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In our everyday life, we often need to anticipate the potential occurrence of events and their conse-
quences. In this context, the way we represent contingencies can determine our ability to adapt to the
environment. However, it is not clear how agents encode and organize available knowledge about the
future to react to possible states of the world. In the present study, we investigated the process of
contingency representation with three eye-tracking experiments. In Experiment 1, we introduced a novel
relational-inference task in which participants had to learn and represent conditional rules regulating the
occurrence of interdependent future events. A cluster analysis on early gaze data revealed the existence
of 2 distinct types of encoders. A group of (sophisticated) participants built exhaustive contingency
models that explicitly linked states with each of their potential consequences. Another group of
(unsophisticated) participants simply learned binary conditional rules without exploring the underlying
relational complexity. Analyses of individual cognitive measures revealed that cognitive reflection is
associated with the emergence of either sophisticated or unsophisticated representation behavior. In
Experiment 2, we observed that unsophisticated participants switched toward the sophisticated strategy
after having received information about its existence, suggesting that representation behavior was
modulated by strategy generation mechanisms. In Experiment 3, we showed that the heterogeneity in
representation strategy emerges also in conditional reasoning with verbal sequences, indicating the
existence of a general disposition in building either sophisticated or unsophisticated models of
contingencies.
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The main challenge we face in our everyday experience is
adapting to the environment we live in. We need to foresee that
some events might take place in the future and to be aware of the

possible consequences of their occurrence (Schultz, Dayan, &
Montague, 1997; Suddendorf & Corballis, 2007). However, our
world is not always predictable: we can learn how to respond to a
specific event, but we may not know whether this event will
actually occur. For example, I know that I will have to take the bus
if the train does not arrive, but the (non-) arrival of the train is in
some way unforeseeable. In this context, the way we encode and
organize relevant knowledge about the world (i.e., the type of
environmental representation we generate) can affect our ability to
respond to future events (Bar, 2007; Gilbert & Wilson, 2007). On
the one hand, agents may build an exhaustive representation of the
relational structure underlying interrelated contingencies and plan
future behavior taking into consideration every predictable conse-
quence of potential states. In our example, I am prepared for the
possibility that the train does not arrive, and so I bring my bus pass
to be ready to respond optimally to the occurrence of both states of
the world. On the other hand, agents may learn only basic units of
knowledge (e.g., binary associations between a state and an out-
come), without building an explicit model of how these simple
rules relate to each other. Only once a specific condition takes
place, these latter agents would use stored knowledge to react to
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that specific event. In our example, this representation process
would lead me to realize that I need the bus pass only after
apprehending that the train has not arrived, potentially catching me
unprepared (i.e., I may have left the bus pass at home). These two
types of representation processes express different degrees of
sophistication: despite the latter behavior might be occasionally
efficient, the former is more sophisticated because it is suitable for
responding optimally to every predictable environmental contin-
gency. Although this behavioral difference is reminiscent of the
distinctions between rule abstraction and memorization in category
learning (McDaniel, Cahill, Robbins, & Wiener, 2014), proactive
and reactive cognitive control (Braver, 2012), model-based and
model-free learning (Daw, Niv, & Dayan, 2005, 2011; Konovalov
& Krajbich, 2016), and problem-model and direct-translation strat-
egies in problem-solving (Boote et al., 2018; Mayer & Hegarty,
1996), it is still unclear how agents build internal contingency
models starting from available relational knowledge. In particular,
we should understand whether distinct processes of relational
representation do exist, as well as the cognitive sources of this
heterogeneity. To explore these issues, we ran three different
eye-tracking experiments.

In Experiment 1, we designed a novel relational-inference task
in which each trial was composed of two phases: representation
and response. In the representation phase, participants had a lim-
ited amount of time to learn triplets of between-state rules con-
nected by higher-order transitive relations (i.e., if the state X
occurs, then the state Y follows; if the state Y occurs, then the state
Z follows; if the state Z occurs, then the state W occurs as well).
These pieces of information established the conditional relations
regulating the occurrence of states, but did not provide information
about their actual occurrence (i.e., participants know that state Y
follows from the occurrence of state X, but do not know if state X
will actually occur). In the response phase, the occurrence of a
specific state was disclosed, and participants had to infer which
other states necessarily followed given the relational model ac-
quired in the representation phase. In the relational-inference task,
we used eye-tracking to explore top-down attentional mechanisms
including search, selection and binding of relevant information,
which can reveal how agents spontaneously build representations
of the current relational environment. Specifically, in the repre-
sentation phase, we expect some (sophisticated) participants to
explore the environment searching for all possible relational in-
formation to construct a representation that explicitly expresses all
the existing relations between states. Conversely, unsophisticated
agents should not explore the relational properties of the current
relational set, because they do not aim to build a comprehensive
model of the relational structure of the environment.

Results of a cluster analysis on early gaze data in the represen-
tation phase confirmed the existence of two distinct groups of
participants that respectively exhibited sophisticated and unsophis-
ticated behaviors, and showed marked differences in task perfor-
mance.

To explore the cognitive mechanisms driving heterogeneity in
representation behavior, in Experiment 2 we collected data on a
new pool of participants performing the relational-inference task in
two different sessions (pre- and post- treatment). In the pretreat-
ment session, participants performed the relational-inference task
with the same modalities of Experiment 1. At the beginning of the
posttreatment session, the same participants were informed about

the existence of sophisticated and unsophisticated strategies and
their respective average efficiencies. Then they were asked to
complete again the relational-inference task in the way they pre-
ferred. We therefore compared the representation strategy imple-
mented by participants in the two sessions. We found a notable
strategy switch from the unsophisticated toward the sophisticated
strategy, suggesting that the implementation of a specific strategy
is not driven by cognitive capacity or motivation, but rather by
strategy generation mechanisms.

In Experiment 3, we investigated whether the heterogeneity in
Experiment 1 and 2 could generalize to a verbal-inference task
requiring conditional reasoning in real-life scenarios. The verbal-
inference task differed from the relational-inference task in differ-
ent ways. First, it included verbal instead of symbolic content,
setting conditional reasoning in a more naturalistic context; sec-
ond, task resolution was not dependent on short-term memory
(STM) components and encoding time constraints. The verbal-
inference task was completed by participants of Experiment 2,
because we aimed to compare individual representation strategies
in the two tasks. Results show that sophisticated participants, as
defined in the relational-inference task, spontaneously adopted
sophisticated representation behavior in the verbal-inference task,
suggesting the existence of general, context-independent processes
of encoding, integration, and representation of relational informa-
tion between hypothetical states of the world.

Cognitive Drivers of Sophisticated and Unsophisticated
Representation Processes

To date, we lack evidence about the contribution of cognitive
abilities in modulating representation-building mechanisms. We
can hypothesize that high working memory is necessary for the
generation of sophisticated representations, because it constitutes
the workspace where relational representations are constructed
(Doumas, Hummel, & Sandhofer, 2008; Halford, Wilson, & Phil-
lips, 2010), and guarantees that agents can build, retain and update
representations (Oberauer, 2009). However, it is possible that
working memory sustains active maintenance and manipulation of
representations without affecting the type of representation that is
generated. To investigate the role of working memory in these
processes, we collected four different working memory measures:
digit span forward and backward (Wechsler, 2008) and the n-back
task (in two versions of increasing difficulty, 2-back and 3-back,
Kirchner, 1958). The forward version of the digit span assesses
simple short-term maintenance and recall of elements in working
memory, whereas the backward version requires the additional
component of mental manipulation of digits (Baddeley, 1996;
Koenigs, Barbey, Postle, & Grafman, 2009; Monaco, Costa, Calta-
girone, & Carlesimo, 2013). The n-back task tests the ability to
maintain and update a dynamic set of information, targeting pro-
cesses related to cognitive control, such as inhibition and interfer-
ence resolution (Kane, Conway, Miura, & Colflesh, 2007).

Another cognitive ability that could intervene in the represen-
tation process is fluid intelligence, which expresses the ability to
adapt to unknown contexts and reason on abstract information with
minimal dependence on crystalized knowledge (Cattell, 1963).
However, we do not know whether fluid intelligence intervenes in
an early stage of representation generation or simply sustain up-
dating and inferential mechanisms, as recently suggested by Ship-
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stead, Harrison, and Engle (2016). To collect individual measures
of fluid intelligence, we tested participants on the Raven Advanced
Progressive Matrices Test (APM; Raven, Raven, & Court, 1998).

Finally, we investigated whether cognitive reflection, measured
by the Cognitive Reflection Test (CRT; Frederick, 2005), could be
a potential candidate to predict the existence of distinct represen-
tation processes. The CRT traditionally assesses the individual
tendency to implement either reflective or reflexive cognitive
processes. In particular, a high cognitive reflection level expresses
the ability to reason exhaustively about the characteristics of a
problem, inhibiting intuitive but incorrect responses. Conversely, a
low cognitive reflection level indicates an aptitude for generating
heuristics on salient information at the expense of problem under-
standing (Toplak, West, & Stanovich, 2011, 2014). In recent years,
several studies have underlined the relevance of the CRT beyond
the classical deliberation-intuition trade-off (Baron, Scott, Fincher,
& Metz, 2015; Mata et al., 2014; Szaszi, Szollosi, Palfi, & Aczel,
2017). In particular, it has been linked to the tendency to use more
thorough search processes (Cokely & Kelley, 2009; Cokely et al.,
2009) and to the ability to accurately process and represent task-
relevant information (Mata et al., 2014; Sirota, Juanchich, &
Hagmayer, 2014). Furthermore, recent evidence pointed out that
the CRT is related to analytical thinking (Hoppe & Kusterer,
2011), behavioral biases (Oechssler, Roider, & Schmitz, 2009),
probabilistic reasoning (Koehler & James, 2010; Liberali, Reyna,
Furlan, Stein, & Pardo, 2012), and rule abstraction (Don, Gold-
water, Otto, & Livesey, 2016), suggesting a broader involvement
of cognitive reflection in intelligent behavior.

Experiment 1

Method

Relational-inference task. In this novel task, participants
were presented series of three conditional statements of the form
“if A, then B” connecting pairs of symbols. Symbols represented
states of the world whose occurrence was uncertain, whereas
conditional relations between symbols prescribed the necessary
occurrence of a state (e.g., B) upon the occurrence of another state
(e.g., A). Importantly, conditional relations could be linked by
transitive relations (e.g., given the two conditionals “if A then B”
and “if B then C”, you can conclude that “if A then C”). Hence-
forth, we will refer to the three conditional statements as C1, C2
and C3. Four abstract symbols (square, circle, triangle and cross)
were used to represent states (Figure 1, left panel). Using this set
of items, we created 80 different relational sets. From all the
possible combinations of symbols and relations, we excluded those
including a specific symbol simultaneously repeated in all three
antecedents or in all three consequents of the conditionals. Each
configuration could contain zero, one, two, or three transitive
relations connecting conditionals in up-down or down-up direc-
tions.

