Skip to main content

View Faculty Video

Myron Goodman

Professor of Biological Sciences and Chemistry

Contact Information
Phone: (213) 740-5190
Office: RRI 119C



Ph.D. Electrical Engineering, Johns Hopkins University, 1/1968
B.S. Electrical Engineering, Columbia University, 1/1966
B.S. , Queens College, New York, 1/1961

Description of Research

Summary Statement of Research Interests

Professor Goodman's primary research goal is to understand the molecular basis of mutagenesis. Currently, his work focuses on three major projects. In the first, Goodman's team is investigating biochemical and physical-chemical mechanisms governing DNA replication fidelity. He has developed a simple polyacrylamide gel electrophoresis assay to measure DNA synthesis fidelity at any DNA template site, and is analyzing how fidelity depends on DNA polymerases, DNA sequences, and on protein components of the replication complex. His second research project examines the biochemical basis of SOS-induced error prone repair in E. coli. Professor Goodman's third project identifies and studies normal and damage-induced DNA replication, repair, and nucleotide metabolisms enzymes using neuron and astrocyte primary and transformed cell cultures.

Research Specialties

DNA replication


Journal Article

Bransteitter, R. R., J, S. L., Allen, S., Pham, P. T., Goodman, M. F. (2006). First AID (activation-induced cytidine deaminase) is needed to produce high affinity isotype-switched antibodies. Journal of Biological Chemistry. Vol. 281, pp. 16833-16836.
Chelico, L., Pham, P. T., Calabrese, P., Goodman, M. F. (2006). APOBEC3G DNA deaminase acts processively 3' --> 5' on single-stranded DNA. Nature Structural & Molecular Biology/Nature Publishing Group. Vol. 13, pp. 392-399.
Schlacher, K., Pham, P. T., Cox, M., Goodman, M. F. (2006). Roles of DNA polymerase V and RecA protein in SOS damage-induced mutation. Chemical Reviews/American Chemical Society Press. Vol. 106, pp. 406-419.
Michell, D. L., Pham, P. T., Goodman, M. F., Nancy, M. (2005). AID binds to transcription-induced structures in c-MYC that map to regions associated with translocation and hypermutation. Oncogen/Nature Publishing Group. Vol. 24, pp. 5791-5798.
Pham, P. T., Bransteitter, R. R., Goodman, M. F. (2005). Reward versus Risk: DNA Cytidine Deaminases Triggering Immunity and Disease. Biochemistry/American Chemical Society. Vol. 44, pp. 2703-2715.
Bransteitter, R. R., Pham, P. T., Calabrese, P., Goodman, M. F. (2004). Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase. Journal of Biological Chemistry. Vol. 279, pp. 51612-51621.
Tippin, B., Pham, P. T., Goodman, M. F. (2004). Error-prone replication for better or worse. Trends in Microbiology/Elsevier. Vol. 12, pp. 288-295.
Tippin, B., Pham, P. T., Bransteitter, R. R., Goodman, M. F. (2004). Somatic hypermutation: a mutational panacea. Advances in Protein Chemistry/Elsevier. Vol. 69, pp. 307-335.
Yeiser, B., Pepper, E. D., Goodman, M. F., Finkel, S. E. (2002). SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. Proc. Natl. Acad. Sci. USA. Vol. 99, pp. 8737-8741.

Honors and Awards

USC Associates Award For Creativity In Research And Scholarship, 2001  

Service to the Profession

Editorships and Editorial Boards

Member of Editorial Board, Journal of DNA Repair, 2007-2008   

Professional Offices

consultant representing Hoffman-La Roche. Riche Molecular Systems and Roche Diagnostics, Washington, DC, Arnold & Porter, 2007-2008   
Faculty may update their profile by visiting