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Abstract We consider a problem of finding optimal contracts in continuous time,
when the agent’s actions are unobservable by the principal, who pays the agent with
a one-time payoff at the end of the contract. We fully solve the case of quadratic
cost and separable utility, for general utility functions. The optimal contract is, in
general, a nonlinear function of the final outcome only, while in the previously solved
cases, for exponential and linear utility functions, the optimal contract is linear in the
final output value. In a specific example we compute, the first-best principal’s utility
is infinite, while it becomes finite with hidden action, which is increasing in value
of the output. In the second part of the paper we formulate a general mathematical
theory for the problem. We apply the stochastic maximum principle to give necessary
conditions for optimal contracts. Sufficient conditions are hard to establish, but we
suggest a way to check sufficiency using non-convex optimization.
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1 Introduction

This paper builds a general theory of optimal contracts between two parties in contin-
uous time when the action of one party is not observable. In most existing continuous-
time models of this type it is assumed that the parties have exponential utility func-
tions, while we allow general utility functions.

In economics literature, these types of problems are known as Principal-Agent
problems, with a principal who hires an agent to perform a certain task by control-
ling a given stochastic process. For example, shareholders hire a company executive
whose effort has an effect on the company’s stock price, or investors hire a portfolio
manager to manage their wealth from investments. In a previous paper [5], we study
the case in which the actions of the agent are observed by the principal, the so-called
first-best case. Here, we consider the second-best case of “hidden actions” or “moral
hazard”, in which the agent’s control of the drift of the process is unobserved by the
principal. Thus, it is harder (more expensive) for the principal to provide incentives
to the agent in order to make her apply high effort. The seminal paper on this topic in
the continuous-time framework is Holmstrom and Milgrom [13], which showed that
if both the principal and the agent have exponential utilities, then the optimal contract
is linear. Schättler and Sung [24] generalized those results using a dynamic program-
ming and martingales approach of Stochastic Control Theory, and Sung [26] showed
that the linearity of the optimal contract still holds even if the agent can control the
volatility, too. A nice survey of the literature is provided by Sung [27].

Our model is similar to those papers, but we obtain further results also for non-
exponential utility functions. We use a so-called weak formulation, meaning that the
agent, with her actions, influences the distribution of the outcome process, or, more
precisely its rate of return. This approach is first suggested by Mirrlees [16, 17], as
explained nicely in [12, p. 77]. We will illustrate this approach first in a simple single-
period model.

Different variations and applications of the problem are considered in [3, 7, 8, 14,
21, 23, 28, 29]. See also [18, 19], and [11]. The paper closest to ours is Williams [29].
That paper uses the stochastic maximum principle to characterize the optimal contract
in the principal-agent problems with hidden information, in the case without volatility
control. It focuses on the case of a continuously paid reward to the agent, while we
study the case when the reward is paid once, at the end of the contract. Moreover,
we prove our results from the scratch, thus getting them under weaker conditions.
(Williams [29] also deals with the so-called hidden states case, which we do not
discuss here.) A very nice paper with a setting in which the payment to the agent is
continuous is Sannikov [23]. That paper has a risk-neutral principal, and the agent
has an arbitrary utility function.

While working on the general theory, we have been able to identify a special
framework in which the problem is tractable even with general utility functions: un-
der the assumption of a cost function which is quadratic in agent’s effort and under
a separable utility, we find an explicit solution for the contract payoff. To the best of
our knowledge, this is the first time that the optimal second-best lump-sum contract
payoff is explicitly described in a continuous-time contracting problem with hidden
action, other than for exponential and linear utilities. The solution depends only on
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the final outcome (usually in a nonlinear way), and not on the history of the con-
trolled process, the fact which was known before for exponential and linear utilities.
The contract is determined from an equation which extends the classical Borch rule
for marginal utilities of the first-best contract. It is an increasing function of the fi-
nal value of the output, thus in the spirit of real-life contracts, such as call option
contracts in executive compensation. While the optimal payoff is explicitly given as
a solution to a nonlinear equation, the agent’s optimal effort is obtained as a part of
a solution to a “simple” Backward Stochastic Differential Equation (BSDE), which,
in a Markovian framework, boils down to solving a linear parabolic PDE, a standard
heat equation.

In a concrete example that we compute, with risk-neutral principal (linear utility)
and risk-averse agent (logarithmic utility), the effort is an increasing function of the
current value of the output. Interestingly, the first-best case for that example leads to
infinite utility for the principal.

For the general theory, we provide a detailed discussion on how to check whether
the necessary conditions we find are also sufficient. In particular, this is true for the
separable utility case. Our method is based on studying the agent’s “value function”,
that is, her remaining expected utility process. In continuous-time stochastic con-
trol literature this method is known at least since Davis and Varaiya [6]. In dynamic
Principal-Agent problems in discrete-time, it is used, among others, in [2, 22, 25].

The theory for general non-separable utility functions is quite hard. If the neces-
sary conditions determine a unique control process, then, if we proved existence of
the optimal control, we would know that the necessary conditions are also sufficient.
The existence of an optimal control is hard because, in general, the problem is not
concave. It is related to the existence of a solution to Forward-Backward Stochastic
Differential Equations (FBSDEs), possibly fully coupled. However, it is not known
under which general conditions these equations have a solution. The FBSDEs theory
is presented in the monograph [15]. The method of the stochastic maximum princi-
ple that we use is covered in the book [30]. For other applications of the stochastic
maximum principle in finance, see the recent book by Oksendal and Sulem [20].

The paper is organized as follows: In Sect. 2 we set up the model. In Sect. 3
we analyze the tractable case of quadratic cost and separable utility. In Sect. 4, we
find necessary conditions for the agent’s problem and the principal’s problem in gen-
eral case. In Sect. 5 we discuss how to establish sufficiency and illustrate with the
Holmstrom-Milgrom example. We conclude in Sect. 6 and provide longer proofs in
Appendix.

2 The Setting

2.1 Model with Symmetric Information

We first describe here the model appropriate when considering the full information,
first-best case, in which the agent’s actions are observed.

Let {Wt }t≥0 be a standard Brownian Motion on a probability space (�, F ,P )

and denote by FW �= {F W
t }t≤T its augmented filtration on the interval [0, T ]. The
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controlled state process, or output process is denoted X = Xu,v and its dynamics are
given by

dXt = utvtdt + vtdWt , X0 = x. (2.1)

Here for simplicity we assume all the processes are one-dimensional. The FW -
adapted processes u and/or v may be controlled by an agent, who is hired by a prin-
cipal to control the output process X.

For example, if u is fixed and v is controlled, process X corresponds exactly to
a value process of a portfolio which invests in a stock and a bank account, whose
manager decides which amount vt of money to hold in the stock at time t , and keeps
the rest in the bank account. The value ut corresponds then to the expected return
rate of the stock above the risk-free rate. This is a well known and standard model in
Financial Mathematics. If the manager can affect the mean return through her effort,
for example by carefully choosing the assets in which to invest, then we can assume
that ut is also chosen by the manager.

A more general model would be a standard general model of Stochastic Control
Theory given by

dXt = b(t,Xt , ut , vt )dt + σ(t,Xt , vt )dWt . (2.2)

When σ is nondegenerate, one can always set

ṽt
�= σ(t,Xt , vt ), ũt

�= b(t,Xt , ut , vt )σ
−1(t,Xt , vt ).

Then (2.2) becomes (2.1). Moreover, under some monotonicity conditions on b,σ ,
one can write u,v as functions of (X, ũ, ṽ). In this sense, (2.1) and (2.2) are equiva-
lent. We always consider models of type (2.1).

The “full information” case, in which the principal observes X,u,v and thus
also W , was studied in Cvitanić et al. [5]. In the so-called “hidden action” case, the
principal can only observe the controlled process Xt , but not the underlying Brownian
motion or the agent’s control u (so the agent’s “action” ut is hidden to the principal).
We present the appropriate model for this, second-best case, in the following section.

At time T , the principal gives the agent compensation in the form of a payoff
CT = F(X·), where F : C[0, T ] → R is a (deterministic) mapping. We note that
since the principal is assumed to observe the process X continuously, the volatility
control v can also be observed by the principal through the quadratic variation of X,
under the assumption v ≥ 0. Because he can verify what volatility has been used, for
a given process v the principal can design the payoff F in order to induce the agent to
implement it (or to “force” her to do so by harsh penalization). In this sense, we may
consider v as a control chosen by the principal instead of by the agent, as is usual in
the literature when action is observed. We say that the pair (F, v) is a contract.

The agent’s problem is that, given a contract (F, v), she needs to choose the con-
trol u (over some admissible set which will be specified later) in order to maximize
her utility

V1(F, v)
�= sup

u
V1(u;F,v)

�= sup
u

E[U1(F (Xu,v· ),G
u,v
T )].
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Here,

G
u,v
t

�=
∫ t

0
g(s,Xs,us, vs)ds (2.3)

is the accumulated cost of the agent, and with a slight abuse of notation we use V1
both for the objective function and its maximum. We say a contract (F, v) is imple-
mentable if there exists an effort process uF,v which maximizes the agent’s utility
given the contract, that is, it is such that

V1(u
F,v;F,v) = V1(F, v). (2.4)

The principal maximizes her utility

V2
�= max

F,v,uF,v
E[U2(X

uF,v,v
T − F(XuF,v,v· ))], (2.5)

where the maximum is over all implementable contracts (F, v) and corresponding
agent’s optimal efforts uF,v , such that the following participation constraint or indi-
vidual rationality (IR) constraint holds:

V1(F, v) ≥ R. (2.6)

Note that typically for a given contract (F, v) the corresponding optimal effort
uF,v of the agent will be unique, in which case the principal only maximizes over
(F, v).

Constant R is the reservation utility of the agent and represents the value of the
agent’s outside opportunities, the minimum value she requires to accept the job. Func-
tions U1 and U2 are utility functions of the agent and the principal. The typical cases
studied in the literature are the separable utility case with U1(x, y) = U1(x) − y,
and the non-separable case with U1(x, y) = U1(x − y), where, with a slight abuse
of notation, we use the same notation U1 also for the function of one argument only.
We could also have the same generality for U2, but this makes less sense from the
economics point of view.

Remark 2.1 A standard way to write the principal’s problem is the one of looking for
a so-called “constrained Pareto optimal” solution, which is such that no other contract
satisfying the required constraints could make both parties better off. More precisely,
the problem is written as

sup
F,v,u

[
E[U2(XT − F)] + λV1(u;F,v)

]

subject to the constraint (2.4). When we restrict ourselves to implementable contracts,
then this formulation is equivalent to our formulation above, because the choice of the
“Lagrange multiplier” λ is equivalent to the choice of the minimal agent’s utility R,
while the constraint (2.4) is absorbed into the principal’s problem by setting the effort
u in the principal’s problem (2.5) equal to uF,v , that is, equal to an effort which the
agent will choose optimally given a contract (F, v). While our formulation is less
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standard for symmetric information problems, it is consistent with the approach we
will use for solving the problem in the case of hidden action: we will first characterize
the optimal effort of the agent for a given contract, and then solve the principal’s
problem analogous to (2.5).

Remark 2.2 Our approach also works for the framework in which the output process
X = (X1, . . . ,Xd), d ≥ 1 is a d-dimensional vector. In this case effort u and Brown-
ian motion W would also be d-dimensional vectors, while v would be a d × d ma-
trix. The principal’s utility may take the general form U2(XT ,CT ), or a special form
U2(

∑
i X

i
T − CT ) as in [13]. By observing X continuously, the principal also ob-

serves its quadratic variation matrix vv∗, where v∗ denotes the transpose of v. Notice
that the principal cannot observe v directly. If we assume further that, given vv∗,
the particular choice of v does not change the value of the cost GT , then the princi-
pal essentially “observes” v, and one can extend all the results in this paper without
substantial difficulty.

2.2 Model with Hidden Action

For the origins, importance and numerous applications of the discrete-time Principal-
Agent theory with hidden action (and more), we refer the reader to the excellent
book [4]. The original motivation behind continuous-time models in the seminal pa-
per [13] was to show that if the agent has a rich strategy space, then she can undermine
complicated contracts, and the principal is forced to use simple contracts, as is fre-
quently the case in practice. Before their paper, there was a gap between the theory, in
which complex contracts were optimal, and practice, in which often relatively simple
contracts are observed. They also show that their continuous-time model in which
the drift is controlled, but not the volatility, can be obtained as a limit of a model in
which the outcomes have multinomial distribution, and in which the agent chooses
the probabilities of the outcomes, while the possible outcomes values are fixed. We
essentially adopt Holmstrom and Milgrom continuous-time model for the underlying
dynamics, as do most other existing papers in continuous time.

