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RATE OF CONVERGENCE
OF FINITE DIFFERENCE APPROXIMATIONS

FOR DEGENERATE ORDINARY DIFFERENTIAL EQUATIONS

JIANFENG ZHANG

Abstract. In this paper we study finite difference approximations for the
following linear stationary convection-diffusion equations:

1

2
σ2(x)u′′(x) + b(x)u′(x) − u(x) = −f(x), x ∈ R,

where σ is allowed to be degenerate. We first propose a new weighted finite dif-
ference scheme, motivated by approximating the diffusion process associated
with the equation in the strong sense. We show that, under certain conditions,
this scheme converges with the first order rate and that such a rate is sharp. To
the best of our knowledge, this is the first sharp result in the literature. More-
over, by using the connection between our scheme and the standard upwind
finite difference scheme, we get the rate of convergence of the latter, which is
also new.

1. Introduction

Numerical methods for degenerate (elliptic or parabolic) PDEs, in particular
degenerate HJB equations, have been studied by many authors. Notable works
include: Markov chain approximation (e.g., Kushner-Dupuis [19]); viscosity solu-
tion method (e.g., Barles-Souganidis [3]); the works by Menaldi ([20]) and Camilli-
Falcone ([10]) on the so-called “control scheme”; Krylov’s “shaking the coefficients”
method ([16], [17]) and its extension by Barles-Jakobsen ([1]); the recent work by
Bonnans-Zidani ([4]); Karlsen’s series of works, especially on the so-called entropy
weak solutions to degenerate PDEs with discontinuous coefficients (e.g., [12], [9],
[15]); as well as finite element methods such as the SPUG method (e.g., Brooks-
Hughes [8]) and bubbles method (e.g., Brezzi et al. [5], [7], [6]), to mention a few.
After this work was submitted for publication, we also learned that some new pro-
gresses were made on the subject (see, Jakobsen [13], Barles-Jakobsen [2], Krylov
[18], and Dong-Krylov [11]).

Despite all these works, the rate of convergence of numerical approximations for
degenerate PDEs is far from being fully understood. It is somewhat surprising that
even for degenerate linear ODEs, there are no sharp results in the literature. To
the best of our knowledge, the best rates are h

1
3 for finite difference schemes (see

[16] or [1]) and h
1
2 for control schemes (see [20]). The major difficulty lies in the
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fact that, even if all the coefficients are infinitely smooth with compact support,
the solutions to degenerate linear ODEs (not to mention fully nonlinear PDEs) are
in general not sufficiently smooth.

We intend to understand how much one can expect to achieve on the rate of con-
vergence of finite difference approximations for degenerate PDEs. Instead of being
ambitious on generalization, in this paper we focus on the following 1-dimensional
linear stationary convection-diffusion equations:

1
2
σ2(x)u′′(x) + b(x)u′(x) − u(x) = −f(x), x ∈ R,(1.1)

where, of course, σ is allowed to be degenerate.
Our goal of the paper is twofold. We first propose a weighted finite difference

scheme, motivated by some probabilistic approximation. Unlike classical Markov
chain approximations which approximate the diffusion process associated with (1.1)
in a weak or distributional sense (in other words, it matches the transition probabil-
ities of the Markov chain with the coefficients of the finite difference equations, see,
e.g., [19]), we try to approximate the diffusion process in a strong sense. Such an
idea was also used by Menaldi [20]. It turns out that these approximating processes
can lead to probabilistic solutions of some finite difference equations, but with coef-
ficients different from standard ones. We prove that, under certain conditions, our
scheme converges with a rate of convergence h and that such a rate is sharp.

We next study the standard upwind finite difference schemes. We find that the
standard finite difference approximation to (1.1) is the same as our new weighted
finite difference approximation to a new ODE with modified coefficients σh, bh.
We estimate the errors of σh, bh from σ, b, respectively, and then prove that this
scheme converges with a rate of convergence h

1
2 , and the rate becomes h given some

stronger conditions. The latter rate h is also sharp, however, the sharpness of the
general rate h

1
2 is still unknown.

At this point we should mention that our method takes advantage of some special
properties of one dimension, and thus may be difficult to extend directly to high-
dimensional equations. However, besides the fact that this is the first sharp result
in the literature, it provides a benchmark on what one can (or what one cannot)
expect in high dimensions.

The rest of the paper is organized as follows. In §2 we introduce the two finite
difference schemes and state the main results. In §§3 and 4 we study the weighted
and the standard finite difference schemes, respectively. In §5 we provide some
counterexamples which show that some estimates in §2 are sharp. Finally some
technical proofs are presented in the last section.

2. Main results

We first consider the following standard upwind finite difference approximation
for (1.1):

1
2
σ2(x)

us
h(x + h) + us

h(x − h) − 2us
h(x)

h2
+ (b(x) ∨ 0)

us
h(x + h) − us

h(x)
h

+(b(x) ∧ 0)
us

h(x) − us
h(x − h)

h
− us

h(x) = −f(x).

Here the superscript s is the abbreviation for “standard”. To simplify the presenta-
tion, throughout the paper we assume b(x) ≥ 0. Then the above discrete equation
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can be rewritten as

1
2
σ2(x)

us
h(x + h) + us

h(x − h) − 2us
h(x)

h2
+ b(x)

us
h(x + h) − us

h(x)
h

− us
h(x)

= −f(x).

(2.1)

Our first main result is the following theorem.

Theorem 2.1. Assume σ, b are bounded and σ, b, f ∈ C2 with bounded derivatives.
Assume further that

L
�
= sup

x

∣∣∣2b′(x) + |σ′(x)|2
∣∣∣ ∨ sup

x
|b′(x)| < 1.(2.2)

Then there exists a constant C, depending on L, the bounds of σ, b, and the bounds
of the derivatives, such that

|us
h(x) − u(x)| ≤ Ch.(2.3)

This rate is sharp.

We note that a condition similar to (2.2) was used by Menaldi [20]. We also note
that when the solution u (not the coefficients!) is smooth enough, it is possible to
obtain a much better rate.

In order to study a more general case where the coefficients are not in C2, we
adopt the following assumption:

(A) σ, b are Lipschitz continuous and f is bounded and Hölder-α continuous for
some α ∈ (0, 1].

Let Lb denote the Lipschitz constant of b, and let β > 0 be some arbitrary
constant such that βLb < 1. Throughout the paper, we use a generic constant C,
which may vary from line to line, to denote upper bounds of estimates which may
depend on α, β, the Lipschitz constants of σ, b, the Hölder constant of f , as well as
some others specified in the context. We then have the following results.

Theorem 2.2. Assume (A).
(i) If b is bounded, then

|us
h(x) − u(x)| ≤ Ch

1
2 (β∧α).(2.4)

(ii) If σ = 0 or b
σ is bounded (e.g., b = 0 or σ is uniformly nondegenerate), then

we obtain the sharp rate

|us
h(x) − u(x)| ≤ Chβ∧α.(2.5)

Remark 2.3. The sharpness of (2.4) is still unknown.

