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Abstract

This paper studies a system of backward stochastic differential equations with oblique reflections
(RBSDEs for short), motivated by the switching problem under Knightian uncertainty and recursive utilities.
The main feature of our system is that its components are interconnected through both the generators
and the obstacles. We prove existence, uniqueness, and stability of the solution of the RBSDE, and give
the expression of the price and the optimal strategy for the original switching problem via a verification
theorem.
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1. Introduction

This paper studies the wellposedness of a general system of Backward SDEs with oblique
reflections, motivated by our study on switching problems.
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The standard starting and stopping (or two modes switching) problem has attracted a lot of
interest during the past decades; see a long list [1–3,6,9,7,8,12,11,17,21,20,28,31,33–35], and the
references therein. Assume, for example, that a power plant produces electricity whose selling
price fluctuates and depends on many factors such as consumer demand, oil prices, weather
and so on. It is well known that electricity cannot be stored (or too expensive to store) and once
produced it should be consumed almost immediately. Therefore electricity is produced only when
there is enough profitability in the market. Otherwise the power plant is closed till the time when
the profitability is coming back again. Then for this plant there are two modes: operating and
closed. Accordingly, a management strategy of the plant is an increasing sequence of stopping

times δ = (τn)n≥0 with τ0
4
= 0. At time τn , the manager switches the mode of the plant from its

current one to the other. Such a switch of modes is not free and generates expenditures.
Suppose now that we have an adapted stochastic process X which stands for either the market

electricity price or factors which determine the price. When the plant is run under a strategy
δ, its yield is given by a quantity denoted by J (δ), which depends also on X and many other
parameters such as utility functions, expenditures, etc. Therefore the main problem is to find an
optimal management strategy δ∗ = (τ ∗n )n≥1 such that J (δ∗) = supδ J (δ), and consequently, the
value J (δ∗) is nothing but the fair price of the power plant in the energy market.

We note that this switching problem has also been used to model industries like copper or
aluminium mines, . . . , where parts of the production process are temporarily reduced or shut
down when e.g. fuel, electricity or coal prices are too high to be profitable from running them.
A further area of applications includes Tolling Agreements (see [4,6] for more details).

A natural extension of the two-mode problem is the multi-mode switching problem. This has
been recently studied by several authors amongst we quote Carmona and Ludkovski [4], Djehiche
et al. [10] and Porchet et al. [31].

The idea of using RBSDEs in starting and stopping problems was initiated by Hamadène and
Jeanblanc [21]. In their model the two-dimensional RBSDE is linear and can be transformed into
a one-dimensional RBSDE with double barriers. Then the wellposedness of the RBSDE is known
in the literature. Moreover, via a verification theorem they express both the optimal strategy δ∗

and the plant’s value J (δ∗) in terms of the solution to the RBSDE. Several other papers have
also used this tool (see e.g. [4,31]). In [4], the authors consider a multi-mode switching problem.
However they left open the question of the existence of the solution of the associated RBSDEs
with oblique reflection. The problem is solved by Djehiche et al. in [10].

Our first goal of the paper is to extend the work Hamadène and Jeanblanc [21] by considering
Knightian uncertainty and recursive utility. All the works quoted above assume that future
uncertainty of market conditions X is characterized by a certain probability measure P . The
Knightian uncertainty introduced by Knight [27] assumes instead that the market evolves
according to one of many possible probabilities Pu , u ∈ U , but we do not know which one it is.
The notion of ambiguity follows similar idea; see, e.g. [5]. The notion of recursive utilities was
introduced by Duffie–Epstein [13,14]. These two new features lead to a nonlinear RBSDE with
oblique reflections. There are only very few results on these kinds of RBSDEs in the literature;
see e.g. [32].

We next consider a very general multi-dimensional RBSDE of which both the generators
and the obstacles are interconnected. We prove the existence of solutions by using the notion
of the smallest g-supermartingales introduced by Peng [29] and Peng and Xu [30]. This notion
can be understood as a nonlinear version of the Snell envelope. We prove the uniqueness by a
verification theorem. However, for our general case the optimal strategy does not exist, so one
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can only obtain approximately optimal strategies. This requires some sophisticated estimates and
is in fact the main technical part of the paper. As an intermediary result we obtain some stability
result for high-dimensional RBSDEs, which is interesting in its own rights.

The paper closest to ours is a recent work by Hu and Tang [26], which we learned after
we finished the first version of this paper. They study RBSDEs with generator taking the form
f (t, y, z) and barrier h(t, y) = y − c where c is a constant. Our model is more general in two
aspects: (i) the generator takes the form f (t, y1, . . . , ym, z), that is, the utilities under different
modes are interconnected in the generator; (ii) the barrier h(t, y) is nonlinear and random. We
think such a generalization is interesting from theoretical point of view. From applied point
of view, the dependence of f on all the y-components can be interpreted as a nonzero-sum
game problem, where the players’ utilities affect each other and consequently the generators are
interconnected. The general continuous time nonzero-sum game problem is much more difficult.
We have some result on the existence of equilibrium in a different framework; see [24]. The
general barrier h allows one to consider more general switching cost. In fact, even if the original
cost takes the form h(t, y) = y − c, in some applications (especially in the case of risk-sensitive
payoffs) one needs to take the standard exponential transformation and then the barrier becomes

h̃(t, ỹ)
4
= e−c ỹ; see, e.g. [23].

Hu–Tang [26] take the penalization approach to prove the existence. While their estimates are
nice, their approach relies heavily on applying the Itô–Tanaka formula to [Y j

t − Y i
t − c j,i ]

+. It

seems difficult to obtain similar estimates for [Y j
t − h j,i (t, Y i

t )]
+ when general h is considered.

We also note that, in [21,26], the optimal strategy can be constructed explicitly and then the
uniqueness follows immediately via the verification theorem; see Theorem 2.1. However, in our
general case the optimal strategy may not exist, and thus some technical estimates have to be
involved in order to prove the uniqueness of solutions.

The rest of the paper is organized as follows. In the next section we introduce the switching
problem, review the works of Hamadène–Jeanblanc [21] and Hu–Tang [26], and introduce our
general RBSDE. In Section 3 we prove the existence of solutions, and finally in Section 4 we
prove the uniqueness. �

2. The switching problem and reflected BSDEs

In this section we review some results in the literature and introduce our general RBSDE.

2.1. The switching problem and some existing results

We start with reviewing the work Hamadène–Jeanblanc [21]. Let (Ω ,F , P) denote a fixed
complete probability space on which is defined a standard d-dimensional Brownian motion

B = (Bt )0≤t≤T , and F
4
= (Ft )0≤t≤T be the filtration generated by B and augmented by all

the P-null sets. Throughout this paper we assume all the processes are progressively measurable
and F-adapted. Furthermore, we let:

- H be the space of processes η such that E[
∫ T

0 |ηs |
2ds] <∞;

- S be the space ofcàdlàg processes η such that E[sup0≤t≤T |ηt |
2
] <∞;

- Sc be the subspace of S with continuous elements;
- A be the space of càdlàg and non-decreasing scalar processes η with η0 = 0 and E[η2

T ] <

∞;
- Ac be the subspace of A with continuous elements;
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Let us now fix the data of the problem.
- Let X ∈ Sc with dimension k which stands for the factors determining the market electricity

price.
- Let ψi : [0, T ] × Rk

7→ R, i = 1, 2, be Borelean functions with linear growth in x which
represent the rate of utilities for the power plant when it is in its operating and closed modes,
respectively.

- Let c1 (resp. c2) be a positive constant which represents the sunk cost when the plant is
switched from the operating (resp. closed) mode to the closed (resp. operating) one.

Let D denote the set of all admissible strategies δ = (τn)n≥0 such that τn’s are an increasing
sequence of F-stopping times with τ0 = 0 and limn→∞ τn = T , P-a.s. Assume for convenience
that the power plant is in its operating mode at the initial time t = 0. Then τ2n+1 (resp. τ2n) are
the times where the plant is switched from the operating (resp. closed) mode to the closed (resp.
operating) one.

Under strategy δ ∈ D, the mean yield of the power plant is given by:

J (δ)
4
= E

{∫ T

0
ψδ(t, X t )dt − AδT

}
,

where
ψδ(t, x)

4
=

∑
n≥0

[
ψ1(t, x)1[τ2n ,τ2n+1)(t)+ ψ2(t, x)1[τ2n+1,τ2n+2)(t)

]
;

Aδt
4
=

∑
n≥0

[
c11{τ2n+1<t} + c21{τ2n+2<t}

]
.

(2.1)

Therefore the price of the power plant in the energy market is just supδ∈D J (δ).
As showed in [21], the above problem is closed related to the following two-dimensional

RBSDEs with linear generator and oblique reflections:
Y 1, Y 2

∈ Sc, Z1, Z2
∈ H and K 1, K 2

∈ Ac,

Y i
t =

∫ T

t
ψi (s, Xs)ds −

∫ T

t
Z i

sdBs + K i
T − K i

t , i = 1, 2;

Y 1
t ≥ Y 2

t − c1; [Y
1
t − Y 2

t + c1]dK 1
t = 0;

Y 2
t ≥ Y 1

t − c2; [Y
2
t − Y 1

t + c2]dK 2
t = 0.

