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The Wellposedness of FBSDEs (II)∗

Jianfeng Zhang†

Abstract. This paper is a continuation of [10], in which we established the well-

posedness result and a comparison theorem for a class of one dimensional Forward-

Backward SDEs. In this paper we extend the wellposedness result to high dimensional

FBSDEs, and weaken the key condition in [10] significantly. Compared to the exist-

ing methods in the literature, our result has the following features: (i) arbitrary time

duration; (ii) random coefficients; (iii) (possibly) degenerate forward diffusion; and

(iv) no monotonicity condition.
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1 Introduction and Main Result

Assume (Ω,F , P ) is a complete probability space, F0 ⊂ F , and W is a d-dimensional

standard Brownian motion independent of F0. Let F
△
= {Ft}0≤t≤T be the filtration

generated by W and F0, augmented by the null sets as usual. We study the following

FBSDE:














Xt = X0 +
∫ t

0
b(ω, s,Θs)ds+

∫ t

0
σ∗(ω, s,Xs, Ys)dWs;

Yt = g(ω,XT ) +
∫ T

t
f(ω, s,Θs)ds−

∫ T

t
ZsdWs.

(1.1)
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where Θ
△
= (X, Y, Z) and ∗ denotes the transpose. We assume that X0 ∈ F0, b, σ, f, g

are progressively measurable, and for any θ
△
= (x, y, z), b, σ, f are F-adapted and

g(·, x) ∈ FT . For simplicity we will always omit the variable ω in b, σ, f, g.

The wellposedness of FBSDEs has been studied by many authors (see, e.g. [1],

[6], [5], [3], [4], [7], [8], and [9]). We refer the readers to [10] for a more detailed intro-

duction on the subject. Motivated by studying numerical methods for (Markovian)

FBSDEs (see [2]), in [10] we proved the following theorem.

Theorem 1.1 Assume that all processes are one dimensional; that b, σ, f, g are dif-

ferentiable with respect to x, y, z with uniformly bounded derivatives; and that

∂yσ∂zb = 0; ∂yb+ ∂xσ∂zb+ ∂yσ∂zf = 0. (1.2)

Denote

I20
△
= E

{

|X0|
2 + |g(0)|2 +

∫ T

0
[|b(t, 0, 0, 0)|2 + |σ(t, 0, 0)|2 + |f(t, 0, 0, 0)|2]dt

}

. (1.3)

If I20 < ∞, then FBSDE (1.1) has a unique solution Θ such that

‖Θ‖2
△
= E

{

sup
0≤t≤T

[|Xt|
2 + |Yt|

2] +
∫ T

0
|Zt|

2dt
}

≤ CI20 . (1.4)

After [10] has been accepted for publication, we find that Theorem 1.1 can be

improved significantly. In the sequel we assume

W ∈ IRd, X, b ∈ IR, Y, f, g ∈ IRn, Z ∈ IRn×d, σ ∈ IRd. (1.5)

Here W,Y, et al are considered as column vectors. Let ∂ denote partial derivatives

with appropriate dimensions; and | · | denote the Euclidian norm. For example,

∂zb ∈ IRn×d, ∂yσ ∈ IRd×n in an obvious way, and |Yt|
2 = Y ∗

t Yt, |Zt|
2 = tr (Z∗

t Zt). Our

main result is the following theorem.

Theorem 1.2 Assume that b, σ, f, g are uniformly Lipschitz continuous in x, y, z;

and that there exists a constant c > 0 such that

Λ4
t (y) ≤ −c|Λ3

t (y)|, (1.6)
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for any y ∈ IRd such that |y| = 1, where

Λ3
t (y)

△
=

n
∑

i=1

yi
[

tr ([∂zf
i][∂zb]

∗)− y∗[∂zb][∂zf
i]∗y + y∗[∂yσ]

∗[∂zf
i]∗y

]

+[∂xσ]
∗[∂zb]

∗y + [∂yb]y

Λ4
t (y)

△
= |∂zb|

2 − |[∂zb]
∗y|2 + 2y∗[∂zb][∂yσ]y.

(1.7)

If I20 < ∞, then FBSDE (1.1) has a unique solution Θ such that ‖Θ‖2 ≤ CI20 , where

C depends on c and the Lipschitz constant of the coefficients.

