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Abstract We consider continuous-time models in which the agent is paid at the end
of the time horizon by the principal, who does not know the agent’s type. The agent
dynamically affects either the drift of the underlying output process, or its volatility.
The principal’s problem reduces to a calculus of variation problem for the agent’s
level of utility. The optimal ratio of marginal utilities is random, via dependence
on the underlying output process. When the agent affects the drift only, in the risk-
neutral case lower volatility corresponds to the more incentive optimal contract for the
smaller range of agents who get rent above the reservation utility. If only the volatility
is affected, the optimal contract is necessarily non-incentive, unlike in the first-best
case. We also suggest a procedure for finding simple and reasonable contracts, which,
however, are not necessarily optimal.
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1 Introduction

We propose new continuous-time models for modeling a principal-agent relationship
in the presence of adverse selection (hidden agent’s type), with or without moral
hazard (hidden actions). The main applications we have in mind are the compensa-
tion of executives and the compensation of portfolio managers. For executive com-
pensation it may be satisfactory to have a model in which the agent (executive)
can control the drift (return) of the underlying process (value of the firm or its
stock), but the volatility is fixed. However, for portfolio management it is impor-
tant to have models in which the volatility (determined by the portfolio strategy)
can be affected by agent’s actions. Moreover, it is important to allow for these
actions (portfolio choice) to be dynamic. We consider such models in the pres-
ence of adverse selection. More precisely, the agent’s type is unobservable by the
principal and is represented by a parameter corresponding to the expected return
of the underlying output process, when actions are fixed (at zero effort and unit
volatility).

The continuous-time principal-agent literature started with the seminal paper of
Holmstrom and Milgrom [17]. In that paper the agent controls only the drift, there is
moral hazard but not adverse selection, the utility functions are exponential and the
optimal contract is linear. That work was generalized by Schattler and Sung [28,29],
Sung [30,31] and Detemple et al. [12]. See also [13,15,18,24,25]. Discrete-time adverse
selection papers with applications include [3,4,9,14,19,20,23]. Articles Williams [33]
and Cvitanić et al. [7] use the stochastic maximum principle and Forward–Backward
Stochastic Differential Equations to characterize the optimal compensation for more
general utility functions, under moral hazard. A paper in the similar spirit, but on
an infinite horizon, is Sannikov [27]. Sannikov [27] and Williams [33] focus on the
contracts represented as a payment at a continuous rate to the agent, as opposed to
a bulk payment at the end of the time horizon, the case considered in the present
paper. See also [2,11] for models of a different type. Cadenillas et al. [6], Cvitanić
et al. [8] and Ou-Yang [26] consider the case when the volatility is controlled, with
applications to portfolio management, but there is no loss of efficiency due to moral
hazard or adverse selection.

A recent paper in continuous time that has both adverse selection and moral hazard
is Sung [32]. It also contains numerous examples and references that motivate having
a risk-averse agent, and being able to control both the drift and the volatility. The
paper considers a risk-neutral principal, and an agent with exponential utility. More-
over, it is assumed that the principal observes only the initial and the final value of
the underlying process. The optimal agent’s actions in the model are constant through
time and the optimal contract is again linear.

We are able to study a framework with general utility functions and with dynamic
actions, in which the principal observes the underlying output process continuously
and hence also observes the volatility. On the flip-side, we only consider a cost func-
tion which is quadratic in the agent’s effort (the drift control) and there is no cost
on the choice of volatility. If the agent only controls the drift while the volatility
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is fixed, we reduce the principal’s problem to a deterministic calculus of variations
problem of choosing the appropriate level of agent’s utility. This is similar to the
classical static model literature, see for example the excellent book [5]. In the static
model, under the so-called single-crossing property and quasi-linear utility, the prob-
lem simplifies even further, to a calculus of variations problem, but not over the
agent’s level of utility, rather, over the level of compensation. In our model, we pro-
vide a more general formulation of the calculus of variations problem, for general
utilities.

The generality in which we work is possible because with quadratic cost function
the agent’s optimal utility and the principal’s problem can both be represented in a
simple form which involves explicitly the contracted payoff only, and not the agent’s
effort process. The ratio of the marginal utilities of the principal and the agent, which
is constant in the Pareto optimal first-best case of full information, is now random.
The optimal contract’s value at the payoff time depends also on the path of the output
process, not just on its final value, unless the volatility is constant. In the case of a
risk-neutral principal and agent, we solve the problem explicitly: the optimal con-
tract is linear; there is a range of lower type agents which get no informational rent
above the reservation utility; as the volatility decreases, that range gets wider, the
contract becomes more incentive (sensitive), while the informational rent for higher
type agents gets lower.

If only the volatility is controlled, as may be the case in delegated portfolio man-
agement, the optimal contract is a random variable which depends on the value of the
underlying risky investment asset, or, equivalently, on the volatility weighted average
of the output. In the first-best case, there is an optimal contract which is of bench-
mark type (the output value minus the benchmark value) and which is incentive in
the sense that the agent implements the first-best volatility at her optimum. With
adverse selection where the expected return of the portfolio manager is not known
to the principal, the optimal contract is non-incentive: it is random (as it depends
on the value of the underlying noise process), but independent of the manager’s
actions and the manager has to be told by the principal how to choose the portfolio
strategy.

With adverse selection, there is a so-called “revelation principle” which says that
it is sufficient to consider contracts which are “truth-telling”: the principal offers a
menu of contracts, one for each type (of agent), and with a truth-telling contract
the agent of a certain type will choose the contract corresponding to that type. This
truth-telling requirement imposes a constraint on the admissible contracts. We need
to stress that our approach is the so-called “first order approach” with respect to that
constraint, in the sense that we look for contracts which satisfy the first-order (first
derivative equal to zero) necessary condition for this constraint. In general, it is very
hard to identify under which conditions this procedure is also sufficient for produc-
ing an optimal contract. Instead, we propose a simpler way for finding reasonable
contracts which are not necessarily optimal. We do this by restricting the form of the
involved Lagrange multipliers in such a way that the first-order necessary condition
also becomes a sufficient condition for truth-telling.

The paper is organized as follows: in Sect. 2 we consider the fixed volatility
case with the agent controlling the expected return rate. We solve the risk-neutral
example in Sect. 3, and consider simpler, but non-optimal contracts for risk-averse
agents in Sect. 4. Section 5 deals with the control of volatility. We conclude in
Sect. 6.
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2 Model I: controlling the return

2.1 Weak formulation of the model

I. The state process X We take the model from Cvitanić et al. [7], henceforth CWZ
[7], discussed in that paper in the context of moral hazard, without adverse selection.
Let B be a standard Brownian motion under some probability space with probability
measure P, and FB = {F t}0≤t≤T be the filtration generated by B up to time T > 0. For
any FB-adapted process v > 0 such that E

∫ T
0 v2

t dt < ∞, let

Xt := x +
t∫

0

vsdBs. (2.1)

Note that FX = FB. Now for any FB-adapted process u, let

Bu
t := Bt −

t∫

0

usds; Mu
t := exp

⎛

⎝
t∫

0

usdBs − 1
2

t∫

0

|us|2ds

⎞

⎠ ;
dPu

dP
:= Mu

T . (2.2)

We assume here that u satisfies the conditions required by the Girsanov Theorem
(e.g., Novikov condition). Then Mu

t is a martingale and Pu is a probability measure.
Moreover, Bu is a Pu-Brownian motion and

dXt = vtdBt = utvtdt + vtdBu
t . (2.3)

This is a standard continuous-time “weak” formulation for principal-agent problems
with moral hazard, used in [28], while used in Stochastic Control Theory at least since
[10].

II. The agent’s problem We consider a principal who wants to hire an agent of an
unknown type θ ∈ [θL, θH], where θL, θH are known to the principal. The principal
offers a menu of contract payoffs CT(θ), and an agent θ can choose arbitrary payoff
CT(θ̃), where θ̃ may or may not be equal to her real type θ . We assume that the agent’s
problem is

R(θ) := sup
θ̃∈[θL,θH ]

V(θ , θ̃ ) := sup
θ̃∈[θL,θH ]

sup
u∈A0

Eu[U1(CT(θ̃)) − GT(θ)], (2.4)

where U1 is the agent’s utility function; GT(θ) is the cost variable; Eu is the expec-
tation under Pu; and A0 is the admissible set for the agent’s effort u, which will be
defined later in Definition 2.1.

One important assumption of this paper is that the cost G is quadratic in u. In
particular, we assume

GT(θ) :=
T∫

0

g(ut)dt + ξ := 1
2

T∫

0

(ut − θ)2dt + ξ , (2.5)

where ξ is a given FT -measurable random variable. For example, we can take
ξ = H(XT) + ∫ T

0 h(Xt)dt for some functions H, h.
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This is equivalent to the model

dXt = (ut + θ)vtdt + vtdBu
t , GT = 1

2

T∫

0

u2
t dt + ξ . (2.6)

The interpretation for the latter model is that θ is the return that the agent can achieve
with zero effort, and can thus be interpreted as the quality of the agent. If we think
of the application to the delegated portfolio management, then we can interpret the
process v as related to the portfolio strategy chosen by the manager, which, given
the assets in which to invest, is known and observable. In other words, the volatil-
ity process of the portfolio is fixed, and given this process, the manager can affect
the mean return through her effort, for example by carefully choosing the assets in
which to invest. The assumption that v is fixed can be justified by the fact that X is
observed continuously, and then v is also observed as its quadratic variation process,
and thus the principal can tell the agent which v to use. For example, if the principal
was risk-neutral, he would tell the manager to choose the highest possible v. On the
other hand, in a later section, we consider a model in which the volatility (portfolio
strategy) v is not given, but it is the action to be chosen.

