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Abstract In this paper we study an optimal portfolio selection problem under instan-
taneous price impact. Based on some empirical analysis in the literature, we model
such impact as a concave function of the trading size when the trading size is small.
The price impact can be thought of as either a liquidity cost or a transaction cost, but
the concavity nature of the cost leads to some fundamental difference from those in
the existing literature. We show that the problem can be reduced to an impulse control
problem, but without fixed cost, and that the value function is a viscosity solution to
a special type of Quasi-Variational Inequality (QVI). We also prove directly (without
using the solution to the QVI) that the optimal strategy exists and more importantly,
despite the absence of a fixed cost, it is still in a “piecewise constant” form, reflecting
a more practical perspective.
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1 Introduction

Modeling of the liquidity risk has attracted strong attention in the recent years in
the quantitative finance literature, and there have been numerous publications on the
subject. Among others, one of the core issues is to understand the price impact of in-
dividual tradings. Motivated by empirical observations, Bouchaud, Farmer, and Lillo
[2] (and the references therein) suggested a price impact model in which the trad-
ing size affects the price in a “concave” way, when the trading size is small. Such a
(concavity) assumption apparently leads to some fundamental differences from many
existing results (see more detailed discussion in Sect. 2), and this paper is an attempt
to understand these differences in the context of an optimal portfolio selection prob-
lem. Roughly speaking, we shall argue that under such a concavity assumption, the
optimization problem can be reduced to an impulse control problem without a fixed
cost, but nevertheless the optimal strategy still exists and, somewhat surprisingly, it
is in a piecewise constant form. One can then easily conclude that the liquidity cost
does exist.

Our model is mainly motivated by the work of Cetin, Jarrow, and Protter [3], in
which the liquidity cost was characterized by the so-called “supply curve”. The main
feature of the model (along with its subsequent work by Cetin, Jarrow, Protter, and
Warachka [4]) is that the dependence of the supply curve on the trading size is essen-
tially quadratic when the size is small. Furthermore, it is shown in [3] that the supply-
curve-based liquidity cost could be eliminated if one is allowed to split any (large)
order into many small pieces, and trade them infinitely frequently (this amounts to
saying that the continuous trading is allowed). Such a point was later amplified by
Bank and Baum [1], in which they proved that one can always approximate a trading
strategy by those that have continuous and finite variation paths, consequently the
liquidity cost could always be eliminated. But on the other hand, both empirical evi-
dences and other theoretical studies indicate that the liquidity risk does exist, even in
the continuous trading paradigm. For instance, by considering the Gamma constraint
on the admissible (continuous!) portfolios and by using the so-called second order
backward SDEs, Cetin, Soner, and Touzi [6] proved that the super-hedging price is
in general higher than the Black-Scholes price, and thus the liquidity cost must exist.
Also, to make the model more realistic, various constraints on the trading strategies
have been added in order to avoid the vanishing liquidity cost. For example, Cetin
and Rogers [5] assumed that any two consecutive transactions have to be one unit of
time apart. In a different work, Ly Vath, Mnif, and Pham [14] assumed heavy liquid-
ity cost if two transactions were made too closely. We should note, however, in the
last two works the optimal strategy being piecewise constant is (essentially) assumed
exogenously. The main message of our result is that the concavity assumption of the
liquidity cost provides an endogenous structure, from which the optimal strategy be-
comes intrinsically “piecewise constant”, even in the absence of a fixed cost.
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It is worth noting that since all the liquidity costs mentioned above have instanta-
neous (or temporary) price impact, technically they are equivalent to a type of transac-
tion costs. Consequently, our approach can be easily applied to problems with trans-
action costs, which has been studied extensively (see, e.g., [7, 8, 10, 13–16], and the
references therein). Most results in the literature assume either fixed cost, or propor-
tional cost, or the linear combination of them. To be more precise, if we denote c(z) to
be the price impact or the transaction cost when the trading size is z, and we assume
c(z) ∼ |z|α when z is small, then the fixed cost case corresponds to α = 0, propor-
tional cost or linear price impact case corresponds to α = 1, and the price impact in
[3] corresponds to α = 2. When α > 1, the liquidity (or transaction) cost vanishes
in approximate sense by allowing multiple instantaneous trading. When α = 1, this
is typically a singular control problem and the optimal strategy is continuous. When
α = 0, this is typically an impulse control problem and the optimal strategy is dis-
crete. We essentially assume 0 < α < 1, which is consistent with the concavity of the
price impact as observed in [2]. We show that our problem is essentially an impulse
control problem, but possibly without fixed cost.

Our second goal in this paper is to prove the existence of the optimal strategy and
argue that it must be piecewise constant. We note that unlike most of impulse control
problems in the literature, we do not assume that the cost function is strictly positive
(no fixed cost). Thus the HJB equation, being a quasilinear-variational inequality
(QVI), does not have a smooth solution in general. Consequently, the construction of
the optimal strategy, whence in many cases the existence of it, become problematic if
one follows the standard verification theorem approach (cf., e.g. [15]). In this paper
we shall attack the existence of optimal strategy directly. We first consider a sequence
of approximating problems for which the strategies are restricted to a fixed number
(say, n) of trades. We show that for each n the optimal strategy, denoted by Zn, exists.
The main technical part in this analysis turns out to be some uniform estimates on the
number of jumps of Zn. These estimates will enable us to study the regularity of the
value function and to construct the optimal strategy. We should note that the regularity
of the value function, which we need to construct the optimal strategy, is weaker than
those that are commonly seen in the literature.

The rest of the paper is organized as follows. In Sect. 2 we formulate the problem
and state the main result. In Sects. 3 and 4 we study the approximating value function
V n and its corresponding optimal strategy Zn. In Sect. 5 we obtain uniform estimates
of Zn, which leads to the regularity of the value function V . In Sect. 6 we study the
optimal strategy of the original problem. Finally in Sect. 7 we give some technical
proofs.

2 Problem Formulation

2.1 The Model

Let (Ω, F ,P ;F) be a complete filtered probability space on a finite time interval
[0, T ] and W be a standard Brownian motion. We assume that the filtration F =
{Ft }t≥0 is generated by W , augmented by all the P -null sets as usual. The financial
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market consists of two assets, a bank account and a stock. For simplicity, we assume
that the interest rate is 0. Let X denote the fundamental value of the stock which
follows the stochastic differential equation:

dXt = b(t,Xt )dt + σ(t,Xt )dWt . (2.1)

In this paper we consider the liquidity cost in the following general form: if one buys
z shares of the stock (sells −z shares if z < 0) at time t , then the liquidity cost of the
trade is c(t,Xt , z), where c is a deterministic function satisfying c(t, x,0) = 0; and

c is increasing in z when z > 0 and decreasing in z when z < 0. (2.2)

We shall give more specific assumptions on the cost function c in the next subsection.
But we remark here that if c0 := inf(t,x),z �=0 c(t, x, z) > 0, then c0 represents a “fixed
cost”. The following example shows that such a positive lower bound usually does
not exist in the context of liquidity cost.

Example 2.1 Consider the “supply curve” S(t,Xt , z) defined in [3], in which Xt is
the fundamental price and z is the trading size at time t . We can view S as the market
price of the stock, satisfying

S(t,Xt ,0) = Xt, and S is increasing in z. (2.3)

Thus the liquidity cost should naturally be defined by

c(t,Xt , z) := z
[

S(t,Xt , z) − Xt

]
. (2.4)

One can easily check that the c satisfies (2.2).

We remark that in Example 2.1, if S is smooth in z, then c(t,Xt , z) ∼ z2 when z is
small. Namely z �→ c(t,Xt , z) is convex for z small. In this paper, however, we are
interested in the case where c(t,Xt , z) ∼ |z|α for some 0 < α < 1, as supported by
[2]. Therefore it is fundamentally different from the case in [3].

We next consider admissible trading strategies Z. We assume Z is F-adapted,
càdlàg, and piecewise constant. Let Ỹ denote the total value invested in the riskless
asset, and define Y := Ỹ + ZX. Assuming that the interest rate is 0, then except for
countably many t ∈ DZ := {t ∈ [0, T ] : δZt := Zt − Zt− �= 0}, one has

dỸt = 0 and thus dYt = ZtdXt . (2.5)

Namely, Z is “self-financing”. Furthermore, for t ∈ DZ (i.e., δZt �= 0), we impose
the standard self-financing constraint:

δYt + c(t,Xt−, δZt ) = δYt + c(t,Xt , δZt ) = 0. (2.6)

We note that (2.6) simply means that no instantaneous profit can be made by changing
the investment positions. In the case of supply-curve (Example 2.1), the equation
(2.6) amounts to saying that (noting that X is continuous)

δỸt + δZtXt + c(t,Xt , δZt ) = δỸt + δZt S(t,Xt , δZt ) = 0.

This is exactly the standard idea of “budget constraint”.
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2.2 The Optimization Problem

We now introduce our optimization problem on a subinterval [t, T ]. Let Xt,x denote
the solution to SDE (2.1) with initial value Xt = x, a.s. Given (x, y, z) and an admis-
sible trading strategy Z, we shall set Yt− := y and Zt− := z. Then by (2.5) and (2.6)
we have

Y
t,x,y,z,Z
T := YT = y +

∫ T

t

ZsdXt,x
s −

∑

t≤s≤T

c
(
s,Xt,x

s , δZs

)
. (2.7)

Let U be a terminal payoff function, then our optimization problem is:

V (t, x, y, z) := sup
Z∈Zt

E
[
U
(
Y

t,x,y,z,Z
T

)]
. (2.8)

Here the set Zt of the admissible strategies is defined rigorously at below:

Definition 2.2 Given t ∈ [0, T ], the set of admissible strategies, denoted by Zt , is
the space of F-adapted processes Z over [t, T ] such that, for a.s. ω,

(i) Z is càdlàg and piecewise constant with finitely many jumps;
(ii) ZT = 0, and |Z| ≤ M .

It is worth noting that a key assumption in Definition 2.2 is that Z is piecewise con-
stant and has only finitely many jumps. While this is obviously more desirable in
practice, it is by no means clear that an optimal strategy can be found in such a form.
Thus the main goal of this paper is to show that the concavity assumption on c, see
(H4) below, implies the existence of an optimal strategy in Zt .

Remark 2.3 (i) We require Z to be càdlàg for notational convenience. One can easily
change it to càglàd if necessary.

(ii) Due to the liquidity risk, if ZT �= 0, the payoff of YT is not clear. As in [3]
and [6], we require ZT = 0 so that YT = ỸT . An alternative way is to introduce
a payoff function U(ỸT ,ZT ) on both accounts, see, e.g. [9] in the formulation of
superhedging.

(iii) The assumption that Z is bounded is merely technical. This restriction can be
removed, with some extra efforts on the estimates, by requiring that the cost function
c satisfies certain growth condition, for example, lim|z|→∞ infx |c(z, x)|/|z| = ∞.
We prefer not to pursue such complexity in this paper. In fact, we will impost some
stronger technical assumptions in order not to distract our attention from the main
focus of the paper.

Remark 2.4 Technically, the optimization problem (2.8) can be extended to the cases
where admissible strategies are allowed to be general F-adapted, càdlàg processes.
But in that case we need to redefine the aggregate liquidity cost. For example, we can
consider the aggregate cost in the following forms:

sup
π

∞∑

i=0

c(τi,Xτi
,Zτi

− Zτi−1), or lim|π |→0

∞∑

i=0

c(τi,Xτi
,Zτi

− Zτi−1), (2.9)
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where the supreme is over all possible random partitions of [t, T ] π : t = τ0 < τ1 <

· · · ≤ T ; and |π | is the “mesh size” of the partition. Then, under our conditions in next
subsection on the function c, one can show that the value function V would be the
same as the one where the supreme is taken over only piecewise constant strategies.
Namely, it suffices to consider only Zt , and thus the aggregate cost (2.9) is again
reduced to that in (2.7).

However, for more general c, typically there is no optimal strategy in Zt and then
one has to extend the space to allow more complex strategies. The following two
cases are worth noting.

(i) Assume that c(t, x, z) = |z|. Then supπ

∑∞
i=0 c(τi,Xτi

,Zτi
− Zτi−1) =

∫ T

t
|dZr |, the total variation of the process Z. This problem then becomes a more

or less standard singular (or impulse) stochastic control problem (cf. e.g., [10, 13],
and [14]). In these cases the optimal controls are of bounded variation, but not nec-
essarily piecewise constant.

(ii) Assume the supply curve S(t, x, z) is smooth, as proposed in [3] and [4]. Then
c(t, x, z) ∼ z2 when z is small. For any (random) partition π : t = τ0 < τ1 < · · · ≤ T

and any F-adapted semimartingale Z satisfying ZT = 0, we have

∞∑

i=0

c(τi,Xτi
,Zτi

− Zτi−1)

=
∞∑

i=0

[Zτi
− Zτi−1 ]

[
S(τi,Xτi

,Zτi
− Zτi−1) − Xτi

]

=
∞∑

i=0

[Zτi
− Zτi−1 ]

[
S(τi,Xτi

,Zτi
− Zτi−1) − S(τi,Xτi

,0)
]

→
∑

t≤s≤T

δZs

[
S(s,Xs, δZs) − S(s,Xs,0)

]+
∫ T

t

∂S
∂z

(s,Xs,0)d[Z,Z]cs .

This recovers the liquidity cost in [3] and [4], and in this case it is natural to set the
admissible strategies as semimartingales.

2.3 Technical Assumptions

We now present our technical conditions. As mentioned in Remark 2.4, our main
focus is to show that the concavity assumption on c implies the existence of an opti-
mal strategy in Zt . However, in order not to over complicate our estimates, we shall
impose some stronger technical conditions, some of which might be more than nec-
essary. We remark that our approach can be extended to more general cases.