(2.2)

Here Y 1
t (resp. Y 2

t ) stands for the optimal utility at time t if the mode at that time is operating
(resp. closed).

We note that, 1Y
4
= Y 1

− Y 2,1Z
4
= Z1

− Z2 satisfy the following RBSDE with double
reflections, which has been studied by many authors (see, e.g. [19,22,30]):

1Yt =

∫ T

t

[
ψ1(s, Xs)− ψ2(s, Xs)

]
ds

−

∫ T

t
1ZsdBs + (K

1
T − K 1

t )− (K
2
T − K 2

t );

−c1 ≤ 1Yt ≤ c2, [1Yt + c1]dK 1
t = [1Yt − c2]dK 2

t = 0.

(2.3)

Then the wellposedness of (2.2) follows immediately.
Moreover, [21] obtains the following important verification theorem.
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Theorem 2.1. supδ∈D J (δ) = Y 1
0 and the optimal strategy δ∗ ∈ D2 is given by τ ∗0

4
= 0 and,

τ ∗2n+1
4
= inf{t ≥ τ ∗2n : Y

1
t = Y 2

t − c1} ∧ T ;

τ ∗2n+2
4
= inf{t ≥ τ ∗2n+1 : Y

2
t = Y 1

t − c2} ∧ T ;
n = 0, 1, . . .

The above work can be naturally extended to switching problems under Knightian uncertainty
and recursive utilities. We refer to Knight [27] and Chen–Epstein [5] for Knight uncertainty and
Duffie–Epstein [13,14] for recursive utilities. We note that such an extension has been carried
out independently by a recent work Hu–Tang [26], which we learned after we finished the first
version of this paper.

Mathematically, this amounts to solving the following BSDE with some nonlinear generator
H∗ and oblique reflections:

Y 1, Y 2
∈ Sc, Z1, Z2

∈ H and K 1, K 2
∈ Ac,

Y i
t =

∫ T

t
[ψi (s, Xs)+ H∗(s, X., Y i

s , Z i
s)]ds

−

∫ T

t
Z i

sdBs + K i
T − K i

t , i = 1, 2;

Y 1
t ≥ Y 2

t − c1; [Y
1
t − Y 2

t + c1]dK 1
t = 0;

Y 2
t ≥ Y 1

t − c2; [Y
2
t − Y 1

t + c2]dK 2
t = 0.

(2.4)

Note that one cannot transform (2.4) into a one-dimensional RBSDE with double barriers.
Hu–Tang [26] establishes the wellposedness of the following RBSDE (after some obvious
transformation) in higher-dimensional case:

Y j
∈ Sc, Z j

∈ H and K j
∈ Ac,

Y j
t = ξ j +

∫ T

t
f j (s, ω, Y j

s , Z j
s )ds −

∫ T

t
Z j

s dBs + K j
T − K j

t ;

Y j
t ≥ max

i 6= j
(Y i

t − c j,i ); [Y
j

t −max
i 6= j

(Y i
t − c j,i )]dK j

t = 0.

j = 1, . . . ,m. (2.5)

Here ξ j ∈ L2(FT ), f j satisfies the standard measurability and Lipschitz conditions, and c j,i are
constants satisfying

c j,i ≥ 0 and ck, j + c j,i > ck,i . (2.6)

They prove the existence of the solution by penalization approach, and the uniqueness by a
verification theorem which in the meantime provides the optimal strategy δ∗, in the spirit of
Theorem 2.1.

2.2. The general BSDEs with oblique reflection

In this paper we extend the RBSDEs (2.2) and (2.5) to the following general m-dimensional
RBSDEs with oblique reflections for some m ≥ 2: for j = 1, . . . ,m,

Y j
∈ Sc, Z j

∈ H and K j
∈ Ac,

Y j
t = ξ j +

∫ T

t
f j (s, Y 1

s , . . . , Y m
s , Z j

s )ds −
∫ T

t
Z j

s dBs + K j
T − K j

t ;

Y j
t ≥ max

i∈A j
h j,i (t, Y i

t ); [Y
j

t −max
i∈A j

h j,i (t, Y i
t )]dK j

t = 0.

(2.7)
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Here ξ j are FT -measurable, the coefficients f j , h j,i can depend on ω, and A j ⊂ {1, . . . ,m} −

{ j}. For simplicity we denote
−→
Yt
4
= (Y 1

t , . . . , Y m
t ), and similarly for other vectors. The constraint

A j means that from mode j the plant can only be switched to those modes in A j . We emphasize
that A j can be empty and if so we take the convention that the maximum over the empty set,
denoted as ∅, is −∞. Then in this case Y j has no lower barrier and then we take K j

= 0.
Consequently, Y j satisfies the following BSDE without reflection:

Y j
t = ξ j +

∫ T

t
f j (s,
−→
Y s, Z j

s )ds −
∫ T

t
Z j

s dBs, 0 ≤ t ≤ T .

Also, for any j we define

h j, j (t, y)
4
= y. (2.8)

Then a solution of (2.7) always satisfies

Y j
t ≥ max

i∈A j∪{ j}
h j,i (t, Y i

t ). (2.9)

We note that our work is done independently of Hu–Tang [26]. Our RBSDE (2.7) is not the
same as the one of (2.5) in two aspects: (i) the components Y 1, . . . , Y m are interconnected in the
generators f j ; (ii) the barriers h j,i can be random and nonlinear. We think such a generalization
is interesting from theoretical point of view. From applied point of view, the dependence of f j

on
−→
Y can be interpreted as a nonzero-sum game problem, where the players’ utilities affect

each other and consequently the generators are interconnected. The general barrier h j,i allows
one to consider more general switching cost. In fact, even if the original cost takes the form
h j,i (t, y) = y − c j,i , in the risk-sensitive switching problem (see [23]) one needs to take the

standard exponential transformation and then the barrier becomes h̃ j,i (t, ỹ)
4
= e−c j,i ỹ. �

3. Existence

To prove the existence of solutions, we use the notion of the smallest g-supermartingales
introduced by Peng [29] and Peng and Xu [30], which can be understood as a nonlinear version
of the Snell envelope (see e.g. [15]).

Throughout this section we shall adopt the following assumptions.

Assumption 3.1. For any j = 1, . . . ,m, it holds that:

(i) E
{∫ T

0 sup−→y :y j=0 | f j (t,
−→y , 0)|2dt + |ξ j |

2
}
<∞.

(ii) f j (t,
−→y , z) is uniformly Lipschitz continuous in (y j , z) and is continuous in yi for any

i 6= j ; and h j,i (t, y) is continuous in (t, y) for i ∈ A j .
(iii) f j (t,

−→y , z) is increasing in yi for i 6= j , and h j,i (t, y) is increasing in y for i ∈ A j .
(iv) For i ∈ A j , h j,i (t, y) ≤ y. Moreover, there is no sequence j2 ∈ A j1 , . . . , jk ∈ A jk−1 , j1 ∈

A jk , and (y1, . . . , yk) such that y1
4
= h j1, j2(t, y2), y2

4
= h j2, j3(t, y3), . . . , yk−1

4
=

h jk−1, jk (t, yk), yk
4
= h jk , j1(t, y1).

(v) For any j = 1, . . . ,m, ξ j ≥ maxi∈A j h j,i (T, ξi ). �

We note that (i), (ii) and (v) are standard; and (iii) implies the m players are “partners”. The
assumption (iv) means that it is not free to make a circle of instantaneous switchings. This is
satisfied, for example, in [26] under condition (2.6).
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Our main result of this section is:

Theorem 3.2. Assume Assumption 3.1 holds. Then RBSDE (2.7) has a solution.

Proof. We shall use Picard iteration, and proceed in five steps.
Step 1. We first construct the Picard iterations. Denote:

f
j
(t, y, z)

4
= inf
−→y :y j=y

f j (t,
−→y , z) and f̄ j (t, y, z)

4
= sup
−→y :y j=y

f j (t,
−→y , z).

By Assumption 3.1(i) and (ii), f
j
, f̄ j are uniformly Lipschitz continuous in (y, z) and

E

{∫ T

0
[| f

j
(t, 0, 0)|2 + | f̄ j (t, 0, 0)|2]dt

}
<∞.

Let (Y j,0, Z j,0) be the solution to the following BSDE without reflection:

Y j,0
t = ξ j +

∫ T

t
f

j
(s, Y j,0

s , Z j,0
s )ds −

∫ T

t
Z j,0

s dBs, j = 1, . . . ,m. (3.1)

For j = 1, . . . ,m and n = 1, 2, . . ., recursively define Y j,n via the following RBSDEs whose
solution exists thanks to the result by El-Karoui et al. [16]:

Y j,n
t = ξ j −

∫ T

t
Z j,n

s dBs + K j,n
T − K j,n

t

+

∫ T

t
f j (s, Y 1,n−1

s , . . . , Y j−1,n−1
s , Y j,n

s , Y j+1,n−1
s , . . . , Y m,n−1

s , Z j,n
s )ds;

Y j,n
t ≥ max

i∈A j
h j,i (t, Y i,n−1

t ); [Y j,n
t −max

i∈A j
h j,i (t, Y i,n−1

t )]dK j,n
t = 0.

