.s. continuous on [t, T ], and hence (4.15) holds for
all s ∈ [0, T ], P -a.s., proving (ii), whence the theorem. �

REMARK. A direct consequence of Theorem 4.2 that might be useful in
applications is the following improvement of Theorem 3.3: assume that (A1) and
(A2) hold; then for ∀p > 0, there exists a constant Cp > 0 depending only on T ,
K and p such that

E{|X|∗,pt,T + |Y |∗,pt,T + |Z|∗,pt,T } ≤ Cp(1 + |x|p).(4.29)

Indeed, since by Theorem 4.2, Z has a continuous version, (3.25) becomes (4.29).

5. Path regularity of process Z. We have proved in Theorem 4.2(ii) that the
process Z in the solution to the FBSDE (2.8) has continuous paths, under the
condition that the coefficients f and g are only uniformly Lipschitz continuous.
While such a result is already an improvement of that of Pardoux and Peng [18],
it is still within the paradigm of the standard FBSDE in the literature, to wit, the
terminal condition of the BSDE is of the form g(XT ) (cf., e.g., [14] or [15]). In
this section we shall consider a class of BSDEs whose terminal conditions are path
dependent. More precisely, we assume that the terminal condition of the BSDE
is of the form ξ = g(Xt1 ,Xt2, . . . ,Xtn), where t ≤ t1 < t2 < · · · < tn ≤ T is any
partition of [t, T ]. We shall prove a new representation theorem for the process Z,
and we will extend the path regularity result to such a case.

Our main result is the following.

THEOREM 5.1. Assume that (A1) holds; and that in (A2) one has g ∈W 1,∞×
(Rd(n+1)). Let t = t0 < t1 < · · ·< tn = T be a partition of [t, T ], and let (X,Y,Z)
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be the unique adapted solution to the following FBSDE:

Xs = x +
∫ s

t
b(r,Xr) dr +

∫ s

t
σ (r,Xr) dWr,

Ys = g(Xt0 , . . . ,Xtn)+
∫ T

s
f (r,Xr,Yr,Zr) dr −

∫ T

s
Zr dWr.

(5.1)

Then on each interval (ti−1, ti), i = 1, . . . , n, the following identity holds:

Zs =E

{
g(Xt0 , . . . ,Xtn)N

s
ti

+
∫ T

s
f (r,Xr,Yr ,Zr)N

s
r∧ti dr

∣∣∣Fs}σ(s,Xs), s ∈ (ti−1, ti).

(5.2)

Furthermore, there exists a version of process Z that enjoys the following
properties:

(i) the mapping s �→ Zs is a.s. continuous on each interval (ti−1, ti), i =
1, . . . , n;

(ii) both limits Zti− � lims ↑ ti Zs and Zti+ � lims ↓ ti Zs exist;
(iii) for ∀p > 0, there exists a constant Cp > 0 depending only on T , K and p

such that

E|�Zti |p ≤ Cp(1 + |x|p) <∞.(5.3)

Consequently, the process Z has both càdlàg and càglàd versions, with disconti-
nuities t0, . . . , tn and jump sizes satisfying (5.3).

PROOF. As before we will consider only the case d = 1, and we assume first
that f,g ∈C1

b .
Let us first establish the identity (5.2). We fix an arbitrary index i and consider

the interval (ti−1, ti). Note that, by using the similar arguments as those in Pardoux
and Peng [18], it can be verified that, for any τ ∈ (ti−1, ti), Yτ ,Zτ ∈ D

1,2 and, for
all ti−1 < s ≤ τ < ti ,

DsYτ =∑
j≥i

∂jgDsXtj +
∫ T

τ
[fx(r)DsXr + fy(r)DsYr + fz(r)DsZr ]dr

−
∫ T

τ
DsZr dWr,

(5.4)

where ∂jg � ∂xj g(Xt0, . . . ,Xtn), j = 1, . . . , n; and D is the Malliavin derivative
operator. For notational simplicity here and in the sequel we denote ϕ(r) =
ϕ(r,/(r)) for ϕ = fx, fy, fz, respectively.
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Next, by virtue of Lemma 2.4 and the uniqueness of the adapted solution to
BSDEs we have

