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Principal-Agent Problems with Exit Options∗

Jaksa Cvitanic, Xuhu Wan, and Jianfeng Zhang

Abstract

We consider the problem of when to deliver the contract payoff, in a continuous-time principal-
agent setting, in which the agent’s effort is unobservable. The principal can design contracts of a
simple form that induce the agent to ask for the payoff at the time of the principal’s choosing. The
optimal time of payment depends on the agent’s and the principal’s outside options. We develop
a theory for general utility functions, while with CARA utilities we are able to specify conditions
under which the optimal payment time is not random. However, in general, the optimal payment
time is typically random. One illustrative application is the case when the agent can be fired, after
having been paid a severance payment, and then replaced by another agent. The methodology we
use is the stochastic maximum principle and its link to Forward-Backward Stochastic Differential
Equations.
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tic differential equations
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1 Introduction

Standard exit problems are of the type

sup
τ

E[U(τ,Xτ − Cτ )] (1.1)

where Xt is the time t value of an output process, Ct is the cost of liquidating,

and τ is the exit time. Alternatively, τ can be thought of as the entry time,

Xt as the present value at time t of a project, and Cτ as the cost incurred

when entering the investment project. Classical references include McDonald

and Siegel (1986) and the book Dixit and Pindyck (1994). For a very general

model see, for example, Johnson and Zervos (2006), who also show how to

reduce mixed entry and exit problems with intertemporal profit/loss rate to

the standard optimal stopping problem of the type (1.1). We consider exit

problems in the case when the output process Xt can be influenced by actions

of an agent, and Cτ is interpreted as the payment from a principal to the

agent. In other words, we combine some of the classical real options problem of

optimal timing of investment/disinvestment decisions, with a contract theory

framework in which the value obtained from a project depends on the agent’s

effort. Our setting is mostly suited for exit problems, while we leave entry

problems for future research.

Some motivating examples for our work are the following. Company execu-

tives are often given options which they are free to exercise at any time during

a given time period; the possibility of exercising early (being paid early) is def-

initely beneficial for executives, but is it beneficial for the company? Another

application that we analyze in our framework is the question for a company

of when to fire the executive while paying her the severance payment, and

replace her with a new one.

In order to address questions like these, we develop a general principal-

agent theory with flexible time of payment, in a standard, stylized continuous-

time principal-agent models, in which the agent can influence the drift of the

process by her unobservable effort, while suffering a certain cost. The agent is

paid only once, at a random time τ . In our model, the timing of the payment

depends crucially on the “outside options” of the agent and of the principal.

1

Cvitanic et al.: Principal-Agent Problems with Exit Options

Published by The Berkeley Electronic Press, 2008



By outside options we mean the benefits and the costs the agent and the

principal will be exposed to, after the payment has occurred. In our general

framework, we model these as stochastic processes which are flexible enough to

include a possibility of the agent leaving the project, maybe being replaced by

another agent maybe not, or the agent staying with the project and applying

substandard effort, or the agent being retired with a severance package or

regular annuity payments, or any other modeling of the events taking place

after the payment time.

We allow for two different kinds of outside options: a benefit/cost which

is not separable from the principal/agent utility, which is suitable for mod-

eling cash payments the principal/agent receive from or have to pay to a

third party at or after the payment time; we also allow the outside option to

be separable from the principal/agent utility, which is suitable for modeling

non-monetary utility/cost they expect to incur after the payment time. Our

contributions are mostly methodological, providing tools and models for solv-

ing general problems. On the other hand, we do illustrate the methods with

some examples.

The paper that started the continuous-time principal-agent literature is

Holmström and Milgrom (1987). That paper considers a model with moral

hazard, lump-sum payment at the end of the time horizon, and exponential

utilities. Because of the latter, the optimal contract is linear. Their frame-

work was extended by Schättler and Sung (1993, 1997), Sung (1995, 1997),

Detemple, Govindaraj, and Loewenstein (2001). See also Dybvig, Farnsworth

and Carpenter (2001), Hugonnier, J. and R. Kaniel (2001), Müller (1998,

2000), and Hellwig and Schmidt (2003). The papers Williams (2004) and

Cvitanić, Wan and Zhang (2008) (henceforth CWZ 2008), use the stochastic

maximum principle and Forward-Backward Stochastic Differential Equations

(FBSDEs) to characterize the optimal compensation for more general utility

functions, under moral hazard. Cvitanić and Zhang (2007) (henceforth CZ

2007) consider adverse selection in the special case of separable and quadratic

cost function on the agent’s action. Another paper with adverse selection in

continuous time is Sung (2005), in the special case of exponential utility func-

tions and only the initial and the final value of the output being observable.

A continuous-time paper which considers a random time of retiring the agent
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is Sannikov (2007). Moreover, He (2007) has extended Sannikov’s work to the

case of the agent controlling the size of the company. The paper Mason and

Välimäki (2007) considers a continuous-time model in which the risk-neutral

agent is paid only when the project succeeds, by a risk-neutral principal, and

the agent’s actions influence only the probability of success. While their time

of payment is random, it is not a part of the contract, as in our case. The

optimal contract payment in their model is a linear function of the agent’s

remaining utility and the marginal cost of effort, while we work with gen-

eral utility functions, typically leading to nonlinear contracts. Another recent

work in this spirit is Philippon and Sannikov (2007). In their framework, the

compensation payment to the agent is continuous, while the investment occurs

at an optimal random time.

We discuss now the main contributions and results of our paper, and, in

particular, the main differences with CWZ (2008). First, as already mentioned

above, we find a convenient and very general way to model outside options for

the principal and the agent. In the previous literature this is usually either

not modeled at all (CWZ 2008), or it is modeled in a very simple way, as a

constant payment at the time of exiting the contract, or as a constant level of

promised utility (Sannikov 2007). Second, we show that when τ is interpreted

as the exercise time of payment to be decided by the agent, the principal

can “force” the agent to exercise at a time of the principal’s choosing, by an

appropriate payoff design. We show that this design can be accomplished in a

natural way, and leads to simple looking contracts in which the agent is paid

a low contract value unless she waits until the output hits a certain level. The

previous literature does not consider the possibility for the agent to choose

the optimal time of exiting the contract.

Next, we find general necessary conditions for the optimality of hidden

actions of the agent, with arbitrary utility functions for the principal and the

agent, and a separable cost function for the agent. This part is an extension

of CWZ (2008) to the case of exit option, and is technically similar to that

paper, but we state all the results and prove or sketch their proofs, for the

convenience of the reader. In particular, as usual in dynamic stochastic con-

trol problems of this type, the solution to the agent’s problem depends on her
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“value function”, that is, on her remaining expected utility process ∗ (what

Sannikov 2007 calls “promised value”). However, in the current paper this

process is no longer a solution to a standard Backward Stochastic Differen-

tial Equation (BSDE), but a reflected BSDE, because of the optimal stopping

component. The solution to the principal’s problem depends, in general, not

only on his and the agent’s remaining expected utilities, but also on the re-

maining expected ratio of marginal utilities (which is constant in the first-best

case, with no moral hazard).

We obtain new results in the variation on the classical Holmström-Milgrom

(1987) set-up, with exponential utilities and quadratic cost. That is, we de-

scribe more precisely how to find the optimal exit time, something which was

not modeled in the previous literature. It turns out that under a wide range

of “stationarity conditions”, it is either optimal to have the agent be paid

right away (to be interpreted as the end of the vesting period), or not be

paid early, but wait until the end. In other words, it is often not optimal

for the principal that the agent be given an option to exercise the payment

at a random time. For example, if the risk aversions and the cost of effort

are small, and the “total output process”, which is the sum of the output

plus the certainty equivalents of the outside options, is a submartingale (has

positive drift), then it is optimal not to have early payment. In general, the

optimal exit time problem reduces to an optimal stopping problem involving

the total output process. If the agent is risk-neutral, in analogy with the clas-

sical models, the principal “sells the whole firm” to the agent, in exchange for

a payment at the optimal stopping time in the future. Moreover, the agent

would choose the same optimal payment time as the principal, even if she was

not forced to do so.

In case of non-exponential utilities, we are able to provide semi-explicit re-

sults, assuming that the cost function of the agent is quadratic and separable.

This is possible because with the quadratic cost function the agent’s optimal

utility and the principal’s problem can both be represented in a simple form

which involves explicitly the contracted payoff only, and not the agent’s effort

∗In continuous-time stochastic control literature this method is known at least since
Davis and Varaiya (1973). In dynamic principal-agent problems in discrete-time, it is used,
among others, in Abreu, Pearce and Stacchetti (1986), (1990), and Phelan and Townsend
(1991).
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process. The ratio of the marginal utilities of the principal and the agent

depends now also on the principal’s utility. The optimal payoff depends in a

nonlinear way on the value of the output at the time of payment. The results

just described parallel those of CWZ (2008). Again, the new and different

aspect is finding the optimal payment time. We show that it is determined as

a solution to an optimal stopping problem of a standard type. The presence of

the option to exit makes the problem much more difficult than in CWZ (2008):

while, as just mentioned above, the payoff part of the contract is determined

in a direct way as a function of the output, the optimal payment time is de-

termined as a solution to a potentially hard optimal stopping problem. In an

example with a risk-neutral principal and a log agent, the optimal payoff is a

simple linear function, but the optimal payment time is much more complex

than in the exponential utilities case. The associated optimal stopping prob-

lem involves a nonlinear function of the value of the output, the value of the

principal’s outside option and it also depends on the agent’s outside option

process. These type of problems can, in general, be solved only numerically,

using PDE methods.