(3.2)

Note that, given Y i,n−1, i = 1, . . . ,m, for each j (3.2) is a one-dimensional BSDE (when
A j = φ) or RBSDE. Under Assumption 3.1, (3.2) has a unique solution. Moreover, by
comparison theorem (see e.g. [16], Theorem 4.1) it is obvious that Y j,1

≥ Y j,0. Then by
induction one can easily show that Y j,n is increasing as n increases.

Step 2. We show that

E

{
sup

0≤t≤T
|Y j,n

t |
2
+

∫ T

0
|Z j,n

t |
2dt + |K j,n

T |
2

}
≤ C, ∀ j, n. (3.3)

To this end, denote:

ξ̆
4
=

m∑
j=1

|ξ j | and f̆ (t, y, z)
4
=

m∑
j=1

| f̄ j (t, y, z)|,

and let (Y̆ , Z̆) be the solution to the following BSDE:

Y̆t = ξ̆ +

∫ T

t
f̆ (s, Y̆s, Z̆s)ds −

∫ T

t
Z̆sdBs .

Denote, for j = 1, . . . ,m,

Ȳ j
t
4
= Y̆t , Z̄ j

t
4
= Z̆ t , K̄ j

t
4
= 0.
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Obviously Y j,0
t ≤ Ȳ j

t . By Assumption 3.1(iv) we know that (Ȳ j , Z̄ j , K̄ j ) satisfies
Ȳ j

t = ξ̆ +

∫ T

t
f̆ (s, Ȳ j

s , Z̄ j
s )−

∫ T

t
Z̄ j

s dBs + K̄ j
T − K̄ j

t ;

Ȳ j
t ≥ max

i∈A j
h j,i (t, Ȳ i

t ); [Ȳ
j

t −max
i∈A j

h j,i (t, Ȳ i
t )]dK̄ j

t = 0.

Once more apply the comparison theorem repeatedly, we get

Y j,n
t ≤ Y̆t , ∀n.

Recall that Y j,n
t ≥ Y j,0

t . Then

m∑
j=1

E

{
sup

0≤t≤T
|Y j,n

t |
2

}
≤ C <∞, ∀n. (3.4)

Moreover,

E

{
sup

0≤t≤T
|[max

i∈A j
h j,i (t, Y i,n−1

t )]+|2

}
≤ E

{
sup

0≤t≤T
|[max

i∈A j
Y i,n−1

t ]
+
|
2

}
≤ C.

This, together with (3.4) and applying the results in [16], proves (3.3).
Step 3. Now let Y j denote the limit of Y j,n . By Peng’s monotonic limit theorem [29] or [30],

we know that Y j is an càdlàg process, and following similar arguments there one can easily show
that there exist Z j

∈ H and K j
∈ A such that

Y j
t = ξ j +

∫ T

t
f j (s,
−→
Y s, Z j

s )ds −
∫ T

t
Z j

s dBs + K j
T − K j

t ;

Y j
t ≥ max

i∈A j
h j,i (t, Y i

t ).
(3.5)

Consider now the following RBSDEs whose solution exists thanks to the result by
Hamadène [18] or Peng and Xu [30]:

Ỹ j
∈ S, Z̃ j

∈ H and K̃ j
∈ A;

Ỹ j
t = ξ j −

∫ T

t
Z̃ j

s dBs + K̃ j
T − K̃ j

t

+

∫ T

t
f j (s, Y 1

s , . . . , Y j−1
s , Ỹ j

s , Y j+1
s , . . . , Y m

s , Z̃ j
s )ds;

Ỹ j
t ≥ max

i∈A j
h j,i (t, Y i

t ); [Ỹ j
t− −max

i∈A j
h j,i (t, Y i

t−)]dK̃ j
t = 0.

(3.6)

We note that (3.5) and (3.6) have the same lower barrier. Since Ỹ j is the smallest f j -

supermartingale with lower barrier maxi∈A j h j,i (t, Y i
t ), we have Ỹ j

t ≤ Y j
t (see [30], Theorem

2.1). On the other hand, since Y i,n−1
t ≤ Y i

t for any (i, n − 1), by the monotonicity of h j,i we get

max
i∈A j

h j,i (t, Y i,n−1
t ) ≤ max

i∈A j
h j,i (t, Y i

t ).

Then once more by comparison theorem for RBSDEs we have Y j,n
t ≤ Ỹ j

t , which implies that
Y j

t ≤ Ỹ j
t . Therefore, Ỹ j

t = Y j
t . This further implies that Z̃ j

t = Z j
t , dt ⊗ dP-a.s., K̃ j

t = K j
t for
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any 0 ≤ t ≤ T, P-a.s., and that
Y j

t = ξ j +

∫ T

t
f j (s,
−→
Y s, Z j

s )ds −
∫ T

t
Z j

s dBs + K j
T − K j

t ;

Y j
t ≥ max

i∈A j
h j,i (t, Y i

t ), [Y j
t− −max

i∈A j
h j,i (t, Y i

t−)]dK j
t = 0.

(3.7)

Step 4. We show that Y j is continuous. This obviously implies that K j is also continuous and
thus (

−→
Y ,
−→
Z ,
−→
K ) is a solution to (2.7).

We first note that, by (3.7), 1Y j
t = −1K j

t ≤ 0, and if 1K j
t 6= 0, then Y j

t− =

maxi∈A j h j,i (t, Y i
t−). It is obvious that Y j is continuous when A j = ∅. We now assume

1Y j1
t 6= 0 for some j1 and t . Then A j1 6= ∅ and 1Y j1

t < 0. Note that in this case 1K j1
t > 0,

which further implies that

Y j1
t− = max

i∈A j1

h j1,i (t, Y i
t−).

Let j2 ∈ A j1 be the optimal index, then

h j1, j2(t, Y j2
t−) = Y j1

t− > Y j1
t ≥ max

i∈A j1

h j1,i (t, Y i
t ) ≥ h j1, j2(t, Y j2

t ).

Thus 1Y j2
t < 0, and therefore A j2 6= ∅. Repeat the arguments we obtain jk ∈ A jk−1 and

1Y jk
t < 0 for any k. Since each jk can take only values 1, . . . ,m, we may assume, without loss

of generality that j1 = jk+1 for some k ≥ 2 (note again that j1 6∈ A j1 and thus j2 6= j1). Then
we have

Y j1
t− = h j1, j2(t, Y j2

t−), . . . , Y jk−1
t− = h jk−1, jk (t, Y jk

t−), Y jk
t− = h jk , j1(t, Y j1

t−).

This contradicts with Assumption 3.1(iv). Therefore, all processes Y j are continuous.
Step 5. Finally, as a by-product we show that, for j = 1, . . . ,m,

lim
n→∞

E

{
sup

0≤t≤T
[|Y j,n

t − Y j
t |

2
+ |K j,n

t − K j
t |

2
] +

∫ T

0
|Z j,n

t − Z j
t |

2dt

}
= 0. (3.8)

In fact, since Y j is continuous and Y j,n
↑ Y j , by Dini’s Theorem we know that

lim
n→∞

sup
0≤t≤T

|Y j,n
t − Y j

t | = 0, a.s.

Applying Dominated Convergence Theorem we prove the convergence of Y j,n in (3.8). Now by
standard arguments, see e.g. [16], one can prove (3.8). �

By applying comparison theorem repeatedly, the following two results are direct conse-
quences of Theorem 3.2, and their proofs are omitted.

Corollary 3.3. The solution
−→
Y constructed in Theorem 3.2 is the minimum solution of (2.7).

That is, if
−→

Ỹ is another solution of (2.7), then Y j
t ≤ Ỹ j

t , j = 1, . . . ,m.

Corollary 3.4. Assume (ξ̃ j , f̃ j ) also satisfy Assumption 3.1, and

f j ≤ f̃ j , ξ j ≤ ξ̃ j .
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Let
−→
Y and

−→

Ỹ denote the solution of (2.7) constructed in Theorem 3.2, with coefficients
(ξ j , f j , h j,i ) and (ξ̃ j , f̃ j , h j,i ), respectively. Then Y j

t ≤ Ỹ j
t , j = 1, . . . ,m.

We also have the convergence of the penalized BSDEs, which is obtained by Hu and Tang [26]
in their case using a different approach.

Theorem 3.5. Assume Assumption 3.1 holds, and (
−→
Y ,
−→
Z ,
−→
K ) denote the solution of (2.7)

constructed in Theorem 3.2. Let (
−→
Y n,
−→
Zn) denote the solutions of the following penalized BSDEs

without reflection:

Y n, j
t = ξ j +

∫ T

t
f j (s,
−→
Y n

s , Zn, j
s )ds + n

∫ T

t
[Y n, j

s −max
i∈A j

h j,i (s, Y n,i
s )]−ds

−

∫ T

t
Zn, j

s dBs . (3.9)

Then Y n, j is increasing in n and

lim
n→∞

E

{
sup

0≤t≤T
[|Y n, j

t − Y j
t |

2
+ |K n, j

t − K j
t |

2
] +

∫ T

0
|Zn, j

t − Z j
t |

2dt

}
= 0, (3.10)

where

K n, j
t
4
= n

∫ t

0
[Y n, j

s −max
i∈A j

h j,i (s, Y n,i
s )]−ds.