Each trial of the task consisted of two phases: representation and
response. In the representation phase (Figure 1, left panel), partic-
ipants had 9 seconds to learn all the relevant pieces of information
in a series before their disappearance. In the response phase, one of
the symbols presented in the representation phase (source state)
was highlighted, meaning that that state had indeed occurred.
Given this novel information and the conditional relations shown

in the representation phase, participants had to select all the states
(i.e., symbols) that necessarily followed the occurrence of the
source state (Figure 1, right panel). There was no delay between
the two phases. In the response phase, each of the four symbols
was paired with a specific response key. An intuitive interface
supported the Response phase (Figure 1, right panel). Key-symbol
associations remained stable along the entire experiment.1 Sym-
bols could be pressed in any order. Participants had the opportunity
to repress the same response-key to deselect or reselect a specific
symbol. Participants were instructed that deselecting and reselect-
ing symbols would not have affected their score; final selection
was confirmed by pressing the space bar and only this response
was taken into account for evaluation. In sum, a trial was classified
as correct if participants selected all and only the states that
necessarily followed the occurrence of the source state and as
incorrect in all other cases. Participants had unlimited time in the
response phase, and they were instructed that RTs would not
influence their final score.

We created two different categories of relational set: linear and
nonlinear. In linear sets, the order of the presented triplet of
conditionals was aligned with the latent relational structure (i.e.,
with the ordered sequence of concatenated events; Figure 2, left
panel). In nonlinear sets, the underlying relational structure did not
match with the order of the presented triplet of conditionals (Fig-
ure 2, right panel). The presence of nonlinear trials allowed us to
disentangle sophisticated from unsophisticated representation pro-
cesses: sophisticated participants should indeed search for all
possible relations between states in every potential direction and
location, whereas unsophisticated participants should encode bi-
nary conditional rules independently of their higher-order rela-
tions.

All these aspects of the task were carefully explained to partic-
ipants with examples, control questions, and training trials (we
report full instructions and control questions in the online supple-
mental materials). In particular, we ensured that participants cor-
rectly understood all the conditional, transitive and spatial prop-
erties of the task. Participants were provided with three 2-min
breaks (one every 20 trials). The order of trials was randomized
across participants. Each trial was preceded by a fixation-point
positioned in one of four possible locations outside the symbol
space.

The task was made incentive-compatible by paying participants
according to their proportion of correct responses (minimum 0,
maximum 14 euros).

Visual search control task. The Visual search task served as
a control for individual differences in visual scan efficiency. In this
task, participants had to detect a target among a variable number of
distractors. They were instructed to be as accurate and fast as
possible, and they were reimbursed based on a scoring formula
combining accuracy and RTs (see the Visual Search Control Task:
Experimental Design section in Appendix A).

Cognitive measures.
Raven Advanced Progressive Matrices Test (APM). Participants

performed the Raven Advanced Progressive Matrices Test (APM).

1 We checked for possible effects attributable to the position of symbols
and corresponding keys in the response interface and we did not find any
effect of source state (see Table A1, Appendix A).
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In particular, we used a 20-min timed version of the task, which
has been shown to be an adequate predictor of the untimed APM
score (Hamel & Schmittmann, 2006). Participants were paid ac-
cording to the number of correct responses (20 cents for each
correct response, maximum 7.20 euros).

Cognitive Reflection Test (CRT). Participants answered the
three questions of the CRT without any time limit. The CRT score
reflected the number of correct responses in the test.

N-back task (2-back and 3-back). Participants performed a
computerized version of the 2-back and 3-back task. In each of
these tasks, participants were presented with a series of individual
letters appearing at the center of the screen (100 letters in total) and
they had to decide whether the current letter matched the one
observed two (in the 2-back task) or three (in the 3-back task) trials
before. Each letter was presented for 1000 ms, followed by a blank
screen for 1,000 ms. At each trial, participants indicated their
choice by pressing a response key for match or pressing nothing
for non-match. In both tasks, participants were paid according to
their proportion of correct responses (min 1 euro, max 3 euros for
each task).

Forward and backward digit span. Participants were asked to
repeat orally series of digits in the presented order (digit span
forward) or in reversed order (digit span backward). They repeated
increasingly long sequences of digits until they made two mis-
takes.

Participants and procedure. Participants were 50 students
from the University of Trento, Italy (38 females, mean age
23.16, SD 2.80). The study was approved by the local ethics
committee and all participants gave informed consent. Every
participant took part in two experimental sessions on consecu-
tive days. Participants performed the different experimental
tasks in fixed order.

In the first experimental session, participants completed the
relational-inference task while their eye movements were regis-
tered. After completing the relational-inference task, participants
performed the Visual search control task.

In the second experimental session, participants completed the
Raven Advanced Progressive Matrices Test (APM), the Cognitive
Reflection Test (CRT), 2-back, and 3-back tasks and forward and
backward digit span tests in fixed order. Feedback about perfor-
mance and respective earnings in each task were provided at the
end of the second experimental session.

Relational-inference task: Eye-tracking analysis.
Classification of transitions. To analyze eye movements, we

defined six Regions of Interest (ROIs) in correspondence of the six
symbols (see the Eye Movements Data Analysis section in Ap-
pendix A). We classified transitions as eye movements from one
ROI to the next.

We classified a transition as Transitive Transition (henceforth,
Transitive-T) if it was suitable for detecting a transitive relation
within a relational set. More specifically, we focused on transitions
connecting the consequent of a conditional relation to the anteced-
ent of another conditional, because premise integration in transi-
tive inference is generally achieved by the compression of the
repeated term in a single token (Sternberg, 1980).

We also divided transitive-Ts in linear transitive-Ts and nonlin-
ear transitive-Ts (see Figure 3).

Figure 1. Relational-inference task. In the representation phase (left panel), participants observed for 9 seconds
three conditional statements (C1, C2, C3) connecting abstract symbols (states). In the response phase (right
panel), they had to select all the states that necessarily followed the occurrence of one of the symbols presented
in the representation phase (source state, highlighted by a [red] square and a [red] selection mark). In the current
example, participants should have chosen all three remaining symbols (circle, triangle, and cross) given “square”
as source state. See the online article for the color version of this figure.

Figure 2. Types of symbol configuration in the relational-inference task.
In linear trials (left panel), the spatial order of conditionals (from up to
down) matched the underlying relational structure (triangle ¡ square ¡

cross ¡ circle). In nonlinear trials (right panel), this was not the case: in
fact, the up-down spatial order of conditionals did not match the current
relational structure (triangle ¡ square ¡ cross ¡ circle).
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Linear transitive-Ts were those transitions suitable for detecting
transitive relations in linear relational sets (up-down transitive
relations between adjacent conditionals). On the contrary, nonlin-
ear transitive-Ts were coherent with an attempt to individuate
transitive relations in nonlinear sets (any down-up transitive rela-
tions or transitive relations connecting nonadjacent conditionals).

Representation-building and representation-consolidation
intervals. To individuate the type of representation process em-
ployed by each participant, we need to segregate processes purely
related to the generation of representations from mechanisms as-
sociated with retention of information in working memory. In fact,
within the representation phase, we expect (a) a first stage more
oriented to information acquisition, meant to build a representation
of the current relational structure and (b) a second stage more
dedicated to the consolidation of information in working memory,
in view of the response phase. These two stages should be marked
by a peculiar difference in terms of cognitive load: the initial phase
of information-search should require a lower memory load than the
process of mnemonic consolidation of the final representation.
Recent eye-tracking evidence highlighted a relation between com-
putational load and fixation length: in particular, exploratory be-
havior is associated with short fixations, while higher-order pro-
cesses are characterized by longer fixations (Graffeo, Polonio, &
Bonini, 2015; Velichkovsky, 1999; Velichkovsky et al., 2002).
Moreover, several studies on gaze data revealed that exploratory
behavior emerges in an initial phase of the visual analysis, whereas
integration of information intervenes in a later stage (Castelhano,
Mack, & Henderson, 2009; Unema, Pannasch, Joos, & Velichk-
ovsky, 2005). For these reasons, we expect the first stage to be
characterized by shorter fixations compared with the second stage.
Taking advantage of this property of gaze data, we performed
several within-participant and within-trial cluster analyses using as
variables of interest (a) the fixation length (ms) and (b) the time

point of the fixation (ms).2 Data sets included data-points from
single trials in individual participants. We used a k-means cluster
analysis using an algorithm based on L1 (Manhattan) distance to
individuate two clusters in each dataset.3 We performed 4,000 (50
participants � 80 trials) different cluster analyses on 4000 differ-
ent data sets, individuating in each trial two clusters of fixation
events: an early set of fixations that we associated with the repre-
sentation building process and a later cluster of fixations related to
representation consolidation mechanisms (see Figure 4). Hence-
forth, we will refer to these temporal phases as representation-
building and representation-consolidation intervals. This method
allowed us to individuate intervals based on actual eye data of
single participant in single trials. This aspect is important because
it allowed us (a) not to assume any arbitrary length of the two
intervals, (b) to preserve between-subjects variability (differences
in interval lengths across participants), and (c) to maintain within-
subject heterogeneity (differences in interval lengths across trial
categories).

Attentional indices. Once having isolated a time interval
closely related to representation-building mechanisms (representation-
building interval), we investigated whether we could detect distinct
information-search patterns expressing sophisticated and unso-
phisticated representation processes. We expect sophisticated par-
ticipants to explore the relational space to detect higher-order
transitive relations between conditionals, whereas unsophisticated
participants should not search for transitive relations and should
encode binary rules without exploring the underlying higher-order
relational complexity. We therefore individuated three attentional
indices that could express whether agents searched for relational
information in the representation-building interval.

These are the three indices of interest:
Relational search (RS). An agent who aims to search for all

possible relations in the environment should perform a consider-
able number of transitions in a short time window. The relational
search index expresses the tendency to perform a high rate of
transitions in the representation-building interval.

We calculated individuals’ relational search indices dividing, for
each trial, the total number of transitions by the duration of the
respective representation-building interval. Then we calculated the
average of these trial-by-trial search indices to obtain a single
individual measure of relational search. The greater the index
magnitude, the higher the rate of transitions carried out by the
respective participant in the representation-building interval.

Attentional bias (AB). Because the relational structure of sets
can be spatially expressed in different ways (e.g., linear and
nonlinear sets), searching for relations requires homogeneous dis-
tribution of attention in the entire relational space. Conversely,
heterogeneous spread of attention might indicate a lack of purely
exploratory behavior and suggest enhanced computation on the
most-attended items, because agents tend to focus their attention

2 We used end of fixation instead of start of fixation as temporal
indicator of fixation occurrence because it facilitates the detection of the
temporal switch from short to long fixations by the clustering algorithm.

3 We chose an algorithm based on L1 distance because it has been shown
to be more robust to the influence of outliers compared with higher-order
distance metrics including Euclidean distance and Mahalanobis distance
(Sidiropoulos & Bro, 1999; Zhong, Deng, & Jain, 2012) and to better deal
with overpower of large-scale features (Loohach & Garg, 2012).