2.2.1 A Single-Period Model with Hidden Action

In order to make it easier to understand our continuous-time model, we first present a
simple problem in a single-period model. This is a familiar model, and can be found,
for example, in the book [4]. This modeling approach, of the action determining the
distribution of the output, was originally suggested by Mirrlees [16, 17] and extended
in [12]. It was driven partly by tractability, as Mirrlees [16, 17] has shown that without
this approach even simple problems may be hard or not have a solution.

In this model we describe the contract which is optimal among linear contracts,
while in the analogues continuous-time model the same linear contract turns out to be
optimal even if we allow general contracts. This is an advantage of continuous-time,
as discovered first in [13].

The agent picks the distribution of the final output X1 by her action, unobserved
by the principal. We assume that under a fixed probability P = P 0, we have

X1 = X0 + vB1
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where v is fixed and B1 is a random variable with a standard normal distribution. By
applying action u, the probability P changes to P u, under which the distribution of
B1 is normal with mean u and variance one. Therefor, under P u, X1 has mean uv.

We consider only contracts which are linear in X1, or, equivalently, in B1:

C1 = k0 + k1B1.

We assume a quadratic cost function, g(u) = u2/2, and exponential utility functions.
Denoting by Eu the expectation operator under probability P u, we define the agent’s
problem to be the minimization of

Eu[e−γ1(k0+k1B1−u2/2)] = e−γ1(k0−u2/2+k1u− 1
2 k2

1γ1)

where we used the fact that

Eu[ekB1] = eku+ 1
2 k2

. (2.7)

Hence, the optimal action u is

u = k1. (2.8)

We now describe a method which will also use in the continuous-time case. We sup-
pose that the principal decides to provide the agent with a contract payoff C1 which
results in (optimal) expected utility of R to the agent. This means that, using (2.7)
and (2.8),

R = − 1

γ1
Eu[e−γ1(C1−u2/2)] = − 1

γ1
e−γ1(k0+ 1

2 u2− 1
2 γ1u

2). (2.9)

Computing e−γ1k0 from this and using C1 = k0 + uB1, we can write

− 1

γ1
e−γ1C1 = Re−γ1(

1
2 [γ1−1]u2+uB1). (2.10)

Thus, we get a representation of the contract payoff in terms of the agent’s “promised”
utility R and the source of uncertainty B1, something we will find helpful later on,
too. Denoting the principal’s risk aversion with γ2, using eγ2C1 = (e−γ1C1)−γ2/γ1 ,
X1 = X0 + vB1 and (2.10), we can write the principal’s expected utility as

Eu[UP (X1 − C1)] = − 1

γ2
(−γ1R)−γ2/γ1Eu[e−γ2(X0+vB1− 1

2 [γ1−1]u2−uB1)]

which can be computed as

− 1

γ2
(−γ1R)−γ2/γ1e−γ2(X0−γ2v

2/2+(1+γ2)uv− 1
2 u2(1+γ1+γ2)).

Maximizing over u, we get the optimal u as

u = v
1 + γ2

1 + γ1 + γ2
. (2.11)
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If the principal could choose v, he would optimize the above expression over v,
too.

If there was symmetric information, and the model was

X1 = X0 + av + vB1

(under a single, fixed probability P ), in a similar way it can be computed that the
optimal action is u = v, and that the contract is of the form

C1 = c + γ2

γ1 + γ2
X1.

We see that the “sensitivity” γ2
γ1+γ2

of the first-best contract is less than the sensitivity

k1/v = 1+γ2
1+γ1+γ2

of the second-best contract. This is not surprising—when the action

is unobservable the principal is forced to try to induce more effort by offering higher
incentives.

As mentioned above, when we illustrate our theory with the Holmstrom-
Milgrom [13] problem in continuous time, we will see that the above second-best
contract is actually optimal among all contracts, linear or not.

2.2.2 A Continuous-time Model with Hidden Action

Similarly to our single-period model, Holmstrom-Milgrom [13] assume that the agent
is choosing a probability measure under which the output process evolves (as can
be seen in particular in their proof of Theorem 6 in the appendix of that paper).
Schättler and Sung [24] make this approach precise and rigorous, based on the so-
called weak formulation and a martingale approach to stochastic control. We adopt
the same formulation, and describe it in more detail next.

Let B be a standard Brownian motion under some probability space with proba-
bility measure Q, and FB = {F B

t }0≤t≤T be the filtration on [0, T ] generated by B .
For any FB -adapted square integrable process v > 0, let

Xt
�= x +

∫ t

0
vsdBs. (2.12)

Then vt is a functional of X, vt = ṽt (X·) and obviously it holds that

F X
t = F B

t , ∀t.

Moreover, effort process u is assumed to be a functional ũt of X. Given such ũ, we
define

ut
�= ũt (X·); Bu

t

�= Bt −
∫ t

0
usds; Mu

t

�= exp

(∫ t

0
usdBs − 1

2

∫ t

0
|us |2ds

)
;

(2.13)
and a new probability measure Qu by

dQu

dQ

�= Mu
T .
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Then we know by Girsanov Theorem that, under certain conditions, Bu is a Qu-
Brownian motion and

dXt = vtdBt = (ũt ṽt )(X·)dt + ṽt (X·)dBu
t .

That is, in the language of Stochastic Analysis, the triple (X,Bu,P u) is a weak solu-
tion to the SDE

dXt = (ũt ṽt )(X·)dt + ṽt (X·)dWt .

Compared to (2.1), we note that in the weak formulation we consider functionals
(ũ, ṽ) as controls. Accordingly, we consider (F, ṽ) as a contract offered by the prin-
cipal. The choice of ũ corresponds to the choice of probability measure P u, thus to
the choice of the distribution of process X. It is also well known that this is the only
way to vary probability measures in Brownian models, while keeping them equivalent
(i.e., having the same null sets).

For any contract payoff CT ∈ F B
T , there exists some functional F such that CT =

F(X·). Thus, a contract (F, ṽ) is equivalent to a random variable CT ∈ F B
T and a

process v ∈ FB . Also, an action ũ is equivalent to a process u ∈ FB . For simplicity,
in the following we abuse the notation by writing ut = ũt (X·) and vt = ṽt (X·) when
there is no danger of confusion.

Now given a contract CT ∈ F B
T and v ∈ FB , the agent’s problem is to find an

optimal control uCT ,v ∈ FB such that

V1(u
CT ,v;CT ,v) = V1(CT , v)

�= sup
u

V1(u;CT ,v),

where, recalling (2.3),

V1(u;CT ,v)
�= EQu{U1(CT ,GT )} = EQ{Mu

T U1(CT ,GT )}. (2.14)

For simplicity from now on we denote E
�= EQ and Eu �= EQu

. The principal’s
problem is to find optimal (C∗

T , v∗) such that

V2(C
∗
T , v∗) = V2

�= sup
CT ,v,uCT ,v

V2(u
CT ,v;CT ,v),

where

V2(u;CT ,v)
�= Eu{U2(XT − CT )} = E{Mu

T U2(XT − CT )}. (2.15)

We see from this last expression that, indeed, the choice of u is really the choice of
Mu and hence the choice of the probability measure, that is, the choice of distribution
of the output X.

As usual in contract theory, we assume that when the agent is indifferent between
two actions, she will choose the one better for the principal.
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Remark 2.3 (i) The agent chooses her action based on the output value X which is
observable to the principal. However, although u is FX-adapted, the principal does
not know ũ, and hence does not know the value of Bu either.

(ii) Mathematically, the strong formulation we used in Sect. 2.1 and the weak
formulation of this section are in general not equivalent, due to the different require-
ments on the measurability of the agent’s control u. In Sect. 2.1, u is an FW -adapted
process, and thus FXu

may be smaller than FW . In contrast, in the weak formulation
here, u is FX-adapted, and thus FBu

may be smaller than FX .
(iii) If we restrict u to a smaller admissible set, say to those such that FXu = FW

in the strong formulation and those such that FX = FBu
in the weak formulation,

then the two formulations are equivalent. This constraint, however, may make the
calculations in the general framework very difficult.

(iv) However, in the solvable examples existing in the literature, it turns out that,
for the optimal u, the two filtrations are equal (e.g., the solution u in the strong for-
mulation is a feedback control, or even deterministic); see below for more comments.

(v) In the strong formulation, one has to distinguish the optimal contract F and
its realized optimal value CT = F(X.) (see, e.g. [5]). In the weak formulation, since,
given the outcome ω ∈ �, the output value of X is fixed (independent of u), the
random variable CT can be understood as the contract, and we do so in this paper.

We note that often in the literature, for tractability reasons the weak formulation
is used for the agent’s problem and the strong formulation for the principal’s prob-
lem. However, there is a subtle measurability issue, as pointed out in part (ii) of the
above remark. More precisely, on one hand, the optimal action uF,v obtained from
the agent’s problem by using the weak formulation may not be in the admissible set
under the strong formulation (if FBu

is strictly smaller than FX); on the other hand,
given a principal’s target action u (see Sect. 4.2.2) in the strong formulation, it is
not always possible to obtain it as an optimal solution of the agent’s problem in the
weak formulation, as it may not be even implementable. In this paper we are able
to develop a general theory using the weak formulation for both the agent’s problem
and the principal’s problem, avoiding potential inconsistencies. On the other hand, as
mentioned in part (iv) of the above remark, in all the solvable examples in the litera-
ture it turns out that the optimal, for the strong formulation, effort u is a functional of
output X only (and not of Brownian Motion W ). If that is the case, one may use the
strong formulation for the principal’s problem without loss of generality.

We now present a special case which can be solved more or less straightforwardly,
and it is probably the most interesting part of the paper for economic applications.
Later, we present a more fully developed mathematical theory, which, unfortunately
does not lead to general existence results, or additional solvable examples, but it does
provide necessary conditions for optimality.

3 Special Case: Separable Utility with Fixed Volatility v and Quadratic Cost g

The model we present here is quite general in the choice of the utility functions,
and thus could be of use in many economic applications. The solution is explicit in
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the characterization of the optimal contract payoff CT , via a nonlinear deterministic
equation. It is in general semi-explicit in terms of the optimal effort u, as it boils down
to solving a linear BSDE (not FBSDE!). To the best of our knowledge, this is the
first explicit description of a solution to a continuous-time Principal-Agent problem
with hidden action and lump-sum payment, other than the case of exponential and
linear utility functions. Moreover, as in those two cases, the optimal contract is still a
function only of the final outcome XT , and not of the history of the output process X,
but unlike those two cases, the dependence on XT is nonlinear in general.

We assume the process v is fixed; the agent takes separable utility U1(CT ) − GT ;
and the cost function is

g(t, x,u, v) = u2/2.

First we adopt standard assumptions for utility functions, which are assumed through-
out this section.

Assumption 3.1 U1,U2 are twice differentiable such that U ′
i > 0,U ′′

i ≤ 0, i = 1,2.

We now specify the technical conditions u and CT should satisfy. Roughly speak-
ing, we need enough integrability so that calculations in the remainder of the section
can go through.

Definition 3.1 The set A1 of admissible effort processes u is the space of FB -
adapted processes u such that

(i) P(
∫ T

0 |ut |2dt < ∞) = 1;
(ii) E{|Mu

T |4} < ∞.

We note that any u ∈ A1 satisfies the Novikov condition and thus the Girsanov
Theorem can be applied, see (7.1) below.

Definition 3.2 The set A2 of admissible contracts is the space of F B
T -measurable CT

such that

(i) E{|U1(CT )|4 + e4U1(CT )} < ∞.
(ii) E{|U2(XT − CT )|2 + eU1(CT )|U2(XT − CT )|} < ∞.

3.1 Agent’s Problem

First we establish a simple technical lemma for a linear BSDE.

Lemma 3.1 Assume u ∈ FB , Girsanov Theorem holds true for (Bu,Qu), and
E{|Mu

T |2} < ∞. Then for any ξ ∈ F B
T such that Eu{|ξ |2} < ∞, there exists a unique

Qu-square integrable pair (Y,Z) ∈ FB such that

Yt = ξ −
∫ T

t

ZsdBu
s . (3.1)
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Obviously Yt = Eu
t {ξ}, and uniqueness also follows immediately. But in general

FBu �= FB , so we cannot apply the standard Martingale Representation Theorem di-
rectly to obtain Z. Nevertheless, the result follows from an extended Martingale Rep-
resentation Theorem, see [10], and for completeness we provide a proof in Appendix.
We now solve the agent’s problem.