The paper is organized as follows: In Section 2 we consider a general model

with hidden action, while the case of exponential utilities is studied in Section

3. The quadratic cost case with general utilities is analyzed in Section 4. We

conclude in Section 5, and delegate most proofs to Appendix.

2 General moral hazard model

2.1 Optimization problems

We first describe the optimization problems of the agent and the principal,

before giving the details of the model. We assume first that the principal has

the right to choose the exercise time. However, we will show below that this

is equivalent to the case when the agent has that right. The agent’s problem

is, given an exercise time τ and a random payment Cτ at time τ ,

V A(τ, Cτ ) := sup
u

Eu
{

U1(τ, Cτ , A(τ, T ))−
∫ τ

0

g(ut)dt
}

. (2.1)
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Here u is the effort of the agent, A(τ, T ) is the value of the outside option,

discussed in more details below, function U1 is a utility function, and g is a

cost function. Note here that we assume that the cost is separable from the

utility due to the payoff and the outside options, which will not be the case

later below when we consider the Holmström-Milgrom (1987) framework with

exponential utilities.

Introduce the agent’s cumulative cost corresponding to not exercising early:

Gt :=

∫ t

0

g(us)ds; (2.2)

Also introduce a possibly random function Ũ1(t, c), expected remaining utility

for the agent if she is paid c at time t:

Ũ1(t, c) := Ẽt[U1(t, c, A(t, T ))]. (2.3)

Then, we can write

V A(τ, Cτ ) = sup
u

Eu
{

Ũ1(τ, Cτ )−Gτ

}
. (2.4)

If we consider only such contracts (τ, Cτ ) for which the agent’s problem

has a unique solution û = ûτ,Cτ , then, the principal’s problem is

V P := sup
τ,Cτ

V P (τ, Cτ ) := sup
τ,Cτ

Eû
{

U2(τ,Xτ , Cτ , P (τ, T ))
}

; (2.5)

where U2 is a function representing the principal’s utility, Xτ is the underlying

output process and P (τ, T ) is the value of the outside option of the principal.

The above problem has to be solved under the standard individual rationality

(IR) constraint, or participation constraint :

V A(τ, Cτ ) ≥ R0 (2.6)

In other words, the agent would not work for the principal for less than a

given constant R0, in terms of expected utility.
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2.2 Model details

We now present the model from CWZ (2008), which, in turn, is a variation on

the classical model from Holmström and Milgrom (1987) and Schattler and

Sung (1993). Let B be a standard Brownian motion under some probability

space with probability measure P , and FB = {Ft}0≤t≤T be the information

filtration generated by B up to time T > 0. For a given FB-adapted process

v > 0 such that E
∫ T

0
v2

t dt < ∞, we introduce the value process of the output

Xt := x +

∫ t

0

vsdBs. (2.7)

Note that FX = FB.

As is standard for hidden action models, we will assume that the agent

changes the distribution of the output process X, by making the underlying

probability measure P u depend on agent’s action u. More precisely, for any

FB-adapted process u, to be interpreted as the agent’s action, and for a fixed

time horizon T , we let

Bu
t := Bt−

∫ t

0

usds; Mu
t := exp

( ∫ t

0

usdBs−
1

2

∫ t

0

|us|2ds
)
; P u(A) := E[Mu

T1A].

(2.8)

We assume here that u satisfies the conditions required by the Girsanov The-

orem (e.g. Novikov condition). In other words, we assume that u is such that

P u is a probability measure and Mu
t is a P u-martingale on [0, T ]. Moreover,

Bu is a P u-Brownian motion and

dXt = vtdBt = utvtdt + vtdBu
t . (2.9)

Thus, the fact that the agent controls the distribution P u by her effort will

be interpreted as the agent controlling the drift process ut.

We suppose that the principal specifies a stopping time τ ≤ T and a

random payoff Cτ ∈ Fτ at time 0. We call τ the exercise time, in accordance

with the option pricing terminology. As we will see in Section 2.3.1, under

certain technical conditions, this is equivalent to the model that the principal

offers a family of contracts {Ct}0≤t≤T and the agent chooses a stopping time
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τ , at which the payoff Cτ is paid to the agent. For some applications, we

should interpret time t = 0 as the end of the vesting period before which the

agent cannot exercise the payment.

- 1. Dynamics for t ≤ τ : For t < τ , the agent applies effort ut and the

dynamics is as in (2.9).

- 2. Profit/Loss after exercise, if τ < T : We need to model what

happens if the contract is exercised early. We denote by P̃ , Ẽ, B̃ the probabil-

ity measure, the corresponding expectation operator, and the corresponding

Brownian Motion for the probability model after exercise time, and we intro-

duce the following notation:

- A(τ, T ) = the agent’s benefit/cost due to the early exercise of the

contract.

- P (τ, T ) = the principal’s benefit/cost due to the early exercise of the

contract.

- At = Ẽt[A(t, T )] = the agent’s remaining expected benefit/cost due to

the early exercise of the contract.

- Pt = Ẽt[P (t, T )] = the principal’s remaining expected benefit/cost due

to the early exercise of the contract.

Here, Ẽt denotes conditional expectation under P̃ with respect to Ft. Ran-

dom variables A(t, T ) and P (t, T ) don’t have to be adapted to FT , they may

depend on some outside random factors, too. Note that A(t, T ), P (t, T ) do not

depend on u or τ . Also note that if A(t, T ) is deterministic then At = A(t, T ),

and similarly for Pt.

For example, we can have

A(τ, T ) = −
∫ T

τ

cA
t dt (2.10)

and it may represent the cost the agent is facing after exercise, or, perhaps

more realistically, (−cA) determines the value of an outside option the agent

has of going to work for another principal, or simply a benefit for not applying

active effort. Similarly, we could have

P (τ, T ) =

∫ T

τ

[ũtvt − cP
t ]dt +

∫ T

τ

vtdB̃t (2.11)
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where ũ has the interpretation of the drift after the exercise, and it may

have several components: some fixed effort by the agent if she has not left

the company, an “inertia” drift present without any effort, and/or an effort

applied by whoever is in charge after the agent has left. On the other hand, cP

may measure the cost faced by the principal after exercise, maybe for hiring

a new agent. The term
∫ T

τ
vtdB̃t is due to the noise term in the output, in

analogy to the same type of noise term before exercise.

In general, At, Pt are flexible enough to include a possibility of the agent

leaving the company, being replaced by another agent, the agent staying with

the company and applying substandard effort, firing of the the agent after

paying her a severance package or regular annuity payments, and many other

possibilities for taking into account the events occurring after the exercise

time.

Remark 2.1 Our formulation is suited for exit problems. If we wanted to

model entry problems, we would have to allow for a possibility that the entry

never happens, while we assume in this paper that the payment will definitely

be paid, at time T if not sooner. Moreover, with entry problems, it might be

more realistic to assume that the contract may be renegotiated at the entry

time.

2.3 Solving agent’s problem

Recall the agent’s problem (2.4), in which the admissible set for the effort

processes u will be specified in Definition 2.1 below.

It is by now standard in the continuous-time principal-agent literature

to consider the agent’s remaining utility process WA, and represent it using

the so-called Backward Stochastic Differential Equation (BSDE) form. More

precisely, in our model we can write WA in terms of its “volatility” process

wA for t < τ in the backward form as follows:†

†We note that in general FBu

is smaller than FB , so one cannot apply directly the
standard Martingale Representation Theorem to guarantee the existence of an adapted
process wA,u in (2.12). Nevertheless, we can obtain wA,u by using a modified martingale
representation theorem (see, CWZ (2008) Lemma 3.1).
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WA,u
t = Eu

t [Ũ1(τ, Cτ )−
∫ τ

t

g(us)ds] = Ũ1(τ, Cτ )−
∫ τ

t

g(us)ds−
∫ τ

t

wA,u
s dBu

s .

(2.12)

We now specify some technical conditions. ‡

Assumption 2.1 (i) Cost function g is continuously twice differentiable with

g′′ > 0;

(ii) Utility function U1(t, c, a) is continuously differentiable in c with U ′
1 >

0, U ′′
1 ≤ 0. Here U ′

1, U
′′
1 denote the partial derivatives of U1 with respect to c.

