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Abstract

In this paper we introduce a new type of norm for semimartingales. Our norm is
defined in the spirit of quasimartingales, and it characterizes square integrable semi-
martingales. This work is motivated by our study of zero-sum stochastic differential
games, whose value process we conjecture to be a semimartingale under a class of
probability measures under some conditions. The norm introduced here seems to be
the right one to study general square integrable semimartingales, and it is also suit-
able for studying semimartingales under nonlinear expectation. Using a similar idea,
we introduce a new norm for the barriers of doubly reflected BSDEs and establish
some a priori estimates for the solutions. Our norm provides an alternative but more
tractable characterization for the standard Mokobodski’s condition in the literature.
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1 Introduction

In recent years, the notion of nonlinear expectation, in particular the G-expectation
of Peng [21], has received strong attention in the literature. Roughly speaking, a G-
expectation is a nonlinear expectation taking the following form: EG := supP∈P E

P,
where P is a family of mutually singular probability measures P and in general the
family P does not have a dominating probability measure. For a random variable ξ, the
conditional G-expectation EG

t [ξ] can also be defined so that it satisfies the time consis-
tency property, see e.g. Section 4 of this paper. Such conditional G-expectation is called
aG-martingale which, by Soner, Touzi and Zhang [27], has the following representation:
denoting Yt := EG

t [ξ],

Yt = Y0 +

� t

0
ZsdBs −Kt, P-a.s. for all P ∈ P, (1.1)
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where B is the canonical process, P is a class of martingale measures, and K is a
nondecreasing process with K0 = 0. This result can be extended to second order BS-
DEs of [30], and the closely related G-BSDE of [14]. In particular, a G-martingale is
a supermartingale under each P ∈ P. It is clear that a G-supermartingale is also a
supermartingale under each P ∈ P.

In Pham and Zhang [24], we studied a zero sum stochastic differential game. Under
certain conditions, we show that the game value exists:

Yt := inf
v∈V

sup
u∈U

EP
u,v

t [ξ] = sup
u∈U

inf
v∈V

EP
u,v

t [ξ]. (1.2)

Here U and V are appropriate sets of admissible controls, Pu,v is a probability measure
induced by the controls (u, v), and EP

u,v

t denotes conditional expectations (abusing the
notations slightly here by using sup and inf instead of ess sup and ess inf in appropriate
sense). The present paper is motivated by our efforts to understand the dynamics of
the game value process Y .

Notice that, for any fixed v, supu∈U E
Pu,v

t [ξ] can be viewed roughly as a martingale
under a nonlinear expectation, and thus has supermartingale property under each prob-
ability measure. However, the additional infv∈V induces submartingale property. In-
deed, one can show that Y is a submartingale under the nonlinear expectation induced
by P := {Pu,v : (u, v) ∈ U × V}. So our natural question is:

What is the structure of a G-submartingale?

Since the supu∈U and infv∈V induce the supermartinagle and submartingale proper-
ties respectively, we conjecture that the game value process Y should be a semimartin-
gale under each Pu,v. More generally, given a G-submartingale Y , one may expect
that Y = M + L, where M is a G-martingale (and thus a supermartinagle under each
probability measure) and L is a nondecreasing process, in the spirit of the Doob-Meyer
decomposition, but under nonlinear expectation. Then by (1.1) we expect that

Yt = Y0 +

� t

0
ZsdBs +At, P-a.s. for all P ∈ P, (1.3)

where A := L −K is a a semi-martingale under each P ∈ P. While the above analysis
is intuitively clear, its rigorous proof is by no means easy, because it involves a priori
estimates for total variations of A under each P ∈ P.

Our first goal of this paper is to introduce a norm which characterizes square in-
tegrable semimartingales, under a fixed (linear) probability measure. Our norm is
strongly motived from the definition of quasimartingales. The main feature is that the
norm involves only the semimartingale itself, without involving directly its decomposi-
tion. This is important in applications because the semimartingale under consideration
is typically a value process and thus has a representation, e.g. the process Y in (1.2).
We prove that a progressively measurable process is a square integrable semimartin-
gale if and only if it has finite norm in our sense.

We next extend our norm to semimartingales under nonlinear expectations, in partic-
ular the G-expectation. We show that, any progressively measurable process with finite
norm under G-expectation in our sense has to be a semimartingale under each proba-
bility measure. Our long term goal is to apply our norm, or its variations if necessary,
to study the structure of general G-semimartingales, and in particular the nonlinear
Doob-Meyer decomposition. We remark that the game value process Y in (1.2) is the
unique viscosity solution of path dependent Bellman-Isaacs equations, see [24]. Thus
the semimartingale property of Y can also be viewed as regularity of viscosity solutions
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of path dependent PDEs. For the viscosity theory of path dependent PDEs we refer the
readers to [7] for the semi-linear case and [8, 9, 10] for the fully nonlinear case.

Another contribution of this paper is to provide a sufficient condition for the well-
posedness of doubly reflected backward SDEs (DRBSDE, for short). There are typically
two approaches in the literature. One is to assume the Mokobodski’s condition, namely
there exists a square integrable semimartingale between the two given barriers, see
e.g. Cvitanic and Karatzas [4], Peng and Xu [22] and Crépey and Matoussi [2], and the
other is to use local solutions, see e.g. Hamadène and Hassani [12] and Hamadène, Has-
sani and Ouknine [13]. The latter approach, while easy to verify its conditions, does not
yield any norm estimates. We remark that such estimates are important in applications,
for example when one considers discretization of DRBSDEs, see e.g. Chassagneux [1].
In the spirit of our semimartingale norm, we introduce a norm for the barriers of DRB-
SDEs and provide a priori estimates for the solution of DRBSDEs based on our new
barrier norm. Such estimates seem to be new in the literature and are important in
numerical discretization of DRBSDEs. It turns out that our barrier norm is finite if and
only if the Mokobodski’s condition is satisfied. In this sense, we provide a necessary and
sufficient condition for the Mokobodski’s condition. However, we remark that our norm
depends on the barriers more explicitly and is (hopefully) easier to verify in practice.

The rest of the paper is organized as follows. In next section we introduce the norm
for semimartingales under a fixed probability measure and obtain the estimates. In
Section 3 we study DRBSDEs by introducing a norm for the barriers in the same spirit.
In Section 4 we extend the norm to the G-framework.

2 Norm Estimates for Semimartingales

Let T > 0 be fixed, (Ω,F ,F,P) be a filtered probability space on [0, T ], and D(F) be
the space of F-progressively measurable càdlàg processes. Throughout this section,
we shall always assume (without mentioning in all the results):

F is right continuous and its P-augmentation F̄P is a Brownian filtration,
and consequently, any F-martingale M is continuous, P-a.s.

(2.1)

We note that the filtration F is not necessarily complete under P. The removal of the
completeness requirement will be important in Section 4 below. However, the following
simple lemma, see e.g. [28], shows that we may assume all the processes involved in
this section are F-progressively measurable.

Lemma 2.1. For any F̄P-progressively measurable process X, there exists a unique
(dt × dP-a.s.) F-progressively measurable process X̃ such that X̃ = X, dt × dP-a.s.
Moreover, if X is càdlàg , P-a.s., then so is X̃.

We recall that a semimartingale Y ∈ D(F) has the following decomposition:

Yt = Y0 +Mt +At, (2.2)

where M is a local martingale, A has finite variation, and M0 = A0 = 0. Now given a
process Y ∈ D(F), we are interested in the following questions:

(i) Is Y a semimartingale?
(ii) Do we have appropriate norm estimates for Y , M , and A?

The first question was answered by Bichteler-Dellacherie, see e.g. [25] for some fur-
ther discussion. The main goal of this section is to answer the second question. As
explained in the Introduction, the latter question is natural and important for our study
of semimartingales under nonlinear expectations.
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2.1 Some preliminary results

We first note that, when Y is a supermartingale or submartingale, it is well known
that Y is a semimartingale and the following norm estimates hold. Since the arguments
will be important for our general case, we provide a proof for completeness.

Lemma 2.2. There exist universal constants 0 < c < C such that, for any Y in the form
of (2.2) with monotone A, it holds

c�Y �2P,0 ≤ EP
�
|Y0|2 + �M�T + |AT |2

�
≤ C�Y �2P,0; (2.3)

where, for any Y ∈ D(F),

�Y �2P,0 := EP
�

sup
0≤t≤T

|Yt|2
�
. (2.4)

Proof. The first inequality is obvious. We shall only prove the second inequality. By
otherwise using the standard stopping techniques, we may assume without loss of gen-
erality that EP[sup0≤t≤T |Yt|2 + �M�T + |AT |2] < ∞.

Apply Itô’s formula and recall (2.1) that M is continuous, we have

Y 2
T = Y 2

0 + �M�T + 2

� T

0
YtdMt + 2

� T

0
Yt−dAt +

�

0<t≤T

|∆Yt|2. (2.5)

Note that

EP
�� � T

0
|Yt|2d�M�t

� 1
2

�
≤ EP

�
sup

0≤t≤T
|Yt|�M�

1
2
T

�
≤ 1

2
EP

�
sup

0≤t≤T
|Yt|2 + �M�T

�
< ∞.

Then YtdMt is a true martingale, and thus, for any ε > 0, it follows from (2.5) and the
monotonicity of A that

EP[�M�T ] ≤ EP
�
�M�T +

�

0≤t≤T

|∆Yt|2
�
= EP

�
Y 2
T − Y 2

0 − 2

� T

0
Yt−dAt

�
(2.6)

≤ EP
�
|YT |2 + |Y0|2 + 2 sup

0≤t≤T
|Yt||AT |

�
≤ Cε−1�Y �2P,0 + εEP[|AT |2].