Theorem 3.1 For any contract CT ∈ A2, the optimal effort û ∈ A1 for the agent is
obtained by solving the BSDE

Ȳt = Et [eU1(CT )] = eU1(CT ) −
∫ T

t

ûs ȲsdBs. (3.2)

Moreover, the agent’s optimal expected utility is given by

V1 = log Ȳ0 = logE[eU1(CT )]. (3.3)

Remark 3.1 (i) We can see from the proof below that

log Ȳt = U1(CT ) − 1

2

∫ T

t

û2
s ds −

∫ T

t

ûsdBû
s (3.4)

represents the remaining expected utility of the agent when she behaves optimally.
Thus, the optimal û is chosen so that the remaining expected utility is increasing by
the reduction in the remaining cost until it reaches U1(CT ), and there is additional
mean zero term

∫ T

t
ûsdBû

s . Actually, the fact that the integrand of this term is equal
to û distinguishes the optimal effort from non-optimal efforts.

(ii) One of the main insights of Holmstrom-Milgrom [13] and Schättler and
Sung [24] is the representation of the optimal payoff CT in terms of the agent’s op-
timal effort û and her utility certainty equivalent. That representation corresponds in
our model of this section to (3.4), after a transformation (the certainty equivalent is
U−1

1 (log Ȳt )). For our case of separable utilities it is more convenient to work with
the remaining utility as in (3.4) than with the certainty equivalent.

(iii) In the language of option pricing theory finding û is equivalent to finding a
replicating portfolio for the option with payoff eU1(CT ). Numerous methods have been
developed to compute such an object, sometimes analytically, otherwise numerically.
Let us comment on this in more detail. As we will see below, the optimal contract
(when exists) is going to be a deterministic function of XT , say CT = c(XT ). Assume
vt = v(t,Xt ) is a deterministic function of X and t and thus X is Markovian. Then
the solution to the BSDE (3.2) is a function of Xt , that is, Ȳt = F(t,Xt ) and

dF(t,Xt ) =
[
Ft + 1

2
Fxxv

2
t

]
dt + FxvtdBt .

Since Ȳ is a martingale, the dt term has to be zero, so that F satisfies the PDE

{
Ft(t, x) + 1

2v2(t, x)Fxx(t, x) = 0;
F(T ,x) = eU1(c(x));

(3.5)
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and

ut = u(t,Xt ) = v(t,Xt )Fx(t,Xt )

F (t,Xt )
. (3.6)

Proof of Theorem 3.1 We first claim that the BSDE (3.2) is well-posed and that û

determined by (3.2) is indeed in A1. The proof is technical and thus is postponed to
the Appendix.

We now show that û is optimal for the agent’s problem. For any u ∈ A1, as is
standard in this type of stochastic control problems (see [24], for example) and, in
particular, in dynamic principal-agent problems, we consider the remaining utility of
the agent at time t

W
A,u
t = Eu

t

[
U1(CT ) − 1

2

∫ T

t

u2
s ds

]
.

Then W
A,u
t − 1

2

∫ t

0 u2
s ds is a Qu-martingale, so by Lemma 3.1 there exists an FB -

adapted process ZA,u such that

W
A,u
t − 1

2

∫ t

0
u2

s ds = U1(CT ) − 1

2

∫ T

0
u2

s ds −
∫ T

t

ZA,u
s dBu

s .

Then, switching from Bu to B , we have

W
A,u
t = U1(CT ) +

∫ T

t

[
usZ

A,u
s − 1

2
u2

s

]
ds −

∫ T

t

ZA,u
s dBs. (3.7)

Note that W
A,u
0 = Eu[U1(CT )− 1

2

∫ T

0 u2
s ds], is the agent’s utility, given action u. On

the other hand, for û from the theorem, using Itô’s rule and (3.2), we get

log Ȳt = U1(CT ) + 1

2

∫ T

t

û2
s ds −

∫ T

t

ûsdBs.

Thus, log Ȳ0 = E[log Ȳ0] = W
A,û
0 is the agent’s utility if she chooses action û. Notice

that

W
A,û
0 − W

A,u
0 =

∫ T

0

[
1

2
[|ût |2 + |ut |2] − utZ

A,u
t

]
dt +

∫ T

0
[ZA,u

t − ût ]dBt

≥
∫ T

0
[ûtut − utZ

A,u
t ]dt +

∫ T

0
[ZA,u

t − ût ]dBt

=
∫ T

0
[ZA,u

t − ût ]dBu
t . (3.8)

The equality holds if and only if u = û. Note that Eu{∫ T

0 |ZA,u
t |2dt} < ∞, and

Eu

{∫ T

0
|ût |2dt

}
= E

{
Mu

T

∫ T

0
|ût |2dt

}
≤ CE

{
|Mu

T |2 +
(∫ T

0
|ût |2dt

)2}
< ∞,
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thanks to (7.1) below. Then

Eu

{∫ T

0
[ZA,u

t − ût ]2dt

}
< ∞.

Taking expected values under Qu in (3.8) we get W
A,û
0 ≥ W

A,u
0 , with equality if and

only if u = û. �

3.2 Principal’s Problem

Since, given a contract CT ∈ A2, the agent’s optimal effort û = û(CT ) from Theo-
rem 3.1 is unique, the principal’s optimization problem can be written as

sup
CT

Eû(CT )[U2(XT − CT )] (3.9)

under the constraint (2.6).
Note now that by solving the linear equation (3.2), we get, denoting henceforth

û = u,

Ȳt = Ȳ0e
∫ t

0 usdBs− 1
2

∫ t
0 u2

s ds

which, together with (2.13) and (3.3), gives the following crucial fact

U1(CT ) = log ȲT = V1 + log(Mu
T ). (3.10)

This turns out to be exactly the reason why this problem is tractable: the fact that for
the optimal agent’s effort u, we have

Mu
T = e−V1eU1(CT ). (3.11)

In other words, the choice of the probability measure corresponding to the optimal
action u has an explicit functional relation with the promised payoff CT .

When we use this expression, and recall that Eu[X] = E[Mu
T X], we can rewrite

the principal’s problem as

sup
CT ,V1

e−V1E{eU1(CT )[U2(XT − CT ) + λ]}, (3.12)

where λ is a Lagrange multiplier for the IR constraint E[eU1(CT )] = eV1 (see (3.3)).
As usual in hidden action problems, we see that the principal will give the smallest

possible utility to the agent,

V1 = R.

Moreover, we get

Proposition 3.1 Assume that the contract CT is required to satisfy

L ≤ CT ≤ H
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for some FT -measurable random variables L,H , which may take infinite values. If,
with probability one, there exists a finite value Ĉλ

T (ω) ∈ [L(ω),H(ω)] that maximizes

eU1(CT )[U2 (XT − CT ) + λ] (3.13)

and λ can be found so that

E[eU1(Ĉ
λ
T )] = eR

then Ĉλ
T is the optimal contract.

Since (3.13) is considered ω by ω, we reduce the problem to a one-variable deter-
ministic optimization problem.

Remark 3.2 In this remark we assume that there is an interior solution when maxi-
mizing (3.13).

(i) The first order condition for maximizing (3.13) can be written as

U ′
2(XT − CT )

U ′
1(CT )

= λ + U2(XT − CT ). (3.14)

This is a generalization of the classical Borch rule for risk-sharing in the first-
best (full information) case:

U ′
2(XT − CT )

U ′
1(CT )

= λ. (3.15)

The difference is the last term in (3.14): the ratio of marginal utilities of the
agent and the principal is no longer constant, but a constant plus utility of the
principal. Increase in global utility of the principal also makes him happier at the
margin, relative to the agent, and decrease in global utility makes him less happy
at the margin. This will tend to make the contract “more nonlinear” than in the
first-best case. For example, if both utility functions are exponential, and we
require CT ≥ L > −∞ (for technical reasons), it is easy to check from (3.15)
that the first-best contract CT will be linear in XT for CT > L. On the other
hand, as can be seen from (3.14), the second-best contract will be nonlinear.

(ii) Note that the optimal contract is a function of the final value XT only. In the pre-
vious continuous-time literature, only the cases of exponential (non-separable)
utility functions and linear utility functions have been solved explicitly, leading
to linear contracts. It’s been stated that in the case of general utilities the optimal
contract may depend on the history of the process X. However, this is not the
case in the special framework of this section.

(iii) The first order condition can be solved for the optimal contract CT = CT (XT )

as a function of XT , and we can find, omitting the functions arguments, that

∂

∂XT

CT = 1 − U ′
2U

′′
1

U ′′
2 U ′

1 + U ′
2U

′′
1 − U ′

2(U
′
1)

2
.
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Thus, the contract is a non-decreasing function of XT , and its slope with respect
to XT is not higher than one.

In the first-best case of (3.15), we have

∂

∂XT

CT = 1 − U ′
2U

′′
1

U ′′
2 U ′

1 + U ′
2U

′′
1

.

We see that the sensitivity of the contract is higher in the second-best case, because
more incentives are needed to induce the agent to provide optimal effort when the
effort is hidden. The term which causes the increase in the slope of the contract is
U ′

2(U
′
1)

2 in the denominator. We see that this term is dominated by the agent’s mar-
ginal utility, but it also depends on the principal’s marginal utility. Higher marginal
utility for either party causes the slope of the contract to increase relative to the first-
best case.

There is also an alternative way to formulate the principal’s problem, as optimizing
over effort u, or probability measures Qu, which we present next. From (3.10), with
V1 = R, the principal’s problem is

sup
u

E[G(Mu
T )] �= sup

u
E[Mu

T U2(XT − J1(R + log(Mu
T )))].

Here, J1
�= U−1

1 and G is a random function on positive real numbers, defined by

G(x)
�= xU2(XT − J1(R + log(x)).

It is straightforward to compute that

G′′(x) < 0

so that G is a strictly concave function, for every fixed XT (ω).
We define the dual function, for y > 0,

G̃(y) = max
x≥0

[G(x) − xy].

The maximum is attained at

x̂ = [(G′)−1(y)]+.

Thus, we get the following upper bound on the principal’s problem, for any constant
λ > 0:

E[G(Mu
T )] ≤ E[G̃(λ)] + λE[Mu

T ] = E[G̃(λ)] + λ.

The upper bound will be attained if

Mu
T = (G′)−1(λ)
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and λ is chosen such that

E[(G′)−1(λ)] = 1.

This leads to the following alternative to the Proposition 3.1

Proposition 3.2 Assume (for simplicity) that there are no required bounds on the
contract CT . If, with probability one, (G′)−1(λ) > 0 for λ for which E[(G′)−1(λ)] =
1, then the optimal effort u satisfies the Backward SDE

Mu
t = (G′)−1(λ) −

∫ T

t

usM
u
s dBs

(assuming a solution exists). Moreover, we have

(G′)−1(λ) = e−Re	(XT ,λ)

where CT = 	(XT ,λ) is a solution to (3.14), and it is the optimal payoff.

Proof By the above upper bound, Mu
T = (G′)−1(λ) is optimal for the principal’s

problem, and the BSDE from the proposition is the consequence of the dynamics of
the process Mt . Moreover, we have

G′(e−Re	(XT ,λ))

= U2(XT − J1(	(XT ,λ)) − U ′
2(XT − J1(	(XT ,λ)))J ′

1(	(XT ,λ)) = λ

where the last equality comes from the definition of 	(XT , c). Thus the BSDE for u

becomes

Mu
t = e−Re	(XT ,ĉ) −

∫ T

t

usM
u
s dBs

where, since E[Mu
T ] = 1, we have

E[e	(XT ,λ)] = eR,

so that the IR constraint is satisfied. �

3.3 Examples

Example 3.1 Suppose the principal is risk-neutral while the agent is risk averse with

U2(x) = x, U1(x) = logx.

Also assume σt > 0 is a given process and

vt = σtXt , X0 = x > 0

so that Xt > 0 for all t . Moreover, assume that

λ̃
�= 2eR − x > 0.
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The first order condition (3.14) gives

CT = 1

2
(XT + λ)

and in order to satisfy the IR constraint

eR = E[CT ] = 1

2
(x + λ)

we need to take λ = λ̃. By the assumptions, we have CT > 0, and CT is then the
optimal contract and it is linear. The optimal u is obtained by solving BSDE

Ȳt = Et [CT ] = eR +
∫ t

0
ȲtutdBt .

Noting that

Et [CT ] = 1

2
(Xt + λ) = eR +

∫ t

0
σtXtdBt

we get

ut = 2σt

Xt

Xt + λ
.

Since λ > 0, we see that the effort goes down as the output decreases, and goes up
when the output goes up. Thus, the incentive effect coming from the fact that the agent
is paid an increasing function of the output at the end, translates into earlier times,
so when the promise of the future payment gets higher, the agent works harder. Also
notice that the effort is bounded in this example (by 2σt ).

Assume now that σ is deterministic. The principal’s expected utility can be com-
puted to be equal to

Eu[XT − CT ] = e−RE[CT (XT − CT )] = x − eR + e−R x2

4

[
e
∫ T

0 σ 2
s ds − 1

]

The first term, x − eR , is what the principal can get if he pays a constant payoff CT ,
in which case the agent would choose u ≡ 0. The second term is the extra benefit of
inducing the agent to apply non-zero effort. The extra benefit increases quadratically
with the initial output, increases exponentially with the volatility squared, and de-
creases exponentially with the agent’s reservation utility. While the principal would
like best to have the agent with the lowest R, the cost of hiring expensive agents is
somewhat offset when the volatility is high (which is not surprising, given that the
principal is risk-neutral).