In order to prove Theorems 2.1 and 2.2, we introduce another weighted finite
difference approximation for (1.1). This scheme is interesting in its own right, and
is new to the best of our knowledge. To this end, we note that (2.1) is equivalent
to

us
h(x) = ps

h(x)us
h(x + h) + qs

h(x)us
h(x − h) + f(x)[1 − ps

h(x) − qs
h(x)],

(2.6)

where

ps
h

�
=

σ2 + 2bh

2[σ2 + bh + h2]
; qs

h
�
=

σ2

2[σ2 + bh + h2]
.(2.7)
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By using the superscript w to denote “weighted”, we define our new scheme as
follows:

uw
h (x) = pw

h (x)uw
h (x + h) + qw

h (x)uw
h (x − h) + f(x)[1 − pw

h (x) − qw
h (x)],

(2.8)

where

pw
h

�
=

1
2

exp(
bh

σ2
)
[
cosh(

√
b2 + 2σ2

σ2
h)

]−1

,

qw
h

�
=

1
2

exp(− bh

σ2
)
[
cosh(

√
b2 + 2σ2

σ2
h)

]−1

.

(2.9)

When σ = 0, we take the limits of the above expressions as the values of pw
h and

qw
h . To be specific, we define that⎧⎪⎪⎨

⎪⎪⎩
pw

h

�
= exp(−h

b ), qw
h

�
= 0, if b > 0,

pw
h

�
= 0, qw

h

�
= exp(−h

b ), if b < 0,

pw
h

�
= 0, qw

h

�
= 0, if b = 0.

We note that when σ > 0, it holds that limh→0
pw

h

ps
h

= limh→0
qw

h

qs
h

= 1. In this sense
(2.8) and (2.6) are asymptotically equivalent, and thus one may expect that uw

h is
also an approximation of u. This is indeed true.

Theorem 2.4. Assume (A). Then we have the following sharp estimate:

|uw
h (x) − u(x)| ≤ Chβ∧α.(2.10)

3. The weighted finite difference scheme

In this section we shall prove (2.10) and leave the sharpness to §5. First, it is
well known that the solution to (1.1) can be written as

u(x) = Ex

{∫ ∞

0

e−tf(Xt)dt
}
,(3.1)

where X is the solution to the following SDE:

Xt = x +
∫ t

0

σ(Xr)dWr +
∫ t

0

b(Xr)dr.(3.2)

Here the subscript x in Ex indicates the fact that X0 = x, but for simplicity we
shall omit it in the sequel when there is no confusion. The solution is unique in the
sense that u is bounded whenever f is bounded. We refer the readers to [14] or [21]
for basic theories of stochastic calculus.

The main idea for proving (2.10) is to find a similar probabilistic expression for
uw

h . We proceed by “freezing” the coefficients in (3.2). To this end, we fix h and

x, and construct a sequence of increasing stopping times τn
�
= τh,x

n and a process

Xh �
= Xh,x as follows. First we define τ0

�
= 0, Xh

τ0

�
= x. Then for n = 1, 2, · · · ,

define

τn
�
= inf{t > τn−1 :

∣∣∣σ(Xh
τn−1

)[Wt − Wτn−1 ] + b(Xh
τn−1

)[t − τn−1]
∣∣∣ = h},

(3.3)
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and for t ∈ (τn−1, τn],

Xh
t

�
= Xh

τn−1
+ σ(Xh

τn−1
)[Wt − Wτn−1 ] + b(Xh

τn−1
)[t − τn−1].(3.4)

We note that these processes were also used by Menaldi [20]. Since σ and b are
Lipschitz continuous, hence grow at most linearly, one can easily show that τn ↑ ∞,
almost surely. Denote τ (t)

�
= τn−1 for t ∈ [τn−1, τn). Then obviously it holds that

|Xh
τ(t) − Xh

t | ≤ h, a.s.(3.5)

and that

Xh
t = x +

∫ t

0

σ(Xh
τ(s))dWs +

∫ t

0

b(Xh
τ(s))ds.(3.6)

The following lemma gives the probabilistic solution to (2.8).

Lemma 3.1. Assume all the conditions in Theorem 2.4 hold true. Then

uw
h (x) = Ex

{∫ ∞

0

e−tf(Xh
τ(t))dt

}
.(3.7)

Proof. Let ūh denote the right side of (3.7). Then

ūh(x) = Ex

{( ∫ τ1

0

+
∫ ∞

τ1

)
e−tf(Xh

τ(t))dt
}

= Ex

{∫ τ1

0

e−tf(Xh
τ0

)dt +
∫ ∞

0

e−τ1−sf(X
h,Xh

τ1

τ
h,Xh

τ1 (s)
)ds

}
,

where τh,Xh
τ1 and Xh,Xh

τ1 are defined in the same way as τh(= τh,x) and
Xh(= Xh,x), with the initial value x replaced by Xh,x

τ1
. Note that Xh,x

τ0
= x

and Xh,x
τ1

= x ± h. Then one can check directly that

ūh(x) = p̄h(x)ūh(x + h) + q̄h(x)ūh(x − h) + f(x)[1 − p̄h(x) − q̄h(x)],
(3.8)

where

p̄h(x)
�
= Ex

{
e−τ11{Xh

τ1
=x+h}

}
, q̄h(x)

�
= Ex

{
e−τ11{Xh

τ1
=x−h}

}
.

(3.9)

So it suffices to show that

p̄h(x) = pw
h (x), q̄h(x) = qw

h (x).(3.10)

Without loss of generality, we shall prove (3.10) only for x = 0.
We note that by (3.3) and (3.4) one can calculate p̄h and q̄h straightforwardly

(see, e.g., [14]) and thus prove (3.10). But here we would like to provide another
argument which avoids the probabilistic calculation. To this end, we consider the
following ODE with constant coefficients:

1
2
σ2(0)ū′′(x) + b(0)ū′(x) − ū(x) = −f(x).(3.11)

By (3.1) we have

ū(x) = Ex

{ ∫ ∞

0

e−tf(X̄t)dt
}

,
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where X̄ satisfies

X̄t = x +
∫ t

0

σ(0)dWr +
∫ t

0

b(0)dr = x + σ(0)Wt + b(0)t.

Note that p̄h(0) and q̄h(0) involve only σ(0) and b(0). Following the same arguments
as for (3.8) we get, for the same p̄h(0) and q̄h(0) as in (3.9),

ū(0) = p̄h(0)ū(h) + q̄h(0)ū(−h) + f(0)[1 − p̄h(0) − q̄h(0)].(3.12)

We note that (3.12) holds true for all f and the corresponding solution ū. Choose
f such that f(x) = 0 for |x| < h and f ′(h) 	= 0, f ′(−h) 	= 0. Then in (−h, h), ū
satisfies the homogeneous ODE:

1
2
σ2(0)ū′′(x) + b(0)ū′(x) − ū(x) = 0.

Thus, for x ∈ (−h, h),
ū(x) = αeλ1x + βeλ2x,

where α, β are two constants, and

λ1
�
=

−b(0) +
√

b2(0) + 2σ2(0)
σ2(0)

, λ2
�
=

−b(0) −
√

b2(0) + 2σ2(0)
σ2(0)

.

Now by the continuity of ū we have

ū(h) = αeλ1h + βeλ2h, ū(−h) = αe−λ1h + βe−λ2h.

