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ABSTRACT. Let X be the solution of a stochastic differential equation driven by a Wiener process and
a compensated Poisson random measure, such that X is an L? martingale. If H = ®(X;0<s <T)
is in L2, then
T
H=oa+ . &dXgs + N,

where N is an L2 martingale orthogonal to X (the Kunita—Watanabe decomposition). We give
sufficient conditions on the functional & such that & has regular paths (that is, left-continuous
with right limits). In finance this has an interpretation that the risk minimizing hedging strategy of
a contingent claim in an incomplete market has “smooth” regular sample paths. This means the
hedging process can be approximated and the resulting approximations will converge, along the
sample paths, to the risk minimal (and hence optimal) portfolio.

1 Introduction

A. Background. The problems addressed in this article are motivated by questions arising in
Financial Asset Pricing Theory where the market is not complete. The framework is as follows:
let X = (X;);>0 be a semimartingale representing the price process of a risky asset. Under the
standard assumption of the absence of arbitrage opportunities, there exists a probability measure
P*, equivalent to the original probability measure P (the “objective” probability), such that X
is a P*-local martingale (technically one requires X only to be a P*-sigma-martingale; see [5]).
P* is known as the risk neutral measure.

Let us assume that X is in fact a P*-martingale in L2, for0 <t < T, as is often the case. For
a nonredundant contingent claim H € Lz(]-'T, d P*) we have a unique decomposition:

T
H=a+/ eldx; + Nr, (1.1)
0

where N is an L?(d P*) martingale strongly orthogonal to X. (The decomposition (1.1) is called
the Kunita—Watanabe Lz—martingale decomposition; see [4] or [13] for background.) Let

(77t)05t§T

be an (optional) strategy devoted to the trading of a risk-free savings account, whose price is
fixed at 1. The value of the portfolio at time ¢ is then

Vi=8&X: + e,
and the cost up to time ¢ is

t
Ct:Vl_/O éstS.
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We require V7 = H. A strategy (&, ) is self-financing if (C;);>0 is constant, and it is mean-
self-financing if E{Ct — C{|F;} = 0; that is, if C is a martingale. If we wish to minimize the
remaining risk after time ¢, we then wish to minimize the quantity

E{(Cr — C)?|F1), (1.2)

interpreting risk in the L, or “squared error,” sense. H. Follmer and M. Schweizer [6] have

shown that the strategy
t
(&) = (s,”,vz— / ss”dxs)
0

is optimal in the sense that it minimizes the risk quantity (1.2).

Therefore, at least in this special case where X is an Lz—martingale under the risk-neutral
measure and H € L?(Fr, d P*), the hedging strategy £/ of (1.1), while of necessity not perfect
replication, is nevertheless optimal under squared error loss.

Several issues arise immediately: (1) when are there formulae to describe £ analogous to
those available in the traditional Black—Scholes paradigm? (2) when formulae are not available,
what can one infer about &/ ? In particular, when can one be assured of path regularity of £7?

Issue (1) above is addressed in [8], where it is shown that if there is an underlying quasi-
left-continuous strong Markov process Y = (2, F, (F;), P¥,Y) and if X is an Lz-martingale
under each P} and if H = g(Y7) for an appropriate class of functions g, then there is an
explicit formula for £. (Note that “explicit” in the preceding sentence can mean different things
to different people.) The results from [8] are perhaps the most interesting when ¥ = X and X is
the solution of a stochastic diffrential equation driven by a Lévy martingale.

Issue (2) above is the topic of this paper. For most contingent claims it is not possible to obtain
explicit formulas for £ . Instead here we are concerned with when the processes £ /—which are
a priori assumed to be only predictably measurable—have regular sample paths. In particular,
by “regular,” we mean that it is at least left-continuous with right limits, known by its French
acronym caglad. When £ can be shown to have caglad paths it is useful for two reasons:
(a) approximations of £/ will converge to it in a Skorohod-type topology; and (b) one can
approximate [ & H 4 X with Riemann-type sums and have convergence uniformly in probability
(or even almost surely if the partition size shrinks quickly). The importance of part (b) in finance
has been emphasized, for example, in [14].

B. New Results. We assume that under the risk neutral measure P* we have a Wiener process
W and a compensated Poisson random measure p(drdz) = u(drdz) — dr F(dz), where F is a
Lévy measure. We further assume that fR 72 F(dz) < 00, so that the process

t
Zi =W +/ /Zﬁ(drdz)
0 JR

is a Lévy process with E{Z,} = 0 and E{th} < 00,0 <t < T.(Thus Z is an Lz(dP*)
martingale. Our price process X satisfies

t t
X, =y+ / o (r. X,)dW, + / / b(r, X,_)2fi(drdz) (13)
0 0 R

and thus is also an L?(d P*) martingale with mild hypotheses on ¢ and b.

A contingent claim H € F7 can be assumed to be of the form H = &(X;; s < T), where ®
is a functional mapping D to R, where ID is the Skorohod space of cadlag (right-continuous with
left limits) functions. We find hypotheses on ® such that £ is caglad. An hypothesis, which
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we call the L'-Lipschitz condition (see Section 2 for details), was used in a recent paper by Ma
and Zhang [11] to study the path regularity problem for the solutions to backward SDEs driven
by Brownian motions. This paper in a sense extends the result there to the Lévy case. Some
examples of path-dependent options covered by our results include but are not limited to

(i) ®X)r = + [ Xds;
(i) ®(X)r = g(supg<,<7 h(t, X)) (Lookback option);
(i) ®(X)r = g(Jy h(s, X,)dX,); o

iv) ®(X) = g(?1(X), ..., D,(X)), where g is Lipschitz and ®;s are of any of the forms
(i)—(iii). (For example, if g(x) = (K — x)*, then g combined with (i) gives an Asian
Option.)

We remark that to justify the price equation (1.3) one should note that in almost all of the
existing theory of Financial Asset Pricing, the price process is assumed to be Markov under
the risk neutral measure. (The price process need not be Markov under the objective measure
however.) E. Cinlar and J. Jacod [2] have shown that all “reasonable’” strong Markov martingale
processes are solutions of equations of the form

t

t
Xi =y+/ o(r, Xr)dWr+/ b(r, X,—, )(drdz). (1.4)
0 0

Thus our assumption merely restricts the general case by assuming b(r, x, z) is of the form
b(r, x)z, as well as some restrictions on the integrability of the coefficients.