For comparison, we look now at the first-best case in this example. Interestingly,
we have

Remark 3.3 Assume that σt > 0 is deterministic and bounded. Then the principal’s
first-best optimal utility is ∞.
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Proof We see from (3.15) that, whenever the principal is risk-neutral, a candidate for
an optimal contract is a constant contract CT . With log-utility for the agent, we set

CT = λ

where λ is obtained from the IR constraint, and the optimal utility of the principal is
obtained from

sup
u

E[XT − λ] = sup
u

[
E
{
xe

∫ T
0 [utσt− 1

2 σ 2
t ]dt+∫ T

0 σt dBt

}
− eReE{∫ T

0
1
2 u2

t dt}]. (3.16)

Under the assumption that σ is deterministic and bounded, we show now that the
right side of (3.16) is ∞. In fact, for any n, set

An
�=
{∫ T

2

0
σtdBt > n

}
∈ F T

2
; αn

�= P(An) → 0;

and

un
t (ω)

�=
{

α
− 1

2
n , T

2 ≤ t ≤ T ,ω ∈ An;

0, otherwise.
(3.17)

Then the cost is finite:

E

{∫ T

0

1

2
(un

t )
2dt

}
= T

4
.

However, for a generic constant c > 0,

E

{
x exp

(∫ T

0

[
un

t σt − 1

2
σ 2

t

]
dt +

∫ T

0
σtdBt

)}

= E

{
x exp

(
α

− 1
2

n

∫ T

T
2

σtdt1An −
∫ T

0

1

2
σ 2

t dt +
∫ T

0
σtdBt

)}

≥ E

{
x exp

(
α

− 1
2

n

∫ T

T
2

σtdt −
∫ T

0

1

2
σ 2

t dt +
∫ T

0
σtdBt

)
1An

}

= E

{
x exp

(
α

− 1
2

n

∫ T

T
2

σtdt −
∫ T

2

0

1

2
σ 2

t dt +
∫ T

2

0
σtdBt

)
1An

}

≥ cE

{
x exp

(
α

− 1
2

n

∫ T

T
2

σtdt + n

)
1An

}

= cx exp

(
α

− 1
2

n

∫ T

T
2

σtdt + n

)
P(An)

= cx exp

(
α

− 1
2

n

∫ T

T
2

σtdt + n

)
αn ≥ cxαne

cα
− 1

2
n ,
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which obviously diverges to ∞ as αn → 0. �

We note that another completely solvable example in this special framework is the
case of both the principal and the agent having linear utilities. But in that case it is
easily shown that the first-best and the second-best are the same, so there is no need
to consider the second-best.

The property that ut is increasing in the output values Xt holds true in more gen-
eral cases. We have the following result whose proof is postponed to the Appendix.

Proposition 3.3 Suppose that U2(x) = x and vt = σtXt for deterministic σt ≥ 0.
Assume λ is non-negative and (3.13) admits an interior solution. Assume further that

max(H1(x),H2(x)) ≥ 0, (3.18)

for any x in the domain of U1, where

H1
�= U ′

1U
′′′
1 + (U ′

1)
2U ′′

1 − 3(U ′′
1 )2;

H2
�= (U ′

1)
4 + U ′

1U
′′′
1 − (U ′

1)
2U ′′

1 − 2(U ′′
1 )2 + xU ′

1H1.

Then ut = u(t,Xt ) for some deterministic function u and ux ≥ 0.

Remark 3.4 The following examples satisfy the condition (3.18).

(i) U1(x) = x. Then

U ′
1 = 1,U ′′

1 = U
′′′
1 = 0.

Thus

H1(x) = 0.

(ii) U1(x) = log(x). Then

U ′
1 = x−1,U ′′

1 = −x−2,U
′′′
1 = 2x−3.

Thus

H2(x) = 0.

(iii) U1(x) = 1
γ
xγ where 0 < γ < 1. Then

U ′
1 = xγ−1,U ′′

1 = (γ − 1)xγ−2,U
′′′
1 = (γ − 1)(γ − 2)xγ−3.

Thus

H2(x) = γ x2γ−4[x2γ + 2(1 − γ )xγ + (1 − γ )
]≥ 0.

Exponential utility U1(x) = − 1
γ
e−γ x does not satisfy (3.18).
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4 General Case: Necessary Conditions

In the rest of the paper we find necessary conditions, and discuss a possibility of
finding sufficient conditions for optimal contracts in a very general framework. This
material is technical, and much less intuitive than the special case discussed in the
previous section. We use the method of the so-called Stochastic Maximum Principle,
as described in the book [30]. It is an extension of the Pontryagin maximum principle
to the stochastic case. We believe this is the right method to use for the general theory.
For example, it naturally leads to the use of remaining expected utility of the agent
as the variable on which the solution heavily depends, and also it shows immediately
what other variables are important, without having to guess what they should be, as
in other approaches.

4.1 Standing Assumptions

Recall the setup from Sect. 2. We need the following assumptions.

(A1) Function g : [0, T ] × R × R × R × � → R is continuously differentiable with
respect to x,u, v, gx is uniformly bounded, and gu, gv have uniform linear
growth in x,u, v. In addition, g is jointly convex in (x,u, v), gu > 0 and
guu > 0.

(A2) (i) Functions U1 : R
2 → R, U2 : R → R are differentiable, with ∂1U1 > 0,

∂2U1 < 0, U ′
2 > 0, U1 is jointly concave and U2 is concave.

(ii) Sometimes we will also need U1 ≤ K for some constant K .

For any p ≥ 1, denote

L
p
T (Qu)

�= {ξ ∈ F B
T : Eu{|ξ |p} < ∞};

Lp(Qu)
�=
{
η ∈ FB : Eu

{∫ T

0
|ηt |pdt

}
< ∞

}
,

and define L
p
T (Q),Lp(Q) in a similar way.

We next define the admissible set for the agent’s controls.

(A3) Given a contract (CT , v), the admissible set A(CT , v) of agent’s controls asso-
ciated with this contract is the set of all those u ∈ FB such that

(i) Girsanov Theorem holds true for (Bu,Qu);
(ii) U1(CT ,GT ), ∂2U1(CT ,GT ) ∈ L2

T (Qu);
(iii) For any bounded �u ∈ FB , there exists ε0 > 0 such that for any ε ∈

[0, ε0), uε satisfies (i) and (ii) at above and |uε|4, |gε|4, |gε
u|4, |Mε

T |4,
U2

1 (CT ,Gε
T ), |∂2U1(CT ,Gε

T )|2 are uniformly integrable in L1(Q) or
L1

T (Q), where

uε �= u + ε�u, Gε
T

�=
∫ T

0
gε(t)dt, Mε

t

�= Muε

t ,

V ε
1

�= V1(u
ε),
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and

gε(t)
�= g(t,Xt , u

ε
t , vt ), gε

u(t)
�= gu(t,Xt , u

ε
t , vt ).

When ε = 0 we omit the superscript “0”. We note that, for any u ∈ A(CT , v) and
�u,ε0 satisfying (A3)(iii), we have uε ∈ A(CT , v) for any ε ∈ [0, ε0). We note also
that, under mild assumptions on (CT , v), all bounded u belong to A(CT , v).

The admissible set for the contracts (CT , v) is more involved. We postpone its
description until later.

4.2 Necessary Conditions

4.2.1 The Agent’s Problem

We fix now a contract (CT , v), u ∈ A(CT , v), and �u ∈ FB bounded. Denote, omit-
ting arguments of U1, ∂2U1, the “variations”

∇g(t)
�= gu(t,Xt , ut , vt )�ut ;

∇Gt
�=
∫ t

0
∇g(s)ds;

∇Mt
�= Mt

[∫ t

0
�usdBs −

∫ t

0
us�usds

]
= Mt

∫ t

0
�usdBu

s ;

∇V1
�= E{∇MT U1 + MT ∂2U1∇GT }.

Moreover, for any bounded �u ∈ FB and ε ∈ (0, ε0) as in (A3)(iii), denote

∇gε(t)
�= gε(t) − g(t)

ε
; ∇Gε

T

�= Gε
T − GT

ε
; ∇Mε

T

�= Mε
T − MT

ε
;

∇V ε
1

�= V ε
1 − V1

ε
.

For a given payoff CT and cost variable GT , introduce the so-called adjoint
processes

⎧⎨
⎩

WA
t = Eu

t [U1(CT ,GT )] = U1(CT ,GT ) − ∫ T

t
Z

A,1
s dBu

s ;
YA

t = Eu
t [∂2U1(CT ,GT )] = ∂2U1(CT ,GT ) − ∫ T

t
Z

A,2
s dBu

s

(4.1)

where ZA,i are obtained from Lemma 3.1. The first one represents the agent’s re-
maining expected utility, and the second one the agent’s remaining expected mar-
ginal cost. The latter becomes unimportant when the utility is separable (when
U1(C,G) = U1(C) − G then YA

t ≡ −1).

Theorem 4.1 Under our standing assumptions, we have the following differentiation
result for the value function of the agent:

lim
ε→0

∇V ε
1 = ∇V1 = Eu

{∫ T

0
�A

t �utdt

}
(4.2)
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where

�A
t

�= Z
A,1
t + gu(t,Xt , ut , vt )Y

A
t . (4.3)

In particular, the necessary condition for u to be an optimal control is:

Z
A,1
t + gu(t,Xt , ut , vt )Y

A
t ≡ 0. (4.4)

Proof See Appendix. �

Remark 4.1 In the separable case the necessary condition becomes gu = ZA,1 (since
YA

t ≡ −1). We can interpret ZA,1 as a “derivative” of the agent’s remaining utility
with respect to the Brownian motion (actually, it is equal to what is called a Malliavin
derivative). Thus, at the optimum, in the separable utility case the agent’s local mar-
ginal cost of effort has to be equal to the sensitivity of the agent’s remaining utility
with respect to the underlying uncertainty. In the non-separable case, this has to be
adjusted by normalizing with the global marginal cost YA

t .

We now provide a FBSDE characterization of the necessary condition. We see that
given (CT , v) (and thus also X), the optimal u should satisfy the FBSDE

⎧⎪⎪⎨
⎪⎪⎩

Gt = ∫ t

0 g(s,Xs,us, vs)ds;
WA

t = U1(CT ,GT ) − ∫ T

t
Z

A,1
s dBu

s ;
YA

t = ∂2U1(CT ,GT ) − ∫ T

t
Z

A,2
s dBu

s ;
(4.5)

with maximum condition (4.4).
Moreover, since guu > 0, we may assume there exists a function h(t, x, v, z) such

that

gu(t, x,h(t, x, v, z), v) = z. (4.6)

Note that ∂2U1 < 0, so YA
t < 0. Thus, (4.4) is equivalent to

ut = h(t,Xt , vt ,−Z
A,1
t /YA

t ). (4.7)

That is, given (CT , v) and X, one may solve the following (self-contained) FBSDE:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gt = ∫ t

0 g(s,Xs,h(s,Xs, vs,−Z
A,1
s /YA

s ), vs)ds;
WA

t = U1(CT ,GT ) + ∫ T

t
Z

A,1
s h(s,Xs, vs,−Z

A,1
s /YA

s )ds − ∫ T

t
Z

A,1
s dBs;

YA
t = ∂2U1(CT ,GT ) + ∫ T

t
Z

A,2
s h(s,Xs, vs,−Z

A,1
s /YA

s )ds − ∫ T

t
Z

A,2
s dBs.

(4.8)
Then, as a necessary condition, the optimal control uCT ,v should be defined by (4.7).

4.2.2 The Principal’s Problem

We now characterize the admissible set A of contracts (CT , v). Our first requirement
is:
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(A4) (CT , v) is implementable. That is, (4.8) has a unique solution, and uCT ,v de-
fined by (4.7) is in A(CT , v).

Note that we found only necessary conditions for the agent. Later we will have
some discussion on when the above uCT ,v is indeed the agent’s optimal control. Thus,
solving the principal’s problem with uCT ,v instead of general u is not quite satisfying
the constraint (2.4), but it represents solving a “relaxed” problem over efforts which
satisfy the agent’s necessary condition of optimality. This is traditionally called “the
first-order approach”. The approach will produce the optimal solution if the necessary
conditions for the agent are also sufficient.

Now, an implementable contract (CT , v) uniquely determines uCT ,v . In fact, for
fixed v, the correspondence between CT and uCT ,v is one to one, up to a constant.
To see this, we fix some (u, v) and want to find some CT such that uCT ,v = u. For
notational convenience, we denote

ZA �= ZA,2.