Proof. The proof is similar to Theorem 3.2, we thus only introduce the main idea and leave the
details to the interested readers.

First, it is obvious that the BSDEs (3.9) have a unique solution. Define Y n, j,0
t

4
= Y j,0

t , and for
k = 0, 1, . . ., recursively define

Y n, j,k+1
t = ξ j +

∫ T

t
f j (s, Y n,1,k

s , . . . , Y n, j−1,k
s , Y n, j,k+1

s , Y n, j+1,k
s , . . . , Y n,m,k

s , Zn, j
s )ds

+ n
∫ T

t
[Y n, j,k+1

s −max
i∈A j

h j,i (s, Y n,i,k
s )]−ds −

∫ T

t
Zn, j,k+1

s dBs .

By standard arguments in BSDE theory one can easily see that

lim
k→∞

E

{
sup

0≤t≤T
|Y n, j,k

t − Y n, j
t |

2
+

∫ T

0
|Zn, j,k

t − Zn, j
t |

2

}
= 0.

Moreover, by comparison theorem we have Y n, j,k is increasing in n. Thus Y n, j is increasing in
n. We note that one can also use the comparison theorem for high-dimensional BSDEs, see [25],
to prove the monotonicity of Y n, j . Let Ỹ j denote the limit of Y n, j as n→∞. By induction one
can show that Y n, j,k

≤ Y j,k for any (n, j, k). Then Y n, j
≤ Y j and thus Ỹ j

≤ Y j . Now apply
the results in [30] and the arguments in Theorem 3.2, we can prove Ỹ j

= Y j and (3.10). �

Another by-product of Theorem 3.2 is the existence of a solution of the system (2.7)
considered between two stopping times. This result is in particular useful to show uniqueness
of (2.7) in the next section.
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To be precise, let λ1 and λ2 be two stopping times such that P-a.s., 0 ≤ λ1 ≤ λ2 ≤ T and let
us consider the following RBSDE over [λ1, λ2]: for j = 1, . . . ,m, P-a.s.,

(Y j
t )t∈[λ1,λ2] continuous, (K j

t )t∈[λ1,λ2] continuous and non-decreasing,

K j
λ1
= 0, and E

{
sup

t∈[λ1,λ2]

|Y j
t |

2
+

∫ λ2

λ1

|Z j
s |

2ds + (K j
λ2
)2

}
<∞;

Y j
t = ξ

j
λ2
+

∫ λ2

t
f j (s,
−→
Y s, Z j

s )ds −
∫ λ2

t
Z j

s dBs + K j
λ2
− K j

t , ∀t ∈ [λ1, λ2];

Y j
t ≥ max

i∈A j
h j,i (t, Y i

t ) and [Y j
t −max

i∈A j
h j,i (t, Y i

t )]dK j
t = 0, ∀t ∈ [λ1, λ2].

(3.11)

Then we have:

Theorem 3.6. Assume Assumption 3.1 holds and that, for j = 1, . . . ,m, ξ j
λ2
∈ Fλ2 and satisfies:

E{|ξ j
λ2
|
2
} <∞ and ξ

j
λ2
≥ max

i∈A j
h j,i (λ2, ξ

i
λ2
). (3.12)

Then the RBSDE (3.11) has a solution. �

4. Uniqueness

We now focus on uniqueness of the solution of RBSDE (3.11), hence that of RBSDE (2.7).
To do that we need a stronger assumption.

Assumption 4.1. (i) f j is uniformly Lipschitz continuous in all yi .
(ii) If i ∈ A j , k ∈ Ai , then k ∈ A j ∪ { j}. Moreover,

h j,i (t, hi,k(t, y)) < h j,k(t, y). (4.1)

(iii) For any i ∈ A j ,

|h j,i (t, y1)− h j,i (t, y2)| ≤ |y1 − y2|. (4.2)

Note again that these assumptions are satisfied if A j = {1, . . . ,m} − { j} for any j = 1, . . . ,m
and h j,i (ω, t, y) = y − c j,i under condition (2.6), as in [26].

Our main result of this section is the following theorem.

Theorem 4.2 (Uniqueness).

(i) Assume Assumptions 3.1 and 4.1 are in force, and ξ j
λ2

satisfies (3.12). Then the solution of
RBSDE (3.11) is unique.

(ii) Moreover, assume for j = 1, . . . ,m, f̃ j satisfies Assumptions 3.1 and 4.1, and ξ̃ j
λ2

satisfies

(3.12). Let (Ỹ j , Z̃ j ) be the solution to RBSDE (3.11) corresponding to ( f̃ j , ξ̃
j
λ2
). For

j = 1, . . . ,m, denote,

1Y j
t
4
= Y j

t − Ỹ j
t , 1ξ

j
λ2

4
= ξ

j
λ2
− ξ̃

j
λ2
,

‖1 ft‖
4
=

m∑
j=1

esssup
(
−→y ,z)
|[ f j − f̃ j ](t,

−→y , z)|.
(4.3)

Then there exists a constant C, which is independent of λ1, λ2, such that:
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max
1≤ j≤m

|1Y j
λ1
|
2
≤ Eλ1

{
eC(λ2−λ1) max

1≤ j≤m
|1ξ

j
λ2
|
2
+ C

∫ λ2

λ1

‖1 ft‖
2dt

}
. (4.4)

Here Eλ1{·} denotes the conditional expectation E{·|Fλ1}.

We note that the stability result (4.4) is not only interesting in its own right, we need it to prove
the uniqueness in (i).

The main idea is to prove a verification theorem in the spirit of Theorem 2.1. However, the
proof here is much more involved because for our general RBSDEs the optimal strategy like the
δ∗ in Theorem 2.1 does not exist. We can only construct some approximately optimal strategy,
and then we need some precise estimates of the errors, which will be obtained by using (4.4).

The rest of this section is organized as follows. In Section 4.1 we discuss heuristically how
to find the approximately optimal strategies, which will lead to the definition of admissible
strategies. In Section 4.2 we define rigorously the admissible strategy δ and the corresponding
value function Y δ . In Section 4.3 we estimate the error between Y δ, j and the given solution Y j ,
which leads to the verification theorem. Finally in Section 4.4 we prove Theorem 4.2.

4.1. Heuristic discussion

We want to extend the arguments for Theorem 2.1 to this case. For an arbitrary solution, the
idea is to express Y 1

0 as the supremum of Y δ0 for some appropriately defined Y δ . The strategy δ
we can use here is much more subtle and in fact the arguments are very technical. To explain
the difference and to motivate our definition of admissible strategies, let us first consider the
following two-dimensional RBSDEs:

Y j
t = ξ j +

∫ T

t
f j (s, Y 1

s , Y 2
s , Z j

s )ds −
∫ T

t
Z j

s dBs + K j
T − K j

t , j = 1, 2;

Y 1
t ≥ h1(t, Y 2

t ); [Y
1
t − h1(t, Y 2

t )]dK 1
t = 0;

Y 2
t ≥ h2(t, Y 1

t ); [Y
2
t − h2(t, Y 1

t )]dK 2
t = 0.

(4.5)

Assume (Y 1, Y 2) is an arbitrary solution of (4.5). As in Theorem 2.1 we want to express Y 1
0

as Y δ
∗

0 for some δ∗ and appropriately defined Y δ
∗

. Very naturally we want to define

τ ∗1
4
= inf{t ≥ 0 : Y 1

t = h1(t, Y 2
t )} ∧ T . (4.6)

When f1 does not depend on Y 2
t , as in (2.2) or (2.5), we have

Y 1
t = ξ11{τ∗1=T } + h1(τ

∗

1 , Y 2
τ∗1
)1{τ∗1<T } +

∫ τ∗1

t
f1(s, Y 1

s , Z1
s )ds −

∫ τ∗1

t
Z1

s dBs .

This is a BSDE without reflection and is well posed. Therefore, once we can determine Y 2
τ∗1

, Y 1
t

is unique on [0, τ ∗1 ]. Next we can define τ ∗2 by using Y 2 and express Y 2
τ∗1

in terms of Y 1
τ∗2

. Repeat

the arguments we can mimic the proof of Theorem 2.1.
However, in our case, we have to consider the following RBSDE over [0, τ ∗1 ],

Y 1
t = ξ11{τ∗1=T } + h1(τ

∗

1 , Y 2
τ∗1
)1{τ∗1<T } +

∫ τ∗1

t
f1(s, Y 1

s , Y 2
s , Z1

s )ds −
∫ τ∗1

t
Z1

s dBs;

Y 2
t = Y 2

τ∗1
+

∫ τ∗1

t
f2(s, Y 1

s , Y 2
s , Z2

s )ds −
∫ τ∗1

t
Z2

s dBs + K 2
T − K 2

t ;

Y 2
t ≥ h2(t, Y 1

t ); [Y
2
t − h2(t, Y 1

t )]dK 2
t = 0.