Remark 2.1 The cost function G(u) = (u−θ)2/2 is not monotone in effort. It is shown
in CWZ [7], in the hidden action case with no adverse selection and with θ = 0, that
we can restrict the analysis to the case u > 0 without loss of generality. The argument
is based on the fact that we can replace ut < 0 by u∗

t = −ut > 0, at the same cost
to the agent, but resulting in higher output X. However, here, because of adverse
selection, it is conceivable that the principal may allow the agent to apply seemingly
inefficient effort in exchange for telling the truth about her type, and it is not clear that
we can restrict ourselves to the case u ≥ θ .1 One possible interpretation then, in the
context of model (2.6), is that θ is the return the agent attains with no effort (u = 0),
and applying negative effort −u is as costly as applying positive effort u. That is to
say, if the agent/manager wants to harm the principal/company and produce negative
returns, that is not costless, and requires more expensive effort for more negative
returns. Similar interpretation can be formulated for the case of model (2.3), in which
case θ is the level of zero effort, and moving away from θ requires increasingly costly
effort. Let us mention, however, that in the risk-neutral example, the only example
we are able to solve explicitly, the optimal effort is, in fact, no less than θ , thus in the
domain of the cost function where this function is increasing.

III. Constraints on the contract CT First, we assume that the participation, or individ-
ual rationality (IR) constraint of the agent is

R(θ) ≥ r(θ) (2.7)

where r(θ) is a given function representing the reservation utility of the type θ agent. In
other words, the agent θ will not work for the principal unless she can attain expected
utility of at least r(θ). For example, it might be natural that r(θ) is increasing in θ , so
that higher type agents require higher minimal utility. The principal offers a menu of
contracts CT(θ). Although he does not observe the type θ , he knows the function r(θ),
that is, how much the agent of type θ needs to be minimally paid.

1 We thank the referee for pointing this out.
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Secondly, by standard revelation principle of the principal-agent theory, we restrict
ourselves to the truth-telling contracts, that is, to such contracts for which the agent θ

will choose optimally the contract CT(θ). In other words, we have

R(θ) = V(θ , θ), ∀θ . (2.8)

Thirdly, we consider only implementable contracts. That is, for any θ , there exists
unique optimal effort of the agent, denoted û(θ) ∈ A0, such that

R(θ) = Eû(θ)[U1(CT(θ)) − GT(θ)].
IV. The principal’s problem Since θ is unobserved by the principal, we assume the
principal has a prior distribution F for θ , on the interval [θL, θH]. Then the principal’s
optimization problem is defined as

sup
CT∈A

θH∫

θL

Eû(θ)[U2(XT − CT(θ))]dF(θ), (2.9)

where U2 is the principal’s utility function and A is the admissible set for contract CT ,
which will be defined later, in Definition 2.3.

V. Standing assumptions First we adopt the standard assumptions for utility functions.

Assumption 2.1 U1, U2 are twice differentiable such that U′
i > 0, U

′′
i ≤ 0, i = 1, 2.

Throughout the paper, Assumption 2.1 will always be in force.
We now specify the technical conditions u and CT should satisfy. Roughly speaking,

we need enough integrability so that the calculations in the remainder of the paper
can go through. We note that we do not aim to find the minimum set of sufficient
conditions.

Definition 2.1 The set A0 of admissible effort processes u is the space of FB-adapted
processes u such that

(i) P(
∫ T

0 |ut|2dt < ∞) = 1;
(ii) E{|Mu

T |4} < ∞.

We now show that for any u ∈ A0, we have the Novikov condition

E
{

e2
∫ T

0 |ut|2dt
}

< ∞; (2.10)

and thus Girsanov Theorem holds for u. In fact, denote

τn := inf

⎧
⎨

⎩
t :

t∫

0

|us|2ds + |
t∫

0

usdBs| > n

⎫
⎬

⎭
.

Then τn ↑ T. Moreover,

e
∫ τn

0 utdBt = Mu
τn

e
1
2

∫ τn
0 |ut|2dt.

Squaring both sides and taking the expectation, we get

E
{

e2
∫ τn

0 |ut|2dt
}

= E
{
|Mu

τn
|2e

∫ τn
0 |ut|2dt

}
≤ [E{|Mu

τn
|4}] 1

2

[
E
{

e2
∫ τn

0 |ut|2dt
}] 1

2 .
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Thus

E
{

e2
∫ τn

0 |ut |2dt
}

≤ E{|Mu
τn

|4} ≤ E{|Mu
T |4} < ∞.

Letting n → ∞ we get (2.10).
The admissible set for CT is more complicated. For any θ ∈ [θL, θH], let Bθ , Mθ , Pθ

be defined by (2.2) with ut = θ ; and denote

Ū1(C) := U1(C) − ξ .

Definition 2.2 The set A1 consists of contracts CT which satisfy:

(i) For any θ ∈ [θL, θH], CT(θ) is FT -measurable.
(ii) E{|Ū1(CT(θ))|4 + e5Ū1(CT (θ))} < ∞, ∀θ ∈ [θL, θH].

(iii) For dF-a.s. θ , CT(θ) is differentiable in θ and {eŪ1(CT (θ̃ ))U′
1(CT(θ̃))|∂θ CT(θ̃)|}

is uniformly integrable under Pθ , uniformly in θ̃ .

(iv) sup
θ∈[θL,θH ]

Eθ
{

eŪ1(CT (θ))|U2(XT − CT(θ))|
}

< ∞.

Definition 2.3 The admissible set A of contracts CT is the subset of A1 consisting of
those contracts CT which satisfy the IR constraint and the revelation principle.

We note that, as a direct consequence of Theorem 2.1 below, any CT ∈ A is im-
plementable. We also note that we do not impose any conditions on v and ξ here.
However, depending on their properties, the set A may be small or even empty. So,
in order to have a reasonably large set A, we need v and ξ to have reasonably nice
properties (e.g. v and ξ are bounded). We henceforth assume

A 
= φ.

2.2 Optimal solutions

I. The agent’s optimal effort For fixed known θ (more precisely, for θ = 0), the agent’s
problem is solved in CWZ [7]. We extend the result to our framework next.

Lemma 2.1 Assume CT satisfies (i) and (ii) of Definition 2.2. For any θ , θ̃ ∈ [θL, θH],
the optimal effort û(θ , θ̃ ) ∈ A0 of the agent of type θ , faced with the contract C(θ̃), is
obtained by solving the Backward Stochastic Differential Equation

Yθ ,θ̃
t = eŪ1(CT (θ̃ )) −

T∫

t

(ûs(θ , θ̃ ) − θ)Yθ ,θ̃
s dBθ

s ; (2.11)

and
V(θ , θ̃ ) = log E[Mθ

TeŪ1(CT (θ̃))]. (2.12)

As a direct consequence, we have

Theorem 2.1 If CT ∈ A, then the optimal effort û(θ) ∈ A0 for the agent is obtained by
solving the Backward Stochastic Differential Equation

Yθ
t = eŪ1(CT (θ)) −

T∫

t

(ûs(θ) − θ)Yθ
s dBθ

s ; (2.13)
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and the agent’s optimal expected utility is given by

R(θ) = log E[Mθ
TeŪ1(CT (θ))] = log Yθ

0 . (2.14)

Remark 2.2 (i) Notice that finding optimal û, in the language of option pricing the-
ory, is mathematically equivalent to finding a replicating portfolio for the option
with payoff eŪ1(CT ). Since that is a well studied problem, there are many ways
to compute the solution (numerically, if not analytically).

(ii) A result of this type is available in CWZ [7] for other convex cost functions g,
too. However, with the quadratic cost in u as here, we see that it is possible to
represent the agent’s utility value R in terms of the contract CT , without depen-
dence on u, as in (2.14). This, together with (2.19) below, will enable to represent
the principal’s problem in terms of CT and R only. See also Remark 2.3 below.

Proof of Lemma 2.1 We expand here on the proof from CWZ [7]. First we show that
(2.11) is well-posed and that û(θ , θ̃ ) ∈ A0. In fact, by Definition 2.2(i) and (ii), we can
solve the following linear BSDE

Yθ ,θ̃
t = eŪ1(CT (θ̃ )) −

T∫

t

Zθ ,θ̃
s dBθ

s .

Define

û := θ + Zθ ,θ̃
t

Yθ ,θ̃
t

.

Then û(θ , θ̃ ) := û satisfies (2.11). Since Yθ ,θ̃
t > 0 is continuous, Eθ {∫ T

0 |Zθ ,θ̃
t |2dt} < ∞,

and P and Pθ are equivalent; we know û satisfies Definition 2.1(i). Moreover, by a
straightforward calculation we have

eŪ1(CT (θ̃ )) = Yθ ,θ̃
0 e

∫ T
0 (ût−θ)dBθ

t − 1
2

∫ T
0 |ût−θ |2dt = Yθ ,θ̃

0 Mû
T [Mθ

T ]−1.

Then
Mû

T = [Yθ ,θ̃
0 ]−1Mθ

TeŪ1(CT (θ̃ )). (2.15)

Thus

E{|Mû
T |4} = [Yθ ,θ̃

0 ]−4E
{
[Mθ

T ]4e4Ū1(CT (θ̃ ))
}

≤ CE{[Mθ
T ]20} + CE{e5Ū1(CT (θ̃ ))

}
< ∞.

Therefore, û ∈ A0.
Now for any u ∈ A0, as is standard in this type of stochastic control problems,

and also standard in multi-period principal-agent models, discrete or continuous, we
consider the remaining utility of the agent at time t

YA,u
t = Eu

t

⎡

⎣Ū1(CT(θ̃)) − 1
2

T∫

t

|us − θ |2ds

⎤

⎦ .

By Definition 2.1 and (2.10), one can easily show that YA,u
t − 1

2

∫ t
0 |us −θ |2ds is a square

integrable Pu-martingale. We note that in general FBu
is not the same as FB, so one
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cannot apply directly the standard martingale representation theorem. Nevertheless,
one can show (see, e.g. [7]) that there exists an FB-adapted process ZA,u such that

YA,u
t − 1

2

t∫

0

|us − θ |2ds = Ū1(CT(θ̃ )) − 1
2

T∫

0

|us − θ |2ds −
T∫

t

ZA,u
s dBu

s .

Then, switching from Bu to Bθ , we have

YA,u
t = Ū1(CT(θ̃)) +

T∫

t

[(us − θ)ZA,u
s − 1

2
|us − θ |2]ds −

T∫

t

ZA,u
s dBθ

s . (2.16)

Note that YA,u
0 = Eu[Ū1(CT) − 1

2

∫ T
0 |us − θ |2ds] is the agent’s utility, given action u.