Moreover, note that AT = YT − Y0 −MT . Then (2.6) leads to

EP[|AT |2] ≤ C�Y �2P,0 + CEP[�M�T ] ≤ Cε−1�Y �2P,0 + CεEP[|AT |2].

Set ε := 1
2C for the above C, we obtain EP[|AT |2] ≤ C�Y �2P,0. This, together with (2.6),

proves the second inequality.
The next lemma is a discrete version of Lemma 2.2. Since the arguments are very

similar, we omit the proof.

Lemma 2.3. Let 0 = τ0 ≤ · · · ≤ τn = T be a sequence of stopping times. In the setting
of Lemma 2.2, if Aτi ∈ Fτi−1 , then

cEP
�
max
0≤i≤n

|Yτi |2
�
≤ EP

�
|Y0|2 + �M�T + |AT |2

�
≤ CEP

�
max
0≤i≤n

|Yτi |2
�
. (2.7)

2.2 Square integrable semimartingales

In this subsection we characterize the norm for square integrable semimartingales.

For 0 ≤ t1 < t2 ≤ T , let
t2�

t1

A denote the total variation of A over the interval (t1, t2].
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Definition 2.4. We say a semimartingale Y in the form of (2.2) is a square integrable
semimartingale if

EP
�
|Y0|2 + �M�T +

� T�

0

A
�2�

< ∞. (2.8)

We remark that (2.8) is the norm used in standard literature for semimartingales,
see e.g. [25]. Clearly, for a square integrable semimartingale Y , we have �Y �P,0 < ∞.
However, when A is not monotone, in general the left side of (2.8) cannot be dominated
by C�Y �2P,0, as illustrated by the following simple example.

Example 2.5. Let K ∈ D(F) be continuous and increasing such that K0 = 0 and
EP[K2

T ] = ∞. Define a sequence of stopping times: τ0 := 0 and τn := inf{t ≥ 0 :
Kt = n} ∧ T for n ≥ 1. Since KT < ∞, τn = T for n large enough, a.s. We now define
the process Yt as follows: Y0 := 0, and for n ≥ 0,

Yt :=

�
Yτ2n −Kt +Kτ2n , t ∈ (τ2n, τ2n+1];
Yτ2n+1 +Kt −Kτ2n+1 , t ∈ (τ2n+1, τ2n+2].

(2.9)

Then �Y �P,0 < ∞ but �Y �P = ∞.

Proof. It is easy to check that −1 ≤ Yt ≤ 0 and
�T

0 Y = KT . Then �Y �P,0 ≤ 1 and

EP
���T

0 Y
�2�

= ∞. By Theorem 2.7, we get �Y �P = ∞.

Our goal is to characterize square integrable semimartingales through the process
Y itself, without involving M and A directly. In many applications, we may have a
representation formula for the process Y , see e.g. (1.2), but in general it is difficult
to obtain representation formulas for M and A. So conditions imposed on Y are more
tractable than those on M and A. We introduce the following norm:

�Y �2P := �Y �2P,0 + sup
π
EP

�� n−1�

i=0

��EPτi(Yτi+1)− Yτi

��
�2�

, for any Y ∈ D(F), (2.10)

where the supremum is over all stopping time partitions π : 0 = τ0 ≤ · · · ≤ τn = T .

Remark 2.1. (i) Our norm � · �P is strongly motivated by the definition of quasimartin-
gale: a process Y ∈ D(F) is a quasimartingale if

V ar(Y ) := sup
π
EP

� n−1�

i=0

��EPti(Yti+1)− Yti

��
�
< ∞, (2.11)

where the supremum is over all deterministic partition π : 0 = t0 < · · · < tn = T .
We note that a process Y ∈ D(F) is a quasimartingale if and only if it can be written
as the difference of two nonnegative supermartingales, see e.g. Protter [25] Chapter
III Theorem 17. We also refer to Rao [26], Dellacherie and Meyer [6], and Meyer and
Zheng [16] for the theory of quasimartingales.

(ii) By the Rao’s theorem, see e.g. [25] Chapter III Theorem 18, a quasimartingale
Y has a unique decomposition Y = M + A, where M is a local martingale and A is
a predictable process with paths of locally integrable variation and A0 = 0. However,
in this case we do not have a priori estimates of E

�
�M�

�
and E

�
(
�T

0 A)2
�
in terms of

V ar(Y ). Indeed, M and A only have local integrability property. This type of estimates
are important in applications and, in order to derive them, our stronger norm � · �P is
needed: it is clear that �Y �P < ∞ implies V ar(Y ) < ∞ and thus Y is a quasimartingale,
but not vice versa.
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The following a priori estimate is the main technical result of this paper.

Theorem 2.6. There exist universal constants 0 < c < C such that, for any square
integrable semimartingale Yt = Y0 +Mt +At,

c�Y �2P ≤ EP
�
|Y0|2 + �M�T +

� T�

0

A
�2�

≤ C�Y �2P. (2.12)

Proof. (i) We first prove the left inequality. Let π : 0 = τ0 ≤ · · · ≤ τn = T be an arbitrary
partition, and denote ∆Aτi+1 := Aτi+1 −Aτi . Then

EP
�� n−1�

i=0

��EPτi(Yτi+1)− Yτi

��
�2�

= EP
�� n−1�

i=0

��EPτi(Aτi+1)−Aτi

��
�2�

≤ EP
�� n−1�

i=0

EPτi(|∆Aτi+1 |)
�2�

= EP
�� n−1�

i=0

[EPτi(|∆Aτi+1 |)− |∆Aτi+1 |] +
n−1�

i=0

|∆Aτi+1 |
�2�

≤ CEP
�� n−1�

i=0

[EPτi(|∆Aτi+1 |)− |∆Aτi+1 |]
�2�

+ CEP
�� T�

0

A
�2�

. (2.13)

Note that
�j

i=0[E
P
τi(|∆Aτi+1 |)− |∆Aτi+1 |], j = 0, · · · , n− 1, is a martingale. Then

EP
�� n−1�

i=0

[EPτi(|∆Aτi+1 |)− |∆Aτi+1 |]
�2�

= EP
� n−1�

i=0

�
EPτi(|∆Aτi+1 |)− |∆Aτi+1 |

�2�

≤CEP
� n−1�

i=0

��
EPτi(|∆Aτi+1 |)

�2
+ |∆Aτi+1 |2

��
≤ CEP

� n−1�

i=0

�
EPτi(|∆Aτi+1 |2) + |∆Aτi+1 |2

��

≤CEP
� n−1�

i=0

|∆Aτi+1 |2
�
≤ CEP

�� n−1�

i=0

|∆Aτi+1 |
�2� ≤ CEP

�� T�

0

A
�2�

.

This, together with (2.13) and the left inequality of (2.3), proves the left inequality.
(ii) We next prove the right inequality. First, for any ε > 0, following the arguments

in Lemma 2.2 one can easily show that

EP[�M�T ] ≤ Cε−1�Y �2P,0 + εEP
�� T�

0

A
�2�

. (2.14)

We claim that

EP
�� T�

0

A
�2� ≤ C�Y �2P + CEP[�M�T ]. (2.15)

Then, combining (2.14) and by choosing ε small enough, we obtain the right inequality
of (2.12) immediately.

We now prove (2.15) in four steps.

Step1. We first show that, for any random partition π : 0 = τ0 ≤ τ1 ≤ ... ≤ τn = T :

EP
� n−1�

i=0

�
Aτi+1 − EPτi [Aτi+1 ]

�2� ≤ C�Y �2P + CEP[�M�T ]. (2.16)
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Indeed, note that EPτi [Aτi+1 ]−Aτi = EPτi [Yτi+1 ]− Yτi . Then

n−1�

i=0

�
Aτi+1 − EPτi [Aτi+1 ]

�
= AT −

n−1�

i=0

�
EPτi [Aτi+1 ]−Aτi

�

= YT − Y0 −MT −
n−1�

i=0

�
EPτi [Yτi+1 ]− Yτi

�
.

By the definition of �Y �P, (2.10), we see that

EP
�� n−1�

i=0

�
Aτi+1 − EPτi [Aτi+1 ]

��2�
≤ C�Y �2P + CEP[�M�T ].

This, together with the fact that
�j−1

i=0

�
Aτi+1 −EPτi [Aτi+1 ]

�
, j = 1, · · · , n, is a martingale,

implies (2.16) immediately.

Step 2. In this step we assume At =
� t
0 asdKs, where K is a continuous nondecreas-

ing process and a is a simple process. That is,

a = at01{t0} +
n−1�

i=0

ati1(ti,ti+1] for some 0 = t0 < · · · < tn = T, ati ∈ Fti .

Then, denoting αi := sgn (ati) ∈ Fti ,

T�

0

A =

� T

0
|at|dKt =

n−1�

i=0

� ti+1

ti

αiatdKt =
n−1�

i=0

αi[Ati+1 −Ati ]

=
n−1�

i=0

αi

�
Ati+1 − EPti [Ati+1 ]

�
+

n−1�

i=0

αi

�
EPti [Ati+1 ]−Ati

�
.

Note that
�j

i=0 αi

�
Ati+1 − EPti [Ati+1 ]

�
, j = 0, · · · , n− 1, is a martingale. Then

EP
�� T�

0

A
�2� ≤ CEP

� n−1�

i=0

��Ati+1 − EPti [Ati+1 ]
��2 +

� n−1�

i=0

��EPti [Ati+1 ]−Ati

��
�2�

.

By (2.16) and the definition of �Y �P (2.10) we obtain (2.15).

Step 3. We now prove (2.15) for general continuous process A . Denote Kt :=
t�

0

A.