A simple way in which our model might arise is if the objective price process X is modeled
as a geometric Lévy process:

dXt =UtXt_dZt +thtdt, (15)

where Z is an L2 Lévy martingale under P. Since Lévy processes give rise to incomplete markets,
we have to choose an equivalent risk neutral measure P* in a natural way. We can do this using
the idea of Follmer and Schweitzer [6]: an equivalent risk neutral probability P* is minimal if
any square-integrable P-martingale M orthogonal to Z is also a P*-martingale. T. Chan [1] has
shown, under some restrictive assumptions, that if U satisfies

dUt = l + UtytdWl7

where y can be taken to be nonrandom if o and b are nonrandom, then d P* = Urd P, and thus
it follows that under this P* the process X of (1.5) satisfies (1.3). That is, the drift is removed
by the canonical risk neutral minimal martingale measure, and the price process has the desired
form under P*.

2 Preliminaries

Throughout this paper we assume that (2, F, P; {F;}o</<7) is a complete filtered probability
space satisfying the usual hypotheses (see, e.g., [13]), and T > 0 is a fixed time duration. We

denote F £ {F:}i>0 and assume F is quasi-left-continuous. Let W be an F-adapted Brownian
motion, and p be a random measure generated by an F-adapted Lévy process (see, e.g., [9]).
Let v(dtdz) = dtF(dz) be the (nonrandom) compensator of w, and denote & = u — v. We
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assume that F integrates z2, and by rescaling we may assume without loss of generality that
JrZ?F(dz) = 1.

In what follows we denote D = D[O0, T to be the space of all cadlag functions on [0, T']; and
Cl(])’ ! ([0, T] x R) to be the space of all continuous functions on [0, 7] x R that are continuously
differentiable with bounded derivatives in the spatial variable x. To simplify the presentation,
we assume all the processes are one-dimensional, but all the results in this paper can be extended
to higher dimensional cases without substantial difficulties.

For (s, y) € [0, T) xR, letus consider a local martingale, { X f’y }s<t<T, defined as the (unique)
solution to the stochastic differential equation

t t
Xi=y +/ o(r, X,—)dW, +/ / b(r, X,_)zp(drdz), s<t<T. 2.1
s s JR

We assume that the coefficients o and b satisfy the following standing assumptions:

(Al) (i) The functions o, b € Cy' ([0, T] x R), such that 62(7, x) # 0, for all (7, x); and

(i1) there exists a constant K > 0 such that

lol(t, x)| + b1, x)| < K. (2.2)

{ supo<; <7l (. 0)| + |b(1, 0)[] < K
Here and in the sequel we denote o and b/, to be the partial derivatives of o and b, respectively,
with respect to the spatial variable x.
We first give two lemmas. Since the proofs are more or less standard (see, e.g., [8]), we
omit them. The first lemma shows that the assumption (A1), together with the requirement that
i 72 F(dz) < oo, renders X a martingale rather than a local martingale.

Lemma 2.1. Assume (Al). Then for any 0 < s < t < T, there exists a constant C > 0
depending only on K and T, such that

E{ sup |Xf’y|2} < C(1+|yP), (2.3)
s<t<T
and
E{ sup |X5Y — yF} < C+ |y —s). (2.4)
s<r<t

Consequently, for any (s, y) € [0, T]1 x R, XY is a true martingale defined on [s, T). Further-
more, one has

d(XS, X5, = (62 + D), X3)dt, 1 els, T). 2.3

Throughout the paper, unless otherwise specified, we denote C > 0 to be a generic constant
depending only on K and 7', which may vary from line to line. The following variational process
VX, defined in Lemma 2.2, is important in the paper.

Lemma 2.2. Assume (A1), and let o and 8 be two F-predictable processes that are bounded by
K. Foreach0 <s < T, let Y’ be the solution to the (linear) SDE

ot t
YP=1+ / o Y5 dW, + / / B YS_zii(drdz). 2.6)
s s JR
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Then it holds that

E{ sup |Y,~Y|2} <C. .7)

s<t<T

In particular, if oy = o[ (t, X,S’y) and B = b/.(t, X,S’y), then we denote the solution to (2.6) by
Y = V X, which satisfies the relation

I _ ‘ ;
E {‘hai’”” - X7 - VX

2
}—)O, ash — 0.

We note that sometimes the notion of “difference quotient” of X will also be used: for any
y,heRandr e [s, T],

N ,
ARXPY S X - X,
The following identity is then obvious:
sup X7 = X7 = Iy1 = yal sup [Ay X7 (2.8)
s<t<T s<t<T

Now let @ : D — R be a functional such that E|®(X)|> < co. We consider the F-martingale

M, £ E{®(X)|F), >0. (2.9)

By martingale theory, there exists an F-predictable process, &, such that

t
M, =a+ / £,dX, + Ny, (2.10)
0

where « = Mg and N is an F-martingale that is orthogonal to X (i.e., [N, X]is an F-martingale.
For more on this theory, consult Dellacherie-Meyer [4] or Protter [13]). One of the main purposes
of this paper is to find conditions on @ so that £ has caglad paths.

To this end, let us introduce a functional ¢ which plays an important role in the sequel. Define
¢ :Dx[0,T]xR+H Ras

p(x,t,y) = E{®x1j0n + X" 17D}, X,1,y) € Dx[0,T] x R. (2.11)

We note that if ®(X) = g(Xr), then ¢(x,t,y) = Pr_,g(y), where (P;) is the transition
semigroup of the strong Markov process X.

To conclude this section let us recall a “tightness” result of probability measures of Meyer—
Zheng [12]. Denote M(ID) to be the space of all probability measures on D. Let X be any
F-adapted, cadlag process defined on [0, T'], such that E|X;| < oo for all + > 0. For any
partitionw : 0 =1ty < t] <--- <t, < T, letus define

VEX) 2 S E(IE{X,,, — X4\ B + EIX, . (2.12)

0<i<n

and define the conditional variation of X by Vr(X) = sup, V7 (X). If V7 (X) < oo, then X is
called a quasimartingale. We remark here that the quasimartingale in [12] is defined on [0, co].
However, since [0, T'] and [0, oo] are homeomorphic, their results apply as well on [0, T']. We
only point out that the conditional variation Vr(X) defined here is the finite horizon version of
that in [12]. We have the following result.
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Theorem 2.1 (Meyer-Zheng [12]). Let{P,},>1 C M(D), such that under each P, the coordi-
nate process X;(w) = w(t),t € [0, T, € D, is a quasimartingale. Assume that V,,(X), n > 1,
the conditional variation of X under Pys, are uniformly bounded in n. Then there exists a subse-

quence { P, } which converges weakly on D to a law P* € M(D), and X is a quasimartingale
under P*.