We note that we only assume those partial derivatives involved in (1.7) exist.

Moreover, when one part of a product vanishes, we do not need to assume the other

part to be differentiable. For example, if ∂zb = 0, then we do not need ∂xσ. In fact,

we can even weaken (1.6) further by using approximating coefficients (see (2.13) at

below).

Remark 1.3 Following are three sufficient conditions for (1.6):

[∂zb][∂zb]
∗ − [∂yσ]

∗[∂zb]
∗ − [∂zb][∂yσ] ≥ [|∂zb|

2 + c]Idn; (1.8)

∂yb = 0, ∂zb = 0, [∂yσ]
∗[∂zf

i]∗ = 0, i = 1, · · · , n; (1.9)

n = 1, −[∂zb][∂yσ] ≥ c
∣

∣

∣∂yb+ [∂zf ][∂yσ] + [∂zb][∂xσ]
∣

∣

∣; (1.10)

where Idn ∈ IRn×n is the n× n identity matrix.

Remark 1.4 (i) A necessary condition to ensure (1.8) is n ≤ d;

(ii) There are two typical cases for (1.9). One is that ∂yσ = 0, then (1.1) becomes

the standard decoupled FBSDE. The other one is that ∂zf = 0, then (1.1) becomes















Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ∗(s,Xs, Ys)dWs;

Yt = g(XT ) +
∫ T

t
f(s,Xs, Ys)ds−

∫ T

t
ZsdWs.

(1.11)

We note that in this case it is allowed to have n > d.

Theorem 1.2 improves Theorem 1.1 in three ways. First, there is more freedom

on the dimensions; second, (1.10) is obviously much weaker than (1.2); and third, we

allow the coefficients to be only Lipschitz continuous (instead of differentiable). We

note that the third feature is not trivial because for coefficients satisfying (1.10) (or

3



(1.8)), their molifiers may fail to satisfy so. We would also like to mention that, as in

Theorem 1.1, our result has the following features: 1) T can be arbitrarily large; 2)

the coefficients are random; 3) σ can be degenerate; 4) no monotonicity condition is

required.

However, we should point out that our method does not work when X is high

dimensional, mainly due to the non-commuting property of matrices multiplication.

We would leave this case for future research.

2 Small Time Duration

In this section we establish some important results for FBSDEs with small time

duration T . First we recall a wellposedness result due to Antonelli [1].

Lemma 2.1 Assume b, σ, f have a uniform Lipschitz constant K, and g has a uni-

form Lipschitz constant K0. There exist constants δ0 and C0, depending only on K

and K0, such that for T ≤ δ0, if I
2
0 < ∞, then (1.1) has a unique solution Θ and it

holds that ‖Θ‖ ≤ C0I0.

The following lemma, which estimates the C0 at above in terms of (K,K0), is the

key step for the proof of Theorem 1.2.

Lemma 2.2 Consider the following linear FBSDE:















Xt = 1 +
∫ t

0
Bsds+

∫ t

0
Γ∗
sdWs;

Yt = GXT +
∫ T

t
Fsds−

∫ T

t
ZsdWs;

(2.1)

where

Bt = α1
tXt + β1

t Yt + tr (γ1
tZt);

Γt = α2
tXt + β2

t Yt;

Ft = α3
tXt + β3

t Yt + [tr (γ3,1
t Zt), · · · , tr (γ

3,n
t Zt)]

∗;

and

α1
t ∈ IR, β1∗

t , α3
t ∈ IRn, α2

t ∈ IRd, β2
t , γ

1
t , γ

3,i
t ∈ IRd×n, β3

t ∈ IRn×n.
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Assume |αi
t|, |β

i
t|, |γ

i
t| ≤ K, |G| ≤ K0; and

Λ4
t (y) ≤ −

1

K
|Λ3

t (y)|, (2.2)

for any y ∈ IR such that |y| = 1,

Let δ0 be as in Lemma 2.1. There exists a constant CK, depending only on K but

independent of K0, such that for any T ≤ δ0, the solution to FBSDE (2.1) satisfies

|Y0|
2 ≤ |K̄0|

2 △
= [|K0|

2 + 1]eCKT − 1. (2.3)

In the sequel we use CK to denote a generic constant which depends only on K

and may vary from line to line. Recalling (1.7) one can easily check that, for linear

FBSDE (2.1), we have

Λ3
t (y) =

n
∑

i=1

yi
[

tr (γ3,i
t γ1∗

t )− y∗γ1∗
t γ

3,i
t y + y∗β2∗

t γ
3,i
t y

]

+ α2∗
t γ1

t y + β1
t y

Λ4
t (y) = |γ1

t |
2 − |γ1

t y|
2 + 2y∗β2∗

t γ1
t y.