Since A is continuous, K is also continuous. Moreover dAt is absolutely continuous
with respect to dKt and thus dAt = atdKt for some a. By [15], Chapter 3 Lemma 2.7,
for every ε > 0 there exists a simple process {aε} such that

EP
�� � T

0
|aεt − at|dKt

�2�
≤ ε. (2.17)

Denote

Aε
t :=

� t

0
aεsdKs, Y ε

t := Y0 +Mt +Aε
t .

Then by Step 2 we see that

EP
�� T�

0

Aε
�2� ≤ C�Y ε�2P + CEP[�M�T ]. (2.18)
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Note that

T�

0

A ≤
T�

0

Aε +
T�

0

[Aε −A] ≤
T�

0

Aε +

� T

0
|aεt − at|dKt.

Then

EP
�� T�

0

A
�2� ≤ CEP

�� T�

0

Aε
�2�

+ Cε. (2.19)

On the other hand, apply the left inequality of (2.12) on Y ε − Y = Aε −A, we get

�Y ε − Y �2P ≤ CEP
�� T�

0

(Aε −A)
�2�

≤ CEP
�� � T

0
|aεt − at|dKt

�2�
≤ Cε.

Then �Y ε�2P ≤ C�Y �2P + Cε. Plug this and (2.19) into (2.18), we get

EP
�� T�

0

A
�2� ≤ C�Y �2P + CEP[�M�T ] + Cε.

Since ε is arbitrary, we obtain (2.15).

Step 4. We now prove (2.15) for the general case. Since A has finite variation, we
can decompose A = Ac + Ad, where Ac is the continuous part and Ad is the part with
pure jumps. Since Y is càdlàg and M is continuous, A and Ad are càdlàg. We denote
Y c
t := Y0 +Mt +Ac

t . From Step 3 we have

EP
�
|Y0|2 + �M�T +

� T�

0

Ac
�2�

≤ C�Y c�2P.

Note that �Y c�P ≤ �Y �P + �Ad�P,
�T

0 A ≤
�T

0 Ac +
�T

0 Ad, and it follows from the left

inequality of (2.12) (on Ad) that �Ad�2P ≤ CEP
���T

0 Ad
�2�

. Then

EP
�
|Y0|2 + �M�T +

� T�

0

A
�2�

≤ C�Y �2P + CEP
�� T�

0

Ad
�2�

. (2.20)

Note that

T�

0

Ad =
�

0<t≤T

|∆At| =
�

0<t≤T

|∆Yt|. (2.21)

Define, for each n ≥ 1,

Dn :=
�

0<t≤T

|∆Yt|1{|∆Yt|≥ 1
n},

and, τn0 := 0, and for m ≥ 0, by denoting Yt := YT for t ≥ T ,

τnm+1 := inf
�
t > τnm : |∆Yt| ≥

1

n

�
∧ (T + 1).

We remark that we use T+1 instead of T here so that∆YT will not be counted repeatedly
at below. By the right continuity of F we see that τni are stopping times. It is clear that

Dn ↑
�

0≤t≤T

|∆Yt| as n → ∞, and
m�

i=1

|∆Yτn
i
| ↑ Dn as m → ∞.
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We claim that

EP
�� m�

i=1

|∆Yτn
i
|
�2�

≤ �Y �2P for all n,m. (2.22)

Then it follows from (2.21) that EP
���T

0 Ad
�2�

≤ C�Y �2P. This, together with (2.20),

proves (2.15).

It remains to prove (2.22). To this end, we fix n,m. Since F is a Brownian filtration,
all F - stopping times are predictable, see e.g. [23], Corollary 4.5.7. Then for each τni ,
there exist {τni,j , j ≥ 1} such that τni,j < τni and τni,j ↑ τni as j → ∞. By definition of �Y �P
(2.10), we have

EP
�� m�

i=1

|EPτn
i−1∨τn

i,j
[Yτn

i
]− Yτn

i−1∨τn
i,j
|
�2�

≤ �Y �2P. (2.23)

Moreover, since all F - stopping times are predictable, the filtration (Ft) does not have
any discontinuity time, i.e.:

�∞
j=1 Fτn

i−1∨τn
i,j

= Fτni
, see, e.g. [6] Theorem 83, p.217.

Send j → ∞, we obtain

lim
j→∞

[EPτn
i−1∨τn

i,j
[Yτn

i
]− Yτn

i−1∨τn
i,j
] = EPτn

i
[Yτn

i
]− Yτn

i − = Yτn
i
− Yτn

i − = ∆Yτn
i
;

Then, noting that EP[sup0≤t≤T |∆Yt|2] < ∞ and applying the Dominated Convergence
Theorem, we obtain (2.22) from (2.23), and complete the proof.

As a direct consequence of the above a priori estimates, we have

Theorem 2.7. A process Y ∈ D(F) is a square integrable semimartingale if and only if
�Y �P < ∞.

Proof. By Theorem 2.6, it suffices to prove the if part. Assume �Y �P < ∞. By Rao’s
theorem in Remark 2.1 (ii), we have decomposition Y = M + A, where M is a local
martingale and A is a predictable process with paths of locally integrable variation.
Define the sequence of stopping times τn as

τn := inf{t ≥ 0 : �M�t +
t�

0

A ≥ n} ∧ T.

Then τn → T,P-a.s. Denoting Y n
t := Yt∧τn ,M

n
t := Mt∧τn , A

n
t := At∧τn , then �Y n�P ≤

�Y �P and Y n is a square integrable semimartingale. By Theorem 2.6 we have,

EP
�
|Y n

0 |2 + �Mn�T +
� T�

0

An
�2�

≤ C�Y n�2P ≤ C�Y �2P.

Send n → ∞, by the Dominated Convergence Theorem we have

EP
�
|Y0|2 + �M�T +

� T�

0

A
�2�

≤ C�Y �2P.

Thus Y is a square integrable semimartingale.
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3 Doubly Reflected BSDEs

In this section we assume F is generated by a standard Brownian motion B and aug-
mented with all the P-null sets. We consider the following Doubly Reflected Backward
SDE (DRBSDE, for short) with F-progressively measurable solution (Y, Z,A):





Yt = ξ +

� T

t
f(s, Ys, Zs)ds−

� T

t
ZsdBs +AT −At;

L ≤ Y ≤ U, [Yt− − Lt−]dK
+
t = [Ut− − Yt−]dK

−
t = 0.

(3.1)

Here Y ∈ D(F) and A has finite variation with orthogonal decomposition A = K+−K−.
We say (Y, Z,A) satisfying (3.1) is a local solution if

sup
0≤t≤T

|Yt|+
� T

0
|Zt|2dt+

T�

0

A < ∞, P-a.s. (3.2)

and a solution if

�(Y, Z,A)�2 := EP
�

sup
0≤t≤T

|Yt|2 +
� T

0
|Zt|2dt+

� T�

0

A
�2�

< ∞. (3.3)

Throughout this section, we assume the following standing assumptions:

Assumption 3.1. (i) ξ is FT -measurable, f is F-progressively measurable, and

I20 := I20 (ξ, f) := EP
�
|ξ|2 +

� � T

0
|f(t, 0, 0)|dt

�2�
< ∞. (3.4)

(ii) f is uniformly Lipschitz continuous in (y, z);
(iii) L,U ∈ D(F); L ≤ U , LT ≤ ξ ≤ UT ; and

�(L,U)�2P,0 := �L+�2P,0 + �U−�2P,0 < ∞. (3.5)

Moreover, we shall always denote

L̂t := Lt ∨ Lt−, Ût := Ut ∧ Ut−. (3.6)

Remark 3.2. In the standard BSDE literature, one requires EP
� � T

0 |f(t, 0, 0)|2dt
�
< ∞.

Our condition (3.4) is slightly weaker. In fact, most estimates in the BSDE literature

can be improved by replacing EP
� � T

0 |f(t, 0, 0)|2dt
�
with EP

�� � T
0 |f(t, 0, 0)|dt

�2�
, and

the arguments are rather standard. We refer to the monograph Cvitanic and Zhang [5]
Theorem 9.3.2 for interested readers.

It is well known that Assumption 3.1 does not yield the wellposedness of DRBSDE
(3.1). At below is a simple counterexample.

Example 3.1. Let L = U be deterministic, càdlàg , and
T�

0

L = ∞. Then DRBSDE (3.1)

with ξ = LT and f = 0 has no solution.

In the literature, there are typically two approaches for wellposedness of DRBSDEs.
We first report a result from Hamadène, Hassani and Ouknine [13] Theorem 4.1 and its
proof:

EJP 18 (2013), paper 109.
Page 10/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2406
http://ejp.ejpecp.org/


Some norm estimates for semimartingales

Lemma 3.2. Let Assumption 3.1 and the following separation condition hold:

Lt < Ut and Lt− < Ut− for all t. (3.7)

Then (3.1) admits a local solution (Y, Z,A) satisfying:

�(Y·τn , Z1[0,τn], A·∧τn)� < ∞, for all n ≥ 1, (3.8)

where τ0 := 0 and, for i ≥ 0,

τ2i+1 := inf{t ≥ τ2i : Yt ≤ L̂t} ∧ T, τ2i+2 := inf{t ≥ τ2i+1 : Yt ≥ Ût} ∧ T. (3.9)

The condition (3.7) is mild and very easy to verify, but it does not yield any a priori
estimates. We remark that [13] takes a slightly different form of DRBSDEs. However,
one can easily check that a local solution in [13] is a local solution in our sense, so the
existence in Lemma 3.2 is valid. Moreover, for the γn in the proof of [13] Theorem 4.1,
it is clear that

τn ≤ γn ≤ τ2n. (3.10)

We next report a result from Peng and Xu [22], following the original work Cvitanic
and Karatzas [4]:

Lemma 3.3. Let Assumption 3.1 hold. Assume further the following Mokobodski’s type
of condition:

there exists a square integrable semimartingale Y 0 such that Lt ≤ Y 0
t ≤ Ut. (3.11)

Then DRBSDE (3.1) admits a unique solution and the following estimate holds:

�(Y, Z,A)�2 ≤ C
�
I20 + �Y 0�2P

�
. (3.12)

We note that, in those works there is no discussion on the sufficient conditions for the
existence of such Y 0. More recently, Crépey and Matoussi [2] provides a priori bound, as
well as error estimates for solutions of DRBSDE under the assumption that the barrier
L (or U ) is a quasimartingale, �L�P,0 < ∞ and L has canonical decomposition

Lt = L0 +Mt +At,

for a uniformly integrable martingale M and a predictable process of integrable varia-
tion A. The assumption on the structure of the barriers here can be seen as a similar
approach to the Mokobodski’s condition. The advantage of such assumption is that it
provides an explicit representation for the structures of K+,K−, which in turn helps
for the derivation of the estimates.