On the other hand, using Itô’s rule and (2.11), we get

log Yθ ,θ̃
t = Ū1(CT(θ̃)) + 1

2

T∫

t

(ûs − θ)2ds −
T∫

t

(ûs − θ)dBθ
s .

Thus, log Yθ ,θ̃
t = YA,û

t is the agent’s utility if she chooses action û. Then we obtain

YA,û
0 − YA,u

0 =
T∫

0

[1
2
[|ût − θ |2 + |ut − θ |2]−(ut − θ)ZA,u

t

]
dt +

T∫

0

[ZA,u
t − (ût − θ)]dBθ

t

≥
T∫

0

[
(ût − θ)(ut − θ) − (ut − θ)ZA,u

t

]
dt +

T∫

0

[ZA,u
t − (ût − θ)]dBθ

t

=
T∫

0

[ZA,u
t − (ût − θ)]dBu

t . (2.17)

The equality holds if and only if u = û. Note that Eu{∫ T
0 |ZA,u

t |2dt} < ∞, and

Eu

⎧
⎨

⎩

T∫

0

|ût|2dt

⎫
⎬

⎭
= E

⎧
⎨

⎩
Mu

T

T∫

0

|ût|2dt

⎫
⎬

⎭
≤ CE

{
|Mu

T |2 + e2
∫ T

0 |ût |2dt
}

< ∞,

where the last inequality is due to (2.10). Then

Eu

⎧
⎨

⎩

T∫

0

[ZA,u
t − (ût − θ)]2dt

⎫
⎬

⎭
< ∞.

Taking expected values under Pu in (2.17) we get YA,û
0 ≥ YA,u

0 , with equality if and
only if u = û. ��
II. The relaxed principal’s problem We now turn to the principal’s problem (2.9). For
CT ∈ A, the first order condition for the truth-telling constraint (2.8) is

E
{

Mθ
TeŪ1(CT (θ))U′

1(CT(θ))∂θ CT(θ)
}

= 0. (2.18)
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We now apply the standard, first-order approach of the principal-agent theory. That
is, we solve the principal’s problem by replacing the truth-telling constraint by its first
order condition (2.18). Then, once the solution is found, it has to be checked whether
it does satisfy the truth-telling constraint.

To solve the problem, we make a transformation. Recalling (2.15) and (2.14) and
setting θ̃ = θ , we have the following crucial observation

Mû(θ)
T = e−R(θ)Mθ

TeŪ1(CT (θ)) . (2.19)

Then we can rewrite the principal’s problem as

sup
CT

θH∫

θL

e−R(θ)E
[
Mθ

TeŪ1(CT (θ))U2 (XT − CT(θ))
]

dF(θ).

Moreover, differentiating (2.14) with respect to θ , we get

E
{

Mθ
TeŪ1(CT (θ))

[
[BT − θT] + U′

1(CT(θ))∂θ CT(θ)
]}

= eR(θ)R′(θ),

which, by (2.18), implies that

E
{

BTMθ
TeŪ1(CT (θ))

}
= eR(θ)[R′(θ) + Tθ ]. (2.20)

Thus, the new, relaxed principal’s problem is given by the following

Definition 2.4 The relaxed principal’s problem is

sup
R

sup
CT∈A1

θH∫

θL

e−R(θ)E
[
Mθ

TeŪ1(CT (θ))U2 (XT − CT(θ))
]

dF(θ) (2.21)

under the constraints

R(θ) ≥ r(θ) , E[Mθ
TeŪ1(CT (θ))] = eR(θ) , E

{
BTMθ

TeŪ1(CT (θ))
}

= eR(θ)[R′(θ) + Tθ ].
(2.22)

Remark 2.3 Our approach is based on the fact (2.19) for the agent’s optimal choice of
u. Thus, the choice of the probability measure corresponding to action û is completely
determined by the choice of eŪ1(CT (θ)) and by the choice of utility level R(θ) the
principal is willing to offer to the agent. Therefore, the principal’s objective becomes

e−R(θ)E
[
Mθ

TeŪ1(CT (θ))U2 (XT − CT(θ))
]

which does not involve the agent’s choice of u. Similarly, the IR constraint and the first
order condition for the truth-telling constraint are also explicit in terms of R(θ), R′(θ)

and expected values involving CT(θ). The explicit connection between the agent’s
choice of the probability measure and the given contract, such as the connection
(2.19), does not seem available for cost functions other than quadratic.

Remark 2.4 In the classical, single-period adverse selection problem with a contin-
uum of types, but no moral hazard, one also has to solve a calculus of variations
problem over the agents (indirect) utility. However, the problem typically reduces to
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a calculus of variation problem over the payment CT(θ). Under the so-called Spence–
Mirrlees condition on the agent’s utility function and with a risk-neutral principal, a
contract CT(θ) is truth-telling if and only if it is a non-decreasing function of θ and
the first-order truth-telling condition is satisfied. In our method, where we also have
moral hazard and risk-averse principal, the calculus of variation problem cannot be
reduced to the problem over CT(θ), but remains to be a problem over the agent’s
utility R(θ). We are able to give a general formulation for the problem. However,
unfortunately, for a general utility function U1 of the agent, we have not been able
to formulate a condition on U1 under which we could find a necessary and sufficient
conditions on R(θ) to induce truth-telling. Later below, we are able to show that the
first order approach works for linear U1 and U2, when the hazard rate of θ is increas-
ing, in agreement with the classical theory. For other utility functions, we suggest a
way of finding reasonable contracts which are not necessarily optimal.

III. Optimal contracts for the relaxed principal’s problem We proceed by fixing agent’s
utility R(θ), and finding first order conditions for the optimal contract CT(θ). Intro-
duce the Lagrange multipliers λ(θ), µ(θ) for the second and third constraint in (2.22).
Denote J1 := U−1

1 and define a random function D:

D(y) := eU1(y)
[
U2(XT − y) − λ(θ) − µ(θ)BT

]
.

Then, the Lagrangian is

E

⎡

⎢
⎣

θH∫

θL

Mθ
Te−R(θ)−ξ D(CT(θ))dF(θ)

⎤

⎥
⎦ . (2.23)

Note that,

D′(y) = eU1(y)U′
1(y)

[
G(XT , y) − λ(θ) − µ(θ)BT

]
,

where

G(x, y) := U2(x − y) − U′
2(x − y)

U′
1(y)

.

The first order condition is

G(XT , CT(θ)) = λ(θ) + µ(θ)BT . (2.24)

Denote

D̃(y) := D(J1(log(y))) = y
[
U2(XT − J1(log(y))) − λ(θ) − µ(θ)BT

]
, y > 0.

Then, suppressing the arguments,

D̃′′(y) = −U′
2

J′
1

y
+ U′′

2
(J′

1)
2

y
− U′

2
J′′

1

y
< 0.

So D̃ is concave on (0, ∞) and then we can maximize it on its domain. By the relation
between D and D̃, we may maximize inside the integral of the Lagrangian (2.23).
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Since

d
dy

G(x, y) = −U′
2 + U

′′
2

U′
1

+ U′
2U

′′
1

|U′
1|2

< 0,

for z in the range of G(x, ·) there exists a unique function H̃(x, z) such that

G(x, H̃(x, z)) = z. (2.25)

Let
Range(G(XT)) := {G(XT , y) : y is in the domain of U1}. (2.26)

Thus, if λ(θ) + µ(θ)BT ∈ Range(G(XT)), one should choose CT(θ) = H̃(XT , λ(θ) +
µ(θ)BT). On the other hand, if λ(θ) + µ(θ)BT /∈ Range(G(XT)), then we should
choose the smallest or the largest possible value of CT(θ). In this case, we assume

Assumption 2.2 If Range(G(XT)) 
= R, we require that the payoff CT(θ) is bounded:

L ≤ CT(θ) ≤ U

for some finite constants L, U. That is, we consider a smaller set A1 in (2.21). On the
other hand, if Range(G(XT)) = R, we set

L = −∞ , U = +∞.

Introduce the events

A1 := {ω : λ(θ) + µ(θ)BT(ω) ≤ G(XT(ω), U)};
A2 := {ω : G(XT(ω), U) < λ(θ) + µ(θ)BT(ω) < G(XT(ω), L)};
A3 := {ω : λ(θ) + µ(θ)BT(ω) ≥ G(XT(ω), L)}.

From all the above, the optimal CT is given by

CT(θ) = U1A1 + H̃(XT , λ(θ) + µ(θ)BT)1A2 + L1A3 =: H(λ(θ), µ(θ)). (2.27)

For any constant θ , λ, µ, define the following deterministic functions:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H1(θ , λ, µ) := E
{

Mθ
T exp

(
U1(H(λ, µ)) − ξ

)}
;

H2(θ , λ, µ) := E
{

Mθ
T exp

(
U1(H(λ, µ)) − ξ

)
BT

}
;

H3(θ , λ, µ) := E
{

Mθ
T exp

(
U1(H(λ, µ)) − ξ

)
U2(XT − H(λ, µ))

}
.

Assume also

Assumption 2.3 For any θ ∈ [θL, θH], (H1, H2) have inverse functions (h1, h2).

Then, in order to satisfy the second and third constraint in (2.22), we need to have

λ(θ) = h1(θ , eR(θ), eR(θ)[R′(θ)+ Tθ ]); µ(θ) = h2(θ , eR(θ), eR(θ)[R′(θ)+ Tθ ]). (2.28)

and the principal’s problem is as in the following

Theorem 2.2 Under Assumptions 2.2 and 2.3, and assuming that CT defined by (2.27)
and (2.28) is in A1, the principal’s relaxed problem is given by

sup
R(θ)≥r(θ)

θH∫

θL

e−R(θ)H3(θ , h1(θ , eR(θ), eR(θ)[R′(θ) + Tθ ]), h2(θ , eR(θ), eR(θ)[R′(θ) + Tθ ]))dF(θ).

(2.29)



Optimal compensation with adverse selection and dynamic actions 33

Notice that this is a deterministic calculus of variations problem.