DsXτ = ∇Xτ [∇Xs ]−1σ(s,Xs),

DsYτ = ∇iYτ [∇Xs ]−1σ(s,Xs),

DsZτ = ∇iZτ [∇Xs]−1σ(s,Xs), ti−1 < s ≤ τ < ti,

(5.5)

where (∇iY,∇iZ) denotes the adapted solution to the following BSDE [cf. (2.9)]
for τ ∈ [ti−1, T ]:

∇iYτ =∑
j≥i
∂j g∇Xtj +

∫ T

τ
[fx(r)∇Xr + fy(r)∇iYr + fz(r)∇iZr ]dr

(5.6)

−
∫ T

τ
∇iZr dWr,

On the other hand, since DsYτ = 0 whenever s > τ and

Yti−1 = g(Xt0, . . . ,Xtn)+
∫ T

ti−1

f (r,Xr,Yr ,Zr) dr −
∫ T

ti−1

Zr dWr,

applying Ds to both sides for s > ti−1 we get

0 =∑
j≥i
∂jgDsXtj +

∫ T

s
[fx(r)DsXr + fy(r)DsYr + fz(r)DsZr ]dr

(5.7)

−Zs −
∫ T

s
DsZr dWr.

Combining (5.7) with (5.5) and (5.6) we obtain

Zs =∑
j≥i

∂jgDsXtj +
∫ T

s
[fx(r)DsXr + fy(r)DsYr + fz(r)DsZr ]dr

−
∫ T

s
DsZr dWr

=
{∑
j≥i
∂jg∇Xtj +

∫ T

s
[fx(r)∇Xr + fy(r)∇iYr + fz(r)∇iZr ]dr

−
∫ T

s
∇iZr dWr

}
[∇Xs ]−1σ(s,Xs)

= ∇iYs[∇Xs]−1σ(s,Xs), ti−1 < s < ti.

(5.8)
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Taking conditional expectation E{· |Fs} on both sides of (5.8) we then get

Zs =E

{∑
j≥i

∂jg∇Xtj +
∫ T

s
[fx(r)∇Xr + fy(r)∇iYr + fz(r)∇iZr ]dr

∣∣∣Fs
}

× [∇Xs ]−1σ(s,Xs).

(5.9)

The rest of the proof is similar to that of Theorem 4.2. First we note that by the
chain rule of anticipating derivative operator and relation (5.5), for any ti−1 <

τ ≤ ti and τ < r one has

Dτf (Xr,Yr,Zr)

= [fx(r)∇Xr + fy(r)∇iYr + fz(r)∇iZr ][∇Xτ ]−1σ(τ,Xτ ).
(5.10)

We consider the following two cases:

(a) ti−1 < r ≤ ti . In this case we derive from (5.10) that

fx(r)∇Xr + fy(r)∇iYr + fz(r)∇iZr

= 1

r − s

∫ r

s
Dτf (r,Xr,Yr ,Zr)σ

−1(τ,Xτ )∇Xτ dτ,
ti−1 < s < r ≤ ti .

(5.11)

Therefore, using the integration by parts formula for anticipating integrals and
recalling the definition of process N , (4.14), we have

{fx(r)∇Xr + fy(r)∇iYr + fz(r)∇iZr |Fs}

=E

{
1

r − s

∫ r

s
f (r,Xr,Yr,Zr)σ

−1(τ,Xτ )∇XτDτ dτ
∣∣∣Fs}

=E

{
1

r − s
f (r,Xr,Yr,Zr)

∫ r

s
σ−1(τ,Xτ )∇Xτ dWτ

∣∣∣Fs}
=E{f (r,Xr,Yr ,Zr)Ns

r |Fs}∇Xs, ti−1 < s < r ≤ ti .

(5.12)

(b) ti < r . In this case we see that (5.10) is still true, but (5.11) should be
replaced by

fx(r)∇Xr + fy(r)∇iYr + fz(r)∇iZr

= 1

ti − s

∫ ti

s
Dτf (r,Xr,Yr ,Zr)σ

−1(τ,Xτ )∇Xτ dτ,(5.13)

ti−1 < s < ti < r.