Our goal in this section is to provide another approach, in the spirit of norm esti-
mates, to impose a sufficient condition on the barriers L and U that would lead to a
priori bound and error estimates of the solutions. In light of the norm �.�P (2.10), we
introduce the following norm for the barriers (L,U): recalling L̂ and Û in (3.6),

�(L,U)�2P := �(L,U)�2P,0 (3.13)

+sup
π
EP

�� n−1�

i=0

�
[EPτi(L̂τi+1)− Ûτi ]

+ + [L̂τi − EPτi(Ûτi+1)]
+
��2�

,

where the supremum is again taken over all random partitions π : 0 = τ0 ≤ · · · ≤ τn = T .
Our main result of this section is:
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Theorem 3.4. Let Assumption 3.1 hold. Then the following are equivalent:
(i) The DRBSDE (3.1) admits a unique solution (Y, Z,A);
(ii) the Mokobodski condition (3.11) holds;
(iii) �(L,U)�P < ∞.

Moreover, in this case we have the estimate:

�(Y, Z,A)�2 ≤ C
�
I20 + �(L,U)�2P

�
. (3.14)

In addition, we have the following estimates for the difference of two DRBSDEs:

Theorem 3.5. Assume (ξi, f i, Li, U i), i = 1, 2, satisfy all the conditions in Theorem 3.4,
and let (Y i, Zi, Ai) denote the solution to the corresponding DRBSDE (3.1). Denote
δY := Y 1 − Y 2, and similarly for the other notations. Then

EP
�

sup
0≤t≤T

[|δYt|2 + |δAt|2] +
� T

0
|δZt|2dt

�

≤ CEP
�
|δξ|2 +

�� T

0
|δf(t, Y 1

t , Z
1
t )|dt

�2�
(3.15)

+C
2�

i=1

�
I0(ξi, f

i) + �(Li, U i)�P
��
EP

�
sup

0≤t≤T
[|δLt|2 + |δUt|2]

�� 1
2
.

These two theorems will be proved in the rest of this section. We first note that

Remark 3.3. (i) In the case that there is only one barrier L, we may view it as U = ∞.
One can check straightforwardly that �(L,U)�P = �L+�P,0. Then Theorems 3.4 and 3.5
reduce to standard results for reflected BSDEs with one barrier, see e.g. El Karoui et al
[11] and Peng and Xu [22].

(ii) In the case (L1, U1) = (L2, U2), the last term in (3.15) vanishes and [22] has
already obtained the estimate.

3.1 Proof of Theorem 3.5

As usual we start with some a priori estimates.

Lemma 3.6. Assume (ξi, f i, Li, U i), i = 1, 2, satisfy Assumption 3.1. If the correspond-
ing DRBSDE (3.1) has a solution (Y i, Zi, Ai), then

EP
�

sup
0≤t≤T

[|δYt|2 + |δAt|2] +
� T

0
|δZt|2dt

�
≤ CI2, (3.16)

where, recalling the norm �(Y, Z,A)� defined by (3.3),

I2 := EP
�
|δξ|2 +

�� T

0
|δf(t, Y 1

t , Z
1
t )|dt

�2�
(3.17)

+
2�

i=1

�(Y i, Zi, Ai)�
�
EP

�
sup

0≤t≤T
[|δLt|2 + |δUt|2]

�� 1
2
.

Proof. Let λ > 0 be a constant which will be specified later. Applying Itô’s formula on
eλt|δYt|2 we have

eλt|δYt|2 + λ

� T

t
eλs|δYs|2ds+

� T

t
eλs|δZs|2ds (3.18)

= eλT |δξ2|+ 2

� T

t
eλsδYs

�
f1(s, Y 1

s , Z
1
s )− f2(s, Y 2

s , Z
2
s )
�
ds+ 2

� T

t
eλsδYs−dδAs

−2

� T

t
eλsδYsδZsdBs.
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For any ε > 0, note that

2

� T

t
eλs|δYs|

��f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s )
��ds

≤ C

� T

t
eλs|δYs|[|δf(s, Y 1

s , Z
1
s )|+ |δYs|+ |δZs|]ds

≤ C
�

sup
t≤s≤T

|δYs|
� T

t
eλs|δf(s, Y 1

s , Z
1
s )|ds+

� T

t
eλs[|δYs|2 + |δYs||δZs|]ds

�

≤ ε sup
t≤s≤T

|δYs|2 +
1

2

� T

t
eλs|δZs|2ds (3.19)

+C

� T

t
eλs|δYs|2ds+ Cε−1

� � T

t
eλs|δf(s, Y 1

s , Z
1
s )|ds

�2
;

and, with the orthogonal decompositions Ai = Ki,+ −Ki−,

2

� T

t
eλsδYs−dδAs

= 2

� T

t
eλs

�
Y 1
s−dK

1,+
s − Y 1

s−dK
1,−
s − Y 2

s−dK
1,+
s + Y 2

s−dK
1,−
s

−Y 1
s−dK

2,+
s + Y 1

s−dK
2,−
s + Y 2

s−dK
2,+
s − Y 2

s−dK
2,−
s

�

≤ 2

� T

t
eλs

�
L1
s−dK

1,+
s − U1

s−dK
1,−
s − L2

s−dK
1,+
s + U2

s−dK
1,−
s

−L1
s−dK

2,+
s + U1

s−dK
2,−
s + L2

s−dK
2,+
s − U2

s−dK
2,−
s

�

= 2

� T

t
eλs

�
δLs−dK

1,+
s − δUs−dK

1,−
s − δLs−dK

2,+
s + δUs−dK

2,−
s

�

≤ 2eλT sup
0≤s≤T

[|δLs|+ |δUs|]
� T�

t

A1 +
T�

t

A2
�
. (3.20)

Plug (3.19) and (3.20) into (3.18), we obtain

eλt|δYt|2 + λ

� T

t
eλs|δYs|2ds+

� T

t
eλs|δZs|2ds

≤ eλT |δξ2|+ ε sup
t≤s≤T

|δYs|2 +
1

2

� T

t
eλs|δZs|2ds

+C

� T

t
eλs|δYs|2ds+ Cε−1

� � T

t
eλs|δf(s, Y 1

s , Z
1
s )|ds

�2

+2eλT sup
0≤s≤T

[|δLs|+ |δUs|]
� T�

t

A1 +
T�

t

A2
�
− 2

� T

t
eλsδYsδZsdBs.

Set λ = C for the above C, we get

eλt|δYt|2 +
1

2

� T

t
eλs|δZs|2ds

≤ eλT |δξ2|+ ε sup
t≤s≤T

|δYs|2 + Cε−1
� � T

t
eλs|δf(s, Y 1

s , Z
1
s )|ds

�2
(3.21)

+2eλT sup
0≤s≤T

[|δLs|+ |δUs|]
� T�

t

A1 +
T�

t

A2
�
− 2

� T

t
eλsδYsδZsdBs.

EJP 18 (2013), paper 109.
Page 13/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2406
http://ejp.ejpecp.org/


Some norm estimates for semimartingales

Take expectation on both sides, we have

sup
0≤t≤T

EP[|δYt|2] + EP
� � T

0
|δZt|2dt

�
≤ C[1 + ε−1]I2 + εEP

�
sup

0≤t≤T
|δYt|2

�
. (3.22)

Moreover, by (3.21) we have

sup
0≤t≤T

eλt|δYt|2 ≤ eλT |δξ2|+ ε sup
0≤t≤T

|δYt|2 + Cε−1
� � T

0
eλt|δf(t, Y 1

t , Z
1
t )|dt

�2

+2eλT sup
0≤t≤T

[|δLt|+ |δUt|]
� T�

0

A1 +
T�

0

A2
�
+ 2 sup

0≤t≤T

���
� T

t
eλsδYsδZsdBs

���. (3.23)

Apply the Burkholder-Davis-Gundy Inequality and note that λ = C, we get

EP
�

sup
0≤t≤T

���
� T

t
eλsδYsδZsdBs

���
�
≤ CEP

�� � T

0
|δYtδZt|2dt

� 1
2
�

≤ CEP
�

sup
0≤t≤T

|δYt|
�� T

0
|δZt|2dt

� 1
2
�

(3.24)

≤
√
εEP

�
sup

0≤t≤T
|δYt|2

�
+ Cε−

1
2EP

� � T

0
|δZt|2dt

�
.