By straightforward calculation we get the values of α, β and check that

ū(0) = α + β = pw
h (0)ū(h) + qw

h (0)ū(−h).(3.13)

Since f(0) = 0, (3.12) becomes

ū(0) = p̄h(0)ū(h) + q̄h(0)ū(−h).(3.14)

Compare (3.13) and (3.14), and note that both of them hold true for arbitrary
values of ū(h) and ū(−h); we prove (3.10) at x = 0, and hence the lemma. �

To prove the theorem, we shall need another technical lemma. The arguments
of the proof are mainly due to N. Krylov. We refer the readers to [14] or [21] again
for preliminary materials.

Lemma 3.2. Let X be the solution to the following linear SDE:

Xt = x +
∫ t

0

(αsXs + βs)dWs +
∫ t

0

(γsXs + λs)ds,

where |αt| ≤ K1, |γt| ≤ K2 for some K1, K2 > 0. Then for any ε > 0, there exist
constants C and q > 2, depending only on K1, K2 and ε, such that

E{|Xt|} ≤ Ce(K2+ε)t
[
|x| + E

{∫ t

0

[|βs|q + |λs|q]ds
} 1

q
]
, ∀t ≥ 0.

(3.15)

Moreover, if |βt|, |λt| ≤ K3, then there exists C which may depend on K3 as
well, such that

E{|Xt|} ≤ Ce(K2+ε)t[|x| + K3], ∀t ≥ 0.(3.16)
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Proof. Apply (3.15) with ε
2 and note that t

1
q ≤ Ce

ε
2 t; one proves (3.16).

So it remains to prove (3.15). To this end, we denote

dW̃t
�
= dWt−αtdt, Mt

�
= exp

(
−
∫ t

0

αsdWs+
1
2

∫ t

0

α2
sds

)
, Λt

�
= exp

{
−

∫ t

0

γsds
}

.

By the Girsanov Theorem, W̃ is a Brownian motion under a new probability mea-
sure P̃ such that Ẽ{ξt} = E{M−1

t ξt} for any ξt ∈ Ft. Applying Itô’s formula one
gets

d(XtMtΛt) = MtΛt[βtdW̃t + λtdt].

Denote

Nt
�
= XtMtΛt = x +

∫ t

0

MsΛsβsdW̃s +
∫ t

0

MsΛsλsds.

Then

E{|Xt|} = Ẽ{Mt|Xt|} = Ẽ{NtΛ−1
t }.(3.17)

By the Ito formula again we have

d(NtΛ−1
t ) = γtNtΛ−1

t dt + MtβtdW̃t + Mtλtdt.

Thus, by noting that |γt| ≤ K2,

Ẽ{|NtΛ−1
t } ≤ |x| + K2

∫ t

0

Ẽ{|NsΛ−1
s |}ds + Ẽ

{∣∣∣ ∫ t

0

MsβsdW̃s +
∫ t

0

Msλsds
∣∣∣}.

(3.18)

Let p ∈ (1, 2) be a constant determined later, and let q > 2 be its conjugate. Denote

M∗
t

�
= sup0≤s≤t |Ms| and p1

�
= p(1 + 1

q ) = 2p − 1. Applying the Burkholder-Davis-
Gundy inequality we have

Ẽ
{∣∣∣ ∫ t

0

MsβsdW̃s +
∫ t

0

Msλsds
∣∣∣}

≤ Ẽ
{
(
∫ t

0

|Msβs|2ds)
1
2

}
+ Ẽ

{∫ t

0

|Msλs|ds
}

≤ Ẽ
{
|M∗

t |1+
1
q

[
(
∫ t

0

M
− 2

q
s |βs|2ds)

1
2 +

∫ t

0

M
− 1

q
s |λs|ds

]}

≤ CẼ{|M∗
t |p1}

1
p Ẽ

{[
(
∫ t

0

M
− 2

q
s |βs|2ds)

q
2 + (

∫ t

0

M
− 1

q
s |λs|ds)q

]} 1
q

≤ CẼ{|M∗
t |p1}

1
p Ẽ

{ ∫ t

0

M−1
s [|βs|q + |λs|q]ds

} 1
q

[t1−
2
q + t1−

1
q ]

≤ CẼ{|M∗
t |p1}

1
p E

{∫ t

0

[|βs|q + |λs|q]ds
} 1

q

[t1−
2
q + t1−

1
q ].

(3.19)
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Note that |αt| ≤ K1 and that Mt = exp(−
∫ t

0
αsdW̃s− 1

2

∫ t

0
α2

sds) is a P̃ -martingale.
Then by Doob’s inequality one gets

Ẽ{|M∗
t |p1} ≤ CẼ{|Mt|p1} = Ẽ

{
exp

(
− p1

∫ t

0

αsdW̃s −
p1

2

∫ t

0

α2
sds

)}

≤ CẼ
{

exp
(
− p1

∫ t

0

αsdW̃s −
p2
1

2

∫ t

0

α2
sds +

p2
1 − p1

2
K2

1 t
)}

= C exp(
p2
1 − p1

2
K2

1 t),

where the last equality, thanks to the fact that exp(−p1

∫ t

0
αsdW̃s − p2

1
2

∫ t

0
α2

sds), is
a P̃ -martingale. Plugging this into (3.19) and then into (3.18) we get

Ẽ{|NtΛ−1
t } ≤ |x| + K2

∫ t

0

Ẽ{|NsΛ−1
s |}ds + CAt,

where

At
�
= exp(

p2
1 − p1

2p
K2

1 t)E
{∫ t

0

[|βs|q + |λs|q]ds
} 1

q

[t1−
2
q + t1−

1
q ].

Note that At is increasing in t. The by the Gronwall inequality we have

Ẽ{|Λ−1
t Nt|} ≤ CeK2t[|x| + At].(3.20)

Now choose p
�
= 1 + ε

ε+6K2
1
. One can easily check that p2

1−p1
2p K2

1 ≤ ε
2 and thus

At ≤ CeεtE
{∫ t

0

[|βs|q + |λs|q]ds
} 1

q

,

which, combined with (3.17) and (3.20), proves (3.15) and hence the lemma. �

Proof of Theorem 2.4. For any x, let X and Xh be defined as in (3.2) and (3.6),

respectively. Denote ∆Xt
�
= Xt − Xh

t . Then

∆Xt =
∫ t

0

[αs∆Xs + βs]dWs +
∫ t

0

[γs∆Xs + λs]ds,

where ⎧⎪⎪⎨
⎪⎪⎩

αt
�
=

σ(Xt) − σ(Xh
t )

∆Xt
, βt

�
= σ(Xh

t ) − σ(Xh
τ(t)),

γt
�
=

b(Xt) − b(Xh
t )

∆Xt
, λt

�
= b(Xh

t ) − b(Xh
τ(t)).

By the Lipschitz continuity of σ, b, and recalling (3.5) we have

|αt| ≤ C, |γt| ≤ Lb, |βt| + |λt| ≤ Ch.

Since βLb < 1, choose ε
�
= β−1−Lb

2 > 0. By (3.16) and the fact that ∆X0 = 0, we
get

E|∆Xt| ≤ Che(Lb+ε)t.(3.21)
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Since f is bounded and Hölder-α continuous, it is also Hölder-α∧ β continuous.
By (3.5) and (3.21) we have

E
{
|f(Xt) − f(Xh

τ(t))|
}
≤ CE

{
|Xt − Xh

τ(t))|α∧β
}

≤ CE
{
|∆Xt|α∧β + |Xh

t − Xh
τ(t)|α∧β

}
≤ C

[
(E{|∆Xt|})α∧β + hα∧β

]
≤ Chα∧βe(α∧β)(Lb+ε)t.