Remark 2.5 (i) The first order condition (2.24) can be written as, using
BT = ∫ T

0 dXt/vt,

U′
2(XT − CT(θ))

U′
1(CT(θ))

= −µ(θ)

T∫

0

1
vt

dXt − λ(θ) + U2(XT − CT(θ)). (2.30)

This is a generalization, to the case of adverse selection, of the classical Borch
condition for the first-best full information case (see (3.24) below), and the gen-
eralization of the second-best case (no adverse selection, µ = 0) in CWZ [7]. In
our “third-best” case of moral hazard and adverse selection, the ratio between
the marginal utilities of the principal and of the agent in (2.30) becomes random,
with the first term proportional to BT = ∫ T

0
1
vt

dXt, the volatility weighted aver-
age of the output process X. The optimal contract is no longer a function of only
the final output value XT , unless the volatility is constant. Instead, the optimal
contract, in addition to XT , depends on the volatility weighted average BT of
the path of the output process X, which will have high/low values depending
on when the underlying random source of risk has high/low values. This term
is multiplied by µ(θ), the Lagrange multiplier for the truth-telling first-order
condition. Thus, making the contract contingent on the level of the underlying
source of risk, the principal is trying to get the agent to reveal her type.
Another term influencing the ratio is the utility of the principal. This makes the
relationship between CT and XT even “more nonlinear” than in the first best
case, and makes the effect of X on the marginal utilities more pronounced. This
effect is present without adverse selection, too, and is due to moral hazard.

(ii) If we assume that v is constant and that the above equation can be solved for the
optimal contract CT = CT(XT) as a function of XT , it can be computed from
the above equation, omitting the functions arguments, that

∂

∂XT
CT = U′

1(U
′
1U′

2 − U′′
2 − µ/v)

U′
2(U

′
1)

2 − U′′
2 U′

1 − U′
2U′′

1
.

Thus, unlike the first-best case and the second-best case (no adverse selection) in
which µ = 0, it is not a priori clear that the contract is a non-decreasing function
of XT . Unfortunately, the only example which we can solve is the case of linear
utilities, in which case we will see that the contract is, in fact, a non-decreasing
function of XT .

Remark 2.6 Using the methods of CWZ [7], under technical conditions, it can be
shown that for a more general cost function g(u − θ), the optimal solution necessarily
satisfies this system of Backward SDEs:

Y1
t = U1(CT(θ)) − GT(θ) −

T∫

t

g′(us − θ)dBu
s .

Y2
t = U2(XT − CT(θ)) − λ

T∫

t

g′(us − θ)dt −
T∫

t

Z2
s dBu

s ;
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Y3
t = U′

2(XT − CT(θ))

U′
1(CT(θ))

−
T∫

t

Z3
s dBu

s .

Z2
t = [Z3

t + λ]g′′
(ut − θ).

where λ is found from the first-order condition for the truth-telling constraint, which
can be written as

Eu

⎧
⎨

⎩

T∫

0

g′(ut − θ)dt

⎫
⎬

⎭
= R′(θ). (2.31)

The principal’s problem reduces then to

sup
R

θH∫

θL

Eu{U2(XT − J1(Y
1
T))}dF(θ),

under the constraint R(θ) ≥ r(θ).

It seems very hard to say anything about the existence or the nature of the solution,
though, unless g is quadratic, and because of that we omit the details.

3 Risk-neutral agent and principal

The case of the risk-neutral agent and principal is the only case that we can solve
explicitly, and we can also show that the first-order approach introduced in Sect. 2
works, as we do next.

3.1 Third best

Suppose that

U1(x) = x, U2(x) = kx, Xt = x + vBt, GT(θ) = 1
2

T∫

0

(ut − θ)2dt (3.1)

for some positive constants k, x, v, and no bounds on CT , L = −∞, U = ∞. From
(2.24) we get a linear relationship between the payoff CT and BT (equivalently, XT)

x + vBT − CT(θ) = 1 + 1
k

[λ(θ) + µ(θ)BT ].
From this we can write

CT(θ) = a(θ) + b(θ)BT

Note that

E[e(θ+b(θ))BT ] = e
T
2 (θ+b(θ))2

, E[BTe(θ+b(θ))BT ] = (θ + b(θ))Te
T
2 (θ+b(θ))2

. (3.2)

By the last two equations in (2.22) we get

ea(θ)−Tθ2/2+T(θ+b(θ))2/2 = eR(θ),

(θ + b(θ))Tea(θ)−Tθ2/2+T(θ+b(θ))2/2 = eR(θ)[R′(θ) + Tθ ].
(3.3)
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Then we get, omitting the argument θ ,

b = 1
T

R′, a = R − θR′ − (R′)2

2T
. (3.4)

Plugging into the principal’s problem, we see that he needs to maximize

k

θH∫

θL

ea(θ)−R(θ)−Tθ2/2E[e(θ+b(θ))BT (x − a(θ) + (v − b(θ))BT)]dF(θ)

which is, using (3.2) and (3.4), equal to

k

θH∫

θL

{

x − R(θ) − Tθ2

2
+ T

2

(

θ + R′(θ)

T

)2

+
(

v − R′(θ)

T

)(

θ + R′(θ)

T

)

T

}

dF(θ)

(3.5)
Maximizing this is equivalent to minimizing

θH∫

θL

{

R(θ) + 1
2T

(R′(θ))2 − vR′(θ)

}

dF(θ) (3.6)

and it has to be done under the constraint

R(θ) ≥ r(θ)

for some given function r(θ). If this function is constant, we have the following result:

Theorem 3.1 Assume (3.1), assume that θ is uniform on [θL, θH], and the IR lower
bound is r(θ) ≡ r0. The the principal’s problem (2.9) has a unique solution as follows.
Denote θ∗ := max{θH − v, θL}. The optimal choice of agent’s utility R by the principal
is given by

R(θ) =
{

r0, θL ≤ θ < θ∗;
r0 + Tθ2/2 + T(v − θH)θ − T(θ∗)2/2 − T(v − θH)θ∗, θ∗ ≤ θ ≤ θH .

(3.7)
The optimal agent’s effort is given by

û(θ) − θ =
{

0, θL ≤ θ < θ∗;
v + θ − θH , θ∗ ≤ θ ≤ θH .

(3.8)

The optimal contract is, recalling (3.4),

ĈT(θ) =
{

a(θ), θL ≤ θ < θ∗;
a(θ) − xb(θ)/v + θ+v−θH

v XT , θ∗ ≤ θ ≤ θH .
(3.9)

With fixed θ , the optimal principal’s utility is

Eû(θ)[U2(XT−ĈT(θ))]=
⎧
⎨

⎩

k
[
x − r0 + θvT

]
, θL ≤ θ < θ∗;

k
[
x − r0 + T (θ∗+v)2

2 + TθH(2θ − θ∗ − θH
2 )
]
, θ∗ ≤ θ ≤ θH .

(3.10)
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Remark 3.1 (i) If v < θH − θL, a range of lower type agents gets no rent above
the reservation value r0, the corresponding contract is not incentive as it does
not depend on X, and the effort û − θ is zero. The higher type agents get utility
R(θ) which is quadratically increasing in their type θ , while the principal’s utility
is linear in θ . As the volatility (noise) gets lower, the non-incentive range gets
wider, and only the highest type agents get informational rent. The rent gets
smaller with lower values of volatility, even though the incentives (the slope of
CT with respect to XT) become larger.

(ii) Similar results can be obtained for general distribution F of θ , that has a density
f (θ), if we notice that the solution y to the Euler equation (3.13) below is:

y(θ) = β + vTθ + α

θ∫

θL

dx
f (x)

+ T

θ∫

θL

F(x)

f (x)
dx (3.11)

for some constants α and β.

Proof of the theorem We show here that (3.7)–(3.10) solve the relaxed principal’s
problem (2.21)–(2.22), and we check the truth-telling constraint in Lemma 3.1 below.
First, one can prove straightforwardly that û ∈ A0 and ĈT ∈ A.

If F has density f , denote

ϕ(y, y′) :=
[

y + 1
2T

(y′)2 − vy′
]

f (3.12)

Here y is a function on [θL, θH] and y′ is its derivative. Then, the Euler ODE for the
calculus of variations problem (3.6), denoting by y the candidate solution, is (see, for
example, [21])

ϕy = d
dθ

ϕy′

or, in our example,

y′′ = T + (vT − y′) f ′

f
(3.13)

Since θ is uniformly distributed on [θL, θH], this gives

y(θ) = Tθ2/2 + αθ + β

for some constants α, β. According to the calculus of variations, on every interval R
is either of the same quadratic form as y, or is equal to r0. One possibility is that, for
some θL ≤ θ∗ ≤ θH ,

R(θ) =
{

r0, θL ≤ θ < θ∗;
Tθ2/2 + αθ + β, θ∗ ≤ θ ≤ θH .

(3.14)

In this case, R(θ) is not constrained at θ = θH .
By standard results of calculus of variations, the free boundary condition is then,

recalling notation (3.12),

0 = ϕy′(θH) = 1
T

y′(θH) − v (3.15)
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from which we get

α = T(v − θH)

Moreover, by the principle of smooth fit, if θL < θ∗ < θH , we need to have

0 = R′(θ∗) = Tθ∗ + α

which gives

θ∗ = θH − v

if v < θH − θL. If v > θH − θL then we can take

θ∗ = θL.

In either case the candidate for the optimal solution is given by (3.7).
Another possibility would be

R(θ) =
{

Tθ2/2 + αθ + β, θL ≤ θ < θ∗;
r0, θ∗ ≤ θ ≤ θH ,

(3.16)

In this case the free boundary condition at θ = θL would give α = Tv, but this is
incompatible with the smooth fit condition Tθ∗ + α = 0, if we assume v > 0.

The last possibility is that R(θ) = Tθ2/2+αθ +β, everywhere. We would get again
that at the optimum α = T(v − θH), and β would be chosen so that R(θ∗) = r0 at its
minimum point θ∗. Doing computations and comparing to the case (3.7), it is easily
checked that (3.7) is still optimal.