Take expectation on both sides of (3.23), and apply (3.24) and then (3.22), we obtain

EP
�

sup
0≤t≤T

|δYt|2
�

≤ C[1 + ε−1]I2 + CεEP
�

sup
0≤t≤T

|δYt|2
�

+C
√
εEP

�
sup

0≤t≤T
|δYt|2

�
+ Cε−

1
2EP

� � T

0
|δZt|2dt

�

≤ C
�√

ε+ ε(1 + ε−
1
2 )
�
EP

�
sup

0≤t≤T
|δYt|2

�
+ C[1 + ε−

1
2 ][1 + ε−1]I2

≤ C
√
εEP

�
sup

0≤t≤T
|δYt|2

�
+ Cε−

3
2 I2.

Set ε := 1
4C2 for the above C, and then by (3.22), we have

EP
�

sup
0≤t≤T

|δYt|2
�
≤ CI2, EP

� � T

0
|δZt|2dt

�
≤ CI2.

Finally, notice that

δAt = δY0 − δYt −
� t

0
[f1(s, Y 1

s , Z
1
s )− f2(s, Y 2

s , Z
2
s )]ds+

� t

0
δZsdBs.

One can easily get the estimate for δA.
Proof of Theorem 3.5. This is a direct consequence of Lemma 3.6 and Theorem
3.4.

We emphasize that in next subsection, we shall prove Theorem 3.4 by using Lemma
3.6, but without using Theorem 3.5. So there is no danger of cycle proof.

3.2 Proof of Theorem 3.4

Again, we start with a priori estimate.

Lemma 3.7. Let Assumption 3.1 and (3.7) hold, and f = 0. Then the local solution
(Y, Z,A) of DRBSDE (3.1) satisfies (3.14).
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Proof. Without loss of generality, we assume �(L,U)�P < ∞. We proceed in three steps.

Step 1. We first assume (Y, Z,A) is a solution of (3.1) and Y is continuous. Then K+

and K− are also continuous. Apply Itô’s formula on |Yt|2, by the minimum condition in
(3.1) we have,

d|Yt|2 = 2YtZtdBt + |Zt|2dt− 2Yt−dK
+
t + 2Yt−dK

−
t

= 2YtZtdBt + |Zt|2dt− 2Lt−dK
+
t + 2Ut−dK

−
t . (3.25)

Then, for any ε > 0,

EP
�
|Yt|2 +

� T

t
|Zs|2ds

�
= EP

�
|ξ|2 + 2

� T

t
Ls−dK

+
s − 2

� T

t
Us−dK

−
s

�

≤ EP
�
|ξ|2 + 2 sup

0≤s≤T
L+
s K

+
T + 2 sup

0≤s≤T
U−
s K−

T

�

≤ EP
�
|ξ|2 + Cε−1 sup

0≤s≤T
[|L+

s |2 + |U−
s |2] + ε[|K+

T |2 + |K−
T |2]

�

≤ EP[ξ|2] + Cε−1�(L,U)�2P,0 + εEP
�� T�

0

A
�2�

.

Following standard arguments, in particular by applying the Burkholder-Davis-Gundy
Inequality on (3.25), we have

EP
�

sup
0≤t≤T

|Yt|2 +
� T

0
|Zt|2dt

�
≤ C

�
EP[ξ|2] + ε−1�(L,U)�2P,0 + εEP

�� T�

0

A
�2��

. (3.26)

We claim that

EP
�� T�

0

A
�2� ≤ CEP

�
sup

0≤t≤T
|Yt|2 +

� T

0
|Zt|2dt

�
+ C�(L,U)�2P. (3.27)

Combine (3.26) and (3.27) and set ε small, we prove (3.14) immediately.
To prove (3.27), we recall the sequence of stopping times τn defined by (3.9). By the

proof of [13] Theorem 4.1 and (3.10),

for P-a.e. ω, τn(ω) = T for n large enough. (3.28)

By the continuity of K+,K− and the minimal condition in (3.1), dK+
t = 0 on [τ2i, τ2i+1]

and dK−
t = 0 on [τ2i+1, τ2i+2], and thus

Yt = Yτ2i+1 −
� τ2i+1

t
ZsdBs − (K−

τ2i+1
−K−

t ), t ∈ [τ2i, τ2i+1];

Yt = Yτ2i+2 −
� τ2i+2

t
ZsdBs + (K+

τ2i+2
−K+

t ), t ∈ [τ2i+1, τ2i+2].
(3.29)

Moreover, recalling (3.6) we have

Yτ2i = Ûτ2i1{τ2i<T} + ξ1{τ2i=T}, Yτ2i+1 = L̂τ2i+11{τ2i+1<T} + ξ1{τ2i+1=T}; (3.30)

Indeed, on
�
τ2i < T

�
if U is continuous or has a negative jump at τ2i, then Û is right

continuous at τ2i and the first equality of (3.30) holds. If U has a positive jump at τ2i, we
must have Yτ−

2i
= Uτ−

2i
. By continuity of Y , it follows that Yτ2i = Ûτ2i . A similar argument

holds for the second equality in (3.30).
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For each i, by (3.29) and (3.30),

0 ≤ EPτ2i [K
−
τ2i+1

]−K−
τ2i = EPτ2i [Yτ2i+1 ]− Yτ2i

= EPτ2i

�
L̂τ2i+11{τ2i+1<T} + ξ1{τ2i+1=T}

�
− Ûτ2i1{τ2i<T} − ξ1{τ2i=T}

=
�
EPτ2i [L̂τ2i+1 ]− Ûτ2i

�
1{τ2i<T} + E

P
τ2i

�
[L̂τ2i+1 ]− ξ]1{τ2i<T=τ2i+1}

�

≤
�
EPτ2i [L̂τ2i+1 ]− Ûτ2i

�+
.

Then for any n,

EP
�� n�

i=0

�
EPτ2i [K

−
τ2i+1

]−K−
τ2i

���2
≤ �(L,U)�2P.

Send n → ∞, we get

EP
���

i≥0

�
EPτ2i [K

−
τ2i+1

]−K−
τ2i

���2
≤ �(L,U)�2P. (3.31)

Similarly,

EP
���

i≥0

�
EPτ2i+1

[K+
τ2i+2

]−K+
τ2i+1

���2
≤ �(L,U)�2P. (3.32)

Denote

Ŷτn := Yτn −
�

i≤n
2

�
EPτ2i [K

−
τ2i+1

]−K−
τ2i

�
+

�

i≤n−1
2

�
EPτ2i+1

[K+
τ2i+2

]−K+
τ2i+1

�
. (3.33)

By (3.31) and (3.32), we have

EP
�
max
n≥0

|Ŷτn |2
�
≤ CEP

�
sup

0≤t≤T
|Yt|2

�
+ C�(L,U)�2P. (3.34)

Note that

Ŷτn = Y0 +

� τn

0
ZsdBs +

�

i≤n
2

�
K−

τ2i+1
− EPτ2i [K

−
τ2i+1

]
�
−

�

i≤n−1
2

�
K+

τ2i+2
− EPτ2i+1

[K+
τ2i+2

]
�

is a martingale. By (3.34), we have

EP
��

i≤n
2

�
K−

τ2i+1
− EPτ2i [K

−
τ2i+1

]
�2

+
�

i≤n−1
2

�
K+

τ2i+2
− EPτ2i+1

[K+
τ2i+2

]
�2�

= EP
���

i≤n
2

�
K−

τ2i+1
− EPτ2i [K

−
τ2i+1

]
�
−

�

i≤n−1
2

�
K+

τ2i+2
− EPτ2i+1

[K+
τ2i+2

]
��2�

= EP
��

Ŷτn − Y0 −
� τn

0
ZsdBs

�2�
≤ CEP

�
sup
i≥0

|Ŷτi |2 +
� τn

0
|Zt|2dt

�

≤ CEP
�

sup
0≤t≤T

|Yt|2 +
� T

0
|Zt|2dt

�
+ C�(L,U)�2P.

Send n → ∞, we get

EP
��

i≥0

�
K−

τ2i+1
− EPτ2i [K

−
τ2i+1

]
�2

+
�

i≥0

�
K+

τ2i+2
− EPτ2i+1

[K+
τ2i+2

]
�2�

= EP
���

i≥0

�
K−

τ2i+1
− EPτ2i [K

−
τ2i+1

]
�
−

�

i≥0

�
K+

τ2i+2
− EPτ2i+1

[K+
τ2i+2

]
��2�

≤ CEP
�

sup
0≤t≤T

|Yt|2 +
� T

0
|Zt|2dt

�
+ C�(L,U)�2P. (3.35)
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This, together with (3.28), (3.31) and (3.32), implies further that

EP
�
|K−

T |2 + |K+
T |2

�
= EP

���

i≥0

�
K−

τ2i+1
−K−

τ2i

��2
+
��

i≥0

�
K+

τ2i+2
−K+

τ2i+1

��2�

≤ CEP
���

i≥0

�
K−

τ2i+1
− EPτ2i [K

−
τ2i+1

]
��2

+
��

i≥0

�
EPτ2i [K

−
τ2i+1

−K−
τ2i ]

��2�

+CEP
���

i≥0

�
K+

τ2i+2
− EPτ2i+1

[K+
τ2i+2

]
��2

+
��

i≥0

�
EPτ2i+1

[K+
τ2i+2

]−K+
τ2i+1

��2�

= CEP
��

i≥0

�
K−

τ2i+1
− EPτ2i [K

−
τ2i+1

]
�2

+
�

i≥0

�
K+

τ2i+2
− EPτ2i+1

[K+
τ2i+2

]
�2�

+CEP
���

i≥0

�
EPτ2i [K

−
τ2i+1

−K−
τ2i ]

��2
+

��

i≥0

�
EPτ2i+1

[K+
τ2i+2

]−K+
τ2i+1

��2�

≤ CEP
�

sup
0≤t≤T

|Yt|2 +
� T

0
|Zt|2dt

�
+ C�(L,U)�2P.