(4.7)
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This itself takes the form of (3.11), whose wellposedness needs to be proved. We will come back
to this idea later.

There is another naive approach. Define

τ ∗1
4
= inf{t > 0 : Y 1

t = h1(t, Y 2
t ) or Y 2

t = h2(t, Y 1
t )} ∧ T .

Then we have
Y 1

t = Y 1
τ∗1
+

∫ τ∗1

t
f1(s, Y 1

s , Y 2
s , Z1

s )ds −
∫ τ∗1

t
Z1

s dBs;

Y 2
t = Y 2

τ∗1
+

∫ τ∗1

t
f2(s, Y 1

s , Y 2
s , Z2

s )ds −
∫ τ∗1

t
Z2

s dBs;

0 ≤ t ≤ τ ∗1 .

This system is well posed once the terminal conditions are given. However, in this approach we
will have to define

τ ∗2
4
= inf{t > τ ∗1 : Y

1
t = h1(t, Y 2

t ) or Y 2
t = h2(t, Y 1

t )} ∧ T .

It is very likely that τ ∗2 = τ
∗

1 , and then we have trouble to move forward.
We now come back to the first approach. That is, we consider (4.6) and (4.7). One key

observation is that, although we do not know its uniqueness yet, RBSDE (4.7) has only one
reflection while the original RBSDE (4.5) has two reflections. Therefore, by doing this we reduce
the number of reflections, and thus by repeating the procedure we can transform the system to
BSDEs without reflection which is well posed.

There is another difficulty to prove the verification theorem for RBSDEs in the form of (4.7).
To illustrate the idea let us consider the following RBSDE instead of (4.7):

Y 1
t = ξ1 +

∫ T

t
f1(s, Y 1

s , Y 2
s , Z1

s )ds −
∫ T

t
Z1

s dBs + K 1
T − K 1

t ;

Y 2
t = ξ2 +

∫ T

t
f2(s, Y 1

s , Y 2
s , Z2

s )ds −
∫ T

t
Z2

s dBs;

Y 1
t ≥ h1(t, Y 2

t ); [Y
1
t − h1(t, Y 2

t )]dK 1
t = 0.

(4.8)

Again we define τ ∗1 by (4.6). Then over [0, τ ∗1 ] we have
Y 1

t = ξ11{τ∗1=T } + h1(τ
∗

1 , Y 2
τ∗1
)1{τ∗1<T } +

∫ τ∗1

t
f1(s, Y 1

s , Y 2
s , Z1

s )ds −
∫ τ∗1

t
Z1

s dBs;

Y 2
t = Y 2

τ∗1
+

∫ τ∗1

t
f2(s, Y 1

s , Y 2
s , Z2

s )ds −
∫ τ∗1

t
Z2

s dBs .

This is well posed. However, Y 2 has no reflection, thus we cannot define τ ∗2 as in Theorem 2.1.
Our second key observation is that, when τ ∗1 < T , Y 1

τ∗1
= h1(τ

∗

1 , Y 2
τ∗1
). Note that Y 1, Y 2, h are

all continuous. This implies that if τ ∗2 is close to τ ∗1 , then Y 1
t ≈ h1(t, Y 2

t ) for t ∈ [τ ∗1 , τ
∗

2 ], and
therefore,

Y 2
t ≈ Y 2

τ∗2
+

∫ τ∗2

t
f2(s, h1(t, Y 2

t ), Y 2
s , Z2

s )ds −
∫ τ∗2

t
Z2

s dBs . (4.9)

Ignoring the approximation, this is a BSDE without reflection and is well posed. We should, of
course, estimate the error due to this approximation.

We now summarize the above idea and discuss heuristically how to find the approximately
optimal strategy for the m-dimensional RBSDE (3.11). Let µ denote the number of nonempty
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sets A j in (3.11), that is, the number of reflections in (3.11). We proceed by induction on µ. First,
whenµ = 0, (3.11) becomes an m-dimensional BSDE without reflection. By standard arguments
one can easily show that Theorem 4.2 holds. Now assume Theorem 4.2 is true for µ = m1 − 1
for some 1 ≤ m1 ≤ m. For µ = m1, let (Y j , Z j , K j ) be an arbitrary solution of (3.11).

Let τ ∗0
4
= λ1, and without loss of generality assume A1 6= ∅. Set

τ ∗1
4
= inf{t ≥ τ ∗0 : Y

1
t = max

i∈A1
h1,i (t, Y i

t )} ∧ λ2.

When τ ∗1 < λ2, we have

Y 1
τ∗1
= max

i∈A1
h1,i (τ

∗

1 , Y i
τ∗1
).

That is, there exists an index, denoted as η1 ∈ A1, such that

Y 1
τ∗1
= h1,η1(τ

∗

1 , Y η1
τ∗1
).

So, besides the stopping time τ ∗1 , we need to keep track of the optimal index η1. We note that η1

is random and is Fτ∗1
measurable. At this point, let us denote η0

4
= 1. Note that, over [τ ∗0 , τ

∗

1 ], it
holds that:

Y j
t = Y j

τ∗1
+

∫ τ∗1

t
f j (s,
−→
Y s, Z j

s )ds −
∫ τ∗1

t
Z j

s dBs + K j
τ∗1
− K j

t , j 6= η0;

Y j
t ≥ max

k∈A j
h j,k(t, Y k

t ); [Y
j

t − max
k∈A j

h j,k(t, Y k
t )]dK j

t = 0, j 6= η0;

Y η0
t = Y η0

τ∗1
+

∫ τ∗1

t
fη0(s,

−→
Y s, Zη0

s )ds −
∫ τ∗1

t
Zη0

s dBs .

(4.10)

This is a system with only m1−1 reflections, and thus is well posed by our induction assumption.
Now assume τ ∗1 < λ2. To define (τ ∗2 , η2), we need to consider two different cases.

Case 1. Aη1 6= ∅. Denote

τ ∗2
4
= inf{t ≥ τ ∗1 : Y

η1
t = max

i∈Aη1

hη1,i (t, Y i
t )} ∧ λ2,

and, when τ ∗2 < λ2, let η2 ∈ Aη1 such that Y η1
τ∗2
= hη1,η2(τ

∗

2 , Y η2
τ∗2
). Then

−→
Y satisfies a system

with m1 − 1 reflections over [τ ∗1 , τ
∗

2 ], where the η1th equation has no reflection.
Case 2. Aη1 = ∅. In this case, the η1th equation has no reflection. Note that Y η0

τ∗1
=

hη0,η1(τ
∗

1 , Y η1
τ∗1
). As in (4.9), choose τ ∗2 “close” to τ ∗1 , then for any t ∈ [τ ∗1 , τ

∗

2 ], we have Y η0
t ≈

hη0,η1(τ
∗

1 , Y η1
t ). On the other hand, by (4.1) and (2.9) one can see that Y j

τ∗1
> h j,η0(τ

∗

1 , Y η0
τ∗1
)

for any j such that η0 ∈ A j . Since τ ∗2 is close to τ ∗1 , let us assume Y j
t > h j,η0(τ

∗

1 , Y η0
t ) for

t ∈ [τ ∗1 , τ
∗

2 ]. So approximately, over [τ ∗1 , τ
∗

2 ], {Y
j
} j 6=η0 satisfy

Y j
t ≈ Y j

τ∗2
+

∫ τ∗2

t
f j (s, h1,η1(τ

∗

1 , Y η1
s ), Y 2

s , . . . , Y m
s , Z j

s )ds

−

∫ τ∗2

t
Z j

s dBs + K j
τ∗2
− K j

t ;

Y j
t ≥ max

k∈A j−{η0}
h j,k(t, Y k

t ); [Y
j

t − max
k∈A j−{η0}

h j,k(t, Y k
t )]dK j

t = 0.

(4.11)
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This is a system of m − 1 equations with m1 − 1 reflections, where we remove the equation for
Y η0 completely. In order to move forward, we need to define η2 so that Aη2 6= ∅. It turns out that

the best way is to set η2
4
= η0.

Now we can continue the procedure and define a sequence of (τ ∗n , ηn).

4.2. Construction of Y δ

The arguments in Section 4.1 is only heuristic. We now make everything rigorous. First, let
us introduce the following definition:

Definition 4.3. δ = (τ0, . . . , τn; η0, . . . , ηn) is called an admissible strategy if

(i) λ1 = τ0 ≤ · · · ≤ τn ≤ λ2 is a sequence of stopping times;
(ii) η0, . . . , ηn are random index taking values in {1, . . . ,m} such that ηi ∈ Fτi ;

(iii) Aη0 6= ∅;
(iv) If Aηi 6= ∅, then ηi+1 ∈ Aηi ;

(v) If Aηi = ∅, then ηi+1
4
= ηi−1.

We note that, unlike in Section 2, here δ must be a finite sequence.

Remark 4.4. By Definition 4.3(iii), Aηi = ∅ implies that i ≥ 1. Then the (v) above makes sense.
Moreover, by induction we see in this case Aηi+1 = Aηi−1 6= ∅.