Definition 2.1 The set A1 of admissible effort processes u is the space of

FB-adapted processes u such that

(i) P (
∫ T

0
|ut|2dt < ∞) = 1;

(ii) E{|Mu
T |4} < ∞;

(iii) E{(
∫ T

0
|g(ut)|dt)

8
3 + (

∫ T

0
|utg

′(ut)|dt)
8
3 + (

∫ T

0
|g′(ut)|2dt)

4
3} < ∞.

Condition (i) and (ii) are needed for the Novikov condition

E
{

e2
∫ T
0 |ut|2dt

}
< ∞; (2.13)

which implies that Girsanov Theorem holds for (Bu, P u) (see CZ 2007). It

is seen in the proof of the proposition below that condition (iii) is suffi-

cient to guarantee that Eu{|Ũ1(τ, Cτ )|2} < ∞, Eu{|
∫ τ

0
g(us)ds|2ds} < ∞

and Eu{|
∫ τ

0
g′(us)ds|2ds} < ∞, which are standard conditions needed when

studying BSDEs.

The following result has been known in one form or another from previous

work, with fixed τ = T ; see Schattler and Sung (1993), Sannikov (2007),

Williams (2003) and CWZ (2008). The result characterizes the agent’s optimal

expected utility process WA
t as a solution to a BSDE with terminal condition

determined by the given contract, and it characterizes the optimal control of

the agent in terms of the associated volatility process wA
t :

‡We mention that, in general, in this paper we do not aim to find the minimum set of
sufficient conditions.
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Proposition 2.1 Given a contract (τ, Cτ ), assume the following BSDE has

a unique solution (WA, wA):

WA
t = Ũ1(τ, Cτ )−

∫ τ

t

[g(I1(w
A
s ))− wA

s I1(w
A
s )]ds−

∫ τ

t

wA
s dBs, (2.14)

such that I1(w
A) ∈ A1, where

I1 := (g′)−1

and wA
t := 0 for t > τ . Then the agent’s unique optimal action is

uA
t = I1(w

A
t )

and the agent’s optimal utility process is WA
t = WA,uA

t for t ≤ τ . In particular,

the optimal agent’s expected utility satisfies V A(τ, Cτ ) = WA
0 .

We see that at the optimum

g′(uA
t ) = wA

t

which means that the marginal cost of effort is equal to the sensitivity (or

volatility) of the agent’s remaining utility with respect to the underlying un-

certainty, described by Brownian Motion B.

2.3.1 Implementability of the exercise time

In this subsection we assume that the agent has the right to choose the exercise

time and show that this is in fact equivalent to the model we discussed above.

To be precise, given a contract process {Ct}0≤t≤T , the agent’s problem is:

V A(C) := sup
τ

sup
u∈A1

Eu[Ũ1(τ, Cτ )−
∫ τ

0

g(us)ds]. (2.15)

Then we have the following result.

Proposition 2.2 Assume that a pair (τ0, C
0
τ0

) satisfies the condition of Propo-

sition 2.1, and let (WA, uA) be the solution to the corresponding BSDE. Then,

there exists a process C such that Cτ0 = C0
τ0

and WA
0 = V A(C).
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Proof. Note that

WA
t = WA

0 +

∫
t

0

g(uA
s )ds +

∫
t

0

g′(uA
s )dBuA

s . (2.16)

For t ∈ [0, T ], let Ct := J(t,WA
t ) where

J(t, ·) := Ũ1(t, ·)−1 (2.17)

Then obviously Cτ0 = C0
τ0

. Moreover, for any τ , by the proof of Proposition

2.1 in Appendix, we know that (τ, Cτ ) satisfies the condition of Proposition

2.1 and by the proposition, since Ũ1(τ, Cτ ) = WA
τ , we get from (2.16),

sup
u∈A1

Eu[Ũ1(τ, Cτ )−
∫ τ

0

g(us)ds] = WA
0 .

This ends the proof.

In fact, the proof shows that given the contract Ct = J(t,WA
t ), the agent is

indifferent with respect to the exercise time. This is because with this contract,

for any t the principal is offering Ct which is the certainty equivalent of the

remaining expected utility. When indifferent, we assume that the agent will

choose the exercise time which is the best for the principal.

Remark 2.2 In this remark we further discuss how to construct a contract

process Ct in order to implement a desired contract (τ0, C
0
τ0

). Assume WA is

given as in Proposition 2.2.

(i) The principal can induce the agent to exercise the contract at τ0 by

offering Ct such that Cτ0 = J(τ0, W
A
τ0

) and Ct < J(t,WA
t ) for t 6= τ0. In

particular, if we assume that Ct has a lowest possible value L (maybe −∞)

and that J(t,WA
t ) > L, then the contract Ct := J(τ0, W

A
τ0

)1{t=τ0} + L1{t6=τ0}

will “force” the agent to choose the exercise time τ0.

(ii) When the model is Markovian, as in Remark 4.3 (ii) below, we have

τ0 = inf{t : f1(t,Xt) = 0} for some deterministic function f1(t, x) ≤ 0. By the

Markovian structure, one can show further that J(t,WA
t ) = f2(t,Xt) for some

deterministic function f2(t, x) when t < τ0. We may choose some function

f3 such that f3(t, x) < f2(t, x) when f1(t, x) < 0 and f3(t, x) = f2(t, x) when

f1(t, x) = 0 (e.g. set f3(t, x) := f1(t, x) + f2(t, x)). Then Ct := f3(t,Xt)
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will induce the agent to choose exercise time τ0. In practice, in recent years

companies have started to modify usual executive compensation packages due

to related scandals, and one of the suggestions has been to allow payment

exercise only if the performance has been good enough, which is a contract

reminiscent of the above type.

Remark 2.3 Assume vt = σ(t,Xt) and Ũ1(t, Ct) = l(t,Xt) for some deter-

ministic functions σ and l (e.g., if A(t, T ) is deterministic and Ct is a deter-

ministic function of (t,Xt)). Then, under certain technical conditions, the

agent’s problem is associated with the following PDE obstacle problem:{
max(ϕt + 1

2
ϕxxσ

2 − g(I1(ϕxσ)) + ϕσI1(ϕσ), l − ϕ) = 0;

ϕ(T, x) = l(T, x);

in the sense that WA
t = ϕ(t,Xt). Moreover, the first optimal exercise time

of the agent is τ := inf{t : ϕ(t,Xt) = l(t,Xt)}, and before τ we always have

ϕ(t,Xt) > l(t,Xt).

2.4 Solving principal’s problem

We now fix the agent’s utility value to be R0, so that the IR constraint is

satisfied:

V A(τ, Cτ ) = WA
0 = R0. (2.18)

In most cases this is without loss of generality, as we explain in Remark 2.4

below.

From now on we always assume (2.18) and that the pair (τ, Cτ ) satisfies

the conditions in Proposition 2.1. Recalling the principal’s problem (2.5), we

can write it as

V P = sup
τ,Cτ

V P (τ, Cτ ) := sup
τ,Cτ

EI1(wA)
{

U2(τ,Xτ , Cτ , P (τ, T ))
}

;

where wA corresponding to (τ, Cτ ) is determined by Proposition 2.1 .

For u := I1(w
A), we have

WA
t = R0 +

∫ t

0

g(us)ds +

∫ t

0

g′(us)dBu
s , t ≤ τ, (2.19)
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By Proposition 2.1 we can rewrite the principal’s problem as

V P := sup
τ

V P (τ) := sup
τ

sup
u∈A2(τ)

V P (τ ; u)

:= sup
τ

sup
u∈A2(τ)

Eu
{

U2(τ,Xτ , J(τ,WA
τ ), P (τ, T ))

}
; (2.20)

where A2(τ) ⊂ A1 will be specified later in Definition 2.2. From now on, we

consider τ and u (instead of (τ, Cτ )) as the principal’s control, and we call u

an incentive compatible effort process.

Introduce a possibly random function Ũ2(t, x, c), expected remaining utility

for the principal if the agent is paid c at time t:

Ũ2(t, x, c) := Ẽt

{
U2(t, x, c, P (t, T ))

}
. (2.21)

Then we have, for the principal’s utility V P (τ ; u) introduced in (2.20),

V P (τ ; u) = Eu
{

Ũ2(τ, Xτ , J(τ, WA
τ ))

}
. (2.22)

We are now ready to describe a general system of necessary conditions for

the principal’s problem in terms of four variables: the output X, the agent’s

remaining utility WA, the principal’s remaining utility W P , and the remaining

“ratio of marginal utilities” Y , where the latter two are defined by

W P
t := Eu

t

[
Ũ2

(
τ,Xτ , J(τ,WA

τ )
)]

; Yt := Eu
t

[
Ũ ′

2

(
τ,Xτ , J(τ,WA

τ )
)

Ũ ′
1(τ, J(τ, WA

τ ))

]
,

where Ũ ′
2(t, x, c) denotes the partial derivative of Ũ2 with respect to c. Fix

τ and u. Consider the following system of Forward-Backward SDEs, for t ∈
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[0, τ ], which has to be solved for processes X, WA, (W P , wP ), (Y, Z) :

Xt = x +

∫ t

0

vsdBs;

WA
t = R0 +

∫ t

0

[
g(us)− g′(us)us

]
ds +

∫ t

0

g′(us)dBs;

W P
t = Ũ2(τ,Xτ , J(τ,WA

τ )) +

∫ τ

t

wP
s usds−

∫ τ

t

wP
s dBs;

Yt =
Ũ ′

2(τ,Xτ , J(τ,WA
τ ))

Ũ ′
1(τ, J(τ,WA

τ ))
+

∫ τ

t

Zsusds−
∫ τ

t

ZsdBs;

(2.23)

When there is a need to emphasize the dependence on the parameters τ, u, we

may use W P,τ,u instead of W P . The other notations can be defined similarly.