This proves (3.27) and hence (3.14).

Step 2. We next assume (Y, Z,A) is a local solution but Y is still continuous. Let τi
be defined by (3.9). Then (3.28)-(3.30) still hold. Thus

Yτ2i ≥ −Û−
τ2i1{τ2i<T} − |ξ|1{τ2i=T} ≥ −

�
sup

0≤t≤T
U−
t + |ξ|

�
.

Moreover, by (3.8), the stochastic integral in (3.29) is a true martingale, and then

Yτ2i ≤ EPτ2i [Yτ2i+1 ] ≤ EPτ2i

�
L̂+
τ2i+1

1{τ2i+1<T} + |ξ|1{τ2i+1=T}

�
≤ EPτ2i

�
sup

0≤t≤T
L+
t + |ξ|

�
.

Therefore,

EP
�
max
i≥0

|Yτ2i |2
�

≤ E
��

sup
0≤t≤T

U−
t + |ξ|

�2 ��
sup

0≤s≤T
EPs [ sup

0≤t≤T
L+
t + |ξ|]

�2�
(3.36)

≤ EP
��

sup
0≤s≤T

EPs
�

sup
0≤t≤T

[L+
t + U−

t ] + |ξ|
��2�

≤ CEP
��

sup
0≤t≤T

[L+
t + U−

t ] + |ξ|
�2�

≤ CEP[|ξ|2] + C�(L,U)�2P,0.

Now for any n, define

τ̂n := inf
�
t : sup

0≤s≤t
|Ys|+

� t

0
|Zs|2ds+

t�

0

A ≥ n
�
∧ T. (3.37)

Then

EP
�

sup
0≤t<τ̂n

|Yt|2 +
� τ̂n

0
|Zt|2dt+

� τ̂n�

0

A
�2�

< ∞. (3.38)

Define τ̃n := inf{τ2i : τ2i ≥ τ̂n}. Then by (3.1) and (3.36) we have

Yt = Yτ̃n +

� τ̃n

t
ZsdBs − (K−

τ̃n
−K−

t ), Yt ≤ Ut, [Ut − Yt]dK
−
t = 0, t ∈ [τ̂n, τ̃n];

EP[|Yτ̃n |2] ≤ CEP[|ξ|2] + C�(L,U)�2P,0.
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By standard arguments for Reflected BSDEs with one barrier, see e.g. [11],

EP[|Yτ̂n |2] ≤ CEP
�
|ξ|2 + sup

0≤t≤T
|U−

t |2
�
+ C�(L,U)�2P,0 ≤ CEP[|ξ|2] + C�(L,U)�2P,0.

This, together with (3.38), implies that

EP
�

sup
0≤t≤τ̂n

|Yt|2 +
� τ̂n

0
|Zt|2dt+

� τ̂n�

0

A
�2�

< ∞.

Then by Step 1, we obtain

EP
�

sup
0≤t≤τ̂n

|Yt|2 +
� τ̂n

0
|Zt|2dt+

� τ̂n�

0

A
�2�

≤ CEP[|Yτ̂n |2] + C�(L,U)�2P

≤ CEP[|ξ|2] + C�(L,U)�2P.

Note that τ̂n = T when n is large enough. Send n → ∞ and apply the Monotone
Convergence Theorem, we prove (3.14).

Step 3. Finally we allow Y to be discontinuous. Let

Jt :=
�

0<s≤t

∆Ys = −
�

0<s≤t

∆As = −
�

0<s≤t

∆K+
s +

�

0<s≤t

∆K−
s .

Note that, when ∆K+
t > 0, by the minimum condition of (3.1) we see that Yt− = Lt−.

Since K+ and K− are orthogonal, we have ∆Yt = −∆K+
t . Thus Lt ≤ Yt = Yt−−∆K+

t =
Lt− − ∆K+

t . This implies that ∆K+
t ≤ [∆Lt]−. Similarly we have ∆K−

t ≤ [∆Ut]+.
Following the arguments for (2.20), one can easily prove that

EP
�� �

0<t≤T

[[∆Lt]
− + [∆Ut]

+]
�2�

≤ C�(L,U)�2P.

Thus

EP
�� T�

0

J
�2�

= EP
�� �

0<t≤T

[∆K+
t +∆K−

t ]
�2�

≤ C�(L,U)�2P. (3.39)

Now define

Ȳt := Yt − Jt, K̄+
t := K+

t −
�

0<s≤t

∆K+
s , K̄−

t := K−
t −

�

0<s≤t

∆K−
s ,

Āt := At + Jt, L̄t := Lt − Jt, Ūt := Ut − Jt, ξ̄ := ξ − JT .

Then it is clear that Ȳ is continuous, (L̄, Ū) satisfies (3.7), and (Ȳ , Z, Ā) is a local solution
to DRBSDE (3.1) with coefficients (ξ̄, 0, L̄, Ū). Moreover, by (3.39) we see that (Ȳ , Z, Ā)
still satisfies the estimate (3.8). By Step 2, we have

�(Ȳ , Z, Ā)�2 ≤ CEP[|ξ̄|2] + C�(L̄, Ū)�2P. (3.40)

One can check straightforwardly that

�(Y, Z,A)�2 ≤ C�(Ȳ , Z, Ā)�2 + CEP
���T

0 J
�2�

;

EP[|ξ̄|2] ≤ CEP[|ξ|2] + CEP
���T

0 J
�2�

; �(L̄, Ū)�2P ≤ �(L,U)�2P.
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This, together with (3.39) and (3.40), implies (3.14) immediately.

Proof of Theorem 3.4. First, by Lemma 3.3 we know (ii) implies (i). On the other hand,
if (i) holds true, then Y 0 := Y is clearly a square integrable semimartingale between L
and U . That is, (i) and (ii) are equivalent.

Next, assume (ii) holds true with decomposition Y 0 = Y 0
0 +M0+A0. Since L ≤ Y 0 ≤

U , then

L+ + U− ≤ (Y 0)+ + (Y 0)− = |Y 0|.

Moreover, for any partition π : 0 = τ0 < · · · < τn = T ,
�
EPτi [L̂τi+1 ]− Ûτi

�+
≤

�
EPτi [Y

0
τi+1

+ |∆Y 0
τi+1

|]− Y 0
τi + |∆Y 0

τi |
�+

≤
�
EPτi [Y

0
τi+1

]− Y 0
τi

�+
+ EPτi [|∆Y 0

τi+1
|] + |∆Y 0

τi |.

Similarly,
�
L̂τi − EPτi [Ûτi+1 ]

�+
≤

�
Y 0
τi − E

P
τi [Y

0
τi+1

]
�+

+ EPτi [|∆Y 0
τi+1

|] + |∆Y 0
τi |.

Note that
�n

i=1 |∆Y 0
τi | ≤

�T
0 A0. Then by Theorem (2.6), we may easily show that

�(L,U)�P ≤ C�Y 0�P, and thus (iii) holds.
It remains to prove that (iii) implies (ii). We first assume (3.7) holds. Then it follows

from Lemma 3.2 that DRBSDE (3.1) with f = 0 admits a local solution (Y 0, Z0, A0).
Applying Lemma 3.7 we see that �(Y 0, Z0, A0)� ≤ C[I0 + �(L,U)�P]. This implies (3.11).

In the general case, denote Un := U+ 1
n . Then (L,Un) satisfies (3.7). By the above ar-

guments, DRBSDE (3.1) with coefficients (ξ, 0, L, Un) has a unique solution (Y n, Zn, An)
satisfying

�(Y n, Zn, An)�2 ≤ CEP[|ξ|2] + C�(L,Un)�2P.

It is obvious that �(L,Un)�P ≤ �(L,U)�P. Then

�(Y n, Zn, An)�2 ≤ CEP[|ξ|2] + C�(L,U)�2P.

Now for m > n, applying Lemma 3.6 we have

EP
�

sup
0≤t≤T

[|Y n
t − Y m

t |2 + [An
t −Am

t ]2 +

� T

0
|Zn

t − Zm|2dt
�

≤ C
�
�(Y n, Zn, An)�+ �(Y m, Zm, Am)�

�
[
1

n
− 1

m
]

≤ C

n

��
EP[|ξ|2]

� 1
2
+ �(L,U)�P

�
.

Send n → ∞, we obtain limit processes (Y 0, Z0, A0). Following standard arguments we
see that Y 0 satisfies the requirement in (ii).

4 Semimartingales under G-expectation

In this section we introduce a nonlinear expectation, which is a variation of the G-
expectation proposed by Peng [21], and we shall still call it G-expectation. Let (Ω,F ,F)
be a filtered space such that F is right continuous and P be a family of probability
measures. For each P ∈ P and F-stopping time τ , denote

P(τ,P) :=
�
P� ∈ P : P� = P on Fτ

�
. (4.1)

Throughout this section, we shall always assume
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Assumption 4.1. (i) (2.1) holds for every P ∈ P;
(ii) NP ⊂ F0, where NP is the set of all P-polar sets, that is, all E ∈ F such that

P(E) = 0 for all P ∈ P.
(iii) For any P ∈ P, F-stopping time τ , P1,P2 ∈ P(τ,P), and any partition E1, E2 ∈ Fτ

of Ω , the probability measure P̄ defined below also belongs to P(τ,P):

P̄(E) := P1(E ∩ E1) + P2(E ∩ E2), for all E ∈ F . (4.2)

We provide below an important example for such P, which induces theG-expectation
of Peng [21], and we refer to [28] for more examples.