We first assume that all processes in this paper are one dimensional and, as men-
tioned already, the interest rate is 0. Moreover, we shall make use of the following
assumptions:

(H1) The coefficients b and σ in (2.1) are bounded and uniformly Lipschitz contin-
uous in x, with a common Lipschitz constant K > 0.
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(H2) The terminal payoff function U is concave, increasing such that 0 < λ ≤ U ′ ≤
Λ on (−∞,∞) for some constants 0 < λ < Λ.

(H3) The cost function c depends only on the trading size z, and satisfies:

(i) c(0) = 0 and c(z) > 0 for all z �= 0.
(ii) c is increasing in [−2M,0) and decreasing in (0,2M]; moreover, in both

intervals, c is uniformly continuous with the same modulus of continuity
function ρ.

(iii) the following subadditive property holds:

c(z1 + z2) ≤ c(z1) + c(z2), for any z1, z2

such that |z1|, |z2|, |z1 + z2| ≤ 2M. (2.10)

(H4) There exists a constant ε0 > 0 such that

(i) c is concave in (0,2ε0] and in [−2ε0,0), and

ηθ := lim
z→0

c(θz)

c(z)
< θ, for θ = 3

2
,2,3, and

(2.11)

γ := lim
z→0

c(−2z) − c(−z)

c(z)
< ∞.

(ii) c is uniformly Lipschitz continuous in [−2M,−ε0] ∪ [ε0,2M] with a Lip-
schitz constant L0.

We conclude this subsection by several important remarks.

Remark 2.5 The assumption (H2) indicates that the terminal payoff U is essentially
a “utility function”, except that it violates the well-known Inada condition:

lim
y→−∞U ′(y) = ∞, lim

y→∞U ′(y) = 0. (2.12)

This is mainly for technical simplifications. The following observations are worth
noting.

(i) If there is a fixed cost, namely if the cost function c satisfies

c(z) ≥ c0 > 0 for all z �= 0, (2.13)

then one can prove our main result Theorem 2.8 under Inada condition (2.12) (see
also Remark 2.6-(iii) below). In fact, in this case the conditions on c can also be
further relaxed.

(ii) In the case when U(y) = −e−y , c(z) = |z|α for some 0 < α < 1, and b(t, x) =
b0, σ(t, x) = σ0, then the assumptions (H1), (H3), (H4), and (2.12) are all satisfied,
one can easily check that V (t, x, y, z) = −e−y V (t, z), where

V (t, z) := inf
Z∈Zt

E

[
exp

(
−b0

∫ T

t

Zsds − σ0

∫ T

t

ZsdWs +
∑

t≤s≤T

|δZs |α
)]

. (2.14)
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Thus the optimization problems (2.8) and (2.14) are equivalent. By utilizing the struc-
ture of V and modifying our arguments slightly we can also prove our main result in
this case.

We believe our results hold true under even more general conditions. However,
since the main focus of this paper is the impact of the concave cost function c, we
choose not to over-complicate this already lengthy paper, and content ourselves with
the stronger condition (H2) instead.

Remark 2.6 (i) We require the concavity of c only around 0. Typically, c is convex
when z is large, as in the standard literature of liquidity risk.

(ii) The typical case satisfying (H3) and (H4) is: c(z) = c0|z|α , 0 < α < 1. The
condition (2.11) captures the behavior of c around 0. We consider those three val-
ues of θ just for technical reasons. One can of course make the assumption more
symmetric by strengthening the condition to η(θ) < 1 for all θ > 1. The assumption
on γ is merely technical. However, one cannot remove (2.11) for free. For example,
c(z) = |z| violates (2.11) and we know in this case the optimization problem becomes
a singular control problem, see Remark 2.4(i).

(iii) Another typical case is when there is a fixed cost, namely (2.13) holds. Since
in this case (2.11) automatically holds, we do not need the concavity assumption in
(H4) and our main results will still be valid. See Theorem 2.8 below.

(iv) Note that we allow c(0+) > 0 and/or c(0−) > 0 in (H4). Moreover, combing
the arguments for the two cases in (i) and (ii), we can easily prove our results in the
case that (H4) holds in (0,2ε0] and c(z) ≥ c0 > 0 for z < 0, and the case that (H4)
holds in [−2ε0,0) and c(z) ≥ c0 > 0 for z > 0.

Remark 2.7 (i) In this remark we justify the subadditive property (2.10). Note that
our goal is to solve (2.8). For general c, by possibly splitting a transaction into many
small pieces, we define,

c̃(z) := inf
{
c(z1) + · · · + c(zn) : |zi | ≤ 2M,z1 + · · · + zn = z,∀n

}
.

Then it is easy to see that c̃ ≤ c and c̃ satisfies (2.10). Replacing c by c̃ in (2.7) we
have

ỸT := y +
∫ T

t

ZsdXs −
∑

t≤s≤T

c̃(δZs); Ṽ (t, x, y, z) := sup
Z∈Zt

E
[
U(ỸT )

]
.

Under the continuity of U , one can easily show that Ṽ = V . In other words, we can
always replace the cost function c to one that satisfies (2.10).

(ii) If the cost function c satisfies c(z) ≤ C|z|α for some constants C > 0 and
α > 1 near z = 0, then the corresponding c̃(z) ≡ 0. To see this, note that for any z

and large n we have

c̃(z) ≤
n∑

i=1

c

(
z

n

)
≤ C

n∑

i=1

∣∣∣
∣
z

n

∣∣∣
∣

α

≤ CMα

nα−1
→ 0, as n → ∞.

Thus the optimization problem is reduced to a standard one without liquidity cost.
This is consistent with the result of [3], where α = 2.
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2.4 Main Result

For any Z ∈ Zt , we shall always denote

τ0 := t, τi := inf{s > τi−1 : Zs �= Zτi−1} ∧ T , i = 1, . . . . (2.15)

Then clearly τi < τi+1 whenever τi < T , τi = T when i is large enough, and

Zs =
∞∑

i=1

Zτi−1 1[τi−1,τi )(s), s ∈ [t, T ]. (2.16)

Recall that Zt− = z. Let N(Z) denote the number of jumps of Z, that is,

N(Z) :=
∑

t≤s≤T

1{δZs �=0} =
∞∑

i=0

1{Zτi
�=Zτi−1 }. (2.17)

Our main result of the paper is:

Theorem 2.8 Assume (H1)–(H3), and assume either (2.13) or (H4) is in force.
Then for any (t, x, y, z), the optimization problem (2.8) admits an optimal strategy
Z∗ ∈ Zt . Moreover, E[N(Z∗)] < ∞.

3 The Approximating Problems

In this section, we shall approximate the original optimization problem (2.7) and (2.8)
by those with only fixed number of transactions, for which the optimal strategies are
easier to find. To begin with, for any n ≥ 1 we consider a reduced problem with at
most n transactions:

V n(t, x, y, z) := sup
Z∈Z n

t (z)

E
{
U
(
Y

t,x,y,z,Z
T

)}

where Z n
t (z) := {Z ∈ Zt : N(Z) ≤ n

}
. (3.1)

We note that, for Z ∈ Z n
t (z), if Zt = z, then τn = T , and if Zt �= z, then τn−1 = T .

Moreover, when n = 1, we have Z 1
t (z) = {z1[t,τ )} for all stopping time τ , and

V 1(t, x, y, z) = sup
τ≥t

E
{
U
(
y + z

(
Xt,x

τ − x
)− c(−z)

)}
. (3.2)

It is then readily seen, assuming (H1)–(H3), that
∣
∣V 1(t, x, y, z)

∣
∣≤ C

[
1 + |y|], (t, x, y, z) ∈ [0, T ] × R

2 × [−M,M]. (3.3)

Here and in the sequel C > 0 is a generic constant depending only on T ,M,λ,Λ,K ,
and |U(0)| in (H1)–(H3), as well as sup|z|≤2M c(z), and it is allowed to vary from line
to line.
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Proposition 3.1 Assume (H1)–(H3). Then V n(t, x, y, z) ↑ V (t, x, y, z), as n → ∞;
and

V n(t, x, y, z) ≤ V (t, x, y, z) ≤ C[1 + |y|], (t, x, y, z) ∈ [0, T ] × R
2 × [−M,M].

(3.4)

Proof It is clear by definition that V n is increasing and V n ≤ V . We first show that
(3.4) holds for V (whence for V n as well). For any Z ∈ Zt , let us denote X = Xt,x

and Y = Y t,x,y,z,Z for simplicity. Since the liquidity cost is positive, we have

YT ≤ y +
∫ T

t

ZsdXs = y +
∫ T

t

Zsb(s,Xs)ds +
∫ T

t

Zsσ (s,Xs)dWs.

Then, using the monotonicity of U and boundedness of b, σ and Z, we have

EU(YT ) ≤ E

{
U

(
y +
∫ T

t

ZsdXs

)}

≤ ∣∣U(0)
∣∣+ Λ

{
|y| + E

∣∣∣∣

∫ T

t

ZsdXs

∣∣∣∣

}
≤ C
[
1 + |y|]. (3.5)

Since Z is arbitrary, we prove (3.4).
We now show that V n → V , as n → ∞. We first note that V n is non-

decreasing, and bounded from above, thanks to (3.4). Thus V ∞(t, x, y, z) :=
limn→∞ V n(t, x, y, z) exists, and V ∞(t, x, y, z) ≤ V (t, x, y, z), for all (t, x, y, z).
We need only show that V ∞ ≥ V . To this end, for any Z ∈ Zt we define Zn

s :=
Zs1{s<τn−1}, s ∈ [t, T ]. Clearly, Zn ∈ Z n

t (z). Denote Yn := Y t,x,y,z,Zn
. Then by the

subadditivity assumption (2.10) we have

YT − Yn
T =
∫ T

τn−1

ZsdXs −
∑

i≥n

c(δZτi
) + c(−Zτn−1) ≤

∫ T

τn−1

ZsdXs. (3.6)

Now, for any n, using (H2), (3.4), and (3.6) we have

E
{
U(YT )

} = E
{
U
(
Yn

T

)}+ E
{
U(YT ) − U

(
Yn

T

)}

= E
{
U
(
Yn

T

)}+ E

{[∫ 1

0
U ′(Yn

T + θ
(
YT − Yn

T

))
dθ

][
YT − Yn

T

]}

≤ V ∞(t, x, y, z) + ΛE

{∣∣∣∣

∫ T

τn−1

ZsdXs

∣∣∣∣

}
. (3.7)

Next, Definition 2.2(iii) implies that limn→∞{| ∫ T

τn
ZsdX

t,x
s |} = 0, P -a.s. This en-

ables us to let n → ∞ in (3.7) and apply the Dominated Convergence Theorem to
get E{U(YT )} ≤ V ∞(t, x, y, z). Since this is true for any Z ∈ Zt , we conclude that
V (t, x, y, z) ≤ V ∞(t, x, y, z), proving the proposition. �

The next result concerns the uniform regularity of {V n : n ≥ 1}.
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Proposition 3.2 Assume (H1)–(H3). Then, for any n, it holds that
∣∣V n(t, x1, y, z) − V n(t, x2, y, z)

∣∣ ≤ C|�x|; (3.8)

λ�y ≤ V n(t, x, y1, z) − V n(t, x, y2, z) ≤ Λ�y, ∀y1 ≥ y2; (3.9)
∣
∣V n(t1, x, y, z) − V n(t2, x, y, z)

∣
∣ ≤ C|�t | 1

2 . (3.10)

Here and in the sequel, �ξ := ξ1 − ξ2, ξ = t, x, y, z, respectively.
Moreover, for z1 > z2 > 0 or z1 < z2 < 0, we have

−C
[|�z| + ρ

(|�z|)] ≤ V n(t, x, y, z1) − V n(t, x, y, z2)

≤ C
[|�z| + ρn

(|�z|)], (3.11)

where ρ is the modulus of continuity of c in (H3) (iii), and

ρn(|�z|) := sup

{
n∑

i=1

ρ
(
θi |�z|) : θ1, . . . , θn ≥ 0,

n∑

i=1

θi = 1

}

≤ nρ
(|�z|). (3.12)

In this below, we present the proof of (3.8), (3.9), and (3.10) only. The proof of
(3.11) is more involved and thus is relegated to Sect. 7.

Proof First let us denote Xi := Xt,xi , i = 1,2, and �X := X1 − X2. Then by the
standard arguments in SDEs we know that

E
{

sup
s∈[t,T ]

|�Xs |2
}

≤ C|�x|2. (3.13)

Next, for any Z ∈ Z n
t (z), denote Y i := Y t,xi ,y,z,Z , i = 1,2, and �Y := Y 1 − Y 2.

Then

|�YT | ≤
∫ T

t

|Zs |
∣∣b
(
s,Xt,x1

s

)− b
(
s,Xt,x2

s

)∣∣ds

+
∣∣
∣∣

∫ T

t

Zs

[
σ
(
s,Xt,x1

s

)− σ
(
s,Xt,x2

s

)]
dWs

∣∣
∣∣.

Since b and σ are Lipschitz continuous and Z is bounded, (3.13) leads to that

∣∣E
{
U
(
Y 1

T

)− U
(
Y 2

T

)}∣∣2 ≤ CE
{|�YT |2}≤ CE

{∫ T

t

|Zs�Xs |2ds

}
≤ C|�x|2.

Since Z is arbitrary, (3.8) follows easily.
To prove (3.9) we denote, for any Z ∈ Z n

t (z) and y1 > y2, Y i := Y t,x,yi ,z,Z ,
i = 1,2, and �Y := Y 1 − Y 2. Note that �YT = �y, we have

E
{
U
(
Y 1

T

)− U
(
Y 2

T

)}= E

{[∫ 1

0
U ′(Y 1

T + θ�y
)
dθ

]
�y

}
.