We assume Theorem 4.2 holds for µ = m1 − 1 and for any m ≥ m1. Now assume µ = m1.
For an admissible strategy δ, we construct (Y δ, j , Z δ, j ) as follows.

First, for t ∈ [τn, λ2] and j = 1, . . . ,m, set

Y δ, j
t
4
= Y 0, j

t , Z δ, j
t
4
= Z0, j

t , (4.12)

where (Y 0, j , Z0, j ) is the solution to (3.11) constructed in Section 2. Then in particular we have

Y δ, j
τn
≥ max

i∈A j
h j,i (τn, Y δ,iτn

), j = 1, . . . ,m. (4.13)

For i = n − 1, . . . , 0, assume we have constructed Y δ, j
τi+1−

for j = 1, . . . ,m, which we will
do later. Note that Y δ, j may be discontinuous at τi+1. Corresponding to Case 1 and Case 2 when
we defined (τ ∗2 , η2) in Section 4.1, we define (Y δ, j , Z δ, j ) over [τi , τi+1) in two cases.

Case 1. Aηi 6= ∅. Assume our constructed Y δ, j
τi+1−

satisfies

Y δ, j
τi+1−

≥ max
k∈A j

h j,k(τi+1, Y δ,kτi+1−
), j 6= ηi . (4.14)

Recall (4.10). We consider the following RBSDE by removing the constraint of the ηi th equation:

Y δ, j
t = Y δ, j

τi+1−
+

∫ τi+1

t
f j (s,
−→
Y
δ

s , Z δ, j
s )ds

−

∫ τi+1

t
Z δ, j

s dBs + K δ, j
τi+1
− K δ, j

t , j 6= ηi ;

Y δ, j
t ≥ max

k∈A j
h j,k(t, Y δ,kt ); [Y δ, j

t − max
k∈A j

h j,k(t, Y δ,kt )]dK δ, j
t = 0, j 6= ηi ;

Y δ,ηi
t = Y δ,ηi

τi+1−
+

∫ τi+1

t
fηi (s,

−→
Y
δ

s , Z δ,ηi
s )ds −

∫ τi+1

t
Z δ,ηi

s dBs .

(4.15)
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It is obvious that the f j , h j,i , A j here satisfy Assumptions 3.1 and 4.1, and (4.14) implies that the
terminal conditions of (4.15) satisfy (3.12). Since (4.15) has only m1−1 reflections, by induction
assumption it has the unique solution (Y δ, j , Z δ, j ), j = 1, . . . ,m over [τi , τi+1). �

Case 2. Aηi = ∅. By Remark 4.4 we have i ≥ 1 and Aηi−1 6= ∅. Assume our constructed Y δ, j
τi+1−

satisfies

Y δ, j
τi+1−

≥ max
k∈A j−{ηi−1}

h j,k(τi+1, Y δ,kτi+1−
), j 6= ηi−1. (4.16)

Recall (4.11). We omit the ηi−1th equation and consider the following m−1-dimensional RBSDE
with at most m1 − 1 reflections: for j 6= ηi−1,

Y δ, j
t = Y δ, j

τi+1−
−

∫ τi+1

t
Z δ, j

s dBs + K δ, j
τi+1
− K δ, j

t

+

∫ τi+1

t
f̃ j (s, Y δ,1s , . . . , Y δ,ηi−1−1

s , Y δ,ηi+1−1
s , . . . , Y δ,ms , Z δ, j

s )ds;

Y δ, j
t ≥ max

k∈A j−{ηi−1}
h j,k(t, Y δ,kt ), [Y δ, j

t − max
k∈A j−{ηi−1}

h j,k(t, Y δ,kt )]dK δ, j
t = 0.

(4.17)

Here:

f̃ j (t, y1, . . . , yηi−1−1, yηi−1+1, . . . , yn, z)

4
= f j (t, y1, . . . , yηi−1−1, hηi−1,ηi (τi , yηi ), yηi−1+1, . . . , yn, z). (4.18)

One can easily check that f̃ j , h j,i , A j − {ηi−1} here satisfy Assumptions 3.1 and 4.1, and (4.16)
implies that the terminal conditions of (4.17) satisfy (3.12). Since RBSDE (4.17) has at most
m1 − 1 reflections, by induction assumption it has the unique solution (Y δ, j , Z δ, j ), j 6= ηi−1,
over [τi , τi+1). We emphasize that Y δ,ηi−1 is not involved in this case. �

It remains to construct Y δ, j
τi+1−

satisfying (4.14) or (4.16). First, set

Y δ, j
τi+1−

4
= Y 0, j

τn
, if i + 1 = n; Y δ, j

τi+1−

4
= ξ

j
λ2
, if τi+1 = λ2. (4.19)

By (4.12) and (3.12) we know that both (4.14) and (4.16) hold. Now assume i < n − 1 and
τi+1 < λ2. Assume we have solved either (4.15) or (4.17) over [τi+1, τi+2). Again we construct
Y δ, j
τi+1−

in two cases.

Case 2. Aηi = ∅. In this case we need to construct Y δ, j
τi+1−

only for j 6= ηi−1 and to check (4.16).

By Remark 4.4 we know that i ≥ 1, ηi+1 = ηi−1, and Aηi+1 6= ∅. Then Y δ, j
τi+1 were obtained from

(4.15) over [τi+1, τi+2) and thus satisfy:

Y δ, j
τi+1
≥ max

k∈A j
h j,k(τi+1, Y δ,kτi+1

), j 6= ηi+1 = ηi−1. (4.20)

Define

Y δ, j
τi+1−

4
= Y δ, j

τi+1
, j 6= ηi−1. (4.21)

Then (4.16) follows immediately from (4.20). �

Case 1. Aηi 6= ∅. In this case we need to construct Y δ, j
τi+1−

for all j and to check (4.14). We do it
in two cases.
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Case 1.1. Aηi+1 = ∅. Then Y δ, j
τi+1 , j 6= ηi were obtained from (4.17) over [τi+1, τi+2) and thus

satisfy

Y δ, j
τi+1
≥ max

k∈A j−{ηi }
h j,k(τi+1, Y δ,kτi+1

), j 6= ηi . (4.22)

Define

Y δ, j
τi+1−

4
= Y δ, j

τi+1
, j 6= ηi ; Y δ,ηi

τi+1−

4
= hηi ,ηi+1(τi+1, Y δ,ηi+1

τi+1 ). (4.23)

By (4.22), to prove (4.14) it suffices to show that

Y δ, j
τi+1
≥ h j,ηi (τi+1, hηi ,ηi+1(τi+1, Y δ,ηi+1

τi+1 )), if ηi ∈ A j . (4.24)

Assume ηi ∈ A j . By Definition 4.3(iv) and Assumption 4.1(ii), we have ηi+1 ∈ [A j−{ηi }]∪{ j},
and

h j,ηi (τi+1, hηi ,ηi+1(τi+1, Y δ,ηi+1
τi+1 )) < h j,ηi+1(τi+1, Y δ,ηi+1

τi+1 ). (4.25)

If ηi+1 ∈ A j − {ηi }, then (4.24) follows from (4.22) and (4.25). If ηi+1 = j , then (4.24) follows
from (2.8) and (4.25). So in both cases (4.24) holds, then so does (4.14). �

Case 1.2. Aηi+1 6= ∅. Then Y δ, j
τi+1 were obtained from (4.15) over [τi+1, τi+2) and thus satisfy:

Y δ, j
τi+1
≥ max

k∈A j
h j,k(τi+1, Y δ,kτi+1

), j 6= ηi+1. (4.26)

Define

Y δ, j
τi+1−

4
= Y δ, j

τi+1
, j 6= ηi , ηi+1;

Y δ,ηi+1
τi+1−

4
= Y δ,ηi+1

τi+1 ∨ max
k∈Aηi+1−{ηi }

hηi+1,k(τi+1, Y δ,kτi+1
);

Y δ,ηi
τi+1−

4
= hηi ,ηi+1(τi+1, Y δ,ηi+1

τi+1−
).

(4.27)

We now check (4.14) for j 6= ηi . First, for j = ηi+1, by (4.27),

Y δ,ηi+1
τi+1−

≥ max
k∈Aηi+1−{ηi }

hηi+1,k(τi+1, Y δ,kτi+1−
).

Moreover, if ηi ∈ Aηi+1 , by (4.1) and (2.8) we have

hηi+1,ηi (τi+1, Y δ,ηi
τi+1−

) = hηi+1,ηi (τi+1, hηi ,ηi+1(τi+1, Y δ,ηi+1
τi+1−

)) < Y δ,ηi+1
τi+1−

.

So (4.14) holds for j = ηi+1.
It remains to check (4.14) for j 6= ηi , ηi+1. By (4.26) and the first line in (4.27) we have

Y δ, j
τi+1−

≥ max
k∈A j−{ηi ,ηi+1}

h j,k(τi+1, Y δ,kτi+1−
). (4.28)

If ηi+1 ∈ A j , recall the definition of Y δ,ηi+1
τi+1−

in (4.27). First, by (4.26) we have

h j,ηi+1(τi+1, Y δ,ηi+1
τi+1 ) ≤ Y δ, j

τi+1
= Y δ, j

τi+1−
.