Figure 3. Depiction of the six possible transitive-Ts (arrows), grouped in
linear and nonlinear transitive-Ts. See the online article for the color
version of this figure.
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on the elements they are processing (Devetag, Di Guida, & Polo-
nio, 2016; Polonio, Di Guida, & Coricelli, 2015; Rayner, 1998).
The attentional bias index reflects the ability to distribute attention
homogeneously across ROIs during the representation-building
interval.

More specifically, the present index measures the magnitude
of deviation from the perfect distribution of attention (1/6 of
total fixation time for each of the six ROIs). The attentional bias
index was generated by calculating, for each trial, the Euclidean
distance from the expected homogeneous distribution of atten-
tion across the six ROIs to the actual distribution of fixations
across the ROIs. We used the average of these trial-by-trial
indices of attention to express individual indices of attentional
bias across participants. The lower the index value, the lower
the distance from perfectly homogenous distribution of atten-
tion.

Relational bias (RB). A participant who aims to build an
exhaustive model of the relational environment should search
for all the potential types of high-order relations in the current
structure. In particular, agents should perform both types of
transitive-T (linear and nonlinear) in the representation-
building interval. The relational bias index expresses the ability
to perform every type of transition to detect potential higher-
order relations.

Because we individuated two types of linear transitive-Ts and
four types of nonlinear transitive-Ts (see Figure 4), we calculated
relational bias as the Euclidean distance between the actual ratio of
nonlinear transitive-Ts (over transitive-Ts) and the expected pro-
portion of nonlinear transitive-Ts (2/3 of the total number of
transitive-Ts).4 The lower the index value, the lower the distance

from the expected distribution of linear and nonlinear transitive-
Ts.

Hypotheses.
Expected gaze patterns in sophisticated and unsophisticated

participants.
Sophisticated. We expect sophisticated participants to build a

representation that explicitly expresses the relational structure of the
relational set. They should therefore search for every possible relation
characterizing a relational set, showing a high rate of transitions in
their representation-building interval (high RS), exhibiting a homog-
enous distribution of attention across ROIs (low AB), and implement-
ing both linear and nonlinear transitive-Ts (low RB).

Unsophisticated. In the representation-building interval, partici-
pants implementing an unsophisticated representation process should
not search for higher-order relations linking conditional rules. We
expect them to acquire and memorize triplets of conditionals in
sequential order, without trying to manipulate and rearrange them in
a model that resembles the actual relational structure of the trial. Such
lack of pure exploratory behavior in favor of a tendency to memorize
nonintegrated chunks of information should slow down acquisition of
information, leading to a low rate of transitions in their representation-
building phase (low RS). Moreover, because sequences of only two to
four digits at a time can be memorized (Cowan, 2012), they should
spend a significant proportion of their representation-building interval
on a subset of the six elements (high AB). Finally, we predict them to
perform few nonlinear transitive-Ts (high RB), because their strategy
requires a simple up-down, left-right sequential and ordered scan path,
as expected by Western cultural visual scan propensity (Abed, 1991;
Chua, Boland, & Nisbett, 2005; Ishii, Okubo, Nicholls, & Imai,
2011).

Performance in the relational-inference task. In the
relational-inference task, we expect sophisticated participants to show
higher average accuracy rates than unsophisticated participants, be-
cause their comprehensive model of the relational environment should
allow them to respond to the occurrence of every possible state.

The performance drop of unsophisticated participants should be
particularly pronounced in nonlinear relational sets, because the
mismatch between the latent relational structure and their internal
representation should lead to a high error rate when applying
transitive inference in the Response phase (Halford, 1984).

The role of working memory, fluid intelligence and cognitive
reflection. After individuating two groups of participant expressing
sophisticated and unsophisticated representation processes, we plan to
compare measures of working memory, fluid intelligence, and cog-
nitive reflection across groups. If these cognitive abilities are involved
in the emergence of a specific type of representation process, we
should observe differences between the two groups: in particular, we
would expect higher levels of working memory, fluid intelligence, or
cognitive reflection in the sophisticated group, in respect to the un-
sophisticated one. Moreover, it is possible that one or more of these
cognitive abilities sustain processes of retention and updating of
information independently of the representation process implemented.
In this case, we should observe intragroup modulation of performance

4 Number of transitive-Ts and of nonlinear transitive-Ts were computed
pooling data from all trials, because single trial data in the representation-
building stage contained few occurrences of transitive-Ts (especially non-
linear). Using trial-by-trial ratios, RB indices would have been noisier
indicators of relational search behavior.

Figure 4. Example of cluster analysis on eye-tracking data from one trial
of a single participant. Points represent fixations, performed in precise time
points within the trial (x axis) and characterized by specific lengths (y axis).
Colors of the points express the results of the cluster analysis: an early
cluster of short fixations (orange [light gray] dots, representation–building
interval) and a later set of longer fixations (blue [dark gray] dots,
representation–consolidation interval). See the online article for the color
version of this figure.
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by these cognitive measures. This would indicate that these constructs
sustain correct recall of information and efficient update of informa-
tion in the response phase, when the source state is provided.

Results and Discussion

Representation-building and representation-consolidation
intervals. To separate representation-building and representation-
consolidation intervals, we ran 4,000 independent k-means cluster
analyses on within-participant and within-trial fixation data using
fixation length and time point of fixation as variables. On average,
data sets included 22.5 data-points (fixations). The average time
boundary between the two intervals was 4.37 seconds (SD � 0.65).
Importantly, average fixation length in the representation-building
interval was significantly lower than the one in the representation-
consolidation interval (representation-building, M � 261.77 ms,
SD � 53.92; representation-consolidation, M � 308.87 ms, SD �
92.06; Wilcoxon’s matched-pairs signed-rank test, z � �5.613,
effect size (r) � 0.79, p � .001), suggesting that they express two
distinct phases of information processing.

Disclosing sophisticated and unsophisticated representation
processes. To investigate the existence of two distinct represen-
tation processes, we conducted a between-subjects k-means cluster
analysis on our three attentional indices. To estimate the optimal
number of clusters in our dataset, we computed the gap statistics
(Giancarlo, Scaturro, & Utro, 2008; Tibshirani, Walther, & Hastie,
2001). Results revealed that k � 2 was the best solution (Table A2
in Appendix A), suggesting that the heterogeneity in the three
attentional indices was best explained by two types of behavior.

In Figure 5, we report results of the cluster analysis (k � 2, L1
as distance measures and RS, AB and RB as variables of interest).
Cluster-1 (N � 25) was characterized by high RS, low AB, and
low RB; conversely, cluster-2 (N � 25) showed low RS, high AB,
and high RB, reflecting expected differences in the process of
representation generation of sophisticated and unsophisticated
agents. For this reason, we will refer to cluster-1 as the sophisti-
cated group and to cluster-2 as the unsophisticated group. Exam-

ples of visual analyses of sophisticated and unsophisticated par-
ticipants are shown in Figure 6.

A one-way multivariate ANOVA with relational search, atten-
tional bias and relational bias as dependent variables and group as
independent factor confirmed that the two groups express signif-
icantly different behaviors in terms of attentional indices, F(3,
46) � 46.58, p � .001. Individual index comparisons confirmed
that all three indices were significantly different across groups
(Mann-Whitney U test, RS: z � 5.93, p � .001; AB: z � �5.52,
p � .001; RB: z � 2.86, p � .004. All p values were significantly
at Bonferroni corrected threshold, p � .017). Interestingly, subject
classification was remarkably stable along the time course of the
experiment: we ran two different cluster analyses for the first and
second halves of the experiment, and we found that 88% of our
participants were consistent in terms of strategy.

A possible alternative explanation of the observed differences in
representation strategy concerns visual processing speed: in line
with this hypothesis, participants in the unsophisticated group
would show the observed attentional index levels simply because
of low efficiency in scanning the relational environment. We tested
this hypothesis by comparing the two groups in the Visual search
task: if visual scan efficiency drove the eye-movement differences
in the relational-inference task, the sophisticated group would
show higher performance in the visual search task. However, the
two groups did not differ in any of the efficiency measures we
collected (accuracy, RTs, earnings; see Table A8 in Appendix A).
These results suggest that the intergroup differences observed in
the relational-inference task were not related to general efficiency
in visual scanning.

Then we investigated whether the lookup patterns of sophisti-
cated and unsophisticated participants changed along the time
course of the trial depending on relational set type. We considered
the proportion of nonlinear transitive-Ts as measure of interest
because its evolution in time should reflect the degree of under-
standing of the current relational structure. As shown in Figure 7,
in nonlinear sets, sophisticated participants accumulated evidence
about the existence of nonlinear transitive-Ts in the first part of the
trial and, once they individuated them, maintained a stable ratio of

Figure 5. Bar graph of standardized indices of visual analysis in the two
clusters of participants. See the online article for the color version of this
figure.

Figure 6. Examples of visual analysis of sophisticated and unsophisti-
cated participants in the representation–building interval. The sophisti-
cated participant (left panel) performed a high number of transitions (red
arrows), distributed her fixations rather homogeneously across ROIs (red
circles) and performed both linear and nonlinear transitive-Ts (as visible
from the direction of arrows). The unsophisticated participant (right panel)
exhibited a lower number of transitions, her attention was more focused on
the top-left ROIs and did not perform any nonlinear transitive-Ts. See the
online article for the color version of this figure.
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nonlinear transitive-Ts to favor consolidation of these relations in
working memory. In linear sets, sophisticated agents maintained a
low proportion of nonlinear transitive-Ts, given their absence in
this type of set. These results suggest that sophisticated agents
were building a representation that explicitly expressed the rela-
tional structure of the environment. Conversely, we do not observe
differences in the proportion of nonlinear transitive-Ts across
relational sets in unsophisticated participants, suggesting that they
did not grasp the relational structure of the current environment.

Performance in the relational-inference task. We ran a
mixed-design ANOVA with mean accuracy as dependent variable,
group (sophisticated and unsophisticated) and relational set (linear
and nonlinear) as independent factors. Results show significant
main effects of group, F(1, 48) � 18.20, p � .001 and category,
F(1, 48) � 27.09, p � .001, and a significant interaction effect,
F(1, 48) � 17.62, p � .001, indicating that the relation between
performance in linear and nonlinear sets differed across groups.
Figure 8 shows that sophisticated participants show higher average
accuracy than unsophisticated ones, who in turn exhibited a sig-
nificant decrease in performance in nonlinear relational sets. These
results point out that sophisticated representation behavior is more
effective than unsophisticated processing, especially when the
relational structure underlying the current environment is implicit
and not easily recognizable.

Cognitive abilities, representation processes, and performance.
We tested whether sophisticated representation behavior was ac-
companied by higher abilities in cognitive reflection, fluid intelli-
gence or working memory (see Table 1). Tests of the six direc-
tional hypotheses (higher score for sophisticated participants in
each cognitive test) were conducted using Bonferroni adjusted
alpha levels of .008 per test (.05/6). The sophisticated group indeed
showed higher CRT score than the unsophisticated group (one-
tailed Mann–Whitney U test, z � 2.508, effect size (r) � 0.35, p �
.006), suggesting that cognitive reflection had an impact on the
emergence of distinct representation processes. On the other hand,
APM score and measures of working memory did not differ across
groups (one-tailed Mann–Whitney U test: APM, z � 0.20, p �
.419; Forward digit span, z � 1.94, p � .026; Backward digit span,
z � .253, p � 1.00; 2-back, z � �0.22, p � .412; 3-back task, z �
0.26, p � .397).