Thus (3.9) follows from (H2) immediately.
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We next prove (3.10). Assume t1 < t2. It is then standard to show that

E
{∣∣Xt1,x

t − X
t2,x
t

∣
∣2}≤ C|�t |, t ≥ t2 > t1. (3.14)

Now for any Z ∈ Z n
t2
(z), define Z̃t := z1[t1,t2)(t)+Zt1[t2,T ]. Then Z̃ ∈ Z n

t1
(z). Denote

Xi := Xti,x , i = 1,2, and Y 2 := Y t2,x,y,z,Z , Ỹ 1 = Y t1,x,y,z,Z̃ , then

Y 2
T − Ỹ 1

T =
∫ T

t2

ZtdX2
t −
∫ T

t1

Z̃t dX1
t

= −z
[
X1

t2
− x
]+
∫ T

t2

Zt

[
b
(
t,X2

t

)− b
(
t,X1

t

)]
dt

+
∫ T

t2

Zt

[
σ
(
t,X2

t

)− σ
(
t,X1

t

)]
dWt .

Now by standard arguments one can easily derive from (3.14) that

EU
(
Y 2

T

)− V n(t1, x, y, z) ≤ E
{
U
(
Y 2

T

)− U
(
Ỹ 1

T

)}≤ CE
{∣∣Y 2

T − Ỹ 1
T

∣
∣}≤ C|�t | 1

2 .

Since Z ∈ Z n
t2
(z) is arbitrary, we get

V n(t2, x, y, z) − V n(t1, x, y, z) ≤ C|�t | 1
2 . (3.15)

On the other hand, for any Z =∑n
i=1 Zτi−1 1[τi−1,τi ) ∈ Z n

t1
(z), it is obvious that

Z ∈ Z n
t2
(z). Denote Yi := Y ti ,x,y,z,Z and assume τj ≤ t2 < τj+1. Note that Zt2 = Zτj

.
Then, by the subadditivity assumption (2.10),

Y 1
T − Y 2

T =
∫ T

t1

ZtdX1
t −
∫ T

t2

ZtdX2
t −

j∑

i=0

c(δZτi
) + c(Zτj

− z)

≤
∫ t2

t1

ZtdX1
t +
∫ T

t2

ZtdX1
t −
∫ T

t2

ZtdX2
t .

Since b,σ and Z are bounded, one can easily check that

E

[∣∣
∣∣

∫ t2

t1

ZtdX1
t

∣∣
∣∣

]
= E

[∣∣
∣∣

∫ t2

t1

Zt

[
b
(
t,X1

t

)
dt + σ

(
t,X1

t

)
dWt

]
∣∣
∣∣

]
≤ C|�t | 1

2 .

Moreover, note that X1
t = X

t2,X
1
t2

t for t ≥ t2. Following the arguments for (3.8) we
have

E

[∣∣∣
∣

∫ T

t2

ZtdX1
t −
∫ T

t2

ZtdX2
t

∣∣∣
∣

]

= E

[∣∣∣∣

∫ T

t2

Zt

[[
b
(
t,X1

t

)− b
(
t,X2

t

)]
dt + [σ (t,X1

t

)− σ
(
t,X2

t

)]
dWt

]
∣
∣∣∣

]
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≤ CE
[∣∣Xt1,x

t2
− x
∣∣]= CE

[∣∣∣∣

∫ t2

t1

[
b
(
t,X1

t

)
dt + σ

(
t,X1

t

)
dWt

]
∣∣∣∣

]

≤ C|�t | 1
2 .

Then, by the assumption (H2) on the payoff function U ,

E
{
U
(
Y 1

T

)}− V n(t2, x, y, z)

≤ E
{
U
(
Y 1

T

)− U
(
Y 2

T

)}

≤ CE

{∣∣∣∣

∫ t2

t1

ZtdX1
t

∣∣∣∣+
∣∣∣∣

∫ T

t2

ZtdX1
t −
∫ T

t2

ZtdX2
t

∣∣∣∣

}
≤ C|�t | 1

2 .

Since Z ∈ Z n
t1
(z) is arbitrary, we get V n(t1, x, y, z) − V n(t2, x, y, z) ≤ C|�t | 1

2 ,
which, together with (3.15), implies (3.10). �

We will also need the following result in next section.

Proposition 3.3 Assume (H1)–(H3). Then for any n and any (t, x, y),

V n(t, x, y,0+) ≤ V n(t, x, y,0); V n(t, x, y,0−) ≤ V n(t, x, y,0).

Proof First by (3.11) we know V n(t, x, y,0+) and V n(t, x, y,0−) exist.
For z > 0 and Z1 =∑n

i=1 Z1
τi−1

1[τi−1,τi ) ∈ Z n
t (z), we define Z2 ∈ Z n

t (0) as fol-

lows. Let k := inf{i : Z1
τi

≤ 0}. We note that k ≤ n since Zτn = 0. Define Z2
s :=

[Z1
s − z] ∨ 0 for s < τk and Z2

s := Z1
s for s ≥ τk . Denote �Z := Z1 − Z2. It is

straightforward to check that

0 ≤ �Zτi
≤ z and δZ1

τi
δZ2

τi
≥ 0, i = 0, . . . , n.

Note that

Y
t,x,y,z,Z1

T − Y
t,x,y,0,Z2

T =
∫ τk

t

�ZsdXt,x
s +

k∑

i=0

[
c
(
δZ2

τi

)− c
(
δZ1

τi

)]
.

Fix i ≤ k. If δZ1
τi
δZ2

τi
> 0, then by Assumption (H3) (iii) we get

c
(
δZ2

τi

)− c
(
δZ1

τi

)≤ ρ
(∣∣δZ2

τi
− δZ1

τi

∣∣)= ρ
(|�Zτi−1 − �Zτi

|)≤ ρ(z).

Now assume δZ1
τi
δZ2

τi
= 0. If δZ1

τi
= 0, by Definition 2.2 and (2.15) we must have

i = 0 and Z1
τ0

= z. This implies that Z2
τ0

= 0 and thus δZ2
τ0

= 0. If δZ1
τi

�= 0, then
again we have δZ2

τi
= 0, and thus

c
(
δZ2

τi

)− c
(
δZ1

τi

)= −c
(
δZ1

τi

)≤ 0 ≤ ρ(z).
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Therefore, for some appropriately defined FT -measurable random variable ξ , we
have

E
{
U
(
Y

t,x,y,z,Z1

T

)}− V n(t, x, y,0)

≤ E
{
U
(
Y

t,x,y,z,Z1

T

)− U
(
Y

t,x,y,0,Z2

T

)}

= E
{
U ′(ξ)

[
Y

t,x,y,z,Z1

T − Y
t,x,y,0,Z2

T

]}≤ E

{
U ′(ξ)

[∫ τk

t

�ZsdXt,x
s + kρ(z)

]}

≤ ΛE

{∣∣∣∣

∫ τk

t

�ZsdXt,x
s

∣∣∣∣+ nρ(z)

}
≤ C
[
z + nρ(z)

]
.

This implies that

V n(t, x, y, z) − V n(t, x, y,0) ≤ C
[
z + nρ(z)

]
.

Sending z ↓ 0 we obtain V n(t, x, y,0+) ≤ V n(t, x, y,0).
Similarly, we can prove V n(t, x, y,0−) ≤ V n(t, x, y,0). The proof is now com-

plete. �

4 The Approximating Optimal Strategies

In this section we construct the optimal strategy Zn ∈ Z n
t (z) for the approximating

problem (3.1). We will provide the uniform estimate on Zn’s in next section.
We start with some auxiliary results. For any function ϕ(t, x, y, z), define

ϕ̄(t, x, y, z) := sup
z̃∈[−M,M]

ϕ
(
t, x, y − c(z̃ − z), z̃

);
ϕ̂(t, x, y, z) := sup

τ≥t
E
[
ϕ̄
(
τ,Xt,x

τ , y + z
[
Xt,x

τ − x
]
, z
)]

,
(4.1)

where the supremum is taken over all stopping times τ ≥ t . It is clear that

ϕ̄ ≤ ϕ̂ and ϕ̂(T , x, y, z) = ϕ̄(T , x, y, z)

The following lemma is important for our construction of Zn.

Lemma 4.1 Assume (H1)–(H3). Suppose that a function ϕ : [0, T ]×R
3 �→ R enjoys

the following properties:

(a) |ϕ(t, x, y, z)| ≤ C[1 + |y|];
(b) ϕ is increasing in y; uniformly continuous in (t, x, y); and uniformly continuous

in z in [−M,0) and in (0,M];
(c) ϕ(t, x, y,0+) ≤ ϕ(t, x, y,0), ϕ(t, x, y,0−) ≤ ϕ(t, x, y,0).

Then
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(i) |ϕ̄(t, x, y, z)| ≤ C[1 +|y|] and ϕ̄ is also uniformly continuous in (t, x, y). More-
over, there exists a Borel measurable function ψ(t, x, y, z) such that |ψ | ≤ M

and

ϕ̄(t, x, y, z) = ϕ
(
t, x, y − c

(
ψ(t, x, y, z) − z

)
,ψ(t, x, y, z)

)
. (4.2)

(ii) The optimal stopping problem ϕ̂ admits an optimal stopping time τ ∗:

τ ∗ := inf
{
s ≥ t : ϕ̂(s,Xt,x

s , y + z
[
Xt,x

s − x
]
, z
)

= ϕ̄
(
s,Xt,x

s , y + z
[
Xt,x

s − x
]
, z
)}

.

Proof First, assume (i) holds true, then (ii) is a standard result in optimal stopping
theory, see e.g. [12, Appendix D]. To prove (i), note that
∣∣ϕ̄(t, x, y, z)

∣∣ ≤ C sup
z̃∈[−M,M]

[
1 + ∣∣y − c(z̃ − z)

∣∣]≤ C
[
1 + sup

z̃∈[−2M,2M]

∣∣c(z̃)
∣∣+ |y|

]

≤ C
[
1 + |y|].

Moreover, by (H3) and the regularity of ϕ we see that ϕ(t, x, y − c(z̃ − z), z̃) is
uniformly continuous in (t, x, y), uniformly in (z, z̃). Thus ϕ̄ is uniformly continuous
in (t, x, y).

It remains to construct the function ψ . We shall apply the measurable selection
theorem in Wagner [17]. For notational convenience, we define θ := (t, x, y, z) ∈
[0,∞)2 × R × [−M,M], g(θ, z̃) := ϕ(t, x, y − c(z̃ − z), z̃), and ḡ(θ,Γ ) :=
supz̃∈Γ g(θ, z̃) for any Borel set Γ ⊂ [−M,M] (by convention ḡ(θ,∅) := −∞).
Consider a set-valued function defined by

F(θ) =
{
z′ ∈ [−M,M] : g(θ, z′)= sup

z̃∈[−M,M]
g(θ, z̃)

}
.

By our conditions, one may easily check that g is upper semicontinuous in z̃. Then
F(θ) is a nonempty and closed set for any θ in the domain [0,∞)2 × R × [−M,M].
In light of [17, Theorem 4.1], to obtain the measurable ψ it suffices to prove:

for any open set Γ ⊂ [−M,M], {θ : F(θ) ∩ Γ �= ∅}⊂ R4 is a Borel set. (4.3)

To see this, we first assume c(·) is continuous. Since ϕ(t, x, y, z) is continuous in
[0,∞)2 × R × [−M,0), g(θ, z̃) is also continuous in [0,∞)2 × R × [−M,0) ×
[−M,0). Therefore, if Γ ⊂ [−M,0), then we can write, denoting the set of all ratio-
nal numbers by Q, that

ϕ̄(θ) := ḡ(θ,Γ ) = sup
z̃∈Γ

g(θ, z̃) = sup
z̃∈Γ ∩Q

g(θ, z̃).

Thus, ḡ(·,Γ ) is a Borel measurable function (in fact, it is a Baire function of
Class 1) for Γ ⊂ [−M,0). Similar argument shows that ḡ(·,Γ ) is also Borel mea-
surable if Γ ⊂ (0,M]. On the other hand, if Γ = {0}, then ḡ(θ,Γ ) = g(θ,0) =
ϕ(t, x, y − c(−z),0) is obviously continuous. In general, if Γ ⊂ [−M,M] is an open
set, we can partition this set into Γ = ∪i=1,2,3Γi , where Γ1 = Γ ∩ [−M,0), Γ2 =
Γ ∩ (0,M], and Γ3 = Γ ∩ {0}. Then, we can see ḡ(·,Γ ) is Borel measurable, since
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ḡ(θ,Γ ) = maxi=1,2,3 ḡ(θ,Γi). Therefore, noting that ḡ(θ,Γ ) ≤ ḡ(θ, [−M,M]) as
Γ ⊂ [M,M], we can conclude that the set

{
θ : F(θ) ∩ Γ �= ∅}= {θ : ḡ(θ,Γ ) = ḡ

(
θ, [−M,M])},

whence a Borel set, and thus (4.3) holds when c is continuous at 0. In the general
case, since c is lower semicontinuous at 0, one can prove (4.3) by repeating the above
arguments but with the utilization of ḡ(θ,Γ ) = max{supz̃∈Γ ∩Q g(θ, z̃), g(θ, z)}. �

We now give the main existence result of Zn for this section.

Theorem 4.2 Assume (H1)–(H3). Then, for each n and any fixed (t, x, y, z),

V n(t, x, y, z) = V̂ n−1(t, x, y, z). (4.4)

Moreover, there exists an optimal Zn ∈ Z n
t (z) such that V n(t, x, y, z) =

E[U(Y
t,x,y,z,Zn

T )].