Second, for any k ∈ Aηi+1 − {ηi }, similar to (4.24) one can easily prove

h j,ηi+1(τi+1, hηi+1,k(τi+1, Y δ,kτi+1
)) ≤ Y δ, j

τi+1
= Y δ, j

τi+1−
.
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Thus, by Assumption 3.1(iii) we have

h j,ηi+1(τi+1, Y δ,ηi+1
τi+1−

) ≤ Y δ, j
τi+1−

. (4.29)

Finally, if ηi ∈ A j , by Definition 4.3(iv), Assumption 4.1(ii), and (4.29), we have ηi+1 ∈

A j
⋃
{ j} and

h j,ηi (τi+1, Y δ,ηi
τi+1−

) = h j,ηi (τi+1, hηi ,ηi+1(τi+1, Y δ,ηi+1
τi+1−

))

< h j,ηi+1(τi+1, Y δ,ηi+1
τi+1−

) ≤ Y δ, j
τi+1−

.

This, together with (4.28) and (4.29), proves (4.14) for j 6= ηi , ηi+1. �
Now repeat the arguments backward in time, we see in each [τi , τi+1), either (4.15) or (4.17)

is well defined and is well posed. Thus we obtain Y δ, j over the whole interval [λ1, λ2], with the
exception of Y δ,ηi−1

t for t ∈ [τi , τi+1) when Aηi = φ. By applying Corollary 3.4 and comparison
theorem repeatedly, one can easily show that:

Lemma 4.5. Assume Assumptions 3.1 and 4.1 hold, and that Theorem 4.2 is true for µ = m1−1.
Then for µ = m1 and for any admissible strategy δ and any j , we have Y δ, j

t ≤ Y j
t whenever

Y δ, j
t is well defined. �

4.3. Verification theorem

We now prove the verification theorem.

Theorem 4.6. Assume Assumptions 3.1 and 4.1 hold, and that Theorem 4.2 is true for µ =
m1 − 1. Then for µ = m1 and for any solution Y j of RBSDE (3.11), we have Y j

λ1
= esssupδY

δ, j
λ1

for all j , where the esssup is taken over all admissible strategies δ.

Proof. We prove the theorem in several steps.

Step 1. Fix ε > 0 and let Dε
4
= {iε : i = 0, 1, . . .}. We construct an approximately optimal

admissible strategy as follows. First, set τ0
4
= λ1 and choose η0 such that Aη0 6= ∅. For

i = 0, 1, . . ., we define (τi+1, ηi+1) in two cases.
Case 1. Aηi 6= ∅. Set

τi+1
4
= inf{t ≥ τi : Y

ηi
t = max

k∈Aηi

hηi ,k(t, Y k
t )} ∧ λ2.

If τi+1 < λ2, set ηi+1 ∈ Aηi be the smallest index such that

Y ηi
τi+1
= hηi ,ηi+1(τi+1, Y ηi+1

τi+1 ). (4.30)

Otherwise choose arbitrary ηi+1 ∈ Aηi .

Case 2. Aηi = ∅. Since Aη0 6= ∅, we have i ≥ 1. Set ηi+1
4
= ηi−1. If τi = λ2, define τi+1

4
= λ2.

Now assume τi < λ2. It is more involved to define τi+1 in this case. By the definition of ηi ,
one can check that in this case we must have Aηi−1 6= ∅, and thus by Case 1, ηi ∈ Aηi−1

and Y ηi−1
τi = hηi−1,ηi (τi , Y ηi

τi ). Moreover, by Assumptions 3.1(iii) and 4.1(ii), one can easily see

Y j
τi > h j,ηi−1(τi , Y ηi−1

τi ) for any j such that ηi−1 ∈ A j . We now define

τi+1
4
= τ 1

i+1 ∧ τ
2
i+1 ∧ λ2;
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where τ 1
i+1 is the smallest number in Dε such that τ 1

i+1 > τi ; and

τ 2
i+1

4
= inf{t > τi : ∃ j s.t. ηi−1 ∈ A j , Y j

t = h j,ηi−1(t, Y ηi−1
t )}.

Now set δ
4
= δn,ε 4

= (τ0, . . . , τn; η0, . . . , ηn). Recall Definition 4.3. One can easily check that
δ is an admissible strategy.

Step 2. We estimate the errors backward in time. Recall Section 4.2 and denote

1Y j
t
4
= Y j

t − Y δ, j
t .

First, by (4.19) it is obvious that

|Y j
τn
− Y δ, j

τn−
| = |1Y j

τn
|. (4.31)

Now assume i < n − 1.

Case 1. Aηi 6= φ. We claim that

max
1≤ j≤m

|1Y j
τi
|
2
≤ Eτi {e

C(τi+1−τi ) max
j 6=ηi
|1Y j

τi+1
|
2
}. (4.32)

In fact, in this case (Y j , Z j , K j ) satisfies
Y j

t = Y j
τi+1
+

∫ τi+1

t
f j (s,
−→
Y s, Z j

s )ds −
∫ τi+1

t
Z j

s dBs + K j
τi+1
− K j

t , j 6= ηi ;

Y j
t ≥ max

k∈A j
h j,k(t, Y k

t ); [Y
j

t − max
k∈A j

h j,k(t, Y k
t )]dK k

t = 0, j 6= ηi ;

Y ηi
t = Y ηi

τi+1
+

∫ τi+1

t
fηi (s,

−→
Y s, Zηi

s )ds −
∫ τi+1

t
Zηi

s dBs .

(4.33)

Compare (4.33) and (4.15). They have only m1− 1 reflections, thus by induction assumption we
can apply Theorem 4.2 (ii) and obtain

max
1≤ j≤m

|1Y j
τi
|
2
≤ Eτi {e

C(τi+1−τi ) max
1≤ j≤m

|Y j
τi+1
− Y δ, j

τi+1−
|
2
}.

So to prove (4.32) it suffices to show that

max
1≤ j≤m

|Y j
τi+1
− Y δ, j

τi+1−
| ≤ max

j 6=ηi
|1Y j

τi+1
|. (4.34)

If τi+1 = λ2, then by (4.19), we have

|Y j
τi+1
− Y δ, j

τi+1−
| = |ξ

j
λ2
− ξ

j
λ2
| = 0, ∀ j.

Thus (4.34) holds.
Now assume τi+1 < λ2. Note that Y δ, j

τi+1−
is defined by either (4.23) or (4.27). In the former

case, by (4.2) we have

max
j 6=ηi
|Y j
τi+1
− Y δ, j

τi+1−
| = max

j 6=ηi
|1Y j

τi+1
|;

|Y ηi
τi+1
− Y δ,ηi

τi+1−
| = |hηi ,ηi+1(τi+1, Y ηi+1

τi+1 )− hηi ,ηi+1(τi+1, Y δ,ηi+1
τi+1 )| ≤ |1Y ηi+1

τi+1 |.

Since ηi+1 ∈ Aηi and thus ηi+1 6= ηi . We prove (4.34) in this case.
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In the latter case, that is, Y δ, j
τi+1−

is defined by (4.27), we first have

max
j 6=ηi ,ηi+1

|Y j
τi+1
− Y δ, j

τi+1−
| = max

j 6=ηi ,ηi+1
|1Y j

τi+1
|.

Next, for j = ηi+1, by Lemma 4.5 and Assumption 3.1(iii) we have

Y ηi+1
τi+1 ≥ Y δ,ηi+1

τi+1 and Y ηi+1
τi+1 ≥ max

k∈Aηi+1

hηi+1,k(τi+1, Y k
τi+1

) ≥ max
k∈Aηi+1

hηi+1,k(τi+1, Y δ,kτi+1
).

Then Y ηi+1
τi+1 ≥ Y δ,ηi+1

τi+1−
. Therefore,

|Y ηi+1
τi+1 − Y δ,ηi+1

τi+1−
| = Y ηi+1

τi+1 − Y δ,ηi+1
τi+1−

≤ Y ηi+1
τi+1 − Y δ,ηi+1

τi+1 = |1Y ηi+1
τi+1 |.

Finally, for j = ηi , by Assumption 4.1(iii) we have

|Y ηi
τi+1
− Y δ,ηi

τi+1−
| = |hηi ,ηi+1(τi+1, Y ηi+1

τi+1 )− hηi ,ηi+1(τi+1, Y δ,ηi+1
τi+1−

)|

≤ |Y ηi+1
τi+1 − Y δ,ηi+1

τi+1−
| ≤ |1Y ηi+1

τi+1 |.

Thus (4.34) also holds.