Note that solving the BSDE (2.13), we get û = θ + b(θ), which gives (3.8). Also,
(3.10) follows by computing the integrand in (3.5). ��

It remains to check that the contract is truth-telling. This follows from the following
lemma, which is stated for general density f .

Lemma 3.1 Consider the hazard function h = f/(1 − F), and assume that h′ > 0. Then
the contract CT = a(θ) + b(θ)BT, where a and b are chosen as in (3.4), is truth-telling.

Proof It is straightforward to compute

V(θ , θ̃ ) = log E[Mθ
Tea(θ̃)+b(θ̃ )BT ] = R(θ̃) + R′(θ̃)(θ − θ̃ ).

We have
∂θ̃ V(θ , θ̃ ) = R′′(θ̃)(θ − θ̃ ) (3.17)

Here, either R(θ̃) = r0 or R(θ̃ ) = y(θ̃) where y is the solution (3.11) to the Euler ODE.
If R(θ̃ ) = r0 then V(θ , θ̃ ) = r0, which is the lowest the agent can get. Otherwise, with
R = y and omitting the argument θ , note that

R′ = vT + α/f + TF/f

R′′ = T − (α + FT)f ′/f 2.

The free boundary condition (3.15) for y = R is still the same, and gives

α = −TF(θH) = −T.
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Table 1 Optimal contracts for various cases

No A.S. A.S.

Risk-neutral case, θ in the cost
No M.H. CT (θ) = c(θ) + XT Theorem 3.1
M.H. CT (θ) = c(θ) + XT Theorem 3.1

Risk-neutral case, θ in the drift
No M.H. CT (θ) = c(θ) + XT Contract (3.23)
M.H. CT (θ) = c(θ) + XT Theorem 3.1

General utilities, θ in the cost
No M.H. Borch rule (3.19) Borch rule (3.19)
M.H. Eq. (3.24) Eq. (2.30)

General utilities, θ in the drift
No M.H. Borch rule (3.19) Eq. (3.22)
M.H. Eq. (3.24) Eq. (2.30)

Notice that this implies

R′′ = T + T
f ′

f 2 (1 − F)

Thus, R′′ > 0 if and only if
f ′(1 − F) > −f 2 (3.18)

Note that this is equivalent to h′ > 0, which is assumed. From (3.17), we see, that
under condition (3.18), that V(θ , θ̃ ) is increasing for θ̃ < θ and decreasing for θ̃ > θ ,
so θ̃ = θ is the maximum.

3.2 Comparison with the first-best and the second-best

Before analyzing the first-best and the second-best cases and comparing them to the
third-best, we first give tables which point out where to find the results, and a short
summary thereof.

3.2.1 Tables and summary

Table 1 indicates (where to find) the main results.
Many of the results are qualitatively in the same spirit as the results from the static

theory, as presented, for example, in the book by [5]. In particular, with moral hazard,
the highest type agent gets the first-best contract, while the lower type agents get
less incentive contracts and provide less effort. Moreover, with no adverse selection,
moral hazard is not relevant when the agent is risk-neutral, because the principal “sells
the whole firm” to the agent. However, a new observation here is that in the case of
adverse selection without moral hazard, there is a difference whether we assume that
the agents differ in their cost function, or in the return θ they can attain. In the case of
both moral hazard and adverse selection, these formulations are equivalent. However,
without moral hazard, and with risk-neutrality, we may use the linear contract (3.9)
if the type θ represents the cost function, but we get the “bang–bang” contract (3.23)
below, which depends on the random “benchmark” value BT , if the type θ represents
the return. As the referee points out, the difference is due to the fact that when θ is in
the drift, then the principal gets some information about θ when observing X (or B),
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which is not the case when θ is in the cost function. Because of that, the truth-telling
constraint is very different for the two formulations, if there is no moral hazard, and
leads to the different constraints and different contracts. With moral hazard, the effort
and the type are both unobservable by the principal, and equivalent up to translation
(that is, we can do a change of variables from u to u+ θ). Hence, there is no difference
in information on θ obtained from observing X in the two cases. Notice furthermore,
with θ in the cost function, even if the principal does not sell the whole firm to the
agent (except to the highest type), the moral hazard still is not relevant, unlike when
θ is in the drift.

Another interesting observation is that the Borch rule (3.19) for the first-best risk
sharing still holds in the presence of adverse selection when there is no moral hazard,
if type θ is in the cost function. This is again because in this case there is no information
about θ to be obtained from observing X, and the truth-telling constraint does not
involve the contract payoff CT , so that the relationship between XT and CT remains
the same as in the first-best.

3.2.2 First-best case

We modify now the previous model to

dXt = utvtdt + vtdBt

with fixed positive process v. We assume that both u and θ are observed by the
principal. We also assume ξ = ∫ T

0 h(Xt)dt. It follows from Cvitanić et al. [8], hence-
forth CWZ [8] (see also Cadenillas et al. [6], henceforth CCZ [6], that the first order
conditions for the optimization problem of the principal are:

U′
2(XT − CT)

U′
1(CT)

= λ

λ
vt

g′(ut) = U′
2(XT − CT) −

T∫

t
λh′(Xs)ds −

T∫

t
ZC

s dBs,
(3.19)

for an appropriate adapted process ZC. If h ≡ 0, the latter condition can be written as

λ

vt
g′(ut) = Et[U′

2(XT − CT)] = λEt[U′
1(CT)].

Equation (3.19) is the standard Borch optimality condition for risk-sharing.
With linear utilities, U1(x) = x, U2(x) = kx, and GT = ∫ T

0 gtdt, in the first best case
the principal has to maximize

E

⎡

⎣XT − R(θ) −
T∫

0

gtdt

⎤

⎦ = x + E

T∫

0

[vtut − gt]dt − R(θ).

Thus, we have to maximize vtut − gt, which in our case gives

ût − θ ≡ vt (3.20)

A contract which implements this is

ĈT(θ) = c(θ) + XT

where c(θ) is chosen so that the participation constraint R(θ) = r(θ) is satisfied.
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The optimal effort is always larger than in the adverse selection/moral hazard case
(3.8), and the contract is “more incentive”, in the sense that CT(θ) = c(θ)+XT , while
in the adverse selection/moral hazard case CT(θ) = a(θ)+ b(θ)

v [XT −x] with b(θ) < v.
With the constant IR bound, r(θ) ≡ r0, the agent’s rent R(θ) ≡ r0 is no larger than
the adverse selection/moral hazard case (3.7).

3.2.3 Second best: adverse selection without moral hazard

Case A: Unknown cost Consider the same model as in the first-best case, but we now
assume that u is observed by the principal, while θ is not. This is the case of adverse
selection without moral hazard. We also also assume ξ = 0, g(ut) = (ut − θ)2/2.

The revelation principle gives

E

⎡

⎣U′
1(CT(θ))C′

T(θ) −
T∫

0

g′(ut − θ)∂θ utdt

⎤

⎦ = 0

which, when taking derivative of the agent’s value function R(θ), implies

R′(θ) = E

⎡

⎣
T∫

0

g′(ut − θ)dt

⎤

⎦

The principal’s relaxed problem is to maximize the Lagrangian

θH∫

θL

E

⎡

⎣U2(XT − CT(θ)) − λ(θ)

⎡

⎣U1(CT(θ)) −
T∫

0

(gt + µ(θ)g′
t)dt

⎤

⎦

⎤

⎦dF(θ)

The integrand is the same as for the case without the truth-telling constraint, but with
the cost function g+µg′. Thus, as above, the first order condition for the optimization
problem of the principal inside the integral is

λ(θ)U′
1(CT(θ)) = U′

2(XT − CT(θ))

We see that the optimality relation between XT and CT is of the same form as in the
first best case, that is, the Borch rule applies. The reason for this is that, in this case in
which the type θ determines only the cost function but not the output, the first-order
truth-telling constraint can be written in terms of the action u, and it does not involve
the principal’s choice of payoff CT , so the problem, for a fixed agent’s utility R(θ),
becomes equivalent to the first-best problem, but with a different cost function.

With linear utilities and constant v, we will show that the solution is the same as
when u is not observed. For a given agent’s utility R(θ), the principal’s problem is to
maximize

θH∫

θL

k

⎧
⎨

⎩
x − R(θ) + E

T∫

0

[vut − gt + µ(θ)g′(ut − θ)]dt

⎫
⎬

⎭
dF(θ)

In our case this gives

ût ≡ v + θ + µ(θ)
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The revelation principle is satisfied if

(v + µ(θ))T = R′(θ)

Going back to the principal’s problem, he has to maximize, over R ≥ r,

θH∫

θL

k{x − R(θ) + vθT − (R′(θ))2

2T
+ vR′(θ)}dF(θ)

This is the same problem as (3.6) in the case of hidden action u.

Case B: Unknown drift We now consider the model

dXt = (ut + θ)vtdt + vtdBθ

where u is observed, but θ is not. The cost function is g(u) = u2/2, so it is known, but
the distribution of the output depends on θ . As before, introduce the agent’s utility

R(θ) = E

⎡

⎣Mθ
T

⎧
⎨

⎩
U1(CT(θ)) −

T∫

0

u2
t /2dt

⎫
⎬

⎭

⎤

⎦

The truth-telling first-order condition is then

E

⎡

⎣Mθ
TBT

⎧
⎨

⎩
U1(CT(θ)) −

T∫

0

u2
t /2dt

⎫
⎬

⎭

⎤

⎦ = R′(θ) + TθR(θ)

and the principal’s Lagrangian for the relaxed problem is

E

⎡

⎢
⎣

θH∫

θL

Mθ
T

⎧
⎨

⎩
U2(XT−CT(θ)) −

⎡

⎣U1(CT(θ)) −
T∫

0

u2
t /2dt

⎤

⎦ [λ(θ) + µ(θ)BT ]
⎫
⎬

⎭
dF(θ)

⎤

⎥
⎦ .

(3.21)
We require limited liability constraint

CT(θ) ≥ L.