Then by (3.1) and (3.7) we get

|u(x) − uw
h (x)| ≤ C

∫ ∞

0

e−tE
{
|f(Xt) − f(Xh

τ(t))|
}
dt

≤ Chα∧β

∫ ∞

0

e[(α∧β)(Lb+ε)−1]tdt = Chα∧β,

thanks to the fact that β(Lb + ε) < 1. The proof for (2.10) is now complete. �

4. The standard finite difference scheme

We prove Theorems 2.1 and 2.2 in this section, but again leave the sharpness
to §5. The main idea is to transform (2.6) to the form of (2.8) and thus find the
probability solution to (2.6). To be specific, in light of (2.7) and (2.9), we define
two functions σh(x) and bh(x) by the following equations:⎧⎪⎪⎨

⎪⎪⎩
exp(

bhh

σ2
h

)
[
cosh(

√
b2
h + 2σ2

h

σ2
h

h)
]−1

=
σ2 + 2bh

σ2 + bh + h2
,

exp(−bhh

σ2
h

)
[
cosh(

√
b2
h + 2σ2

h

σ2
h

h)
]−1

=
σ2

σ2 + bh + h2
.

(4.1)

Now by the arguments in §3 we know that

us
h(x) = Ex

{ ∫ ∞

0

e−tf(X̃h
τ̃(t))dt

}
(4.2)

and

|u(x) − us
h(x)| ≤

∫ ∞

0

e−t|E{f(Xt) − f(X̃h
τ̃(t))}|dt,(4.3)

where τ̃ and X̃h are defined in the same manner as (3.3) and (3.4), with σ and b
replaced by σh and bh, respectively. Moreover, we have

|X̃h
τ̃(t) − X̃h

t | ≤ h, a.s.(4.4)

and

X̃h
t = x +

∫ t

0

σh(X̃h
τ̃(s))dWs +

∫ t

0

bh(X̃h
τ̃(s))ds.

To prove the theorems, we need to estimate the errors of σh, bh. Solving (4.1)
directly we obtain

σh =
√

2h√
log r(σ,b,h)

σ2 log r(σ,b,h)
σ2+2bh

, bh =
h log(1 + 2bh

σ2 )

log r(σ,b,h)
σ2 log r(σ,b,h)

σ2+2bh

,(4.5)

where
r(σ, b, h)

�
= σ2 + bh + h2 + h

√
2σ2 + b2 + 2bh + h2.
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When σ = 0, we define σh, bh as the limits in (4.5). That is,

σh = 0, bh =
h

log(1 + h
b )

.(4.6)

We note that in general σh, bh are not Lipschitz continuous in x. Following are
some key estimates whose proof is quite lengthy and thus postponed to §6.

Lemma 4.1. There exists a universal constant C such that

|σh − σ| ≤ C[1 +
b√

σ2 + bh
]h, |bh − b| ≤ Ch.

Consequently we have

Corollary 4.2. (i) If b is bounded, then |σh − σ| ≤ C
√

h.
(ii) If b

σ is bounded, then |σh − σ| ≤ Ch.
(iii) If both σ and b are bounded, then |σ2

h − σ2| ≤ Ch.

Proof. (i) and (ii) are direct consequence of Lemma 4.1.
It remains to prove (iii). Since b is bounded, by (i) we have |σh| ≤ |σ| + C

√
h,

and thus

|σ2
h − σ2| = |σh − σ||σh + σ| ≤ C[1 +

b√
σ2 + bh

]h[2|σ| + C
√

h]

≤ Ch
[
|σ| +

√
h +

b|σ| + b
√

h√
σ2 + bh

]
≤ Ch

[
1 +

|σ| +
√

bh√
σ2 + bh

]
≤ Ch.

That proves the lemma. �
We note that all the conditions in Corollary 4.2 are necessary. Following are

some counterexamples. All the calculations are straightforward, and thus we omit
the proof.

Example 1. (i) (b is unbounded.)
Let σ = 1, b = 1

h . Then σh ∼
√

2
log 3 and thus σh − σ ∼

√
2

log 3 − 1.

(ii) (b is bounded, but b
σ is unbounded.)

Let σ =
√

h, b = 1, then σh ∼
√

2h
log 3 , and thus σh − σ ∼ [

√
2

log 3 − 1]
√

h.
(iii) (b is bounded, but σ is unbounded.)
Let σ = 1

h , b = 1; then σ2
h ∼ 1

h2 + 1
2 , and thus σ2

h − σ2 ∼ 1
2 .

Proof of Theorem 2.2. Recall (4.3). Following the arguments in the proof of The-
orem 2.4 we have

|u(x) − us
h(x)| ≤ C

∫ ∞

0

e−tE{|Xt − X̃h
t |α∧β

}
dt + Chα∧β.(4.7)

Denote ∆X̃t
�
= Xt − X̃h

t . Then

d∆X̃t = [σ(Xt) − σh(X̃h
τ̃(t))]dWt + [b(Xt) − bh(X̃h

τ̃(t))]dt

= [αt∆X̃t + βt]dWt + [γt∆X̃t + λt]dt,

where

αt
�
=

σ(Xt) − σ(X̃h
t )

∆X̃t

, βt
�
= σ(X̃h

t ) − σh(X̃h
τ̃(t)),

γt
�
=

b(Xt) − b(X̃h
t )

∆X̃t

, λt
�
= b(X̃h

t ) − bh(X̃h
τ̃(t)).
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Since σ and b are Lipschitz continuous, we have |αt| ≤ C and |γt| ≤ Lb. Moreover,
by Corollary 4.2(i) we have |σ − σh| ≤ C

√
h, therefore,

|βt| ≤ |σ(X̃h
t ) − σ(X̃h

τ̃(t))| + |σ(X̃h
τ̃(t)) − σh(X̃h

τ̃(t))| ≤ C
√

h.

Similarly, by Lemma 4.1 we have |λt| ≤ Ch. Now letting 0 < ε < β−1 − Lb and
applying Lemma 3.2, we get E{|∆X̃t|} ≤ C

√
he(Lb+ε)t, which, combined with (4.7),

proves (i).
It remains to prove (ii). We note that if σ = 0, by (4.6) we have |σh − σ| = 0 ≤

Ch. If b
σ is bounded, by Corollary 4.2(ii) we have |σh − σ| ≤ Ch. Now (ii) follows

a line-by-line analogy as above. �

We next prove Theorem 2.1. Recall (4.3). Note that we estimate the error of
f(X̃h

τ̃(t))− f(Xt) in (4.7) in the strong sense. The next lemma gives an estimate of
the error in the weak sense. The idea is more or less standard (see, e.g., [22]).

Lemma 4.3. Assume all the conditions in Theorem 2.1 hold true. Then

|E{f(X̃h
T ) − f(XT )}| ≤ Ce

1+L
2 T h, ∀T > 0.