Case 2. Aηi = φ. In this case (Y j , Z j , K j ), j 6= ηi−1 satisfies
Y j

t = Y j
τi+1
−

∫ τi+1

t
Z j

s dBs + K j
τi+1
− K j

t

+

∫ τi+1

t
f̂ j (s, Y 1

s , . . . , Y ηi−1−1
s , Y ηi−1+1

s , . . . , Y m
s , Z j

s )ds;

Y j
t ≥ max

k∈A j−{ηi−1}
h j,k(t, Y k

t ); [Y
j

t − max
k∈A j−{ηi−1}

h j,k(t, Y k
t )]dK k

t = 0;

(4.35)

where, recalling (4.18),

f̂ j (t, y1, . . . , yηi−1−1, yηi−1+1, . . . , yn, z)

4
= f̃ j (t, y1, . . . , yηi−1−1, yηi−1+1, . . . , yn, z)+ I j

t ; (4.36)

I j
t
4
= f j (t,

−→
Y t , Z j

t )− f j (t, Y 1
t , . . . , Y ηi−1−1

t , hηi−1,ηi (τi , Y ηi
t ),

Y ηi−1+1
t , . . . , Y n

t , Z j
t ). (4.37)

We note that here I j
t is considered as a random coefficient. Compare (4.35) and (4.17). Recalling

(4.21), by induction assumption again we get

max
j 6=ηi−1

|1Y j
τi
|
2
≤ Eτi

eC(τi+1−τi ) max
j 6=ηi−1

|1Y j
τi+1
|
2
+ C

∑
j 6=ηi−1

∫ τi+1

τi

|I j
t |dt

 . (4.38)

Note that Y ηi−1
τi = hηi−1,ηi (τi , Y ηi

τi ). Then

|I j
t | ≤ C

∣∣Y ηi−1
t − hηi−1,ηi (τi , Y ηi

t )
∣∣2

≤ C
[
|Y ηi−1

t − Y ηi−1
τi |

2
+ |hηi−1,ηi (τi , Y ηi

τi
)− hηi−1,ηi (τi , Y ηi

t )|
2
]

≤ C
[
|Y ηi−1

t − Y ηi−1
τi |

2
+ |Y ηi

τi
− Y ηi

t |
2
]
≤ C

m∑
k=1

|Y k
t − Y k

τi
|
2.
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Note that in this case τi+1 − τi ≤ ε. Then

|I j
t | ≤ C

m∑
k=1

sup
λ1≤t1<t2≤λ2:t2−t1≤ε

|Y k
t1 − Y k

t2 |
2 4
= Iε. (4.39)

Thus (4.38) implies

max
j 6=ηi−1

|1Y j
τi
|
2
≤ Eτi {e

C(τi+1−τi ) max
1≤ j≤m

|1Y j
τi+1
|
2
+ Iε[τi+1 − τi ]}. (4.40)

Step 3. We claim that, for a.s. ω, τi = λ2 for i large enough. We prove it by contradiction.
Assume ω is in the set that all Y j

· (ω) and h j,i (·, ω, y) are continuous and τi (ω) < λ2 for all i .

Denote τ∞
4
= limi→∞ τi .

First, it is obvious that there can be only finitely many i such that Aηi = φ and τi+1 = τ
1
i+1.

Second, assume there is an infinite sequence ik such that Aηik
= φ and τik+1 = τ

2
ik+1. Note

that in this case ηik ∈ Aηik−1 and there exists η̂ik+1 such that ηik−1 ∈ Aη̂ik+1 . Then

Y
ηik−1
τik

= hηik−1,ηik
(τik , Y

ηik
τik
); Y

η̂ik+1
τik+1 = hη̂ik+1,ηik−1(τik+1, Y

ηik−1
τik+1 ). (4.41)

The vector (η̂ik+1, ηik−1, ηik ) can take only finitely many values, then there exist ( j1, j2, j3) and
an infinite subsequence of ik , without loss of generality we assume it is the whole sequence ik ,
such that j2 ∈ A j1 , j3 ∈ A j2 and

η̂ik+1 = j1, ηik−1 = j2, ηik = j3, ∀k.

By (4.41) we get

Y j1
τik+1
= h j1, j2(τik+1, Y j2

τik+1
), Y j2

τik
= h j2, j3(τik , Y j3

τik
), ∀k.

Send k →∞, we have

Y j1
τ∞
= h j1, j2(τ∞, Y j2

τ∞
), Y j2

τ∞
= h j2, j3(τ∞, Y j3

τ∞
).

Then, by Assumption 4.1(ii), j3 ∈ A j1
⋃
{ j1} and

Y j1
τ∞
= h j1, j2(τ∞, h j2, j3(τ∞, Y j3

τ∞
)) < h j1, j3(τ∞, Y j3

τ∞
).

This contradicts with (2.9). Therefore, there are only finitely many i such that Aηi = φ.
Finally, by the above results we must have some n0 such that Aηi 6= φ for all i ≥ n0. Then

ηi+1 ∈ Aηi and (4.30) holds for all i ≥ n0. We say (ηi , ηi+1, . . . , ηi+l−1) is a loop if they
are all different and ηi+l = ηi . Since each ηi takes only values 1, . . . ,m, there are in total
finitely many possible loops. Thus there exist ( j1, . . . , jl) and an infinite sequence ik such that
(ηik , . . . , ηik+l , ηik+l) = ( j1, . . . , jl , j1). Therefore, by (4.30), we have

Y j1
τik+1
= h j1, j2(τik+1, Y j2

τik+1
), . . . , Y jl−1

τik+l−1 = h jl−1, jl (τik+l−1, Y jl
τik+l−1

),

and Y jl
τik+l = h jl , j1(τik+l , Y j1

τik+l ). Send k →∞, we get

Y j1
τ∞
= h j1, j2(τ∞, Y j2

τ∞
), . . . , Y jl−1

τ∞ = h jl−1, jl (τ∞, Y jl
τ∞
), Y jl

τ∞
= h jl , j1(τ∞, Y j1

τ∞
).

This contradicts with Assumption 3.1(iv). Therefore, we prove the claim.
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Step 4. We are now ready to complete the proof. Given Aηi 6= ∅, if Aηi+1 = ∅, by (4.32) and
(4.40) we have

max
1≤ j≤m

|1Y j
τi
|
2
≤ Eτi {e

C(τi+2−τi ) max
1≤ j≤m

|1Y j
τi+2
|
2
+ Iε[τi+2 − τi+1]}. (4.42)

By Definition 4.3(v), we have Aηi+2 6= ∅. Therefore, if Aηi 6= ∅, then either Aηi+1 6= ∅ and (4.32)
holds, or Aηi+2 6= ∅ and (4.42) holds. Since Aη0 6= ∅, one gets immediately that

max
1≤ j≤m

|1Y j
τ0
|
2
≤ C Eτ0{ max

1≤ j≤m
|1Y j

τn
|
2
+ Iε} = C Eλ1{ max

1≤ j≤m
|Y 0, j
τn
− Y j

τn
|
2
+ Iε}.

First send n → ∞. Since τn → λ2, we get Y 0, j
τn → ξ

j
λ2

and Y j
τn → ξ

j
λ2
. By Dominating

Convergence Theorem we have

lim
n→∞

max
1≤ j≤m

|1Y j
λ1
|
2
≤ C Eλ1{Iε}.

Now send ε→ 0. Since Y j is continuous, by Dominating Convergence Theorem again we get

lim
ε→0

lim
n→∞

max
1≤ j≤m

|1Y j
λ1
|
2
= 0.

This, together with Lemma 4.5, proves the theorem. �

4.4. Proof of Theorem 4.2

As mentioned before, we prove the theorem by induction on µ. When µ = 0, (3.11) is an
m-dimensional BSDE without reflections. Then (i) holds, and by standard arguments one can
easily prove (ii).

Assume Theorem 4.2 holds for µ = m1 − 1. Now assume µ = m1.

(i) By Theorem 4.6, Y j
λ1

is unique. Similarly Y j
t is unique for any t ∈ [λ1, λ2]. By the uniqueness

of the Doob–Meyer decomposition we get Z j is unique, which further implies the uniqueness
of K j immediately.

(ii) For any admissible strategy δ, define Ỹ δ, j similarly and denote

1Y δ, j
t
4
= Y δ, j

t − Ỹ δ, j
t .

If Aηi 6= ∅, recalling (4.15), (4.23) and (4.27), by induction we have:

max
1≤ j≤m

|1Y δ, j
τi
|
2
≤ Eτi

{
eC(τi+1−τi ) max

j 6=ηi
|1Y δ, j

τi+1
|
2
+ C

∫ τi+1

τi

‖1 ft‖
2dt

}
.

If Aηi = ∅, recalling (4.17) and (4.21), by induction we have:

max
j 6=ηi−1

|1Y δ, j
τi
|
2
≤ Eτi

{
eC(τi+1−τi ) max

1≤ j≤m
|1Y δ, j

τi+1
|
2
+ C

∫ τi+1

τi

‖1 ft‖
2dt

}
.

Note that Aη0 6= ∅. Applying the above estimates repeatedly we get:

max
1≤ j≤m

|1Y δ, j
λ1
|
2
≤ Eλ1

{
eC(λ2−λ1) max

1≤ j≤m
|1ξ

j
λ2
|
2
+ C

∫ λ2

λ1

‖1 ft‖
2dt

}
, ∀δ.

Then (ii) follows from Theorem 4.6 immediately. �
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