To corroborate these findings, we ran a stepwise backward
logistic regression (Draper & Smith, 1998; Efroymson, 1960;
Hocking, 1976) with group as dependent variable and all the six
cognitive measures as independent variables. A low variance in-
flation factor (VIF, Marquaridt, 1970) of 1.38 indicated no col-
linearity between variables (see Table A3 in Appendix A for
between-measure correlation table). Results confirmed that the

Figure 8. Boxplots of mean accuracy for the two groups in the two types
of relational set. See the online article for the color version of this figure.

Figure 7. Time course of proportion of nonlinear transitive-Ts by trial
category. We considered time windows of 1 second. The first time window
(0–1 s) was discarded from the plot because of the extremely low number
of transitive-Ts in this time interval (0.004% of the total number of
transitive-Ts). Filled areas around lines represent standard error of the
mean. See the online article for the color version of this figure.
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CRT score was the only cognitive measure significantly predicting
the type of representation process used (B � 0.78, p � .015, see
Table A4 in Appendix A). Furthermore, we tested whether one or
more of our cognitive measures modulated within-group perfor-
mance in the relational-inference task. We observed that perfor-
mance in the unsophisticated group was significantly affected by
the level of fluid intelligence and backward span score (stepwise
backward regression, Table 2). In the sophisticated group, perfor-
mance was modulated by APM score, and marginally by working
memory measures such as backward span and 2-back score (see
Table 2). These results suggest that fluid intelligence and working
memory sustain the representation process by modulating mecha-
nisms of retention and updating of stored information. It is not
surprising that the effect of working memory is stronger in the
unsophisticated group. In fact, the individuation of transitive rela-
tions in sophisticated participants could have allowed them to
chunk information more efficiently in the representation phase,
decreasing memory load in the response phase.

Causal mediation analysis. To understand the interplay be-
tween the type of representation process and cognitive measures in
explaining task performance, we used causal mediation analysis to
test whether representation behavior could serve as a mediator in
explaining the effect of one or more of our cognitive measures on
performance in the relational-inference task. To obtain a single and
continuous measure of representation behavior that could serve as
a mediator factor, we standardized and averaged our three atten-
tional indices in a unique index (Representation Index).5 Using the
approach implemented in the “Mediation” R package (Imai, Keele,
& Tingley, 2010), we first estimated a linear mediator model with

Sophistication Index as dependent variable and our six cognitive
measures as predictors. Only CRT score significantly predicted
Sophistication Index (B � 0.40, p � .001, see Tables A5 in section
A1, Appendix A). This finding is in line with the results previously
reported (Table 1 in the main text, Tables A4 in section A1,
Appendix A), indicating that cognitive reflection is the only mea-
sure differing across groups. The second step of the analysis
consisted of estimating a linear outcome model with overall accu-
racy as dependent variable and sophistication index and the six
cognitive measures as independent variables (Table A6, Appendix
A). Sophistication index (B � 0.56, p � .001), APM score (B �
0.29, p � .001), and backward span (B � 0.26, p � .015)
significantly predicted overall accuracy, whereas CRT score did
not predict accuracy (B � .11, p � .324). However, running a
linear regression dropping sophistication index as predictor, CRT
score significantly predicted accuracy (B � 0.33, p � .014, Table
A7, Appendix A), suggesting complete mediation of sophistication
index on the relation between cognitive reflection and perfor-
mance.

Finally, we tested the statistical significance of the indirect
effect. Confidence intervals were calculated using the bias-
corrected and accelerated bootstrap method (BCa; DiCiccio &
Efron, 1996), a procedure specifically recommended in mediation
analysis (Preacher & Hayes, 2008). As expected, the average
causal mediation effect of Sophistication Index on the relation
between CRT score and overall accuracy was statistically signif-
icant (p � .02, based on 10,000 bootstrap samples), accounting for
an estimated 68% of the total effect between CRT score and
overall accuracy (see Table 3).

In sum, causal mediation analysis revealed a remarkable effect
of cognitive reflection on representation-building processing,
which in turn highly predicted accuracy in the relational-inference
task. The relationship between cognitive reflection and perfor-
mance was largely due to this mediating effect.

Summary. In Experiment 1, we introduced a novel eye-
tracking task to investigate the process of spontaneous generation
of contingency representations. A cluster analysis on self-initiated
patterns of information-search revealed the existence of two
groups of participants that expressed different representation-
building behaviors. Sophisticated participants searched for higher-
order relational information to construct a comprehensive model of
the environment that connected each state with every potential
consequence of its occurrence. Conversely, unsophisticated partic-
ipants encoded binary rules without searching for the higher-order

5 We changed the sign of AB and RB indices to have a continuous index
indicating sophisticated representation behavior for positive values and
unsophisticated representation behavior for negative values.

Table 1
Summary Statistics (Average and Standard Deviation, in Parentheses) of the Six Cognitive Tests Administered to Participants Divided
by Group (Row 1 and 2) and Collapsed (Row 3) for Experiment 1

Group
Number of

observations CRT APM Forward digit span Backward digit span 2-Back 3-Back

Sophisticated 25 1.84 (1.07) 21.24 (3.71) 6.64 (1.08) 5.4 (1.15) .85 (.09) .72 (.09)
Unsophisticated 25 1.04 (1.06) 20.88 (4.36) 6 (1.12) 5.24 (1.13) .86 (.06) .72 (.08)
Total 50 1.44 (1.13) 21.06 (4.01) 6.32 (1.13) 5.32 (1.13) .85 (.08) .72 (.09)

Table 2
Stepwise Backward Regression Analyses of Overall Accuracy for
Sophisticated and Unsophisticated Groups

Overall accuracy B SE t p 95% CI

Sophisticated group
APM .32 .12 2.79 .011 [.08, .56]
Backward span .19 .11 1.79 .087 [�.03, .41]
3-Back .20 .10 1.94 .066 [�.01, .41]
Number of observations 25

Unsophisticated group
APM .41 .13 3.15 .005 [.14, .69]
Backward span .50 .14 3.50 .002 [.20, .80]
Number of observations 25

Note. Only cognitive measures surviving the limit for inclusion in the
model (p � .1) are reported. Variables excluded from the model (sophis-
ticated group): CRT, p � .29; digit span forward, p � .39; 2-back, p � .78.
Variables excluded from the model (unsophisticated group): CRT, p � .29;
digit span forward, p � .19; 2-back, p � .87; 3-back, p � .40.
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relational properties underlying them. The emergence of these two
distinct processes of representation generation led to marked dif-
ferences in task performance, especially in relational sets where
the intrinsic structure of the relational environment was misaligned
with the order of presentations of conditional rules.

Results from cognitive assessments analyses revealed that cog-
nitive reflection is the only measure explaining the emergence of
the two strategies. Conversely, fluid intelligence and working
memory modulated intragroup performance levels but did not
differ across groups. However, these results are only correlational
and provide indirect evidence about the cognitive factors underly-
ing sophisticated and unsophisticated behavior. For this reason, we
ran Experiment 2 to investigate whether the emergence of the
unsophisticated strategy was due to either the inability to imple-
ment the sophisticated strategy or to mechanisms of spontaneous
strategy generation.

Experiment 2

To better understand the cognitive mechanisms underlying the
emergence of sophisticated and unsophisticated representation
processes, in Experiment 2 we ran two additional sessions of the
relational-inference task with a new pool of 56 participants. In
Session 1 (pretreatment), participants completed the task with the
same modalities of Experiment 1. In Session 2 (posttreatment),
participants received additional information about the existence of
the two strategies and their respective average performance rates.
Then they were asked to repeat the relational-inference task in the
way they preferred. We compared pre- and posttreatment visual
analyses to identify potential strategy switches that would indicate
that unsophisticated representation behavior does not depend on
cognitive ability or motivation, but rather on processes related to
the spontaneous generation of sophisticated representation strate-
gies.

Although we report Experiment 2 right after Experiment 1 for
continuity in terms of research question, we acknowledge that
Experiment 2 and Experiment 3 were run on the same participants
and Experiment 2 was run after Experiment 3, to avoid any
interference by the manipulation included in Experiment 2 on
behavior in Experiment 3.

Method

Participants and procedure. Participants were 56 students
from the University of Trento, Italy (43 females, mean age 24.16,
SD 4.75). The study was approved by the local ethics committee

and all participants gave informed consent. Every participant took
part in two experimental sessions (pre- and posttreatment) on
consecutive days, performing the experimental tasks in fixed
order. In the pretreatment session, participants completed a
shortened-version of the relational-inference task while their eye
movements were registered.6 They were reimbursed according to
their proportion of correct responses (minimum 0, maximum 9
euros). Instructions and control questions were the same as in
Experiment 1. At the end of Session 1, participants performed
some of the cognitive tests we used in Experiment 1. In particular,
we chose those tests that have been observed to impact on behavior
in the relational-inference task: APM, CRT, and backward digit
span. The modalities of administration of APM and backward digit
span were identical to Experiment 1. Concerning the CRT, we
used a recent multiitem version of the CRT (Primi, Morsanyi,
Chiesi, Donati, & Hamilton, 2016) composed of six new items.
Multiitem CRTs have been recently recommended to overcome
limitations coming from familiarity and range restrictions, by
decreasing the probability of previous exposure to the CRT’s items
and floor or ceiling effects (see Bialek & Pennycook, 2018; Stieger
& Reips, 2016; Toplak et al., 2014).

In the second experimental session (posttreatment), addi-
tional instructions were read to participants before repeating the
relational-inference task. We informed participants about the
existence of the two strategies observed in the task (sophisticated
and unsophisticated) and explained in details each of them, inde-
pendently of the strategy used by the participant in the pretreat-
ment session (see online supplemental material for full transcrip-
tion of the instructions administered to participants). Moreover,
participants were informed about the average performance and
respective gain of participants using either the sophisticated or the
unsophisticated strategy, calculated on data of Experiment 1.7

After the administration of additional information, participants
were asked to perform (for the second time) the task in the way
they preferred, even implementing a strategy different from the
two we reported. For the second session, 51 new items were
created to avoid any potential confound due to the repetition of
items of Session 1. Each new item consisted in a perfect copy of
the correspondent item of Session 1 in terms of relational structure
of symbols, but the identity of symbols in each logical position was
changed. As in Session 1, participants were paid based on their
proportion of correct responses (minimum 0, maximum 9 euros).