If u = uCT ,v for some CT , then (4.4) holds true for u. That is,

Z
A,1
t = −gu(t,Xt , ut , vt )Y

A
t .

Denote by R̃ the agent’s expected utility, that is R̃
�= WA

0 . Then (4.5) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gt = ∫ t

0 g(s,Xs,us, vs)ds;
WA

t = R̃ − ∫ t

0 gu(s,Xs,us, vs)Y
A
s dBu

s ;
YA

t = ∂2U1(CT ,GT ) − ∫ T

t
ZA

s dBu
s ;

(4.9)

where

WA
T = U1(CT ,GT ). (4.10)

Since ∂1U1 > 0, we may assume there exists a function H(x,y) such that

U1(H(x, y), y) = x. (4.11)

Then (4.10) leads to

CT
�= H(WA

T ,GT ). (4.12)

Plugging this into (4.9), we get

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Xt = x + ∫ t

0 vsdBs;
Gt = ∫ t

0 g(s,Xs,us, vs)ds;
WA

t = R̃ − ∫ t

0 gu(s,Xs,us, vs)Y
A
s dBu

s ;
YA

t = ∂2U1(H(WA
T ,GT ),GT ) − ∫ T

t
ZA

s dBu
s .

(4.13)
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Now fix (R̃, u, v). If FBSDE (4.13) is well-posed, we may define CT by (4.12) and
we can easily see that uCT ,v = u. In this sense, for technical convenience, from now
on we consider (R̃, u, v) (instead of (CT , v)) as a contract, or say, as the principal’s
control, and we call u the principal’s target action. Then (A4) should be rewritten as

(A4′) We assume that (R̃, u, v) is an implementable contract, by which we mean:
(i) FBSDE (4.13) is well-posed;

(ii) For CT defined by (4.12), (CT , v) is implementable in the sense of (A4).

We note that the theory of FBSDEs is far from complete. The well-posedness of
(4.13) is in general unclear (unless we put strict conditions). In fact, even for linear
FBSDEs there is no general result like Lemma 3.1. Instead of adopting too strong
technical conditions, in this paper we assume the well-posedness of the involved FB-
SDEs directly and leave the general FBSDE theory for future research. However, in
the separable utility case, the corresponding FBSDEs will become decoupled FBS-
DEs and thus we can use Lemma 3.1 to establish their well-posedness, as we will see
later.

Now for any (u, v) and any bounded (�u,�v), denote

uε
t

�= ut + ε�ut ; vε
t

�= vt + ε�vt ;

Xε
t

�= x +
∫ t

0
vε
s dBs; Gε

T

�=
∫ T

0
g(t,Xε

t , u
ε
t , v

ε
t )dt; (4.14)

∇Xε �= Xε − X

ε
; ∇Gε

T

�= Gε
T − GT

ε
; ∇V ε

2
�= V ε

2 − V2

ε
.

Denote also with superscript ε all corresponding quantities.

(A5) The principal’s admissible set A of controls is the set of all those contracts
(R̃, u, v) such that, for any bounded (�u,�v), there exists a constant ε1 > 0
such that for any ε ∈ [0, ε1):

(i) (A4′) holds true for (R̃, uε, vε);
(ii) The FBSDEs (4.17) and (4.19) below are well-posed for (R̃, uε, vε);

(iii) limε→0 ∇V ε
2 = ∇YP

0 for ∇YP
0 defined in (4.17) below.

Note again that we will specify sufficient conditions for (A5) in the separable
utility case later on. We also assume that A is not empty.

We now derive the necessary conditions for the Principal’s problem. Since

R̃ = Eu{WA
T } = Eu{U1(CT ,GT )}

is the optimal utility of the agent, the condition (2.6) becomes equivalent to

R̃ ≥ R.

Intuitively it is obvious that the principal would choose R̃ = R in order to maximize
her utility. Again, due to the lack of satisfactory theory of FBSDEs, here we simply
assume that the optimal R̃ = R, and we will prove it rigorously in the separable utility
case by using the comparison theorem of BSDEs, as we did in the special case.
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Given (u, v), let (X,G,WA,YA,ZA) be the solution to (4.13) with R̃ = R. Define
CT by (4.12). This will guarantee that the agent’s necessary condition is satisfied.
Introduce the principal’s remaining expected utility

YP
t = Eu

t [U2(XT − CT )] = U2(XT − CT ) −
∫ T

t

ZP
s dBu

s ; (4.15)

By Lemma 3.1 (4.15) is well-posed. Then the principal’s problem is to choose optimal
(u, v) in order to maximize

V2(u, v)
�= Eu{YP

T } = YP
0 . (4.16)

Similarly as before, denote, omitting functions’ arguments,

∇Xt =
∫ t

0
�vsdBs;

∇gu = guu�u + guv�v + gux∇X;

∇GT =
∫ T

0
[gx∇Xt + gu�ut + gv�vt ]dt.

Moreover, consider the following FBSDE system
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇WA
t = ∫ t

0 guY
A
s �usds − ∫ t

0 [gu∇YA
s + YA

s ∇gu]dBu
s ;

∇YA
t = ∂12U1∇CT + ∂22U1∇GT + ∫ T

t
ZA

s �usds − ∫ T

t
∇ZA

s dBu
s ;

∇YP
t = U ′

2[∇XT − ∇CT ] + ∫ T

t
ZP

s �usds − ∫ T

t
∇ZP

s dBu
s ,

(4.17)

where ∇CT is defined by

∇WA
T = ∂1U1∇CT + ∂2U1∇GT ; (4.18)

For the general framework we have here, we need to introduce the following “ad-
joint processes” Xi , Yi , Zi , which, unfortunately, do not all have a direct economic
intuition: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1
t = ∫ t

0 guZ
1
s ds;

X2
t = ∫ t

0 [guxZ
1
s Y

A
s + gxY

2
s ]ds;

Y 1
t = 1

∂1U1
[U ′

2 − X1
T ∂12U1] − ∫ T

t
Z1

s dBu
s ;

Y 2
t = ∂2U1

∂1U1
[U ′

2 − X1
T ∂12U1] + X1

T ∂22U1 − ∫ T

t
Z2

s dBu
s ;

Y 3
t = X2

T + U ′
2 − ∫ T

t
Z3

s dBu
s .

(4.19)

Theorem 4.2 Under (A5), we have

∇YP
0 = Eu

{∫ T

0
�

P,1
t �utdt +

∫ T

0
�

P,2
t �vtdt

}
, (4.20)
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where

⎧⎨
⎩

�
P,1
t

�= ZP
t − guY

1
t YA

t + X1
t Z

A
t + guuZ

1
t Y

A
t + guY

2
t ;

�
P,2
t

�= guvZ
1
t Y

A
t + gvY

2
t + Z3

t + ut (Y
3
t − X2

t ).

(4.21)

In particular, the necessary condition for (u, v) to be an optimal control is:

�
P,1
t = �

P,2
t = 0. (4.22)

Proof See Appendix. �

In summary, we have the following system of necessary conditions for the princi-
pal:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt = x + ∫ t

0 vsdBs;
Gt = ∫ t

0 g(s,Xs,us, vs)ds;
WA

t = R − ∫ t

0 guY
A
s dBu

s ;
X1

t = ∫ t

0 guZ
1
s ds;

X2
t = ∫ t

0 [guxZ
1
s Y

A
s + gxY

2
s ]ds;

YA
t = ∂2U1(H(WA

T ,GT ),GT ) − ∫ T

t
ZA

s dBu
s ;

YP
t = U2(XT − H(WA

T ,GT )) − ∫ T

t
ZP

s dBu
s ;

Y 1
t = 1

∂1U1
[U ′

2 − X1
T ∂12U1] − ∫ T

t
Z1

s dBu
s ;

Y 2
t = ∂2U1

∂1U1
[U ′

2 − X1
T ∂12U1] + X1

T ∂22U1 − ∫ T

t
Z2

s dBu
s ;

Y 3
t = X2

T + U ′
2 − ∫ T

t
Z3

s dBs;

(4.23)

with maximum condition (4.22).
In particular, if (4.22) has a unique solution

ut = h1(t,Xt , Y
1
t YA

t , Y 2
t ,ZP

t + X1
t Z

A
t ,Z1

t Y
A
t ,Z3

t );
vt = h2(t,Xt , Y

1
t YA

t , Y 2
t ,ZP

t + X1
t Z

A
t ,Z1

t Y
A
t ,Z3

t ),

then, by plugging (h1, h2) into (4.23) we obtain a self contained FBSDE.
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4.2.3 Fixed Volatility Case

If the principal has no control on v, then both v and X are fixed. In this case, along
the variation one can only choose �v = 0. Then (4.23) can be simplified as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gt = ∫ t

0 g(s,Xs,us, vs)ds;
WA

t = R − ∫ t

0 guY
A
s dBu

s ;
X1

t = ∫ t

0 guZ
1
s ds;

YA
t = ∂2U1(H(WA

T ,GT ),GT ) − ∫ T

t
ZA

s dBu
s ;

YP
t = U2(XT − H(WA

T ,GT )) − ∫ T

t
ZP

s dBu
s ;

Y 1
t = U ′

2−X1
T ∂12U1

∂1U1
− ∫ T

t
Z1

s dBu
s ;

Y 2
t = ∂2U1

∂1U1
[U ′

2 − X1
T ∂12U1] + X1

T ∂22U1 − ∫ T

t
Z2

s dBu
s ;

(4.24)

with maximum condition

�
P,1
t

�= ZP
t − guY

1
t YA

t + X1
t Z

A
t + guuZ

1
t Y

A
t + guY

2
t = 0. (4.25)

4.3 Separable Utilities

In this subsection we assume the agent has a separable utility function, namely,

U1(CT ,GT ) = U1(CT ) − GT . (4.26)

Here we abuse the notation U1. We note that if U ′
1 > 0 and U ′′

1 ≤ 0, then Assumption
(A.2)(i) still holds true.

4.3.1 The Agent’s Problem

In this case obviously we have

YA
t = −1; Z

A,2
t = 0.

Then (4.3) becomes

�A
t

�= Z
A,1
t − gu(t,Xt , ut , vt ). (4.27)

Denote W̃A
t

�= WA
t + ∫ t

0 gds. Then (4.5) and (4.8) become

W̃A
t = U1(CT ) +

∫ T

t

[usZ
A,1
s − g]ds −

∫ T

t

ZA,1
s dBs; (4.28)
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and

W̃A
t = U1(CT ) +

∫ T

t

[ZA,1
s h(s,Xs, vs,Z

A,1
s ) − g(s,Xs,h(s,Xs, vs,Z

A,1
s ), vs)]ds

−
∫ T

t

ZA,1
s dBs; (4.29)

respectively.

4.3.2 The Principal’s Problem

First one can check straightforwardly that

YA = −1; ZA = 0; Y 2 = −Y 1; Z2 = −Z1. (4.30)

Denote

J1
�= U−1

1 ; W̃A
t

�= WA
t + Gt ; Ỹ 3

t

�= Y 3
t − X2

t . (4.31)

Then (4.12) and (4.21) become,

CT = J1(W̃
A
T ); �

P,1
t

�= ZP
t − guuZ

1
t ; �

P,2
t

�= Z3
t + ut Ỹ

3
t − gvY

1
t − guvZ

1
t ;

(4.32)
Therefore, (4.23) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt = x + ∫ t

0 vsdBs;
W̃A

t = R + ∫ t

0 gds + ∫ t

0 gudBu
s ;

YP
t = U2(XT − J1(W̃

A
T )) − ∫ T

t
ZP

s dBu
s ;

Y 1
t = U ′

2(XT −J1(W̃
A
T ))

U ′
1(J1(W̃

A
T ))

− ∫ T

t
Z1

s dBu
s ;

Ỹ 3
t = U ′

2(XT − J1(W̃
A
T )) − ∫ T

t
[gxY

1
s + guxZ

1
s ]ds − ∫ T

t
Z̃3

s dBu
s ;

(4.33)

with maximum conditions �
P,1
t = �

P,2
t = 0.

As mentioned in Sect. 4.2, we shall specify some sufficient conditions for the
well-posedness of the FBSDEs in this case. First, under the integrability con-
ditions in (A5′) below, X and W̃A are well defined. Applying Lemma 3.1 on
(YP ,ZP ), (Y 1,Z1) and then on (Ỹ 3, Z̃3), we see that (4.33) is well-posed. There-
fore, FBSDEs (4.9), (4.17), and (4.19) are well-posed in this case.

Recall (4.14) and define other ε-terms similarly. We now modify A as follows.