Proof We proceed in several steps.
Step 1. We first show that

V n(t, x, y, z) ≤ V̂ n−1(t, x, y, z). (4.5)

Indeed, let Z ∈ Z n
t (z). If Zτ0 �= z, then Z ∈ Z n−1

t (Zτ0), and

E
[
U
(
Y

t,x,y,z,Z
T

)] = E
[
U
(
Y

t,x,y−c(Zτ0 −z),Zτ0 ,Z

T

)]

≤ V n−1(t, x, y − c(Zτ0 − z),Zτ0

)≤ V̄ n−1(t, x, y, z)

≤ V̂ n−1(t, x, y, z).

If Zτ0 = z, then we denote

Xs := Xt,x
s and Y 0

s := y + z[Xs − x], s ∈ [t, T ]. (4.6)

Clearly we have Z ∈ Z n−1
τ1

(Zτ1) and

Y
t,x,y,z,Z
T = y + z

(
Xt,x

τ1
− x
)− c(Zτ1 − z) +

∫ T

τ1

ZsdXt,x
s −

∞∑

i=2

c(δZτi
)

= Y
τ1,Xτ1 ,Y 0

τ1
−c(Zτ1−z),Zτ1 ,Z

T .

This implies that

E
[
U
(
Y

t,x,y,Z
T

)] ≤ E
[
V n−1(τ1,Xτ1, Y

0
τ1

− c(Zτ1 − z),Zτ1

)]

≤ E
[
V̄ n−1(τ1,Xτ1, Y

0
τ1

, z
)]≤ V̂ n−1(t, x, y, z).

Since Z is arbitrary, we obtain (4.5).
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Step 2. We now construct Zn. By the results in Sect. 3, we see that we may apply
Lemma 4.1 on ϕ := V n−1. Let ψ and τn

1 := τ ∗ be given as in Lemma 4.1(ii). Set
Zn

s := z, for s ∈ [t, τ n
1 ), and Zn

τn
1

:= ψ(τn
1 ,Xτn

1
, Y 0

τn
1
, z). Then by Lemma 4.1 we get

V̂ n−1(t, x, y, z) = E
[
V n−1(τn

1 ,Xτn
1
, Y 0

τn
1

− c
(
Zn

τn
1

− z
)
,Zn

τn
1

)]
. (4.7)

We remark that if τn
1 = t , then Zn has a jump at t , and if τn

1 > t , then Zn
t = z and

does not jump at t . Note that Y 0
τn

1
− c(Zn

τn
1
− z) = Y

t,x,y,z,Zn

τn
1

. Then, by (4.5) we obtain

V n(t, x, y, z) ≤ E
[
V n−1(τn

1 ,Xτn
1
, Y

t,x,y,z,Zn

τn
1

,Zn
τn

1

)]
. (4.8)

Repeating the above arguments, we define τn
i , i = 2, . . . , n − 1 and Zn on [t, τ n

n−1]
such that

V n−i+1(τn
i−1,Xτn

i−1
, Y

t,x,y,z,Zn

τn
i−1

,Zn
τn
i−1

)

≤ Eτn
i−1

[
V n−i

(
τn
i ,Xτn

i
, Y

t,x,y,z,Zn

τn
i

,Zn
τn
i

)]
. (4.9)

Finally, for V 1, there exists τn
n ≥ τn

n−1 such that, by setting Zn
s := Zn

τn
n−1

for s ∈
[τn

n−1, τ
n
n ) and Zn

s := Zn
τn
n−1

for s ∈ [τn
n , T ],

V 1(τn
n−1,Xτn

n−1
, Y

t,x,y,z,Zn

τn
n−1

,Zn
τn
n−1

) = Eτn
n−1

[
U
(
Y

t,x,y,z,Zn

τn
n

)]

= Eτn
n−1

[
U
(
Y

t,x,y,z,Zn

T

)]
. (4.10)

Now combining (4.8)–(4.10) we obtain

V n(t, x, y, z) ≤ E
[
U
(
Y

t,x,y,z,Zn

T

)]
.

Since clearly Zn ∈ Z n
t (z), it is an optimal strategy for the optimization problem V n.

Step 3. Since V n(t, x, y, z) = E[U(Y
t,x,y,z,Zn

T )]. By Step 2 we see that (4.8) (and
(4.9)) should hold with equality. This, together with (4.7), implies (4.4). �

5 Regularity of the Value Function

In this section we give some uniform estimates of the value function V . We should
note that the regularity of V with respect to the variables (t, x, y) are clear, since
the estimates (3.8), (3.9), and (3.10) in Proposition 3.2 are already uniform with re-
spect to n. The estimate (3.11), however, depends heavily on n. In fact, in the case
|z| = |z|α , 0 < α < 1, one can check that ρn(|z|) = n1−α|z|α → ∞. Therefore the
regularity of V with respect to z is by no means clear.

We first take a closer look at the approximating optimal strategies {Zn}∞n=1. Since
our purpose is to construct the optimal piecewise constant control, it is thus conceiv-
able that a uniform bound on N(Zn) would be extremely helpful.
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We begin by considering the case where a fixed cost is present. For each
(t, x, y, z), we denote Zn to be the optimal portfolio for V n(t, x, y, z), when the
context is clear.

Proposition 5.1 Assume (H1)–(H3), and assume further that c(z) ≥ c0 > 0 for any
z �= 0. Then there exists a constant C > 0 such that

E
{
N
(
Zn
)}≤ C

λc0
, for all n and all (t, x, y, z). (5.1)

Proof Denote Z0 := z1[t,T ) ∈ Z 1(z). Then

Y
t,x,y,z,Z0

T − Y
t,x,y,Zn

T =
n∑

i=0

c
(
δZn

τi

)+
∫ T

t

[
z − Zn

s

]
dXt,x

s − c(−z).

Note that V n’s are non-decreasing in n. Then

0 ≥ V 0(t, x, y, z) − V n(t, x, y, z) ≥ E
{
U
(
Y

t,x,y,z,Z0

T

)}− E
{
U
(
Y

t,x,y,Zn

T

)}

≥ λE

{
n∑

i=0

c
(
δZn

τi

)
}

− ΛE

{∣∣∣∣

∫ T

t

[
z − Zn

s

]
dXt,x

s

∣∣∣∣+ c(−z)

}

≥ λc0E
{
N
(
Zn
)}− C.

The result follows immediately. �

We next investigate the problem under (H4). We first have the following technical
lemma.

Lemma 5.2 Assume (H1)–(H4) hold. Denote:

α1 := 1 − η2

η2
, β1 := 1 − η2

1 + γ
;

C0 := Λ

λ

[‖b‖∞T + ‖σ‖∞
√

T + L0
]+ 1; C1 := C0

[
2 + Λ

(
1

α1
+ 1

β1

)]
,

(5.2)

There exists a constant ε1 ∈ (0, ε0] such that, for any 0 < |z1| < ε1,

(i) c(z1) ≥ C0|z1|.
(ii) For any z2 ≥ z1 > 0 or z2 ≤ z1 < 0, we have

c(z1) + c(z2) − c(z1 + z2) ≥ [α1
[
c(z1 + z2) − c(z2)

]]

∨ [β1
[
c(−z1 − z2) − c(−z2)

]]
.

(iii) For any z2 ≥ 1
2z1 > 0, or z2 ≤ 1

2z1 < 0, or |z2| > |z1|, we have

c(z1) + c(z2) − c(z1 + z2) ≥ C1|z1|.
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Proof For θ = 3
2 ,2,3, set

η̃θ := 1

2
[ηθ + 1], so that ηθ < η̃θ < 1.

(i) By (2.11), there exists 0 < ε ≤ ε0 such that c(2z) ≤ 2η̃2c(z) for all |z| ≤ ε. By
induction one can easily show that c(2−nε)

2−nε
≥ c(ε)

εη̃n
2

. Fix n0 such that c(ε)

εη̃
n0
2

≥ 2C0, and set

ε1 := 21−n0ε. For any 0 < |z| < ε1, there exists n ≥ n0 such that 2−nε < |z| ≤ 21−nε.
Then

c(z)

|z| ≥ c(2−nε)

21−nε
≥ 1

2

c(ε)

εη̃n
2

≥ 1

2

c(ε)

εη̃
n2
2

≥ C0.

(ii) Without loss of generality, we assume z2 ≥ z1 > 0. We may rewrite the re-
quired inequality as

f (z1, z2) ≤ c(z1) where

f (z1, z2) := [c(z1 + z2) − c(z2)
]+ [α1

[
c(z1 + z2) − c(z2)

]]

∨ [β1
[
c(−z1 − z2) − c(−z2)

]]
.

If z2 ∈ [z1, ε0], by the concavity of c, f (z1, z2) is decreasing in z2, then

f (z1, z2) ≤ f (z1, z1) = [c(2z1) − c(z1)
]+ [α1

[
c(2z1) − c(z1)

]]

∨ [β1
[
c(−2z1) − c(−z1)

]]
.

By choosing ε1 small enough, we have

c(2z1) − c(z1) ≤ [2η̃2 − 1]c(z1) = η2c(z1) and

c(−2z1) − c(−z1) ≤ (1 + γ )c(z1).

Then

f (z1, z1) ≤ [η2 + [(α1η2) ∨ (β1(1 + γ )
)]]

c(z1) = c(z1).

If z2 ∈ [ε0,2M], by (H4)-(ii) we have

f (z1, z2) ≤ L0z1 + [α1 ∨ β1]L0z1 = [1 + α1 ∨ β1]L0z1.

By replacing C0 with [1 + α1 ∨ β1]L0 and setting ε1 smaller if necessary, it follows
from (i) that f (z1, z2) ≤ c(z1).

(iii) Without loss of generality, we assume z1 > 0, and it suffices to show that

g(z1, z2) := c(z1 + z2) − c(z2) + C1|z1| ≤ c(z1).

If z2 ≤ −z1, then z2 < z1 + z2 ≤ 0, and thus g(z1, z2) ≤ C1|z1|. By setting ε1 smaller
if necessary, the result follows from the proof of (i) by replacing C0 with C1.
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If z2 ≥ ε0, then g(z1, z2) ≤ [L0 + C1]|z1|. The result follows from the proof of (i)
by replacing C0 with L0 + C1. Finally, if 1

2z1 ≤ z2 ≤ ε0, then g(z1, z2) is decreasing
in z2, and thus

g(z1, z2) ≤ g

(
z1,

1

2
z1

)
= c

(
3z1

2

)
− c

(
z1

2

)
+ C1z1.

Then, by choosing ε1 smaller if necessary, we have

c(z1) − g(z1, z2) ≥
[
c(z1) − 2

3
c

(
3z1

2

)]
+
[
c

(
z1

2

)
− 1

3
c

(
3z1

2

)]
− C1z1

≥ [1 − η̃ 3
2
]c(z1) + [1 − η̃3]c

(
z1

2

)
− C1z1.

Now the result follows from the proof of (i) by replacing C0 with an appropriate
larger constant. �

To extend Proposition 5.1 under (H4), we need an analysis on the number of
the small jumps. For this purpose, we fix the constants ε1, C0, and C1 given in
Lemma 5.2. Define:

An
i := {0 <

∣∣δZn
τi

∣∣< ε1
}
, Bn

i := {∣∣δZn
τi

∣∣≥ ε1
}
, i = 0, . . . , n; n > 0. (5.3)

The following result is crucial.

Theorem 5.3 Assume (H1)–(H4). Then for any fixed m,

P

(
n∑

i=0

1An
i
≥ m

)

≤ 1

2m
, ∀n ≥ m. (5.4)

The proof of Theorem 5.3 depends heavily on the following technical result,
whose proof is quite lengthy and will be deferred to Sect. 7 in order not to distract
the discussion.

Proposition 5.4 Assume (H1)–(H4). Then, for any n and i, P -a.s. in An
i one has:

(i) P {Bn
i+1|Fτi

} ≤ C0
C1

< 1
2 for the constants C0 and C1 defined in (5.2), and (ii)

Zn
τi

= 0.

Proof of Theorem 5.3 Define k−1 := −1, and

kj := inf
{
i > kj−1 : 0 <

∣∣δZn
τi

∣∣< ε1
}∧ (n + 1), j = 0,1, . . . , n.

Then P(
∑n

i=0 1An
i
≥ m) = P(km ≤ n). We claim that, for each 0 ≤ j < n,

{kj+1 ≤ n} ⊆ An
kj

∩ Bn
kj +1, P -a.s. (5.5)

(It is important to note here that the left side contains kj+1 while the superscript of B

on the right side is kj + 1!)
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Indeed, we first note that {kj+1 ≤ n} ⊂ {kj ≤ n} ⊆ An
kj

, and consider the set
An

kj
\Bn

kj +1. Suppose that Zn
τkj +1

�= Zn
τkj

on An
kj

\Bn
kj +1. Then 0 < |Zn

τkj +1
−Zn

τkj
| <

ε1, and by Proposition 5.4(ii) we must have both Zn
τkj

= 0 and Zn
τkj +1

= 0, P -a.s., a

contradiction. Thus we must have Zn
τkj +1

= Zn
τkj

on An
kj

\ Bn
kj +1. Then by the defi-

nition of τi in (2.15) we know τkj +1 = T and thus Zn
τkj

= Zn
τkj +1

= · · · = Zn
τn

= 0.