Using this manipulation, we ensured that all the participants
could have access to the sophisticated strategy in the posttreatment
session. Moreover, informing them about the difference in average
gain between the two strategies served as a motivation for switch-
ing strategy. We aimed to analyze differences in representation
behavior across sessions, to explore whether unsophisticated par-

6 The new version consisted of 51 trials instead of the original 80 trials.
Most of the items of the shortened-version were taken from the original
one, but some new items were created to maintain the same ratio between
linear and nonlinear relational sets and balance the occurrence of the
different symbols and source states. Participants were provided with two
1-minute breaks (one every 17 trials). All the other characteristics of the
task remained unaltered.

7 Gain magnitudes of Experiment 1 were recalibrated based on the
minimum and maximum range of Experiment 2. Unsophisticated partici-
pants: 62% of correct responses, 5.58 euros on average. Sophisticated
participants: 84% of correct responses, 7.56 euros on average.

Table 3
Results of Causal Mediation Analysis With Representation Index
as a Mediator, CRT Score as Independent Variable, and Overall
Accuracy as Dependent Variable

Effect
Estimated
coefficient 95% CI p

Average causal mediation
effect (ACME) .23 [.04, .38] .02

Average direct effect (ADE) .11 [�.13, .37] .37
Total effect .33 [�.02, .61] .05
Proportion mediated .68 [.38, 7.13] .05
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ticipants were prone and able to implement the sophisticated
strategy.

Eye-tracking analysis. In the pretreatment session, we repli-
cated the analysis pipeline of Experiment 1. We first performed
single-trial and single-subject cluster analyses on eye fixation data
(fixation length and time point as dimensions) to distinguish be-
tween representation-building and representation-consolidation in-
tervals. Then we considered data in the representation-building
interval to isolate three attentional indices: relational search (RS),
attentional bias (AB), and relational bias (RB). These three indices
served as variables in a between-subjects cluster analysis to iden-
tify sophisticated and unsophisticated participants. We then com-
pared the two groups to explore differences in performance in the
relational-inference task and in cognitive assessments such as
CRT, APM, and backward digit span.

In the posttreatment session, we recalculated our three atten-
tional indices and performed a between-subjects cluster analysis
on these new indices, to investigate a potential change in the
proportion of agents implementing the sophisticated or the unso-
phisticated strategy.

Hypotheses. We believe that the emergence of sophisticated
representation behavior in Experiment 1 is driven by preferential
access to deliberative processes of acquisition, binding and repre-
sentation of relational information (as suggested by the high av-
erage CRT score). Coherently, we do not believe unsophisticated
participants to be unable to implement the sophisticated strategy,
but rather to express a minor disposition toward spontaneously
generating it. For this reason, after repeating the task and having
received additional instructions about the existence of the sophis-
ticated strategy, we expect a large proportion of the participants
classified as “unsophisticated” in the pretreatment session to
switch strategy in favor of a more sophisticated one in the post-
treatment session.

Results and Discussion

Session 1: Pretreatment. In Session 1 we replicated results of
Experiment 1. We separeted representation-building and representation-
consolidation intervals in the representation phase by running
single-trial independent k-means cluster analyses using fixation
length and time point of fixation as variables. The mean time
boundary between the two intervals was 4.43 seconds (SD � 0.65).
Fixation duration was shorter on average in the representation-
building interval than in the representation-consolidation inter-
val (representation-building, M � 254.59 ms, SD � 59.22;
representation-consolidation, M � 292.95 ms, SD � 64.43;
Wilcoxon’s matched-pairs signed-rank test, z � �5.490, effect
size (r) � 0.73, p � .001), confirming a difference in cognitive
processing across the two intervals.

A cluster analysis of our three attentional indices (calculated
using data from the representation-building interval) returned two
groups showing the same patterns we had found in Experiment 1.
Participants in cluster-1 (N � 36) showed high RS, low AB, and
low RB, whereas cluster-2 (N � 20) exhibited low RS, high AB,
and high RB, as expected by sophisticated and unsophisticated
agents, respectively. We will refer to cluster-1 as the sophisticated
group and to cluster-2 as the unsophisticated group. As expected,
indices were significantly different across groups (Multivariate

ANOVA, dependent variables: RS; AB; RB; independent factor:
group. Effect of group: F[3, 52] � 29.51, p � .001).

A mixed-design ANOVA corroborated results of Experiment 1
in terms of relationships between group, relational set type, and
performance: we found significant main effects of group, F(1,
54) � 13.29, p � .001, and relational set type, F(1, 54) � 33.022,
p � .001, and interaction effect, F(1, 54) � 15.28, p � .025.
Specifically, unsophisticated participants exhibited lower perfor-
mance than sophisticated ones, especially in nonlinear trials (so-
phisticated, linear: M � 0.84; sophisticated, nonlinear: M � 0.78;
unsophisticated, linear: M � 0.68; unsophisticated, nonlinear: M �
0.55). Then we tested between-groups differences in terms of
cognitive reflection, fluid intelligence and working memory. So-
phisticated participants showed a higher CRT score than the un-
sophisticated group (one-tailed Mann–Whitney U test, z � 2.59,
effect size [r] � 0.35, p � .005, significant at Bonferroni corrected
threshold p � .017 [.05/3]), confirming that cognitive reflection
has an effect on sophisticated representation behavior. We found a
between-groups effect of Backward digit span (z � 2.08, p �
.019), but this effect did not survive Bonferroni correction (Bon-
ferroni corrected threshold p � .017). APM score did not have any
impact on the emergence of either sophisticated or unsophisticated
behavior (z � 1.25, p � .106). The effect of cognitive reflection on
representation strategy was corroborated by a stepwise backward
logistic regression analysis with group as dependent variable and
the three cognitive measures as independent variables, showing the
CRT score was the only cognitive measure significantly predicting
representation strategy (CRT, B � 0.77, p � .012. Variables
excluded from the model: APM, p � .531; backward digit span,
p � .396).

We also replicated results indicating that fluid intelligence and
working memory modulate intragroup performance (Stepwise
backward regression. Sophisticated, APM: B � 0.45, p � .001;
backward digit span: B � 0.32, p � .013. unsophisticated, APM:
B � 0.55, p � .001; backward digit span: B � 0.32, p � .058).
Furthermore, representation strategy completely mediated the re-
lationship between cognitive reflection and performance (Linear
regression of average accuracy with CRT, APM, and backward
digit span as predictors. CRT effect without representation strategy
included in the model: B � 0.24, p � .044. CRT effect with
representation strategy included in the model: B � 0.17, p � .144.
See Tables B1 and B2 in Appendix B).

In sum, results of Session 1 of Experiment 2 replicated the ones
of Experiment 1, highlighting the existence of two groups of
participants differing in terms of representation behavior. The
emergence of these behaviors led to higher performance in the
sophisticated group and was predicted by cognitive reflection
level. In contrast, fluid intelligence and working memory did not
predict the representation strategy implemented, but rather modu-
lated performance by sustaining information maintenance and ma-
nipulation mechanisms.

Session 2: Posttreatment. After additional instructions about
the existence of sophisticated and unsophisticated strategies, par-
ticipants performed a second instance of the relational-inference
task. We performed the same analysis of Session 1 based on the
new eye data, and we investigated how agents were classified after
the manipulation. Interestingly, the new cluster analysis returned a
large group of 49 (of 56) participants showing attentional index
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levels expressing sophisticated representation behavior. Only
seven participants were classified as unsophisticated agents.

Comparing the classifications pre- and postmanipulation, we
can observe that 35 participants were classified as sophisticated in
both Session 1 and Session 2 (S-S group). Fourteen participants
were classified as unsophisticated in Session 1 and as sophisticated
in Session 2 (U-S group). Finally, six participants were classified
as unsophisticated in both Session 1 and Session 2 (U-U group).
Only one participant was classified as sophisticated in Session 1
and as unsophisticated in Session 2. We did not include this
participant in subsequent analyses.

We are particularly interested in the U-S group, because it
includes participants who shifted their strategy from unsophisti-
cated to sophisticated in the posttreatment session. Comparing
indices from these participants in Session 1 and Session 2, we can
observe a significant difference in the direction of the sophisticated
strategy for all three attentional indices (Wilcoxon’s matched-pairs
signed-ranks test, RS: z � �2.98, effect size (r) � �0.80, p �
.003; AB: z � 2.42, effect size � 0.65, p � .016; RB: z � 3.30,
effect size � 0.88, p � .001. All p values were significantly at the
Bonferroni corrected threshold, p � .017). Moreover, the overall
index shift was significantly higher in the U-S group than in the
S-S group (one-way multivariate ANOVA with RS, AB, and RB
as dependent variables and group (two levels: S-S and U-S groups)
as an independent factor, F(3, 46) � 5.93, p � .002). We did not
include the U-U group in any statistical analysis due to the low
number of subjects (n � 6). Nevertheless, comparing descriptive
statistics of the three attentional indices pre- and postmanipulation
in this group, we can see that index levels are very similar across
sessions, and maintain the typical profile of unsophisticated agents
(relational search: M[S1] � �1.76, M[S2] � �1.78; attentional
bias: M[S1] � 1.07, M[S2] � 1.40; relational bias: M[S1] � 1.47,
M[S2] � 0.90).

These results confirm that a high percentage (70%) of unsophis-
ticated participants switched toward the sophisticated representa-
tion strategy in the posttreatment session, suggesting that these
agents are indeed capable of implementing it. Interestingly, the
attentional shift in the U-S group predicted the increase in perfor-
mance in the posttreatment session (linear regression with in-
crease in accuracy as dependent variable and average index
shift [average of (post � pre] differences of RS, AB, and RB
indices] as the independent variable, B � 0.71, p � .043). How-
ever, despite the observed increase in performance, participants in
the U-S group did not reach the average level of performance of
the S-S group in the posttreatment session (U-S: M � 0.78; S-S:
M � 0.90). This can be explained by the fact that participants in
the S-S group had the possibility to repeat the task using and
refining the same strategy, whereas U-S group implemented the
sophisticated strategy for the first time in the posttreatment ses-
sion. In line with this hypothesis, we can see that the average
accuracy level of U-S participants in the posttreatment session
(78%) was comparable with the one of S-S participants (80%) in
the pretreatment session (see Table 4).

Summary. In Session 1 (pretreatment) we replicated results of
Experiment 1 showing the existence of two distinct strategies in
the process of generation of internal models of contingencies.
Results of Session 2 (posttreatment) show that the majority of
participants classified as unsophisticated in Session 1 shifted strat-
egy toward the sophisticated one, suggesting that unsophisticated

agents can implement the sophisticated strategy. This suggests
emergence of unsophisticated behavior is not primarily related to
cognitive capacity, but is linked to a preferential access to it.
Furthermore, it indicates that the implementation of the unsophis-
ticated strategy in Session 1 is not due to motivational aspects, at
least for the majority of the agents in the unsophisticated group. If
scarce motivation were the main driver of heterogeneity in Session
1, we would expect similar behavior in Session 2, given that
incentives are identical in the two sessions.

Experiment 3

In Experiment 3, we investigated whether sophisticated and
unsophisticated strategies can be generalized to more ecological
contexts, where verbal premises express the conditional occur-
rence of hypothetical events in real life scenarios (Verbal-
inference task). Specifically, participants had to judge the validity
of verbal arguments consisting in conditional sequences of hypo-
thetical states (see, e.g., Byrne, 1989).