(2.4)

We also note that tr (AB) = tr (BA) for any matrices A,B with appropriate dimen-

sions.

Proof of Lemma 2.2. The proof is quite lengthy, we split it into two steps.

Step 1. We first assume Xt 6= 0 and formally derive some formulas. Note that

Bt ∈ IR; Γt ∈ IRd; Ft ∈ IRn.

Apply Ito’s formula, we have

dX−2
t = −2X−3

t dXt + 3X−4
t Γ∗

tΓtdt = −2X−3
t Γ∗

tdWt −
[

2X−3
t Bt − 3X−4

t Γ∗
tΓt

]

dt;

and

d|Yt|
2 = d(Y ∗

t Yt) = 2Y ∗
t dYt + tr (ZtZ

∗
t )dt = 2Y ∗

t ZtdWt −
[

2Y ∗
t Ft − tr (ZtZ

∗
t )

]

dt.

Denote

Ỹt
△
= YtX

−1
t ; Γ̃t

△
= ΓtX

−1
t ; Z̃t

△
= ZtX

−1
t − ỸtΓ̃

∗
t ; dW̃t

△
= dWt− [Γ̃t+γ1

t Ỹt]dt. (2.5)
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Recalling that |Z|2
△
= tr (ZZ∗). Then

d|Ỹt|
2 = d(|Yt|

2X−2
t ) = X−2

t d|Yt|
2 + |Yt|

2dX−2
t + d < |Y |2, X−2 >t

= 2X−2
t Y ∗

t ZtdWt −X−2
t [2Y ∗

t Ft − |Zt|
2]dt

−2|Yt|
2X−3

t Γ∗
tdWt − |Yt|

2
[

2X−3
t Bt − 3X−4

t |Γt|
2
]

dt− 4X−3
t Y ∗

t ZtΓtdt

=
[

2Ỹ ∗
t ZtX

−1
t − 2|Ỹt|

2Γ̃∗
t

]

dWt

−2Ỹ ∗
t [α

3
t + β3

t Ỹt]dt− 2
n
∑

i=1

Ỹ i
t tr (γ

3,i
t ZtX

−1
t )dt+ |ZtX

−1
t |2dt

−2|Ỹt|
2
[

α1
t + β1

t Ỹt + tr (γ1
tZtX

−1
t )

]

dt+ 3|Ỹt|
2|Γ̃t|

2dt− 4Ỹ ∗
t ZtX

−1
t Γ̃tdt

= 2Ỹ ∗
t Z̃t

[

dW̃t + [Γ̃t + γ1
t Ỹt]dt

]

+ |Z̃t + ỸtΓ̃
∗
t |

2dt

−2tr
(

[
n
∑

i=1

Ỹ i
t γ

3,i
t + |Ỹt|

2γ1
t ][Z̃t + ỸtΓ̃

∗
t ]
)

dt− 4Ỹ ∗
t [Z̃t + ỸtΓ̃

∗
t ]Γ̃tdt

−2Ỹ ∗
t [α

3
t + β3

t Ỹt]dt− 2|Ỹt|
2[α1

t + β1
t Ỹt]dt + 3|Ỹt|

2|Γ̃t|
2dt

= 2Ỹ ∗
t Z̃tdW̃t + |Z̃t|

2dt− 2tr
(

Z̃t[
n
∑

i=1

Ỹ i
t γ

3,i
t + |Ỹt|

2γ1
t − γ1

t ỸtỸ
∗
t ]