Proof. Fix T > 0. Let v be the solution to the following degenerate parabolic PDE:{
vt + 1

2σ2(x)vxx + b(x)vx = 0, t ∈ (0, T ),
v(T, x) = f(x).(4.8)

Then we have

E{f(X̃h
T )} = E{v(T, X̃h

T )}, E{f(XT )} = v(0, x).(4.9)

Obviously v ∈ C1,2. Applying the Ito formula one has

dv(t, X̃h
t )

=
[
vt +

1
2
σ2

h(X̃h
τ̃(t))vxx + bh(X̃h

τ̃(t))vx

]
(t, X̃h

t )dt + σ2
h(X̃h

τ̃(t))vx(t, X̃h
t )dWt

=
[1
2
[σ2

h(X̃h
τ̃(t)) − σ2(X̃h

t )]vxx + [bh(X̃h
τ̃(t)) − b(X̃h

t )]vx

]
(t, X̃h

t )dt

+σh(X̃h
τ̃(t))vx(t, X̃h

t )dWt.

By (4.4), Corollary 4.2(iii) and Lemma 4.1 we have

|σ2
h(X̃h

τ̃(t)) − σ2(X̃h
t )| ≤ |σ2

h(X̃h
τ̃(t)) − σ2(X̃h

τ̃(t))| + |σ2(X̃h
τ̃(t)) − σ2(X̃h

t )| ≤ Ch,

|bh(X̃h
τ̃(t)) − b(X̃h

t )| ≤ |bh(X̃h
τ̃(t)) − b(X̃h

τ̃(t))| + |b(X̃h
τ̃(t)) − b(X̃h

t )| ≤ Ch.

We claim that

|vx(t, x)| + |vxx(t, x)| ≤ Ce
1+L

2 (T−t), ∀t ∈ [0, T ].(4.10)

Then

|E{v(T, X̃h
T ) − v(0, x)}| ≤ Ch

∫ T

0

e
1+L

2 (T−t)dt ≤ Ce
1+L

2 T h,

which, together with (4.9), proves the lemma.
It remains to prove (4.10). Without loss of generality, we shall prove it only at

t = 0. To this end, we recall (4.9). Let ∇X,∇2X denote the first order and second
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order derivative flows of X, differentiating with respect to x. That is,

∇Xt = 1 +
∫ t

0

σ′(Xs)∇XsdWs +
∫ t

0

b′(Xs)∇Xsds,(4.11)

∇2Xt =
∫ t

0

[σ′(Xs)∇2Xs + σ′′(Xs)|∇Xs|2]dWs

+
∫ t

0

[b′(Xs)∇2Xs + b′′(Xs)|∇Xs|2]ds.(4.12)

Then we have

vx(0, x) = E{f ′(XT )∇XT }, vxx(0, x) = E{f ′(XT )∇2XT + f ′′(XT )|∇XT |2}.
(4.13)

For ε
�
= 1−L

2 > 0, applying (3.16) to (4.11) we get

E{|∇XT |} ≤ Ce(Lb+ε)T ≤ Ce
1+L

2 T .(4.14)

Moreover, for any q > 2, applying the Ito formula we have

|∇Xt|q = 1 +
∫ t

0

qσ′(Xs)|∇Xs|qdWs +
∫ t

0

[qb′(Xs) +
q(q − 1)

2
|σ′(Xs)|2]|∇Xs|qds.

Then letting q be close to 2 enough and applying (3.16) again one gets

E{|∇XT |q} ≤ Ce
1+L

2 T .(4.15)

Now applying (3.15) to (4.12) we have

E{|∇2XT |} ≤ Ce
1+L

2 T .(4.16)

Now by (4.14), (4.15), (4.16), and (4.13) we prove (4.10), hence the lemma. �

Proof of Theorem 2.1. Recalling (4.3) and (4.4), and applying Lemma 4.3 we have

|u(x) − us
h(x)| ≤ C

∫ ∞

0

e−t
∣∣∣E{

[f(X̃h
t̃(t)) − f(X̃h

t )] + [f(X̃h
t ) − f(Xt)]

}∣∣∣dt

≤ C

∫ ∞

0

e−t[h + e
1+L

2 th]dt = Ch

∫ ∞

0

[e−t + e
L−1

2 t]dt = Ch,

thanks to the assumption that L < 1. �

5. Sharpness of the estimates

In this section we give three examples to show that some estimates in §2 are
sharp. We first consider β.

Example 2. Let σ = 0, b(x) = Lbx, f(x) = 0 for x ∈ [0, 1]. Choose σ, b, f ∈ C∞
0

appropriately outside [0, 1] such that u(1) = 1. Then, by letting h = 1
n ,

lim inf
n→∞

n
1

Lb sup
x∈[0,1]

|u(x) − us
h(x)| > 0, lim inf

n→∞
n

1
Lb sup

x∈[0,1]

|u(x) − uw
h (x)| > 0.

Proof. We will only estimate u(x) − uw
h (x). The other one is similar.

First, under our assumptions on [0, 1] (1.1) becomes Lbxu′(x) − u(x) = 0. Since
u(1) = 1, one has

u(x) = x
1

Lb , ∀x ∈ [0, 1].(5.1)
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On the other hand, for h = 1
n , and k = 1, · · · , n − 1, by (2.8) we have uw

h (kh) =
exp(− 1

Lbk )uw
h ((k + 1)h), which leads to

uw
h (h) = uw

h (1) exp
(
− 1

Lb

n−1∑
k=1

1
k

)
.(5.2)

If |uw
h (1) − u(1)| ≥ h

1
Lb , then we have

n
1

Lb |uw
h (1) − u(1)| ≥ 1.(5.3)

Now we assume |uw
h (1) − 1| = |uw

h (1) − u(1)| < h
1

Lb . Note that
n−1∑
k=1

1
k
≥ 1 +

∫ n

2

dx

x
= 1 − log(2) + log(n).

By (5.2) we have

uw
h (h) ≤ (1+h

1
Lb ) exp

(
− 1

Lb
[1−log(2)+log(n)]

)
= (1+h

1
Lb ) exp(−1 − log(2)

Lb
)h

1
Lb ,

which, combined with (5.1), implies that

u(h) − uw
h (h) ≥

[
1 − (1 + h

1
Lb ) exp(−1 − log(2)

2Lb
)
]
h

1
Lb .

Note that 1 − log(2) > 0. When h is small enough, we have

(1 + h
1

Lb ) exp(−1 − log(2)
Lb

) ≤ exp(−1 − log(2)
2Lb

) < 1.

Then

n
1

Lb [u(h) − uw
h (h)] ≥ 1 − exp(−1 − log(2)

2Lb
) > 0,

which, combined with (5.3), proves our claim. �

The next example shows that the first order estimate in (2.3) is sharp.

Example 3. Let σ(x) =
√

h, b(x) = 1, f(x) = 0 for x ∈ [0, 1]. Choose σ, b, f ∈ C∞
0

appropriately outside [0, 1] such that u(0) = 0 and u(1) = 1. Then, by letting
h = 1

n ,
lim inf
n→∞

n sup
x∈[0,1]

|u(x) − us
h(x)| > 0.

We note that in this example σ, and thus u, depends on h. But one may divide
R into countable disjoint intervals [an, bn). By Example 3 we can set σ, b, f on each
interval such that they all vanish on an, bn and n supx∈[an,bn] |u(x)−us

1
n

(x)| ≥ c0 for
some constant c0 > 0 which is independent of n. Combining all the pieces together
we get universal σ, b, f satisfying our requirement.