Namely kj+1 = n + 1. In other words, An
kj

\ Bn
kj +1 ⊆ {kj+1 = n + 1}. Note that

{kj+1 ≤ n} ⊆ An
kj

\ {kj+1 = n + 1}, (5.5) follows.
Next, applying Proposition 5.4(i) we derive from (5.5) that

P

(∑

i

1An
i
≥ m

)
= P(km ≤ n) ≤ P

(
m−1⋂

j=0

[
An

kj
∩ Bn

kj +1

]
)

= E

{
m−1∏

j=0

[1An
kj

1Bn
kj +1

]
}

= E

{[
m−2∏

j=0

[1An
kj

1Bn
kj +1

]
]

1An
km−1

E{1Bn
km−1+1

|Fτkm−1
}
}

≤ E

{[
m−2∏

j=0

[1An
kj

1Bn
kj +1

]
]

1An
km−1

1

2

}

≤ 1

2
E

{
m−2∏

j=0

[1An
kj

1Bn
kj +1

]
}

.

Repeating the argument m − 1 more times we prove the theorem. �

The following theorem is a generalized version of Proposition 5.1.

Theorem 5.5 Assume Assumptions (H1)–(H4). Then it holds that

E
{
N
(
Zn
)}≤ C

[
1 + 1

c(ε1) ∧ c(−ε1)

]
< ∞, ∀n.

Proof Denote

N1
(
Zn
) :=

n∑

i=0

1An
i
, N2

(
Zn
) :=

n∑

i=0

1Bn
i
.

Then E{N(Zn)} = E{N1(Z
n)} + E{N2(Z

n)}. First, Theorem 5.3 implies that

E
{
N1
(
Zn
)}=

n∑

m=0

P
(
N1
(
Zn
)≥ m

)≤
n∑

m=0

1

2m
≤ 2. (5.6)

Next, one can estimate E{N2(Z
n)} along the lines as Proposition 5.1. Indeed, note

that

E

{
U

(
y +
∫ T

t

Zn
s dXs

)}
− V n(t, x, y, z)



374 Appl Math Optim (2013) 67:353–390

= E

{
U

(
y +
∫ T

t

Zn
s dXs

)
− U

(
y +
∫ T

t

Zn
s dXs −

∑

i

c
(
δZn

τi

))}

≥ λE

{∑

i

c
(
δZn

τi

)
}

≥ λE

{∑

i

(
c(ε1) ∧ c(−ε1)

)
1Bn

i

}

= λ
[
c(ε1) ∧ c(−ε1)

]
E
{
N2
(
Zn
)}

.

On the other hand, recalling (3.2) we have

E

{
U

(
y +
∫ T

t

Zn
s dXs

)}
− V n(t, x, y, z)

≤ E

{
U

(
y +
∫ T

t

Zn
s dXs

)}
− V 1(t, x, y, z)

= sup
τ≥t

∣∣∣∣E
{
U

(
y +
∫ T

t

Zn
s dXs

)
− U

(
y +
∫ τ

t

zdXs − c(−z)

)}∣∣∣∣

≤ ΛE

{∣∣∣∣

∫ τ

t

(
Zn

s − z
)
dXs

∣∣∣∣+
∣∣∣∣

∫ T

τ

Zn
s dXs

∣∣∣∣+ c(−z)

}
≤ CΛ.

Then E{N2(Z
n)} ≤ CΛ

λ[c(ε1)∧c(−ε1)] . This, together with (5.6), proves the theorem. �

As a consequence Theorem 5.5, we have the second main result of this section,
which improves (3.11) and whose proof is also postponed to Sect. 7.

Theorem 5.6 Assume (H1)–(H3). Assume further that either c(z) ≥ c0 > 0, for all
z �= 0 or (H4) holds. Then there exists a generic constant C > 0, such that for any
z1, z2 with the same sign, and for all n, it holds that

∣∣V n(t, x, y, z1) − V n(t, x, y, z2)
∣∣≤ C

[|�z| + ρ
(|�z|)]; (5.7)

V (t, x, y, z) − V n(t, x, y, z) ≤ C

n
. (5.8)

As the direct consequences of Propositions 3.2 and 3.3, and Theorem 5.6 we have

Theorem 5.7 Assume(H1)–(H3), and assume either c(z) ≥ c0, z �= 0 or (H4). Then

(i) |V (t, x1, y, z) − V (t, x2, y, z)| ≤ C|�x|.
(ii) λ�y ≤ V (t, x, y1, z) − V (t, x, y2, z) ≤ Λ�y,∀�y := y1 − y2 ≥ 0.

(iii) |V (t1, x, y, z) − V (t2, x, y, z)| ≤ C|�t | 1
2 .

(iv) |V (t, x, y, z1)−V (t, x, y, z2)| ≤ C[|�z|+ρ(|�z|)],∀z1, z2 with the same sign.
(v) V (t, x, y,0+) ≤ V (t, x, y,0),V (t, x, y,0−) ≤ V (t, x, y,0).
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6 The Optimal Strategy Z∗

In this section we construct the optimal controls for the original problem (2.8). We
should note that by virtue of Proposition 5.1 and Theorem 5.5, one can easily show
that under our assumptions Zn should converge in distribution. But this does not seem
to be helpful for our construction of the optimal strategy. In fact, in general we will
have to extend the probability space, and it is not clear whether the limit process will
have the desired adaptedness that is essential in our application. We thus construct
the optimal portfolio Z∗ for (2.8) directly.

In light of the construction of the optimal strategy Zn, we know that the function
V̄ = V should play the role of an “obstacle” that will trigger the jumps, as it is usually
the case in impulse control literature. To this end let us consider the following set

O(z) := {(t, x, y) : V (t, x, y, z) > V
(
t, x, y − c(z̃ − z), z̃

)
,∀z̃ �= z

}
,

(6.1)
O :=

⋃

z

O(z).

Intuitively, the set O(z) should define an “inaction region”, since a change of posi-
tion (on z) would decrease the value function. Furthermore, following the standard
impulse control theory one would expect that O(z) is an open set and the trade will
take place when (t, x, y) ∈ ∂O(z). This is indeed the case when c(z) ≥ c0 > 0 for
z �= 0. However, unfortunately in our more general case we only have the following
result.

Lemma 6.1 Assume (H1)–(H4). Define

On(z) :=
{
(t, x, y) : V (t, x, y, z) > V

(
t, x, y − c(z̃ − z), z̃

)
,∀|z̃ − z| ≥ 1

n

}
.(6.2)

Then On(z) is open, for all n, and O(z) =⋂n On(z).

Proof Denote

V̄n(t, x, y, z) := sup
|z̃−z|≥ 1

n

V
(
t, x, y − c(z̃ − z), z̃

)
. (6.3)

Apply Theorem 5.7 and follow the proof of Lemma 4.1, we know V̄n is continuous in
(t, x, y) and there exists a Borel measurable function ψn such that |ψn(t, x, y, z) −
z| ≥ 1

n
and

V
(
t, x, y − c

(
ψn(t, x, y, z) − z

)
,ψn(t, x, y, z)

)= V̄n(t, x, y, z).

This implies that

On(z) = {(t, x, y) : V (t, x, y, z) > V̄n(t, x, y, z)
}

and thus On(z) is open. That O(z) = ⋂∞
n=1 On(z) is obvious. The proof is com-

plete. �
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We remark that Lemma 6.1 does not imply that the set O(z) is an open set.
Therefore, if we follow the scheme in the previous sections to define, for given
(t, x, y, z) ∈ O and recalling (4.6),

τ := inf
{
s ≥ t : (s,Xs,Y

0
s

)
/∈ O(z)

}∧ T . (6.4)

Then intuitively it is possible that P {τ = t} > 0 and/or P {(τ,Xτ ,Y
0
τ ) ∈ O(z)} > 0.

In either case the construction procedure will fail. The following Theorem, which
excludes the above cases, is therefore essential.

Theorem 6.2 Assume (H1)–(H4). Define, for each (t, x, y, z) ∈ O and n > 0,

τn := inf
{
s ≥ t : (s,Xs,Y

0
s

)
/∈ On(z)

}∧ T , (6.5)

and let τ be defined by (6.4). Then

(i) τn are decreasing stopping times and (τn,Xτn, Y 0
τn) /∈ On(z) whenever τn < T .

(ii) τn ↓ τ and thus τ is also a stopping time.
(iii) P(τn > τ,∀n) = 0 and thus, P -a.s., (τ,Xτ ,Y

0
τ ) /∈ O(z) when τ < T . In partic-

ular, this implies that τ > t .
(iv) V (t, x, y, z) = E{V (τ,Xτ ,Y

0
τ , z)}.

The proof of Theorem 6.2 will depend heavily on an important, albeit technical,
lemma that characterizes the possible behavior of the small jumps under our basic
assumptions on the liquidity/transaction cost function. The proof of this lemma is
again rather tedious, and we defer it to Sect. 7.

Lemma 6.3 Assume (H1)–(H4) and let ε1 be that in Lemma 5.2. Suppose that for
given (t, x, y, z), z̃ is such that 0 < |z̃ − z| < ε1 and V (t, x, y, z) = V (t, x, y −
c(z̃ − z), z̃), then z̃ = 0.

Proof of Theorem 6.2 (i) That τn’s are decreasing stopping times is obvious by defi-
nition. Also, since each On(z) is an open set, thanks to Lemma 6.1, it follows imme-
diately that (τn,Xτn, Y 0

τn) /∈ On(z), whenever τn < T .
(ii) Denote τ∞ := limn→∞ τn. Since On ⊇ O, we have τn ≥ τ for any n and

thus τ∞ ≥ τ , P -a.s. The claim is trivial when τ = T . Now assume τ(ω) < T .
Then for any ε > 0, there exists s < τ(ω) + ε such that (s,Xs,Y

0
s ) /∈ O(z). Since

O(z) =⋂n On(z), there exists n := n(ω) such that (s,Xs(ω),Y 0
s (ω)) /∈ On(z). Thus

τn(ω) ≤ s < τ(ω) + ε and therefore τ∞(ω) < τ(ω) + ε. Since ε is arbitrary, we get
τ∞ ≤ τ , and hence τ∞ = τ .

(iii) Choose n0 such that n0 > max{ 1
ε1

, 1
|z|1{z �=0}}, and note that {τn > τ,∀n} ⊂

{τ < T }. On {τ < T }, for n ≥ n0 large enough, by (ii) we have τn < T and thus
there exists Zτn such that |Zτn − z| ≥ 1

n
and V (τn,Xτn, Y 0

τn , z) = V (τn,Xτn, Y 0
τn −

c(Zτn − z),Zτn). By Lemma 6.3, either Zτn = 0 or |Zτn − z| ≥ ε1. If z = 0, then
Zτn �= 0 and thus |Zτn − z| ≥ ε1 ≥ 1

n0
. If z �= 0, then either |Zτn − z| = |z| ≥ 1

n0
or

|Zτn − z| ≥ ε1 ≥ 1
n0

. So in all the cases we have |Zτn − z| ≥ 1
n0

. This implies that

τn = τn0 for all n large enough. Therefore, τ = τn0 and thus (τ,Xτ ,Y
0
τ ) /∈ O(z).
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(iv) We first note that, taking τ as the first trading time, we should have

E
{
V
(
τ,Xτ ,Y

0
τ , z
)}= sup

{
E
{
U
(
Y

t,x,y,z,Z
T

)} : Z ∈ Zt ,Zs = z for ∀s < τ
}
.

It then follows that E{V (τ,Xτ ,Y
0
τ , z)} ≤ V (t, x, y, z).

On the other hand, note that F is quasi-left continuous, we can choose a sequence
of stopping times τm ↑ τ such that τm < τ whenever τ > t . We claim that

V (t, x, y, z) ≤ E
{
V
(
τm,Xτm,Y 0

τm
, z
)}

. (6.6)

Then by sending m → ∞ we prove the theorem.
To prove (6.6), we recall (6.3) and choose n0 as in (iii). On the set {τ > t} and for

t ≤ s < τ , denote

Is := V
(
s,Xs,Y

0
s , z
)− V̄n0

(
s,Xs,Y

0
s , z
)
.

By the proof of Lemma 6.1 we have Is > 0. Since I is continuous in s, we get

Im := inf
s≤τm

Is > 0. (6.7)

For any n ≥ n0, let Zn be the optimal portfolio of V n(t, x, y, z). If Zn
t �= z, by

Proposition 5.4(ii) and following similar arguments as in (iii), we have |Zn
t − z| ≥ 1

n0
.

Then

V n(t, x, y, z) = V n−1(t, x, y − c
(
Zn

t − z
)
,Zn

t

)≤ V
(
t, x, y − c

(
Zn

t − z
)
,Zn

t

)

≤ V̄n0(t, x, y, z).

Thus, by (5.8),

V (t, x, y, z) ≤ V n(t, x, y, z) + C

n
≤ V̄n0(t, x, y, z) + C

n
,

and therefore Zn
t = z for n ≥ n1 := C

V (t,x,y,z)−V̄n0 (t,x,y,z)
∨ n0. Now assume n ≥ n1,

and let τn
1 > t be the first jump time of Zn. Again by Proposition 5.4(ii) and following

similar arguments as in (iii), we have |Zn
τn

1
− z| ≥ 1

n0
on {τn

1 < T }. Then, for any m,

on {τn
1 < τm} ⊂ {τn

1 < T }, using (5.8) we have

Im ≤ Iτn
1

= V
(
τn

1 ,Xτn
1
, Yτn

1
, z
)− V̄n0

(
τn

1 ,Xτn
1
, Yτn

1
, z
)

≤ V
(
τn

1 ,Xτn
1
, Yτn

1
, z
)− V

(
τn

1 ,Xτn
1
, Yτn

1
− c
(
Zn

τn
1

− z
)
,Zn

τn
1

)

≤ V
(
τn

1 ,Xτn
1
, Yτn

1
, z
)− V n−1(τn

1 ,Xτn
1
, Yτn

1
− c
(
Zn

τn
1

− z
)
,Zn

τn
1

)

= V
(
τn

1 ,Xτn
1
, Yτn

1
, z
)− V n

(
τn

1 ,Xτn
1
, Yτn

1
, z
)≤ C

n
.