3 Discrete case revisited

In this section we look at the special case where the functional & takes a special “discrete” form.
To be more precise, we letw : 0 =19 < t; < --- < t, = T be any partition of [0, T] and
assume that

CD(X) = g(xl(p ey Xt,,)»

where g € C b‘ (R 1 ). We note that such a case was also studied by Jacod—Méléard—Protter [8],
but we shall give a slightly different formula that is more useful for our future discussion. We
assume that all the (first-order) partial derivatives of g, denoted by d;g (= dy,;8),i =1,2,...,
are bounded by a common constant K > (. Recall the function ¢ defined by (2.11). Clearly, for
te(ti—y,tilandx € D,

oty = E{g (xto). ..o x@0. X7 X0 ) (3.1)
Since X is Markovian, it can be shown that the martingale defined by (2.9) can be written as

M; =o(X;t, X;) = lim e(X1j0,u); 1, X1),

tiy<u<t ,ulti_q
where the second equality holds true for ¢ € (#;_1, #;]. Note that by (2.10) we have
dM; = &dX, + dN;. (3.2)
We shall follow the idea of [8] to identify . To this end, we define a function ¢ : [0, T'] x R by

o, x1,...,xi-1,y) = E{g(xl,--.,xi—l,Xf;y, . Xf,’,y)}-

Clearly, we have ¢(X; t, X;) = ¢(t, Xy, ..., X;,_,, X;) and (surpressing all variables) 0;¢ =
09, 0y = 0y¢p. We shall first assume that ¢ € CY-2((1;_1, ;] x RY). Also, when the context is
clear, we shall simply write ¢ (¢, y) = ¢ (¢, Xy, ..., X;,_,, y) for notational convenience.

Now, for j = 1,...,i — 1, we define X’/ = X,j, for all + > t;_1 > t;. Then, applying Itd’s

formula over [ti_l,_ti], and noting that de =0,j=1,...,i — 1 and d{XJ,Y) = 0, for
Y=X,X',...,x" 1 and¢t > ti_1, we get

dM; = dé(t, X!, ..., X!, X,)
1
= % p(t, Xp-)dt + 9yp (1, Xi—)d Xy + 0,9 (1, X,2)o(t, X, )dt (3.3)

-|-/]R [p(t, Xo— +b(t, X1-)2) — ¢ (1, X;—) — 0y (1, X,)b(t, X;-)z] p(dt, dz).

Since M is a martingale, the finite variation terms on the right side of (3.3) must equal 0; an
argument analogous to that in [8] then shows that

AMy = 0,01, X)X, + [ (B0, X+ b0, X)) = 900, X,0)
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— 0y, Xi)b(t, Xp)z| fidrdz) (3.4)

= (Oypo) (1, X;-)dW; + /R[q)(l, Xi— +b@t, X,)2) — (1, X,-)]n(drdz).

Since X and N are orthogonal, by combining (2.5), (3.2) and (3.4) we have

dM,X), = &@>+b*, X, )dt
- [(aywz)(r, Xi) +b(t. X1 /]R ZAz(z)F(dz)] dr,
where
A (2) é o(X,t, Xi— + b0, X;-)2) — (X, t, X;). 3.5)

Consequently, one has, fort € (t;i_1, #;),

_ (Oypo2)(t, X;—) + b(t, X;-) [ 2+ (2)F(d2)

b (02 +B2)(t, X,_)

(3.6)

Now we are ready to prove the following theorem.

Theorem 3.1. Assume (Al), and assume that the function g is continuously differentiable with
bounded derivatives. Then it holds that
o2t X)X, 176 + &

s (02 + b2)(t, X,) 3.7)

is caglad, where

A
gtle Zajg(Xt()i"'vxtn)Vth ﬁ 5
1>t 3.8)

220, x,0) / AL F(d2),
R

and A is defined by (3.5).

Proof. Recall that v(dt, dx) = dt F (dx). Assume first that F' has compact support, that o, b are
infinitely differentiable with bounded derivatives of all orders, and that g is bounded, and twice
continuously differentiable with bounded derivatives. Following the argument of [8, Lemma
5.1], we know that in each subinterval (¢;_1, t;), ¢ € CY-2((t;_1, t;) x R). Then following the
same argument as before we see that (3.6) must hold for ¢ € (t;_1, t;). Now using (3.1) we derive
that

e, X) =IVXI'EQD 8j(Xeyo .., Xy, )VX, | Fy 0 = [VX,]7'E.
jzi
Noting that 9y, ¢ is continuous, and taking left limits on both sides above we obtain (3.7) on
(ti-1,1).
To show that & is caglad we first observe from (3.8) that £! is obviously cadlag, hence the
mapping ¢ — o2(t, X,_)[VX,_]’IEII_ is caglad. Furthermore, from (3.5) we see that the process
A is caglad. Also, applying Lemma 2.2 one shows that |¢,| < C for some constant C > 0. Thus,

A (2)] < Clb(t, X;)llz| < C (1 + sup |XS|> |zl
0<s<T
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Now a simple application of the Dominated Convergence Theorem shows that £2, defined by
(3.8), is also caglad. Therefore so is .

It remains to remove the extra assumptions made on F, g, o and b. Here we can follow
closely the approximation techniques of [8]. We leave it to the interested readers. The proof is
now complete. a

For future applications, we now extend Theorem 3.1 slightly.

Theorem 3.2. If g is continuously differentiable, and further it is of linear growth and all its
partial derivatives composed with X, 0;g(X,, . .., Xy,), are square-integrable, then (3.7) holds
and & is caglad.