We now specify the technical conditions needed to derive the necessary

conditions of optimality.

Assumption 2.2 Function U2(t, x, c, p) is continuously differentiable in c with

U ′
2 < 0, U ′′

2 ≤ 0, where U ′
2, U

′′
2 denote the partial derivatives of U2 with respect

to c; and for almost all ω, Ũ2(t, x, c, ω) is uniformly continuous in t, uniformly

in (x, c).

Definition 2.2 For any stopping time τ , the set A2(τ) of admissible incentive

compatible effort processes u the principal can choose from is the space of FB-

adapted processes u over [0, τ ] such that

(i) u ∈ A1, where we take the convention that ut := 0 for t ∈ (τ, T ];

(ii) Eu{|Ũ2(τ,Xτ , J(τ,WA,u
τ ))|2+|Ũ ′

2(τ, Xτ , J(τ, WA,u
τ ))/Ũ ′

1(τ, J(τ,WA,u
τ ))|2} <

∞;

(iii) For any bounded ∆u ∈ FB, there exists ε0 > 0 such that for any

ε ∈ (0, ε0), uε := u + ε∆u satisfies (i) and (ii) above and

Muε

τ

[
|Ũ2(τ,Xτ , J(τ,WA,uε

τ ))|2 + |Ũ ′
2(τ,Xτ , J(τ,WA,uε

τ ))/Ũ ′
1(τ, J(τ,WA,uε

τ ))|2
]

are uniformly integrable under E, uniformly in ε.

Condition (ii) is a standard L2-condition needed for solving BSDEs in

(2.23). Condition (iii) is needed in order to be able to take the limit when

ε → 0.
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Remark 2.4 Regarding the assumption (2.18), we could always work with

general R ≥ R0 instead, and then maximize over R as the final step. In other

words, we would need to solve the problem V P = supR≥R0
V P (R). However,

recall that U ′
1 > 0 and U ′

2 < 0. Then, for any fixed τ and u, the expectation

in the right side of (2.20) is decreasing in R and therefore, ignoring a possible

impact of R on the admissibility set A2(τ), V P (R) would be decreasing in R.

So the principal’s optimal choice would typically be R = R0.

We have the following necessary condition for optimality:

Proposition 2.3 Let uτ ∈ A2(τ) be the optimal incentive compatible effort

for the problem (2.20), but with τ fixed. Then the FBSDE (2.23) is satisfied

by a multiple of adapted processes (Xτ , WA,τ , W P,τ , Y τ , wP,τ , Zτ ), such that

wP,τ
t + g′′(uτ

t )Z
τ
t = 0, ∀t ≤ τ. (2.24)

Moreover, the principal’s problem becomes

V P = sup
τ

W P,τ
0 , (2.25)

and the optimal payoff satisfies

Cτ = J(τ, WA
τ ).

We remark that in CWZ (2008) it was shown that if the condition (2.24)

uniquely determines u as a function of wP,τ , Zτ , and if the corresponding

FBSDE (2.23) is well-posed in the sense of having a unique solution and

satisfies a stability condition, then sufficiency also holds true, that is, uτ is

optimal. However, in general it is difficult to check the well-posedness of such

a coupled FBSDE. On the other hand, when g is quadratic, we argue below

directly that the necessary conditions we obtain are also sufficient. Note also

that the quadrati case is special, in the sense that the necessary condition gives

that the sensitivity to the underlying uncertainty of the principal’s remaining

utility is proportional to that sensitivity of the expected ratio of the final

marginal utilities.
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3 Exponential utilities

In this section we study the classical set-up of Holmström-Milgrom (1987),

with exponential utilities, but with the time of payment chosen optimally,

and possibly random. The main economic conclusions will be the following:

- The optimal payment time depends on the nature of the “total output

process”, equal to the output process plus certainty equivalents of the outside

options. In particular, the payment time will depend on the relationship

between the trends and the volatilities of such processes.

- Under specific stationarity conditions on the trends and volatilities, it is

optimal to either pay right away (to be interpreted as the end of the vesting

period) or wait until the end.

- If, in addition, the outside options are independent of the randomness

driving the output process, the optimal contract is linear and of the same form

as in Holmström-Milgrom (1987).

- A risk neutral agent will be given the whole output value in exchange for

cash, as is usual in these types of problems. She will agree with the principal

on what is the optimal payment time.

We assume

U1(t, x) = − 1

γA

exp(−γAx); U2(t, x) = − 1

γP

exp(−γP x). (3.1)

Introduce the certainty equivalents of the expected benefits/costs after exer-

cise:

Ãt = − 1

γA

log Ẽt[e
−γAA(t,T )]; P̃t = − 1

γP

log Ẽt[e
−γP P (t,T )].

Moreover, assume utilities non-separable in the contract payoff, outside op-

tions A(t, T ), P (t, T ) and the cost, that is, assume the agent and the principal

are maximizing

Eu[U1(Cτ −Gτ + Ãτ )], Eu[U2(Xτ − Cτ + P̃τ )].

The state process X is still given by (2.9).

We note that this model is not covered in Section 2 because the cost is
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non-separable here. In general, it is difficult to extend the previous results to

the case with a general utility and non-separable cost. However, due to the

special structure here, we are still able to solve the problem following similar

arguments as in Section 2, as we do next. For simplicity, in this section we

omit the technical conditions and assume all the terms involved have good

integrability properties so that all the calculations are valid.

Given a contract (τ, Cτ ), the agent’s remaining utility WA
t can be repre-

sented as, for some adapted process ZA,

WA
t := Eu

t [U1(Cτ −Gτ + Ãτ )]

= − 1

γA

exp

[
−γA

(
Cτ −

∫ τ

0

g(us)ds + Ãτ

)]
+

∫ τ

t

WA
s ZA

s dBu
s .

Introduce the “certainty equivalent” process

W̃A
t := − 1

γA

log(−γAWA
t ) +

∫ t

0

g(us)ds

We have the following result for the agent’s problem.

Proposition 3.1 Given a contract (τ, Cτ ), the optimal effort u of the agent

satisfies the necessary and sufficient condition

γAg′(ut) = ZA
t . (3.2)

Moreover, for the optimal u we have

Cτ = W̃A
0 − Ãτ +

∫ τ

0

[
1

2
γA(g′(us))

2 + g(us)− usg
′(us)

]
ds +

∫ τ

0

g′(us)dBs

(3.3)

Condition (3.2) is the usual condition that the marginal cost of effort is

proportional to the sensitivity to the underlying uncertainty of the agent’s

remaining utility. Expression (3.3) shows how the optimal contract depends

on the cost of effort and the marginal cost of effort.

Introduce now the certainty equivalent R̃0 of the agent’s reservation wage

R0:

R̃0 = − 1

γA

log(−γAR0)
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We now assume W̃A
0 = R̃0 and consider (τ, u) as the principal’s control. Let

Cτ be determined by (3.3) with W̃A
0 = R̃0. Define the principal’s remaining

utility

W P
t := Eu

t [U2(Xτ − Cτ + P̃τ )]

= − 1

γP

exp
[
−γP

(
Xτ − Cτ + P̃τ

)]
+

∫ τ

t

W P
s ZP

s dBu
s ,

We will also need in the proofs the principal’s “certainty equivalent” process

W̃ P
t := − 1

γP

log(−γP W P
t ). (3.4)

We have the following characterization of the optimal effort:

Proposition 3.2 Given τ , the optimal incentive compatible effort u for the

principal has to satisfy the necessary condition

ZP
t =

γAγP g′(ut)g
′′(ut)

1 + γP g′′(ut)
. (3.5)

Recall that the volatility of the agent’s remaining utility ZA
t = γAg′(ut)

depends only on the agent’s risk aversion and marginal cost of effort, while we

see that the volatility of the principal’s remaining utility depends, in addition,

on the principal’s risk aversion and the rate of change of marginal utility g′′.

However, if the cost function g is quadratic, then also the volatility of the

principal’s remaining utility is proportional to the marginal cost of effort.

3.1 Quadratic cost and exponential utilities

The above analysis does not tell us how to determine the optimal payoff time

τ . In order to get some results in that direction, we assume now

g(u) = ku2/2.