Proof of Example 3. First, one can easily solve (1.1):

u(x) =
eλ1x − eλ2x

eλ1 − eλ2
, x ∈ [0, 1],

where

λ1
�
=

−1 +
√

1 + 2h

h
, λ2

�
=

−1 −
√

1 + 2h

h
.
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On the other hand, solve (2.6) we have

us
h(kh) = c1γ

k
1 − c2γ

k
2 , k = 0, 1 · · · , n,(5.4)

for some constants c1, c2, where

γ1
�
=

2 + h +
√

1 + 4h + h2

3
, γ2

�
=

2 + h −
√

1 + 4h + h2

3
.

If |us
h(0)| ≥ εh or |us

h(1) − 1| ≥ εh where ε > 0 is a small number independent
of h which will be determined later, then we have

n sup
x∈[0,1]

|u(x) − us
h(x)| ≥ ε.(5.5)

Now we assume |us
h(0)| ≤ εh and |us

h(1) − 1| ≤ εh. By letting k = 0 and k = n in
(5.4) we get

c1 =
us

h(1) − us
h(0)γn

2

γn
1 − γn

2

, c2 =
us

h(1) − us
h(0)γn

1

γn
1 − γn

2

.

Denote

ūs
h(kh) �=

γk
1 − γk

2

γn
1 − γn

2

, k = 0, 1 · · · , n.

Note that for γ1 > 1 > 1
3 > γ2 > 0 and γ1γ2 = 1

3 , we have

|ūs
h(kh) − us

h(kh)| =
∣∣∣ [us

h(1) − 1][γk
1 − γk

2 ] − us
h(0)[γk

1γn
2 − γn

1 γk
2 ]

γn
1 − γn

2

∣∣∣ ≤ 2εh.

(5.6)

Now we estimate |u(kh) − ūs
h(kh)|. Let x = 1

2 , or say, k = n
2 . Then we have

u(
1
2
) = [e

λ1
2 + e

λ2
2 ]−1 ∼ e−

λ1
2 , ūs

h(
1
2
) = [γ

n
2
1 + γ

n
2
2 ]−1 ∼ exp

(
− n

2
log(γ1)

)
.

Note that λ1
2 ∼ 1

2 − h
4 , and

n

2
log(γ1) ∼

1
2h

log(1 + h − h2

2
) ∼ 1

2h
(h − h2) =

1
2
− h

2
.

Then,

u(
1
2
) − ūs

h(
1
2
) ∼ e−

1
2+ h

4 − e−
1
2+ h

2 ∼ −1
4
e−

1
2 h.

Now let ε
�
= 1

15e−
1
2 > 0. When h is small enough, by (5.6) we have

|u(
1
2
) − us

h(
1
2
)| ≥ |u(

1
2
) − us

h(
1
2
)| − |us

h(
1
2
) − ūs

h(
1
2
)| ≥ 1

5
e−

1
2 h − 2εh ≥ εh,

which, combined with (5.5), proves our claim. �

Our last example shows the sharpness of α. Again we will only prove it for uw
h .

Example 4. Assume α ∈ (0, 1]. Let σ
�
=

√
2, b

�
= 0, and f(x)

�
=

∑∞
m=0 fm(x),

where fm has period 2−m, and

fm(x)
�
=

{
xα, 0 ≤ x < 2−(m+1),
(2−m − x)α, 2−(m+1) ≤ x < 2−m.

(5.7)

Then
(i) f is bounded;
(ii) |f(x) − f(y)| ≤ C|x − y|α log 1

|x−y| , ∀|x − y| ≤ 1
2 ;
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(iii) for h = 2−n,

lim inf
n→∞

2nα|u(0) − uw
h (0)| > 0.(5.8)

Proof. (i) By (5.7) it obviously holds that |fm(x)| ≤ 2−(m+1)α, thus

|f(x)| ≤
∞∑

m=0

2−(m+1)α =
1

2α − 1
< ∞.

(ii) For any |x − y| ≤ 1
2 , assuming 2−n ≤ |x − y| < 21−n, we have

|fm(x) − fm(y)| ≤
{

|x − y|α, m < n,
21−(m+1)α, m ≥ n.

Therefore,

|f(x) − f(y)| ≤
∞∑

m=0

|fm(x) − fm(y)| ≤
n−1∑
m=0

|x − y|α +
∞∑

m=n

21−(m+1)α

= n|x − y|α + 21−α−nα 1
1 − 2−α

≤ C|x − y|α log
1

|x − y| .

(iii) We first note that, in our example, (1.1) and (2.8) become

u” − u = −f(5.9)

and

uw
h (x) =

1
2 cosh(h)

[
uw

h (x + h) + uw
h (x − h)

]
+ (1 − 1

cosh(h)
)f(x),

(5.10)

respectively. The general solution to (5.9) is

u(x) = C1e
x + C2e

−x − 1
2

∫ x

0

[ex−y − ey−x]f(y)dy.

Note that, for bounded f , we require u to be bounded. By letting x → ∞ or
x → −∞ we get

C1 =
1
2

∫ ∞

0

e−yf(y)dy, C2 =
∫ 0

−∞
eyf(y)dy.

Thus

u(x) =
1
2

∫ ∞

−∞
e−|x−y|f(y)dy.

Moreover, noting that f is even and f(0) = 0, we get

u(0) =
∫ ∞

0

e−xf(x)dx.(5.11)

Analogously, the general solution to (5.10) is

uw
h (mh) = C1e

mh + C2e
−mh − cosh(h) − 1

sinh(h)

m∑
k=0

[e(m−k)h − e(k−m)h]f(kh).

By similar arguments we get

uw
h (0) =

2(cosh(h) − 1)
sinh(h)

∞∑
k=1

e−khf(kh).(5.12)
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We shall use (5.11) and (5.12) to prove (5.8). The proof is quite lengthy and
purely analytic. We thus postpone it to the Appendix. �

6. Appendix

In this Appendix we prove (5.8) and Lemma 4.1. All the arguments are purely
analytic.

Proof of (5.8). We shall use (5.11) and (5.12) to estimate |u(0) − uh(0)|. First,

∫ ∞

0

e−xfm(x)dx =
∞∑

k=0

∫ (k+1)2−m

k2−m

e−xfm(x)dx =
∞∑

k=0

e−k2−m

∫ 2−m

0

e−xfm(x)dx

=
1

1 − e−2−m

[ ∫ 2−(m+1)

0

xαe−xdx +
∫ 2−m

2−(m+1)
(2−m − x)αe−xdx

]

=
1

1 − e−2−m

∫ 2−(m+1)

0

xα[e−x + ex−2−m

]dx.

By (5.11) we have

u(0) =
n−1∑
m=0

1
1 − e−2−m

∫ 2−(m+1)

0

xα[e−x + ex−2−m

]dx

+
∞∑

m=n

1
1 − e−2−m

∫ 2−(m+1)

0

xα[e−x + ex−2−m

]dx.

Using substitution m = n − m′ − 1 in the first summation and m = n + m′ in the
second summation, we get

u(0) =
n−1∑
m=0

1
1 − e−2m−n+1

∫ 2m−n

0

xα[e−x + ex−2m−n+1
]dx

+
∞∑

m=0

1
1 − e−2−m−n

∫ 2−(m+n+1)

0

xα[e−x + ex−2−m−n

]dx.