(A5′) The principal’s admissible set A of controls is redefined as the set of all those
contracts (R̃, u, v) such that, for any bounded (�u,�v), there exists a constant
ε1 > 0 such that for any ε ∈ [0, ε1):
(i) uε , vε,Mε

T , [Mε
T ]−1, gε , gε

u, gε
v , gε

x , gε
uu, gε

uv , gε
ux , Uε

1 , Uε
2 , [U ′

2]ε , and
[J ′

1]ε are uniformly integrable in Lp0(Q) or L
p0
T (Q), for some p0 large

enough (where J1 = U−1
1 ).
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(ii) u ∈ A(CT , v) and (CT , v) is implementable in the sense of (A4), where
CT is defined in (4.32);

Note that we may specify p0 as in (A5). But in order to simplify the presentation
and to focus on the main ideas, we assume p0 is as large as we want.

Theorem 4.3 Assume (A5′). Then (A5) holds true and the optimal R̃ is equal to R.

Proof We first show that the principal’s optimal control R̃ is R. In fact, for fixed
(u, v), let superscript R̃ denote the processes corresponding to R̃. Then obviously

W̃
A,R̃
t ≥ W̃

A,R
t for any R̃ ≥ R. Since

∂1J1(x) = 1

∂1U1(J1(x))
> 0, U ′

2 > 0,

we get

Y
P,R̃
T = U2(XT − CR̃

T ) = U2(XT − J1(W̃
A,R̃
T )) ≤ U2(XT − J1(W̃

A,R
T )) = Y

P,R
T .

Therefore,

Y
P,R̃
0 = Eu{YP,R̃

T } ≤ Eu{YP,R
T } = Y

P,R
0 .

Thus, optimal R̃ is equal to R.
It remains to prove

lim
ε→0

∇V ε
2 = ∇YP

0 . (4.34)

We postpone the proof to the Appendix. �

To end this subsection, for future use we note that (4.12) becomes

CT = J1

(
R +

∫ T

0
gu(t,Xt , ut , vt )dBu

t +
∫ T

0
g(t,Xt , ut , vt )dt

)
.

This means that the principal’s problem is

sup
u,v

Eu

{
U2

(
x +

∫ T

0
utvtdt +

∫ T

0
vtdBu

t

− J1

(
R +

∫ T

0
gu(t,Xt , ut , vt )dBu

t +
∫ T

0
g(t,Xt , ut , vt )dt

))}
. (4.35)
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4.3.3 Fixed Volatility Case

If we also assume v (hence X) is fixed, then (4.33) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W̃A
t = R + ∫ t

0 gds + ∫ t

0 gudBu
s ;

YP
t = U2(XT − J1(W̃

A
T )) − ∫ T

t
ZP

s dBu
s ;

Y 1
t = U ′

2(XT −J1(W̃
A
T ))

U ′
1(J1(W̃

A
T ))

− ∫ T

t
Z1

s dBu
s ;

(4.36)

with maximum condition �
P,1
t = 0.

5 General Case: Sufficient Conditions

5.1 A General Result

If the necessary condition uniquely determines a candidate for the optimal solution,
it is also a sufficient condition, if an optimal solution exists. We here discuss the
existence of an optimal solution. In general, our maximization problems are non-
concave, so we have to use infinite dimensional non-convex optimization methods.

Let H be a Hilbert space with norm ‖ · ‖ and inner product 〈·〉. Let F : H → R be
a functional with Fréchet derivative f : H → H. That is, for any h,�h ∈ H,

lim
ε→0

1

ε
[F(h + ε�h) − F(h)] = 〈f (h),�h〉.

The following theorem is a direct consequence of the so-called Ekeland’s varia-
tional principle, see [9].

Theorem 5.1 Assume

(A1) F is continuous;
(A2) There exists unique h∗ ∈ H such that f (h∗) = 0;
(A3) For ∀ε > 0, ∃δ > 0 such that ‖F(h) − F(h∗)‖ ≤ ε whenever ‖f (h)‖ ≤ δ.

(A4) V
�= suph∈H F(h) < ∞.

Then h∗ is the maximum argument of F . That is, F(h∗) = V .

Remark 5.1 (1) A sufficient condition for (A3) is that f is invertible and f −1 is
continuous at 0.

(2) If H = R and f is continuous and invertible, then F is either convex or con-
cave, and thus the result obviously holds true.

(3) If (A4) is replaced by infh∈H F(h) > −∞, then h∗ is the minimum argument
of F .
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5.2 Sufficient Conditions for the Principal-Agent Problem

5.2.1 The Agent’s Problem: Separable Utility

Assume that the utility is separable, U1(C,G) = U1(C) − G. We have

WA
t = EQu

[
U1(CT ) −

∫ T

0
g(s,Xs,us, vs)ds

]
+
∫ t

0
ZA,1

s dBu
s .

We define W̃A = WA
t + ∫ t

0 g(s,Xs,us, vs)ds. Then, switching to Brownian Mo-
tion B , we have

W̃A
t = U1(CT ) +

∫ T

t

[usZ
A,1
s − g(s,Xs,us, vs)]ds −

∫ T

t

ZA,1
s dBs. (5.1)

Note that W̃A
0 = EQu[U1(CT ) − ∫ T

0 g(s,Xs,us, vs)ds], so the agent’s problem is to
maximize W̃A

0 over u. By the comparison theorem for BSDE’s, since U1(CT ) is fixed,

from (5.1) we see that W̃A
0 will be maximized if the drift usZ

A,1
s − g(s,Xs,us, vs) is

maximized, which is the case if Z
A,1
s = gu(s,Xs,us, vs). This is exactly the neces-

sary condition (4.4), taking into account (4.27). Thus, (4.4) is also a sufficient condi-
tion for optimality for the agent’s problem.

5.2.2 The Agent’s Problem: General Case

We now discuss what the conditions of Theorem 5.1 boil down to. Fix (CT , v), and
let H be the set of all admissible u and

< u1, u2 >
�= E

{∫ T

0
u1

t u
2
t dt

}
. (5.2)

For the functional V1 : H → R defined by V1(u)
�= V1(u;CT ,v), by (4.2) V1 is

Fréchet differentiable with Fréchet derivative �A. More precisely, for any u, we solve
(4.5) (without assuming (4.4)) and then define �A(u) = �A by (4.3). Under technical
assumptions, �A is a mapping from H → H.

Moreover, we need enough assumptions to guarantee that FBSDE (4.5) is well-
posed, meaning, in particular, that V1 is continuous in u, so that (A1) would be true.
We further need that FBSDE (4.5) together with maximum condition (4.4), or equiva-
lently FBSDE (4.8), has a unique solution, and denote u∗ as the control corresponding
to this solution. Then (A2) would be true. To ensure (A3), we need to have, for any
sequence of u,

‖�A(u)‖ → 0 ⇒ W
A,u
0 → W

A,u∗
0 . (5.3)

Recalling Remark 5.1(1), we note that (5.3) can be replaced by the follow-
ing stronger conditions. Assume for any �, FBSDE (4.5) together with condition
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�A
t = �t has a unique solution and let u� denote the corresponding u. That is, recall-

ing (4.6) and noting again that �A
t = �t ,

u�
t = h(t,Xt , vt , [�t − Z

A,1,�
t ]/Y

A,�
t ]),

where (YA,�,ZA,1,�) is the solution of the following FBSDE

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G�
t = ∫ t

0 g(s,Xs,h(s,Xs, vs, [�s − Z
A,1,�
s ]/Y

A,�
s ), vs)ds;

W
A,�
t = U1(CT ,G�

T ) + ∫ T

t
Z

A,1,�
s h(s,Xs, vs, [�s − Z

A,1,�
s ]/Y

A,�
s )ds

− ∫ T

t
Z

A,1,�
s dBs;

Y
A,�
t = ∂2U1(CT ,G�

T ) + ∫ T

t
Z

A,2,�
s h(s,Xs, vs, [�s − Z

A,1,�
s ]/Y

A,�
s )ds

− ∫ T

t
Z

A,2,�
s dBs.

(5.4)

We need that the above FBSDE is well-posed. In particular,

V1(u
�) = W

A,�
0 → W

A,0
0 = V1(u

∗), as ‖�‖ → 0. (5.5)

Then (A3) holds.

5.2.3 The Principal’s Problem

Here, H is the admissible set of (u, v) with

〈(u1, v1), (u2, v2)〉 �= E
{∫ T

0
[u1

t u
2
t + v1

t v
2
t ]dt

}
.

The functional is V2(u, v) defined in (4.16). By (4.20) V2 is Fréchet differentiable
with Fréchet derivative (�P,1(u, v),�P,2(u, v)). As in Sect. 4.2.1, we need the fol-
lowing:

(i) Considering (u, v) as parameters, FBSDE (4.23) (without assuming (4.22)) is
well-posed;

(ii) FBSDE (4.23) together with (4.22) has a unique solution (u∗, v∗);
(iii) For any sequence of (u, v),

‖(�P,1(u, v),�P,2(u, v))‖ → 0 ⇒ Y
P,u,v
0 → Y

P,u∗,v∗
0 .

Then (u∗, v∗) is the optimal control for the principal problem.
Similarly, (iii) can be replaced by the following stronger condition:

(iii′) For any (�1,�2), FBSDE (4.23) together with condition (�
P,1
t , �

P,2
t ) =

(�1
t , �

2
t ) is well-posed. In particular,

V2(u
�1,�2

, v�1,�2
) → V2(u

0,0, v0,0), as ‖(�1,�2)‖ → 0.
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5.2.4 Fixed Volatility Case

In this case v is fixed. Set H to be the admissible set of u with inner product de-
fined by (5.2). The functional is V2(u) with Frechet derivative �P,1(u). We need the
following:

(i) Considering u as a parameter, FBSDE (4.24) (without assuming (4.25)) is well-
posed;

(ii) FBSDE (4.24) together with (4.25) has a unique solution u∗;
(iii) For any sequence of u,

‖�P,1(u)‖ → 0 ⇒ Y
P,u
0 → Y

P,u∗
0 .

Then u∗ is the optimal control of the principal’s problem.
Similarly, (iii) can be replaced by the following stronger condition:

(iii′) For any �, FBSDE (4.24) together with condition �
P,1
t = �t is well-posed. In

particular,

V2(u
�) → V2(u

0), as ‖�‖ → 0.

5.3 Extension of the Original Holmstrom-Milgrom Problem

We now illustrate the approach above on a well known example. Assume exponential
utilities, U1(x, y) = U1(x − y) = −e−γ1(x−y) and U2(x) = −e−γ2x . Here we abuse
the notation U1 again. In the original [13] paper, it was also the case that v was fixed
as a given constant, but we do not assume that. The results below are obtained in
[24, 26] using a different approach.

For the exponential utility we have that

∂2U1(x, c) = γ1U1(x, c).

Therefore, we get, for the agent’s problem adjoint processes (4.1), that

γ1W
A
t = YA

t , γ1Z
A,1
t = Z

A,2
t .

Thus, the necessary condition (4.4) becomes

Z
A,1
t = −γ1gu(t,Xt , ut , vt )W

A
t . (5.6)

Therefore, the agent’s remaining utility is

WA
t = U1(CT − GT ) +

∫ T

t

WA
s γ1gu(s,Xs,us, vs)dBu

s .

For the optimal contract we will have WA
0 = R. Therefore, we get

WA
t = R exp

(
−1

2

∫ t

0
γ 2

1 g2
u(s,Xs,us, vs)ds −

∫ t

0
γ1gu(s,Xs,us, vs)dBu

s

)
. (5.7)
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Let us first show that the condition (5.6) is also sufficient. For any given control u,
since WA

t is positive, we can write

WA
t = −e−γ1(CT −GT ) −

∫ T

t

WA
s Z̃A,1

s dBu
s

where Z̃A,1 = ZA,1/WA. Denote

Ỹt = WA
t eγ1Gt .

We get, by switching to Brownian Motion B ,

dỸt = −e−γ1CT −
∫ T

t

Z̃A,1
s ỸsdBu

s +
∫ T

t

[Z̃A,1
s Ỹsus + γ1g(s,Xs,us, vs)Ỹs]ds.

(5.8)

Note that the agent wants to maximize WA
0 = Ỹ0. By the BSDE Comparison Theo-

rem, the latter is maximized if the drift in (5.8) is maximized. We see that this will be
true if condition (5.6) is satisfied, which is then a sufficient condition.

Denote

J1(y)
�= U−1

1 (y) = − log(−y)/γ1.