This, together with (6.7), implies that

lim
n→∞P

(
τn

1 < τm

)= 0. (6.8)
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Next, recall from the proof of Theorem 4.2 that τn
1 is a solution to an optimal

stopping problem, and thus (cf. e.g., [11]), V n(s,Xs,Ys, z) is a martingale for t ≤ τn
1 .

Therefore

V n(t, x, y, z) = E
{
V n
(
τn

1 ∧ τm,Xτn
1 ∧τm

, Yτn
1 ∧τm

, z
)}

= E
{
V n(τm,Xτm,Yτm, z)1{τm≤τn

1 }

+ V n−1(τn
1 ,Xτn

1
, Yτn

1
− c
(
Zn

τn
1

− z
)
,Zn

τn
1

)
1{τn

1 <τm}
}

≤ E
{
V (τm,Xτm,Yτm, z)1{τm≤τn

1 }

+ V
(
τn

1 ,Xτn
1
, Yτn

1
− c
(
Zn

τn
1

− z
)
,Zn

τn
1

)
1{τn

1 <τm}
}

= E
{
V (τm,Xτm,Yτm, z)

}

+ E
{[

V
(
τn

1 ,Xτn
1
, Yτn

1
− c
(
Zn

τn
1

− z
)
,Zn

τn
1

)

− V (τm,Xτm,Yτm, z)
]
1{τn

1 <τm}
}
.

Applying Proposition 3.1 we then have

V n(t, x, y, z) ≤ E
{
V (τm,Xτm,Yτm, z) + C

[
1 + sup

t≤s≤T

|Ys |
]
1{τn

1 <τm}
}
.

Sending n → ∞ and by (6.8) we obtain (6.6), whence the theorem. �

To construct the optimal strategy, we also need

Lemma 6.4 Assume (H1)–(H4). If (t, x, y) /∈ O(z), then there exists z̃ such that

V (t, x, y, z) = V
(
t, x, y − c(z̃ − z), z̃

)
and

(
t, x, y − c(z̃ − z)

) ∈ O(z̃).

Proof Assume the result is not true. Since (t, x, y) /∈ O(z), there exists z1 �= z

such that V (t, x, y, z) = V (t, x, y − c(z1 − z), z1). By our assumption, (t, x, y −
c(z1 − z)) /∈ O(z1). Then there exists z2 �= z1 such that V (t, x, y − c(z1 − z), z1) =
V (t, x, y − c(z1 − z) − c(z2 − z1), z2). Note that c(z1 − z) + c(z2 − z1) ≥ c(z2 − z).
By the optimality of V we must have c(z1 − z) + c(z2 − z1) = c(z2 − z) and

V (t, x, y, z) = V
(
t, x, y − c(z1 − z), z

)= V
(
t, x, y − c(z2 − z), z2

)
.

This also implies that z2 �= z. By our assumption again, (t, x, y − c(z2 − z)) /∈ O(z2).
Repeating this argument yields the different z1, z2, . . . such that c(zi − z) + c(zi+1 −
zi) = c(zi+1 − z), i = 1,2, . . . , and

V (t, x, y, z) = V
(
t, x, y − c(z1 − z), z1

)= · · · = v
(
t, x, y − c(zi+1 − z), zi+1

)
.

Note that since zi ’s are all different, there is at most one zi equal to 0. Thus,
by Lemma 6.3, except for one i, we have |zi+1 − zi | ≥ ε1. This implies that
c(zi − z) ≥ (i − 1)[c(ε1) ∧ c(−ε1)] for all i. This contradicts with the fact that
c(zi − z) is bounded. �
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We are now ready to construct the optimal strategy Z∗. Let (t, x, y, z) be given
and denote Xs := X

t,x
s .

First, set τ ∗
0 := t ; if (t, x, y) ∈ O(z), set Z∗

τ∗
0

:= z and Y ∗
τ∗

0
:= y; if (t, x, y) /∈

O(z), applying Lemma 6.4 we may find Z∗
0 such that V (t, x, y, z) = V (t, x, y −

c(Z∗
0 − z),Z∗

0) and (t, x, y − c(Z∗
0 − z)) ∈ O(Z∗

0). In this case, set Y ∗
τ∗

0
:= y −

c(Z∗
0 − z). So in both cases we have (τ ∗

0 ,Xτ∗
0
, Y ∗

τ∗
0
) ∈ O(Z∗

τ∗
0
).

Assume we have defined τ ∗
i and (Y ∗,Z∗) on [t, τ ∗

i ] such that (τ ∗
i ,Xτ∗

i
, Y ∗

τ∗
i
) ∈

O(Z∗
τ∗
i
). Denote Y i

s := Y ∗
τ∗
i

+ Z∗
τ∗
i
[Xs − Xτ∗

i
], s ≥ τ ∗

i , and define

τ ∗
i+1 := inf

{
s ≥ τ ∗

i : (s,Xs,Y
i
s

)
/∈ O
(
Z∗

i

)}∧ T .

By Theorem 6.2, τ ∗
i+1 is a stopping time and τ ∗

i+1 > τ ∗
i whenever τ ∗

i < T . Set Z∗
s :=

Z∗
τ∗
i

and Y ∗
s := Y i

s for s ∈ [τ ∗
i , τ ∗

i+1). If τ ∗
i+1 = T , then we set Z∗

τ∗
i+1

:= 0 and Y ∗
τ∗
i+1

:=
Y i

τ∗
i+1

− c(−Z∗
τ∗
i
). If τ ∗

i+1 < T , by Theorem 6.2 again we know (τ ∗
i+1,Xτ∗

i+1
, Y i

τ∗
i+1

) /∈
O(Z∗

τ∗
i
). Applying Lemma 6.4 we may find Z∗

τ∗
i+1

such that, by defining Y ∗
τ∗
i+1

:=
Y i

τ∗
i+1

− c(Z∗
τ∗
i+1

− Z∗
τ∗
i
),

V
(
τ ∗
i+1,Xτ∗

i+1
, Y i

τ∗
i+1

,Z∗
τ∗
i

)= V
(
τ ∗
i+1,Xτ∗

i+1
, Y ∗

τ∗
i+1

,Z∗
τ∗
i+1

)
, and

(
τ ∗
i+1,Xτ∗

i+1
, Y ∗

τ∗
i+1

) ∈ O
(
Z∗

τ∗
i+1

)
.

Repeat the procedure we obtain τ ∗
i for i = 0,1, . . . and (Y ∗,Z∗).

We should point out that at this point we do not know if the above construction will
stop after finitely many times. We shall prove this and our main result Theorem 2.8
in Sect. 7.

7 Some Technical Proofs

In this section we provide the technical proofs we miss in the previous sections. We
note that these results are instrumental in the construction of the piecewise constant
optimal strategy, and some of these results are of interest in their own right. As a
matter of fact, many of these results can be considered as the necessary conditions of
the optimality.

7.1 Proofs of (3.11) and Theorem 5.6

To prove the regularity of the V n’s with respect to z, we first introduce the following
notion of “domination” of strategies. Assume Zj ∈ Z n

t (zj ), j = 1,2, where either
z1 > z2 > 0, or z1 < z2 < 0. Denote �Z := Z1 − Z2, as usual. We say that Z1

dominates Z2 if Z1 and Z2 have the same jump times τi ’s, and

�z = �Zτ−1 ≥ �Zτ0 ≥ · · · ≥ �Zτn = 0 or

�z = �Zτ−1 ≤ �Zτ0 ≤ · · · ≤ �Zτn = 0,
(7.1)
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and, by denoting sgn(0) := 0 and δZ
j
τi

:= Z
j
τi

− Z
j
τi−1 ,

sgn
(
δZ1

τi

)= sgn
(
δZ2

τi

)
. (7.2)

Remark 7.1 We remark that the requirements (7.1) and (7.2) guarantee not only that
Z1 and Z2 stay close, but that they are on the same side of the origin. This is mainly
due to the fact that the cost function c is allowed to behave differently on the two
sides of the origin (i.e., c(0+) �= c(0−)).

Recall (3.12). Note that if z1 > z2 > 0 and Z1 dominates Z2, then, denoting Y i :=
Y t,x,y,zi ,Z

i
, i = 1,2, and X = Xt,x , by induction one can easily check that

∣∣E
{
U
(
Y 1

T

)}− E
{
U
(
Y 2

T

)}∣∣ ≤ CE

{∣∣∣∣

∫ T

t

�ZsdXs

∣∣∣∣+
∣∣∣∣∣

n∑

i=0

[
c
(
δZ1

τi

)− c
(
δZ2

τi

)]
∣∣∣∣∣

}

≤ C|�z| + CE

{
n∑

i=0

ρ
(∣∣δZ1

τi
− δZ2

τi

∣∣)
}

= C|�z| + CE

{
n∑

i=0

ρ(�Zτi−1 − �Zτi
)

}

≤ C|�z| + Cρn

(|�z|). (7.3)

Proof of (3.11) By the definitions one can easily check that

V n(T , x, y, z) = V (T , z, y, z) = U
(
y − c(−z)

)
. (7.4)

Then the estimate is obvious for t = T . So we may assume t < T . Without loss of
generality assume z1 > z2 > 0.

We first prove the right inequality. In light of the estimate (7.3), we need
only prove the following claim: For any Z1 ∈ Z n

t (z1), there exists Z2 ∈ Z n
t (z2)

dominated by Z1. Indeed, for any ε > 0, we can find Z1,ε ∈ Z n
t (z1) such that

E{U(Y
t,x,y,z,Z1,ε

T )} > V n(t, x, y, z1) − ε. If the claim is true, then (7.3) leads to that

V n(t, x, y, z1) ≤ C
[|�z| + ρn(|�z|)]+ V n(t, x, y, z2) + ε.

Letting ε → 0 we obtain the right inequality.
Now let Z1 =∑n−1

i=0 Z1
τi

1[τi ,τi+1) ∈ Z n
t (z1) be given. We construct Z2 ∈ Z n

t (z2) as
follows. We begin by choosing the same jump times τi ’s. Define

Z2
τ0

:=

⎧
⎪⎨

⎪⎩

z2, if Z1
τ0

= z1;
Z1

τ0
, if Z1

τ0
> z1 or Z1

τ0
< z2;

z2 − 1
2 [(z1 − Z1

τ0
) ∧ z2], if z2 ≤ Z1

τ0
< z1.

Suppose that we have defined Z2
τi

such that either Z2
τi

= Z1
τi

or 0 < Z2
τi

< Z1
τi

, we
then define Z2

τi+1
in the following way: if τi+1 = T or Z2

τi
= Z1

τi
, then simply set
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Z2
τi+1

:= Z1
τi+1

. Assume τi+1 < T and 0 < Z2
τi

< Z1
τi

. Note that in this case, by (2.15)

we have Z1
τi+1

�= Z1
τi

. If Z1
τi+1

> Z1
τi

or Z1
τi+1

< Z2
τi

, define Z2
τi+1

:= Z1
τi+1

. Otherwise,

we have Z1
τi

> Z1
τi+1

≥ Z2
τi

> 0, then define Z2
τi+1

:= Z2
τi

− 1
2 [(Z1

τi
− Z1

τi+1
) ∧ Z2

τi
].

Note that we still have either Z2
τi+1

= Z1
τi+1

or 0 < Z2
τi+1

< Z1
τi+1

, so we may continue

to define Z2. One can check directly that Z2 constructed in such a way satisfies both
(7.1) and (7.2), hence Z1 dominates Z2.

It remains to prove the left inequality. To this end, let Z2 =∑n−1
i=0 Z2

τi
1[τi ,τi+1) ∈

Z n
t (z2) be arbitrarily chosen. We define Z1 ∈ Z n

t (z1) recursively as follows. First,
define

Z1
τ0

:=

⎧
⎪⎨

⎪⎩

z1, if Z2
τ0

= z2;
Z2

τ0
, if Z2

τ0
> z1 or Z2

τ0
< z2;

z1 + [Z2
τ0

− z2], if z2 < Z1
τ0

≤ z1.

Assume we have defined Z1
τi

such that either Z1
τi

= Z2
τi

or 0 < Z2
τi

< Z1
τi

. If τi+1 = T

or Z1
τi

= Z2
τi

, define Z1
τi+1

:= Z2
τi+1

. Now assume τi+1 < T and 0 < Z2
τi

< Z1
τi

. Note

that in this case Z2
τi+1

�= Z2
τi

. If Z2
τi+1

< Z2
τi

or Z2
τi+1

> Z1
τi

, define Z1
τi+1

:= Z2
τi+1

.

Otherwise, we have Z1
τi

≥ Z2
τi+1

> Z2
τi

> 0, then define Z1
τi+1

:= Z1
τi

+ [Z2
τi+1

− Z2
τi
].

Note that we still have either Z1
τi+1

= Z2
τi+1

or 0 < Z2
τi+1

< Z1
τi+1

, so we may continue

to define Z1. One may check that (7.2) still holds, and for each ω, there exists k such
that

�Zτ0 = · · · = �Zτk
= �z and �Zτk+1 = · · · = �Zτn = 0. (7.5)

Then, similar to (7.3), we have

E
{
U
(
Y t,x,y,z2,Z2)}− V n(t, x, y, z1)

≤ E
{
U
(
Y t,x,y,z2,Z2)}− E

{
U
(
Y t,x,y,z1,Z1)}

≤ C|�z| + CE

{
n∑

i=0

ρ(�Zτi−1 − �Zτi
)

}

= C
[|�z| + ρ(|�z|)].