)

dt

+|ỸtΓ̃
∗
t |

2dt− 2tr
(

[
n
∑

i=1

Ỹ i
t γ

3,i
t + |Ỹt|

2γ1
t ]ỸtΓ̃

∗
t

)

dt− 4Ỹ ∗
t ỸtΓ̃

∗
t Γ̃tdt

−2Ỹ ∗
t [α

3
t + β3

t Ỹt]dt− 2|Ỹt|
2[α1

t + β1
t Ỹt]dt + 3|Ỹt|

2|Γ̃t|
2dt

≥ 2Ỹ ∗
t Z̃tdW̃t −

∣

∣

∣

n
∑

i=1

Ỹ i
t γ

3,i
t + |Ỹt|

2γ1
t − γ1

t ỸtỸ
∗
t

∣

∣

∣

2
dt

−2tr
(

[
n
∑

i=1

Ỹ i
t γ

3,i
t + |Ỹt|

2γ1
t ]ỸtΓ̃

∗
t

)

dt− 2Ỹ ∗
t [α

3
t + β3

t Ỹt]dt− 2|Ỹt|
2[α1

t + β1
t Ỹt]dt

= 2Ỹ ∗
t Z̃tdW̃t −

[

|
n
∑

i=1

Ỹ i
t γ

3,i
t |2 + |Ỹt|

4|γ1
t |

2 + |Ỹt|
2|γ1

t Ỹt|
2
]

dt

+2
[

n
∑

i=1

Ỹ i
t Ỹ

∗
t γ

1∗
t γ

3,i
t Ỹt + |Ỹt|

2|γ1
t Ỹt|

2 − |Ỹt|
2

n
∑

i=1

Ỹ i
t tr (γ

3,i
t γ1∗

t )
]

dt

−2
[

[α2
t + β2

t Ỹt]
∗[

n
∑

i=1

Ỹ i
t γ

3,i
t + |Ỹt|

2γ1
t ]Ỹt + Ỹ ∗

t [α
3
t + β3

t Ỹt] + |Ỹt|
2[α1

t + β1
t Ỹt]

]

dt

≥ 2Ỹ ∗
t Z̃tdW̃t − CK [1 + |Ỹt|

2]dt

−2
[

|Ỹt|
2

n
∑

i=1

Ỹ i
t tr (γ

3,i
t γ1∗

t )−
n
∑

i=1

Ỹ i
t Ỹ

∗
t γ

1∗
t γ

3,i
t Ỹt + |Ỹt|

2α2∗
t γ1

t Ỹt

+
n
∑

i=1

Ỹ i
t Ỹ

∗
t β

2∗
t γ

3,i
t Ỹt + |Ỹt|

2β1
t Ỹt

]

dt

−
[

|Ỹt|
4|γ1

t |
2 − |Ỹt|

2|γ1
t Ỹt|

2 + 2|Ỹt|
2Ỹ ∗

t β
2∗
t γ1

t Ỹt

]

dt.
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Denote Ȳt
△
= Ỹt|Ỹt|

−1 when |Ỹt| 6= 0, and arbitrary unit vector otherwise. Then

|Ȳt| = 1 and

d|Ỹt|
2 ≥ 2Ỹ ∗

t Z̃tdW̃t − CK [1 + |Ỹt|
2]dt−

[

2|Ỹt|
3Λ3

t (Ȳt) + |Ỹt|
4Λ4

t (Ȳt)
]

dt. (2.6)

Step 2. The arguments in this step are similar to those for Lemma 3.2 in [10], so

we will only sketch the main idea.

Denote

τ
△
= inf{t > 0 : Xt = 0} ∧ T ; τn

△
= inf{t > 0 : Xt =

1

n
} ∧ T.

Then τn ↑ τ and Xt > 0 for t ∈ [0, τ). Recall (2.5) for t ∈ [0, τ). By Lemma 2.1 one

can easily prove that |Yt| ≤ C0|Xt|, and thus

|Ỹt| ≤ C0, ∀t ∈ [0, τ). (2.7)

By (2.2) we have

2|Ỹt|
3Λ3

t (Ȳt) + |Ỹt|
4Λ4

t (Ȳt) ≤ −
1

K
|Λ3

t (Ȳt)||Ỹt|
4 + 2|Ỹt|

3|Λ3
t (Ȳt)| ≤ K|Λ3

t (Ȳt)||Ỹt|
2.