The principal’s problem is then to maximize

EQu[U2(XT − J1(W
A
T (u)) − GT )]. (5.9)

We now impose the assumption (with a slight abuse of notation) that

g(t, x,u, v) = μtx + g(t, u, v), (5.10)

for some deterministic function μt . Doing integration by parts we get the following
representation for the first part of the cost GT :

∫ T

0
μsXsds = XT

∫ T

0
μsds −

∫ T

0

∫ s

0
μudu[usvsds + vsdBu

s ]. (5.11)

If we substitute this into GT = ∫ T

0 μsXsds + ∫ T

0 g(s,us, vs)ds, and plug the ex-
pression for XT and the expression (5.7) for Ỹ A into (5.9), with U2(x) = −e−γix , we
get that we need to minimize

Eu

[
exp

(
−γ2

[
1 −

∫ T

0
μsds

][
X0 +

∫ T

0
utvtdt

]
+ γ2γ1

∫ T

0

g2
u(s, us, vs)

2
ds

+ γ2

∫ T

0
g(s,us, vs)ds − γ2

∫ T

0

[∫ s

0
μrdr

]
usvsds

− γ2

[
1 −

∫ T

0
μsds

]∫ T

0
vsdBu

s

+ γ2

∫ T

0
gu(s, us, vs)dBu

s − γ2

∫ T

0

[∫ s

0
μrdr

]
vsdBu

s

)]
. (5.12)
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This is a standard stochastic control problem, for which the solution turns out to
be deterministic processes û, v̂ (as can be verified, once the solution is found, by
verifying the corresponding Hamilton-Jacobi-Bellman equation). Assuming that u,v

are deterministic, the expectation above can be computed by using the fact that

Eu

[
exp

(∫ T

0
fsdBu

s

)]
= exp

(
1

2

∫ T

0
f 2

s ds

)

for a given square-integrable deterministic function f . Then, the minimization can be
done inside the integral in the exponent, and boils down to minimizing over (ut , vt )

the expression

−
[

1 −
∫ T

t

μsds

]
utvt + γ1

g2
u(t, ut , vt )

2
+ g(t, ut , vt )

+ γ2

2

{[
1 −

∫ T

t

μsds

]
vt − gu(t, ut , vt )

}2

. (5.13)

The optimal contract is found from (4.12), as:

CT = GT − 1

γ1
log(−WA

T )

where WA should be written not in terms of the Brownian Motion Bu, but in the
terms of the process X. Since we have

WA
t = R exp

(
−
∫ t

0
γ 2

1 g2
u(s, us, vs)/2ds +

∫ t

0
γ1usgu(s, us, vs)ds

−
∫ t

0
γ1gu(s, us, vs)dBs

)
, (5.14)

we get that the optimal contract can be written as (assuming optimal vt is strictly
positive)

CT = c +
∫ T

0
μsXsds +

∫ T

0

gu(s, us, vs)

vs

dXs

for some constant c. If μ ≡ 0 and gu(s,us ,vs )
vs

is a constant, then we get a linear contract.
Let us consider the special case of Holmstrom-Milgrom [13], with

v ≡ 1, g(t, x,u, v) = u2/2.

Then (5.13) becomes

−ut + γ1u
2
t /2 + u2

t /2 + γ2

2
{1 − ut }2.

Minimizing this we get constant optimal u of Holmstrom-Milgrom [13], given by

û = 1 + γ2

1 + γ1 + γ2
.
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The optimal contract is linear, and given by CT = a + bXT , where b = û and a is
such that the IR constraint is satisfied,

a = − 1

γ1
log(−R) − bX0 + b2T

2
(γ1 − 1). (5.15)

Note that in the limit when γi → 0 we get the case corresponding to the linear
utility function Ui(x) = x.

6 Conclusion

We provide a new solvable case of Principal-Agent problems with general utility
functions and hidden action in models driven by Brownian Motion, which leads to
nonlinear contracts. We then formulate a general theory leading to the necessary con-
ditions for the optimal solution. However, the question of the existence of an optimal
solution remains open. We analyze both the agent and the principal’s problem in weak
formulation, thus having a consistent framework.

Acknowledgements Research supported in part by NSF grants DMS 04-03575, DMS 06-31298 and
DMS 06-31366, and through the Programme “GUEST” of the National Foundation For Science, Higher
Education and Technological Development of the Republic of Croatia. We are solely responsible for any
remaining errors, and the opinions, findings and conclusions or suggestions in this article do not necessarily
reflect anyone’s opinions but the authors’. We are grateful to the editor and the anonymous referees for
helpful suggestions that improved the exposition of the paper.

Appendix

In this appendix we provide the remaining proofs.

Proof of Lemma 3.1 We first assume ξ is bounded. Then Mu
T ξ ∈ L2

T (Q). Let (Ỹ , Z̃)

be the unique solution to the BSDE

Ỹt = Mu
T ξ −

∫ T

t

Z̃sdBs.

Define

Yt
�= Ỹt [Mu

t ]−1, Zt
�= [Z̃t − ut Ỹt ][Mu

t ]−1.

One can check directly that

dYt = ZtdBu
t , YT = ξ.

Moreover,

Yt = Et {Mu
T ξ}[Mu

t ]−1 = Eu
t {ξ},

which implies that

Eu
{

sup
0≤t≤T

|Yt |2
}

≤ CEu{|ξ |2} < ∞.
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Then one can easily get Z ∈ L2(Qu).
In general, assume ξn are bounded and Eu{|ξn → ξ |2} → 0. Let (Y n,Zn) be the

solution to BSDE (3.1) with terminal condition ξn. Then

Eu

{
sup

0≤t≤T

|Yn
t − Ym

t |2 +
∫ T

0
|Zn

t − Zm
t |2dt

}
≤ CEu{|ξn − ξm|2} → 0.

Therefore, (Y n,Zn) converges to some (Y,Z) which satisfies (3.1). �

Proof of Theorem 3.1 We first show that

Lemma 7.1 For any u ∈ A1, we have

E
{
e2

∫ T
0 |ut |2dt

}
< ∞; (7.1)

and thus Girsanov Theorem holds for u.

Proof Denote

τn
�= inf

{
t :
∫ t

0
|us |2ds + |

∫ t

0
usdBs | > n

}
∧ T .

Then τn ↑ T . Moreover,

e
∫ τn

0 ut dBt = Mu
τn

e
1
2

∫ τn
0 |ut |2dt .

Squaring both sides and taking the expectation, we get

E
{
e2

∫ τn
0 |ut |2dt

}
= E

{
|Mu

τn
|2e

∫ τn
0 |ut |2dt

}
≤ [E{|Mu

τn
|4}] 1

2

[
E
{
e2

∫ τn
0 |ut |2dt

}] 1
2
.

Thus

E
{
e2

∫ τn
0 |ut |2dt

}≤ E{|Mu
τn

|4} ≤ E{|Mu
T |4} < ∞.

Letting n → ∞ we get (7.1). �

We now show that BSDE (3.2) is wellposed and û ∈ A1. First, by Definition 3.2(i),
we can solve the following linear BSDE

Ȳt = eU1(CT ) −
∫ T

t

Z̄sdBs.

Define

ût
�= Z̄t

Ȳt

.

Then (Ȳ , û) satisfies (3.2).
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Since Ȳt > 0 is continuous, and E{∫ T

0 |Z̄t |2dt} < ∞, we know û satisfies Defini-
tion 3.1(i). Moreover, by straightforward calculation (or recall (3.11)) we have

Mû
T = [Ȳ0]−1eU1(CT ).

Thus, by Definition 3.2(i),

E{|Mû
T |4} = [Ȳ0]−4E{e4U1(CT )} < ∞.

Therefore, û ∈ A1. �

Proof of Proposition 3.3 Under our assumptions (3.14) becomes

CT + 1

U ′
1(CT )

= XT + λ.

We know CT = c(XT ) for some deterministic function c. Then by Remark 3.1 we
know ut = u(t,Xt ) and (3.5)–(3.6) hold true with v(t, x) = σtx. Note that

ux(t, x) = σt

F 2

[
FxF + x(FFxx − F 2

x )
]
(t, x).

Without loss of generality, we prove the result only at t = 0.
Denote

Xx
t = x +

∫ t

0
σsX

x
s dBs; ∇Xt = 1 +

∫ t

0
σs∇XsdBs.

Then

∇XT = XT

x
;

and

F(0, x) = E{eU1(c(X
x
T ))};

Fx(0, x) = E
{
eU1(c(X

x
T ))U ′

1(c(X
x
T ))c′(Xx

T )∇XT

}
;

Fxx(0, x) = E
{
eU1(c(X

x
T ))
[
|U ′

1(c(X
x
T ))c′(Xx

T )∇XT |2

+ U ′′
1 (c(Xx

T ))|c′(Xx
T )∇XT |2 + U ′

1(c(X
x
T ))c′′(Xx

T )|∇XT |2
]}

.

Thus, by suppressing the variables,

ux(0, x) = σ0

F 2

[
FFx + x[FFxx − F 2

x ]
]
(0, x)

≥ σ0

F 2

[
FE

{
eU1U ′

1c
′∇XT

}
+ xFE

{
eU1[U ′′

1 |c′|2 + U ′
1c

′′]|∇XT |2
}

= σ0

xF
E
{
eU1

[
U ′

1c
′XT + [U ′′

1 |c′|2 + U ′
1c

′′]|XT |2
]}

.
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Note that

c′(x) = |U ′
1|2

|U ′
1|2 − U ′′

1
> 0;

c′′(x) = |U ′
1|2U

′′′
1 − 2U ′

1|U ′′
1 |2

[|U ′
1|2 − U ′′

1 ]2
c′ = U ′

1U
′′′
1 − 2|U ′′

1 |2
[|U ′

1|2 − U ′′
1 ]U ′

1
|c′|2.

Then

U ′′
1 |c′|2 + U ′

1c
′′ = |U ′

1|2U ′′
1 + U ′

1U
′′′
1 − 3|U ′′

1 |2
|U ′

1|2 − U ′′
1

|c′|2 = |c′|2
|U ′

1|2 − U ′′
1

H1(c(XT )).

Denote y = c(XT ). If H1(y) ≥ 0, then, combining the fact that XT > 0,

U ′
1c

′XT + [U ′′
1 |c′|2 + U ′

1c
′′]|XT |2 ≥ 0.

We now assume H1(y) < 0, then H2(y) ≥ 0. Since λ ≥ 0, we have

0 < XT ≤ XT + λ = y + 1

U ′
1(y)

.

Thus

U ′
1(c(XT ))c′(XT )XT + [U ′′

1 (c(XT )|c′(XT )|2 + U ′
1(XT )c′′(XT )]|XT |2

= U ′
1(c(XT ))c′(XT )XT + H1

|U ′
1|2 − U ′′

1
(y)|c′(XT )|2|XT |2

≥ U ′
1(c(XT ))c′(XT )XT + H1

|U ′
1|2 − U ′′

1
(y)|c′(XT )|2XT (XT + λ)

= |c′|2XT

[ |U ′
1|2 − U ′′

1

U ′
1

(y) + H1

|U ′
1|2 − U ′′

1
(y)

[
y + 1

U ′
1(y)

]]

= |c′|2XT

U ′
1[|U ′

1|2 − U ′′
1 ]H2(y) ≥ 0.

So in both cases, we have

U ′
1c

′XT + [U ′′
1 |c′|2 + U ′

1c
′′]|XT |2 ≥ 0.

Thus ux(0, x) ≥ 0. �

Proof of Theorem 4.1 By (A3)(iii), one can easily show that

sup
ε∈[0,ε0)

E
{∫ T

0
[|gε(t)|4 + |gε

u(t)|4]dt + |Gε
T |4 + |Mε

T |4
}

< ∞, (7.2)
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and

lim
ε→0

E
{∫ T

0
[|gε(t)−g(t)|4 +|gε

u(t)−gu(t)|4]dt +|Gε
T −GT |4 +|Mε

T −MT |4
}

= 0.

(7.3)

Lemma 7.2 We have

lim
ε→0

E
{∫ T

0
[|∇gε(t) − ∇g(t)|4]dt + |∇Gε

T − ∇GT |4 + |∇Mε
T − ∇MT |2

}
= 0.

Proof First, note that ∇gε(t) = ∫ 1
0 gδε

u (t)dδ�ut . Then

|∇gε(t) − ∇g(t)| ≤ |�ut |
∫ 1

0
|gδε

u (t) − gu(t)|dδ.

By (7.3) we get

lim
ε→0

E
{∫ T

0
|∇gε(t) − ∇g(t)|4dt

}
= 0. (7.4)

Similarly,

lim
ε→0

E{|∇Gε
T − ∇GT |4} = 0.

Second, noting that Mε
T = exp(

∫ T

0 uε
t dBt − 1

2

∫ T

0 |uε
t |2dt) we have

∇Mε
T =

∫ 1

0
Mδε

T

[∫ T

0
�utdBt −

∫ T

0
(ut + δε�ut )�utdt

]
dδ.