Then by letting x = hx′ = 2−nx′, we have

u(0) = hα
n−1∑
m=0

h

1 − e−2m+1h

∫ 2m

0

xα[e−xh + exh−2m+1h]dx

+ hα
∞∑

m=0

h

1 − e−2−mh

∫ 2−(m+1)

0

xα[e−xh + exh−2−mh]dx.(6.1)
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On the other hand, note that fm(kh) = 0 for m ≥ n and fm is periodic with period
2−m. So by (5.12) we have

uw
h (0) =

2(cosh(h) − 1)
sinh(h)

∞∑
k=1

e−kh
n−1∑
m=0

fm(kh)

=
2(cosh(h) − 1)

sinh(h)

n−1∑
m=0

2n−m−1∑
k=1

e−khfm(kh)
∞∑

l=0

e−2n−mlh

=
2(cosh(h) − 1)

sinh(h)

n−1∑
m=0

1
1 − e−2n−mh

×
[ 2n−m−1−1∑

k=1

|kh|α(e−kh + e(k−2n−m)h) + 2−(m+1)αe−2n−m−1h
]
.

Using the substitution m = n − m′ − 1 again we have

uw
h (0) = hα 2(cosh(h) − 1)

sinh(h)

n−1∑
m=0

1
1 − e−2m+1h

×
[ 2m−1∑

k=1

kα(e−kh + e(k−2m+1)h) + 2mαe−2mh
]
.

(6.2)

Subtracting (6.1) from (6.2), and dividing by hα = 2−nα, we get

2nα[uw
h (0) − u(0)]

= −
∞∑

m=0

h

1 − e−2−mh

∫ 2−(m+1)

0

xα[e−xh + exh−2−mh]dx

+
n−1∑
m=0

{ 2(cosh(h) − 1)
sinh(h)(1 − e−2m+1h)

×
[ 2m−1∑

k=1

kα(e−kh + e(k−2m+1)h) + 2mαe−2mh
]

− h

1 − e−2m+1h

∫ 2m

0

xα[e−xh + exh−2m+1h]dx
}

= −I(h) +
n−1∑
m=0

Im(h),

(6.3)

where I and Im are defined in an obvious way. Now let n → ∞, or equivalently,
h → 0. We shall study the limits of the terms in (6.3).

First,

h

1 − e−2−mh

∫ 2−(m+1)

0

xα[e−xh + exh−2−mh]dx

≤ 1
1 − e−2−mh

2−(m+1)α
[
(1 − e−2−(m+1)h) + e−2−mh(e2−(m+1)h − 1)

]
= 2−(m+1)α.
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Since
∑∞

m=1 2−(m+1)α < ∞, by the Dominated Convergence Theorem one gets that

lim
h→0

I(h) =
∞∑

m=0

lim
h→0

h

1 − e−2−mh

∫ 2−(m+1)

0

xα[e−xh + exh−2−mh]dx

=
∞∑

m=0

2m

∫ 2−(m+1)

0

xα2dx

=
∞∑

m=0

1
(1 + α)2(m+1)α

=
1

(1 + α)(2α − 1)
�
= I.

To estimate Im(h), we discuss two cases. First, if α = 1, one can check directly
that

2m−1∑
k=1

kxk =
x

(1 − x)2
(1 − x2m

) − x

1 − x
2mx2m−1,

and that ∫ 2m

0

xeaxdx = [a−12m − a−2]e2ma + a−2.

Then by straightforward calculation we have

Im(h) =
[ 1
sinh(h)

− 1
h

]1 − e−2mh

1 + e−2mh
≤ 0.

Thus

lim sup
h→0

2n[uw
h (0) − u(0)] ≤ −I < 0,

which obviously proves (5.8) in the case that α = 1.
Now we assume α ∈ (0, 1). Note that

Im(h) = I1
m(h) + I2

m(h),

where⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I1
m(h)

�
=

1
1 − e−2m+1h

[
2(cosh(h) − 1)

sinh(h)
− h]

∫ 2m

0

xα[e−xh + exh−2m+1h]dx,

I2
m(h)

�
=

2(cosh(h) − 1)
sinh(h)(1 − e−2m+1h)

×
{ 2m∑

k=1

∫ k

k−1

[
(kαe−kh − xαe−kh)+e−2m+1h(kαekh − xαexh)

]
dx−2mαe−2mh

}
.

Now for m < n, we have

|I1
m(h)| ≤ Ch2

1 − e−2m+1h
2mα

∫ 2m

0

[e−xh + exh−2m+1h]dx = Ch2mα ≤ C2m(α−1).

(6.4)
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Moreover, noting that

|g(k) − g(x)| ≤
∫ k

x

|g′(y)|dy

for any differentiable function g and any x ∈ [k − 1, k], we have

(1 − e−2m+1h)|I2
m(h)|

≤ Ch
{ 2m∑

k=1

∫ k

k−1

[
|kαe−kh − xαe−xh|

+ e−2m+1h|kαekh − xαexh|
]
dx + 2mαe−2mh

}

≤ Ch

2m∑
k=1

∫ k

k−1

[
(αxα−1e−xh + hxαe−xh)

+ e−2m+1h(αxα−1exh + hxαexh)
]
dx + Ch2mα

≤ Cαh

∫ 2m

0

xα−1dx

+ Ch22mα

∫ 2m

0

[e−xh + e(x−2m+1)h]dx + Ch2mα

= Ch2mα + Ch2mα[1 − e−2m+1h] + Ch2mα ≤ Ch2mα.

Thus

|I2
m(h)| ≤ Ch2mα

1 − e−2m+1h
=

C2m+1h

1 − e−2m+1h
2m(α−1) ≤ C2m(α−1).(6.5)

Combining (6.4) and (6.5), one gets |Im(h)| ≤ C2m(α−1), which obviously implies
that

lim
n→∞

n−1∑
m=0

Im(h) =
∞∑

m=0

Im,

where

Im
�= lim

h→0
Im(h) = 2−m

[ 2m−1∑
k=1

kα + 2mα−1 −
∫ 2m

0

xαdx
]
.

Note that
∑∞

m=0 Im and I are two numbers, so it suffices to show that

∞∑
m=0

Im < I.(6.6)
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To this end, we note that

2mIm =
2m−1∑
k=1

∫ k+ 1
2

k− 1
2

(kα − xα)dx +
∫ 2m

2m− 1
2

(2mα − xα)dx −
∫ 1

2

0

xαdx

=
2m−1∑
k=1

∫ 1
2

0

[2kα − (k + x)α − (k − x)α]dx +
∫ 1

2

0

[2mα − (2m − x)α]dx −
∫ 1

2

0

xαdx

= α

2m−1∑
k=1

∫ 1
2

0

∫ x

0

[(k − y)α−1 − (k + y)α−1]dydx

+ α

∫ 1
2

0

∫ x

0

[(2m − y)α−1 − 2m(α−1) + 2m(α−1)]dydx − 1
(1 + α)21+α

= α(1 − α)
2m−1∑
k=1

∫ 1
2

0

∫ x

0

∫ y

−y

(k + z)α−2dzdydx

+ α(1 − α)
∫ 1

2

0

∫ x

0

∫ y

0

(2m − z)α−2dzdydx +
α

8
2m(α−1) − 1

(1 + α)21+α

≤ α(1 − α)
8

[ 2m−1∑
k=1

∫ k+ 1
2

k− 1
2

zα−2dz +
∫ 2m

2m− 1
2

zα−2dz
]

+
α

8
2m(α−1) − 1

(1 + α)21+α

≤ α(1 − α)
8

∫ ∞

1
2

zα−2dz +
α

8
2m(α−1) − 1

(1 + α)21+α

=
α

8
21−α +

α

8
2m(α−1) − 1

(1 + α)21+α
.