Since Z2 is arbitrary, we prove the left inequality in (3.11). �

Proof of Theorem 5.6 Without loss of generality, assume z1 > z2 > 0. We first recall
the left inequality in (3.11). So we need only check the other half of the inequality. To
this end, let Z1 be the optimal strategy of V n(t, x, y, z1), and as in the proof of (3.11)
we define Z2 ∈ Z n

t (z2) that is “dominated” by Z1. We note that, for i > N(Z1),
Z1

τi
= Z1

τi−1
, which implies that Z2

τi
= Z2

τi−1
. Then, following (7.3) we have

V n(t, x, y, z1) − V n(t, x, y, z2)

≤ E
{
U
(
Y

t,x,y,z1,Z1

T

)}− E
{
U
(
Y

t,x,y,z2,Z2

T

)}
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≤ C|�z| + CE

{
N(Z1)∑

i=0

ρ
(|δZ1

τi
− δZ2

τi
|)
}

≤ C|�z| + Cρ
(|�z|)E{N(Z1)}≤ C

[|�z| + ρ
(|�z|)],

where the last inequality is due to Theorems 5.1 and 5.5. This proves (5.7).
To prove (5.8),we denote, for any m > n, Zm =∑m

i=1 Zm
τi−1

1[τi−1,τi ) be the optimal

strategy of V m(t, x, y, z). Define Z
n,m
s := Zm

s 1{s<τn}. Then Zn,m ∈ Z n+1
t (z), and

Y
t,x,y,z,Zm

T − Y
t,x,y,z,Zn,m

T

=
[∫ T

τn

Zm
s dXs + c

(−Zm
τn−1

)−
m∑

i=n

c
(
δZm

τi

)
]

1{τn<T }

≤
[∫ T

τn

Zm
s dXs + c

(−Zm
τn−1

)]
1{τn<T }.

Note that {τn < T } = {N(Zm) > n}, it follows that

V m(t, x, y, z) − V n+1(t, x, y, z)

≤ E
{
U
(
Y

t,x,y,z,Zm

T

)− U
(
Y

t,x,y,z,Zn,m

T

)}

≤ CE

{[
Eτn

{∣∣∣∣

∫ T

τn

Zm
s dXs

∣∣∣∣

}
+ 1

]
1{τn<T }

}

≤ CP {τn < T } = CP
{
N
(
Zm
)
> n
}≤ C

n
E
{
N
(
Zm
)}≤ C

n
.

Sending m → ∞ and applying Proposition 3.1, we obtain the result. �

7.2 Proof of Proposition 5.4

We split the proof into several lemmas. To begin with, we fix (t0, x0, y0, z0) and n,
and let Zn be the optimal strategy of V n(t0, x0, y0, z0). Recall (5.3) and for notational
simplicity we suppress the superscript “n” and denote them as Ai and Bi . Throughout
this subsection we assume that (H1)–(H4) are all in force. Keep in mind that our
purpose is to show that on the set of small jumps (the set Ai ’s) the jump will only
happen when it jumps to 0.

Lemma 7.2 P -a.s. on Ai , either 0 ∨ Zn
τi

≤ Zn
τi−1

or Zn
τi−1

≤ Zn
τi

∧ 0.

Proof Suppose that the lemma is not true. Then we may assume without loss of
generality that P(Di0) > 0 for some i0 ≥ 0, where Di0 := {Zn

τi0
> Zn

i0−1 ≥ 0} ∩ Ai0 .

Our goal is to construct some Z̃n ∈ Z n
t0
(z0) such that

E
{
U
(
Y Z̃n

T

)}− E
{
U
(
YZn

T

)}
> 0,

where Y Z̃n := Y t0,x0,y0,z0,Z̃
n

, YZn := Y t0,x0,y0,z0,Z
n

. (7.6)
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This leads to E{U(Y Z̃n

T )} > V (t0, x0, y0, z0), an obvious contradiction.
We now define Z̃n as follows. First, let k := inf{i ≥ i0 : Zn

τi
≤ 0}. Since Zn

τn
= 0,

we have k ≤ n. Now, set

Z̃n
τi

:=

⎧
⎪⎪⎨

⎪⎪⎩

Zn
τi
, i < i0 or i ≥ k;

Zn
τi0 −11Di0

+ Zn
τi0

1Dc
i0
, i = i0;

{[Zn
τi

− Zn
τi0

+ Zn
τi0−1

] ∨ 0}1Di0
+ Zn

τi
1Dc

i0
, i0 + 1 ≤ i < k.

Then Z̃n ∈ Z n
τ0

(z0). To prove (7.6), we denote �Zn := Z̃n − Zn. Then,

�Yn
T := Y Z̃n

T − YZn

T =
∫ T

τi0

�Zn
s dXs +

n∑

i=i0

[
c
(
δZn

τi

)− c
(
δZ̃n

τi

)]
.

By definition of Z̃n it is clear that �Yn
T = 0 on Dc

i0
. On Di0 , first note that |�Zn

τi
| ≤

δZn
τi0

for all i. Further, for i > k, one has δZ̃n
τi

= δZn
τi

; and for i ≤ k, one can check

that either 0 ≤ δZ̃n
τi

≤ δZn
τi

or δZn
τi

≤ δZ̃n
τi

≤ 0. It then follows from the monotonicity

assumption in (H3)-(ii) that c(δZn
τi
) ≥ c(δZ̃n

τi
). Moreover, note that when i = i0,

c
(
δZn

τi0

)− c
(
δZ̃n

τi0

)= c
(
δZn

τi0

)
> C0

∣∣δZn
τi0

∣∣,

thanks to Lemma 5.2(i). Thus, on Di0 ,

�Yn
T ≥
∫ T

τi0

�Zn
s dXs + c

(
δZn

τi0

)
>

∫ T

τi0

�Zn
s dXs + C0

∣∣δZn
τi0

∣∣;

and

Eτi0

{∣∣∣∣

∫ T

τi0

�Zn
s dXs

∣∣∣∣

}
≤ Eτi0

{∫ T

τi0

∣∣�Zn
s b(s,Xs)

∣∣ds +
∣∣∣∣

∫ T

τi0

�Zn
s σ (s,Xs)dWs

∣∣∣∣

}

≤ Eτi0

{∫ T

τi0

∣∣�Zn
s b(s,Xs)

∣∣ds

}

+ ΛEτi0

{∫ T

τi0

∣∣�Zn
s σ (s,Xs)

∣∣2ds

} 1
2

≤ [‖b‖∞T + ‖σ‖∞
√

T
]∣∣δZn

τi0

∣∣= λ

Λ
(C0 − 1)

∣∣δZn
τi0

∣∣.

Therefore, for some appropriately defined FT -measurable random variable ξ , we
have

E
{
U
(
Y Z̃n

T

)− U
(
YZn

T

)} = E
{
U ′(ξ)�Yn

T

}= E
{
U ′(ξ)�Yn

T 1Di0

}

≥ E

{[
λC0
∣∣δZn

τi0

∣∣− Λ

∣
∣∣∣

∫ T

τi0

�Zn
s dXs

∣
∣∣∣

]
1Di0

}
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= E

{[
λC0
∣∣δZn

τi0

∣∣− ΛEτi0

{∣∣∣∣

∫ T

τi0

�Zn
s dXs

∣∣∣∣

}]
1Di0

}

≥ λE
{∣∣δZn

τi0

∣
∣1Di0

}
> 0.

This proves (7.6) and hence the lemma. �

Lemma 7.3 For any Ãi ⊂ Ai , if P(Ãi) > 0, then P(D̃i+1) > 0, where

D̃i+1 :=
{
−1 ≤ δZn

τi+1

δZn
τi

≤ 1

2

}
∩ Ãi . (7.7)

Consequently, P -a.s. in Ai , it holds that |Zn
τi
| ≤ |δZn

τi
|.

Proof To simplify the presentation we prove the lemma only for i = 1. The general
case can be proved in a line by line analogy. We will prove by contradiction, and with-
out loss of generality, we assume Zn

τ0
≥ 0. Then by Lemma 7.2, we have Zn

τ1
< Zn

τ0
in

Ã1 ⊂ A1. Suppose that the result is not true, namely P(D̃2) = 0. Then, with possibly
an exception of a null set, one has

Ã1 ⊆ D̃21 ∪ D̃22 := ({δZn
τ2

> −δZn
τ1

}∩ A1
)∪
({

δZn
τ2

<
1

2
δZn

τ1

}
∩ A1

)
.

Slightly different from the previous lemma, we now define Z̃n
τ0

:= Zn
τ0

; Z̃n
τ1

:=
Zn

τ1
1
Ãc

1
+ z01

Ã1
; and Z̃n

τi
:= Zn

τi
, for i ≥ 2. Then Z̃n ∈ Z n

t0
(z0), and

�Yn
T = [−δZn

τ1
[Xτ2 − Xτ1] + c

(
δZn

τ1

)+ c
(
δZn

τ2

)− c
(
Zn

τ2
− Zn

τ0

)]
1
Ã1

.

Note that, on D̃21, Zn
τ2

> Zn
τ0

> Zn
τ1

. Then (H3)-(ii) and Lemma 5.2(i) yield that

c
(
δZn

τ1

)+ c
(
δZn

τ2

)− c
(
Zn

τ2
− Zn

τ0

)≥ c
(
δZn

τ1

)≥ C0
∣∣δZn

τ1

∣∣.

On the set D̃22, however, one has δZn
τ2

< 1
2δZn

τ1
< 0. Then by Lemma 5.2(iii) we

have

c
(
δZn

τ1

)+ c
(
δZn

τ2

)− c
(
Zn

τ2
− Zn

τ0

)≥ C1
∣∣δZn

τ1

∣∣≥ C0
∣∣δZn

τ1

∣∣.

So, P -a.s. in Ã1,

�Yn
T ≥ −δZn

τ1
[Xτ2 − Xτ1] + C0

∣∣δZn
τ1

∣∣.

Thus, following similar arguments as in Lemma 7.2, we have

E
{
U
(
Y Z̃n

T

)− U
(
YZn

T

)} ≥ E
{[

λC0
∣∣δZn

τ1

∣∣− Λ
∣∣δZn

τ1

∣∣|Xτ2 − Xτ1 |
]
1
Ã1

}

≥ λE
{∣∣δZn

τ1

∣∣1
Ã1

}
> 0, (7.8)

a contradiction. Hence P(D̃2) > 0 must hold.
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To prove the last assertion we again assume i = 1 and Zn
τ0

≥ 0, and that the result
is not true. That is, denoting D̂1 := {|Zn

τ1
| > |δZn

τ1
|} ∩ A1, one has P(D̂1) > 0. Now,

denote

D̂i+1 :=
{
−1 ≤ δZn

τi+1

δZn
τi

≤ 1

2

}
∩ D̂i, i = 1, . . . , n − 1.

We shall prove by induction that D̂i ⊂ Ai and Zn
τi−1

≥ Zn
τi

> 1
2Zn

τi−1
on D̂i , for i =

1, . . . , n. Indeed, for i = 1, by definition D̂1 ⊂ A1. Moreover, Lemma 7.2 tells us that
Zn

τ1
< Zn

τ0
on D̂1. If Zn

τ1
≤ 0, then obviously |Zn

τ1
| ≤ |δZn

τ1
|. If Zn

τ1
> 0 in D̂1, then

Zn
τ1

> −δZn
τ1

and hence Zn
τ1

> 1
2Zn

τ0
on D̂1. Namely the claim holds for i = 1.

Assume now that for all i ≤ j , the claim holds. In particular, this implies that
Zn

τj
> 1

2j Zn
τ0

≥ 0 on D̂j , we show that the claim is true for i = j + 1. Note that on

D̂j+1, one has |δZn
τj+1

| ≤ |δZn
τj

| < ε1. Since Zn
τj

�= 0 on D̂j+1 ⊂ D̂j , by (2.15) we

know Zn
τj+1

�= Zn
τj

. Thus D̂j+1 ⊂ Aj+1. Moreover, since δZn
τj

< 0, we have δZn
τj+1

≥
1
2δZn

τj
on D̂j+1. Thus by inductional hypothesis we have

Zn
τj+1

≥ 3

2
Zn

τj
− 1

2
Zn

τj−1
>

1

2
Zn

τj
, on D̂j+1.

That is, the claim is true for i = j + 1, and hence it is true for all i.
Finally, by applying the same argument repeatedly we have P(D̂n) > 0. But the

claim tells us that Zn
τn

> 1
2n Zn

τ0
≥ 0 on D̂n. This is impossible since Zn

τn
= 0 must

hold almost surely by definition of Z n
t (z0). The proof is now complete. �

Proof Proof of Proposition 5.4(i) We follow the arguments in Lemma 7.3. Again for
simplicity we assume i = 1, Zn

τ0
≥ 0, and that the result is not true. Then P(D1) > 0,

where

D1 :=
{
P {B2|Fτ1} >

C0

C1

}
∩ A1.

As before, we define Z̃n
τ0

:= Zn
τ0

; Z̃n
τ1

:= Zn
τ1

1Dc
1
+ Zn

τ0
1D1 , and Z̃n

τi
:= Zn

τi
, for i ≥ 2.

Then Z̃n ∈ Z n
t0
(z0), and

�Yn
T = [−δZn

τ1
[Xτ2 − Xτ1] + c

(
δZn

τ1

)+ c
(
δZn

τ2

)− c
(
Zn

τ2
− Zn

τ0

)]
1D1 .

On D1 ∩ Bc
2 , we use (2.10) to get c(δZn

τ1
) + c(δZn

τ2
) − c(Zn

τ2
− Zn

τ0
) ≥ 0. On

D1 ∩ B2, we have |δZn
τ2

| ≥ ε1 ≥ |δZn
τ1

|. Thus Lemma 5.2(iii) tells us that

c
(
δZn

τ1

)+ c
(
δZn

τ2

)− c
(
Zn

τ2
− Zn

τ0

)≥ C1
∣∣δZn

τ1

∣∣.