Then

E{|∇Mε
T − ∇MT |2}

= E
{∣∣∣
∫ 1

0

[(
Mδε

T

∫ T

0
�utdBt − MT

∫ T

0
�utdBt

)

−
(
Mδε

T

∫ T

0
(ut + δε�ut )�utdt − MT

∫ T

0
ut�utds

)]
dδ

∣∣∣2
}

≤ C

∫ 1

0
E
{
|Mδε

T − MT |2
∣∣∣
∫ T

0
�utdBt

∣∣∣2

+ |Mδε
T − MT |2

∣∣∣
∫ T

0
(ut + δε�ut )�utdt

∣∣∣2

+ |MT |2
∣∣∣
∫ T

0
[(ut + δε�ut )�ut − ut�ut )]dt

∣∣∣2}dδ

≤ C

∫ 1

0

[√
E{|Mδε

T − MT |4}
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+
√

E{|Mδε
T − MT |4}

√∫ T

0
E{|(ut + δε�ut )|4}dt

+ E{|MT |2}ε2
]
dδ.

Then by (7.3) and Assumption A3(iii) we prove the result. �

To prove the theorem, we also need the following simple lemma (see, e.g., [5]):

Lemma 7.3 Assume Wt = ∫ t

0 αsdBs + At is a continuous semimartingale, where B

is a Brownian motion. Suppose that

(1)
∫ T

0 |αt |2dt < ∞ a.s.
(2) Both Wt and At are uniformly (in t) integrable.

Then E[WT ] = E[AT ].

We now show (4.2). The first equality can be written as

lim
ε→0

∇V ε
1 = E

{
∇MT U1 + MT ∂2U1∇GT

}
. (7.5)

Note that we have

∇V ε
1 = V ε

1 − V1

ε
= E

[
∇Mε

T Uε
1 + MT

Uε
1 −U1
ε

]
. (7.6)

As for the limit of the first term on the right-hand side, we can write

∇Mε
T Uε

1 − ∇MT U1 = [∇Mε
T − ∇MT ]U1 + ∇Mε

T [Uε
1 − U1].

By Assumption A3(iii) and the above L2 bounds on ∇Mε
T , this is integrable uni-

formly with respect to ε, so the expected value (under Q) converges to zero, which is
what we need.

As for the limit of the second term in the right side of (7.6), notice that we have

MT lim
ε→0

Uε
1 − U1

ε
= MT ∂2U1∇GT . (7.7)

We want to prove the uniform integrability again. We note that
∣∣∣∣U

ε
1 − U1

ε

∣∣∣∣ =
∣∣∣∣
∫ 1

0
∂2U1(CT ,GT + θ(Gε

T − GT ))dθ

∣∣∣∣|∇Gε
T |

≤ {|∂2U1(CT ,GT )| + |∂2U1(CT ,Gε
T )|}|∇Gε

T |
where the last inequality is due to monotonicity of ∂2U1.

Therefore, we get
∣∣∣∣MT

Uε
1 − U1

ε

∣∣∣∣ ≤ C
{
|∂2U1 (CT ,GT )|2 + ∣∣∂2U1

(
CT ,Gε

T

)∣∣2 + ∣∣∇Gε
T

∣∣4 + |MT |4
}

.
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Thus, from Assumption A3(iii), the left-hand side is uniformly integrable, and the
expectations of the terms in (7.7) also converge, and we finish the proof of (7.5).

We now want to prove the second equality of (4.2). We have

∇V1 = E
{
∇MT U1 + MT ∂2U1∇GT

}

= E
{
MT U1

∫ T

0
�utdBu

t + MT ∂2U1

∫ T

0
gu�utdt

}

= Eu
{
WA

T

∫ T

0
�utdBu

t + YA
T

∫ T

0
gu�utdt

}

= Eu
{∫ T

0
�A

t �utdt +
∫ T

0
�B

t dBu
t

}
, (7.8)

where

�A
t

�= Z
A,1
t + gu(t,Xt , ut , vt )Y

A
t , �B

t

�= WA
t �us + Z

A,1
t

∫ t

0
�usdBu

s + Z
A,2
t ∇Gt

and the last equality is obtained from Itô’s rule, and definitions of YA,i ,ZA,i . We
need to show

Eu

∫ T

0
�B

t dBu
t = 0.

We want to use Lemma 7.3 in the last two lines of (7.8), with α = �B and

Wt = WA
t

∫ t

0
�usdBu

s + YA
t

∫ t

0
gu(s)�usds

At =
∫ t

0
�A

s �usds.

From the BSDE theory and our assumptions we have

Eu
{

sup
0≤t≤T

(|WA
t |2 + |YA

t |2) +
∫ T

0
(|ZA,1

t |2 + |ZA,2
t |2)dt

}
< ∞. (7.9)

From this it is easily verified that

∫ T

0

∣∣∣�B
t

∣∣∣2 dt < ∞

so that condition (1) of the lemma is satisfied. Next, we have

Eu
{

sup
0≤t≤T

|Wt |
}

≤ CEu

[
sup

0≤t≤T

{
|WA

t |2 + |YA
t |2+

}
+
∫ T

0
|gu(t)|2dt

]

≤ C + CE
{
M2

T +
∫ T

0
|gu(t)|4dt

}
< ∞,



142 Appl Math Optim (2009) 59: 99–146

thanks to (7.9) and (7.2). Moreover,

Eu
{

sup
0≤t≤T

|At |
}

= Eu
{

sup
0≤t≤T

∣∣∣
∫ t

0
[ZA,1

s + gu(s)Y
A
s ]�usds

∣∣∣
}

≤ CE
{
MT

∫ T

0
|ZA,1

t + gu(s)Y
A
s |dt

}

≤ CE
{
|MT |4 +

∫ T

0
[|ZA,1

t |2 + |gu(t)|4 + |YA
t |2]dt

}
< ∞.

The last two bounds ensure that condition (2) of the lemma is satisfied, so that the
last term in (7.8) is zero, and we finish the proof of (4.2).

Finally, (4.4) follows directly from (4.2) if u is optimal, as �ut is arbitrary. �

Proof of Theorem 4.2 First the necessity of (4.22) is obvious because (�u,�v) is
arbitrary.

Note that

∇Xt =
∫ t

0
�vsdBu

s +
∫ t

0
us�vsds.

Applying Lemma 7.3 repeatedly, we have

E
{
[∂1U1∇CT + ∂2U1∇GT ]Y 1

T

}
= E{∇WA

T Y 1
T }

= E
{∫ T

0
Y 1

t guY
A
t �utdt −

∫ T

0
Z1

t [gu∇YA
t + YA

t ∇gu]dt
}

= E
{∫ T

0
Y 1

t guY
A
t �utdt −

∫ T

0
Z1

t Y
A
t ∇gudt −

∫ T

0
X1

t Z
A
t �utdt

− X1
T [∂12U1∇CT + ∂22U1∇GT ]

}
.

Note that

∂1U1Y
1
T + X1

T ∂12U1 = U ′
2.

Then

E{U ′
2∇CT } = E

{∫ T

0
Y 1

t guY
A
t �utdt −

∫ T

0
Z1

t Y
A
t ∇gudt

−
∫ T

0
X1

t Z
A
t �utdt − [X1

T ∂22U1 + Y 1
T ∂2U1]∇GT ]

}
.

Therefore,
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∇YP
0 = E

{
U ′

2[∇XT − ∇CT ] +
∫ T

0
ZP

t �utdt
}

= E
{
U ′

2∇XT +
∫ T

0
ZP

t �utdt + [X1
T ∂22U1 + Y 1

T ∂2U1]∇GT

−
∫ T

0

[
[guY

1
t YA

t − X1
t Z

A
t ]�ut − Z1

t Y
A
t ∇gu

]
dt
}

= E
{∫ T

0
[ZP

t − guY
1
t YA

t + X1
t Z

A
t + guuZ

1
t Y

A
t + guY

2
t ]�utdt

+
∫ T

0
[guvZ

1
t Y

A
t + gvY

2
t ]�vtdt

+
∫ T

0
[guxZ

1
t Y

A
t + gxY

2
t ]∇Xtdt + U ′

2∇XT

}

= E
{∫ T

0
[ZP

t − guY
1
t YA

t + X1
t Z

A
t + guuZ

1
t Y

A
t + guY

2
t ]�utdt

+
∫ T

0
[guvZ

1
t Y

A
t + gvY

2
t ]�vtdt + Y 3

T ∇XT

}

= E
{∫ T

0
[ZP

t − guY
1
t YA

t + X1
t Z

A
t + guuZ

1
t Y

A
t + guY

2
t ]�utdt

+
∫ T

0
[guvZ

1
t Y

A
t + gvY

2
t + Z3

t + (Y 3
t − X2

t )ut ]�vtdt
}

= E
{∫ T

0
�

P,1
t �utdt +

∫ T

0
�

P,2
t �vtdt

}
.

The proof is complete. �

Proof of Theorem 4.3
We have already shown that we can set R̃ = R. Recall that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Xt = x + ∫ t

0 vsdBs;
Mt = exp

(∫ t

0 usdBs − 1
2

∫ t

0 |us |2ds
)
;

W̃A
t = R + ∫ t

0 gds − ∫ t

0 usguds + ∫ t

0 gudBs;
YP

t = U2(XT − J1(W̃
A
T )) + ∫ T

t
usZ

P
s ds − ∫ T

t
ZP

s dBs;
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and that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇Xt = ∫ t

0 �vsdBs;
∇Mt = Mt [

∫ t

0 �usdBs − ∫ t

0 us�usds];
∇ϕ = ϕu�ut + ϕv�vt + ϕx∇Xt, ϕ = g,gu;
∇W̃A

t = ∫ t

0 ∇gds − ∫ t

0 [gu�us + us∇gu]ds + ∫ t

0 ∇gudBs;
∇YP

t = U ′
2(XT − J1(W̃

A
T ))[∇XT − ∇W̃A

T

U ′
1(J1(W̃

A
T ))

]
+ ∫ T

t
[ZP

s �us + us∇ZP
s ]ds − ∫ T

t
∇ZP

s dBs;
To prove (4.34), we need the following result. For any random variable ξ and any

p > 0,

Euε {|ξ |p} = E{Muε

T |ξ |p} ≤
√

E{|Muε

T |2}
√

E{|ξ |2p} ≤ C

√
E{|ξ |2p};

E{|ξ |p} = Euε {[Muε

T ]−1|ξ |p} ≤
√

Euε {[Muε

T ]−2}
√

Euε {|ξ |2p} (7.10)

=
√

E{[Muε

T ]−1}
√

Euε {|ξ |2p} ≤ C

√
Euε {|ξ |2p}. �

Proof of (4.34) In this proof we use a generic constant p ≥ 1 to denote the powers,
which may vary from line to line. We assume all the involved powers are always less
than or equal to the p0 in (A5′).

First, one can easily show that

lim
ε→0

E
{

sup
0≤t≤T

[|Xε
t − Xt |p + |Mε

t − Mt |p + |W̃A
t − W̃A

t |p]

+
∫ T

0
[|gε − g|p + |gε

u − gu|p]dt
}

= 0.

Using the arguments in Lemma 3.1 we have

Euε

{[∫ T

0
|ZP,ε

t |2dt

]p}
≤ C < ∞,

which, by applying (7.10) twice, implies that

Eu

{[∫ T

0
|ZP,ε

t |2dt

]p}
≤ C < ∞.

Note that

Y
P,ε
t − YP

t = Uε
2 − U2 +

∫ T

t

[
ε�usZ

P,ε
s + us[ZP,ε

s − ZP
s ]
]
ds

−
∫ T

t

[ZP,ε
s − ZP

s ]dBs
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= Uε
2 − U2 + ε

∫ T

t

�usZ
P,ε
s ds −

∫ T

t

[ZP,ε
s − ZP

s ]dBu
s .

Using the arguments in Lemma 3.1 again we get

lim
ε→0

Eu
{

sup
0≤t≤T

|YP,ε
t − YP

t |p +
[∫ T

0
|ZP,ε

t − ZP
t |2dt

]p}= 0,

which, together with (7.10), implies that

lim
ε→0

E
{

sup
0≤t≤T

|YP,ε
t − YP

t |p +
[∫ T

0
|ZP,ε

t − ZP
t |2dt

]p}= 0. (7.11)

Next, recall (4.14) one can easily show that

lim
ε→0

E
{

sup
0≤t≤T

[|∇Xε
t − ∇Xt |p + |∇Mε

t − ∇Mt |p + |∇W̃A
t − ∇W̃A

t |p]

+
∫ T

0
[|∇gε − ∇g|p + |∇gε

u − ∇gu|p]dt
}

= 0.

Then similar to (7.11) one can prove that

lim
ε→0

E
{

sup
0≤t≤T

|∇Y
P,ε
t − ∇YP

t |p
}

= 0.

In particular,

lim
ε→0

∇V ε
2 = lim

ε→0
∇Y

P,ε
0 = ∇YP

0 .

The proof is complete.
�
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