Denote

α :=
1 + γP k

(γA + γP )k2 + k
; β :=

1 + γP k − γAγP k2

(γA + γP ) k2 + k
;
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and introduce the expected “total output” process St, the sum of the current

output and the certainty equivalents of the after-exercise benefits/costs for

the agent and the principal:

St := Xt + Ãt + P̃t.

We have the following

Proposition 3.3 (i) Given (τ, Cτ ), u is optimal for the agent if and only if

ut = 1
kγA

ZA
t .

(ii) An incentive-compatible u is optimal for the principal if and only if

(introducing new notation Z̃)

ut = αZ̃t := α

[
ZP

t

γP

+ g′(ut)

]
. (3.6)

(iii) If β = 0, the optimal stopping problem is equivalent to sup
τ

E(Sτ ).

(iv) If β > 0, the optimal stopping problem is equivalent to sup
τ

E
{
eβSτ

}
.

(v) If β < 0, the optimal stopping problem is equivalent to inf
τ

E{eβSτ}.

Results (i) and (ii) are the optimality conditions specialized to the quadratic

cost. Results (iii)-(v) give a complete characterization of the optimal stopping

problem faced by the principal.

The following results specify the optimal stopping time more explicitly.

Whenever not specified, we assume that sub-,super-, or regular martingale

property refers to the probability P . The first proposition is a direct conse-

quence of Proposition 3.3 (iii)-(v).

Proposition 3.4 (i) In the following cases it is optimal to exercise right away

(i.e. τ = 0):

- β ≤ 0 and St is a super-martingale;

- β > 0 and eβSt is a super-martingale;

- β < 0 and eβSt is a sub-martingale.

(ii) In the following cases it is optimal to wait until time T :

- β ≥ 0 and St is a sub-martingale;

- β > 0 and eβSt is a sub-martingale;

- β < 0 and eβSt is a super-martingale.
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Remark 3.1 Note that β > 0 if the risk aversion parameters γA, γP and/or

the cost parameter k are small enough, and β < 0 if the risk aversions or

the cost are large enough. Thus, the proposition tells us: (i) in case the risk

aversions and cost are small enough: if the drift of eβSt is negative then it is

optimal not to wait at all, while if that drift, or the drift of St is positive,

it is optimal to wait until the end; (ii) in case the risk-aversions or the cost

are large enough, if the drift of St or the drift of −eβSt is negative then it is

optimal not to wait at all, while if the drift of −eβSt is positive, it is optimal

to wait until the end.

Intuitively, if there is a tendency of (a monotone increasing transformation

of) the expected total output to move in the positive direction, it is better to

postpone the payment, while if the tendency is in the negative direction, it is

better to pay right away. However, if the expected total output can go both

up and down in expected value, the optimal time of payment is likely to be a

random time between zero and T .

We now provide more specific results if the total output S is a Gaussian

process:

Proposition 3.5 Assume that the total output process satisfies

dSt = µtdt + ρtdBt,

for some deterministic µ and ρ. Then the optimal stopping time τ is deter-

ministic. Moreover, we have

(i) If β = 0, then the problem is equivalent to max
τ

∫ τ

0

µtdt. If particular,

if µ ≤ 0, then τ = 0; and if µ ≥ 0, then τ = T .

(ii) If β > 0, then the problem is equivalent to max
τ

∫ τ

0

[
1

2
β2ρ2

t +βµt]dt. In

particular, if 1
2
β2ρ2 +βµ ≤ 0, then τ = 0; and if 1

2
β2ρ2 +βµ ≥ 0, then τ = T .

(iii) If β < 0, then the problem is equivalent to min
τ

∫ τ

0

[
1

2
β2ρ2

t +βµt]dt. In

particular, if 1
2
β2ρ2 +βµ ≥ 0, then τ = 0; and if 1

2
β2ρ2 +βµ ≤ 0, then τ = T .

(iv) If we assume furthermore that Ãt and P̃t are deterministic (that is,

after exercise benefits/costs A(t, T ) and P (t, T ) are independent of Ft), and
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v is deterministic, then

Z̃t = ρt = vt, ∀t ≤ τ ; (3.7)

and

Cτ = f(τ) + kαXτ , (3.8)

for some deterministic function f . That is, the optimal contract is of the same

linear form as in the case of the fixed exercise time of Holmström and Milgrom

(1987).

Remark 3.2 Intuitively, (ii) and (iii) tell us that if the drift µ of the total

output sufficiently overwhelms its uncertainty ρ2, then it is optimal to pay

right away or at the end, depending on the sign of µ. Actually, and more pre-

cisely, higher uncertainty leads to postponing the payment if the risk aversions

or the cost are low enough (β > 0), and it leads to speeding up the payment

if the risk aversions and the cost are high enough.

(b) On one hand, we see that Holmström and Milgrom (1987) result is

robust assuming enough stationarity in the underlying model. On the other

hand, without such assumptions, their simple linear contract would not be

optimal, in general.

Remark 3.3 Risk-neutral agent. Assume U1(t, x) = x. We can formally get

the results by modifying the agent’s utility in (3.1) to U1(t, x) = − 1
γA

[e−γAx−
1], and sending γA → 0. We note that, however, all the results here can be

proved rigorously. First, by (3.5) and γA = 0 we get Zp = 0. This, together

with (6.23) in Appendix, implies a simple expression for the optimal contract,

with W̃ P defined in (3.4):

Cτ = Xτ + P̃τ − W̃ P
0 (3.9)

That is, as usual with a risk-neutral agent, the principal “sells the whole

business” Xτ + P̃τ to the agent in exchange for a cash payment, equal to the

principal’s initial certainty equivalent W̃ P
0 . It can also readily be shown that

the agent’s optimal stopping problem is equivalent to the principal’s, hence

the agent will implement the exercise time τ which is optimal for the principal,

without being told when to exercise.
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4 Moral hazard with general utilities and quadratic

cost function

We now specialize the general model of Section 2 with separable cost to the

case of quadratic cost. As analyzed in CWZ (2008) and CZ (2007), the case

when the agent’s cost is quadratic makes the cases of non-exponential utilities

more tractable. We follow those papers and in this section we assume

g(u) =
1

2
u2. (4.1)

We could use the theory developed in Section 2, but we choose to provide here

an alternative direct approach, which requires weaker conditions§.

Recall that the agent’s problem is to maximize Eu[Ũ1(τ, Cτ )−Gτ ]. As in

Section 2.1 we consider u ∈ A1 as the agent’s control. But unlike in Section

2.2 where we consider (τ, u) as the principal’s control, in this case we consider

(τ, Cτ ) as the control. We first note that, by (2.13), Definition 2.1 (iii) is the

consequence of (i) and (ii). We next specify the technical conditions (τ, Cτ )

should satisfy, which is in general not equivalent to A2 in Section 2.2.

Definition 4.1 The admissible set A3 of the principal is the space of (τ, Cτ )

satisfying

(i) E{|Ũ1(τ, Cτ )|4 + e4Ũ1(τ,Cτ )} < ∞.

(ii) E{|Ũ2(τ,Xτ , Cτ )|2 + eŨ1(τ,Cτ )|Ũ2(τ, Xτ , Cτ )|} < ∞.

Moreover, in this section Assumptions 2.1 and 2.2 are always in force.

We have the following result, analogous to CWZ (2008), but extended to

our framework of the random time of exercise and random benefits/costs after

exercise. Again, without loss of generality we will always assume WA
0 = R0.

Proposition 4.1 For any (τ, Cτ ), the optimal effort û for the agent is ob-

tained by solving the BSDE

W̄t = Et[e
Ũ1(τ,Cτ )] = eŨ1(τ,Cτ ) −

∫ τ

t

ûsW̄sdBs (4.2)

§It should be mentioned, though, that we originally used the general theory to solve
problems like this, and only then realized that there was a different direct approach.
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Moreover, the agent’s remaining expected utility is determined by

WA
t = log(W̄t).

In particular, the agent’s expected utility is

R0 = WA
0 = log W̄0 = log E[eŨ1(τ,Cτ )]. (4.3)

In addition, with the change of probability measure density Mu defined in (2.8),

we have, for t ≤ τ ,

M û
t = exp(WA

t −R0) , hence M û
τ = e−R0eŨ1(τ,Cτ ). (4.4)

Proof: First by Definition 4.1 (i) and the arguments in CWZ (2008), we

know (4.2) is well-posed and û ∈ A1. Denote WA
t := log(W̄t), w

A
t := ût. By

Ito’s formula one can check straightforwardly that (WA, wA) satisfy (2.14),

and thus, by Proposition 2.1, û is the agent’s optimal action. Moreover, by

(4.2) we have W̄t = W̄0M
û
t . Since we assume WA

0 = R0, the other claims are

obvious now.

Remark 4.1 (i) Simple relationships (4.3) and (4.4) between the agent’s op-

timal utility, the “optimal change of probability” Mu
τ and the given contract

Cτ are possible because of the assumption of quadratic cost. These expres-

sions make the problem tractable. In particular, at the optimum the agent’s

remaining expected utility is obtained simply by exponentiating her utility,

taking conditional expectation and then inverting the exponentiation by tak-

ing the logarithm. And the optimal effort is simply the sensitivity of the

remaining expected utility with respect to the underlying uncertainty.