In contrast to the relational-inference task, in the verbal-
inference task we did not impose any time constraint in the process
of relation encoding. Moreover, participants were not required to
rely on STM mechanisms to perform the task. Despite the remark-
able differences between the two tasks, we wanted to test whether
agents classified as sophisticated in the relational-inference task
would express more sophisticated representation behavior when
building the representation of real-life hypothetical states in the
verbal-inference task. This would suggest the existence of general
and context-independent strategies in the process of encoding and
representation of contingencies.

Method

Verbal-inference task. Participants of Experiment 2 (n � 56)
performed an additional verbal-inference task while their eye
movements were monitored. The verbal-inference task was per-
formed in a different experimental session preceding both Session
1 and 2 of Experiment 2. As in the previous experiments, partic-
ipants were paid based on their proportion of correct responses
(minimum 0, maximum 9 euros). The task consisted of 66 condi-
tional sequences divided in three blocks. Each trial was composed
of a sequence of two hypothetical conditional premises, followed
by an assertion revealing the actual occurrence (or nonoccurrence)
of one of the previous states and a conclusion to be evaluated as
valid or not valid. The two conditional premises were connected by
a shared proposition, whose characteristics could return either
transitive or nontransitive sequences. In transitive sequences, the
shared proposition contained two identical terms; in nontransitive

Table 4
Average Performance by Group in Pre- and Posttreatment for
Experiment 2

Group N Pretreatment Posttreatment

S-S 35 .80 (.19) .90 (.13)
U-S 14 .60 (.21) .78 (.19)
U-U 6 .57 (.29) .64 (.33)

Note. Standard deviations are shown in parentheses.
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sequences, one of the terms of the shared proposition consisted in
the negation of the other (see Table 5). As in the relational-
inference task, in both transitive and nontransitive sequences, the
presentation of the two statements could follow the temporal order
of events (linear sets) or be misaligned with it (nonlinear sets).

Possible inferences consisted in modus ponens (MP), modus
tollens (MT), affirmation of the consequent (AC), and denial of the
antecedent (DA). In some transitive sequences, participants were
required to perform two inferences of the same type to judge the
validity of the argument (e.g., MP � MP). Nonetheless, in some of
the nontransitive sequences, participants had to make two different
inferences to express the validity of the argument (MP&DA;
MT&AC).8 Therefore, sequences differed among each other along
four dimensions: linearity (linear or nonlinear), transitivity (tran-
sitive or nontransitive), number of inferences to perform (one or
two) and type of inference (MP, MT, AC, and DA).

Feedback about performance in the verbal-inference task was
provided at the end of the entire experiment (Session 2 of Exper-
iment 2).

Eye-tracking analysis. To investigate whether the sophisti-
cated and the unsophisticated strategy would also emerge in the
construction of internal models of real life hypothetical states, we
explored visual patterns of information acquisition in different
temporal intervals of the Verbal-inference task. First, we defined
an interval in which participants encoded and integrated the con-
ditional statements (i.e., constructing an internal model of the
premises) before knowing anything about the actual occurrence of
states (as in the representation phase of the relational-inference
task). This temporal interval, which will be referred to as integra-
tion interval, reflected mechanisms of encoding and integration of
the premises without including any inferential process dependent
on the actual occurrence of states. To this aim, we defined six
rectangular ROIs (647 � 167 pixels) around the six propositions of
each argument (see Figure 9). In each trial, we defined as belong-
ing to the Integration interval every fixation data falling in one of
the premise ROIs (R1–R4) before participants looked at the asser-
tion (R5) or the conclusion (R6).

Using data from this interval, we investigated whether sophis-
ticated participants tended to focus more on the integration of the
two conditional statements to form an exhaustive and explicit
model of the relational structures underlying the premises. Specif-
ically, we analyzed transitions connecting the two states of the
shared proposition following the temporal order of events (i.e.,
independently of their spatial order). These transitions could in-

deed indicate an attempt at integrating the two conditional state-
ments in a unitary and ordered model of the premises. We will
refer to these transitions as Integrative transitions (henceforth,
integrative-Ts). Integrative-Ts could be either linear or nonlinear,
depending on the current type of relational set (linear or nonlinear).
Because linear sets could not contain any nonlinear transitive
relation and therefore participants did not need to perform nonlin-
ear integrative-Ts, our eye-tracking analysis focused on nonlinear
sets.

Then we considered as judgment interval every fixation follow-
ing the first attendance of either the assertion or the conclusion,
until the response was made. The judgment interval reflected the
inferential processing sustaining the judgment of the validity of the
argument given the information about the actual occurrence (or
nonoccurrence) of one of the states and the conclusion to be
evaluated. In this interval, we investigated allocation of attention
and cognitive resources to specific propositional elements in so-
phisticated and unsophisticated agents. In particular, we focused
on those hypothetical states of the premises whose relationship had
to be judged: the state (of the premises) whose occurrence has been
revealed in the assertion and the state (of the premises) corre-
sponding to the conclusion to be evaluated as valid or invalid. In
the judgment interval, we will refer to these two ROIs as judgment
states (see Figure 10).

We believe judgment states to be the key pieces of information
in the reasoning process in the judgment interval, because the
validity of the argument had to be derived from the evaluation of
the hypothesized relationship between the judgment states. There-
fore, in the judgment interval, we extracted attentional patterns that
could indicate deeper information processing on these proposi-
tional elements. Specifically, we tested (a) distribution of attention
between the judgment states and the other ROIs and (b) differences
in depth of information processing between the judgment states
and the other ROIs. The former parameter has been operational-
ized by calculating the proportion of time spent in the judgment

8 MP&DA and MT&AC trials were treated independently of the order of
the two inferences. Therefore, in MP&DA trials both MP � DA and DA �
MP are included, whereas MT&AC trials consist in either MT � AC or
AC � MT sequences. We also included some fillers with obvious solutions
to balance valid and invalid responses in participants. Fillers were solved
with very high accuracy (97%) and were not included in subsequent
analyses.

Table 5
Examples of Items in the Verbal Conditional Sequence Task for Experiment 3

Linear Nonlinear

Transitive
If she goes out for dinner, she will eat sushi. If she eats sushi, she will be happy.
If she eats sushi, she will be happy. If she goes out for dinner, she will eat sushi.
She went out for dinner. She went out for dinner.
She will be happy. She will be happy.

Nontransitive
If she works, she will go home late. If she doesn’t go home late, she will go out.
If she doesn’t go home late, she will go out. If she works, she will go home late.
She worked. She worked.
She will go out. She will go out.
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states compared with the other four ROIs in the judgment interval.
The latter index has been calculated as the increase in fixation
duration (increase in allocation of cognitive resources, see Graffeo
et al., 2015; Velichkovsky, 1999; Velichkovsky et al., 2002) in the
judgment states in respect to the other four ROIs.

Hypotheses. We expect participants classified as sophisti-
cated in the relational-inference task (Experiment 2, pretreatment
session) to devote greater attention to the generation of an exhaus-
tive and explicit representation of the hypothetical chain of events
when compared with unsophisticated participants. In the integra-
tion interval, before obtaining any information about the occur-
rence of states, we expect them to show a higher rate of nonlinear
integrative-Ts in nonlinear relational sets than unsophisticated
participants, who in turn should move to the assertion with a less
comprehensive representation of the relationship underlying the
premises.

In the judgment interval, sophisticated participants should allo-
cate more cognitive resources to the states whose relationship has
to be evaluated (i.e., judgment states), and devote less attention to
other contextual pieces of information, because they should have
already built an explicit representation of the underlying relational
structure. This would translate into a higher proportion of time
spent on the judgment states, as well as an increase in fixation
duration in these two ROIs. On the contrary, we believe unsophis-
ticated participants’ relational representation not to explicitly ex-
press the relationship between judgment states. Therefore, once
they have encoded the information expressed by the assertion, they
should sequentially attend all the pieces of information in the set to
concatenate conditional and transitive inferences. Consequently,
we predict unsophisticated participants to allocate resources more
homogeneously between judgment states and other ROIs in respect
to sophisticated ones.

We also predict “sophisticated” attentional indices to modulate
the ability to judge the validity of conditional arguments, because
they reflect a deeper understanding of the underlying relational
structure.

Results and Discussion

Behavioral results. First, we tested whether linearity (linear
or nonlinear), transitivity (transitive or nontransitive), and number
of inferences (1 or 2) modulated performance in the verbal-
inference task. A mixed-effect logistic model (subject as random
effect on all regressors) did not show any effect of linearity (B �
0.01, p � .939), transitivity (B � �0.12, p � .102), or number of
inferences (B � 0.04, p � .567). Given these results, we will treat
performance only in terms of type of inference. Table 6 reports
average performance for each type of inference (MP, AC, DA,
MT, MP&DA, MT&AC).

Representation behavior in the verbal-inference task. In
the integration interval, we tested whether sophisticated agents (as
classified in the relational-inference task) exhibited a higher ten-
dency to integrate premises in a unitary model of the relational
environment. We indeed observed that sophisticated agents
showed a higher ratio of nonlinear integrative-Ts in the integration
interval of nonlinear sets when compared with unsophisticated

Figure 9. Example of trial with ROIs (square boxes around propositions,
not shown to the participants) used for eye-tracking analysis. R1-R4
constitute the premises of the argument, and fixation falling in these ROIs
before any fixation occur in R5–R6 are included in the Integration interval.
In this example, dotted (red) ROIs represent the shared proposition. See the
online article for the color version of this figure.

Figure 10. Eye-tracking analysis in the integration interval and in the
judgment interval. In the Integration interval (upper panel), before partic-
ipants have acquired information about the occurrence of states and infer-
ence to evaluate, we focused on nonlinear integrative-Ts (red [dark gray]
arrow) in nonlinear relational sets, reflecting the attempt to individuate a
nonlinear transitive relation between the states of the premises (square
ROIs). In the judgment interval (lower panel), once participants have
looked at the assertion or the conclusion, we focused on distribution of
attention and depth of information processing in the judgment states
(dotted [red] ROIs) in comparison to the other four ROIs (solid [blue]
ROIs). See the online article for the color version of this figure.
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ones (one-tailed Mann–Whitney U test: z � 1.76, effect size [r] �
0.79, r � .24, p � .039), suggesting that they focused more on the
integration of conditional statements in a relationally explicit
model before moving to the assertion. To describe this effect, in
Figure 11 we plotted the temporal evolution of the proportion of
nonlinear integrative-Ts in the Integration interval of nonlinear
trials for sophisticated and unsophisticated participants. Sophisti-
cated and unsophisticated agents showed similar proportions of
nonlinear integrative-Ts in the first seconds of information accu-
mulation, due to an initial reading of the premises. However, after
a few seconds of accumulation of evidence about the relational
structure of the environment, sophisticated agents significantly
increased their rate of nonlinear integrative-Ts. In sum, sophisti-
cated participants detected the nonlinearity in the relational struc-
ture and focused on the integration of the two conditional state-
ments to build a comprehensive model of the hypothetical
scenario.