Combining above we conclude that

E
{
U
(
Y Z̃n

T

)− U
(
YZn

T

)}

≥ E
{
λC1
∣∣δZn

τ1

∣∣1D1
⋂

B2 − Λ
∣∣δZn

τ1

∣∣Eτ1

{|Xτ2 − Xτ1 |
}
1D1

}
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= E
{
λC1
∣∣δZn

τ1

∣∣Eτ1{1B2}1D1 − λ(C0 − 1)
∣∣δZn

τ1

∣∣1D1

}

≥ λE

{[
C1
∣∣δZn

τ1

∣∣C0

C1
− (C0 − 1)

∣∣δZn
τ1

∣∣
]

1D1

}
= λE

{∣∣δZn
τ1

∣∣1D1

}
> 0. (7.9)

This is a contradiction and thus proves the part (i).
We shall prove part (ii) by backward induction on i. Since Zn

τn
= 0, the result is

true for i = n. Without loss of generality we assume it is true for i = 2 and will prove
it for i = 1. Assume Zn

τ0
≥ 0. If it is not true for i = 1, then P(D̃1) > 0 where

D̃1 := {Zn
τ1

�= 0
}∩ A1.

We now define Z̃n
τ0

:= Zn
τ0

; Z̃n
τ1

:= Zn
τ1

1
D̃c

1
; and Z̃n

τi
:= Zn

τi
, for i ≥ 2. Then Z̃n ∈

Z n
t0
(z0), and

�Yn
T = [−Zn

τ1
[Xτ2 − Xτ1] + c

(
δZn

τ1

)+ c
(
δZn

τ2

)− c
(−Zn

τ0

)− c
(
Zn

τ2

)]
1
D̃1

.

We claim that:

c
(−Zn

τ0

)− c
(
δZn

τ1

)≤ 1

α1

[
c
(−Zn

τ1

)+ c
(
δZn

τ1

)− c
(−Zn

τ0

)];

c
(
Zn

τ2

)− c
(
δZn

τ2

)≤ 1

β1

[
c
(−Zn

τ1

)+ c
(
δZn

τ1

)− c
(−Zn

τ0

)]+ L0
∣∣Zn

τ1

∣∣;
on D̃1 ∩ B2.

(7.10)

Indeed, without loss of generality, we assume Zn
τ0

> 0. Then, by Lemmas 7.2 and

7.3, we have 0 ≤ Zn
τ1

≤ −δZn
τ1

< ε1 on D̃1 ⊂ A1. Thus the first inequality of (7.10)
follows from Lemma 5.2(ii). To show the second inequality, note that |δZn

τ2
| ≥ ε1

on D̃1 ∩ B2. If δZn
τ2

≤ −ε1, then δZn
τ2

≤ Zn
τ2

< 0, and thus c(Zn
τ2

) − c(δZn
τ2

) ≤ 0. If
ε1 ≤ δZn

τ2
≤ ε0, note that c(Zn

τ2
) − c(δZn

τ2
) = c(δZn

τ2
+ Zn

τ1
) − c(δZn

τ2
) is decreasing

in δZn
τ2

. Then

c
(
Zn

τ2

)− c
(
δZn

τ2

) ≤ c
(−δZn

τ1
+ Zn

τ1

)− c
(−δZn

τ1

)

≤ 1

β1

[
c
(−Zn

τ1

)+ c
(
δZn

τ1

)− c
(−Zn

τ0

)]
,

thanks again to Lemma 5.2(ii). Finally, if δZn
τ2

≥ ε0, then c(Zn
τ2

) − c(δZn
τ2

) ≤
L0|Zn

τ1
|. This completes the proof of Claim (7.10).

Note that, by inductional hypothesis we have Zn
τ2

= 0 on D̃1 ∩Bc
2 . Then, for some

appropriately defined FT -measurable random variable ξ , by (2.10) we have,

E
{
U
(
Y Z̃n

T

)− U
(
YZn

T

)}

= E
{
U ′(ξ)

[
Y Z̃n

T − YZn

T

]}

= E
{
U ′(ξ)

[−Zn
τ1

[Xτ2 − Xτ1 ]1D̃1
+ [c(−Zn

τ1

)+ c
(
δZn

τ1

)− c
(−Zn

τ0

)]
1
D̃1B

c
2

+ [c(δZn
τ1

)− c
(−Zn

τ0

)+ c
(
δZn

τ2

)− c
(
Zn

τ2

)]
1
D̃1B2

]}
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≥ E

{
U ′(ξ)

[
−Zn

τ1
[Xτ2 − Xτ1]1D̃1

− L0
∣
∣Zn

τ1

∣
∣1

D̃1B2

+ [c(−Zn
τ1

)+ c
(
δZn

τ1

)− c
(−Zn

τ0

)][
1
D̃1B

c
2
−
(

1

α1
+ 1

β1

)
1
D̃1B2

]]}

≥ E

{
−Λ
∣∣Zn

τ1

∣∣[|Xτ2 − Xτ1 | + L0
]
1
D̃1

+ [c(−Zn
τ1

)+ c
(
δZn

τ1

)− c
(−Zn

τ0

)][
λ1

D̃1B
c
2
− Λ

(
1

α1
+ 1

β1

)
1
D̃1B2

]}

= E

{[
−Λ
∣∣Zn

τ1

∣∣[Eτ1

{|Xτ2 − Xτ1 |
}+ L0

]+ [c(−Zn
τ1

)+ c
(
δZn

τ1

)− c
(−Zn

τ0

)]

×
[
λEτ1{1Bc

2
} − Λ

(
1

α1
+ 1

β1

)
Eτ1{1B2}

]]
1
D̃1

}
.

One can easily check that

Λ
[
Eτ1

{|Xτ2 − Xτ1 |
}+ L0

]≤ λ[C0 − 1].
Moreover, by part (i) we know that P -a.s. on D̃1 ⊂ A1, P {B2|Fτ1} ≤ C0

C1
and thus

P {Bc
2 |Fτ1} ≥ 1 − C0

C1
. Then

λEτ1{1Bc
2
} − Λ

α1
Eτ1{1B2} ≥ λ

[
1 − C0

C1
− Λ

(
1

α1
+ 1

β1

)
C0

C1

]
= λC0

C1
.

Note that, on D̃1 ⊂ A1, by Lemmas 7.2 and 7.3, we have 0 ≤ Zn
τ1

≤ δZn
τ1

< ε1 or
0 > δZn

τ1
≥ Zn

τ1
> −ε1. Then it follows from Lemma 5.2(ii) that

E
{
U
(
Y Z̃n

T

)− U
(
YZn

T
)}

≥ E

{[
−λ(C0 − 1)

∣∣Zn
τ1

∣∣+ λC0

C1
C1
∣∣Zn

τ1

∣∣
]

1
D̃1

}
= λE

{∣∣Zn
τ1

∣∣1
D̃1

}
> 0, (7.11)

a contradiction. �

7.3 Proofs of Lemma 6.3 and Theorem 2.8

Proof of Lemma 6.3 We follow the proof of Proposition 5.4. For each n, let Zn ∈
Z n

t (z̃) be the optimal portfolio of V n(t, x, y − c(z̃ − z), z̃). We first prove several
claims by contradiction. In each case, we show that if the claim is not true, then we
can construct some Z̃n ∈ Z n+1

t (z) such that, by denoting Y Z̃n := Y t,x,y,z,Z̃n
, YZn :=

Y t,x,y−c(z̃−z),z̃,Zn
,

E
{
U
(
Y Z̃n

T

)− U
(
YZn

T

)}≥ c(z, z̃) > 0 (7.12)

where c(z, z̃) is some constant independent of n. This implies that

V (t, x, y, z) − Vn

(
t, x, y − c(z̃ − z), z̃

)≥ c(z, z̃) > 0.
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Sending n → ∞ and applying Proposition 3.1, we obtain the contradiction.
Without loss of generality we assume z ≥ 0. The key observation is that we may

also view YZn

T as the wealth of the portfolio Zn starting from (t, x, y, z), with two
initial jumps first from z to z̃ and then from z̃ to Zn

τ0
.

Claim 1 z̃ < z. Indeed, if z̃ > z, for fixed n, let k := inf{i ≥ 0 : Zn
τi

≤ 0}, and define

Z̃n
τi

:= [Zn
τi

− z̃ + z] ∨ 0 for i < k, and Z̃n
τi

:= Zn
τi

for i ≥ k. Then Z̃n ∈ Z n+1
t (z).

Following exactly the same arguments as in the proof of Lemma 7.2, we prove (7.12)
with c(z, z̃) = λ(z̃ − z) > 0 and thus obtain a contradiction.

Claim 2 −1 ≤ Zn
τ0

−z̃

z̃−z
≤ 1

2 , and if Zn
τ0

= z̃ then P(−1 ≤ Zn
τ1

−z̃

z̃−z
≤ 1

2 ) > 0. Indeed,

assume the result is not true. Define Z̃n
τ0

= z, Z̃n
τi

= Zn
τi

, for all i ≥ 1. Then Z̃n ∈
Z n+1

t (z), and similar to (7.8) we prove (7.12) with c(z, z̃) = λ(z − z̃) > 0.

Claim 3 |z̃| ≤ z − z̃. Indeed, if Zn
τ0

�= z̃, then by Claim 2 we have 0 < |Zn
τ0

− z̃| ≤
z − z̃ < ε1. Applying Proposition 5.4 we get Zn

τ0
= 0 and thus proving the claim. If

Zn
τ0

= z̃, then Claim 2 leads to P(−1 ≤ Zn
τ1

−z̃

z̃−z
≤ 1

2 ) > 0. On {−1 ≤ Zn
τ1

−z̃

z̃−z
≤ 1

2 }, we
have |Zn

τ1
− z̃| ≤ |z̃ − z| < ε1. If Zn

τ1
= z̃, by (2.15) we get τ1 = T and thus z̃ = 0. If

Zn
τ1

�= z̃, by Proposition 5.4 again we get Zn
τ1

= 0. Then −1 ≤ −z̃
z̃−z

≤ 1
2 and thus the

claim holds.

Claim 4 If Zn
τ0

= z̃, then P(|Zn
τ1

− z̃| ≥ ε1) ≤ C0
C1

. Indeed, if P(|Zn
τ1

− z̃| ≥ ε1) >
C0
C1

,

then we define Z̃n
τ0

:= z, and Z̃n
τi

:= Zn
τi

, for i ≥ 1. Similar to (7.9) we prove (7.12)
with c(z, z̃) = λ(z − z̃) > 0.

We now prove the lemma. Define Z̃n
τ0

:= 0 and Z̃n
τi

:= Zn
τi

for i ≥ 1. Then

�YT := Y Z̃n

T − YZn

T

= c(z̃ − z) + c
(
Zn

τ0
− z̃
)+ C

(
Zn

τ1
− Zn

τ0

)− c(−z) − c
(
Zn

τ1

)− Zn
τ0

[Xτ1 − x].
If Zn

τ0
�= z̃, by the proof of Claim 3, we have Zn

τ0
= 0. Then

�YT = c(z̃ − z) + c(−z̃) − c(−z) ≥ C1|z̃|,
thanks to Lemma 5.2(iii) and Claims 1 and 3. If Zn

τ0
= z̃, then

�YT = c(z̃ − z) + c
(
Zn

τ1
− z̃
)− c(−z) − c

(
Zn

τ1

)− z̃[Xτ1 − x].
Similar to (7.11) we can prove

V (t, x, y, z) − V n
(
t, x, y − c(z̃ − z), z̃

)≥ E
{
U
(
Y Z̃n

T

)− U
(
YZn

T

)}≥ λ|z̃|.
Send n → ∞ and noting that V (t, x, y, z) = V (t, x, y − c(z̃ − z), z̃), we must have
z̃ = 0. �
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Proof of Theorem 2.8 (i) If c(z) ≥ c0 > 0 for all z �= 0, then following the arguments
in Theorem 5.1 one can easily prove that E{N(Z∗)} ≤ C

c0
.

Now assume (H4) holds. Following the proof of Theorem 6.3 it is readily seen
that, for any i ≥ 1 and P -a.s. on {0 < |Z∗

τ∗
i

− Z∗
τ∗
i−1

| < ε1}, it holds that

Z∗
τ∗
i

= 0 and P
(∣∣Z∗

τ∗
i+1

− Z∗
τ∗
i

∣∣≥ ε1|Fτ∗
i

)≤ C0

C1
.

Then following the proof of Theorem 5.3 we get

P

(
n∑

i=0

1{0<|Z∗
τ∗
i
−Z∗

τ∗
i−1

|<ε1} ≥ m

)

≤ 1

2m
, ∀n ≥ m.

Similar to Theorem 5.5 one can then prove that E{∑∞
i=0 1{|Z∗

τ∗
i
−Z∗

τ∗
i−1

|>0}} < ∞. This

implies that P(τ ∗
i < T ,∀i) = 0 and E(N(Z∗)) < ∞.

(ii) Applying Lemma 6.2 repeatedly we have

V (t, x, y, z) = E
{
V
(
τ ∗
n ,Xτ∗

n
, Y ∗

τ∗
n
,Z∗

τ∗
n

)}
, ∀n.

Now by (i), we conclude that τ ∗
n = T and Z∗

τ∗
n

= 0 for n large enough. Sending
n → ∞ we obtain that V (t, x, y, z) = E{U(Y ∗

T )}. This means that Z∗ is an optimal
portfolio for V (t, x, y, z). �
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