(ii) In the language of option pricing theory finding optimal u by solving

(4.2) is equivalent to finding a replicating portfolio for the option with payoff

eŨ1(τ,Cτ ). Various methods have been developed for this purpose, including

PDE methods.

We now investigate the principal’s problem. Denote by λe−R0 the Lagrange

multiplier for the IR constraint (4.3). By (2.22), Proposition 4.1 and recalling

that Eu[Xτ ] = E[Mu
τ Xτ ] for an Fτ−measurable random variable Xτ , we can
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rewrite the constrained principal’s problem as

sup
τ,Cτ

E
{

Mu
τ Ũ2(τ,Xτ , Cτ ) + λe−R0eŨ1(τ,Cτ )

}
= sup

τ,Cτ

e−R0E
{

eŨ1(τ,Cτ )[Ũ2(τ,Xτ , Cτ ) + λ]
}

. (4.5)

The principal wants to maximize this expression over Cτ . We have the follow-

ing result, extending an analogous result from CWZ (2008) to our framework.

Proposition 4.2 Assume that the contract Ct is required to satisfy

Lt ≤ Ct ≤ Ht

for some Ft−measurable random variables Lt, Ht, which may take infinite

values. Suppose that, with probability one, there exists a finite value Ĉλ
τ (ω) ∈

[Lτ (ω), Hτ (ω)] that maximizes

eŨ1(τ,Cτ )[Ũ2(τ,Xτ , Cτ ) + λ], (4.6)

that there exists an optimal exercise time τ(λ) that solves

sup
τ

E
{

eŨ1(τ,Ĉλ
τ )[Ũ2(τ,Xτ , Ĉ

λ
τ ) + λ]

}
(4.7)

and that λ can be found so that

E[eŨ1(τ(λ),Ĉλ
τ(λ)

)] = eR0 .

Then, Ĉλ
τ(λ) is the optimal contract, and τ(λ) is the optimal exercise time.

Note that the problem of maximizing (4.6) over Cτ is a one-variable de-

terministic optimization problem (for any given ω), thus much easier than the

original problem.

Remark 4.2 In parts (i) and (ii) of this remark we consider the case when

there is an interior solution for the problem of maximizing (4.6) over Cτ .
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(i) The first order condition for that problem is given by

− Ũ ′
2(τ,Xτ , Cτ )

Ũ ′
1(τ, Cτ )

= λ + Ũ2(τ, Xτ , Cτ ). (4.8)

This extends the standard Borch rule for risk-sharing in the first-best (full

information) case, with fixed τ = T :

−U ′
2(XT , CT )

U ′
1(CT )

= λ. (4.9)

We conclude that the second-best contract is “more nonlinear” than the first-

best. For example, if both utility functions are exponential, U2(x, c) = U2(x−
c), and we require Ct ≥ L > −∞, the first-best contract CT is linear in XT for

CT > L. The second-best contract is nonlinear. In addition, in our framework

the contract also needs to take into account the future uncertainty about the

benefit/cost after exercise, which is why Ui is replaced by Ũi.

(ii) Here is an explanation of the difference between the first-best and the

second-best first order condition. Assume for simplicity that At ≡ Pt ≡ 0. In

the first best case, what is maximized is the expected utility of U2(XT , CT ) +

λU1(CT ), which leads directly to the Borch condition of marginal utilities be-

ing proportional. However, in the second best case, according to Proposition

4.1, the agent chooses the action u which corresponds to the sensitivity to the

underlying uncertainty of log Et[e
U1(CT )] and not of log Et[e

U2(XT ,CT )+λU1(CT )].

Moreover, this action is such that the probability measure is changed to

P u(A) = e−R0E[1AeU1(CT )]. That is, the agent chooses the distribution which

puts more weight on the outcomes in which the contract payoff has a high

value. The principal needs to maximize her expected utility under this par-

ticular choice of distribution, and under the IR constraint. Because this dis-

tribution favors the states in which the agent is paid more, the principal’s

marginal utility, marginal with respect to the contract payoff, has to go down

relative to the first best case. It is optimal for the principal to reduce it by the

amount of U ′
1U2. In other words, in the states the principal has more utility,

he sacrifices more of his marginal utility relative to the agent’s.

(iii) In our model with quadratic cost and the separable utility for the

agent, the optimal contract still has a relatively simple form, as it is a (possibly
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random) function of τ and the value of the output Xτ at the time of payment.

It was noted in CWZ (2008) in case of fixed τ = T , and it’s also true here, that

the sensitivity of the contract with respect to Xτ is higher in the second-best

case than in the first-best, as expected. Moreover, it was observed that higher

marginal utility for either party causes the slope of the contract to increase

relative to the first-best case, but more so for higher marginal utility of the

agent.

(iv) With exponential utilities, under a wide range of conditions provided

in Proposition 3.4, the optimal stopping time is either τ = 0 or τ = T .

However, here, the optimal stopping time in (4.7) would be equal to 0 or T

only under much more restrictive conditions.

Remark 4.3 We discuss here how to solve the optimal stopping problem

(4.7).

(i) Denote

Θt := eŨ1(t,Ĉλ
t )[Ũ2(t,Xt, Ĉ

λ
t ) + λ].

Assume Θ is a continuous process and the following Reflected BSDE has a

unique solution (W P , wP , KP ):{
W P

t = ΘT −
∫ T

t
wP

s dBs + KP
T −KP

t ;

W P
t ≥ Θt;

∫ T

0
[W P

t −Θt]dKP
t = 0.

(4.10)

Then the principal’s optimal utility is W P
0 , and the optimal exercise time is

τ(λ) := inf{t : W P
t = Θt}.

(ii) Assume the following Markovian structure: 1) Xt = x+
∫ t

0
σ(s, Xs)dBs

where σ is a deterministic function; 2) X is Markovian under P̃ (e.g., ũ is

a deterministic function of (t,Xt)); 3) A(t, T ) and P (t, T ) are conditionally

independent of FB
t under P̃ , given Xt (for example, if A(t, T ) and P (t, T ) are

deterministic); and 4) Lt = L̄(t,Xt) and Ht = H̄(t,Xt) for some deterministic

functions L̄ and H̄ (which may take values ∞ and −∞). Then Ũ1(t, c) =

Ū1(t, c,Xt) and Ũ2(t, x, c) = Ū2(t, x,Xt, c) for some deterministic functions

Ū1, Ū2. Therefore, when maximizing (4.6) we have Ĉλ
t = C̄(t,Xt) and thus

Θt = Θ̄(t,Xt) for some deterministic functions C̄(t, x) and Θ̄(t, x). In this

case the Reflected BSDE (4.10) is associated to the following PDE obstacle
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problem: max
(
ϕt(t, x) +

1

2
ϕxx(t, x)σ2(t, x), Θ̄(t, x)− ϕ(t, x)

)
= 0;

ϕ(T, x) = Θ̄(T, x);
(4.11)

in the sense that W P
t = ϕ(t,Xt). Moreover, the optimal exercise time is

τ := inf{t : ϕ(t,Xt) = Θ̄(t,Xt)}.

We now show that with no outside options for the agent, a risk-neutral

principal typically would not want to pay early in case the drift of his after

exercise benefits/costs process is positive.

Proposition 4.3 Assume U2(t, x, c, p) = x− c + p, U1(t, c, a) = U1(c) and

lim
c→−∞

ceU1(c) = 0; L = −∞; H = ∞. (4.12)

If the principal’s after exercise benefits/costs process Pt is a P−submartingale,

then the optimal exercise time is τ = T .

4.1 Example: Risk neutral principal and log utility for

the agent; hiring a new agent

Assume now that U1(t, c, A) = γ[log(c) + A], U2(t, x, c, p) = x− c + p and the

model is

dXt = σXt (utdt + dBu
t ) (4.13)

where σ is a known constant. Thus, Xt > 0 for all t. From (4.5) and the IR

constraint, the principal’s problem can be shown to reduce to

sup
τ,Cτ

Eθ
{
eγ[Aτ+log(Cτ )] [Xτ − Cτ + Pτ + λ]

}
(4.14)

We get, assuming the following value Cτ is positive, that

Cτ =
γ

1 + γ
[Xτ + Pτ + λ] (4.15)
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where λ will be obtained from the IR constraint

eR0 = E[Cγ
τ eγAτ ]. (4.16)

We assume that the model is such that Cτ > 0 (see the example below). Then,

substituting Cτ from (4.15) into (4.14), we get that the principal has to solve

sup
τ

E
{
eγAτ (Xτ + Pτ + λ)1+γ} (4.17)

Let’s summarize the previous in the following

Proposition 4.4 Assume a risk-neutral principal and a log agent, and model

(4.13). Consider the stopping time τ̂ = τ̂(λ) which solves the problem (4.17)

and the contract Cλ
τ̂ from (4.15). Assume that there exists a unique λ̂ which

solves (4.16) with Cτ = Cλ
τ̂ , and that C λ̂

τ̂ is a strictly positive random variable.