Proof. Let {¢"} C Cg (R"+1) be a sequence of truncation functions satisfying 0 < ¢™ < 1;
[0;¢™| < 1; and

m _ 1, [(x0, ..., xp)| < m;
¢ (XO""’X")_{O, (X0, -+ s X0)| = m + 1.
Define @, : D — R by
P (x) = (g™ (X(10), . .., X(1n)). (3.9

Then clearly ®™ has compact support with all derivatives bounded. Applying Theorem 3.1 we
have

T
&, (X) =y +/ §&"dX, + N7,
0
where £ is caglad and satisfies, for ¢t € (#;,_1, t;],
EM (02 + 7)1, Xo) = 026, X, ) (VX)) TIEm + 8% as.

Here S’”’l, E’"’Z are defined in the same way as those in (3.8), as well as (3.5), with g being

replaced by g¢™. Since g is of linear growth, and 9;g(Xy,, ..., X;,)s are all square-integrable,
letting m — 0 on both sides above and applying Lebesgue’s dominated convergence theorem,
one concludes that (3.7) holds and £ is caglad. O

4  L°°-Lipschitz case

In this section we present our first path regularity result, under a rather general condition on the
functional ®, which we call the L°°-Lipschitz condition:

|(x1) — P(x2)| = L{IX1 = X2 |0 VX1, x2 € D, 4.1)

where ||X|| 00 2 Sup;¢po, 77 1X(#)|. Two important cases under such an assumption will be studied
separately in the next section.
We first give a lemma that shows the implication of (4.1) on the function ¢ defined by (2.11).

Lemma 4.1. Suppose that ® satisfies (4.1), and let ¢ be defined by (2.11). Then there exists a
constant C > 0, depending only on the time duration T and the constants K in (Al) and L in
(4.1), such that for any X, X1,xp € Dand y, y1, y2 € R,

0=<s<t 4.2)

{ lo(X1,1,y) —@(X2,1,y)| < C sup [x1(s) —Xa2(s)[;
lo(x, t, y1) — (X, t, y2)| < Cly1 — y2l.
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Proof. First note that, by (2.11) and (4.1),

lp(x1,1,y) — (X2, 1, )| < E {|®X1110,1) + X"V 11,77) — P2l + XV 1,771}
< Lixilon 4+ X" 11 — X210, + X1 111lleo = L sup [X1(s) — Xa(s)].

O<s<t

Similarly, for any x € D and y1, y € R,
lp(x, 1, y1) — (X, 1, y2)| < E {|®x1[0,) + X" 111, 77) — D10,y + X2 11| }

< LE{ sup | X7t — Xﬁ’yzl} = Liy1 —yzlE{ sup IAyl—szﬁ’yzl} = Cly1 =yl

t<s<T t<s<T
thanks to (2.8) and Lemma 2.2. This completes the proof. O

In light of the idea in [11] for the Brownian case, we shall approximate the functional ® by a
sequence of discrete functionals, which we now describe. For any partition 7 : 0 =19 < ] <

- <t, =T, we define amapping 7 : D — D by x — 7(x) 2 X, Where

n

X (1) = 3 XD i () + XD 17y (0. 43)

i=1

Denote |m| = max; |t;+1 — t;| to be the mesh size of the partition 7. Then, using the right
continuity of x it is easily seen that

I1i|m0 %7 (£) — x(¢)| = 0. 4.4

The following lemma is a slight variation of [11, Lemma 4.1]. We shall state it without proof.

Lemma 4.2. Suppose that ® satisfies (4.1). Let I1 = {m} be a family of partitions of [0, T].
Then there exists a family of discrete functionals {g”™ : w € T1} such that

(i) foreachm €11, g™ € Cg (R and satisfies

n
> lgF (x0. ... xn)yil < C max || (4.5)
> 0<i<n

with constant L being the same as that in (4.1);

(ii) for any x € D, it holds that
18" (X(10), - - -, X(tn)) — P (X)| < |7]. (4.6)

Our main theorem of this section is the following.

Theorem 4.1. Assume (A1) and that ® satisfies (4.1). Assume further that the function ¢ defined
by (2.11) is caglad with respect to t, for each fixed (x, y) € D x R, and that

‘li‘mo |®(x;) — ®P(x)| =0;  VxeD, 4.7
T|—

where X5 is defined by (4.3). Then & in (2.10) admits a caglad version.
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Proof. Letthepartitionw : 0 <y <t <--- <t, =T begiven.For(x,?,y) e Dx[0,T) xR,
define

®r(X) = g7 (X(10), - . X(1n)): ¢ (X1, y) = E{®x(xljo + X" 1)), (48)

where g7 is the approximation of g given by Lemma 4.2. By (4.6) and (4.1),

|Pr (X)| < [PXp)|+ 7] = C (1 + sup IX(t)|> . (4.9)
0<t<T

Applying Lemma 2.1 and the Dominated Convergence Theorem, we derive from (4.6) and (4.7)
that

|1i|m0E|‘:I:»7,(X)—<I>(X)|2 =0. (4.10)
T|—
Now Theorem 3.1 tells us that in the representation
T
CDﬂ(X)zaﬂ—i-/ gFdX: + N7, (4.11)
0

the process £7 is caglad, and it has an explicit form,
EF (07 + b)), Xi0) = 02 (t, X )/(VX )T g0 + 672, (4.12)

where

n
1A
étn =E Zg;[(xloa R Xln)vxfj

Fi ¢ vt e (ti—1, 4]
tj>t (4.13)
&7 S b(t, X, ) / (@ (X, 1, X~ +b(t, X,2)2) — 9" (X, 1, X,)2F (d2).
R
Further, by virtue of (4.10), we see that as |[7| — 0 we must have ¢, — o and

T

E {/ &7 — &% (0 + b)), X,_)dz} 0. (4.14)
0

To show that £ has a caglad version, it suffices to show that there exist caglad processes &!
and £ such that & has the explicit form

E(@2+D)(. X)) =0 (t, X, (VX )T'E + 8, as. (4.15)
To this end, we note that from (4.8) and (4.5) one has

™ (X, t, X +b(t, X1-)2) — 9™ (X, 1, X;-)]

]

7'7} = Clb(r, X;-)llzl,

IA

CE{ sup |X§sz—+b(t,X,_)z _ va’X‘_|

t<s<T

CE{Ib(t, Xzl sup |Ap,x, )z Xl

t<s<T
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where the last inequality is due to Lemma 2.1. Thus if we define
E22 bt X,) / (@(X, 1, Xi— +b(t, X,2)2) — (X, 1, X;2)2F (d2), (4.16)
R

and note that fR F(dz)z*> = 1, then by applying the Dominated Convergence Theorem, we
derive from (4.7) that

T
lim E {/ &% — §,2|dz} —0. (4.17)

| |—0 0

Therefore, possibly along a subsequence, £%2 — £2 as || — 0, in measure, a.s. Now since ¢
is caglad in ¢, we see that so is 52.