Note that |Λ3
t (Ȳt)| ≤ CK . Thus

2|Ỹt|
3Λ3

t (Ȳt) + |Ỹt|
4Λ4

t (Ȳt) ≤ CK |Ỹt|
2. (2.8)

Then by (2.6) one gets

d|Ỹt|
2 ≥ 2Ỹ ∗

t Z̃tdW̃t − CK [1 + |Ỹt|
2]dt; (2.9)

In light of (2.5) we define

Mt = 1 +
∫ t

0
Ms[Γ̃s + γ1

s Ỹs]
∗1{τ>s}dWs; Lt = eCK t,

for the CK in (2.9). By (2.7) M is a martingale. Moreover,

d(LtMt|Ỹt|
2) ≥ (· · ·)dWt − CKLtMtdt,

thanks to the obvious fact that Lt > 0,Mt > 0.

Now for each n, we have

|Ỹ0|
2 ≤ LτnMτn |Ỹτn|

2 −
∫ τn

0
(· · ·)dWt + CK

∫ τn

0
LtMtdt.
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Thus

|Ỹ0|
2 ≤ E

{

ΓτnMτn |Ỹτn|
2 + CK

∫ τn

0
LtMtdt

}

. (2.10)

On the other hand, if τ = T , |Yτ | = |YT | = |GXT | = |GXτ | ≤ K0|Xτ |. If

τ < T , then Xτ = 0, thus |Yτ | ≤ C0|Xτ | = 0. Therefore, in both cases it holds that

|Yτ | ≤ K0|Xτ |. By the same arguments as in Lemma 3.2 of [10], one can prove that

|Ỹτn|
2 ≤ |K0|

2 + CKE
1

2
τn{|τ − τn|

2},

which, combined with (2.10), implies that

|Ỹ0|
2 ≤ E

{

ΓτnMτn [|K0|
2 + CKE

1

2

τn{|τ − τn|
2}] + CK

∫ τn

0
LtMtdt

}

≤ E
{

|K0|
2ΓτnMτn + CK

∫ τn

0
LtMtdt

}

+ CKE
1

2{|ΓτnMτn |
2}E

1

2{|τ − τn|
2}

≤ E
{

|K0|
2eCKTMτn + CK

∫ T

0
eCK tMtdt

}

+ CKE
1

2{|τ − τn|
2}

= |K0|
2eCKT + CK

∫ T

0
eCK tdt+ CKE

1

2{|τ − τn|
2}

= |K̄0|
2 + CKE

1

2{|τ − τn|
2}.

Let n → ∞ and note that X0 = 1, we prove (2.3).

We note that estimate (2.8) is essential for the wellposedness of FBSDEs.

Example 1 Consider the following one dimensional FBSDE














Xt = 1−
∫ t

0
Ysds;

Yt = XT −
∫ T

t
ZsdWs.

(2.11)

Then

Λ3
t (y) = −y, Λ4

t (y) = 0.

So (2.2) does not hold true. Note that ỸT = YTX
−1
T = 1 > 0. Actually one can prove

in this example that Ỹt > 0 for any t, then

2|Ỹt|
3Λ3

t (Ȳt) + |Ỹt|
4Λ4

t (Ȳt) = −2Ỹ 3
t < 0,

which implies (2.8). So we still have |Ỹ0| ≤ K̄0. Then by using the arguments in next

section we can show that (2.11) is wellposeded for arbitrary T . In fact, (2.11) satisfies

the monotonicity condition in [4], and thus its wellposedness is already known.
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We would also like to mention that (2.8) is consistent with the four step scheme

(see [5] and [3]) in the following sense. Assume an FBSDE in the four step scheme

framework has two solutions Θ1,Θ2. Denote Ỹt = [Y 1
t − Y 2

t ][X
1
t −X2

t ]
−1. Note that

Y i
t = u(t, X i

t) and u is uniformly Lipschitz continuous in x, where u is the solution to

the corresponding PDE. Then Ỹt is uniformly bounded and thus (2.8) holds true.

The following result connects FBSDEs (1.1) and (2.1).

Corollary 2.3 Assume that all the conditions in Lemma 2.1 as well as (1.6) hold

true with c = 1
K
. Let T ≤ δ0 as in Lemma 2.1, and Θi, i = 0, 1, be the solution to

FBSDEs:














X i
t = xi +

∫ t

0
b(s,Θi

s)ds+
∫ t

0
σ∗(s,X i

s, Y
i
s )dWs;

Y i
t = g(X i

T ) +
∫ T

t
f(s,Θi

s)ds−
∫ T

t
Z i

sdWs.