We can check that the integrand as a function of CT is decreasing in CT if λ+µBT ≥ 0,
and is otherwise a concave function of CT . Thus, the first order condition in CT is,
omitting the argument θ ,

U′
2(XT − CT)

U′
1(CT)

= −λ − µBT if λ + µBT < 0

CT = L if λ + µBT ≥ 0

(3.22)

Comparing to the moral hazard/adverse selection case (2.30), we see that the last
term, U2(XT − CT) disappears, because there is no moral hazard. If the truth-telling
is not binding, µ = 0, then the principal pays the lowest possible payoff L, so that the
IR constraint is satisfied.

In the linear utilities case, U1(x) = x, U2(x) = kx, looking at (3.21), we see that, in
order to have a solution, we need to assume

L ≤ CT ≤ U , u ≤ ū
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and the contract will take only extreme values:

CT = L1{λ+µBT<k} + U1{λ+µBT>k}. (3.23)

So, when the truth-telling is binding, µ 
= 0, in order to get the agent to reveal her
type, the payoff can either take the minimal or the maximal value, depending on the
level of the value BT of the weighted average of the output process X.

The optimal action can be found to be

ut = ū1{λ+µ[Bt+θ(T−t)]≤0} + kv
λ + µ[Bt + θ(T − t)]1{λ+µ[Bt+θ(T−t)]>0}.

3.2.4 Second best: moral hazard without adverse selection

Assume now that type θ is observed, but action u is not. Then similarly as in the
adverse selection/moral hazard case (see also CWZ 2005), setting µ ≡ 0, we get,
omitting again the dependence on θ ,

U′
2(XT − CT)

U′
1(CT)

= −λ + U2(XT − CT) (3.24)

where λ is determined so that the IR constraint is satisfied with equality. The ratio of
marginal utilities no longer depends on the weighted average of X, but it still increases
with the principal’s utility.

In the linear case we have

CT = λ

k
− 1 + XT

and

û − θ = v,

the same as the first-best.

4 Suboptimal truth-telling contracts

In general, it is very hard to compute the (candidates for) third-best optimal contracts
and/or check that the computed candidate contracts actually are truth-telling. We now
explore the following idea to amend for that: we suggest to use contracts of the form
suggested by the optimality conditions, but, instead of finding the Lagrange multipli-
ers µ(θ) and λ(θ) from the constraints (2.22) in terms of R(θ) and R′(θ), we restrict
the choice of µ(θ) and λ(θ) further, in order to make computations simpler, while still
resulting in a truth-telling contract. This will result in effectively reducing the possible
choices for R(θ) in the principal’s optimization problem, leading to a contract optimal
in a smaller family of functions for R(θ), hence a suboptimal contract.

Here is a result in this direction.

Theorem 4.1 Assume ξ = 0 for simplicity. Also assume that
[
|U1(x)|4 +U′

1(x)U
′′′
1 (x)−3(U′′

1 (x))2
]
U′

2(y)−3U′
1(x)U′′

1 (x)U′′
2 (y)−(U′

1(x))2U
′′′
2 (y) ≤ 0,

(4.1)
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for any x, y in the domains of U1, U2, respectively. Assume further that λ is convex and
µ is linear, and there is a random variable η ∈ FT, which may take value −∞ and is
independent of θ , such that for any θ ∈ [θL, θH],

W(θ) := max(λ(θ) + µ(θ)BT , η) ∈ Range(G(XT)), P − a.s., (4.2)

where Range(G(XT)) is defined by (2.26). Consider a smaller A1 when η 
= −∞, as
defined by Assumption 2.2, extended to the current framework. Then the first order
condition is sufficient for truth telling.

Remark 4.1 (i) One sufficient condition for (4.1) is

|U1(x)|4 + U′
1(x)U

′′′
1 (x) − 3(U

′′
1(x))2 ≤ 0; U

′′′
2 ≥ 0. (4.3)

(ii) The following examples satisfy (4.3):

U1(x) = log(x), x > 0; or U1(x) = −e−γ x, x ≥ − log(2)

2γ
;

and

U2(x) = x; or U2(x) = −e−γ x; or U2(x) = log(x); or

U2(x) = xγ , 0 < γ < 1.

(iii) The following example satisfies (4.1) but not (4.3):

U1(x) = kx; U2(x) = −e−γ x; k ≤ γ .

(iv) The example when both U1 and U2 are linear does not satisfy (4.1). However,
see Example 4.1 for an illustration how good the present approach is in finding
a suboptimal contract for this case.

The condition (4.2) is much more difficult to satisfy than (4.1). In (4.2) we truncate
λ + µBT from below. If we could truncate it from above, we would be able to apply
the theorem to all the examples in Remark 4.1. However, in the proof we need W(θ)

to be convex in θ , which is true for the truncation from below, but not true for the
truncation from above.

Proof In Appendix.

4.1 Examples

We now look at a couple of examples and a further simplification.

Example 4.1 We assume the set-up of Theorem 3.1. We already know what the optimal
solution is in this case, but let’s pretend we don’t, and use the present approach of look-
ing only at linear µ and convex λ. It can be easily computed that with µ(θ) = α + βθ ,
the first order condition (2.20) implies

λ(θ) = const − βT
[

1
2
θ2(1 − β) + θ(v − α)

]

and that the difference between the agent’s utility when lying and not lying is

V(θ , θ̃ ) − V(θ , θ) = 1
2
β(θ̃ − θ)2
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so the truth-telling contracts are those with β ≤ 0. It can also be verified straightfor-
wardly that the principal’s average utility is of the form

−1
2

c1β
2 + β

[

c1 − αc2 − 1
2
θ2

LθH + 1
2
θ3

L

]

− 1
2
α2c3 + α[c2 − θLθH + θ2

L]

where

c1 = T

θH∫

θL

θ2dθ , c2 = T

θH∫

θL

θdθ , c3 = T

θH∫

θL

dθ

The optimization gives

α = θH , β = −1 , thus µ(θ) = θH − θ

If we look back to Sect. 3.1, we can see that the unrestricted µ = v − b = v − R′/T,
and, in fact, we also have µ(θ) = θH − θ , but only for θ ≥ θ∗ = max[θH − v, θL]. Thus,
the suboptimal contract is actually the same as the optimal contract if the volatility is
high enough, v ≥ θH − θL. However, in general our suboptimal contract ignores the
distinction that the optimal contract makes between the higher type agents and the
lower type agents, and is of the same form as the optimal contract only for the higher
type agents.

Example 4.2 Assume

U1(x) = log(x); U2(x) = x.

Then (4.1) holds. We consider only those λ, µ such that (4.2) holds true with η = −∞.
Note that the first order condition (2.24) for CT gives

CT(θ) = 1
2
[XT − λ(θ) − µ(θ)BT ]. (4.4)

Therefore,

eV(θ ,θ̃ ) = Eθ {CT(θ̃)} = 1
2
[Eθ {XT} − λ(θ̃) − µ(θ̃)θT].

Since here we obtain V(θ , θ̃ ) explicitly, we may study the truth telling directly with-
out assuming λ is convex and µ is linear. From the previous equation, the first order
condition for truth-telling is

λ′(θ) + Tθµ′(θ) = 0.

Then, for some constant a,

λ(θ̃) = a − Tθ̃µ(θ̃) + T

θ̃∫

θL

µ(τ)dτ . (4.5)

Thus

eV(θ ,θ̃ ) − eV(θ ,θ) = T
2

θ̃∫

θ

[µ(θ̃) − µ(τ)]dτ .
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We find that the contract is truth telling if and only if µ is decreasing. (Note: this may
not be true for λ, µ which do not satisfy (4.2), so what we obtain here is still suboptimal
contracts.) It remains to see when (4.2) holds true. Since CT > 0, we need

XT − λ(θ) − µ(θ)BT > 0, a.s. (4.6)

This obviously depends on XT (or vt). We discuss three cases.

Case 1 XT = x0 + v0BT . In this case we must have µ(θ) = v0, ∀θ ∈ [θL, θH]. Then, by
(4.5), λ is a constant and λ < x0. Thus CT(θ) = 1

2 [x0 − λ] and eR(θ ,θ̃ ) = 1
2 [x0 − λ]. To

satisfy the IR constraint R(θ) ≥ r0, we need λ ≤ x0 − 2r0.

Case 2 XT = x0 + 1
2 B2

T . Then

XT − λ(θ) − µ(θ)BT ≥ x0 − λ(θ) − 1
2
µ(θ)2.

Thus, we should consider those λ, µ such that

λ(θ) + 1
2
µ(θ)2 ≤ x0.

We note that we allow equality above, because the probability is zero that BT is such
that the equality holds.

Case 3 XT = x0eσBT with x0 > 0, σ > 0. If µ < 0, we have

lim
y→−∞[x0eσy − µy] = −∞.

Hence, in order to ensure (4.6) we need µ ≥ 0. Then

inf
y

[x0eσy − µy] = µ

σ

[

1 − log

(
µ

x0σ

)]

.

Thus

XT − λ(θ) − µ(θ)BT ≥ µ(θ)

σ

[

1 − log

(
µ(θ)

x0σ

)]

− λ(θ).

Consequently, we need µ ≥ 0 decreasing such that

µ(θ)

σ

[

1 − log

(
µ(θ)

x0σ

)]

− λ(θ) ≥ 0.

We can compute

eR(θ) = 1
2

Eθ
{

XT − λ(θ) − µ(θ)BT

}
= 1

2

[
x0e

1
2 σ 2T+σTθ − λ(θ) − Tθµ(θ)

]
;

Eθ
{

eU1(CT (θ))U2(XT − CT(θ))
}

= 1
4

[
x2

0e2σ 2T+2σTθ − [λ(θ) + Tθµ(θ)]2 − Tµ(θ)2
]
.

Denote λ̄(θ) := λ(θ) + Tθµ(θ). Then the suboptimal principal’s problem is a deter-
ministic calculus of variations problem given by

max
λ̄,µ

θH∫

θL

x2
0e2σ 2T+2σTθ − λ̄(θ)2 − Tµ(θ)2

x0e
1
2 σ 2T+σTθ − λ̄(θ)

dF(θ)
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under the constraints:

λ̄′(θ) = Tµ(θ); µ ≥ 0; µ′ ≤ 0;

λ̄(θ) + µ(θ)

σ
[log(µ(θ)) − Tσθ − 1 − log(x0σ)] ≤ 0;

1
2

[
x0e

1
2 σ 2T+σTθ − λ̄(θ)

]
≥ er(θ).