It remains to identify £ and show it has a caglad version. We shall make use of Meyer—Zheng’s
tightness criterion again. First, combining (4.12), (4.14), and (4.17) we see that, possibly along
a subsequence, one has

w1 1 é él(o—z"i_bz)(tvxlf) _512
S = o2(t, X, )[VX,-]7!

, as|wr| — 0, (4.18)

and the convergence is in measure, a.s.
On the other hand, let 7’ : 0 = 59 < --- < 5, = T be any partition of [0, T'] that is finer than
7. We assume that t; = s;,,i = 1,2, ..., n. Then,

m n l;
DOENEES =& F =) > E(EED —&01F, )
j=1

i=1 j=li_1+1

=Y E{IE{ VX, | Fi )} EE{Z|gZTVXz,-|} (4.19)

i=1 i=1

< CE{ sup |vx,|} <,

0<t<T

thanks to (4.5). Therefore, the processes £” "1g all have bounded conditional variation, and hence
they are all quasimartingales as defined in §2. Furthermore, we note that the uniform bound of
these conditional variations are indeed independent of the choice of 7. Consequently, applying
the Meyer—Zheng theorem (Lemma 2.1), there exists a cadlag process £! such that the cadlag
version of £ converges to £! weakly under the Meyer—Zheng topology, as || — 0. Note that
the Meyer—Zheng (pseudopath) topology is equivalent to convergence in measure (see, e.g., [12]
or [11]), so if by a slight abuse of notation we denote the caglad version of & ! by itself, then the
uniqueness of the limit shows that Etl = 5,1, a.s., Vt. In other words, Sl, whence £, has a caglad
version. This completes the proof. O

5 Some sufficient conditions

One of the main differences between the Lévy case and the Brownian case is that the L*°-
Lipschitz condition alone does not guarantee the path regularity of the process &£. In fact, in
Theorem 4.1 we required an extra assumption on the mapping ¢ — ¢(X, ¢, y), which is not
easy to verify in general. In this section we consider two cases where the functional ® satisfies
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some stronger “Lipschitz” conditions so that the extra assumption can either be removed or be
replaced by a more easily verifiable one. These two cases are mainly motivated by connections
to finance. The first one corresponds to the “Asian Option,”” while the second one corresponds
to the “Lookback Option.” At the end of the section we shall give an example to show that there
exists a nonregular & even though @ satisfies the L°°-Lipschitz condition.

Theorem 5.1. Suppose that ® satisfies the L'-Lipschitz (or Integral Lipschitz) condition

T
|P(x1) — P(x2)| < L/o Ix1(r) — x2(0)|dt; (3.1

then the process & in the representation (2.10) admits a caglad version.

Proof. Itis clear that the L'-Lipschitz condition (5.1) implies the L>°-Lipschitz condition (4.1).
Thus, by Theorem 4.1, it suffices to prove that ¢ is caglad and that (4.7) holds.

Note that for any x € I, it holds that ||X; [|cc < [IX]lco < 00.Then, by (5.1) and the Dominated
Convergence Theorem, we have

T
|P(x7) — P(@)| < L/ |x7 () — x(2)|dt — 0; as |m|— 0, 5.2)
0

thanks to (4.4). Furthermore, by Lemma 2.1 one has, for0 <# < < T,
lo(X, t1, y) — (X, 12, ¥)|

=t { D(x1[,y) + X" 1y, 77) — @(XLj0,1) + X’z‘yl[fz’”)'}

%) T
<CE {/ X1 — x(s)|ds +/ X1 — X§2’3’|ds} (5.3)

| n

n=s=<n n<s<T

sCE{ sup (IX{ ]+ X))t = 1) + X[ — y] sup |Axgy_yX§2’y|}

1
= CU+ Iyl + lIxlloo) (2 — 11)2.

Therefore, ¢ is continuous, which, together with (5.2), enables us to apply Theorem 4.1 to
conclude that £ has a caglad version. O

The second case, motivated by the Lookback Option, is a little more involved.

Theorem 5.2. If ®(x) = g(supg<, <7 h(t,X(1))), where g and h(t, -) are uniformly Lipschitz
with a common constant K, and h(-, x) is continuous for all x, then & in (2.10) admits a caglad
version.

Proof. That @ satisfies (4.1) is obvious. So again we need to show only that ¢ is caglad in ¢,
and (4.7) holds.

Firstfixx e Dandletw : 0 =t < --- < t, = T be any partition. Since g is Lipschitz, we
have

|®(x7) —P(X)| = C

sup h(t, Xz (1)) — sup h(fax(f))’

0<t<T 0<t<T

IA

C < sup h(t, x(1)) —maxh(ti,x(ti))> 5.4)

0<t<T !
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+Cmax sup |h(t,x(%)) — h(t;, x(#))].

boost<y
For any ¢ > 0, choose #° € [0, T] such that

sup h(t,x(1)) < h(t®, x(t%)) + &.