Then, (τ̂ , C λ̂
τ̂ ) is the optimal contract.

Remark 4.4 If At = 0, and Pt is a non-negative P -submartingale, then the

process (Xt +Pt +λ)1+γ is a P−submartingale, and it is optimal to wait until

maturity, τ = T . In general, the optimal time depends on the properties of

the process eγAτ (Xτ + Pτ + λ)1+γ. If this process is a P−submartingale, then

it is not optimal to exercise early, and if it is a supermartingale, then it is

optimal to exercise right away. However, there seem to be no general natural

conditions for this to happen when process A is not zero, unlike the conditions

of Proposition 3.4 in the CARA case. Thus, it is more likely in this framework

that the optimal time of payment will, indeed, be random. We work out a

specific example in this spirit next.

4.1.1 Paying off the agent and hiring a new one

In this subsection we assume that the principal can pay off the agent, then

hire another agent, or not hire anyone. If no agent is hired after τ , we assume

that after τ the effort u is fixed, and normalized to zero. We also assume that

if the new agent is hired, she will stay until time T (for simplicity). Thus, the

principal makes two decisions, when to pay (fire) the first agent, and whether
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to hire another one.¶

As above, the principal is risk-neutral. We can then model the option to

fire/hire as an outside option for the principal as follows:

Pτ = Ẽτ [P (τ, T )] = max
(
P h

τ , P n
τ

)
where P n

τ is the (optimal) conditional expected utility if the principal doesn’t

hire the agent at time τ ,

P n
τ := E0

τ {XT −Xτ}

and P h
τ is the (optimal) conditional expected utility of the principal if he hires

a new agent at time τ ,

P h
τ = sup

Cnew
T ,u

Eu
τ {XT − Cnew

T −Xτ}

under the IR constraint

Eu
τ

{
Unew

1 (Cnew
T )−

∫ T

τ

gnew(us)ds

}
≥ R(τ),

where R(t) is the reservation wage of the new agent, prevailing at time t. There

is no cost of searching for another agent, who can be hired immediately, and

at no extra cost.‖ The principal’s problem at time zero is then

sup
τ,Cτ ,u

Eu {Xτ − Cτ + Pτ}

under the IR constraint

Eu

{
U1 (τ, Cτ , A(τ, T ))−

∫ τ

0

g(us)ds

}
≥ R0

We now show that, with log agents, if the new agent is sufficiently expen-

sive, and if the time to maturity T is small relative to the variance of the

¶A similar problem is considered in Wang (2005), but with a fixed time of firing, in a
different, much simpler model.

‖However, we could easily add a one time fixed cost of hiring the new agent as an
additional term in Ph

τ .
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output σ2, the principal will not fire/pay the first agent before the terminal

time T . However, if either the new agent is not very expensive, or the time

to maturity T is large relative to the variance σ2, the time of payment will be

random. Moreover, the principal will never fire the first agent right away, at

τ = 0. The reader not interested in the technical details of the example, can

skip the rest of the section.

Assume

Unew
1 (x) = log(x), dXt = σXtdBt, g(u) = gnew(u) = u2/2

We have

P n
τ = E0

τ {XT −Xτ} = 0

Similarly as in (4.15) (with γ = 1, τ = T and PT = 0)), we get

Cnew
T =

1

2
(XT + λτ )

where λτ is chosen so that Eτ

[
elog(Cnew

T )
]

= eR(τ), that is

λτ = −2eR(τ) + Xτ

so that

Cnew
T =

1

2
(XT −Xτ ) + eR(τ)

We assume that the reservation wage R(τ) is sufficiently large to make Cnew
T >

0, that is, we assume

eR(t) >
1

2
Xt

We then have, noting that Eτ [X
2
T ] = X2

τ eσ2(T−τ),

P h
τ + Xτ = Eτ {Cnew

T (XT − Cnew
T )}

= Eτ

{(
1

2
(XT −Xτ ) + eR(τ)

) (
1

2
(XT + Xτ )− eR(τ)

)}
= −e2R(τ) + eR(τ)Xτ +

1

4
X2

τ [eσ2(T−τ) − 1]

Consider now the case when the first agent also has log utility: U1(t, x, A) =
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log(x) + A. As in (4.17) (with γ = 1), the principal’s problem at time zero is

now

sup
τ

E
{
eAτ (Xτ + Pτ + λ)2} (4.18)

where Pτ = max
(
P h

τ , 0
)
. Assume, moreover,

At ≡ 0 , eR(t) = kX(t) , k >
1

2

The first condition means that the first agent’s expected cost/benefit after the

payment is zero, which would be the case, if, for example the after-exercise

benefit/cost satisfies A(t, T ) = cXt for some constant c; the second condition

means that the new agent’s reservation utility is more than log of half of the

output. We can now compute that

Pτ = max

(
0, X2

τ [k − k2 +
1

4
(eσ2(T−τ) − 1)]−Xτ

)
In particular, if k is large enough, meaning the new agent is sufficiently

expensive, and if the time to maturity T is sufficiently small relative to the

variance σ2, we will have Pτ ≡ 0 always, and, since (Xt + λ)2 is a submartin-

gale, the principal will not fire/pay the first agent before the terminal time

T . However, if either the new agent is not very expensive, or the time to

maturity T is not small relative to the variance σ2, Pτ will oscillate between

zero and positive values, (Xt + Pt + λ)2 will not be a submartingale (nor a

supermartingale), and the optimal time of payment will be random. It would

have to be computed numerically, solving problem (4.18). Note also that the

principal will never fire the first agent right away, at τ = 0.

5 Conclusions

We have developed a methodology for studying continuous-time principal-

agent problems with hidden action in case the agent is paid once, at an optimal

random time. We have identified conditions under which it is optimal to pay

the agent as soon as possible, and conditions under which it is optimal to pay

her as late as possible. Our framework can be a basis for many possible natural
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extensions and applications, such as: (i) introduce an additional random time

of auditing, after which the return of the output may change, due to the new

information on whether the agent has manipulated the output; (ii) give the

agent more bargaining power, and, in particular, let the agent dictate the

timing of the (possibly multiple) payoffs; in the same spirit, allow the agent

to quit at or after the time she is paid; (iii) in general, model more precisely

the uncertainty about the future outside options; (iv) allow renegotiation to

take place and consider reputation effects; (v) add intermediate consumption

and possibility of paying the agent at a continuous rate, as in Sannikov (2007)

and Williams (2004), but in our setup; (vi) adapt the methods developed here

to the case of entry problems, such as the case when τ is the time when a big

pharmaceutical company enters a project with a small biotech firm, or it is

the time when a venture capitalist decides to fund a project.

It is also possible to study hidden type/adverse selection problems with

random time of payment, extending CZ (2007). In this context, it would be

of interest to consider the case in which the agent is also uncertain about her

type; for example, if the type influences the return of the output, then even

without existence of outside options, the principal and the agent might want

the payment to be paid early, as they update their information on the true

return.

A different direction would be to allow the agent to also control the volatil-

ity of the output, as is the case in delegated portfolio management problems.

However, this will require studying a combined problem of stochastically con-

trolling the volatility of a random process together with an optimal stopping

problem. There is very little theory for these problems, and no general condi-

tions under which the solution can be found; see Karatzas and Wang (2001)

and Henderson and Hobson (2008) for some special cases.

6 Appendix

Proof of Proposition 2.1: It suffices to prove WA
t ≥ WA,u

t for any u ∈ A1.

Without loss of generality, we assume t = 0. Our proof here follows the

arguments of CWZ (2008).
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First, note that

Ũ1(τ, Cτ ) = WA
0 +

∫ τ

0

[g(uA
s )− uA

s g′(uA
s )]ds +

∫ τ

0

g′(uA
s )dBs.

Let Γ denote a constant which may vary from line to line. Then by Definition

2.1 (iii) we have

E{|Ũ1(τ, Cτ )|
8
3} ≤ ΓE

{
1+(

∫ T

0

|g(uA
s )|ds)

8
3 +(

∫ T

0

|uA
s g′(uA

s )|ds)
8
3 +(

∫ T

0

|g′(uA
s )|2ds)

4
3

}
< ∞.

Thus

Eu{|Ũ1(τ, Cτ )|2} = E{Mu
T |Ũ1(τ, Cτ )|2} ≤ E{|Mu

T |4}
1
4 E{|Ũ1(τ, Cτ )|

8
3}

3
4 < ∞,

which, together with

Eu{|
∫ τ

0

g(us)ds|2} ≤ E{Mu
T |

∫ τ

0

|g(us)|ds|2} ≤ E{|Mu
T |4}

1
4 E{|

∫ τ

0

|g(us)|ds|
8
3}

3
4 < ∞,

implies that (2.12) is well-posed and

Eu{
∫ T

0

|wA,u
t |2dt} < ∞.