This is still a hard problem. A further simplification would be to set µ = µ0, a
constant, and to consider only those λ(θ) for which there is an admissible solution
CT = C(T, XT , BT , µ0, λ(θ)) to the first order condition (2.30). The first order condi-
tion for truth-telling is

λ′(θ)E
[

Mθ
TeU1(CT )U′

1(CT)
∂

∂λ
C(T, XT , BT , µ0, λ(θ))

]

= 0

In general, this will be satisfied only if λ = λ0 is a constant independent of θ . Thus,
we reduce a calculus of variations problem to a regular calculus problem of finding
optimal λ0 (and µ0, if we don’t fix it). We no longer have a menu of contracts, but the
same contract for each type.

Assume now θL ≥ 0. Moreover, set µ ≡ 0, and assume that

λ̃ := xeσθLT − 2er0 < 0

The first order condition (2.30) with µ = 0 gives

CT = 1
2
(XT − λ)

and in order to satisfy the IR constraint

er0 = EθL [CT ] = 1
2
(xeσθLT − λ)

we need to take λ = λ̃. By the assumptions, we have CT > 0, and CT is then the
optimal contract among those for which µ = 0, and it is linear, and of the same form
as the second best contract. The corresponding u is obtained by solving the BSDE

Ȳt = Eθ
t [CT ] = Ȳ0 +

t∫

0

Ȳt(ut − θ)dBθ
t

Since

Eθ
t [CT ] = 1

2
(Xteσθ(T−t) − λ) = Ȳ0 + 1

2

t∫

0

eσθ(T−t)σXtdBθ
t

we get

ut − θ = eσθ(T−t)σXt

eσθ(T−t)Xt − λ
= σ + σλ

eσθ(T−t)Xt − λ
.

Recall that λ < 0. We see that the effort is increasing in the value of the output so
when the promise of the future payment gets higher, the agent works harder. More-
over, the agent of higher type applies more effort, with very high types getting close
to the effort’s upper bound σ .
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The principal’s expected utility is found to be

θH∫

θL

e−R(θ)Eθ [CT(XT − CT)]dF(θ)

=
θH∫

θL

e−R(θ)[xer0+σθLT − e2r0 ]dF(θ) +
θH∫

θL

e−R(θ)

[
x2

4
[e(2σθ+σ 2)T − e2σθLT ]

]

dF(θ)

The first integral is what the principal can get if he pays a constant payoff CT , in which
case the agent would choose u − θ ≡ 0. The additional benefit of providing incentives
to the agent to apply non-zero effort u − θ is represented by the second integral. This
increases quadratically with the initial value of the output, increases exponentially
with the volatility squared, and decreases exponentially with the agent’s reservation
utility (because eR(θ) = er0 + x

2 [eσθT − eσθLT ]) . Since the principal is risk-neutral, he
likes high volatility.

Let us mention that it is shown in CWZ [8] that in this example of Case 3, the
first-best value for the principal is actually infinite, while the second-best is finite. Let
us also mention that we don’t know how far from optimal the above contract is, in our
third-best world.

5 Model II: control of the volatility-return trade-off

Consider the model

dXt = θvtdt + vtdBθ
t = vtdBt

where vt is controlled, with no cost function. We assume that v is FB-adapted pro-
cess such that E

∫ T
0 v2

t dt < ∞, so that X is a martingale process under P. We will
follow similar steps as in the previous sections, but without specifying exact technical
assumptions.

One important example that corresponds to this model is the example of a portfolio
manager whose portfolio value is given by the process X, and who produces expected
return rate (above the risk-free rate) θvt. In other words, θ is the Sharpe-ratio that
the manager is able to achieve.

Remark 5.1 As an illustrative example, suppose that an investment fund manager
dynamically re-balances the money between a risk-free asset and, for simplicity, only
one risky asset, but the choice of the risky asset may change over time. In the sequel,
we will see that the optimal contract will depend heavily on BT = Bθ

T + θT. If the
manager invests in the same risky asset all the time, the Sharpe-ratio of the risky asset
is the same as the Sharpe-ratio of the fund. In that case, BT can be obtained from a
weighted average of the risky asset’s log-prices. In particular, if the volatility of the
risky asset is constant, BT is a function of the time T-value of the risky asset. In this
case, the contracts below use the underlying risky asset as a benchmark, indirectly, via
BT . However, this interpretation is no longer valid when the manager keeps changing
the choice of the risky asset, in which case BT depends on the Sharpe-ratio specific to
the manager, and is not an exogenously given benchmark.2

2 We thank the referee for pointing this out.



48 J. Cvitanić, J. Zhang

We now assume that v, X are observed by the principal, but θ , Bθ are not. This
is consistent with the above application, in the sense that it is well known that it is
much harder for the principal to estimate what level of expected return a portfolio
manager can achieve, than to estimate the volatility of her portfolio. Actually, in our
model, instead of estimation, the principal has a prior distribution for θ , maybe based
on historical estimation. On the other hand, we assume somewhat unrealistically, but
in agreement with existing models, that the manager knows with certainty the mean
Sharpe-ratio θ she can achieve, and she does not have to estimate it.

As before, let

Mθ
T = exp

(

θBT − 1
2
θ2T

)

.

The agent’s utility is

R(θ) := E
{

Mθ
TU1(CT(θ))

}
, (5.1)

and the IR constraint and the first order truth-telling constraint are

R(θ) ≥ r(θ); E
{

Mθ
TU′

1(CT(θ))∂θ CT(θ)
}

= 0.

Note that, by differentiating (5.1) with respect to θ , we have

E
{

Mθ
TU1(CT(θ))[BT − θT] + Mθ

TU′
1(CT(θ))∂θ CT(θ)

}
= R′(θ),

which implies that

E
{

BTMθ
TU1(CT(θ))

}
= [R′(θ) + TθR(θ)]. (5.2)

There is also a constraint on XT , which is the martingale property, or “budget
constraint”

E[XT ] = x.

It is sufficient to have this constraint for the choice of XT , because we are in a “com-
plete market” framework. More precisely, for any FT -measurable random variable
YT that satisfies E[YT ] = x, there exists an admissible volatility process v such that
XT = Xv

T = YT , by the martingale representation theorem (as is well known in the
standard theory of option pricing in complete markets). This constraint is conveniently
independent of θ .

If we denote by ν the Lagrange multiplier corresponding to that constraint, the
Lagrangian relaxed problem for the principal is then to maximize, over XT , CT ,

E

⎡

⎢
⎣

θH∫

θL

{Mθ
TU2(XT − CT(θ)) − ν(θ)XT − Mθ

TU1(CT(θ))[λ(θ) + µ(θ)BT ]}dF(θ)

⎤

⎥
⎦

(5.3)

If we take derivatives with respect to XT and disregard the expectation, we get that
the optimal XT is obtained from

Mθ
TU′

2(XT − CT(θ)) = ν(θ) (5.4)
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or, denoting

Ii(x) = (U′
i)

−1(x),

XT = CT(θ) + I2

(
ν(θ)

MT(θ)

)

(5.5)

Substituting this back into the principal’s problem, and noticing that

WT(θ) := XT − CT(θ),

is fixed by (5.4), we see that we need to maximize over CT(θ) the expression

E

⎡

⎢
⎣

θH∫

θL

{−ν(θ)[WT(θ) + CT(θ)] − Mθ
TU1(CT(θ))[λ(θ) + µ(θ)BT ]}dF(θ)

⎤

⎥
⎦

If λ(θ) + µ(θ)BT < 0, the integrand is maximized at CT = I1(
−ν

Mθ
T (λ+µBT )

) where I1

is defined in (5.5). However, if λ(θ) + µ(θ)BT ≥ 0, the maximum is attained at the
smallest possible value of CT . Therefore, in order to have a solution, we assume that
we have a lower bound on CT(θ),

CT(θ) ≥ L

for some constant L. Also, to avoid trivialities, we then assume

Eθ [U1(L)] ≥ r(θ) , θ ∈ [θL, θH]
Thus, the optimal CT(θ) is given by

ĈT(θ) = L ∨ I1

(
−ν(θ)

Mθ
T(λ(θ) + µ(θ)BT)

)

1{λ(θ)+µ(θ)BT<0} + L1{λ(θ)+µ(θ)BT≥0}. (5.6)

Remark 5.2 (i) Notice from (5.4) that the optimal terminal output is given by

X̂T = I2

(
ν(θ)

Mθ
T

)

+ ĈT(θ).

Hence, the problem of computing the optimal volatility v̂ is mathematically
equivalent to finding a replicating portfolio for this payoff X̂T , which is a func-
tion of BT (an “option” written on BT).

(ii) Note that the optimal contract does not depend on the agent’s action process
vt or the output X, but only on her type θ and the underlying (fixed) noise BT .
Thus, the agent is indifferent between different choices of action v given this
contract. We discuss this issue in more detail in (iii) below, and the next section.

(iii) In the first part of the paper, with controlled drift, the optimal contract was only
a function of the final values XT , BT , and this was true because of the assumption
of the quadratic cost. Here, with volatility control, it can be shown, similarly as in
[6,26], that even if there was a general cost function on the volatility, the optimal
payoff ĈT would still be a function of BT only. However, unlike in those two
papers, the optimal contract, in addition to specifying the payoff ĈT , also has to
specify the whole path of v, which the principal has to ask the agent to follow
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(more on this in the next section). In other words, the optimal contract is a pair
(ĈT , v). Notice that we can write

BT = θT + Bθ
T =

T∫

0

dXt

vt

so that the optimal payoff ĈT is a function of the volatility weighted average of
the accumulated portfolio value. This is because that value is a sufficient statistic
for the unknown parameter θ , as first pointed out in the moral hazard context
by Holmstrom [16].3

(iv) Our framework is a pure adverse selection framework without moral hazard, in
the sense that v is observable, as a quadratic variation of the observable process
X. In [26] it is assumed that only XT is observable (in addition to the underly-
ing stock prices), but, nevertheless, the first-best efficiency is attained, since the
first-best optimal contract depends only on XT in [26] anyway.