0<r<T
Now for each i we have
|h(t®, x(t%)) — h(ti, x(#)] < |h(ti, X)) — h(t°, x(t)]| + CIx(t;) — x(t°)],
and, thanks to the continuity of 4,

h(t*,x(t%)) < lim maxh(t;, x(#;)).

|r|—>0 ¢
Since ¢ is arbitrary, we deduce that
sup h(r,x(7)) < lim maxh(t;, X(%;)). (5.5)
0<t<T |r]—0 1

Furthermore, since x € D, it is bounded on [0, T']. Let [x(¢#)| < K for some constant K > 0.
Also, since 4 is continuous, it is uniformly continuous on [0, T'] x [—K, K]. Thus we have

lim max sup |h(t,x(t)) — h(t;, x(t:))| = 0. (5.6)

||—=0 i ti_1<t<t;
Combining (5.5) and (5.6) we derive from (5.4) that

Jim 10 (67) — 2(0] = 0. (5.7)

It remains to show ¢ is caglad in ¢. To do this we observe that, for fixed x, y, and any
0<t<n=<T,

= |E{P&l[) + X" 1y 1) — DX, + X 11y 1) }|

CE{

— sup h(s,x(s))V sup h(s, X27)

0<s<t th<s<T

CE{

sup h(s, XY) — sup h(s, X27)

11 <s<T th<s<T

IA

sup h(s,x(s)) vV sup h(s, XY)

0<s<t H<s<T

sup h(s,x(s)) — sup h(s,x(s))’

0<s<ty 0<s<t

+ sup |h(s, X{¥) = h(t2, y)| + sup Ih(s,X?’y)—h(S,X?’y)l}

n=<s<n ty<s<T

IA

+

IA

CE{ sup (s, x(s)) — h(ty, x(t1—))|

n=<s<n
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< CE{ sup |h(s, x(11—)) — h(t1, x(t1—))| + sup [x(s) — x(11—)]
Hn=<s<t H=<s<t
+ sup |h(s,y) = h(2, y)| + sup X —y]
n=<s<n n=<s<t
+1X5 " =yl sup [Ayns_ Xﬁ”l}
1 <s<T Y
= C{ sup |h(s, x(11—)) — h(tr, x(1—=)| + sup [x(s) —x(11—)|
Hn=<s<ty =<s<tp
1
+ sup Ih(S,y)—h(tz,y)|+(tz—t1)2} (5.8)
N=<s<tp

thanks to Lemma 2.1 and Lemma 2.2. Now fix 7y € (0, T'). For Ve > 0, since x is cadlag, there
exists § > 0 such that

[x(2) — x(to—)| < &; vt € (to — 8, to); (5.9)
[x(¢) — x(#0)| < &; vt € (t, to + 9). '
Thus
SUP; <y <, [X(5) — X(1—)| < 2¢; Vit € (1o — 3, 10); (5.10)
SUP;, <5<, [X(s) — x(t1—)| < 2e; Vip <t <t) <ty+6. )

which, combined with (5.8) and the fact that £ is locally uniformly continuous, clearly implies
that ¢ is caglad. O

To conclude this section we give an example which shows that in general the L°°-Lipschitz
condition (4.1) alone does not guarantee that £ is caglad.

Example 5.1. Let X; = N; —t, where N is the standard Poisson process. (Thatis,oc = 0,5 =1
and F(dz) = 6(1y(dz).) Let A € B([0, T]) such that A is dense in [0, T]and 0 < |A| < T,
where |A| denotes the Lebesgue measure of A. Define @ : D — R by ®(x) = sup;c4 |AX(?)].
Now consider the equation

t
M; =1 —/ M;_14(s)dX5.
0

By the Doléans—Dade Exponential Formula (cf. Protter [13]), we have

t
M; = exp {—/0 lA(s)dXS} H[(l —1a(s)AX)e!a®AXs] (5.11)
s<t
= exp {— > 1a()AN, +]AN]0, t]|} [ = 1a()AN) | exp {Z 1A(s)ANS}
s<t s<t s<t

— lAanio.| H(1 — 1A($)AN;).

s<t

Since ®(N) only takes values 0 or 1, and if ®(N) = 0, then for all s € A, AN; = 0, thus
14(s)AN; = 0 for all s € [0, T], hence My = e!4l, thanks to (5.11). On the other hand, if
®(N) = 1, then there exists s € A such that ANg = 1, again by (5.11), we have M7 = 0. So

Mr = elAll{q)(N):o} = E‘Al(l — O(N))
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and

T
OX)=DP(N)=1—e MAIMp=1—¢A +/ e MM, _14(0)dX,. (5.12)
0

Hence
& =e MM _1,0)

which clearly is not caglad.

6 Stochastic integral case

In this section we consider the case where @ (X) = g( fOT h(t, X;_)dX;). Note that in this case
@ (X) no longer depends on X in a path by path manner, and none of the “Lipschitz conditions”
studied in the previous sections is satisfied. Let us first modify the function ¢. Observe that in
this case

q)(Xl[(),t) + Xl’yl[,,T])

t— T
—g (/ (s, Xs_)d Xy + h(t, Xi2)(y — Xi—) +/ h(s, xg’y)dx;»y) .
0

t

We shall introduce the following two new functions ¢ : € X R2 x[0,T] x R — R and
10 :R% x [0, T] x R > R such that

T
1ﬂ(a,x,t,y)éa+h(t,x}(y—16)+/ h(s,, X{2dX s
t

o(a,x.t.y) = E{g((a, x. 1, y)}.

6.1)

The following theorem is an extension of Theorem 5.2.
Theorem 6.1. Suppose that ®(X) = g(fOT h(t, X;—)dX;), where g and h satisfy the following:
(i) h is bounded;
(ii) for fixed x, h(-, x) is caglad;
(iii) for fixed t, g and h(t, -) are uniformly Lipschitz continuous with Lipschitz constant K,
Then, & admits a caglad version.

Proof. We follow a similar line to the proof of Theorem 5.2, but make necessary adjustments.
First let us assume that g and A(z, -) are continuously differentiable for fixed ¢ and that A/, (-, x)
is caglad for fixed x. We define an approximating discrete functional as follows. For 7w : 0 =
to < -+ <t, =T,define

n

~ A

D (X)=8(Xsp ..., Xp) = ¢ (Z htio1, X, )Xy, — Xti_.)> ; (6.2)
i=1

Note that X is a martingale, and we have

E{|®7(X) — &(X)|*}
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2
=F

n n t;
g <Z h(ti—1, X ) (Xy, — Xm)) —g (Z / h(s, Xs>dxs>
i=1 V-1

i=1
2

n

t
> (h(ril,x,”xXn — Xy)) - / h(s,xndxs)
ti—1

i=1
2
} 6.3)

=CE {Z
n ti

<CE {Z/ |h(s, Xs-) = h(ti-1, X, )07 + b)), xs_)ds} :
i=1 i1

<CE

t
h(ti—lv Xt,'_|)(Xll‘ - Xt,‘_|) - / h(S, XS—)dXS)
1,

i—1

i=1

A simple application of the Dominated Convergence Theorem then gives that

lim E{|®,(X) — ®(X)*} =0. (6.4)
| |—0
Next, note that by the martingale representation theorem we have