Then |Y 1
0 − Y 0

0 | ≤ K̄0|x1 − x0|, where K̄0 is defined in (2.3).

Proof. We first assume that all the coefficients are differentiable. For 0 ≤ λ ≤ 1, let

Θλ △
= (Xλ, Y λ, Zλ) and ∇Θλ △

= (∇Xλ,∇Y λ,∇Zλ) be the solutions to FBSDEs:















Xλ
t = x0 + λ(x1 − x0) +

∫ t

0
b(s,Θλ

s )ds+
∫ t

0
σ∗(s,Xλ

s , Y
λ
s )dWs;

Y λ
t = g(Xλ

T ) +
∫ T

t
f(s,Θλ

s )ds−
∫ T

t
Zλ

s dWs.

and


















































∇Xλ
t = 1 +

∫ t

0

[

∂xb(s,Θ
λ
s )∇Xλ

s + ∂yb(s,Θ
λ
s )∇Y λ

s + tr (∂zb
∗(s,Θλ

s )∇Zλ
s )

]

ds

+
∫ t

0
[∂xσ(s,Θ

λ
s )∇Xλ

s + ∂yσ(s,Θ
λ
s )∇Y λ

s ]
∗dWs;

∇Y λ
t = ∂xg(X

λ
T )∇Xλ

T −
∫ T

t
∇Zλ

s dWs

+
∫ T

t

[

∂xf(s,Θ
λ
s )∇Xλ

s + ∂yf(s,Θ
λ
s )∇Y λ

s +
n
∑

j=1

tr (∂zf
j∗(s,Θλ

s )∇Zλ∗
s )

]

ds;

(2.12)

respectively. One can easily prove that

Θ1
t −Θ0

t =
∫ 1

0

d

dλ
Θλ

t dλ = [x1 − x0]
∫ 1

0
∇Θλ

t dλ.

In particular,

Y 1
0 − Y 0

0 = [x1 − x0]
∫ 1

0
∇Y λ

0 dλ.
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Note that (1.6) implies (2.2) for FBSDE (2.12). Then by Lemma 2.2 we have |∇Y λ
0 | ≤

K̄0, and thus

|Y 1
0 − Y 0

0 | ≤ |x1 − x0|
∫ 1

0
|∇Y λ

0 |dλ ≤ K̄0|x1 − x0|.

In general case, for any ε > 0, we may find molifiers (bε, σε, f ε, gε) such that

Λ4,λ,ε
t (y) ≤ −

1

K
|Λ3,λ,ε

t (y)|+ ε, (2.13)

where Λ3,λ,ε and Λ4,λ,ε are defined in an obvious way, so are other terms such as Θλ,ε.

Denote Ỹ
λ,ε
t

△
= ∇Y

λ,ε
t [∇X

λ,ε
t ]−1. By Lemma 2.1 we have |Ỹ λ,ε

t | ≤ C0 where C0 may

depend on K0 though. Then we have

2|Ỹ λ,ε
t |3Λ3,λ,ε

t (Ȳ λ,ε
t ) + |Ỹ λ,ε

t |4Λ4,λ,ε
t (Ȳ λ,ε

t )

≤ 2|Ỹ λ,ε
t |3Λ3,λ,ε

t (Ȳ λ,ε
t ) + |Ỹ λ,ε

t |4[−
1

K
|Λ3,λ,ε

t (y)|+ ε]

≤ CK |Ỹ
λ,ε
t |2 + ε|Ỹ λ,ε

t |4 ≤ [CK + εC2
0 ]|Ỹ

λ,ε
t |2.

Now for ε ≤ C−2
0 , we know (2.8) holds true for Ỹ λ,ε, and thus |Y 1,ε

0 −Y
0,ε
0 | ≤ K̄0|x1−

x0|. Let ε → 0, the lemma follows from the stability result for FBSDEs over small

time duration (see [1]).

3 Proof of Theorem 1.2

We now prove Theorem 1.2 for arbitrarily large T . The arguments are exactly the

same as in [10]. So again we will only sketch the main idea. In the sequel we use Lϕ

to denote the smallest Lipschitz constant of a function ϕ.