Moreover,

Eu{
∫ T

0

|wA
t |2dt} = E{Mu

T

∫ T

0

|g′(uA
t )|2dt} < ∞.

Thus

Eu{
∫ T

0

|wA
t − wA,u

t |2dt} < ∞. (6.19)

Now recalling (2.12) and (2.14), we have

WA
0 −WA,u

0 =

∫ τ

0

[
[g(us)−usw

A,u
s ]−[g(I1(w

A
s ))−wA

s I1(W
A
s )]

]
ds+

∫ τ

0

[wA,u
s −wA

s ]dBs.
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Since g is convex, we have

g(us)− g(I1(w
A
s )) ≥ g′(I1(w

A
s ))[us − I1(w

A
s )] = wA

s [us − I1(w
A
s )]

with the equality holding true if and only if u = I1(w
A). Then

WA
0 −WA,u

0 ≥
∫ τ

0

us[w
A
s −wA,u

s ]ds+

∫ τ

0

[wA,u
s −wA

s ]dBs =

∫ τ

0

[wA,u
s −wA

s ]dBu
s .

(6.20)

By (6.19), taking expected values we prove WA
0 ≥ WA,u

0 .

Proof of Proposition 2.3: First, by Definition 2.2 (ii), (2.23) is well-

posed. If u = uτ is optimal, along ∆u we can show, using arguments similar

to those in CWZ (2008), that

∇V P (τ ; u) := lim
ε→0

1

ε
[W P,τ,uε

0 −W P,τ,u
0 ] = Eu

{
Ũ2(τ,Xτ , J(τ,W 1,u

τ ))

∫ τ

0

∆utdBu
t

+Ũ ′
2(τ,Xτ , J(τ,W 1,u

τ ))/Ũ ′
1(τ, J(τ,WA

τ ))

∫ τ

0

g′′(ut)∆utdBu
t

}
.

and the condition (2.24) is a consequence of maximum principle arguments,

again as in CWZ (2008).

Proof of Proposition 3.1: Note that W̃A
0 = − 1

γA
exp

[
−γAWA

0

]
, so the

optimization of the agent’s utility WA
0 is equivalent to the optimization of

W̃A
0 . By Ito’s rule, we get

W̃A
t = Cτ + Ãτ −

∫ τ

t

[
1

2γA

(ZA
s )2 + g(us)

]
ds−

∫ τ

t

ZA
s

γA

dBu
s

= Cτ + Ãτ −
∫ τ

t

[
1

2γA

(ZA
s )2 + g(us)−

ZA
s

γA

us

]
ds−

∫ τ

t

ZA
s

γA

dBs (6.21)

By the Comparison Theorem for BSDEs ∗∗, the optimal u is obtained by

minimizing the integrand in the first integral in the previous expression, so

∗∗By the comparison theorem we mean the result of the type as in Proposition 2.1. In
the standard BSDE literature it is proved under Lipschitz conditions, while in Proposition
2.1 we prove it under weaker conditions. Here, we omit all the technical conditions needed
for the comparison theorem.
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that the optimal u is determined from (3.2). This gives us, for the optimal u,

W̃A
t = Cτ + Ãτ −

∫ τ

t

[
1

2
γA(g′(us))

2 + g(us)− usg
′(us)

]
ds−

∫ τ

t

g′(us)dBs,

which obviously implies (3.3).

Proof of Proposition 3.2 . Define

W̃t := W̃ P
t + W̃A

t − R̃0. (6.22)

Note that W̃0 = W̃ P
0 = − 1

γP
log(−γP W P

0 ). Thus, the principal’s problem is

equivalent to maximizing W̃0. Applying Ito’s formula we have

W̃ P
t = Xτ − Cτ + P̃τ −

∫ τ

t

[
1

2γP

(ZP
s )2 − ZP

s us

γP

]
ds−

∫ τ

t

(
ZP

s

γP

)
dBs (6.23)

Denote

Z̃t :=
ZP

t

γP

+ g′(ut), (6.24)

Recalling (6.21) and (3.2), by straightforward calculation we have

W̃t =Xτ + Ãτ + P̃τ − R̃0 −
∫ τ

t

Z̃sdBs

−
∫ τ

t

[
γP

2
Z̃2

s − (us + γP g′(us)) Z̃s +
γA + γP

2
(g′(us))

2 + g(us)

]
ds.

(6.25)

We now mimic the proof of Proposition 2.3. For any ∆u, denote uε := u+ε∆u,

let W̃ ε, Z̃ε be the corresponding processes, and

∇W̃ := lim
ε→0

1

ε
[W̃ ε − W̃ ]; ∇Z̃ := lim

ε→0

1

ε
[Z̃ε − Z̃].

Then, it can be shown that

∇W̃0 = −
∫ τ

0

∇Z̃sdBs −
∫ τ

0

[
γP Z̃s∇Z̃s − (us + γP g′(us))∇Z̃s

]
ds

−
∫ τ

0

[
− (1 + γP g′′(us)) Z̃s + (γA + γP )g′(us)g

′′(us) + g′(us)
]
∆usds.
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If u is optimal, then ∇W̃0 ≤ 0 for any ∆u. Thus

(1 + γP g′′(ut))Z̃t = (γA + γP )g′(ut)g
′′(ut) + g′(ut)

which obviously implies (3.5).

Proof of Proposition 3.3 : Note that g′(u) = ku, g′′(u) = k. Then (i)

is a direct consequence of Proposition 3.1.

To prove (ii), first note that by Proposition 3.2 and (6.24), (3.6) is neces-

sary. On the other hand, for any z,

g(u) +
γA + γP

2
(g′(u))2 + z[γP g′(u) + u] = [k +

γA + γP

2
]u2 + z[γP k + 1]u

is a convex function of u. Then by (6.25) and the comparison theorem for

BSDE’s we know (3.6) is also sufficient.

It remains to prove (iii)-(v). By (6.24) and (3.6), (6.25) leads to

W̃t = Sτ − R̃0 +

∫ τ

t

[
β

2
Z̃2

s

]
ds−

∫ τ

t

Z̃sdBs. (6.26)

If β = 0, we get W̃0 = E{Sτ} − R̃0, which obviously implies (iii).

If β 6= 0, denote Wt := exp(βW̃t). Then

dWt = βWtZ̃tdBt, (6.27)

and thus

W0 = E{Wτ} = e−βR̃0E{eβSτ}.

If β > 0, the optimal stopping problem is equivalent to maximizing W0, which

is further equivalent to maximizing E{eβSτ}. This proves (iv). Finally, (v)

can be proved analogously.

Proof of Proposition 3.5. (i) Note that for any stopping time τ ,

E{Sτ} = S0 + E{
∫ τ

0

µsds} ≤ S0 + max
t

∫ t

0

µsds.

If β = 0, by Proposition 3.3 (iii) we prove the result immediately.
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(ii) Assume β > 0. Define a new probability measure Q by

dQ

dP
= exp

{∫ T

0

βρtdBt −
1

2

∫ T

0

β2ρ2
t dt

}
.

Then

E
{
eβSτ

}
= EQ

{
eβS0+

∫ τ
0 [ 1

2
β2ρ2

s+βµs]ds
}
≤ exp

(
βS0 + max

t

∫ t

0

[
1

2
β2ρ2

s + βµs]ds

)
.

This proves (ii). One can prove (iii) similarly.

(iv) Recall (3.5). Since Ãt and P̃t are deterministic, it is obvious that

ρt = vt. Moreover, as above, τ is deterministic. Then for t ≤ τ , by (6.27) we

have

Wt = Et{Wτ} = Et{eβ(Sτ−R̃0)} = exp
(
β[S0+

∫ τ

0

µsds−R̃0]+β

∫ t

0

vsdBs+
1

2
β2

∫ τ

t

v2
sds

)
.

This implies that, for t < τ ,

dWt = βWtvtdBt,

which, combined with (6.27), implies that Z̃t = vt.

Finally, by (3.3) and (3.6), we can compute Cτ as in (3.8).

Proof of Proposition 4.3: The principal wants to maximize, over Cτ ,

eU1(Cτ )[Xτ − Cτ + Pτ + λ]

We change the variables as Yτ := eU1(Cτ ) > 0. Then Cτ = J1(log(Yτ )) where

J1 := U−1
1 . Denote

f(y; x) := y[x− J1(log(y))]; f̂(x) := sup
y>0

f(y; x).

Then the principal wants to maximize

sup
Yτ >0

f(Yτ ; Xτ + Pτ + λ) = f̂(Xτ + Pτ + λ).

It is easily shown that yJ1(log(y)) is a convex function. By (4.12) the con-
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jugate f̂(x) is well defined and is an increasing convex function. If Pt is a

submartingale, then so is Xt + Pt + λ, and therefore f̂(Xt + Pt + λ) is also

a submartingale. So the solution to the principal’s optimal stopping problem

supτ E[f̂(Xτ + Pτ + λ)] is τ = T .
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