Afterwards, we compared attentional indices in the judgment
interval across groups. Results show that sophisticated agents
spent more time on the judgment states (one-tailed Mann–Whitney
U test: z � 1.91, effect size [r] � 0.26, p � .027) and showed a
higher increase in fixation duration in the Judgments states (one-
tailed Mann–Whitney U test: z � 2.05, effect size [r] � 0.27, p �
.021) than unsophisticated ones. Interestingly, the attentional index
in the Integration interval predicted the level of indices in the
judgment interval (see Table 7), suggesting that the tendency to
integrate premises in a unitary relational model during integration
was associated with an enhanced attentional focus on key pieces of
information during the validity judgment.

Representation behavior and performance in the verbal-
inference task. Although the proportion of nonlinear integrative-
Ts in the Integration interval predicted the level of the attentional
indices in the judgment interval, it did not have a direct impact on
performance (Table C1, Appendix C). We therefore tested the
hypothesis that patterns of information acquisition in the judgment
interval predicted performance in the task. Because proportion of
time spent on the judgment states and increase in fixation duration
in these ROIs were highly correlated (Spearman’s rank correlation,
r � .64, p � .001), we ran a stepwise backward regression with the
two indices as independent variables and mean overall accuracy in
the verbal-inference task as the dependent variable to select the
best predictor among the two. Results show that increase in fixa-
tion duration was excluded from the model (p � .343), whereas the
proportion of time spent in the judgment states had an impact on
performance (B � 0.43, p � .001). Therefore, we used the latter
variable as an indicator of behavior in the judgment interval to
explore its effect on performance. We ran a multivariate regression
with the six inference categories as dependent variables and pro-

portion of time spent in the judgment states as the independent
variable, and we found that the attentional index predicted higher
performance in AC, DA, MT&AC, and MP&DA inference cate-
gories (see Table 8).

Finally, we tested whether cognitive measures such as cognitive
reflection, working memory and fluid intelligence modulated per-
formance in the verbal-inference task. We ran a stepwise backward
regression with mean overall accuracy in the verbal-inference task
as the dependent variable and APM score, CRT score and back-
ward digit span as independent factors. Results indicated that
working memory, as reflected by the backward span, predicted
performance in the task (B � 0.38, p � .005, see also Table C2,
Appendix C, for individual inference type analysis), whereas cog-
nitive reflection and fluid intelligence levels were unrelated to
mean accuracy (APM, p � .86; CRT, p � .16). This result is
consistent with several studies showing correlations between
working memory capacity and reasoning, for instance in the eval-
uation of syllogistic arguments (Capon, Handley, & Dennis, 2003;
Copeland & Radvansky, 2004; Gilhooly, Logie, Wetherick, &
Wynn, 1993, Gilhooly, Logie, & Wynn, 1999; Kyllonen &
Christal, 1990). Nonetheless, the association between working
memory abilities and validity judgments in syllogistic arguments is
in line with several theories of syllogistic reasoning (Fisher, 1981;
Johnson-Laird, 1983; Johnson-Laird & Byrne, 1991; Sternberg &
Turner, 1981).

Table 6
Average Accuracy by Type of Inference

MP AC DA MT MP&DA MT&AC

.97 .38 .37 .70 .45 .45

Note. MP, AC, DA, and MT inferences include transitive (1 or 2 infer-
ences) and nontransitive (1 inference) sequences. MP&DA and MT&AC
consist of only nontransitive sequences (2 inferences). All six categories
include linear and nonlinear sets.

Figure 11. Time course of proportion of nonlinear transitive-Ts (over the
total number of between-ROI transitions) by group in the Integration
interval of nonlinear trials. Fixation distribution was normalized across trial
time by assigning fixations to five homogeneous intervals based on total
number of fixations in the Integration interval of that specific trial. In this
way, each trial was characterized by five temporal intervals containing
equivalent numbers of fixations. Trial-by-trial proportions of transitions
were averaged for each participant and then individual time courses were
averaged across participants. Filled areas around lines represent between-
subjects standard error of the mean. See the online article for the color
version of this figure.
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Summary. Results of Experiment 3 indicate that heterogene-
ity of performance in the verbal-inference task is linked to the
amount of cognitive resources allocated to the judgment states in
the judgment interval, which is in turn predicted by the tendency
to integrate premises in a unitary and explicit representation of the
hypothetical scenario in the Integration interval. All these indices
are associated with the emergence of either sophisticated or unso-
phisticated behavior in the relational-inference task, suggesting the
existence of general, context-independent strategies in building
relational representations of contingencies.

General Discussion

In three eye-tracking experiments, we investigated individual
differences in the generation of internal representations of interre-
lated contingencies. In Experiment 1 and 2 we introduced a novel
relational-inference task with symbolic content, whereas in Exper-
iment 3 participants had to judge the validity of arguments in
verbal conditional sequences expressing real life hypothetical sit-
uations. Taken together, results of the three experiments revealed
the existence of two strategies for building relational models of
contingencies. Sophisticated participants spontaneously tended to
construct a sequential ordered model of interrelated events, gen-
erating a mental representation that explicitly expressed the rela-
tional structure of the environment. Conversely, unsophisticated
agents encoded binary conditional relations among states without
grasping the underlying relational complexity.

Several insights from the three experiments unravel the cogni-
tive nature of this heterogeneity. Results from analyses of cogni-

tive measures across our two groups in the relational-inference
task suggest that cognitive abilities such as fluid intelligence and
working memory do not have a crucial role in the process of
representation strategy generation. These results are in line with
recent studies investigating the emergence of different strategies in
categorical learning (Goldwater, Don, Krusche, & Livesey, 2018;
Little & McDaniel, 2015). These studies underlined the existence
of agents either memorizing simple feature-based rules or encod-
ing higher order relations between elements. In both studies, fluid
intelligence did not predict learning strategy, even though it mod-
ulated learning rates. Moreover, evidence about the existence of a
relationship between learning strategy generation and working
memory capacity is inconsistent across studies (see Little & Mc-
Daniel, 2015; McDaniel et al., 2014).

Importantly, unlike fluid intelligence and working memory,
cognitive reflection robustly predicted the type of representation
process applied. Cognitive reflection traditionally expresses the
tendency to implement either deliberative or reflexive processes
(Frederick, 2005; Travers, Rolison, & Feeney, 2016). Moreover, it
has been recently associated with accuracy in processes of infor-
mation search (Cokely et al., 2009; Cokely & Kelley, 2009) and
representation of task-relevant information (Mata et al., 2014;
Sirota et al., 2014). In line with these findings, high cognitive
reflection levels may reflect a preferential access to more deliber-
ative representation processes (Osman, 2004), which leads to the
generation of more sophisticated strategies in task resolution.
Moreover, it may suggest that the emergence of either sophisti-
cated or unsophisticated behavior in representation-building pro-

Table 7
Multivariate Regression With Attentional Indices in the Judgment Interval as Dependent
Variables and Proportion of Nonlinear Integrative-Ts as Independent Variable

Attentional indices: Judgment interval B SE t p 95% CI

Prop. time on judgment states
Proportion of nonlinear integrative-T .38 .13 3.02 .004 [.13, .63]

Increase fix. duration in judgment states
Proportion of nonlinear integrative-Ts .30 .13 2.29 .026 [.04, .56]

Number of observations 56

Table 8
Multivariate Regression With Accuracy in Each Type of Inference as Dependent Variables and
Proportion of Time Spent on the Judgment States as Independent Variable

Mean accuracy B SE t p 95% CI

MP
Prop. time on judgment states .20 .13 1.48 .144 [�.07, .47]

AC
Prop. time on judgment states .44 .12 3.61 .001 [.20, .69]

DA
Prop. time on judgment states .35 .13 2.72 .009 [.09, .60]

MT
Prop. time on judgment states �.25 .13 �1.89 .064 [�.51, .15]

MP and DA
Prop. time on judgment states .40 .12 3.18 .002 [.15, .65]

MT and AC
Prop. time on judgment states .34 .13 2.62 .011 [.08, .59]

Number of observations 56
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cesses represents a more malleable thinking disposition, rather
than an unmodifiable cognitive ability (for discussions on these
issues, see Campitelli & Labollita, 2010; Toplak & Stanovich,
2002).

This interpretation is supported by the results of Experiment 2,
which show that the majority of participants classified as unso-
phisticated in the pretreatment session switched toward sophisti-
cated behavior in a repetition of the task (posttreatment session),
after having received additional information about the existence of
sophisticated and unsophisticated strategies and their respective
efficacy rates in the task. These findings confirmed that most of
our participants were cognitively able to build ordered represen-
tations of sequential events, but only reflective agents had a
spontaneous and direct access to sophisticated representation pro-
cessing when receiving relational information about conditional
occurrence of hypothetical states. However, feedback, additional
instructions, or simple practice can trigger analytical and deliber-
ative processing that overcomes initial intuitive strategies (Ball,
2013), in line with two-stage reasoning process theories (e.g.,
Evans, 1984, 2006).

Nevertheless, Experiment 3 revealed that heterogeneity in rep-
resentation behavior emerges spontaneously when agents reason
about real life conditional sequences of events (verbal-inference
task). In particular, participants classified as sophisticated in the
relational-inference task (Experiment 2, pretreatment) showed a
higher tendency to integrate between-state relations in an exhaus-
tive model of contingencies before searching for information about
the actual occurrence events in the verbal-inference task. On the
contrary, unsophisticated agents were more prone to encode min-
imal units of relational information and start the inferential process
without having built a model explicitly expressing direct and
indirect consequences of states. This result is extremely important
because, in the verbal-inference task, the encoding of hypothetical
states was not constrained by time or STM limitations, indicating
the existence of a spontaneous tendency to integrate relational
information about contingencies in a coherent and exhaustive
model of the relational space. This tendency also predicted behav-
ior during the validity judgment, once information about the oc-
currence of a state and the conclusion to be evaluated had been
attended. Specifically, participants who had already integrated
premises in a comprehensive model (i.e., sophisticated partici-
pants) selectively allocated cognitive resources on the hypothetical
states whose relationship had to be evaluated (assertion and con-
clusion). This is consistent with reasoning with mental models
(Johnson-Laird, 1983; Johnson-Laird, 2010), which predicts the
generation of counterexamples to the hypothesized relationship
between the states whose relationship has to be evaluated as valid
or invalid. On the contrary, unsophisticated participants allocated
resources more homogenously across ROIs after attending the
assertion and the conclusion, suggesting that they had a less
comprehensive representation of the underlying relational struc-
ture when starting inferential processing. This difference in re-
sources allocation explained part of the heterogeneity in perfor-
mance in the verbal-inference task, showing preliminary evidence
about the role of attention and representation processes in reason-
ing with conditional sequences.