O (X) = ax + [ E7dr + NF;
®(X) =a+ [y &dt+ Nr,

and by (6.4) we have
T
llilmOE {/ €T — &0 + b)), Xt_)dt} =0. (6.5)
T|— 0

Furthermore, by Theorem 3.2 we know that £7 admits a caglad version and has an explicit
formula. We want to show that £ also has a caglad version and to identify its explicit form. To
this end, let us introduce two functions corresponding to those in (6.1): for ¢ € (t;_1, #;],

A ,
Y@, x, L y) Sa+h(to, )X =0+ > k(o X)X = XeY )

j>i (6.6)
A
" (a,x,t,y) = E{g(y" (a,x,1,y))}.
Then, it is easily seen that
(Xl + XV =g [ ¥ [ DAt X ). Xopt.y | | (6.7)

j<i
and by Theorem 3.2, £ can be written explicitly as

o2(t, X )(VX, )T g 4 g2

(02 +b2)(t, X,-) ’ (68)

5 =

where, for t € (t;_1, t;],

A
stn,l :8y§0n E h(tj—lvxljfl)(le _th,1)9X[,',17ts Xt— )
j<i (69)

72 LX) [ AT @F @)
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D htjo1. Xi )Xy, = Xi )Xo 1 X- + b X0z

j<i

>

j<i

355
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Applying the Dominated Convergence Theorem, we then conclude that

lim |@" (ax, xz,t,y) —@(a, x,t,y)| =0;

=0 6.14
Tim 18,07 @r. 5z, 1, 3) = (a5, 1, )] = @19

Now note that, possibly along a subsequence, we must have that, for each ¢ € [0, T,

t_
E h(tj—la Xl‘.,',l)(th - thfl) - / h(S, XS—)dXS7 a.s.,
0

j<i

and X;, | — X,;_, as., as || — 0. Thus, applying the Dominated Convergence Theorem if
necessary, we derive from (6.9) that, for all ¢ € [0, T],

.1 1. 2 2
g — £ 07— &, as|w| — 0,

thanks to (6.14), where

A =
ézl :ay§0 (‘/0 h(s, Xs_)dXgs, X, t, Xt—) 5

N (6.15)
;=D Xio) / Ai(2)zF (d2),
R
and
A =
A()=¢ </ h(s, Xs—)dXs, X;—, t, X;— + b(t, Xt—)Z>
0
t_
—Q (/ h(s, XS_dXs,X[_,l,X[_).
0
Furthermore, (6.5) implies that
2 1 2
t, X;—
g = CCXIE T8 b e (6.16)

T 024+, X))

It remains to show that both £! and &2 have caglad versions. To see this, note that X is driven by
a Lévy process, which has no fixed jump time. Namely, for every ¢ € [0, T], one has X; = X,_,
a.s.and VX; = VX;_, as. Recalling (6.1) and (6.11), we see that, for each t € [0, T], it holds
almost surely that

t_
g = ay(p(/ h(s,XS_)dXS,X,_,t,X,>
0
T T
= E{g’ (/ h(s,XS_)dXS) {h(t,X,_)+[VXt_]‘l/ (s, Xs—)VXs_dX,
0 t
T
VX! / h(s,xs_wvxs} ‘f}
t

l_
— {h(t,Xt_)—[VX,_]_l/ (s, X, )VX,_dX, 6.17)
0

t— T
- [VX,_]’I/ h(s, Xs_)dVXS} -E{g’ (/ h(s, XS_)dXS> ’f,}
0 0
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T T
+IVX,_1'E {g’ (/ h(s, XS_)dXS> : U B (s, Xy )VX,_dX;
0 0

f.t}’

which clearly has a caglad version, thanks to the assumption that % is caglad with respect to 7.
Furthermore, using (6.1) and (6.11) again we have

T
+/ h(s,XS_)dVXS}
0

[0qp(a, x,t,y)| < C;
[0xp(a, x,t, )| < C(1 4+ |y — x]); (6.18)
[Oy@(a, x,t, y)| < CA + |y]),

and for 0 < t; < t, < T, denoting X’ = XY i = 1,2, we have

lpa, x, t1,y) —@la, x, 0, )| = CE{|Y(a, x, 11, y) — ¥ (a, x, 2, )|}

15}
< CE{mal,x)—h(tz,x)Hy—x|+|/ h(s, X{_)dX!|
1
T
+ / [his. X))o (s, X)) — his, X2 )o (5. X2)1dW,
n
T
+ / /[h(s, X! )b(s, X1y — ns, st_)b(s,Xf_)]zﬁ(ds,dz)}
1% R
< C |lh(t1, %) — h(t2, )Ily — x| + (1 + |y (r2 — 11)/? (6.19)
T 3
+E (/ Ih(s, X! Yo (s, X! ) — h(s, X2 )a (s, Xf_)|2ds)
5]
T
+ E{ / / Ih(s. X! )b(s, X1) —h(s,X3_>b(s,X3_)||z|F(dz)ds}
153 R
1
< C |lh(t,x) = h(t2, )|y — x| + (1 + |y (&2 — 11)2
1 1
T 2 T 2
+E (/ |x}_—x§_|2ds> +E </ |X}_—X§_|2ds> (1+ sup |X§|)
) 153 h<s<T
T T
+E / X! — X2 |ds+ E (/ |x1—x§|ds> 1+ sup |X2|
5] t th<s<T
1
= €[l = lly = x|+ (1 +[yDE —n)?
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In the general case that g and A(¢, -) are only Lipschitz continuous, we can again choose g°

and A to be the smooth molifiers with respect to the spatial variable x, and follow the standard
arguments to show that

T
lirrbE {/ €5 — &1% (0% + b*)(t, Xt)dt} =0. (6.20)
E—> 0

Next, since (h°), (-, x) is caglad for each x, using an argument similar to our previous one, we
see that there exists a caglad process &£° of the form

o2(t, X, S + &7

£ — , 6.21
T T X, ©2D
where £%1 and £%2 are defined in a by now obvious way, and such that
T
lim E {/ £ — 21202 4+ b2) (1, Xt_)dt} =0, (6.22)
e—0 0

where £2 is defined by (6.15). It is not too hard to show, as we did before, that £2is again caglad.
Define, in light of (6.21),
A &2+, X)) — &

o2(t, X;-) '