Proof. Let K and K0 be as in Lemma 2.1. By otherwise choosing larger K,

without loss of generality we assume that c = 1
K

in (1.6). Define K̄0 as in (2.3) (for

the arbitrarily large T !). Let δ0 be a constant as in Lemma 2.1, but corresponding to

(K, K̄0) instead of (K,K0). Assume (m−1)δ0 < T ≤ mδ0 for some integer m. Denote

Ti
△
= iT

m
, i = 0, · · · , m. Define a mapping gm : Ω × IR → IR by gm(ω, x)

△
= g(ω, x).

Now for t ∈ [Tm−1, Tm], consider the following FBSDE:















Xm
t = x+

∫ t

Tm−1

b(s,Θm
s )ds+

∫ t

Tm−1

σ∗(s,Xm
s , Y m

s )dWs;

Y m
t = gm(X

n
Tm

) +
∫ Tm

t
f(s,Θm

s )ds−
∫ Tm

t
Zm

s dWs.
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Note that Lgm ≤ K0 ≤ K̄0, by Lemma 2.1 the above FBSDE has a unique solution

for any x. Define gm−1(x)
△
= Y m

Tm−1
. Then for fixed x, gm−1(x) ∈ FTm−1

. Moreover,

by Corollary 2.3 we have

|Lgm−1
|2 ≤ |K1|

2 △
= [|K0|

2 + 1]eCK(Tm−Tm−1) − 1 ≤ |K̄0|
2.

Next we consider the following FBSDE over [Tm−2, Tm−1]:














Xm−1
t = x+

∫ t

Tm−2

b(s,Θm−1
s )ds+

∫ t

Tm−1

σ∗(s,Xm−1
s , Y m−1

s )dWs;

Y m−1
t = gm−1(X

m−1
Tm−1

) +
∫ Tm−1

t
f(s,Θm−1

s )ds−
∫ Tm−1

t
Zm−1

s dWs.

Similarly we may define gm−2(x) such that

|Lgm−2
|2 ≤ |K2|

2 △
= [|K1|

2 + 1]eCK(Tm−1−Tm−2) − 1 = [|K0|
2 + 1]eCK(Tm−Tm−2) − 1 ≤ K̄0.

Repeat the arguments for i = m, · · · , 1, we may define gi such that

|Lgi |
2 ≤ |Km−i|

2 △
= [|K0|

2 + 1]eCK (Tm−Ti) − 1 ≤ K̄0.

Now for any X0 ∈ L2(F0), we may construct the solution to FBSDE (1.1) piece

by piece over subintervals [Ti−1, Ti] with terminal condition gi, i = 1, · · · , n. Since

on each subinterval the solution is unique, we obtain the uniqueness of the solution

to FBSDE (1.1). Finally, the estimate ‖Θ‖ ≤ CI0 can also be obtained by piece by

piece estimates, as done in [10].

Finally we state the stability result whose proof is exactly the same as in [10] and

thus is omitted.

Theorem 3.1 Assume (bi, σi, f i, gi, X i
0), i = 0, 1, satisfy all the conditions in Theo-

rem 1.2. Let Θi be the corresponding solutions, ∆Θ
△
= Θ1 − Θ0, ∆g

△
= g1 − g0, and

define other terms similarly. Then

‖∆Θ‖2 ≤ CE
{

|∆X0|
2 + |∆g(X1

T )|
2 +

∫ T

0

[

|∆b|2 + |∆σ|2 + |∆f |2
]

(t,Θ1
t )dt

}

.

Corollary 3.2 Assume (bn, σn, fn, gn, Xn
0 ), n = 0, 1, · · · satisfy all the conditions in

Theorem 1.2 uniformly; Xn
0 → X0

0 in L2; for ϕ = b, σ, f, g and for any (t, θ),

ϕn(t, θ) → ϕ0(t, θ) as n → ∞; and

E
{

|Xn
0 −X0|

2+ |gn−g0|2(0)+
∫ T

0
[|bn−b0|2+ |σn−σ0|2+ |fn−f 0|2](t, 0, 0, 0)dt

}

→ 0.

Let Θn denote the corresponding solutions. Then ‖Θn −Θ0‖ → 0.
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