Example 4.1. Let Ω := {ω ∈ C([0, T ],R) : ω0 = 0}, B the canonical process, F the
right limit of the filtration generated by B, P0 the Winer measure. Let 0 ≤ σ < σ
be two constants. For each bounded F-progressively measurable process σ, denote
Xσ

t :=
� t
0 σsdBs, P0-a.s. Then the following class P satisfies Assumption 4.1:

P := {Pσ : σ ≤ σ ≤ σ} where Pσ := P0 ◦ (Xσ)−1.

4.1 Definitions

We first define

Definition 4.2. We say an F-progressively measurable process Y is a P-martingale
(resp. P-supermartingale, P-submartingale, P-semimartingale) if it is a P-martingale
(resp. P-supermartingale, P-submartingale, P-semimartingale) for all P ∈ P.

We next define theG-expectation and conditionalG-expectation. For any F -measurable
random variable ξ such that EP[|ξ|] < ∞ for all P ∈ P, its G-expectation is defined by

EG[ξ] := sup
P∈P

EP[ξ]. (4.3)

The conditional G-expectation is more involved. For any F-stopping time τ , denote

EG,P
τ [ξ] :=

P
ess sup
P�∈P(τ,P)

EP
�

τ [ξ], P-a.s. (4.4)

We note that, by Lemma 2.1, we may take the convention that EG,P
τ [ξ] is Fτ -measurable.

When the family {EG,P
τ [ξ],P ∈ P} can be aggregated, that is, there exists an Fτ -

measurable random variable, denoted as EG
τ [ξ], such that

EG
τ [ξ] = EG,P

τ [ξ], P-a.s. for all P ∈ P, (4.5)

we call EG
τ [ξ] the conditional G-expectation of ξ.

Remark 4.2. Given an σ-field F , the universal completion of F is the σ-field F∗ =
∩PFP, where P ranges over all probability measures on F and FP is the completion of
F under P. In a recent work Nutz and van Handel [19] gives a general and beautiful
construction of time-consistent sublinear expectations on the space of continuous paths
with respect to the filtration {F∗

t }0≤t≤T . In particular, by [19] Theorem 2.3, when ξ is
Borel measurable, there exists an F∗

τ measurable random variable EG
τ (ξ) that satisfies

(4.5). Thus if we choose to work under F∗ then the existence of EG
τ (ξ) is guaranteed.

Since the aggregation property is not the main focus of this paper, and [19] involves the
more abstract analytic sets, in this paper we choose to work with the EG,P(ξ) version of
the G-expectation and refer the readers to [19] for more general results.

Following standard arguments, see e.g. [29] Proposition 4.10, we have the following
time consistency (or say, dynamic programming principle), whose proof is omitted:
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Lemma 4.3. Under Assumption 4.1, for any τ1 ≤ τ2 and any P ∈ P, we have

EG,P
τ1 [ξ] =

P
ess sup

P�∈P(τ1,P)
EP

�

τ1

�
EG,P�

τ2 [ξ]
�
, P− a.s.

We finally define

Definition 4.4. We say an F-progressively measurable process Y is a G-martingale
(resp. G-supermartingale, G-submartingale) if, for any P ∈ P and any F-stopping times
τ1 ≤ τ2,

Yτ1 = (resp. ≥,≤)EG,P
τ1 [Yτ2 ], P-a.s.

We remark that a P-martingale is also called a symmetricG-martingale in the literature,
see e.g. [31].

4.2 Characterization of P-semimartingales

The following result is immediate:

Proposition 4.5. Let Assumption 4.1 hold.
(i) A P-martingale (resp. P-supermartingale, P-submartingale) must be aG-martingale

(resp. G-supermartingale, G-submartingale).
(ii) If Y is a G-martingale (resp. G-supermartingale, G-submartingale) andM is a P-

martingale, then Y +M is a G-martingale (resp. G-supermartingale, G-submartingale).
(iii) A G-supermartingale is a P-supermartinagle. In particular, a G-martingale is a

P-supermartinagle.

Proof. (i) and (ii) are obvious. To prove (iii), let Y be a G-supermartingale. Then for any
τ1 ≤ τ2 and any P ∈ P,

Yτ1 ≥ EG,P
τ1 [Yτ2 ] ≥ EPτ1 [Yτ2 ], P-a.s.

That is, Y is a P-supermartingale for all P ∈ P, and thus is a P-supermartingale.
We next study P-semimartingales. In light of Theorem 2.7, we define a new norm:

�Y �P := sup
P∈P

�Y �P. (4.6)

The following result is a direct consequence of Theorems 2.6 and 2.7.

Theorem 4.6. Let Assumption 4.1 hold. If �Y �P < ∞, then Y is a P-semimartingale.
Moreover, for any P ∈ P and for the decomposition

Yt = Y0 +MP
t +APt , P-a.s. (4.7)

we have

EP
�
�MP�T +

� T�

0

AP
�2� ≤ C�Y �2P .

The norm � · �P is defined through each P ∈ P. The following definition relies on the
G-expectation directly:

�Y �2G := EG
�

sup
0≤t≤T

|Yt|2
�
+ sup

π
sup
P∈P

EP
�� n−1�

i=0

���EG,P
τi (Yτi+1)− Yτi

���
�2�

. (4.8)
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Remark 4.3. (i) If the involved conditional G-expectations exist, see e.g. Remark 4.2,
then we may simplify the definition of �Y �G:

�Y �2G := EG
�

sup
0≤t≤T

|Yt|2
�
+ sup

π
EG

�� n−1�

i=0

���EG
τi(Yτi+1)− Yτi

���
�2�

.

(ii) In general � · �G does not satisfy the triangle inequality and thus is not a norm.
(iii) For G-submartingales Y 1, Y 2, the triangle inequality holds:

�Y 1 + Y 2�G ≤ �Y 1�G + �Y 2�G.

However, in general Y 1 + Y 2 may not be a G-submartingale anymore.

Nevertheless, �Y �G involves the process Y only. The following estimate is the main
result of this section.

Theorem 4.7. Assume Assumption 4.1 holds. Then there exists a universal constant C
such that �Y �P ≤ C�Y �G.

Proof. Without loss of generality, we assume �Y �G < ∞. For any P ∈ P and any
partition π : 0 = τ0 ≤ · · · ≤ τn = T , denote

Nτi :=
i−1�

j=0

�
EG,P

τj (Yτj+1)− Yτj

�
.

Then

Yτi −Nτi = Y0 +
i−1�

j=0

�
Yτj+1 − EG,P

τj (Yτj+1)
�

= Y0 +
i−1�

j=0

�
Yτj+1 − EPτj (Yτj+1)

�
−

i−1�

j=0

�
EG,P

τj (Yτj+1)− EPτj (Yτj+1)
�
.

Note that

i−1�

j=0

�
Yτj+1 − EPτj (Yτj+1)

�
is a P-martingale,

i−1�

j=0

�
EG,P

τj (Yτj+1)− EPτj (Yτj+1)
�
is nondecreasing and is Fτi−1 -measurable.

Applying Lemma 2.3 we obtain

EP
�� n−1�

j=0

�
EG,P

τj (Yτj+1)− EPτj (Yτj+1)
��2�

≤ CEP
�

sup
0≤i≤n

[|Yτi |2 + |Nτi |2]
�
≤ C�Y �2G.

This, together with the definition of � · �G, implies that

EP
�� n−1�

j=0

��EPτj (Yτj+1)− Yτj

��
�2�

≤ C�Y �2G.

Since π is arbitrary, we get �Y �P ≤ C�Y �G. Finally, since P ∈ P is arbitrary, we prove
the result.
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4.3 Doob-Meyer Decomposition for G-submartingales

As a special case of Theorem 4.6, we have the following decomposition for G sub-
martingales.

Proposition 4.8. Assume Assumption 4.1 holds. If Y is a G-submartingale satisfying
�Y �P < ∞ (or �Y �G < ∞), then all the results in Theorem 4.6 hold.

Unlike Lemma 2.2, in general we do not have �Y �P ≤ C supP∈P �Y �P,0 for G-
submartingales Y . Indeed, we have the following example:

Example 4.9. Fix P. Let K be as in Example 2.5 such that −K is a G martingale and
EG[K2

T ] = ∞, instead of EP[K2
T ] = ∞. Then the process Y defined in Example 2.5 is a

G-submartingale such that supP∈P �Y �P,0 < ∞, but �Y �P = ∞.

Proof. By the proof of Example 2.5, clearly supP∈P �Y �P,0 < ∞, but �Y �P = ∞. More-
over, on (τ2n, τ2n+1], dYt = −dKt and thus is a Gmartingale; and on (τ2n+1, τ2n+2], dYt =
dKt, then Y is increasing and thus is a G-submartingale. So Y is a G-submartingale on
[0, T ].

Now let Y be as in Proposition 4.8, and consider its decomposition (4.7). Let AP =
LP −KP be the orthogonal decomposition. We have the following conjecture:

Conjecture (Doob-Meyer decomposition) : The family {KP,P ∈ P} satisfies the
following property:

−KP
t =

P
ess sup
P�∈P(t,P)

EP
�

t

�
−KP�

T

�
. (4.9)

In particular, if the families {MP,KP, LP,P ∈ P} can be aggregated into {M,K,L}, then
−K is a G-martingale, and we have the following desired Doob-Meyer decomposition
for G-submartingales:

Yt = Y0 + [Mt −Kt] + Lt,
where M −K is a G-martingale and L is nondecreasing.