It suffices to show that £! is caglad. To this end we denote, by (6.17),

§ =

|I>

T
A £ VX, — h*(t+, X)E {(gg)’ (/o R (s, Xs)dXs> t}

T T
E{(gs)/ </ h*’(s,XS_)dXS> U (h®)' (s, Xs—)VX_dX; (6.23)
0
; t
+/ hg(s,XS_)dVXX} ‘]—}}.
t

< A}. From (6.20) and (6.22) we know

For any A > 0, define 2, = {a) sup, {IVX;| +
that

T
E {1m / lE8lvx,_ — “.;‘,1VX[_|dt}
0

b2 VX
E{lg/o [“+ |88 — ENVX |+ f'|éf2—s,|} }

T 2
ooy, (E {lm / [|§f g et s,zﬂ (2 + b)), Xt)dt}) 0, ase — 0.
0

Z(IX)}

IA

IA

That is,
lim e5'vx_ =¢g!'vx._, stonglyin L'(S x [0, T]). (6.24)
E—>

Now denote G¢ 2 (gg)’(fOT h(s, Xs—)dXy). Since it is uniformly bounded, there exists G €

L?(Q) such that, possibly along a subsequence, G® converges to G weakly in L?(£2). Noting
that h%s are uniformly bounded and converge to & uniformly, we can easily derive
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lim h°(+, X)E{(G*|F) = h(-+ X)E(G|F)}. weaklyin L3 x [0, T]),
£—>

which, together with (6.24), implies that

lim A° = A%, weaklyin L' x [0, T)), (6.25)

e—0

where A? 2 S,IVXt, — h(t, X;_)E{G|F;}-, t € [0, T]. Now by Mazur’s theorem (cf., e.g.,
[7]), there exists a sequence {B™"}, where each B"-* is a convex combination of A®, such that
B™* converges to A? strongly in L'(€2; x [0, T]). Since Q) 1 €, a simple diagonalization
procedure shows that there exists a sequence {B"}, where each B” is a convex combination of
B™*s (hence still a convex combination of A®s!), such that B" converges to A°, strongly in
LY(Q; x [0, T]) forall A, as n — oo. Consequently, for a.s. w € 2, B" (w) converges to A%w)
in measure. On the other hand, by the definition (6.23) it is not hard to check that {A®}, whence
{B™}, is tight under the Meyer—Zheng topology. An argument similar to that in [11] shows that
A has a caglad version. The proof is now complete. a

Remark 6.1. If we let h(t, x) = 1jg,4)(¢) for some ty € [0, T], then the assumptions (i)—(iii) of
the theorem are all satisfied. Therefore our result covers the special case when ®(X) = g(Xy,),
that is, the case considered in [8].

Remark 6.2. In the theorem we assumed that / is bounded so that the random varables involved
are all square integrable. An alternative assumption (of (i)) could be that

(i) Jpz*F(d2) < .

We leave the details to the interested readers.

7 General case

In this section we shall summarize the results from previous sections to study some more general
situations. We present them in two theorems.

Theorem 7.1. Assume that (X) = g([; hi(t, X))dt, [)] ha(r, X,—)dX,), where

hi(r,x) 2 ()@ x), ha(x) 2 (R D) ).

Assume further that hy is bounded and caglad with respect to t. Define ¢ : R™ x R" x R x
[0, T]x R+ Ras

©(A1, Az, x,t, )

T T
2E {g(Al +/ hi (s, X0¥)ds, Ay +ho(t, x)(y — x) —i—/
t t

hy (s, xg’_y)dxg’y)} :

(1) If g, hy and hy are continuously differentiable with uniformly bounded derivatives with
respect to the spatial variables, then § is caglad. To be more precise, one has
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£+ b1, X,0)

t— t—
= o’ X: oy (/ hi (s, Xs)ds, / hy(s, Xs—)dXs, Xi—, t, X,_) (7.1)
0 0

1 -
+bA (1, Xz—)/ / Py (/ hi (s, Xs)ds,
R Jo 0

t
/ hy(s, Xy_)d Xy, X 1, X + b, Xz)zu) 2duF(dz),
0
where
T
(py(Al, Ay, x,t,y) = E {<g1, / (hl);(s, Xg’y)VX§’>'ds> (7.2)
t
T T i
+ <gz, ha (1, x) +/ (ho) (s, Xy H)VXYd X!y +/ ho (s, X§2)dvx§’y>} _
t t

(ii) The same holds when g, hy and hy are differences of two functions convex with respect
to the spatial variables,with right derivatives bounded and all the derivatives appearing in (i)
are replaced by the corresponding right derivative, provided we have x5, fOT hl1 (t, X;)dt and

fOT h?(t, X;)d X, have no atoms.

Proof. (1) If (hy)’, is also caglad with respect to ¢, then similar to (3.8) one can show that (7.1)
also holds. In general we can again approximate h; by the molifiers to conclude the same result.
(i1) This is a direct consequence of the arguments of [8, Theorem 2.6-b]. a

Theorem 7.2. Assume that ®(X) = g(®1(X), ..., ®,(X)), where g is uniformly Lipschitz,
where ®;(X)s are of the form as those in Theorem 5.1, 5.2, or 6.1. Then & is caglad.

Proof. To simplify the presentation, let us assume that

T

qD(X):g (Dl(X), sup h(tvxf)v k(tvxl—)dxl )
0<t=<T 0

where @ satisfies Ll-Lipschitz condition (5.1), and #, k satisfy the conditions in Theorem 5.1
and Theorem 6.1, respectively. Define ¢ : D x R2 x [0, T] x R — R to be such that

A n
px,a,x,t,y) =E{g(<l>1(xl[o,t) + X" 111, sup h(s,x(s)) VvV sup h(s, X5),

0<s<t t<s<T

T
a+kano-0+ [ k. x;w)dX;,y)}_

t

For any partitionw : 0 =1y < --- < t, = T, define ¢” similar to (4.13). Then, combining the
arguments in the previous sections we see that £ will converge to £ in measure, as |7| — 0,
and that & is caglad. O
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