We believe that the results of this study provide novel insights
about the way agents encode and represent relational information
about contingencies. Because these processes are crucial in several

areas of investigations, including learning, decision-making, and
reasoning, we hope that our results would fuel further research into
the role of representation-building functions in explaining the
heterogeneity underlying higher cognition.
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Appendix A

Experiment 1

Additional Method

Relational-inference task.
Eye-tracking procedure. In the relational-inference task, par-

ticipants were seated in a chair with a soft head restraint to ensure
a viewing distance of 55 cm from a monitor with 1920 � 1980
resolution. Presentation of the stimuli was performed using a
custom-made program implemented using Matlab Psychtoolbox.
Eye movements were monitored and recorded using a tower
mounted Eyelink, 2000 system (SR. Research Ontario Canada)
with a sampling rate of 2000 Hz. A fixation was defined as an
interval in which gaze was focused within 1 degree of visual angle
for at least 100 ms (Manor & Gordon, 2003). Calibration of the
eye-tracking was repeated at the beginning of each block (four
times in total). The calibration phase was repeated until the dif-
ference between the positions of the points on the screen and the
corresponding eye locations was less than 1°. We used a 13-point
custom calibration: points were placed at the center of each of the
six symbols, at the center of the arrows expressing conditional
relations, and in place of the four possible positions of the fixation
point.

After the calibration phase, a validation phase was executed to
make sure that the calibration had been accurate. The position of
each point in the validation phase was identical to the one in the
calibration phase. Recalibrations and revalidation were performed
if these had been unsuccessful. Moreover, before the beginning of
each trial, a drift correction procedure was introduced to force
participants to look at the current location of the fixation point.
More precisely, stimuli were presented after the fixation point was
fixated for 300 milliseconds. The first fixation on each trial was
discarded from analysis because its length and spatial location
could be biased by the previous fixation point. Stimuli were placed
at optimal distance between each other to precisely distinguish
goal-directed saccades and fixations.

Eye movements data analysis. To analyze eye movements of
participants, we defined six regions of interest (ROIs) centered in
each of the six symbols. ROIs had a squared shape with a size of
200 pixels. We discarded every fixation that was not located inside

any ROIs. Although a large part of the screen was not included in
any ROI, the vast majority of fixations (92.1%) fell inside the
ROIs.

Visual search control task: Experimental design. In this
task, participants had to detect as fast as possible a target among
several distractors. The target element was a letter T and was
actually present in the array in half of the total 120 trials. Distrac-
tors (letter L) as well as target letter were randomly located in the
full screen space (Figure A1); the number of stimuli in each trial
could be either 16, 20, or 24. In each trial, participants were asked
to judge whether the Target letter was present or not, pressing the
respective keys on the keyboard (P � present; Q � absent). They
were instructed to be as accurate and fast as possible and the task
was made incentive-compatible by paying participants based on
both accuracy and RTs. In particular, participants received 0.07
euros for each correct trial, from which we subtracted 0.01 euro for
each second used to respond. For example, if a participant gave a
correct response in 2.37 seconds, she obtained 0.0463 euros in that
trial. In case of an incorrect response, the participant received 0
euros. The final outcome of each participant was the sum of the
trial-by-trial earnings. Participants were provided with a break (up
to 2 min) every 40 trials (two breaks in total).

(Appendices continue)

Figure A1. Example of the visual search task (target [t] present).
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Additional Results

Relational-inference task..

Causal mediation analysis.

(Appendices continue)

Table A1
Mixed Effect Logistic Model With Trial Accuracy as Dependent
Variable, Trial Source State as Independent Variable, and
Participant as Random Effect

Overall accuracy B SE z p 95% CI

Source state .044 .035 1.25 .212 [�.025, .113]
Number of observations 4000
Number of independent

observations 50

Note. We did not find any effect of source state on accuracy.

Table A2
Gap Statistics for Different Number of Clusters (k: 1–5) Based
on 10,000 Monte Carlo Bootstrap Samples

Number of clusters (k) 1 2 3 4 5

Gap statistics .224 .258 .174 .158 .120

Note. The value of gap that best explained data is 2.

Table A3
Correlation Table of Our Six Cognitive Measures

Cognitive measure CRT APM
Forward

digit-span
Backward
digit-span 2-Back 3-Back

CRT 1.00
APM .34 1.00
Forward digit-span .39 .22 1.00
Backward digit-span .40 .11 .49 1.00
2-Back .21 .30 .25 .20 1.00
3-Back .12 .20 .13 .07 .58 1.00

Table A4
Stepwise Backward Regression Analysis of Group (Sophisticated
or Unsophisticated)

Group B SE z p 95% CI

CRT .78 .32 2.44 .015 [.15, 1.41]
Number of observations 50

Note. Only cognitive measures surviving the limit for inclusion in the
model (p � .1) are reported. Measures excluded from the model: APM,
p � .56; digit span forward, p � .22; digit span backward, p � .24; 2-back,
p � .16; 3-back, p � .59.

Table A5
Linear Model of Representation Index With Our Six Cognitive
Measures as Independent Variables

Representation index B SE t p 95% CI

CRT .40 .15 2.70 .010 [.10, .70]
APM .03 .14 .20 .839 [�.25, .31]
Forward digit-span .24 .15 1.60 .116 [�.62, .54]
Backward digit-span .05 .15 .33 .746 [�.26, .36]
2-back �.25 .15 �1.66 .105 [�.55, .05]
3-back .05 .15 .31 .759 [�.25, .34]
Number of observations 50

Note. This regression will serve as mediator model for causal mediation analysis.

Table A6
Linear Model of Overall Accuracy With Representation Index
and Our Six Cognitive Measures as Independent Variable

Overall accuracy B SE t p 95% CI

Representation index .56 .10 5.47 �.001 [.36, .77]
CRT .11 .11 1.00 .324 [�.11, .33]
APM .29 .08 3.02 .004 [.09, .48]
Forward digit-span �.17 .10 �1.65 .106 [�.38, .04]
Backward digit-span .26 .10 2.55 .015 [.05, .47]
2-back .08 .10 .76 .452 [�.13, .29]
3-back .15 .10 1.47 .149 [�.05, .35]
Number of observations 50

Note. This regression will serve as outcome model for causal mediation
analysis.

Table A7
Linear Model of Overall Accuracy With Our Six Cognitive
Measures as Independent Variables

Overall accuracy B SE t p 95% CI

CRT .33 .13 2.57 .014 [.07, .59]
APM .30 .12 2.47 .018 [.06, .55]
Forward digit-span �.04 .13 �.28 .780 [�.30, .23]
Backward digit-span .29 .13 2.18 .035 [.02, .56]
2-back �.06 .13 �.46 .645 [�.32, .20]
3-back .17 .13 1.34 .188 [�.09, .43]
Number of observations 50

Note. The presence of a significant effect of CRT, absent when control-
ling for representation index (Table A5), indicates complete mediation of
representation index on the relation between CRT and overall accuracy.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

277GAZE AND RELATIONAL REPRESENTATION PROCESSES



Visual search control task. We collected several measures of
performance: average accuracy, average RTs, and total earnings
(Table A8). We tested between-groups differences performing a
two-tailed Mann–Whitney U test for each measure of interest.
Results did not show any differences in performance across groups
(accuracy, p � .83; RTs, p � .88; earnings, p � .53).

To investigate whether task difficulty influenced visual scan
efficiency in our two groups, we looked at the magnitude of

earnings across set sizes in sophisticated and unsophisticated
groups. As shown in Figure A2, both groups decreased their
earnings as the difficulty of the task increased. We calculated
individual indices of difficulty sensitivity by subtracting
earnings in trials with set size � 24 to earnings in trials with
set size � 16. No difference in terms of difficulty sensitivity
was found across groups (two-tailed Mann–Whitney test, p �
.41).

(Appendices continue)

Table A8
Summary Statistics (Mean and Standard Deviation) of Measures of Performance in the Visual
Search Task

Group
Number of

observations Accuracy RT RT (correct yes) Earnings (€)

Sophisticated 25 .91 (.06) 2.02 (0.48) 1.43 (0.26) 5.44 (0.39)
Unsophisticated 25 .90 (.07) 2.00 (0.45) 1.42 (0.24) 5.39 (0.38)
Total 50 .91 (.07) 2.01 (0.46) 1.43 (0.25) 5.42 (0.38)

Note. None of these measures was significantly different across groups.

Figure A2. Average earnings of sophisticated and unsophisticated groups by set size. See the online article for
the color version of this figure.
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Additional Results
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Table B1
Linear Model of Overall Accuracy With CRT, APM, and
Backward Digit Span as Predictors

Overall accuracy B SE t p 95% CI

CRT .24 .12 2.07 .044 [.01, .48]
APM .39 .11 3.48 .001 [.17, .62]
Backward digit-span .31 .10 3.01 .004 [.10, .52]
Number of observations 55

Note. All the measures, including CRT, predict performance in the task.
One observation missing in the backward digit span (measure not col-
lected).

Table B2
Linear Model of Overall Accuracy With Representation Strategy
(Group) and Our Three Cognitive Measures as
Independent Variables

Overall accuracy B SE t p 95% CI

Group �.46 .17 �2.66 .011 [�.80, �.11]
CRT .17 .11 1.48 .144 [�.06, .40]
APM .41 .11 3.88 �.001 [.20, .63]
Backward digit-span .28 .10 2.81 .007 [.08, .48]
Number of observations 55

Note. When representation strategy is included in the model, CRT score
is no more significant, indicating full mediation of representation strategy
on the relationship between cognitive reflection and performance. One
observation missing in the backward digit span (measure not collected).

Table C1
Multivariate Regression With Accuracy in Each Type of
Inference as Dependent Variables and Proportion of Nonlinear
Integrative-Ts in Nonlinear Trials as Independent Variable

Mean accuracy B SE t p 95% CI

MP
Prop. nonlinear integrative-Ts .12 .14 .88 .381 [�.15, .39]

AC
Prop. nonlinear integrative-Ts .18 .13 1.32 .191 [�.09, .45]

DA
Prop. nonlinear integrative-Ts .05 .14 .40 .689 [�.22, .33]

MT
Prop. nonlinear integrative-Ts �.01 .14 �.09 .932 [�.28, .26]

MP and DA
Prop. nonlinear integrative-Ts .04 .14 .27 .788 [�.24, .31]

MT and AC
Prop. nonlinear integrative-Ts .05 .14 .39 .695 [�.22, .33]

Number of observations 56

Table C2
Multivariate Regression With Accuracy in Each Inference Type as
Dependent Variables and Backward Span as Independent Variable

Mean accuracy B SE t p 95% CI

MP
Backward digit-span .34 .13 2.65 .011 [.08, .60]

AC
Backward digit-span .26 .13 1.98 .053 [�.00, .53]

DA
Backward digit-span .35 .13 2.66 .010 [.09, .61]

MT
Backward digit-span �.12 .14 �.86 .395 [�.05, .49]

MP&DA
Backward digit-span .22 .13 1.66 .102 [�.25, .34]

MT&AC
Backward digit-span .24 .13 1.81 .076 [�.03, .51]

Number of observations 55

Note. One subject excluded from analysis (backward digit span score not
collected).
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