(4.10)

Remark 4.4. Assume each P ∈ P satisfies the martingale representation property.
Then, under the additional assumption Continuum Hypothesis which is independent
of the axiom of choice, Nutz [18] proved that the family {MP,P ∈ P} can always be
aggregated. This implies further that KP and LP can also be aggregated, and thus the
aggregation will not an an issue (again under those additional assumptions).

Remark 4.5. While it seems quite natural, this conjecture is very subtle. Our estimates
in this section are rather preliminary. There is a very interesting recent development by
Matoussi, Piozin and Possamaï [17] in the context of doubly reflected second-order BS-
DEs, which extends the DRBSDE in Section 3 to the nonlinear expectation framework.
Under the condition that the upper barrier U is a semimartingale, they obtain the well-
posedness of the equation, whose Y component is by definition a G-semimartingale. We
believe their a priori estimates is a first step towards our conjecture, at least for the
decomposition of their solution Y , and we hope to address the issue more thoroughly in
some future research.

EJP 18 (2013), paper 109.
Page 23/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2406
http://ejp.ejpecp.org/


Some norm estimates for semimartingales

References

[1] Chassagneux, J. : A discrete-time approximation for doubly reflected BSDE, Advances in
Applied Probability, 41, (2009), 101-130. MR-2514947

[2] Crépey, S. and Matoussi, A. : Reflected and doubly reflected BSDEs with jumps: a priori
estimates and comparison, Ann. App. Prob., 18, (2008) 2041-2069. MR-2462558

[3] Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. : Second order backward stochastic
differential equations and fully nonlinear PDEs, Communications in Pure and Applied Math-
ematics, 60, (2007), 1081-1110. MR-2319056

[4] Cvitanic, J. and Karatzas, I. : Backward stochastic differential equations with reflection and
Dynkin games, Annals of Probability, 24, (1996), 2024-2056. MR-1415239

[5] Cvitanic, J. and Zhang, J. : Contract Theory in Continuous Time Models, (2012), Springer
Finance. MR-2963805

[6] Dellacherie, C. and Meyer, P. A. : Probabilities and Potential B, (1982), North-Holland, Ams-
terdam. MR-0745449

[7] Ekren, I., Keller, C., Touzi, N., and Zhang, J. : On Viscosity Solutions of Path Dependent
PDEs, Annals of Probability, to appear, arXiv:1109.5971.

[8] Ekren, I., Touzi, N., and Zhang, J. : Optimal Stopping under Nonlinear Expectation, preprint,
arXiv:1209.6601.

[9] Ekren, I., Touzi, N., and Zhang, J. : Viscosity Solutions of Fully Nonlinear Parabolic Path
Dependent PDEs: Part I, preprint, arXiv:1210.0006.

[10] Ekren, I., Touzi, N., and Zhang, J. : Viscosity Solutions of Fully Nonlinear Path Parabolic
Dependent PDEs: Part II, preprint, arXiv:1210.0007.

[11] El. Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S. and Quenez, M. : Reflected Solutions of
Backward SDE’s, and Related Obstacle Problems for PDE’s, The Annals of Probability, 25,
(1997), 702-737. MR-1434123

[12] Hamadène, S. and Hassani, M. : BSDEs with two reflecting barriers: the general result,
Probability Theory and Related Fields, 132, (2005), 237-264. MR-2199292

[13] Hamadène, S., Hassani, M., and Ouknine, Y. : BSDEs with general discontinuous reflecting
barriers without Mokobodski’s condition, Bull. Sci. math., 134, (2010), 874-899 ; DOI :
10.1016/j.bulsci.2010.03.001. MR-2737357

[14] Hu, M., Ji, S., Peng, S., and Song, Y. : Backward Stochastic Differential Equations Driven by
G-Brownian Motion, preprint, arXiv:1206.5889.

[15] Karatzas,I and Shreve, S. : Brownian Motion and Stochastic Calculus, 2nd Edition, Springer.
MR-1121940

[16] Meyer, P. and Zheng, W. : Tightness criteria for laws of semimartingales, Ann. Inst. Henri
Poincaré, 20, (1984), 353-372. MR-0771895

[17] Matoussi, A., Piozin, L. and Possamaï, D. : Second-order BSDEs with general reflection and
Dynkin games under uncertainty, preprint, arXiv:1212.0476.

[18] Nutz, M. : Pathwise construction of stochastic integrals, Elec. Com. Prob., 17, (2012), 1 - 7.
MR-2950190

[19] Nutz, M. and van Handel, R. : Constructing sublinear expectations on path space, Stochastic
Processes and their Applications, 123, (2013), 3100-3121. MR-3062438

[20] Peng, S. : Backward SDE and related g-expectation, Backward stochastic differential equa-
tions, (N. El Karoui and L. Mazliak, eds.), Pitman Res. Notes Math. Ser., 364, (1997), Long-
man, Harlow, 141-159. MR-1752680

[21] Peng, S. : Nonlinear Expectations and Stochastic Calculus under Uncertainty, preprint,
arXiv:1002.4546.

[22] Peng, S. and Xu, M. : The smallest g-supermartingale and reflected BSDE with single and
double L2 obstacles, Annales de I.H.P., 141, (2005), 605-630. MR-2139035

[23] Revuz, D. and Yor, M. (1999) : Continuous martingales and Brownian motion, Springer, third
edition. MR-1725357

EJP 18 (2013), paper 109.
Page 24/25

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2514947
http://www.ams.org/mathscinet-getitem?mr=2462558
http://www.ams.org/mathscinet-getitem?mr=2319056
http://www.ams.org/mathscinet-getitem?mr=1415239
http://www.ams.org/mathscinet-getitem?mr=2963805
http://www.ams.org/mathscinet-getitem?mr=0745449
http://arXiv.org/abs/1109.5971
http://arXiv.org/abs/1209.6601
http://arXiv.org/abs/1210.0006
http://arXiv.org/abs/1210.0007
http://www.ams.org/mathscinet-getitem?mr=1434123
http://www.ams.org/mathscinet-getitem?mr=2199292
http://www.ams.org/mathscinet-getitem?mr=2737357
http://arXiv.org/abs/1206.5889
http://www.ams.org/mathscinet-getitem?mr=1121940
http://www.ams.org/mathscinet-getitem?mr=0771895
http://arXiv.org/abs/1212.0476
http://www.ams.org/mathscinet-getitem?mr=2950190
http://www.ams.org/mathscinet-getitem?mr=3062438
http://www.ams.org/mathscinet-getitem?mr=1752680
http://arXiv.org/abs/1002.4546
http://www.ams.org/mathscinet-getitem?mr=2139035
http://www.ams.org/mathscinet-getitem?mr=1725357
http://dx.doi.org/10.1214/EJP.v18-2406
http://ejp.ejpecp.org/


Some norm estimates for semimartingales

[24] Pham, T. and Zhang, J. : Two Person Zero-sum Game in Weak Formulation and Path Depen-
dent Bellman-Isaacs Equation, preprint, arXiv:1209.6605.

[25] Protter, P. Stochastic Integration and Differential Equations, (2004), 2nd Edition, Springer.
MR-2020294

[26] Rao, K. M. : Quasi-Martingales, Math. Scand., 24, (1969), 79-92. MR-0275511

[27] Soner, M., Touzi, N. and Zhang, J. : Martingale representation theorem for the G-
expectation, Stochastic Processes and Their Applications, 121, (2011), 265-287. MR-
2746175

[28] Soner, M., Touzi, N. and Zhang, J. : Quasi-sure stochastic analysis through aggregation,
Electronic Journal of Probability, 16, (2011), 1844-1879. MR-2842089

[29] Soner, M., Touzi, N. and Zhang, J. : Dual Formulation of Second Order Target Problems,
Annals of Applied Probability, 23, (2013), 308-347. MR-3059237

[30] Soner, M., Touzi, N. and Zhang, J. : Wellposedness of Second Order BSDEs, Probability
Theory and Related Fields, 153, (2012), 149-190. MR-2925572

[31] Xu, J. and Zhang, B. : Martingale characterization of G-Brownian motion, Stochastic Pro-
cesses and their Applications, 119, (2009), 232-248. MR-2485026

EJP 18 (2013), paper 109.
Page 25/25

ejp.ejpecp.org

http://arXiv.org/abs/1209.6605
http://www.ams.org/mathscinet-getitem?mr=2020294
http://www.ams.org/mathscinet-getitem?mr=0275511
http://www.ams.org/mathscinet-getitem?mr=2746175
http://www.ams.org/mathscinet-getitem?mr=2746175
http://www.ams.org/mathscinet-getitem?mr=2842089
http://www.ams.org/mathscinet-getitem?mr=3059237
http://www.ams.org/mathscinet-getitem?mr=2925572
http://www.ams.org/mathscinet-getitem?mr=2485026
http://dx.doi.org/10.1214/EJP.v18-2406
http://ejp.ejpecp.org/


Electronic Journal of Probability

Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

Economical model of EJP-ECP

• Low cost, based on free software (OJS1)

• Non profit, sponsored by IMS2, BS3, PKP4

• Purely electronic and secure (LOCKSS5)

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
2IMS: Institute of Mathematical Statistics http://www.imstat.org/
3BS: Bernoulli Society http://www.bernoulli-society.org/
4PK: Public Knowledge Project http://pkp.sfu.ca/
5LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/Open_Journal_Systems
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
http://en.wikipedia.org/wiki/Public_Knowledge_Project
http://en.wikipedia.org/wiki/LOCKSS
https://secure.imstat.org/secure/orders/donations.asp
http://pkp.sfu.ca/ojs/
http://www.imstat.org/
http://www.bernoulli-society.org/
http://pkp.sfu.ca/
http://www.lockss.org/
http://www.imstat.org/publications/open.htm