Consequently, (5.12) is changed to

E{fx(r)∇Xr + fy(r)∇iYr + fz(r)∇iZr |Fs}

=E

{
1

ti − s

∫ ti

s
σ−1(τ,Xτ )∇XτDτf (r,Xr,Yr,Zr) dτ

∣∣∣Fs}
=E{f (r,Xr,Yr,Zr)Ns

ti
|Fs}∇Xs, ti−1 < s < ti < r.

(5.14)
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Combining (5.14) and (5.12) we see that for all s ∈ (ti−1, ti) it holds that

E

{∫ T

s
[fx(r)∇Xr + fy(r)∇iYr + fz(r)∇iZr ]dr

∣∣∣Fs}

=E

{∫ T

s
f (r,Xr,Yr,Zr)N

s
r∧ti dr

∣∣∣Fs}∇Xs.
(5.15)

On the other hand, we note that for any τ ∈ (ti−1, ti) it holds that

Dτg(Xt0 , . . . ,Xtn)=
∑
j≥i
∂j gDτXtj =

{∑
j≥i

∂jg∇Xtj
}
[∇Xτ ]−1σ(τ,Xτ ),

which implies that, for any s ∈ (ti−1, ti),∑
j≥i
∂j g∇Xtj = 1

ti − s

∫ ti

s
Dτg(Xt0, . . . ,Xtn)σ (τ,Xτ )

−1∇Xτ dτ.

Thus, using integration by parts again we have

E

{∑
j≥i

∂jg∇Xtj
∣∣∣Fs}

=E

{
1

ti − s
g(Xt0, . . . ,Xtn)

∫ ti

s
σ−1(τ,Xτ )∇Xτ dWτ

∣∣∣Fs}
=E{g(Xt0, . . . ,Xtn)Ns

ti
|Fs}∇Xs.

(5.16)

Plugging (5.15) and (5.16) into (5.9) we obtain (5.2) for s ∈ (ti−1, ti).
It is clear now that to prove the theorem we need only prove properties (i)–(iii),

which we will do. Note that (i) is obvious, in light of Theorem 4.2 and thanks to
representation (5.2). Property (ii) is a slight variation of Lemma 4.1, with T there
being replaced by ti , for each i. Therefore we shall only check (iii).

To this end, let �Zti =Zti+ −Zti−. From (5.8) it is easily seen that

Zti− = ∇iYti [∇Xti ]−1σ(ti,Xti ), Zti+ = ∇i+1Yti [∇Xti ]−1σ(ti,Xti ).

Denoting αis � −(∇i+1Ys − ∇iYs), i = 1, . . . , n, we then have

�Zti = (∇i+1Yti − ∇iYti )[∇Xti ]−1σ(ti,Xti )= −αiti [∇Xti ]−1σ(ti,Xti ).(5.17)

Further, let us denote βis � −(∇i+1Zs − ∇iZs). Then (5.6) leads to that

αis = ∂ig∇Xti +
∫ T

s
[fy(r)αir + fz(r)β

i
r]dr −

∫ T

s
βir dWr, s ∈ [t, T ].(5.18)

In other words, (αi, βi) is the adapted solution to the linear BSDE (5.18).
Therefore, by Lemma 2.2 we know that ∀p > 0 there exists a Cp > 0 such that
E{|αiti |p} ≤ Cp . Note now that the same estimate holds for σ(s,Xs) because of



REPRESENTATIONS OF BSDEs 1417

assumption (A1) and Theorem 3.3; for [∇Xti ]−1 since the process [∇X·]−1 is the
solution of the following d × d-matrix-valued SDE:

Cs = I −
∫ s

t
Cr

[
∂xb(Xr)−

d∑
i=1

[∂xσ j (r,Xr)]2

]
dr

−
d∑
j=1

∫ s

t
Cr [∂xσ j (r,Xr)]dWj

r ,

it is readily seen that (5.3) follows from (5.17). This proves (iii).
Finally, we note that when f and g are only Lipschitz, (5.2) still holds, modulo

a standard approximation the same as that in Theorem 4.2. Thus properties (i)
and (ii) are obvious. To see (iii) we should note that the standard approximation
yields that �Zεti → �Zti a.s. So if (5.3) holds for �Zεti , then letting ε → 0 we
see that (5.3) remains true for �Zti , thanks to the Fatou lemma. The proof is now
complete. �
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