Therefore,

∞∑
m=0

Im ≤
∞∑

m=0

2−m
[α

8
21−α +

α

8
2m(α−1) − 1

(1 + α)21+α

]

=
α

21+α
+

α

2(4 − 2α)
− 1

(1 + α)2α

≤ 1
21+α

+
1
4
− 1

(1 + 1)2α
=

1
4

<
1
2
≤ 1

(1 + α)(2α − 1)
= I.

That proves (6.6), whence (5.8), for α < 1. �

Proof of Lemma 4.1. Recall (4.5). Let, by abusing the notation r,

x
�
=

h2

σ2 + bh
, y

�
=

bh

σ2 + bh
, r(x, y)

�
= x +

√
x2 + 2x + y2.

Then y ≤ 1,

√
σ2 + bh√

σ2 + bh + b

[σh

h
− σ

h

]
=

√
x√

x + y

⎡
⎣ √

2√
log 1+r(x,y)

1−y log 1+r(x,y)
1+y

−
√

1 − y

x

⎤
⎦

�= g1(x, y),
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and

bh

h
− b

h
=

log 1+y
1−y

log 1+r(x,y)
1−y log 1+r(x,y)

1+y

− y

x

�
= g2(x, y).

We want to show that g1 and g2 are bounded. Obviously both functions are con-
tinuous in (0,∞)× (0, 1). So it suffices to estimate them on the boundaries. First,
it is easy to check that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(∞, y) = g2(∞, y) = 0, ∀y ∈ (0, 1),

g1(x, 0) =
√

2
log(1 + x +

√
x2 + 2x)

− 1√
x

, g2(x, 0) = 0, ∀x ∈ (0,∞),

g1(x, 1) = 0, g2(x, 1) =
1

log(1 + x)
− 1

x
, ∀x ∈ (0,∞),

lim
x→∞,y→0

g1(x, y) = lim
x→∞,y→0

g2(x, y) = 0,

lim
x→∞,y→1

g1(x, y) = lim
x→∞,y→1

g2(x, y) = 0.

(6.7)

Next, for fixed y ∈ (0, 1] and small x > 0, we have

r(x, y) = y +
1 + y

y
x − 1 − y2

2y3
x2 + o(x2),

where o(x2) denotes variables with higher order than x2 as x → 0. Then

log
1 + r(x, y)

1 + y
= log(1 +

r − y

1 + y
) =

x

y
− x2

2y3
+ o(x2).

Therefore, for ∀y ∈ (0, 1), we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g1(0, y)= lim
x→0

√
2x

y
√

[log 1+y
1−y +o(1)][x

y +o(x)]
−

√
1 − y

y
=

√
2√

y log 1+y
1−y

−
√

1 − y

y
,

g2(0, y)= lim
x→0

[
log 1+y

1−y

[log 1+y
1−y + x

y + o(x)][x
y − x2

2y3 + o(x2)]
− y

x

]
=

1
2y

− 1
log 1+y

1−y

.

(6.8)

Moreover, one can easily prove that

lim
x→0,y→1

g1(x, y) = 0, lim
x→0,y→1

g2(x, y) =
1
2
.(6.9)

Finally, we assume (x, y) → (0, 0). Let

x̃
�=

2y

1 − y
, ỹ

�=
r − y

1 + y
, z̃

�= x̃ + ỹ + x̃ỹ.

Then x̃, ỹ, z̃ > 0, (x̃, ỹ, z̃) → (0, 0, 0), and

x =
ỹz̃

(2 + x̃)(1 + ỹ)
, y =

x̃

2 + x̃
.
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We shall use Taylor expansions to estimate g1 and g2. Note that

1 + y

1 − y
= 1 + x̃,

1 + r

1 + y
= 1 + ỹ,

1 + r

1 − y
= 1 + z̃.

One can calculate straightforwardly

g1(x, y) =
1√

x + y

[ √
2x√

log 1+r
1−y log 1+r

1+y

−
√

1 − y
]

=
1√

x + y

[ √
2ỹz̃√

(2 + x̃)(1 + ỹ) log(1 + z̃) log(1 + ỹ)
−

√
2√

2 + x̃

]

=
√

2√
2 + x̃

1√
x + y

[ √
ỹz̃√

(1 + ỹ) log(1 + z̃) log(1 + ỹ)
− 1

]

=
1 + o(1)√

x + y

[ ỹz̃

(1 + ỹ) log(1 + z̃) log(1 + ỹ)
− 1

]

÷
[ √

ỹz̃√
(1 + ỹ) log(1 + z̃) log(1 + ỹ)

+ 1
]

=
1 + o(1)

2(
√

x + y)
ỹz̃ − (1 + ỹ) log(1 + z̃) log(1 + ỹ)

(1 + ỹ) log(1 + z̃) log(1 + ỹ)

=
1 + o(1)

2(
√

x + y)
ỹz̃ − (1 + ỹ)z̃[1 − 1

2 z̃ + o(z̃)]ỹ[1 − 1
2 ỹ + o(ỹ)]

ỹz̃[1 + o(1)]

=
1 + o(1)

2

1
2 (z̃ − ỹ) + o(ỹ + z̃)√

ỹz̃
2 + x̃

2

=
1 + o(1)

2
x̃ + o(x̃ + ỹ)√

2ỹz̃ + x̃
.

Since x̃+ỹ√
2ỹz̃+x̃

≤ 1, we get, for x, y small enough,

|g1(x, y)| ≤ 1 + o(1)
2

≤ 1.(6.10)

Similarly, we have

g2(x, y) =
log(1 + x̃)

log(1 + z̃) log(1 + ỹ)
− x̃(1 + ỹ)

ỹz̃

=
ỹz̃ log(1 + x̃) − x̃(1 + ỹ) log(1 + ỹ)[log(1 + x̃) + log(1 + ỹ)]

ỹz̃ log(1 + z̃) log(1 + ỹ)

=
[ỹz̃ − x̃(1 + ỹ) log(1 + ỹ)] log(1 + x̃) − x̃(1 + ỹ) log2(1 + ỹ)

ỹz̃ log(1 + z̃) log(1 + ỹ)

=
[ỹz̃ − x̃ỹ(1 + 1

2 ỹ + o(ỹ))]x̃(1 − 1
2 x̃ + o(x̃)) − x̃(1 + ỹ)ỹ2(1 − ỹ + o(ỹ))

ỹ2z̃2(1 + o(1))

=
x̃ỹ2(1 + o(x̃)) − x̃ỹ2(1 + o(ỹ))

ỹ2z̃2(1 + o(1))
=

x̃[o(x̃) + o(ỹ)]
z̃2(1 + o(1))

= o(1).

(6.11)

By (6.7)–(6.11), we prove that g1 and g2 are bounded. That completes the
proof. �
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