Example 5.1 Consider the case U1(x) = log x. If L = 0, for example, we get that,
omitting dependence on θ ,

CT = −1
ν

Mθ
T(λ + µBT)1{λ+µBT<0}.

Notice that this contract is not linear in XT , BT , unlike the case of controlled drift,
in which the optimal contract is given by (4.4) (if the principal is risk-neutral). The
nonlinearity has two causes: µ(θ) may be different from zero (binding truth-telling
constraint), and Mθ

T may be a nonlinear function of XT (this depends on the principal’s
utility).

Next, we would have to compute Eθ [U1(CT(θ))] and Eθ [BTU1(CT(θ))] in terms of
the normal distribution function, in order to get a system of two nonlinear equations
in λ and µ. However, this is hard. Suppose now that we have the case in which the
agent/manager re-balances money between a risk-free asset with interest rate zero,
and a single risky asset with price St = e−tσ 2/2+σBt (the Black–Scholes model). Even
though we are unable to compute λ and µ, we can see what the shape of the optimal
contract is, as a function of the underlying risky asset S. It can easily be checked that

BT = 1
σ

log(ST) + 1
2
σ 2T

Mθ
T = e− 1

2 θ2T+ 1
2 σ 2T(ST)

θ
σ

This gives, omitting dependence on θ ,

CT = 1
ν
(ST)

θ
σ

[
−µ

σ
log(ST) − λ − µ

2
σ 2T

]
e− 1

2 θ2T+ 1
2 σ 2T1{λ+ µ

σ
log(ST )+ µ

2 σ 2T<0}

It can be verified that for high types, that is, high values of the asset’s risk premium θ ,
this is an increasing convex function of ST , and it is concave for low types. This is not
with the intention to penalize the low types, since a similar functional form holds true

3 We thank the referee for pointing out this intuition.
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even when the agent invests for herself, not for the principal. In fact, in that case we
would simply have µ = 0 and (see, for example, [22])

CT = −λ

ν
Mθ

T

It can then be checked that there is no log(ST) term, which means that the functional
form of CT is concave if θ/σ < 1, while here it is concave if θ/σ < c∗, where c∗ < 1,
so that fewer agents are considered low type. Notice also that the payoff is zero for
large values of ST , unlike in the first-best case. This is necessary in order to induce
truth-telling, otherwise, because of concavity vs. convexity of the payoff, the lower
type agents would pretend they were high type.

5.1 Comparison with the first-best

We now consider the pure adverse selection model

dXt = θvtdt + vtdBt

where everything is observable. This model was considered in CCZ [6]; also in
Ou-Yang [26], but with only XT observable (see Remark 5.2, though) . We recall
some results from those papers.

Denote

Zθ
t = e−tθ2/2−θBt .

We have the budget constraint E[Zθ
t Xt] = x. Similarly as in CCZ [6], it follows that

the first order conditions are

XT − CT(θ) = I2(ν(θ)Zθ
T)

CT(θ) = L ∨ I1(µ(θ)Zθ
T)

where ν(θ) and µ(θ) are determined so that E[Zθ
TXT ] = x and the IR constraint is

satisfied.
We see that the contract is of the similar form as the one we obtain for the relaxed

problem in the adverse selection case, except that in the latter case there is an addi-
tional randomness in determining when the contract is above its lowest possible level
L; see (5.6). With adverse selection, for the contract to be above L, we need, in addi-
tion to the first-best case requirements, that λ + µBT is small enough, which is the
same as small values of λ + µ

∫ T
0

1
vt

dXt or the small values of λ + µ(Bθ
T + θT). Thus,

the contract depends on average values of X normalized by volatility, equivalently on
return plus noise.

In the first best case the ratio of marginal utilities U′
2/U′

1 is constant, if CT > L. In
the adverse selection relaxed problem, we have, omitting dependence on θ ,

U′
2(XT − ĈT)

U′
1(ĈT)

= −1{ĈT>L}[λ + µBT ] + 1{ĈT=L}
ν

U′
1(L)Mθ

T

where ĈT is given in (5.6). We see that this ratio may be random, as in the case of
controlled drift, but it is no longer linear in X (or BT).

In the first best case (see CCZ [6]), the optimal contract is not unique, and it is also
optimal to offer the contract

CT = XT − I2(νZθ
T). (5.7)
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Not only that, but this contract is incentive in the sense that it will force the agent to
implement the first-best action process v, without the principal telling her what to do.
This is not the case with adverse selection, in which the agent is given the contract
payoff (5.6). As noted above, payoff ĈT does not depend on the output X, but only
on the exogenous random variable BT and the agent’s type θ , so that the payoff does
not depend on the agent’s performance, hence it is not incentive in the sense that
the agent is indifferent what action vt she will use. Thus, the principal should tell the
agent which vt to use, or alternatively, we can assume that the agent will follow the
principal’s best interest.

If we tried a different contract which would be incentive, similar to the first-best
contract (5.7), for example if we assumed that the agent is given a symmetric bench-
mark contract, as is typical in portfolio management,

CT = αXT − βT

where βT is a benchmark random variable, the following would happen: assuming the
agent can choose v freely, it can be shown that at the optimum for the principal we
have α → 0, and βT → ĈT , where ĈT is given by (5.6).

To recap, our analysis indicates that in the “portfolio management” model of this
section, in which the portfolio strategy vt of the manager is observed, but the expected
return θ on the managed portfolio is unobserved by the principal, (while known by the
manager), a non-incentive, non-benchmark (but random) payoff ĈT is optimal (pro-
viding that the solution of the relaxed problem is indeed the solution to the original
problem). That payoff depends on the underlying source of risk BT .

6 Conclusions

We consider several models of adverse selection with dynamic actions, with control of
the return, and with control of the volatility. The problem can be transformed into a
calculus of variations problem on choosing the optimal expected utility for the agent.
When only the drift is controlled and the cost on the control of the return is quadratic,
the optimal contract is a function of the final output value (typically nonlinear). When
the volatility is controlled, the optimal contract is a non-incentive random payoff. The
article Admati and Pfleiderer [1] argues against the use of benchmarks when reward-
ing portfolio managers, in favor of using contracts which depend only on the value
of the output process. While our optimal contracts are not of a typical benchmark
type, the payment, in addition to being the function of the underlying output, also
depends on whether the driving noise process happened to have a high or a low value.
In specific simple examples in our model, this is equivalent to the underlying risky
assets attaining a high or a low value, and thus, there is a role for a “benchmark” in
compensation, even though not by comparing the managed output to the benchmark
output. Comparing to CWZ [8] and CCZ [6], we see that this extra randomness comes
from the adverse selection effect.

We do not model here the possibility of a continuous payment or a payment at a
random time chosen by the agent, or the possibility of renegotiating the contract in the
future. Moreover, we do not have general results on how far away from optimal are
specific truth-telling contracts that we identify. These and other timing issues would
be of significant interest for future research.
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7 Appendix

Proof of Theorem 4.1. By the assumed extended version of Assumption 2.2 and by
(4.2), we can write the optimal contract CT(θ) = H̃(XT , W(θ)), where H̃ is a determin-
istic function defined by (2.25). For notational simplicity at below we denote H := H̃.
Then

eV(θ ,θ̃ ) = E{Mθ
Tϕ(XT , W(θ̃))}; ϕ(x, z) := eU1(H(x,z)).

If λ is convex and µ is linear, then W(θ) is convex as a function of θ . We claim that

ϕz < 0; ϕzz < 0. (7.8)

If so, then for any θ1, θ2 ∈ [θL, θH] and any ϕ ∈ [0, 1],
ϕ(XT , W(αθ1 + (1 − α)θ2)) ≥ ϕ(XT , αW(θ1) + (1 − α)W(θ2))

≥ αϕ(XT , W(θ1)) + (1 − α)ϕ(XT , W(θ2)).

That implies that eV(θ ,θ̃ ) is concave in θ̃ . By the first order condition, we get

eV(θ ,θ) = max
θ̃

eV(θ ,θ̃ ).

Therefore, we have truth-telling.
It remains to prove (7.8). Note that

ϕz = ϕU′
1Hz; ϕzz = ϕ

[
|U′

1Hz|2 + U
′′
1 |Hz|2 + U′

1Hzz

]
;

Recall that

U2(x − H(x, z)) − U′
2(x − H(x, z))

U′
1(H(x, z))

= z.

Then

Hz = |U′
1|2

−|U′
1|2U′

2 + U′
1U

′′
2 + U

′′
1U′

2

< 0.

Thus, ϕz < 0.
Moreover,

Hzz = I2
z

[
2U

′′
1

U′
1

+ −2U′
1U

′′
1U′

2 + |U′
1|2U

′′
2 − U′

1U
′′′
2 + U

′′′
1 U′

2

|U′
1|2U′

2 − U′
1U

′′
2 − U

′′
1U′

2

]

.

So

ϕzz = ϕH2
z

[

|U′
1|2 + U

′′
1 + 2U

′′
1 + U′

1
−2U′

1U
′′
1U′

2 + |U′
1|2U

′′
2 − U′

1U
′′′
2 + U

′′′
1 U′

2

|U′
1|2U′

2 − U′
1U

′′
2 − U

′′
1U′

2

]

= − ϕH3
z

|U′
1|2

[
[|U′

1|2 + 3U
′′
1 ][|U′

1|2U′
2 − U′

1U
′′
2 − U

′′
1U′

2]

+U′
1[−2U′

1U
′′
1U′

2 + |U′
1|2U

′′
2 − U′

1U
′′′
2 + U

′′′
1 U′

2]
]

= − ϕH3
z

|U′
1|2

[
[|U′

1|4 + U′
1U

′′′
1 − 3|U ′′

1 |2]U′
2 − 3U′

1U
′′
1U

′′
2 − |U′

1|2U
′′′
2

]
.

By (4.1) we get ϕzz ≤ 0. ��
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